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1.0 INTRODUCTION

This report outlines the conclusions of SERC research project
(GR/D/20328) to investigate the difficulties experienced by
beginners and experts learning and using the logic-based
programming language PROLOG,

The original proposal outlined a strategy for investigating
different kinds of users - i.e. Prolog experts, experts in
languages other than Prolog, and complete novices. It was hoped
at that time that we could also sample populations of users from
industry, instead of confining the investigation to academic
users. In the event, the main thrust of the research has
concentrated on students who were novice Prolog programmers.
Much of the theoretical and empirical work on these novices have
been reported in Taylor (1987), where a framework for
identifying various categories of errors is described, and in
Taylor and du Boulay (1986) where an overview of the problems
with novices is provided.

This paper summarises the major findings already reported in
relation to novices and also discusses the work done on expert
performance. These observations are less complete than the work
on novices, providing only a partial account of programming
behaviour in the form of 'snapshots'. This data is presented
below, but since the detailed discussion of procedures and
experiments related to novice and non-novice Prolog learners are
reported in Taylor (1987), only the conclusions are presented
here.

After a short discussion about the study of novice programming,
and a brief description of other related work on Prolog
learners, the report is divided into three major sections.

Secjiijon 2 discusses some approaches to program writing used by
Prolog expert users at Sussex University.

Section 3 discusses complete novices, and the difficulties they
experienced during the early part of the learning process.

SeciLioji 4 reports on the problems encountered by a student who
had used other programming languages as he tried to learn
Prolog.



1.1 NOVICE PROGRAMMERS - Background remarks

Learning to program in any language is not an easy task, and
teachers of programming will be very well aware of the myriad
difficulties which beset beginners. The development of a new
programming language is often followed by claims by its
proponents that major problems associated with existing
languages are on the brink of extinction. Predictably, though,
new languages, whilst perhaps overcoming some particular types
of difficulty, bring with them their own idiosyncracies with
which learners have to grapple, and the fact remains that
learning to program is a hard task, requiring dedication on the
part of the learner and many hours of practice.

The literature on novice programming reflects several different
perspectives in the analysis of programming performance. There
are those concerned to model the acquisition of cognitive skill
(Anderson, 1982), where the major emphasis is upon the
psychological mechanisms which allow learning to take place, and
which facilitate the development of skilled performance. These
studies have been mainly undertaken studying students learning
LISP. Others are more concerned to understand the misperceptions
of novice programmers which result in buggy programs (e.g. Joni,
Soloway, GoJdman and Ehrlich, 3 983; Spohrer, Pope, Lipman, Sack,
Freiman, Littman, Johnson and Soloway, 1984). Such studies try
to identify the characteristics of bugs, based on an analysis of
the disparities between what the students think should happen,
and what actually does happen in the programming session. Many
of these bugs are associated with misinterpretation of parts of
the syntax of the language, and misperceived relationships
between its different components.

A related approach to understanding novice performance is to
contrast it with that of experts, in an attempt to identify, and
subsequently reduce, the distance between the two (e.g. Adelson
1984, Ehrlich and Soloway, 1982).

Other researchers have examined difficulties associated with
successfully dealing with the complexity of the programming
situation. This aspect has two distinct levels: that of
complexity within programs, and their proper organisation; and
that of complexity in the various modes and states of the
computer itself. Soloway et al. (1984) discuss rules of
programming discourse which help the learner understand how
orchestrate various parts of the program to achieve a desired
effect, du Boulay et al. (1981) discuss difficulties in relating
the various 'notional machines' to one another, being aware of
where one is in the system, and whom one is addressing (e.g. the
editor, or the operating system, or the compiler).

Despite the enormous quantity of research on novice programming



a welter of support materials. The learner of a new language may
be struggling with impoverished environments, insecure teaching,
and a lack of supportive debugging tools. Some difficulties
experienced by Prolog novices, therefore, may be as much a
result of these factors as they are of genuine complexities in
the language.



1.2 RESEARCH ON PROLOG NOVICES

Research into Prolog novice performance has had to move forward
rapidly on a broad front. A brief annotated bibliography of the
Prolog research community has been produced (du Boulay and
Taylor, 1987). Reflecting some of the different approaches
mentioned above, the major projects are as follows.

With regard to teaching issues, Bundy, Pain, Brna and Lynch
(Edinburgh) are developing a coherent 'story' to tell Prolog
novices. They identify seven partial models or 'stories' in
elementary Prolog texts: OR trees, AND/OR trees, Byrd Boxes,
arrow diagrams, flow of satisfaction, full traces and partial
trees. However good these stories are for illustrating some
particular feature of Prolog, Bundy et. al. criticise them for
being ad hoc. Students often lack confidence to predict the
behaviour of a previously unseen Prolog program because the
stories do not mesh into a coherent whole. Bundy et. al. aim to
derive a complete story that covers all aspects of Prolog in a
uniform and coherent manner (Bundy, 1984; Bundy and Pain, 1985;
Pain and Bundy, 1985; Bundy et al., 1986).

With regard to support tools, Coombs and Stell (Strathclyde)
have investigated misconceptions of novice programmers with a
view to building automatic debugging tools. Studies they have
made of backtracking errors are used as a basis for protocol
studies in the research reported here (Coombs and Stel], 1985).
Ross (Edinburgh) has investigated both teaching issues as well
as the design for a Prolog tutor (Ross, 1982; Ross, 1986).

Rajan (Open University), proceeding from the slogan that dynamic
events require dynamic tracing, has developed a tracer which
single-steps through code, highlighting relevant portions, and
instantiating variables in the code in situ. He found that
understanding of Prolog programs was greatly improved when the
learner had access to the trace information (Rajan, 1985).

Eisenstadt and Brayshaw (Open University) have developed the
Transparent Prolog Machine, which to some extent solves this
problem. Using modern graphics workstations they are able to
display an execution space of many thousands of nodes. It
incorporates enhanced AND/OR trees which carry information about
clause head matching, and provides a zoom facility to focus in
detail on particular parts of the code. This system is aimed at
experienced programmers, although it does allow for 'slow
motion1 tracing for those not so experienced. The system is
still being developed and evaluated (Eisenstadt, 3984;
Eisenstadt et al., 1984; Eisenstadt and Brayshaw, 1986).

Empirical psychological studies of Prolog learners have been
conducted by Ormerod, Manktelow, Steward and Robson (Sunderland



From the point of view of novices' errors, the work of Van
Someren (Amsterdam) and the work reported here are
complementary. Van Someren has investigated the 'mal-rules'
novice programmers exhibit in constructing simple Prolog
programs whereas we have tended to concentrate on the issue of
the novice's interpretation of the programming task as construed
in Prolog and as affected by their prior knowledge (Van Someren,
1984; Van Someren, 1985).

Our own work focuses on the very high-level misperceptions that
novices have of the programming task, and the interaction
between these and their interpretation of Prolog when presented
with either the declarative or the procedural view. These more
general misunderstandings can give rise to lower-level bugs of
the sort discussed by Van Someren.

Some of these groups have recently contributed to a SERC/Alvey
funded workshop on learning and using Prolog, and a collected
series of papers is in preparation.



2.0 EXPERT PROLOG PROGRAMMERS

As part of the research project, we observed a group expert
Prolog programmers. Before detailed discussion, some general
points regarding the performance of these experts is in order.

Firstly, the study was not intended to be an analysis of expert
programming performance per se. The object of the exercise was
rather to get a feel for the approach and style of expert Prolog
programming, to provide a measure against which to begin
evaluating novice performance.

Secondly, because of the informal nature of the test materials,
and the small size of subject pool, comments reported here are
mainly anecdotal. Also, there was not a great deal in the way of
uniformity of performance. However, there were certain
characteristics which stood out, which are discussed below.

Thirdly, some of the questions posed in our original proposal
were not addressed in our study. The questions pertaining to
expert performance were:

1. Does programming in Prolog require (or encourage the
development of) any specific kind of approach to problem
solving?

2. Do experts sti3 3 make use of both the declarative and
procedural semantics?

3. What is the Prolog folklore?

4. What heuristics and strategies have experts developed to cope
with situations where they are unsure about how to proceed?

5. How good are experts at predicting what Prolog programs will
do?

6. How do experts go about debugging?

Because of lack of time we did not address question 3 (Prolog
folkore), nor question 4 (the heuristics and strategies
developed by experts to cope with situations where they were
unable to proceed). A much larger, more detailed study would be
required to adequately answer these questions. However, through
discussion of the protocols, points relevant to the other
questions will arise.



2.1 METHODS AND PROCEDURES

There is at Sussex University a resident poo] of Prolog experts,
either faculty, research fellows or graduate students, who have
both taught and/or used Prolog for some time. Seven members of
the group elected to participate in the study: three members of
faculty, two research students, and two systems programmers. It
turned out that one of the members of faculty, and one systems
programmer were not in fact Prolog experts, although they had
considerable knowledge about programming and the system on which
they were working. These two, although their work was
interesting, do not form part of the study.

The experts were provided with a range of problems (see Appendix
1 for transcripts) mostly taken from How to Solve it with Prolog
(Coehlo et al. 1980). One problem stood out as particularly
interesting - the Architect Problem - and most of the discussion
below focuses around this. We also asked subjects to write a
program to flatten lists in Prolog, and one protocol in
particular is referred to. Lastly, they were asked to debug a
buggy program without running it.

Because all these experts were very busy, it was impractical to
ask them to take time out to participate in video-taped protocol
studies- Instead, a method had to be devised which allowed them
to do a task at times to suit themselves. The data was gathered
by means of an automatic logging program (written by Roger
Evans) written in POP-11 and running on the POPLOG system.

The logging program read the text of the problem file into the
current file the expert was using, and prevented the
consultation of on-line help materials and documentation. The
reason for this, being that if the experts "disappeared off" into
documentation files, the logging program would be unable to keep
track of where they went. The experts were asked to comment at
times when they would normally have pursued on-line (or off-
line) information.

The logging program trapped all input to the editor (VED) from
the terminal, and stored it in a file, together with elapsed
time between typing characters. Only differences of 3 seconds or
more between keystrokes were recorded. A second program was used
to replay the logfile by substituting the characters stored in
the file for the normal keyboard input to the editor. The editor
then behaved as it did for the expert when the logging took
place. The playback program allowed the experimenter to suspend
playback, with the option of single-stepping through keystrokes,
or resuming continuous playback.



2.2 SPECIFIC OBSERVATIONS

2.2.1 From Problems to Specifications

The major observation was that progress through a problem seemed
to have quite distinct phases, reflected in the comments made by
experts as they worked.

Aside from the domain specific knowledge which experts clearly
must have, expertise is also associated with an ability to
understand how to integrate, manipulate and combine relevant
information in the programming task. From our observations of
these Prolog experts, it seems that there are fairly clear
stages in the program writing process in which distinct types of
knowledge are being utilised: that associated with the nature of
EI2Mi?!!L§ ID ££!!£L§I> that associated with lojnnal̂  representations
®1 2X2J?i50I ̂ 2lii£i5!21i • (e • £ • a s *n a program), and that associated
with the methods and t̂ cj]ni.gue§ for achieving a given effect.

These different types of knowledge are kept separate, and whilst
the expert may 'jump around' these domains of knowledge whilst
considering how best to solve the problem, there is no confusion
about the kind of knowledge which is relevant to what kind of
question. An effective programmer, therefore, not only has the
relevant information (or has potential access to such
information), but also a facility for moving from one level, or
type, of description to another and back. Involved in this
process is an understanding of the effects of moving into a
particular domain, what the constraints are, and how that
affects the shape of the eventual solution.

Familiarity with a domain enables the expert to make decisions
about the sorts of conceptual tools which need to be available
for a problem to be successfully solved. These decisions may
involve stepping outside the domain in question to create an
appropriate environment which either caters for, or overcomes,
the constraints inherent in that domain.

To clarify, the following scenario is a hypothetical expert
based on our observations of real experts. The first phase of a
problem solving session would consist of problem interpretation
(i.e. abstracting the problem structure from the English
description). This takes place in the real-world domain, and the
expert is establishing whether or not he understands the problem
correctly (or adequately). Parts of the problem statement are
queried, and decisions are made about what kind of a problem it
is, and what would consititute a solution. This process
corresponds to the construction of a problem space, or a mental
model.

During this process, certain kinds of decision will be taken



real world domain into (in this case) the formal mechanistic
domain. Comments may be made about the kinds of
objects/relations/processes that will be needed to solve the
problem and note will be taken of functional relations of parts
of the solution (e.g. 'I think Ifm going to use fast-set-of in
order to whip through the set of objects I will have
collected...1). Having decided this, the next issue is: 'have 1
got everything I need available?*. If not the expert either
needs to develop it, or to retreive it from the system, which
may involve moving out of the formal mechanistic domain.

Finally, the solution would be expressed in the syntax of
Prolog. It may be that original design decisions taken at higher
levels are inappropriate or unnecessary, so a certain amount of
movement up and down the domain framework might occur. In this
phase the expert will be aware that some kind of a solution has
been reached (i.e. the program actually 'works1 in some sense)
but needs testing with different kinds of data. Knowing what
kind of data to use depends upon the ability to discriminate
between different kinds of behaviour produced by the machine at
the formal mechanistic level.

We shall now discuss the evidence to support this view of the
programming process from our expert protocols mainly in relation
to the Architect Problem reproduced below.

The Architect Problem

This problem provided some interesting data about expert
performance. It had been selected because it seemed that the
English description of the program belied the simplistic (even
over-simplistic) program provided in How to Solve it with Prolog
(p. 63).

Write a program for designing an architectural unit obeying
the following specifications:

1. There are two rooms

2. Each room has a window and an interior door

3. Rooms are connected by an interior door

4. One room also has an exterior door

5. A wall can have only one door or window

6. No window can face north

7. Windows cannot be on opposite sides of the unit

Most of the experts reacted to the loose formulation of this
problem:



51 This is an unbelievable problem. Design an architects
unit satisfying the following constraints !!!!!! You
got to be kidding.

In fact I can't even imagine what you want here. Points
- 7 are, in a sense, a design for a building. I cc
translate them into Prolog database entries, but that1s
very exciting. As far as I can see, DESIGNING a builc
satisfying these constraints means drawing a floor-pl
and if I knew how to write a Prolog program that would c
floor-plans for buildings given a set of constraints 1
these I'd be selling it for cash, not knocking it up in
spare time to give you something to work on.

52 Wow! animals [another problem] was easy and I took
mins on that.... good job I'm not in a hurry. Excuse
while I have a little think.

53 Not at all clear what designing means. Is it check
constraints on a design? What's the input to the progr
What's the output?

54 This problem is almost ludicrously open-ended.

After this initial phase, however, the next step was
interpret the statement, and formulate a much tigh
description of what was to be done. There were a variety
candidate methods and approaches to this task. S4 explicitly
out his plan:

S4 For example - what does "to face North" mean? if we h
all walls at right angles and one is at NE then does t
count? I'll approach this in a simple way.

Here are the constraints:
rooms have four walls
all walls are at right angles
one wall goes north-south

Here is an interpretation:
1. I'll re-interpret this to make it easier! (hahaha!)

"a wall can have only one door or window" means a we
can have a door, a window or neither, but not both.

2. each room has a window and a door means a room has
at most two doors. In fact, one room has two doors
(one interior, one exterior) and the other has only
one (interior). But each room can have any number of
windows (one or more...)

and here we P*O :



can have an interior door
or

can have an exterior door
or

can have a picture

SI also clearly illustrated distinct stages in his protocol. His
first comment was:

After a certain amount of scribbling, scratching my head,
staring out the window I've decided that what I shall
ATTEMPT to do is design a system which will tell me which
constraints my current design doesn't satisfy. But I'm
going to do the designing, not it.

The design decision had been taken - the program would ratify
his architectural design rather than create one itself. Some of
the constraints were then specified:

Some definitions: four wall that meet make a room two walls
meet if they have a common end Constraints translated into
Prolog 1, 2, 3, 4, 5. I can't easily see how to translate
the other two (particularly not the one about North facing;
walls) so I shan't...

Having interpreted the problem, eliminating parts of the
statement which he considered to be either too difficult, or
infeasible, the next phase was to implement the necessary
operators for such a solution. This provided the environment in
which the plan could be implemented, signalled by the remark:

I now have, I hope, operators that will enable me to
specify the layout of rooms, and to find out which of my
constraints are not satisfied (I probably haven't but we'll
come to that ). So what we do now, is specify the
dimensions of some walls, connect them together into rooms,
and add doors and windows, checking every now and then to
see what constraints need satisfying.

The protocol then proceeded with implementations and checks to
code up the solution.

2.2.2 Setting up Environments

The phase described here is the setting up of an environment
within wl>ich to solve the problem, and seems to be a critical
point in program creation. It appears to be the transition point
between some form of 'generalised' problem solving and the
program writing phase, where emphasis shifts from worrying about
aspects of the problem to how to program it. These experts often
appeared to have an extremely clear idea of what kinds of



predicate took, or what its name was.

For example, S2 redefined operator precedences in order to use
'is' and 'are' as infix operators in the Animal problem. The
first part of his protocol consisted of explorations of the
Prolog system to establish what facilities he could use within
the logging program. He experimented with conjectures about how
precedences work, and checked error messages to discover what
was going wrong. The resulting program was extremely easy to
read :

omnivore are mammal,
herbivore are mammal.

hi isa herbivore,
ol isa omnivore.
...etc

The program supports clean declarative interpretation which
belies the preliminary work S2 had put in to create the
environment in which he wanted to write his program. At one
level, the decision to write a program which had a surface
correspondence to a pure logical specification was a design
decision taken early on. However, the implementation of the
program involved intimate knowledge of the underlying ProJog
machine.

Another example was that of S5 who discovered that the built-in
predicate 'retract' did not function as he wanted. Having traced
it with the spy mechanism, he commented:

they've implemented retract wrong -
or at least not the way I want it.

He then proceeded to redefine 'retract' which did precisely what
he wanted,. This again confirms the notion that the expert knows
exactly what functional role a set of clauses ought to play in
the problem solution, and if the system doesn't provide such a
facility, then one is built. This would be contrasted with the
novice who would only be able to utilise what the system
provides to construct a solution and who may thus be trying to
bridge an impossibly wide gap.

As mentioned previously the program which logged the interaction
did not allow consultation of on-line documentation by the
experts (a constraint that would have been at odds with their
normal mode of behaviour). Several experts commented that at
some point they would either consult a textbook, or look at help
or documentation files. Since they were not in a position to do
either, they embarked on a trial and error sequence, but in an
extremely informed manner, suggesting that they knew what



For example, a consideration in Prolog programming is where to
put the data - i.e. Prolog allows the user to create programs
which have data in the form of ground clauses in a database, or
alternatively to bin Id complex clauses which fish out relevant
information by unification. The final decision will often rest
upon how general a solution is required.

S5 experimented with several different program structures,
commenting:

The way things are going, half the constraints are in the
structure (e.g. one window per wall) while the other half
are going to be at top level (e.g. no north facing window).
This is yukky - either I put them all in the structures
(easier, but less general) or all at top level (messy but
general).

Eventually he scrapped all his previous exploration, and wrote a
program of compound datastructures accessed by procedures. Some
of these procedures had constraints in them.

2.2.3 Errors

We found that experts were as likely to make certain kinds of
slips as are novices - e.g. syntax errors, spelling mistakes, a
wrongly ordered argument sequence etc.

For example, mixing up the order of arguments in rules - this
error was committed by S5, an extremely proficient Prolog
programmer, who, after tracing the program to discover what was
going wrong, ruefully remarked:

The arguments were backwards - I knew I should have used
infix operators to make sure I knew which way round things
were. .

His version was:

is_a(X,Y):- kindof(Y,Z), isa(X,Z).

which should have been:

isa__a(X,Y) :- kindof(X.Z), isa(Z.Y).

Again, misspellings cause problems in Prolog programs, and one
expert was floored by one. SI used the trace to see how his
program checked constraints. Given the input
1make_room(wl,w2tw3,w4)' he left spypoints set and checked
through 92 lines of trace information to verify the design.
However, he did not notice that in one of his predicates he had
misspelt 'constraint' as fconstrant'. The program failed, and he



defined two predicates with the same name but each one took a
different number of arguments. Consequently, the program ran
quite happily when the predicate which was supposed to take
three arguments was only given two, since there was a predicate
of that name which took two. Unfortunately, of course, the
solution was incorrect. The first important point was that the
expert was aware that something could be wrong with a running
program - the effect in this case was to produce too many
solutions. S6 used spy set on 17 clauses, and after careful
analysis of lengthy output he spotted his error.

Predictably, experts were prepared to dedicate a fair amount of
time to systematically checking the output of the tracing
mechanisms, a task which is liable to daunt many novices. But
what emerges from the protocols is that experts were skilful at
interpreting debugging traces, and were not prepared to leave
much to cheerful optimism. When the debugging trace began to
spew out, experts knew what they are looking for, and were
prepared to study it for considerable amounts of time. The
debugging trace referred to the execution/procedural semantics,
but we propose that experts were not simply inspecting that
information at face value (otherwise SI would have spotted his
spelling mistake). The process involved interpreting the output
in terms of what that meant for the other levels of the problem
solving process - it was interpreted functionally, not
li terally.

2.2.4 Use of trace information

We noted two different uses of the debugging traces. One obvious
use was for 'simple' debugging. We expected to see experts
debugging programs carefully and systematically, and certainly
the protocols contained a great deal of trace information.
However, it became clear that this trace information was not
simply switched on after the program was written in order to
check it out. Rattier, the program was developed incrementally,
by writing a piece of code, and then running the spy facility to
check that it really was doing what the programmer thought it
should, and as a means of illustrating to the programmer which
cases the piece of code was not dealing with. A further use was
to get an overall view of what the program was up to 'behind the
scenes' as it were. There may be several reasons for this.

Firstly, Prolog's backtracking mechanism needs constraining. We
have observed novices whose programs run away with them due to
unconstrained backtracking. The experts were not .only be aware
of the pitfalls of unconstrained backtracking, but were also
likely to put a premium on efficiency - it was not always
sufficient simply to produce the working program, it was more
challenging to do it in machine efficient terms.



was given in a matter of 10 minutes, whereas the experts took on
average about 40 minutes. However, their solutions would cope
with all kinds of lists (containing any type of structure) and
could work efficiently.

The solution provided by S3 for this problem demonstrates the
point. He made use of the debugging trace to successively
refine the solution from his original stab:

flatten([X|L],

!, flatten(X,Y), flatten(L,K).

flatten(X,X).

to the final version:

flatten([[X]|Ll], L2):-
flatten([X|Ll], L2).

flatten([[X|Ll]|L2], L):-
f]atten([X, L1|L2], L).

flatten([[]|L1], L2):-
flatten(Ll, L2).

flatten([X|Ll], [X|L2]):-
flatten(LI, L2).

flatten(X.X).

Five versions were created, and between each one was a large
section of debugging trace. The subject examined the trace
closely, and the next version was developed to cope with
successively more cases.

The problem could have been solved straightforwardly by using
'append*, but that version of 'flatten1 is costly in terms of
machine operations. All the other experts used append, but this
last solution represents a version of flatten which does not.

The importance of observing the machine's behaviour to check
that the program was correct (even though it may look correct)
was emphasised by the fact that none of the experts in this
study were willing to predict what a program would do without
running it. This may on]y be a reflection of 'house style1 at
Sussex, but it may also be relevant to the deeper issue of
understanding the overall function of a program. Prediction of
the entire behaviour of the computer from a written program is
not only difficult (i.e. one would have to mentally simulate
complex sequences of execution) but may also be fruitless due to
the high possibility of error. Unless they could inspect the
behaviour of the computer whilst the program was running, our



behavioural component for evaluation purposes, the novice may
find it difficult to know whether or not a logical specification
is correct (see Taylor 1987, Chapter 3).

There are two remaining questions so far unaddressed for which
we have only sketchy answers.

1. Does programming in Prolog require (or encourage the
development of) any specific kind of approach to problem
solving?

Many of the problems presented to the experts in our study
focused on writing programs which satisfied constraints, and in
this enterprise, heavy use was made of unification (or
matching). The major issue in this type of programming was where
to put the data, and how to access it. S5 provided an example of
an expert debating what kind of approach to adopt (see above)
and attempted several strategies. But this sort of approach used
mainly in association with unfamiliar problems (e.g. the
Architect problem) is as much linked to specifying the problem
clearly as it is to Prolog programming. More routine (and
familiar) exercises (such as the Flatten exercise) tended not to
be planned this way, but rather were created by trial and error
using the debugging trace.

It seems intuitively obvious that experts would be inclined to
construct a mental model of the problem with the constraints of
the language taken into account - i.e. it would not be very
expert to devise a solution which is incapable of being
expressed in the language, and not discovering this until the
coding phase. It was interesting to note that our two non-
experts (i.e. they were not expert in Prolog but were expert in
other languages), who were excluded from the study, both failed
to come to terms at all with the Architect problem, presumably
being unable to match their specification with Prolog
constructs.

2. Do experts still make use of both the declarative and
procedural semantics?

This question led to much debate amongst the experts in the
study. The strong argument for declarative programming is that
program statments need not contain any procedural information at
all - the machine should provide this interpretation. However,
given that Prolog is not a pure logic programming language (i.e.
cannot be fully understood without reference to the underlying
execution), a weaker argument to support declarative programming
suggests that it is useful to separate declarative information
from control information. This argument was presented by S6 who
defended the use of declarative interpretations on the grounds
that 'the logical component can help you understand/express
yourself in the procedural one, and vice versa1. In his approach
to the Architect problem, he began by specifying the goal
statement:



What: we want from the design in which walls are parts of
which rooms, and which walls have which doors and windows
in them.

The goal statement is something like this:

room(Rl), room(R2), not(Rl = R2),
walls_of(Rl, Wl), walls_of(R2, W2), one_in_common(W3,W2),
and the restrictions on what can go where.

After having defined most of the sub-procedures for this
statement, the predicate devised is as follows:

house([rooml(Wl), room2(W2), in_door(C),
windows(WW1, WW2), ex_door(Wex]) :-

n_walls(Wl,4), n_walls(W2,4), only_one_in_common(Wl,W2,C),
opposite_sides(C, Wl, W2),
nonjnorth(WWl, W3), not(WWl=C), non_north(WW2,W2), not(WW2=C)
not(opposite_s ides(WW1,Wl,WW2,W2)),
append(Wl,W2,Wused), member(Wex,Wused),
not(member(Wex,[C, WW, WW2])).

This is the most clear cut example of declarative programming
provided in the expert protocols. Whilst other experts
eventually produced programs which could be viewed as
declarative specifications, these were supported by the prior
creation of tools and constructs with which to write the
program. Building: these facilities depended on a great deal of
knowledge about the underlying execution processes. In other
words, 'basic' Prolog was used to implement a higher-level
environment to enable such a program to be written.



2.3 CONCLUSIONS

Having completed this small study of expert performance, and
then having observed novices (see below), the major conclusion
was that the two groups differed not simply because experts had
a great deal of knowledge about Prolog, but because they
understood the constraints of the formal domains in which they
were working. In other words, they were able to adopt a variety
of 'meta-level' stances from which to evaluate and criticise
their approaches to problem solving and program writing without
becoming confused, or losing track of where they were. They were
able to navigate around a conceptual framework which novices
simply did not have, a framework which structured their problem
solving activities and program writing strategies. This kind of
knowledge seemed more crucial to successful programming than an
accurate recollection of detailed programming knowledge.
Attention seemed to be focused on functional relations between
processes in the program, and the distinction between different
levels of description (e.g. from logical specification to Prolog
code).

For this reason, the analysis of novice programming had to begin
from another angle, examining the very early part of the
learning process, to establish what kinds of conceptualisations
of the task of programming, and learning Prolog, beginners had.
This was a necessary pre-requisite before examining- the
development of expertise in programming skill.



3.0 NOVICE PROLOG PROGRAMMING

The assumption in our study was that Prolog novices did not
simply lack knowledge about Prolog - it was clear from our
observations that experts sometimes lacked specific knowledge
about Prolog, but, importantly, this did not severly hamper
their work. Besides, many novices have available to them a]3 the
requisite Prolog-specific knowledge needed to write programs at
a given level, either in text-books, or teaching materials.
Furthermore, novices do not come to the programming situation
devoid of genera] purpose learning, or problem-solving
strategies•

The difficulties seemed to stem from two main sources: first, a
lack of understanding about how and when to use particular
pieces of knowledge in the programming session; second, the
unlearning of inappropriate, but powerful, general purpose
reasoning or problem solving techniques which they already
possessed. In other words, as many teachers are aware, the
novice is not an empty vessel waiting to be filled up with
correct information.

TayJor (1987) argues that in many studies of novice programmers
several major factors are ignored: the character of general
purpose, domain independent problem solving or 'understanding*
strategies ij] c_ombij}a_tijon wi_th the learner's previous
background, experience, and intuitive interpretations. Studies
which divorce problem solving strategies from their subject
consider how such strategies work when applied only to correct
information. However, learners rarely have ô ly. correct
information available. A prerequisite to effective problem
solving is the ability to correctly interpret the problem
statement according to the constraints in the domain, and
knowing: what is or is not relevant to its solution. Typical
learners cannot automatically be expected to have this
knowledge, and not unnaturally, they support their as yet weak
problem solving methods by introducing information from previous
experience, guesswork and intuitions. This alters the character
of novice problem solving, making it not only different from
that of experts in terms of speed and accuracy, but also in
terms of what they think the problem is. The learner's
conceptualisation and initial representation of the problem is
liable to be very different from what it should be, but it is
jLh_is conceptualisation to which problem solving methods will be
applied.

Many other studies (e.g. Anderson, 1982) focus on the learning
mechanisms involved in cognitive skill acquistion, where the
major emphasis is upon the psychological mechanisms which allow
learning to take place, and which facilitate the development of
skilled performance. In contrast, the study reported here



The main focus, then, is on identifying very high-level
strategies for interpreting tin* programming domain, and for
problem solving, which novices bring with them.

In order to pin down some of the particular difficulties
associated with learning to program, a framework is used
(Taylor, 1987) which identifies the various domains with which a
Prolog programmer should, in theory, be familiar, in order to
program successfully. The three domains represent different
views which can be taken of problems, and their descriptions.
They are labelled: the 'real world1 domain, the formal logical
domain, and the formal mechanistic domain. Each domain
consititutes a frame of discourse (in effect, an environment),
and has associated with appropriate reasoning strategies, a
specification language, and means by which to evaluate the
success of the specification.

The three domains are depicted as follows, and each
described in the following sections:
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The diagram is used to map out certain kinds of difficulties and
potential errors that novice may fall into. There is no single
correct route to the production of a running program, or
specification, and the diagram is not prescriptive - i.e.
program creation does not have to move from the real-world to
the formal logical domain and then to the formal mechanistic.
However, the ways in which programmers move around these various
domains, and their ability to keep separate the various views of
programs and problems will affect the eventual success with
which they write programs.



3.1 PROGRAMMING DIFFICULTIES

We divide the difficulties associated with learning programming
into six overlapping classes which can be mapped into each of
these domains. Again, these classes should not be thought of as
general stages in learning to program or particular stages in
the process of producing a working program. Rather they
represent views of the programming process at different
levels. Each of these views needs to be elaborated and
assimilated by the student in order to become expert:

Real World:
(i) General orientation to programming
(ii) Interpreting Problem Descriptions

Logical:
(iii) Using formal languages

Computational
(iv) Understanding the notional machines
(v) Using standard structures
(vi) Pragmatics

Each view is characterised and associated difficulties outlined
below.

3.3.1 The Real World

The real world domain is the one which is familiar to us all,
novices or otherwise, and is meant to represent the ordinary
world. The environment of the real world is that of human
discourse. In this domain, the problem-solver can use many
strategies to solve problems, taking advantage of existing
knowledge, prior experience, and known facts. Strategies for
problem solving include induction, deduction, guessing,
inference and so on. Any type of information could in principle
be used: e.g. visual information, recalled information,
information from one's colleagues, analogy, beliefs, prejudices
and so on.

The language for expressing problems and solutions is natural
language, which is normally understood via ordinary
comprehension processes (i.e. co-operative), using implicit
inference to construe meaning where necessary.

At this level, the learner must understand how to take a problem
description, couched in natural language, and abstract the
important components of the problem - i.e. the objects and
relations - in order to construct a mental model of the problem
to be solved. Since the overall task is programming, we define
the criterion for success as the extent to which another
' oxTofom ' nan i n t o r n r o t tho rocnl t incr nrnKlom ©r\ 1 n-f-i nn c*r»H



So there is the general PROBLEM OF ORIENTATION, finding
out what the task of programming is supposed to be, what it can
be used for, what general kinds of problem can be tackled
and what: the eventual advantages might be of expending effort in
learning the skill. It is worth pointing out that if beginners
have had no prior experience with computing languages, Prolog
appears to be a 'something and nothing1 - i.e. they are unaware
of the underlying 'machinery1 which is working for them (the
backtracking mechanism for example) and may find the examples
provided either uninteresting or not worthy of the somewhat
deeper consideration required to understand the principles
involved.

There are also the difficulties of INTERPRETING PROBLEM
DESCRIPTIONS. One of the skills that the beginning programmer
has to master is that of reading a piece of text expressing
a problem and deciding what that problem is. This requires an
analysis of the major entities involved, of their relationships
and how a solution may be obtained in principle. For some
programming languages the kinds of entity about which problems
can be stated are well delineated (e.g. numerical) and can be
used as 'landmarks'. As Prolog allows statements to be
made about any relationships and implications, there is
no clear boundary between things that can be described in
Prolog and those that cannot. One way to reduce this
difficulty is to st.ress the notions of relationships and
individuals and give the students lots of practice in using
a given restricted vocabulary to express limited aspects of
English sentences (see Ennals, 1984 for examples of this
approach).

Even if the major entities and relationships are clear there
is the problem of deciding how these should be
represented. The relative freedom of expression which Prolog
offers for representing information may hinder rather than
help beginners. Methods of representation can have a profound
effect on how easily a problem can be solved, and on how
efficient the solution may eventually be.

A widespread problem that beginners face when interpreting
problem descriptions is deciding how general a solution should
be. This problem may occur in Prolog to a larger degree than in
other languages for the reasons given above.

3.1.2 The Logical Domain

The logical domain differs from the real world in severaJ
important ways. Firstly, the range of strategies available
within the domain are restricted, as are the methods of
reasoning, and the data which can legally be brought to bear as
part of the problem solution. The usual method of reasoning is
r^aHiinf i nn «*r»/1 +Y\c± l 'nfnrmii t i n n t*rH "i r*H i e r»ol oxrant i o n n i i r +-V»£»+-



means - i.e. in a non-cooperative way, using only explicit
inferencing processes. In this case, the student must understand
the constraints upon the domain, and understand how objects and
relations may be represented.

This involves understanding how to express the information
regarding the problem solution in the terms of expressions
within the domain. Since most logical operations are syntactic,
there is no behavioural component for evaluation purposes at
this level.

These, then, are problems associated with the notation of
the various FORMAL LANGUAGES that have to be learned, both
mastering the syntax and their underlying semantics.

Logic programming languages - including Prolog - are purported
to be higher-level than other more conventional languages
because of their relationship to logic. Certain forms of logic
have a long history of being used as problem solving
tools, and in computing such forms are often used as
specification languages. However, logical expressions are
liable to be misconstrued by beginners unless they are
forced into recognising the formal rules governing logical
expressions, as distinct from the rules governing natural
language expressions.

A manifestation of this type of misconception arises when some
solution expressed in a program lies in understanding the
meaning of the English, not in the logical structure of the
program. Students can sometimes convince themselves that a
program will work because it 'makes sense' to them in English.

3.1.3 The Computational Domain

The computational domain differs again from both the other two.
Expressions in it are subject to strict interpretation according
to what they make the machine do - i.e. the language has a
functional semantics. Again the interepretation is analytic,
and the problem solver must understand both the nature of the
domain, and the way in which the language is used to effect
action. The success of the expression of a problem solution can
be evaluated according to the ability of another 'system' (in
this case a computer) to correctly interpret the program,
producing the desired behaviour.

There are'also difficulties associated with the mapping from an
understanding of the problem to an understanding of the
general properties of the various machines that one is learning
to control, THE NOTIONAL MACHINES.

Users will normally have to master not only the programming



Then there are difficulties in understanding the problem
and in translating it into the terms of reference of the
programming language, which can be hard if the concepts embodied
in the language are entirely new to the student.

This area can present beginners with a great deal of difficulty
because they have to understand, first of allt the computing
system with which they are working, and then distinguish which
elements of that system belong to Prolog, and which are
the system's own. This calls for discrimination in
interpreting error messages, and consistently maintaining
the distinction between the Prolog program/database visible on
the terminal screen, and the version of that program/database
that Prolog has. Students frequently alter their programs
and forget to 'reload' or 'reconsult' the new file;
alternatively they inadvertently assert what are meant to be
queries, thereby accidentally altering the program/database.

The general problem for beginners with Prolog is that the
underlying notional machine is both powerful and complex with
a surface behaviour that is hard to predict accurately. Prolog
syntax does not offer clear pointers to what is happening
'behind the scenes'. We gave a simple program to students and
asked them to predict what the machine would do with it. Most.
of them were capable of outlining one possible solution (the one
they were expecting) but they gave incomplete descriptions of
all the work the machine would have to do to achieve a
solution. This lack of knowledge of the complex internal
workings of the machine will make debugging particularly
difficult.

Backtracking confuses beginers in other ways. We have
confirmed the findings of Coombs and Stell (1985) where
students have misconceptions about the order in which
backtracking takes place.

Associated with notation are the difficulties of acquiring
STANDARD STRUCTURES, cliches or plans that can be used to
achieve small scale goals, such as traversing a list or
transforming one structure into another.

We have not investigated the use of standard cliches in
Prolog. However, we have noted interference effects from the
inappropriate use of standard structures from other languages
identified by Van Someren (1985).

Finally there is the issue of mastering the PRAGMATICS
of programming - that is learning the skill of how to
specify, develop, test and debug a program using whatever tools
are available.

r\ ~



novices, on the other hand, seemed to want to undertake this
hard predictive task for themselves without help.

None of these six issues are entirely separable from the others
and much of the shock of the first few encounters between
the learner and the system are compounded by the student's
attempt to dea] with all these different leveJs of
difficulty at once.

In the research reported here, we have not been able to address
all of these issues in detail. For example, we have not focused
on standard structures and cliches, nor specifically on the
pragmatics of programming. It seemed from our initial
observations of novices that they were not sufficiently weJl
oriented toward the task of programming for such a detailed
analysis to be feasible. The major areas of interest,
therefore, were those associated with the first impressions that
novices, and experts in other languages, had of Prolog, and the
kinds of interpretations they put on expressions in the
language, and on the machine's behaviour. Because of this, the
study of expert performance stands apart somewhat from the rest
of the research because those subjects, by definition, were
oriented to the task of programming.



3.2 BUGS AND SUPERBUGS

Taylor (1987) uses the diagram sketched above to map out the
space of possible errors that beginning Prolog programmers may
have. Pea (1986) discusses 'superbugs1 - high-level, language
independent conceptual bugs - which disrupt the ways in which
novices program and understand programs. One superbug identified
by him is where beginners have the guiding analogy of human
discourse for conducting their interaction with the computer.
This amounts to assuming that inside the computer is a hidden
mind with interpretative powers which can understand the
intentions of the programmer. This analogy is often
unconsciously adopted, since most learners will readily agree
that there is not 'really1 a mind inside the machine - however,
they continue to act as though there were.

The specific problems which arise for beginners using this
analogy are associated with the ways in which formal languages
(such as a programming language) violate expectations about
human discourse interpretation.

In effect, Pea's view of novices is that they are interpreting
problems and programs from the real-world domain, and are
implicitly assuming: a co-operative understanding process on the
part of the machine. This means that formal expressions arc
interpreted according to the rules of natural language, rather
than in terms of the appropriate under]ying models of those
languages which provide their proper semantics (e.g. in the case
of logic, perhaps a model theoretic interpretation; in the case
of'a programming language, the mechanistic rules by which
expressions are interpreted). But not only will the language
itself be understood by reference to natural language, the
behaviour of the .machine may also be interpreted according to
criteria associated witii understanding human behaviour. This may
lead to the attribution of rather more intentionality to the
computer than is warranted, and subsequent misunderstanding of
the source of bugs in programs.

Taylor maps out the potential error sources, defining
'superbugs1 as those which involve the use of interpretative
processes appropriate to one level to interpret another {in the
diagram the downward arrows). Bugs are defined as 'lateral'
confusions - i.e. mistakes occurring within a domain rather than
between domains. The? diagram is as follows:
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In the analysis of student performance, care must be taken not
to assume that an apparent 'bug' is not in fact a symptom of a
superbug. So, for example, a bug might arise where a student
understands something about the constraints which govern the
logical domain, has identified the appropriate objects and
relationships necessary for problem solving, but has bad]y
constructed the syntax of the logical expressions. Similarly, a
student may have correctly formulated a program in the
computational domain, but has not interpreted the behaviour of
the machine correctly (perhaps obtaining unexpected, but
correct, output) and begins to change the program.

On the other hand, a superbug is one where expressions in logic
are constructed with a natural language 'meaning' hallucinated
onto them - i.e. the intended meaning does not exist, or where
the interpretation of the computer's behaviour is based upon the
assumption that it can do more than it really can.

In order to establish whether or not a given error is a bug, or
a symptom of a superbug, it is necessary to look at the context
in which the error arose - i.e. careful attention needs to be
paid to the type of language used by the student, and the means
by which the student evaluated what happened and why. At this
stage of the research, therefore, individual protocols yield the
best data about superbugs, rather than group testing and
statistical analyses (see below).

The major claim is that beginners who have no domain-specific
-knowledge are obliged to INTERPRET a new domain. In this
enterprise learners will make use of high-level strategies (of
the sort to be found in the real-world domain) in the formal
domains. Some of these strategies are not only powerful and
economical when they work, but may equally introduce
misconceptions and misinterpretations. In other words, what may
turn out to be a superbug at some point in the learning process
frequently started out as an essential and powerful general
purpose learning strategy. As they apply these strategies,
learners will bring to bear any existing information which seems
to them to be relevant. This information will be woven into a
'theory1 or a set of explanations by learners, which constitutes
their growing model of the language. The situation is complex,
therefore, because learners cannot be relied upon to introduce
only correct information (as presented in text-books and
teaching materials) into their conceptualisations of the
programming language.

Lewis and Mack (1982), in a study of non-programmers learning to
use a text editor, explore the issue of ad hoc explanations
generated by learners to account for machine behaviour. They
noted that learners who had little prior knowledge or current
information to understand what was happening were able to



the first phase of reasoning in the development of new knowledge
because it generates the hypothesis from which further reasoning
(involving induction and deduction) can in principle proceed.
Unfortunately, most beginners are content to accept the
abductions without testing them out. An example of abduction is
given:

A learner was attempting to enter a password when a typing
mistake caused the system to halt awaiting a correction. An
indicator light marked 'input inhibited' came on. The
learner attributed both the delay and the light to a heavy
work load on the system.

This kind of explanation involves introducing a 'space of
discourse' which contains new elements (i.e. the notion of work
load) and these elements now form part of the learner's
conception of the system. Abductive processes can override other
forms of comprehension, even explicit statements in text manuals

learners sometimes re-interpreted instructions to say what
they thought they should say, or discarded them as 'obviously'
incorrect.

This process makes teaching difficult because learners may wish
to defend their interpretations on the grounds that they have
worked 'so far1 - even though this itself is also a
misperception on the part of the novice. Previous success may
have been co-incidental (i.e. due to a peculiar set of
circumstances), or it may be that learners believe themselves to
have succeeded, when in fact they had not. But simply providing
correct information is unlikely to remedy the situation, since
it stands the chance, like original teaching materials, of
simply being ignored, or of being re-interpreted to fit the
student's model.

Taylor argues that there are two strands of difficulty in
superbug effects for Prolog: that associated with interpreting
the language, and that associated with interpreting the
behaviour of the machine. These two types of difficulties are
linked with the teaching approach taken. Students who are
introduced to the declarative interpretation of Prolog, with its
lack of emphasis on the mechanisms of the language, are liable
to view Prolog as a cut-down version of English. This will lead
to students embarking on a simple surface 'translation' exercise
when writing programs, rather than a transformation of the
problem statement. Such an approach results in underspecified
programs because inference processes are left implicit in
program statements, rather than being made explicit.

Students introduced to the procedural semantics, on the other
hand, are less likely to make this type of 'translation' error,
but may begin to interpret the execution strategies of Prolog as



mtal models of the system. Instead, we focused on the
kterpretation that learners had of the language and its
motions in the very early part of the learning process. As has
>en pointed out, many of these interpretations were misguided
nee they were based on a real-world view of programming,
ither than an appropriate formal domain view. This has adverse
?fects on the ability of the learner to adequately specify
'oblem solutions to produce effective programs. If learners are
jsuming that human/computer interaction is analogous with
unan/human discourse, then presumably a large part of the
^stem's workings are designated 'magical1. This would lead to
le kinds of intentional language frequently used to describe

workings - e.g. 'it just knows when to stop1.



3.3 PROBLEMS WITH NATURAL LANGUAGE

3.3.1 Novices: Computers and Thought Students

The first group used to investigate problems with language were
drawn from a first-year undergraduate course called 'Computers
and Thought'. These subjects had no previous background in
computing, and had not learnt any other programming languages.
The course was an unassessed introduction to Artificial
Intelligence, its approach and its techniques. It was not
specifically a programming course, although students were
introduced to Prolog. Programming assignments, however, were not
graded on the quality of code, but rather on the appropriateness
of program comments and discussion. These students were not
expected to get to grips with many of the detailed executional
aspects of Prolog, but were exposed to a broadly declarative
view of Prolog applied mainly to database accessing and route-
finding problems. However, they were not specifically taught,
logic, but concentrated instead on 'hands-on' experience of
declarative programming.

Because of their declarative introduction, studies of this group
centred mainly around the interference of natural language in
interpreting and creating Prolog clauses.

This group was asked to perform two straightforward tasks: the
first was to give an English rendering of some Prolog clauses,
the second was to create a Prolog database from information
expressed in English. Whilst the first task presented no
difficulties, the second was problematic. The English sentences
were a mixture of facts and conjunctions, such as:

John works hard and likes music

which are easily represented in Prolog, and some causally
dependent sentences such as

John is a good student because he works hard

which is not so easy to represent, because Prolog does not
handle causality directly. An elementary but adequate solution
to this problem is to create a rule which says : infer that John
is a good student if you can prove that he works hard. Some
students were very resistant to this change of 'because1 to
f i f , which, in itself is not very surprising - the task
is actually quite difficult. But some students made the change
spontaneously, whilst others said that they could not resolve
the difficulty because 'it doesn't mean the same'. One
interpretation of this is that these students had not yet
made the necessary break from the rules of natural
language to the rules of Prolog expressions, where it is



The evidence obtained from the empirical studies supports quite
strongly the view that making Prolog resemble natural language
makes the learner's task more difficult. Interpolation of real-
world knowledge and assumptions is frequently done
unconsciously, and this misperception can be encouraged by the
use of English in the programming domain. It would be
interesting to establish whether this is true of non-English
speaking novices, whose natural language syntax is very
different from English (e.g. Japanese learners). A
recommendation is that students be introduced to a diagrammatic
representation of Prolog (e.g. the AND/OR trees of Bundy and
Pain) rather than depending upon the student to distinguish
between understanding arising out of natural language
interpretation and understanding arising from an appreciation of
the logical structure underpinning Prolog clauses.

Because of the problems indicated above, we found that beginners
sometimes became very confused as they tried to map from one
domain to another. It was found that rendering Prolog clauses
into English presented few problems, but going from English to
Prolog was fraught with difficulty. The situation is compounded
by Prolog's inscrutable syntax, which allows learners to
hallucinate spurious meanings onto syntax objects: e.g.
interpreting the comma used as a separator between arguments to
mean 'of'.

One of the main points about novices' difficulties in learning
to program is that programming languages are formal languages,
strictly interpreted according to rules. Many beginners clearly
have trouble in identifying the limitations of formal domains,
and the strictures which these put on potential problem
solutions. Since this seems to be a source of many difficulties
for a sub-set of learners of Prolog, there is no reason to
suppose that teaching them logic beforehand will overcome the
problem, since it too is an example of a formal language. That
is to say, for those learners who find formal domains difficult,
it matters little whether it is logic or Prolog. The superbug of
interpreting expressions as natural language will remain.

Furthermore, since Prolog is not a pure logic programming
language, there is a risk of confusing matters even more as
learners attempt to distinguish between pure logic and 'Prolog
logic'. This is not to suggest that accomplished logicians would
not find Prolog relatively easy to learn; the question is rather
whether it is a better teaching strategy for a genuine novice.
The ability of novice programmers who are also logicians to cope
with Prolog has yet to be empirically investigated.



3.4 PROBLEMS WITH INTERPRETING MACHINE BEHAVIOUR

3.4.1 Novices: MSc students

This study was of MSc students describing the execution of
programs. The main focus is on their understanding of Prolog's
automatic mechanisms, in particular backtracking, and their
ability to predict behaviour from program statements. The MSc
was a conversion course from an Arts Bachelorfs degree to a
Science Masterfs degree. It was very different from Computers
and Thought being an intensive course during which students were
exposed to both POP-11 (Hardy, 1982) and Prolog. They were
required to come to terms with real A.I. programming, and were
expected to be able to write quite large programs. These
students were introduced to the procedural semantics of Prolog.
They also had lectures in logic and resolution as part of their
knowledge representation course. In contrast to Computers and
Thought students, this group had learnt another programming
language, and had been using computers intensively for about a
term prior to this study. However, they were all new to Prolog.

Because of this background, MSc students were unlikely to fall
into the same kinds of errors as Computers and Thought students.
Whereas in that study the issue was what: students thought
program statements meant, studies of the MSc group were directed
more at predicting the behaviour of the machine - i.e. relating
program statements to the activities of the computer. Originally
these studies were stimulated by the report of backtracking
misconceptions by Coombs and Stell (1985), and the intention was
to re-run the experiment at Sussex using MSc students. A further
experiment was then to be conducted with the inclusion of the
'cut' in one of the clauses to investigate the effect of
backtracking misapprehensions on interpreting its role in
execution.

However, the protocols obtained from the first of these studies
provided a great deal of information about other kinds of
misconceptions that students had about execution. This provided
us with the opportunity to do a two-levelled analysis: in the
first case to discuss the specific bugs (and others) identified
by Coombs and Stell and in the second to provide a bug/superbug
analysis.

3.4.2 BUGS

This section describes the findings from the backtracking
exercise described by Coombs and Stell (1985).

Clause 1: a(X):- b(X), c(X).
Clause 2: b(X):- d(X). e(X).
Clause 3: b(X):- f(X).

A- dl'W .



Clause 10: ?- a(X).

Coombs and SteJl's (1985) Backtracking Program

Coombs and Stell had identified 'try once and pass' (TOAP) and
'redo body from the left' (RBFL). TOAP involves trying only one
set of instantiations in Clause 2, and then passing on to Clause
3 instead of re-satisfying the sub-goals d(X) and e(X). RBFL
consists of re-satisfying the subgoals in Clause 2 starting with
d(X) rather than attempting to redo the 'e1 sub-goal first -
i.e. backtracking is perceived to progress from left to right
instead of right to left. The following errors were identified
and are briefly discussed below:

Domain Specific bugs:

* Try once and pass
* Redo body from left
* Multiple values for variables
* Try once and pass and cut
* Redo body from left and cut
* Parallel execution
* Failure to retry

* Database bug

Each of these is briefly discussed below.

lOJl variables
The most common error of this type was where students, having
got an instantiation of 1 for d(X) in Clause 3, seemed to forget
that this immediately would instantiate e(X) in the same clause
to e(l). Therefore, at this point, the goal to be proved is
e(l). Typically students thought the goal was still the more
genera] e(X).

The Database Bug

It was pointed out earlier that the students had learnt POP-11
in the previous term, so some intereference effects were to be
expected. The most obvious of these was the database bug. In
this bug, the student appears to treat the Prolog database as
analogous to the POP-11 database. A brief description of the
differences between the two will help illustrate the bug.

Although the term * database1 is often applied to Prolog
programs, it has a slightly different connotation from when it
is applied to databases in other languages. In many other
programming languages, databases contain data which is
manipulated by externally defined procedures. Although in POP-11
it is quite feasible to simulate the structure of a Prolog-style

-.1



POP-11 cannot !dof anything, except be used for matching
purposes by procedures. However, in Prolog, structures can act
upon one another (e.g. by unification) and the compiler makes no
significant distinction between facts and rules in this respect.
The difference between facts and rules is not a functional
difference, but the "POP-11 programmer" may regard them as
corresponding to data and procedures.

This kind of misconception need not have devastating effects
it is usually the case that facts are fully instantiated,
whereas rules are not, and as a meta-strategy on the part of the
programmer, it can be useful to identify where possible
instantiations are likely to come from - that is to say meta-
level reasoning often stands one in good stead. Subjects were,
after all, allowed to see the entire program throughout the
session, and so it is quite reasonable for them to look at the
facts to see from where instantiations could be derived.

But difficulties arise when students assume that Prolog can move
around the program, consulting its facts and choosing its rules,
in ways which it cannot, because this will disorientate students
in terms of other facets of execution (e.g. backtracking).

?i£~liyHOLDS Jill§ !lM^LAQL§0J: ^LiiJ} Cut

There is an exclusive relationship between TOAP and RBFL: if a
student, has TOAP then RBFL cannot be exhibited at the same time
since the effect of TOAP is to eliminate the backtracking
altogether. This, of course, has further ramifications for other
Prolog constructs associated with backtracking, e.g. use of the
cut.

To investigate the effect of these errors on interpretations of
the 'cut', the study was re-run with a modified program which
included the cut in Clause 2, and an extra clause to help)
prevent meta-level reasoning:

Clause
Clause
Clause
Clause
Clause
Clause
Clause
Clause
Clause
Clause

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:

a(X):-
b(X):-
b(X):-
d(l).
d(2).
e(l).
e(2).
f(3).
C(3).
C(4).

b(X),
d(X),
f(X).

c(X).
!, e(X).

Clause 11: ?- a(X).

Modified backtracking task

Tn this rasp, a student exhibiting TOAP will feel no effert of



forward execution, the cut is automatically satisfied, but that
one cannot backtrack through it, the RBFL error means that 're-
doing1 goals proceeds from left to right. Therefore, execution
never does go fbackwards ' through the cut. In these cases we
expect to see students use Clause 3 to satisfy b(X), which
should in fact be frozen out by the cut.

Try Or̂ ce and Pjjsjs sLQ̂  Cut

The above test actually caused a student who had not shown TOAP
in the first experiment to produce it in the second. The actual
misperception was to think that the effect of the cut was local
to the clause - i.e. no backtracking could take place - but he
then went on to try Clause 3. This clause should have been
frozen by the cut.

B§I*2 Body J[rjom the Lef_t aj\d Cut

Similarly, RBFL arose for a student who had not exhibited it in
the previous session. She began well:

1 Ok, uhm, first thing is er
2 look for a rule mentioning a(X)
3 and find one here

[indicating Clause 1]
4 and the first thing I have to prove is b(X)
5 I look for a rule telling me how to prove b(X).
6 I find this one,
7 first thing it tells me to do is look for d(X)
8 so I look for a rule mentioning d(X)

Having succeeded with X bound to 1, she looked for c(l), which
failed, which, in this case, brought her back to the 'same rule'
(line 34), and an attempt to re-do d(X) (line 36):

28 So I fail at this point here
29 with X as 1...uhm..
30 Kind of compressed into that..
31 looking for another c
32 there isn't one,
33 so I need to find another instantiation for b,
34 come to the same rule again

[indie. Clause 2]
35 to prove b,
36 I have to prove this, do d(X) first thing...

Because she concentrated on re-satisfying d(X), rather than re-
trying e(l), she lost the emphasis on backtracking. She moved
left to right all the time, and in that sense, never did
backtrack through the cut - she was always moving forward.

'Paral I P I f Evprnti nn



of 1 for X, and was searching for e(l):

Subject 12

16 Then it looks to database to see if e(l) is there
17 and finds fact 6, that it is,
18 and them uhmr this instantiates b(X)
19 and the clause to value l....uhm
20 It then tries to prove, I think,.
21 rather than backtrack
22 and trying to prove d and e again,
23 I think it then goes to try and prove c.
24 Looks to database to see if there's c(X)
25 and c is 3.

Line 21 indicates a sense of premature backtracking, which
this example was avoided, and he continued more or 1
correctly. In his second protocol, where the cut was included
set off again to prove the 'e1 goal, but showed the multi
values for variables bug (line 13):

10 so it has proved d(l)
11 and then goes on to prove the next goal -
12 the cut - which automatically succeeds
13 and then goes on to attempt, to prove e(X)
14 In the database there are e(l) and e(2),
15 so two possible ways of succeeding.
16 It tries the one and then tries the other
17 It would then, were it not for the cut,
18 go back to try the alternative solution for d
19 which would be d(2).
20 The cut makes it bypass the

alternative solution for d
21 so it goes back out.
22 Its now got a proof for b(X)
23 its now got to prove c(X)...

The experimenter queried what the current value of X was:

24 Present instantiation of X is d(l) e(l)
25 uhm.. e(2) would fail because X is the argument
26 of both d, the functors d and e,
27 and d(l) has succeeded,
28 but cannot be retried.
29 So it has to be d(l), e(l).

He was right to suggest that d could not be retried (line 2
but whether he had the correct reasoning was unclear. It a
appeared from what he said, that the only reason Prolog did
try all these options at once was because of the cut (line 2i
The next step might indicate the source of error. There were
r rlaiififts in thft nropram. whinh he thought would hf»



33 we look in the database and have two alternatives
34 which are c(3) and c(4).
35 Uhm. . so it tries c(3) and er...
36 backtracks because 3 is not 1,
37 and backtracks and then tries er c(4)
38 arid again 4 is not 1 so that fails.
39 So a(X) fails.

but there was some some spurious backtracking involved (lines 36
-37). These clauses simply do not match c(l), so there was no
backtracking at this point. But the process of comparing
clauses resembles the method he had used earlier within Clause 2
- i.e. in this final stage of the execution, all possibilities
will be searched for, but since they do not match, nothing
happens. However in the previous case, a match was found, which
stops further searching. The student seemed to think it carried
on.

FaililE^ J*> ' retryT

The last, and most common, omission which all but one subject
had was the attempt to resatisfy e(l) prior to backtracking into
d(l). In one sense this is a minor slip, since in this program
e(l) cannot be resatisfied. But when it was explained to
students that the attempt would still be made, without
exception, they all thought it was a 'stupid thing to do'.
Admittedly, in the context of this program, this might be so.
But nevertheless, in more complex programs, it may be that e(l)
could be re-satisfied some other way, in which case, execution
would proceed with the instantiation of 1. The interesting
point, though, is the declaration that this is 'stupid1. But
Prolog could not know that the attempt is doomed to failure. The
judgment on the part of the students has a ring of meta-level
reasoning about it, a topic which will be discussed in the next
section.

3.4.3 SUPERBUGS

This section discusses superbugs where the focus of attention is
upon high level, general strategies that students have which
appear to dispose them towards certain sorts of errors. The
bugs and superbugs identified are:

* Meta-level reasoning superbug
* Identity bug
* WishfuJ Thinking: bug

* Reading superbug
* Left to right control flow
* Leftmost salience for arguments bug

Simerhno*



infer some overall behaviour in the execution domain using
either real-world knowledge, or knowledge about formal domains.
Upon occasion, they were correct, though they were not able to
give a blow-by-blow account of the full execution process.

Meta-level reasoning can become troublesome, however, when the
student makes assumptions about the execution domain on the
basis of prior knowledge, or experience with another, perhaps
similar, task, but in this case an intuitive leap is made from
the practical domain to execution domain, and Prolog is assumed
to have made the same leap. This can produce bugs where students
confuse their own reasoning and interpretative strategies with
those of Prolog. This is not a superficial error, and students
get into it because, initially, before they can describe what
Prolog does, they have to understand the program themselves. If
they have multiple ways of viewing programs - e.g. declarative
or procedural - they can begin one way, and inadvertently start
slipping into the other, and then introduce a dose of their own
'common sense' to help glue up holes in their explanation.

For example, the following student began by interpreting the
program as if she herself were Prolog, and almost immediately
began to identify Prolog's strategies with her own. This allowed
her to 'luckily' pick up an instantiation for X -- an
instantiation which would not have been found at this stage:

1 Ok well if I was Prolog - well being not
2 quite Prolog but also myself - uhm the first
3 thing that I'm doing is looking on the rules
4 for 'a' and well., looking at these 3 rules
5 together looking for what is my shortest path
6 to an instantiation down here. Uhm..I think
7 if I were Prolog I'd just look at number 1 and
8 luckily that would immediately get me a 'c'
9 that's instantiated... so....so I would try
10 instantiating X to 3, putting 3 in here

[in Clause 1].

She was right to suggest Clause 1 would be used first (line 7)
but X would not be instantiated to 3 at that point. She had
confused herself with Prolog at this point. It was she who
noticed that the only instantiation for c in the program was
from Clause 9, but the suggestion was (line 7) that this was
what Prolog had done. The experimenter tried to point out the
misapprehension:

EXP: Now are you doing that as yourself or as Prolog?

The subject continued but failed to appreciate the significance
of what the experimenter had said:

11 Oh. ah. veah I see. Now Ifm back to beinff Proloer.



In other words, she still had the spurious instantiation of 3
for X.

M§J]lyI JkioJsiDg bug

In this bug, students made assumptions about Prolog's abilities
which left large holes in their account of what was going on. In
a verbal report this technique may be used to gloss over the
fact that the student simply does not know what happens. But one
student, for example, hoped that Prolog would just accept
instantiations, or ftake them for granted' rather than have to
prove remaining sub-goals. There are cases where it is more
probable that wishful thinking is a veil for simple lack of
knowledge - the student is not sure how Prolog does something,
and hopes in vain that a sensible guess will carry them past the
trickier bits.

The £<^d_ing Super bug

Another superbug which appeared to influence students is the
'reading' superbug. Discussion of this superbug is speculative,
based partly on observations of students doing the backtracking
exercise, and partly on the experience of helping students
understand the execution of clauses. Many of their problems
suggested that novices seem to introduce aspects of their
reading skills into the programming domain. The unconscious
expectation is that progress through a program will flow from
top-to-bottom and left-to-right, following Western reading
patterns. Again, as with the meta-level reasoning superbug, this
may be harmless, because in some respects Prolog does move from
left to right. But the tacit assumption is that control flow
through a clause or through programs is aljwajrs left to right.

Emphasis in teaching upon Prolog's search through the database
can confirm this tacit assumption. However, this does not
prepare students to accommodate backtracking, or using clauses
in ways other than originally intended. The common element with
meta-level reasoning superbugs is again that students seem to
assume that Prolog 'does as they do'. But the net result, of
course, is that Prolog is thought to move through programs in
ways which it does not.

Left to Rigjit Control FJ.ow Bug

The first bug resulting from the reading superbug is the tacit
assumption that control through a clause passes from left to
right. As has been pointed out above, this expectation may be
violated, when instantiations are given to the right-most
arguments. In this case, instantiations will appear to be passed
from right to left.

Different instantiations, however, also aooear to orodune verv



has its rightmost argument instantiated, it is probably better
named 'split1, but that the clause structures need not change is
somewhat counter-intuitive. In other words, the name !append' is
on3y relevant to the programmer's intention at a given time. The
actual structures which follow the predicate name have a set of
prescribed behaviours which will take place whatever the
predicate name, and the precise function is determined by
instantiations in the input at that time.

However, if a student has watched the 'append' clauses being
constructed in the normal way, then she is justified in thinking
that the word fappend1 now means (to the computer) what the
structures in the clauses define it to mean. This can combine
with what might appear to be natural language bugs - when
students attribute * meaning1 to predicate names it is not a
simple case of thinking that Prolog Understands1 in some
magical way the word 'append'. It is instead a quite reasonable
belief on the part of the student that the term 'append'
designates an operation which has been defined within the
clauses, and which she views as an inherently left-to-right
process. So when these clauses suddenly produce what appears to
be radically different behaviour, and the only thing which need
be changed is the predicate name, students can get very
confused.

L§Xt~ILl2-§t SeQijenjje 12L Arguments Bug

A very closely related bug is one which leads students to
attribute salience to the leftmost arguments, ignoring the
effects on other arguments. For example, in the case where
Prolog identifies a pattern (as in Example 3) students are
confused as to how Prolog manages to Tstop' when the pattern has
been established. The clause which achieves this effect of
stopping is:

append([], L, L).

The ancillary knowledge which the student must have is that this
clause can fail (thereby allowing the recursion to continue) in
two distinct ways. The first, most straightforward case, is if
the first argument is not an empty list. The second way is if
the second and third arguments are not 'matchable'. That is to
say, the ancillary knowledge required to read this clause is
that the two arguments L and L must be able to be matched
exactly.

The mistaken reading which often dominates the students'
interpretation is that when the empty list is reached, then the
clause will succeed, no attention being paid to the
instantiations of the second and third arguments. In the case
of identifying a match within a list, students confuse the facts
t h a t ( a \ a t A a r ' h l # » v * * l n f t h p r p r i i r s i n n the* f i r Q i " a r a i i m p n t w i l l



Here the potential match on the last two arguments can clearly
be seen, since 'mar' matches 'mar', and we have put a variable
into the tail which will unify with the list '[apr, may]1.

Preoccupation with the left-most arguments seemed to be quite
pervasive in many students' interpretations of clauses in
programming surgeries, and they continually needed to be
reminded to look at other places in the program to understand
why clauses were failing, or were not producing the correct
output.



3.5 DISCUSSION

A two-levelled view has been taken of these MSc students
interpreting a program designed to investigate backtracking
misconceptions. The first view identifies bugs within the formal
mechanistic, programming domain. From this perspective, students
performing the task of interpreting the program were shown to
have several misapprehensions. Not only were 'try once and pass'
and 'redo body from the left1 exhibited, but students'
descriptions showed signs of other misconceptions: multiple
values for variables, the database bug, complications of RBFL
and TOAP with the cut; parallel execution and failure to retry
sub-goals.

But the further analysis which focused on superbug interference
identified other bugs which, when viewed from the formal
mechanistic domain only, could only appear as undifferentiated
muddles. However, these higher level misperceptions do seem to
have a structure - they are not random - and in fact could be
seen to lend coherence to the concrete bugs found in the
mechanistic view. For example, 'try once and pass1 and 'redo
body from the left' could themselves be interpreted as examples
(a) of the reading superbug, and (b) of the left-most salience
for arguments.

There are two major points arising from this part of the study.
Firstly, whilst it is useful to identify the particular
manifestations of errors, it is equally important to keep in
mind the patterns of misconceptions which give rise to specific
bugs. Students may be suffering from a syndrome rather than a
single misapprehension. Unless the aetiology of bugs is
discovered, it is likely that some students will receive
inappropriate remedial assistance, which can leave them in a
more confused state than before, since underlying problems have
not been addressed. Even these students who are receiving a
strong tutorial background in both logic and Prolog's execution
strategies exhibited signs of quite serious misconceptions, and
the protocols illustrate how easily students, who are otherwise
quite competent, can begin to slip into errors.

Secondly, as has been emphasised, superbugs are often developed
from strategies which at some stage in the learning processes
are not only sensible, but may also be the only ones available
to students. For example, meta-level reasoning is an extremely
powerful learning strategy for many purposes, and it is only
under certain circumstances that expectations derived from such
a view are misleading. The problem of bugs from superbugs,
therefore, is not simply a matter of the learner 'getting it
wrong'. The question is whether or not languages, or teaching
methods can be designed so that such intuitive methods can be
fully exploited, and appropriately discarded. This point has
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intuitions.

Many of these bugs bear resemblance to Pea's (3 986)
intentionality bugs (where the computer is thought to have
foresightedness) in that they all have a similar effect:
students assume that Prolog has a sort of meta-level view of the
execution process, and can do things which it cannot. In many
cases, though, this is less to do with an assumption that Prolog
really is 'intelligent' than it is to do with students having a
composite view of the execution process which includes tacit
assumptions, for example, derived from reading habits, prior
knowledge, and what the student herself would do to solve the
problem contained in the program.

Another facet of interpretation of clauses, and predictions for
behaviour is that beginners often have no choice but to
abductively create 'theories' about what 'should1 happen. It
must be borne in mind that Prolog's inscrutable syntax can
sometimes allow users to persist in an idiosyncratic
interpretation for rather longer than is healthy. Because no
immediately obvious constraints are imposed upon interpretation,
for example, students can hallucinate very many different
interpretations upon it, none of which reflect with any accuracy
what. Prolog would actually do.



4.0 A NON-NOVICE PROLOG LEARNER

It might: be thought that experts in other languages would av
many of the sorts of errors described so far. However,
problems experienced by a student who participated in
longitudinal case study illustrated that this is not necessar
the case.

Alex represents quite a different type of subject than those
far discussed, because he had learnt other programming langus
before. But his study is important for several reasons. First
it illustrates the role that prior knowledge plays
conceptualising a new domain, and the determination with whic
'paradigm' can be adhered to, in the face of contradict
evidence. Secondly, many of the problems Alex experienced
the reverse side of what genuine novices go through - beca
Prolog is flexible, learners are not challenged in th
interpretation, and misperceptions can persist for a very 1
time. Thirdly, the longer term effects that a fundamen
misconception has on performance can be traced.

The methodology for the case study follows Anderson et
(1984) Since this form of protocol gathering produces enorn
quantities of data, the discussion in tins section is organi
around the original questions we had about non-novice Prc
learners.



4.1 ALEX: A CASE STUDY

Alex was a postgraduate student, recently arrived from New
Zealand. As part of his undergraduate degree in New Zealand,
Alex had submitted assignments using Pascal, Fortran and a
list-based command language, CPMI. He had learnt BASIC more or
less on his own, and had run a tutorial for psychology students
on an Apple microcomputer. He had also worked with the City
Council using a Cobol database enquiry system (Datatrieve).

Alex's main problem was that his previous experience with
programming was with conventional instruction-oriented languages
(i.e. Basic, Fortran) and, as might be expected, he tried to
construct a view of the Prolog execution domain in which all
operations were 'reducible* to instructional terms of the sort
with which he was familiar. In other words, the building blocks
he tried to use were inappropriate for Prolog.

The major superbug was the data/procedures where basically he
believed procedures to be active, and data to be passive. This
led to considerable difficulties in understanding how to
organise his programs effectively, and several other
misperceptions arose as a consequence.

The first obvious point is that the languages he had learnt are
quite different from Prolog not only in their internal
structure, but in the kinds of problems to which they can be
easily applied. Alex had not yet had any exposure to AI
programming, and his first brush with it was through Prolog.
Therefore, some of his remarks are better viewed as general
comments on the activity of AI programming rather than specific
to Prolog.

Secondly, his comments indicated that he had learnt his
languages for very specific purposes: for assignments, for
teaching, for working. Alex seemed to fall into the category of
user who is interested in 'process' or 'what can I do with it'
rather than someone who had a theoretical interest in the
principles of a language. He fnever learnt them rigorously' but
wanted to get a 'feel' for them.

It is also worth noting that Alex referred to his previous
background as 'scientific programming1 which implied an entire
approach and methodology. In this respect, he was not being
asked simply to give up some concepts or change his view a
little to accommodate Prolog. He was being asked to change his
whole attitude, his strategies and methods in favour of what
looked to him like a sloppy, undisciplined approach which was
bound to be fraught with errors because it did not adhere to
'proper programming principles'.

The net result of these factors was that Alex aDDeared to be



him by providing a task which fitted into his conception of
' interesting1.

There are several themes which run through Alex's protocols. The
major theme is the way Alex perceived the relationship between
data and procedures. Alex's formal introduction to scientific
programming had cultivated the habit of keeping data and
procedures separate. Alex stuck to the view that data is passive
and procedures are active throughout the study period. However,
such an interpretation had major ramifications for structuring
programs, and in particular for structuring databases. Even as
late as the last session, Alex found it hard to think of
appropriate ways of structuring information, even though he had
a template program which he was adapting.

The secondary themes, which contributed to the program
organisation problem, were associated with Prolog's use of
variables, and the use of lists in programs. Variables in Prolog
behave very differently from those in other languages, and one
might expect to see a certain amount of confusion initially.
Similarly, although Alex believed himself to be experienced in
list processing, the kinds of lists he was familiar with were
lists used in languages like BASK', which have very different
characteristics to lists used as data-structures in programming
languages like Prolog.

Because of these difficulties, Alex found it difficult to
conceptualise the 'real' Prolog. He seemed to be waiting for the
curtain to be lifted on some core quality which would be
comprehensible, and straightforward to understand. Consequently,
various representations of Prolog used in debugging tools and
trace packages which did not quite tell the 'whole truth' about
Prolog, were momentarily mistaken for the 'real' Prolog, which
caused some understandable confusion.

Alex's case study demonstrates that those students who have a
background in computing, and who might be expected to be
orientated towards the programming domain, can still get into
difficulties which resemble the sorts of confusions that real
novices experience. The basic strategies Alex used throughout
his learning period were governed by his prior knowledge, and
his commitment to a particular view, which happened to be
inappropriate in this case. As noted earlier, there seems to be
supporting evidence for Lewis and Mack's (1982) 'abducting
learner' in his protocol, since Alex was highly selective about
what he took notice of, and seemed to disregard explanations and
tutorial assistance from either the experimenter or the text
book. Such information as he did take in, he tended to convert
into terms with which he was familiar. These resistant phases
were punctuated, however, by insightful behaviour.

f data and nrnrpdnrps' misnnnrpntinn sf»pmpd to hf» at thp rnnt



term 'list1, the idea of using lists as high-level
datastructures would probably not be appealing to him if he
regarded data as 'passive1 and felt that it was only
procedures' that did anything interesting. The distinction,
then, between data and procedures had a long-term effect on
Alex's ability to write programs with appropriate structures.

We now consideraspecific question set out in our original
proposal.

Q: Is it an advantage or a disadvantage to have learnt another
language before tackling PROLOG?

The answer to this question in this particular case is
evidently: it is not an advantage. However, it may be that other
AI languages such as LISP or POP-11 could provide a foundation
for interpreting Prolog more straightforwardly. The major
difficulty - in contrast with the MSc students who had learnt
POP-11 - seemed to lie in Alex's attitude towards his own
expertise. That is, he approached the learning situation
defensively, and proved somewhat unwilling to cast off some of
his previously learnt habits.

A further difficulty, though, is associated with the kinds of
building blocks that his experience was constructed upon. This
affected not only interpretation of programs written in Prolog,
but also the approach to problem solving cultivated by other
languages. It was noted in the study of experts above that they
seemed to move between problem specification and languages
constructs as the program is designed. Unfortunately for Alex,
most of his specifications did not fit easily into the Prolog
ethos.

This transition may not be easy to make if the oJder habits have
proved successful in the past. Furthermore, it can be hard for
such a learner to recognise the parts of the new language which
are truly similar to known concepts, and those which are very
different. Several times during the study Alex ignored what, was
being said because he believed he already understood. However,
it was clear that whilst he understood, for example, the logic
of the operation in question, he was not recognising that the
technique for implementing it was very different from his other
languages.

The declarative semantics, in this case, served mainly to
disguise these differences. Alex knew, for example, the logic
underlying the 'member' relation, but his misperception of its
implementation led him to believe that it was a procedure which
would be called to act upon data (i.e. a kind of function). For
some time he failed to recognise the matching process which
underlies the Prolog version of 'member1 and this failure
undermined his understanding of recursion in Prolog.



4.2 CONCLUSIONS

We have discussed how a basic misconception in Alex's view
Prolog had far-reaching; effects on his subsequent learning,
have noted that he was committed to his 'scientific programme
and was, quite rightly, unwilling to simply give up tl
notions unless totally convinced that it would be worth
while. Learning, in this case, was very clearly influencec
previous experience. He introduced into the situation fact
which had only limited relevance to the learning of Prolog,
which were very important issues for him.

In this respect, he was as susceptible to superbug interfere
as a real novice, although the source of superbug is frc
lower level in the multi-levelled framework, rather than
higher levels. The main point to bear in mind from t
discussion is that such interference is not simply dealt witl
presentation of 'correct' information. Alex had a 'paradj
which had served him well up till now, and which he would
easily relinquish. This paradigm affected his interpretatior
Prolog, and of the problems which he was trying to solve.



5.0 SUMMARY

These studies demonstrate the complexity of the task which the
novice programmer faces. The sorts of errors that have been
observed in Prolog learners have a range and depth that cannot
be accounted for in simple terms. The multi-levelled framework
has been used to distinguish superbugs from bugs, and to help
orientate discussion, emphasising the fact that errors and
misconceptions can have their origin in several ^sources. The
main principle is that each of the domains which bear on Prolog
are governed by rules and constraints which not only limit what
can be done, but also govern what methods and techniques can be
used in achieving an intention or goal. The 'meaning' of
problems or programs within each domain is very different, and
it has been shown that a major difficulty for novices is that
they do not understand what the implications of moving from one
domain to another are, and what constraints govern the methods
available for problem representation or problem solution. Due
to this lack of knowledge, powerful intuitive strategies are
used, which affect the novice's perception of the problem to be
solved, and consequently disorientate the program-writing
process.

The major points arising are that; programming bugs can have
their origins in very high level misconceptions, and they may
show themselves in various guises. Furthermore, the same, or
similar bug may be turned up by different students for quite
different reasons. Superbug analysis is an essential part of
understanding novice performance, and it is emphasised that a
programming language's ease of use may depend crucially on the
extent to which it nurtures superbugs.



PROBLEM 1:

Suppose we are given the following family tree, with e
person's age in brackets:

John (57)
/ \

/ \
/ \

Mark (25) Paul (36)

Tom (15)

and we wish to find all solutions to the question "Does J
have two descendants whose ages differ by ten years?"

PROBLEM 2:

Suppose you have a universe of eight animals:

U = [al, a2, rl, bl, b2, h.l , ol, o2]

classified in the following way:

{aquatics: al, a2
{
{

animals { {reptiles: rl
{ {
{ {birds: bl, b2
{terrestrials {

{ {herbivores: hi
{mammals {

{omnivores: ol, o2

Write a datastructure representing this classification,
build up a program for answering the following questions:

1) What is the classification of animal X?

2) What animals have classification Y?

PROBLEM 3:

Write a program to check whether a word is a palindrome.

PROBLEM 4:

Write a program for designing an architectural unit obeying
following specifications:

1. There are two rooms



2. Each room has a window and an interior door

3. Rooms are connected by an interior door

4. One room also has an exterior door

5. A wall can have only one door or window

6. No window can face north

7. Windows cannot be on opposite sides of the unit

PROBLEM 5:

PLEASE DO NOT RUN THIS PROGRAM UNTIL YOU HAVE COMPLETED PART A.

PART A:

Given this program, can you (a) say what it does, and (b)
WITHOUT RUNNING IT FIRST can you say whether it will work.

PART B:

After you have completed Part A you may run the program if you
wish to check what you have said, making any amendments you
want.

THE GIVEN PROGRAM:

begat(john, mark),
begat(John, paui).
begat(paul, torn).

istaged(John, 57).
istaged(mark, 25).
is_aged(paul, 36).
istaged(torn, 15).

has_descendant(X,Z):- begat(X,Z).
has_descendant(X,Z):- has_descendant(X,Y),

begat(Y,Z).

find (X, Y) :- has_descendant(John, X), is_aged(X, N),
has_descendant(John, Y), is_aged(Y, M ) ,
M is N + 10.

PROBLEM 6:

Given two lists, where the second one is the concatenation of a
third one with the first one, find this third list and build up



population density per square mile, and find countrie
similar population density (differing by less than 5%).

pop(china, 825).
pop(india, 586).
pop(ussr, 252).
pop(usa, 212).
area(china, 3380).
area(india, 1139).
area(ussr, 8709).
area(usat 3609).

PROBLEM 8:

Please write a program to flatten lists.

PROBLEM 9:

Write a program for colouring any planar map with at most:
colours, such that no two adjacent regions have the same col



PROBLEM 10:

Can you say what this program does? Can you say whether it wi
work?

PLEASE DO NOT SPEND MORE THAN 10-15 MINUTES ON THJS PROBLEM

THE GIVEN PROGRAM:

simplify(L, NL) :- compact(L, LI), simplifyl(L3, L2),
simplify2(L2, NL).

compact([L, []], L).
compact([L], L).
compact([Ll, [L2]], L):- concatenate(Ll, L2, L).
compact([Ll, L2|LN], L):- concatenate(LI, L2, X),

compact([X, LN], L).

concatenate([X|Ll], L2, [X|L3]):- concatenate(Ll, L2f L3).
concatenate(f], L, L).

simplifyl([X|L], NL):- member(X,L), !, simplifyl(L, NL).
simplifyl([X|L], [X|NL]):- simp.l i fy3 (L , NL).
simplifyKU, []).

simplify2(L, NL):- simp]ify3(L, LI), subtract(Lf LI, NL).

simplify3([X|L], NL):- compare(L, X, []), simplify3(L, NL).
simplify3([X|L], [Y|NL]):- compare(L, X, Y), simp]ify3(L, NL).
simplify3([], []).

compare(_, [] , []):- !.
Compare([Y|L], X, [Z|NL]):- (linked(X, Y), Z = X ;

linked(Y,X), Z - Y),
compare(L, X, NL).

compare([Y|L], X, NL):~ compare(L, X, NL).
compare([]» _. [])•

subtract(L, []t L):- !.
subtract([HjT], L, U):- member(H,L), !, subtract(T, L, U).
subtract([H|T], L, [H|U]):- !, subtract(T, L, U).
subtract(_, _, []).

member(A, [A|_]).
member(A, [_|L]):~ member(A, L).

PROBLEM 11:

Define combinations of a list, where s(K) indicates tl
successor of K. For example, 3 is written (s(s(s(0))).

PROBLEM 19-
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Novice Programmers1, Tê ch. Rĝ ojrt̂  No. j.§.» HCRL, The Open
University, Milton Keynes.

ROSS, P., (1986). 'Some Thoughts on the Design of an Intelligent
Teaching System for Prolog', Department of Artificial
Intelligence, Edinburgh University.

ROSS, P., (1982). 'Teaching PROLOG to Undergraduates', in
Autumn 1982, 16-17.

SHEIL, B. A., (1980). !The Psychological Study of Programming',
ACM Coj2£JJtjmjr Surveys, S^ecuaJ. I_ss_ue, Vo2-I3, No.l, 101-120.

SOLOWAY, E., (1986) 'Learning to program = learning to construct
mechanisms and explanations', Cojnmjs. of ACM, VoJ.. 2̂ 9, No. 9,
850-859.

SOLOWAY, E.. LOCHHEAD, J., and CLEMENT, J., (1982). 'Does
Computer Programming Enhance Problem Solving Ability?1 in R.
Seidel (ed.) Computer LiJiejrajsY» New York: Academic Press.

SOLOWAY, E., EHRLICH, K., (1984). 'Empirical Studies of
Programming Knowledge1, in IEEE Transactions on Software
Sl!glEL§5Xli22» Sept. 1984.

SPOHRER, J., POPE, E., LIPMAN, M., SACK, W., FREIMAN, S.,
LITTMAN, D., JOHNSON, L. and SOLOWAY, E., (1984) 'Bugs in Novice
Programs and Misconceptions in Novice Programmers' Department of
Computer Science, Yale University, Connecticut.



TAYLOR, J. (1984) 'Why novices will find learning Prolog har
Proceedings ECAT, 1984

TAYLOR J. (1987) 'Programming in Prolog: an in-depth study
problems for beginners learning to program in Prolog', D.F
Thesis, Cognitive Studies Programme, University of Sussex.

TAYLOR J. and du BOU.LAY J.B.H., (1986) 'Why novices may I
programming in Prolog hard', Cognitive Studies Research Pc
no. 60, Cognitive Studies Programme, University of Sussex.

VAN SOMEREN, M. W., (1984), 'Misconceptions of Beginning Pr<
Programmers' Memorandum 30, Department of Experimei
Psychology, University of Amsterdam.

VAN SOMEREN, M., (1985) 'Beginners Problems in Learning ProJ<
Memo 54, Department of Social Science Informatics and Depart!
of Experimental Psychology, University of Amsterdam.



 


