NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

LEARNI NG AND USING PROLOG
An Enpirical Investigation

Josie Taylor and Benedict du Boul ay
1987

LEARNING AND USING PROLOG:
An Empirical Investigation

Josie Taylor and Benedict du Boulay

School of Cognitive Sciences
University of Sussex
Falmer Brighton
August 1987

1.0 | NTRCDUCTI ON

This report outlines the conclusions of SERC research project.
(GR/D/20328) to investigate the difficulties experienced by
begi nners and experts learning and using the | ogi c- based
progranm ng | anguage PROLOG,

The original proposal outlined a strategy for investigating
different kinds of wusers - i.e. Prolog experts, experts in
| anguages ot her than Prol og, and conplete novices. It was hoped
at that time that we could al so sanple popul ati ons of users from
i ndustry, instead of confining the investigation to acadenic
users. In the event, the main thrust of the research has
concentrated on students who were novice Prolog programrers.
Much of the theoretical and enmpirical work on these novices have
been reported in Taylor (1987), where a f ramewor k for
identifying various categories of errors is described, and in
Tayl or and du Boulay (1986) where an overview of. the problens
with novices is provided

This paper summarises the major findings already reported in
relation to novices and also discusses the work done on expert
performance. These observations are less conplete than the “work
on novices, providing only a partial account of progranm ng
behaviour in the form of 'snapshots'. This data is presented
bel ow, but since the detailed discussion of procedures and
experinents related to novice and non-novice Prolog |earners are
reported in Taylor (1987), only the conclusions are presented
here.

After a short discussion about the study of novice progrannm ng,
and a brief description of other related work on Prolog
| earners, the report is divided into three najor sections.

Secjiijon 2 discusses sonme approaches to programwiting used by
Prol og expert users at Sussex University.

Section 3 discusses conplete novices, and the difficulties they

experienced during the early part of the |earning process.

Seciligi 4 reports on the problens encountered by a student who
had used other progranm ng |anguages as he tried to learn
Pr ol og.

1.1 NOVICE PROGRAMMERS - Background remarks

Learning to program in any language is not an easy task, and
teachers of programming will be very well aware of the myriad
difficulties which beset beginners. The development of a new
programming language 1is often followed by claims by its
proponents that major problenms associated with existing
languages are on the brink of extinction. Predictably, though,
new languages, whilst perhaps overcoming some particular types
of difficulty, bring with them their own idiosyncracies with
which learners have to grapple, and the fact remains that
learning to program is a hard task, requiring dedication on the
part of the learner and many hours of practice.

The literature on novice programming reflects several different
perspectives in the analysis of programming performance. There
are those concerned to model the acquisition of cognitive skill
(Andersqn, 1982), where the major emphasis is wupon the
psychological mechanisms which allow learning to take place, and
which facilitate the development of skilled performance. These
studies have been mainly undertaken studying students learning
LISP. Others are more concerned to understand the misperceptions
of novice programmers which result in buggy programs (e.g. Joni,
Soloway, Goldman and Ehrlich, 1983; Spohrer, Pope, Lipman, Sack,
Freiman, Littman, Johnson and Soloway, 1984). Such studies try
to identify the characteristics of bugs, based on an analysis of
the disparities between what the students think should happen,
and what actually does happen in the programming session. Many
of these bugs are associated with misinterpretation of parts of
the syntax of the language, and misperceived relationships
between its different components.

A related approach to understanding novice performance is to
contrast it with that of experts, in an attempt to identify, and
subsequently reduce, the distance between the two (e.g. Adelson

1984, Ehrlich and Soloway, 1982).

Other researchers have examined difficulties associated with
successfully dealing with the complexity of the programming
situation. This aspect has two distinct 1levels: that of
complexity within programs, and their proper organisation: and
that of complexity in the wvarious modes and states of the
computer itself. Soloway et al. (1984) discuss rules of
programming discourse which help the learner understand how
orchestrate various parts of the program to achieve a desired
effect. du Boulay et al. (1981) discuss difficulties in relating
the wvarious ‘'notional machines' to one another, being aware of
where one is in the system, and whom one is addressing (e.g. the
editor, or the operating system, or the compiler).

Despite the enormous quantity of research on novice programming

a welter of support materials. The learner of a new | anguage may
be struggling with inpoverished environnents, insecure teaching,
and a lack of supportive debugging tools. Sone difficulties
experienced by Prolog novices, therefore, nmy be as nmuch a
result of these factors as they are of genuine conplexities in
the | anguage.

1.2 RESEARCH ON PROLOG NOVICES

Research into Prolog novice performance has had to move forward
rapidly on a broad front. A brief annotated bibliography of the
Prolog research community has been produced (du Boulay and
Taylor, 1987). Reflecting some of the different approaches
mentioned above, the major projects are as follows.

With regard to teaching issues, Bundy, Pain, Brna and Lynch
(Edinburgh) are developing a coherent 'story' to tell Prolog
novices. They identify seven partial models or ‘'stories' in
elementary Prolog texts: OR trees, AND/OR trees, Byrd Boxes,
arrow diagrams, flow of satisfaction, full traces and partial
trees. However good these stories are for illustrating some
particular feature of Prolog, Bundy et. al. criticise them for
being ad hoc. Students often lack confidence to predict the
behaviour of a previously unseen Prolog program because the
stories do not mesh into a coherent whole. Bundy et. al. aim to
derive a complete story that covers all aspects of Prolog in a
uniform and coherent manner (Bundy, 1984; Bundy and Pain, 1985;
Pain and Bundy, 1985; Bundy et al., 1986).

With regard to support tools, Coombs and Stell (Strathclyde)
have investigated misconceptions of novice programmers with a
view to building automatic debugging tools. Studies they have
made of backtracking errors are used as a basis for protocol
studies in the research reported here (Coombs and Stell, 1985).
Ross (Edinburgh) has investigated both teaching issues as well
as the design for a Prolog tutor (Ross, 1982; Ross, 1986).

Rajan (Open University), proceeding from the slogan that dynamic
events require dynamic tracing, has developed a tracer which
single-steps through code, highlighting relevant portions, and
instantiating wvariables in the code in situ. He found that
understanding of Prolog programs was greatly improved when the
learner had access to the trace information (Rajan, 1985).

Eisenstadt and Brayshaw (Open University) have developed the
Transparent Prolog Machine, which to some extent solves this
problem. Using modern graphics workstations they are able to
display an execution space of many thousands of nodes. It
incorporates enhanced AND/OR trees which carry information about
clause head matching, and provides a zoom facility to focus in
detail on particular parts of the code. This system is aimed at
experienced programmers, although it does allow for 'slow
motion' tracing for those not so experienced. The system is
still being developed and evaluated (Eisenstadt, 1984;
Eisenstadt et al., 1984; Eisenstadt and Brayshaw, 1986).

Empirical psychological studies of Prolog learners have been
conducted by Ormerod, Manktelow, Steward and Robson (Sunderland

Drlevrdbrn~hm 2~) =1 h ~ Ty Tt ent Y vt ol 4+ W A F €t ~f 134+

From the point of view of novices' errors, the work of Van
Someren (Amsterdam) and the work reported here are
complementary. Van Someren has investigated the 'mal-rules'
novice programmers exhibit in constructing simple Prolog
programs whereas we have tended to concentrate on the issue of
the novice's interpretation of the programming task as construed
in Prolog and as affected by their prior knowledge (Van Someren,
1984; Van Someren, 1985).

Our own work focuses on the very high-level misperceptions that
novices have of the programming task, and the interaction
between these and their interpretation of Prolog when presented
with either the declarative or the procedural view. These more
general misunderstandings can give rise to lower-level bugs of
the sort discussed by Van Someien.

Some of these groups have recently contributed to a SERC/Alvey
funded workshop on learning and using Prolog, and a collected
series of papers is in preparation.

2.0 EXPERT PROLOG PROGRAMVERS

As part of the research project, we observed a group expert
Prol og programmrers. Before detailed discussion, sone genera
poi nts regarding the performance of these experts is in order

Firstly, the study was not intended to be an analysis of expert
programmi ng performance per se. The object of the exercise was
rather to get a feel for the approach and style of expert Prolog
programming, to provide a nmneasure against which to begin
eval uating novice performance.

Secondly, because of the informal nature of the test materials,
and the small size of subject pool, comments reported here are
mai nly anecdotal. Also, there was not a great deal in the way of
uni formty of per f or mance. However, there were certain
characteristics which stood out, which are discussed bel ow.

Thirdly, sonme of the questions posed in our original proposal
were not addressed in our study. The questions pertaining to
expert performance were:

1. Does programming in Prolog require (or encourage the
devel opnment of) any specific kind of approach to problem
sol vi ng?

2. Do experts sti33 nake wuse of both the declarative and
procedural senantics?

3. What is the Prolog fol klore?

4. \What heuristics and strategies have experts devel oped to cope
with situations where they are unsure about how to proceed?

5.- How good are experts at predicting what Prol og prograns will
do? :

6. How do experts go about debuggi ng?

Because of lack of time we did not address question 3 (Prolog
fol kore), nor gquestion 4 (the heuristics and strategies
devel oped by experts to cope with situations where they were
unable to proceed). A nuch larger, nore detailed study woul d be
required to adequately answer these questions. However, through
di scussion of the ‘protocols, points relevant to the other
questions will arise.

2.1 METHODS AND PROCEDURES

There is at Sussex University a resident pool of Prolog experts,
either faculty, research fellows or graduate students, who have
both taught and/or used Prolog for some time. Seven members of
the group elected to participate in the study: three members of
faculty, two research students, and two systems programmers. It
turned out that one of the members of faculty, and one systems
programmer were not in fact Prolog experts, although they had
considerable knowledge about programming and the system on which
they were working. These two, although their work was
interesting, do not form part of the study.

The experts were provided with a range of problems (see Appendix
1. for transcripts) mostly taken from How to Solve it with Prolog
(Coehlo et al. 1980). One problem stood out as particularly
interesting - the Architect Problem - and most of the discussion
below focuses around this. We also asked subjects to write a
program to flatten 1lists in Prolog, and one protocol in
particular is referred to. Lastly, they were asked to debug a
buggy program without running it.

Because all these experts were very busy, it was impractical to
ask them to take time out to participate in video-taped protocol
studies. Instcad, a method had to be devised which allowed them
to do a task at times to suit themselves. The data was gathered
by means of an automatic Jlogging program (written by Roger
Evans) written in POP-11 and running on the POPLOG system.

The leogging program read the text of the problem file into the
current file the expert was using, and prevented the
consultation of on-line help materials and documentation. The
reason for this being that if the experts "disappeared off" into
documentation files, the logging program would be unable to keep
track of where they went. The experts were asked to comment at
times when they would normally have pursued on-line (or off-
line) information.

The logging program trapped all input to the editor (VED) from
the terminal, and stored it in a file, together with elapsed
time between typing characters. Only differences of 3 seconds or
more between keystrokes were recorded. A second program was used
to replay the logfile by substituting the characters stored in
the file for the normal keyboard input to the editor. The editor
then behaved as it did for the expert when the logging took
place. The playback program allowed the experimenter to suspend
playback, with the option of single-stepping through keystrokes,
or resuming continuous playback.

2.2 SPECIFIC OBSERVATIONS
2.2.1 From Problems to Specifications

The major observation was that progress through a problem seemed
to have quite distinct phases, reflected in the comments made by
experts as they worked.

Aside from the domain specific knowledge which experts clearly
must have, expertise 1is also associated with an ability to
understand how to integrate, manipulate and combine relevant
information 1in the programming task. From our observations of
these Prolog experts, it seems that there are fairly clear
stages in the program writing process in which distinct types of
problems in general, that associated with formal representations
of problem solutions (e.g. as in a program), and that associated
with the methods and techniques for achieving a given effect.

These different types of knowledge are kept separate, and whilst
the expert may 'jump around' these domains of knowledge whilst
considering how best to solve the problem, there is no confusion
about the kind of knowledge which is relevant to what kind of
guestion. An effective programmer, therefore, not only has the
relevant information {or has potential access to such
information), but also a facility for moving from one level, or
type, of description to another and back. Involved in this
process is an understanding of the effects of moving into a
particular domain, what the constraints are, and how that
affects the shape of the eventual solution.

Familiarity with a domain enables the expert to make decisions
- about the ‘sorts of conceptual tools which need to be available
for a problem to be successfully solved. These decisions may
involve stepping outside the domain in question to create an
appropriate environment which either caters for, or overcomes,
the constraints inherent in that domain.

To clarify, the following scenario 1is a hypothetical expert
based on our observations of real experts. The first phase of a
problem solving session would consist of problem interpretation
(i.e. abstracting the problem structure from the English
description). This takes place in the real-world domain, and the
expert is establishing whether or not he understands the problem
correctly (or adequately). Parts of the problem statement are
queried, and decisions are made about what kind of a problem it
is, and what would consititute a solution. This process
corresponds to the construction of a problem space, or a mental
model .

During this process, certain kinds of decision will be taken

real world domain into (in this case) the formal mechanistic
domain. Comments may be made about the kinds of
objects/relations/processes that will be needed to solve the
problem and note will be taken of functional relations of parts
of the solution (e.g. 'I think I'm going to use fast-set-of in
order to whip through the set of objects I will have
collected...'). Having decided this, the next issue is: 'have I
got everything I need available?'. If not the expert either
needs to develop it, or to retreive it from the system, which
may involve moving out of the formal mechanistic domain.

Finally, the solution would be expressed in the syntax of
Prolog. It may be that original design decisions taken at higher
levels are inappropriate or unnecessary, so a certain amount of
movement up and down the domain framework might occur. In this
phase the expert will be aware that some kind of a solution has
been reached (i.e. the program actually 'works' in some sense)
but needs testing with different kinds of data. Knowing what
kind of data to use depends upon the ability to discriminate
between different kinds of behaviour produced by the machine at
the formal mechanistic level.

We shall now discuss the evidence to support this view of the
programming process from our expert protocols mainly in relation
to the Architect Problem reproduced below.

The Architect Problem

This problem provided some interesting data about expert
performance. It had been selected because it seemed that the
English description of the program belied the simplistic (even
over-simplistic) program provided in How to Solve it with Prolog
(p. 63).

Write a program for designing an architectural unit obeying
the following specifications:

1. There are two rooms

2. Each room has a window and an interior door

3. Rooms are connected by an interior door

4. One room also has an exterior door

5. A wall can have only one door or window

6. No window can face north

7. Windows cannot be on opposite sides of the unit

Most of the experts reacted to the 1loose formulation of this
problem:

51 This is an unbelievable problem Design an architects
unit satisfying the following constraints !!!1Il You
got to be kidding.

In fact | can't even imagine what you want here. Points
- 7 are, in a sense, a design for a building. 1 cc
translate them into Prol og database entries, but that's
very exciting. As far as | can see, DESIGNING a bhuilc
satisfying these constraints neans drawing a floor-pl

and if | knew howto wite a Prolog program that woul d c
floor-plans for buildings given a set of constraints 1
these 1'd be selling it for cash, not knocking it up ir
spare time to give you sonething to work on.

52 Ww aninmals [another problenm was easy and | took
mns on that.... good job I'mnot in a hurry. EXcuse

while | have a little think.

53 Not at all clear what designing neans. Is it check
constraints on a design? What's the input to the progr
What's the output?

54 This problem is alnost |udicrously open-ended.

After this initial phase, however, the next step was
i nterpret t he st at ermrent , and formulate a nuch tigh
description of what was to be done. There were a variety
candi date nethods and approaches to this task. S4 explicitly
out his plan:

S4 For exanple - what does "to face North" nean? if we h
all walls at right angles and one is at NE then does t
count? I'll approach this in a sinple way.

Here are the constraints:
roons have four walls
all walls are at right angles
one wall goes north-south

Here is an interpretation:

1. I'll re-interpret this to nake it easier! (hahaha!)
"a wall can have only one door or wi ndow' neans a We
can have a door, a w ndow or neither, but not both..

2. each room has a wi ndow and a door neans a room has
at nost two doors. In fact, one roomhas two doors
(one interior, one exterior) and the other has only
one (interior). But each room can have any nunber of
wi ndows (one or nore...)

and here we PO:

can have an interior door
or

can have an exterior door
or

can have a picture

Sl also clearly illustrated distinct stages in his protocol. Hs
first comrent was:

After a certain anmount of scribbling, scratching ny head,
staring out the w ndow I've decided that what | shall
ATTEMPT to do is design a systemwhich will tell me which
constraints mnmy current design doesn't satisfy. But I'm
going to do the designing, not it.

The design decision had been taken - the program would ratify
his architectural design rather than create one itself. Sone of
the constraints were then specified:

Sone definitions: four wall that. neet nake a roomtwo walls
meet if they have a common end Constraints translated into
Prolog 1, 2, 3, 4, 5. | can't easily see howto translate
the other two (particularly not the one about North facing;
walls) so |l shan't...

Having interpreted the problem elimnating parts of t he
statenent which he considered to be either too difficult, or
i nfeasible, the next phase was to inplenment the necessary
operators for such a solution. This provided the environment in
whi ch the plan could be inplenmented, signalled by the remark:

I now have, | hope, operators that wll enable ne to
specify the layout of rooms, and to find out which of ny
constraints are not satisfied (I probably haven't but we'll
come to that). So what we do now, is specify the
di nensi ons of sone walls, connect. them together into roons,
and add doors and w ndows, checking every now and then to
see what constraints need satisfying.

The protocol then proceeded with inplenentations and checks to
code up the solution.

2.2.2 Setting up Environnents

The phase described here is the setting up of an environnent
within w>ch to solve the problem and seens to be a critical
point in program creation. It appears to be the transition point
between some form of 'generalised probl em solving and the
program writing phase, where enphasis shifts fromworrying about
aspects of the problemto how to programit. These experts often
appeared to have an extrenely clear idea of what Kkinds of

predi cate took, or what its nane was.

For exanple, S2 redefined operator precedences in order to use
'is' and ‘'are' as infix operators in the Aninmal problem The
first part of his protocol consisted of explorations of the
Prolog system to establish what facilities he could use within
the logging program He experinented with conjectures about how
precedences work, and checked error nmessages to discover what
was going wrong. The resulting program was extrenmely easy to
read:

omi vore are manmal ,

her bi vore are mammal .

hi isa herbivore,

ol isa ommivore
...etc

The program supports clean declarative interpretation which
belies the prelimnary work S2 had put in to create the
envi ronment in which he wanted to wite his program At one

level, the decision to wite a program which had a surface
correspondence to a pure logical specification was a design
decision taken early on. However, the inplementation of the

program involved intimate know edge of the underlying ProJog
machi ne.

Anot her exanple was that of S5 who discovered that the built-in
predicate 'retract' did not function as he wanted. Having traced
it with the spy mechanism he conmented:

they' ve inmplemented retract wong -
or at least not the way | want it.

He then proceeded to redefine 'retract’ which did precisely what
he wanted,. This again confirms the notion that the expert knows
exactly what functional role a set of clauses ought to play in
the problem solution, and if the system doesn't provide such a
facility, then one is built. This would be contrasted wth the
novice who would only be able to wutilise what the system
provides to construct a solution and who nmay thus be trying to
bridge an inpossibly wi de gap

As nentioned previously the program which |ogged the interaction
did not allow consultation of on-line docunentation by the
experts (a constraint that would have been at odds wth their
normal node of Dbehaviour). Several experts commented that at
sone point they would either consult a textbook, or |ook at help
or docunentation files. Since they were not in a position to do
either, they enbarked on a trial and error sequence, but in an
extremely informed manner, suggesting that they knew what

For example, a consideration in Prolog programming is where to
put the data - i.e. Prolog allows the user to create programs
which have data in the form of ground clauses in a database, or
alternatively to build complex clauses which fish out relevant
information by unification. The final decision will often rest
upon how gencral a solution is required.

S5 experimented with several different program structures,
commenting:

The way things are going, half the constraints are in the
structure (e.g. one window per wall) while the other half
are going to be atl top level (e.g. no north facing window).

This is yukky - either I put them all in the structures
(easier, but less general) or all at top level (messy but
general).

Eventually he scrapped all his previous exploration, and wrote a
program of compound datastructures accessed by procedures. Some
of these procedures had constraints in them.

2.2.3 Errors

We found that experts were as likely to make certain kinds of
slips as are novices - e.g. syntax errors, spelling mistakes, a
wrongly ordered argument sequence etc.

For example, mixing up the order of arguments in rules - this
error was committed by S5, an extremely proficient Prolog
programmer, who, after tracing the program to discover what was
going wrong, ruefully remarked:

The arguments were backwards - I knew I should have wused
infix operators to make sure I knew which way round things
were. .

His version was:

is_a(X,Y):- kindof(Y,Z), isa(X,Z).
which should have been:

isa_a(X,Y):- kindof(X,Z), isa(z,Y).

Again, misspellings cause problems in Prolog programs, and one
expert was floored by one. S1 used the trace to see how his
program checked constraints. Given the input
'make_room{(wl,w2,w3,w4)' he left spypoints set and checked
through 92 lines of trace information "to verify the design.
However, he did not notice that in one of his predicates he had
misspelt 'constraint' as 'constrant'. The program failed, and he

defined two predicates with the same name but each one took a
different number of arguments. Consequently, the program ran
quite happily when the predicate which was supposed to take
three arguments was only given two, since there was a predicate
of that name which took two. Unfortunately, of course, the
solution was incorrect. The first important point was that the
expert was aware that something could be wrong with a running
program - the effect 1in this case was to produce too many
solutions. S6 used spy set on 17 clauses, and after careful
analysis of lengthy output he spotted his error.

Predictably, experts were prepared to dedicate a fair amount of
time to systematically checking the output of the tracing
mechanisms, a task which is liable to daunt many novices. But
what emerges from the protocols is that experts were skilful at
interpreting debugging traces, and were not prepared to leave
much to cheerful optimism. When the debugging trace began to
spew out, experts knew what they are 1looking for, and were
prepared to study it for considerable amounts of time. The
debugging trace referred to the execution/procedural semantics,
but we propose that experts were not simply inspecting that
information at face value (otherwise S1 would have spotted his
spelling mistake). The process involved interpreting the output
in terms of what that meant for the other levels of the problem
solving process - it was interpreted functionally, not
literally.

2.2.4 Use of trace information

We noted two different uses of the debugging traces. One obvious
use was for ‘simple' debugging. We expected to see experts
debugging programs carefully and systematically, and certainly
the protocols contained a great deal of trace information.
However, it became clear that this trace information was not
simply switched on after the program was written in order to
check it out. Rather, the program was developed incrementally,
by writing a piece of code, and then running the spy facility to
check that it really was doing what the programmer thought it
should, and as a means of illustrating to the programmer which
cases the piece of code was not dealing with. A further usc was
to get an overall view of what the program was up to 'behind the
scenes' as it were. There may be several reasons for this.

Firstly, Prolog's backtracking mechanism needs constraining. We
have observed novices whose programs run away with them due to
unconstrained backtracking. The experts .were not:only be aware
of the pitfalls of unconstrained backtracking, but were also
likely to put a premium on efficiency - it was not always
sufficient simply to produce the working program, it was more
challenging to do it in machine efficient terms.

was given in a matter of 10 minutes, whereas the experts took on
average about 40 minutes. However, their solutions would cope
with all kinds of lists (containing any type of structure) and
could work efficiently.

The solution provided by S1 for this problem demonstrates the
point. He made use of the debugging trace to successively
refine the solution from his original stab:

flatten([X|L], [Y|K]):-
!, flatten(X,Y), flatten(L,K).

flatten(X,X).
"to the final version:

flatten([[X]|L1], L2):-
flatten([X|L1], L2).

'flatten([[X]Ll]le], L):-
flatten([X, L1jL2], L).

flatten([[]}|L1], L2):-
flatten(L1l, L2).

flatten([X|L1], [X]|L2]):-
flatten(Ll, L2).

flatten(X,X).
Five versions were created, and between each one was a Jlarge
section of debugging trace. The subject examined the trace
closely, and the next version was developed to cope with
successively more cases.

The problem could have been solved straightforwardly by using
'append', but that version of 'flatten' is costly in terms of
machine operations. All the other experts used append, but this
last solution represents a version of flatten which does not.

The importance of observing the machine's behaviour to check
that the program was correct (even though it may look correct)
was emphasised by the fact that none of the experts in this
study were willing to predict what a program would do without
running it. This may only be a reflection of ‘'house style' at
Sussex, but it may also be relevant to the deeper issue of
understanding the overall function of a program. Prediction of
the entire behaviour of the computer from a written program is
not only difficult (i.e. one would have to mentally simulate
complex sequences of execution) but may also be fruitless due to
the high possibility of error. Unless they could inspect the
behaviour of the computer whilst the program was running, our

behavioural component for cvﬁluation purposes, tﬁe novice may
find it difficult to know whether or not a logical specification
is correct (see Taylor 1987, Chapter 3).

There are two remaining questions so far unaddressed for which
we have only sketchy answers.

1. Does programming in Prolog require (or encourage the
development of) any specific kind of approach to problen
solving?

Many of the problems presented to the experts in our study
focused on writing programs which satisfied constraints, and in
this enterprise, heavy use was made of unification {(or
matching). The major issue in this type of programming was where
to put the data, and how to access it. S5 provided an example of
an expert debating what kind of approach to adopt (see above)
and attempted several strategies. But this sort of approach used
mainly in association with wunfamiliar problems (e.g. the
Architect problem) is as much linked to specifying the problem
clearly as it 1is to Proleg programming. More routine (and
familiar) exercises (such as the Flatten exercise) tended not to
be planned this way, but rather were created by trial and error
using the debugging trace.

It seems intuitively obvious that experts would be inclined to
construct a mental model of the problem with the constraints of
the language taken into account - i.e. it would not be very
expert to devise a solution which is incapable of being
expressed in the language, and not discovering this wuntil the
coding phase. It was interesting to note that our two non-
experts (i.e. they were not expert in Prolog but were expert in
other languages), who were excluded from the study, both failed
to come to terms at all with the Architect problem, presumably
being unable to match their specification with Prolog
constructs.

2. Do experts still make use of both the declarative and
_procedural semantics?

This guestion led to much debate amongst the experts in the
study. The strong argument for declarative programming is that
program statments need not contain any procedural information at
all - the machine should provide this interpretation. However,
given that Prolog is not a pure logic programming language (i.e.
cannot be fully understood without reference to the underlying
execution), a weaker argument to support declarative programming
suggests that it is useful to separate declarative information
from control information. This argument was presented by S6 who
defended the wuse of declarative interpretations on the grounds
that 'the logical component can help you understand/express
yourself in the procedural one, and vice versa'. In his approach
to the Architect problem, he began by specifying the goal
statement:

What we want from the design in which walls are parts of
which rooms, and which walls have which doors and windows
in them.

The goal statement is something like this:

room(R1), room(R2), not(R1 = R2),
walls_of(R1, W1), walls_of(R2, W2), one_in_common(W1l,W2),
and the restrictions on what can go where.

After having defined most of the sub-procedures for this
statement, the predicate devised is as follows:

house([room1(W1), room2(W2), in_door(C),
windows (WW1, WW2), ex_door(Wex]) :- :

n_walls(W1,4), n_walls(W2,4), only_one_in_common(W1l,W2,C),
opposite_sides(C, W1, W2),
non_north(WWl, W1), not(WW1=C), non_north(WwW2,W2), not(Ww2=C},
not(opposite_sides(WW1,W1,WW2,W2)),
append(W1,W2,Wused), member(Wex,Wused),
not (member (Wex, [C, WW, WW2])).

This is the most clear cut example of declarative programming
provided in the expert protocols. Whilst other experts
eventually produced programs which could be viewed as
declarative specifications, these were supported by the prior
creation of tools and constructs with which to write the

program. Building these facilities depended on a great deal of
knowledge about the underlying execution processes. In other
words, ‘'basic' Prolog was used to implement a higher-level

environment to enable such a program to be written.

2.3 CONCLUSI ONS

Having conpleted this small study of expert performance, and
then having observed novices (see bel ow), the major concl usion
was that the two groups differed not sinply because experts had
a great deal of know edge about Prolog, but because they
understood the constraints of the formal domains in which they
were working. In other words, they were able to adopt a variety
of 'meta-level' stances fromwhich to evaluate and criticise
their approaches to problem solving and program witing wthout
becomi ng confused, or losing track of where they were. They were
able to navigate around a conceptual franmework which novices
sinply did not have, a framework which structured their problem
solving activities and programwiting strategies. This kind of
know edge seemed nore crucial to successful progranming than an
accurate recol I ection of detailed progranm ng know edge

Attention seened to be focused on functional relations between
processes in the program and the distinction between different
level s of description (e.g. from logical specification to Prolog
code).

For this reason, the analysis of novice progranmm ng had to begin
from another angle, examining the very early part of the
| earning process, to establish what kinds of conceptualisations
of the task of programming, and |earning Prolog, beginners had.
This was a necessary pre-requisite before exam ning-- the
devel oprment of expertise in programmng skill.

3.0 NOVICE PROLOG PROGRAMMING

The assumption in our study was that Prolog novices did not
simply 1lack knowledge about Prolog - it was clear from our
observations that experts sometimes lacked specific knowledge
about Prolog, but, importantly, this did not severly hamper
their work. Besides, many novices have available to them all the
requisite Prolog-specific knowledge neceded to write programs at
a given level, either in text-books, or teaching materials.
Furthermore, novices do not come to the programming situation
devoid of general purpose learning, or problem-solving
strategies.

The difficulties seemed to stem from two main sources: first, a
lack of understanding about how and when to use particular
pieces of knowledge in the programming session; second, the
unlearning of inappropriate, but powerful, general purpose
reasoning or problem solving technigques which they already
possessed. In other words, as many teachers are aware, the
novice is not an empty vessel waiting to be filled up with
correct information.

Taylor (1987) argues that in many studies of novice programmers
several major factors are 1ignored: the character of general
purpose, domain independent problem solving or ‘'understanding'
strategies in combination with the learner's previous
background, experience, and intuitive interpretations. Studies
which divorce problem solving strategies from their subject
consider how such strategies work when applied only to correct
information. However, learners rarely have only correct
information available. A prerequisite to effective problen
solving is the ability to correctly interpret the problem
statement according to the constraints in the domain, and
knowing what is or is not relevant to its solution. Typical
learners cannot automatically be expected to have this
knowledge, and not unnaturally, they support their as yet weak
problem solving methods by introducing information from previous
experience, guesswork and intuitions. This alters the character
of novice problem solving, making it not only different from
that of experts in terms of speed and accuracy, but also in
terms of what they think the problem is. The learner's
conceptualisation and initial representation of the problem is
liable to be very different from what it should be, but it is
this conceptualisation to which problem solving methods will be
applied.

Many other studies (e.g. Anderson, 1982) focus on the learning
mechanisms involved in cognitive skill acquistion, where the
major emphasis is upon the psychological mechanisms which allow
learning to take place, and which facilitate the development of
skilled performance. In contrast, the study reported here

The main focus, then, is on identifying very hi gh-1eve
strategies for finterpreting tin. progranmming domain, and for
probl em sol ving, which novices bring with them

In order to pin down some of the particular difficulties
associated with Jlearning to program a framework 1is wused
(Taylor, 1987) which identifies the various domains with which a
Prolog programmer should, in theory, be famliar, in order to
program successfully. The three donmamins represent different
views which can be taken of problens, and their descriptions.

They are labelled: the 'real world' domain, the formal |ogical
donai n, and the formal mechanistic domain. Each dommain
consititutes a frane of discourse (in effect, an environnment),

and has associated with appropriate reasoning strategies, a
specification language, and neans by which to evaluate the
success of the specification

The three domains are depicted as follows, and each is briefly
described in the follow ng sections:

| Frame of } Components of discourse--=—-----—--- > |
j Di scour se [zmmmmmmmmr oo e bbb b 1
i | j REASON'ING i SPECI FI CATI ON} METHOD OF }
] \V4 « STRATEG ES | LANGUAGE | VALI DATI ON f
J_____,_..-...,_,....,_____.._-.d-.-_------v.———v----—-....____..__._‘._.__..“———-.---.—.-u..._._._I
| HEAL J Ordinary (Natural | Eny>iricai |
jWOKL!) | (Practical) j LanjMiaj"e | catjsa]/ Behavioural j
| 1 ((imp)icil) | {Himan) |
fe=wr==sss=zriTsssss=SisEisiiImSTuRIYSmSSEs_sviusaussizzsssamasonsTeas|
i 1 Analytic j Loj;i Cal { Hypotheli calJd/ |
| LOG CAL | {Forma} j Expressions { Syntactic }
| [Logical) | (expiicit) { (acausal/atemporal]t |
I ___

| i Analytic i Programming | Enpiric<il 1
| COMPUTATI ONAL j (Forma) J Lancuaj;e j Causal/Behavi oural |
j J Mechanistic} | (explicit) [(Computer) 1

The Domain Frame.work

The diagram is used to map out certain kinds of difficulties and

potential errors that novice may fall into. There is no single
correct route to the production of a running program or
specification, and the diagram is not prescriptive - i.e.
program creation does not have to nove from the real-world to
the fornmal | ogical domain and then to the formal mechanistic.

However, the ways in which programmers nove around these various
domains, and their ability to keep separate the various views of
progranms and problens will affect the eventual success wth
which they wite prograns.

3.1 PROGRAMM NG DI FFI CULTI ES

We divide the difficulties associated with learning programm ng
into six overlapping classes which can be mapped into each of
these dommins. Again, these classes should not be thought of as
general stages in learning to program or particular stages in
the process of producing a working program Rat her t hey
represent Vi ews of the programming process at different
levels. Each of these views needs to be elaborated and
assimlated by the student in order to become expert:

Real Worl d:

(i) Ceneral orientation to progranmm ng
(i) Interpreting Problem Descriptions
Logi cal :

(iii) Using formal |anguages

Conput ati ona

(iv) Understanding the notional machines
(v) Usi ng standard structures

(vi) Pragmatics

Each view is characterised and associated difficulties outlined
bel ow. -

3.3.1 The Real World

The real world domain is the one which is famliar to us all,
novices or otherwise, and is nmeant to represent the ordinary
world. The environnent of the real world is that of human
di scour se. In this domain, the problemsolver can use nany
strategies to solve problens, taking advantage of existing
know edge, prior experience, and known facts. Strategies for

probl em sol ving i ncl ude i nducti on, deducti on, guessi ng
inference and so on. Any type of information could in principle
be used: e.g. vi sual i nformation, recal | ed i nformation,

information fromone's coll eagues, anal ogy, beliefs, prejudices
and so on.

The | anguage for ‘expressing problens and solutions is natural
| anguage, whi ch is normal |y under st ood Vi a ordi nary
conpr ehensi on processes (i.e. co-operative), using inplicit
i nference to construe neani ng where necessary. '

At this level, the learner nust understand how to take a problem

description, couched in natural |anguage, and abstract the
i mportant conponents of the problem - i.e. the objects and
relations - in order to construct a nental nodel of the problem

to be solved. Since the overall task is progranm ng, we define

the criterion for success as the extent to which another
''oxTofomn ' nan TNntornr ot tho rochnl tifncr nrnkK lom cxr\ 1 Nn-fF-" nn crH

So there is the general PROBLEM OF ORIENTATION, finding
out what the task of programming is supposed to be, what it can
be wused for, what general kinds of problem can be tackled
and what the eventual advantages might be of expending effort in
learning the skill. It is worth pointing out that if beginners
have bhad no prior experience with computing languages, Prolog
appears to be a 'something and nothing' - i.e. they are unaware
of the underlying 'machinery' which is working for them (the
backtracking mechanism for example) and may find the examples
provided either uninteresting or not worthy of the somewhat
deeper consideration required to wunderstand the principles
involved.

There are also the difficulties of INTERPRETING PROBLEM
DESCRIPTIONS. One of the skills that the beginning programmer
has to master is that of reading a piece of text expressing
a problem and deciding what that problem is. This requires an
analysis of the major entities involved, of their relationships
and how a solution may be obtained in principle. For some
programming languages the kinds of entity about which problems
can be stated are well delineated (e.g. numerical) and can be
used as 'landmarks'. As Prolog allows statements to be
made about any relationships and implications, there is
no clear boundary between things that can be described in
Prolog and those that cannot. One way to reduce this
difficulty 1is to stress the notions of relationships and
individuals and give the students lots of practice in using
a given restricted vocabulary to exXpress limited aspects of
English sentences (see Ennals, 1984 for examples of this
approach).

Even if the major entities and relationships are clear there
is the problem of deciding how these should be
represented. The relative freedom of expression which Prolog
offers for representing information may hinder rather than
help beginners. Methods of representation can have a profound
effect on how easily a problem can be solved, and on how
efficient the solution may eventually be.

A widespread problem that beginners face when interpreting
problem descriptions is deciding how general a solution should
be. This problem may occur in Prolog to a larger degree than in
other languages for the reasons given above.

3.1.2 The Logical Domain

The logical domain differs from the real world in several
important ways. Firstly, the range of strategies available
within the domain are restricted, as are the methods of
reasoning, and the data which can legally be brought to bear as
part of the problem solution. The usual method of reasoning is

Aaoadinirt i an and +ha Tnfarmaticn thirh ¢ alaotvrant 1¢ nnly +hat

means - i.e. 1in a non-cooperative way, using only explicit
inferencing processes. In this case, the student must understand
the constraints upon the domain, and understand how objects and
relations may be represented.

This involves understanding how to express the information
regarding the problem solution in the terms of expressions
within the domain. Since most logical operations are syntactic,
there is no behavioural component for evaluation purposes at
this level.

These, then, are problems associated with the notation of
the various FORMAL LANGUAGES that have to be learned, both
mastering the syntax and their underlying semantics.

Logic programming languages -~ including Prolog - are purported
to be higher-level than other more conventional languages
because of their relationship to logic. Certain forms of logic
have a long history of being used as problem solving
tools, and in computing such forms are often used as
specification languages. However, logical expressions are
liable to be misconstrued by beginners unless they are
forced into recognising the formal rules governing logical
expressions, as distinct from the rules governing natural
language expressions.

A manifestation of this type of misconception arises when some
solution expressed in a program lies in wunderstanding the
meaning of the English, not in the 1logical structure of the
program. Students can sometimes convince themselves that a
program will work because it 'makes sense' to them in English.

3.1.3 The Computational Domain

The computational domain differs again from both the other two.
Expressions in it are subject to strict interpretation according
to what they make the machine do - 1i.e. the language has a
functional semantics. Again the interepretation is analytic,
and the problem solver must understand both the nature of the
domain, and the way in which the language is used to effect
action. The success of the expression of a problem solution can
be evaluated according to the ability of another 'system' (in
this case a computer) to correctly interpret the program,
producing the desired behaviour.

There are-also difficulties associated with the mapping from an
understanding of the problem to an understanding of the
general properties of the various machines that one is learning
to control, THE NOTIONAL MACHINES.

Users will normally have to master not only the programming

Then there are difficulties in understanding the problem
and in translating it into the terms of reference of the
programming language, which can be hard if the concepts embodied
in the language are entirely new to the student.

This area can present beginners with a great deal of difficulty
because they have to understand, first of all, the computing
system with which they are working, and then distinguish which
elements of that system belong to Prolog, and which are
the system's own. This calls for discrimination in
interpreting error messages, and consistently maintaining
the distinction between the Prolog program/database visible on
the terminal screen, and the version of that program/database
that Prolog has. Students frequently alter their programs
and forget to ‘reload’ or 'reconsult' the new file;
alternatively they inadvertently assert what are meant to be
queries, thereby accidentally altering the program/database.

The general problem for beginners with Prolog is that the
underlying notional machine is both powerful and complex with
a surface behaviour that is hard to predict accurately. Prolog
syntax does not offer clear pointers to what is happening
'behind the scenes'. We gave a simple program to students and
asked them to predict what the machine would do with it. Most
of them were capable of outlining one possible solution (the one
they were expecting) but they gave incomplete descriptions of
all the work the machine would have (o do to achieve a
solution. This lack of knowledge of the complex internal
workings of the machine will make debugging particularly
difficult.

Backtracking confuses beginers in other ways. We have
confirmed the findings of Coombs and Stell (1985) where
students have misconceptions about the order in which
backtracking takes place.

Associated with notation are the difficulties of acquiring
STANDARD STRUCTURES, cliches or plans that can be used to
achieve small scale goals, such as traversing a 1list or
transforming one structure into another.

We have not investigated the wuse of standard cliches in
Prolog. However, we have noted interference effects from the
inappropriate use of standard structures from other languages
identified by Van Someren (1985).

Finally there 1is the issue of mastering the PRAGMATICS
of programming - that is learning the skill of how to
specify, develop, test and debug a program using whatever tools
are available.

PoYY . N T . I R, T I « S P B SN R T 41T IS T

novi ces, on the other hand, seened to want to wundertake this
hard predictive task for thenselves wthout help.

None of these six issues are entirely separable from the others
and rmuch of the shock of the first few encounters between
the learner and the system are conpounded by the student's
att enpt to dea] with all these different | evelds of
difficulty at once

In the research reported here, we have not been able to address

all of these issues in detail. For exanple, we have not focused
on standard structures and cliches, nor specifically on the
pragmatics of programm ng. It seemed from our initial

observations of novices that they were not sufficiently weldl
oriented toward the task of programmng for such a detailed
analysis to be feasible. The nmmjor areas of i nterest,
therefore, were those associated with the first inpressions that
novi ces, and experts in other |anguages, had of Prolog, and the
ki nds of interpretations they put on expressions in the
| anguage, and on the machi ne's behaviour. Because of this, the
study of expert perfornmance stands apart sonewhat from the rest
of the research because those subjects, by definition, were
oriented to the task of progranmi ng.

3.2 BUGS AND SUPERBUGS

Taylor (1987) uses the diagram skctched above to map out the
space of possible errors that beginning Prolog programmers may
have. Pea (1986) discusses 'superbugs' - high-leveld, language
independent conceptual bugs - which disrupt the ways in which
novices program and understand programs. One superbug identified
by him is where beginners have the guiding analogy of human
discoursc for conducting their interaction with the computer.
This amounts to assuming that inside the computer is a hidden
mind with interpretative powers which can understand the
intentions of the programmer. This analogy is often
unconsciously adopted, since most learners will readily agree
that there is not 'really' a mind inside the machine - however,
they continue to act as though there were.

The specific problems which arise for beginners wusing this
analogy are associated with the ways in which formal languages
(such as a programming language) violate expectations about
human discourse interpretation.

In effect, Pea's view of novices is that they are interpreting
problems and programs from the real-world domain, and are
implicitly assuming & co-operative understanding process on the
part of the machine. This means that formal expressions arce
interpreted according to the rules of natural language, rather
than in terms of the appropriate underlying models of those
languages which provide their proper semantics (e.g. in the case
of logic, perhaps a model theoretic interpretation; in the case
of-a programming language, the mechanistic rules by which
expressions are interpreted). DButl not only will the language
itself be understood by reference to natural language, the
behaviour of the machine may also be interpreted according to
criteria associated with understanding human behaviour. This may
lead to the attribution of rather morce intentionality to the
computer than is warranted, and subscquent misunderstanding of
the source of bugs in programs.

Tavlor maps out the potential error sources, defining
‘superbugs' as those which involve the use of interpretative
processes appropriate to ane level to interpret another (in the
diagram the downward arrows). Bugs arce defined as ‘lateral!
confusions - i.e. mistakes occurring within a domain rather than
between domains. The diagram is as follows:

| Task domain | Components of discourse----------- > i
| | O by
{ | { REASONING { SPECIFICATION| METHOD OF [
| v | STRATEGIES | LANGUAGE | VALIDATION |
| = oo osoooooooooooooooo |
| | Lmm==> <-===> |
| REAL | Ordinary | | Natural { | Empirical {

| WORLD | (Practical) | | Language | { Causal/Behavioural{ |
q 1 1 { ({mnlicit) | { (Human) [|

In the analysis of student performance, care nust be taken not
to assune that an apparent 'bug' is not in fact a synptom of a
superbug. So, for exanple, a bug mght arise where a student
understands something about the constraints which govern the
| ogi cal domai n, has identified the appropriate objects and
rel ati onshi ps necessary for problem solving, but has bad]y
constructed the syntax of the |ogical expressions. Simlarly, a
st udent may have correctly formulated a program in the
conput ati onal domain, but has not interpreted the behaviour of
t he machi ne correctly (perhaps obtaining unexpected, but
correct, output) and begins to change the program

On the other hand, a superbug is one where expressions in |logic
are constructed wth a natural |anguage 'nmeaning hallucinated
onto them - i.e. the intended neani ng does not exist, or where
the interpretation of the conputer's behaviour is based upon the
assunption that it can do nore than it really can

In order to establish whether or not a given error is a bug, or
a synmptom of a superbug, it is necessary to |look at the context
in which the error arose - i.e. careful attention needs to be
paid to the type of |anguage used by the student, and the means
by which the student evaluated what happened and why. At this
stage of the research, therefore, individual protocols yield the
best data about superbugs, rather than group testing and
statistical analyses (see bel ow).

The major claimis that beginners who have no domain-specific
-knowl edge are obliged to |INTERPRET a new donain. In this
enterprise learners will make use of high-level strategies (of
the sort to be found in the real-world domain) in the fornal
domai ns. Some of these strategies are not only powerful and
econom cal when t hey wor K, but may equally introduce
m sconceptions and misinterpretations. In other words, what nmay
turn out to be a superbug at sone point in the |earning process
frequently started out as an essential and powerful (genera
purpose learning strategy. As they apply these strategies,
learners will bring to bear any existing information which seens
to them to be relevant. This information will be woven into a
"theory! or a set of explanations by |earners, which constitutes
their growing nodel of the |anguage. The situation is conplex,
t herefore, because |earners cannot be relied upon to introduce
only correct information (as presented in text-books and
teaching materials) into their conceptualisations of - the
progranm ng | anguage.

Lewis and Mack (1982), in a study of non-programrers learning to
use a text editor, explore the issue of ad hoc explanations
generated by learners to account for nachine behaviour. They
noted that learners who had little prior know edge or current
information to understand what was happening were able to

the first phase of reasoning in the development of new knowledge
because it generates the hypothesis from which further reasoning
(involving induction and deduction) can in principle proceed.
Unfortunately, mosl beginners are content to accept the
abductions without testing them out. An example of abduction is
given:

A learner was attempting to enter a password when a +typing
mistake caused the system to halt awaiting a correction. An
indicator light marked ‘'input inhibited' came on. The
learner attributed both the delay and the light to a heavy
work load on the system.

This kind of explanation involves introducing a ‘'space of
discourse' which contains new elements (i.e. the notion of work
load) and these elements now form part of the learner's
conception of the system. Abductive processes can override other
forms of comprehension, even explicit statements in text manuals
- learners sometimes re-interpreted instructions to say what
they thought they should say, or discarded them as ‘obviously'
incorrect.

This process makes teaching difficult because learners may wish
to defend their interpretations on the grounds that they have
worked 'so far' - even though this itself is also a
misperception on the part of the novice. Previous success may
have been co-incidental (i.e. due to a peculiar set of
circumstances), or it may be that learners believe themselves to
have succeeded, when in fact they had not. But simply providing
correct information is unlikely to remedy the situation, since
it stands the chance, 1like original teaching materials, of
simply being ignored, or of being re-interpreted to fit the
student's model.

Taylor argues that there are two strands of difficulty in
superbug effects for Prolog: that associated with interpreting
the language, and that associated with interpreting the
behaviour of the machine. These two types of difficulties are
linked with the teaching approach taken. Students who are
introduced to the declarative interpretation of Prolog, with its
lack of emphasis on the mechanisms of the language, are liable
to view Prolog as a cut-down version of English. This will lead
to students embarking on a simple surface 'translation' exercise
when writing programs, rather than a transformation of the
problem statement. Such an approach results in wunderspecified
programs because inference processes are left implicit in
program statements, rather than being made explicit.

Students introduced to the procedural semantics, on the other
hand, are less likely to make this type of 'translation' error,
but may begin to interpret the execution strategies of Prolog as

s P R drnT1Y e +haearn 4+hatr mwearm Y Ty awme Attt L Aarne ahaoarrd: crh » 4

nmal nodels of the system Instead, we focused on the
kterpretation that l|earners had of the language and its
notions in the very early part of the l|earning process. As has
>en pointed out, many of these interpretations were m sguided
nee they were based on a real-world view of programi ng,
ither than an appropriate formal domain view This has adverse
fects on the ability of the learner to adequately specify
‘oblem solutions to produce effective progranms. |f learners are
jsumng that hunman/conputer interaction is analogous wth
unan/ human di scourse, then presumably a large part of the
"stems workings are designated 'magicall. This would lead to
le kinds of intentional |anguage frequently used to describe
alog's workings - e.g. 'it just knows when to stop’.

3.3 PROBLEMS WITH NATURAL LANGUAGE
3.3.1 Novices: Computers and Thought Students

The first group used to investigate problems with language were
drawn from a first-year undergraduate course called 'Computers
and Thought'. These subjects had no previous background in
computing, and had not learnt any other programming languages.
The course was an unassessed introduction to Artificial
Intelligence, its approach and its techniques. It was not
specifically a programming course, although students were
introduced to Prolog. Programming assignments, however, were not
graded on the quality of code, but rather on the appropriateness
of program comments and discussion. These students were not
expected to get to grips with many of the detailed executional
aspects of Prolog, but were exposed to a broadly declarative
view of Prolog applied mainly to database accessing and route-
finding problems. However, they were not specifically taught
logic, but concentrated instead on 'hands-on' experience of
declarative programming.

Because of their declarative introduction, studies of this group
centred mainly around the interference of natural language in
interpreting and creating Prolog clauses.

This group was asked to perform two straightforward tasks: the
first was to give an English rendering of some Prolog clauses,
the second was to create a Prolog database from information
expressed in English. Whilst the first task presented no
difficulties, the second was problematic. The English sentences
were a mixture of facts and conjunctions, such as:

John works hard and likes music

which are easily represented in Prolog, and some causally
dependent sentences such as

John is a good student because he works hard

which is not so easy to represent, because Prolog does not
handle causality directly. An elementary but adequate solution
to this problem is to create a rule which says : infer that John
is a good student if you can prove that he works hard. Some
students were very resistant to this change of ‘'because' to
'if', which, in itself 1is not very surprising - the task
is actually quite difficult. But some students made the change
spontaneocusly, whilst others said that they could not resolve
the difficulty because ‘'it doesn't mean the same'. One
interpretation of this 1is that these students had not vyet
made the necessary break from the rules of natural
language to the rules of Prolog expressions, where it is

The evidence obtained from the enpirical studies supports quite
strongly the view that nmaking Prolog resenble natural |anguage

mekes the learner's task nore difficult. Interpolation of real-
wor | d know edge and assunpti ons is frequently done
unconsciously, and this m sperception can be encouraged by the
use of English in the progranmng domain. It would be
interesting to establish whether this is true of non-English
speaki ng novi ces, whose natural |anguage syntax is very
di fferent from English (e.o. Japanese | earners). A

recommendation is that students be introduced to a diagrammtic
representation of Prolog (e.g. the ANDDOR trees of Bundy and
Pain) rather than depending upon the student to distinguish
bet ween under st andi ng ari sing out of nat ur al | anguage
interpretation and understanding arising from an appreciation of
the logical structure underpinning Prol og clauses.

Because of the problens indicated above, we found that beginners
sonmetimes became very confused as they tried to map from one
domain to another. It was found that rendering Prolog clauses
into English presented few problens, but going from English to
Prolog was fraught with difficulty. The situation is conpounded
by Prolog's inscrutable syntax, which allows learners to
hal | uci nate spurious neanings onto synt ax obj ect s: e.g.
interpreting the comma used as a separator between arguments to
nmean ' of'

One of the main points about novices' difficulties in |learning
to program is that programr ng |anguages are formal |anguages

strictly interpreted according to rules. Mny beginners clearly
have trouble in identifying the limtations of fornmal domains,
and the strictures which these put on potential pr obl em
solutions. Since this seens to be a source of many difficulties
for a sub-set of learners of Prolog, there is no reason to
suppose that teaching them |logic beforehand will overcone the
problem since it too is an exanple of a formal |anguage. That
is to say, for those |learners who find formal dommins difficult,
it matters little whether it is logic or Prolog. The superbug of
interpreting expressions as natural |anguage wll remain.

Furthernore, since Prolog is not a pure logic programing
| anguage, there is a risk of confusing nmatters even nore as
| earners attenpt to distinguish between pure logic and 'Prolog
logic'. This is not to suggest that acconplished |ogicians woul d
not find Prolog relatively easy to learn; the question is rather
whether it is a better teaching strategy for a genui ne novice.
The ability of novice programers who are also logicians to cope
with Prolog has yet to be enpirically investigated.

3.4 PROBLEMS WITH INTERPRETING MACHINE BEHAVIQUR
3.4.1 Novices: MSc students

This study was of MSc students describing the execution of
programs. The main focus is on their understanding of Prolog's
automatic mechanisms, in particular backtracking, and their
ability to predict behaviour from program statements. The MSc
was a conversion course from an Arts Bachelor's degree to a
Science Master's degree. It was very different from Computers
and Thought being an intensive course during which students were
exposed to both POP-11 (Hardy, 1882) and Prolog. They were
required to come to terms with real A.I. programming, and were
expected to be able to write quite large programs. These
students were introduced to the procedural semantics of Prolog.
They also had lectures in logic and resolution as part of their
knowledge representation course. In contrast to Computers and
Thought students, this group had learnt another programming
language, and had been using computers intensively for about a
term prior to this study. However, they were all new to Prolog.

Because of this background, MSc students were unlikely to fall
into the same kinds of errors as Computers and Thought students.
Whereas in that study the issue was what students thought
program statements meant, studies of the MSc group were directed
more at predicting the behaviour of the machine - i.e. relating
program statements to the activities of the computer. Originally
these studies were stimulated by the report of backtracking
misconceptions by Coombs and Stell (1985), and the intention was
to re-run the experiment at Sussex using MSc students. A further
experiment was then to be conducted with the inclusion of the
'cut' in one of the clauses to investigate the effect of
backtracking misapprehensions on interpreting its role in
execution.

However, the protocols obtained from the first of these studies
provided a great deal of information about other kinds of
misconceptions that students had about execution. This provided
us with the opportunity to do a two-levelled analysis: in the
first case to discuss the specific bugs (and others) identified
by Coombs and Stell and in the second to provide a bug/superbug
analysis.

3.4.2 BUGS

This section describes the findings from the backtracking
exercise described by Coombs and Stell (1985).

Clause 1: a(X):- b(X), c(X).
Clause 2: b(X):- d(X), e(X).
Clause 3: b(X):- f(X).
Claltes A- A1)

G ause 10: ?- a(X).
Coonmbs and Stedl's (1985) Backtracking Program

Coonbs and Stell had identified '"try once and pass' (TOAP) and
‘redo body fromthe left' (RBFL). TOAP involves trying only one
set of instantiations in Clause 2, and then passing on to d ause
3 instead of re-satisfying the sub-goals d(X) and e(X). RBFL
consists of re-satisfying the subgoals in Clause 2 starting with
d(X) rather than attenpting to redo the 'e! sub-goal first -
i.e. backtracking is perceived to progress from left to right
instead of right to left. The following errors were identified
and are briefly discussed bel ow

Domai n Speci fic bugs:

Try once and pass

Redo body from left

Mul tiple values for variables
Try once and pass and cut
Redo body from left and cut
Paral l el execution

Failure to retry

* * %k F % F %

* Dat abase bug

Each of these is briefly discussed bel ow.
Multiple values .

| AJl vari abl es
The most conmon error of this type was where students, having
got an instantiation of 1 for d(X) in Cause 3, seened to forget
that this imediately would instantiate e(X) in the sanme clause
to e(l). Therefore, at this point, the goal to be proved is
e(l). Typically students thought the goal was still the nore
genera] e(X).

The Database Bug

It was pointed out earlier that the students had Ilearnt POP-11
in the previous term so sone intereference effects were to be
expected. The nost obvious of these was the database bug. In
this bug, the student appears to treat the Prol og database as
anal ogous to the POP-11 database. A brief description of the
di fferences between the two will help illustrate the bug. '

Al though the term * database® is often applied to Pr ol og

progr ans, it has a slightly different connotation from when it
is applied to databases in other |anguages. In nmany other
pr ogr anmi ng | anguages, dat abases cont ain data which is

nanipulated by externally defined procedures. Although in PCOP-11
it is quite feasible to sinmulate the structure of a Prol og- style

. S I lem At rnkheomme dé4dmeald 21m;m = w1l ervmaend L1 - -1 _——— W o _

POP-11 cannot ‘'do' anything, except be wused for matching
purposes by procedures. However, in Prolog, structures can act
upon one another (e.g. by unification) and the compiler makes no
significant distinction between facts and rules in this respect.
The difference between facts and rules is not a functional
difference, but the "POP-11 programmer" may regard them as
corresponding to data and procedures.

This kind of misconception need not have devastating effects -
it is usually the case that facts are fully instantiated,
whereas rules are not, and as a meta-strategy on the part of the
programmer, it can be wuseful to identify where possible
instantiations are likely to come from - that is to say meta-
level reasoning often stands one in good stead. Subjects were,
after all, allowed to see the entire program throughout the
session, and so it is quite reasonable for them to look at the
facts to see from where instantiations could be derived.

But difficulties arise when students assume that Prolog can move
around the program, consulting its facts and choosing its rules,
in ways which it cannot, because this will disorientate students
in terms of other facets of execution (e.g. backtracking).

Re-Running the Experiment with Cut

There is an exclusive relationship between TOAP and RBFL: if a
student has TOAP then RBFL cannot be exhibited at the same time
since the effect of TOAP is to eliminate the backtracking
altogether. This, of course, has further ramifications for other
Prolog constructs associated with backtracking, e.g. wuse of the
cut.

To investigate the effect of these errors on interpretations of
the 'cut', the study was re-run with a modified program which
included the cut in Clause 2, and an extra clause to help
prevent meta-level reasoning:

Clause 1: a(X):- b(X), c(X).
Clause 2: b(X):- d(X), !, e(X).
Clause 3: b(X):- f(X).
Clause 4: d(1).

Clause 5: d(2).

Clause 6: e(1).

Clause 7: e(2).

Clause 8: f(3).

Clause 9: ¢(3).

Clause 10: c(4).

Clause 11: ?- a(X).

Modified backtracking task

Tn thicec cace a ctndent exvhihitinog TOAP will feel no effert of

forward execution, the cut is automatically satisfied, but that
one cannot backtrack through it, the RBFL error neans that 're-
doi ng' goals proceeds fromleft to right. Therefore, execution
never does go 'backwards' through the cut. In these cases we
expect to see students use Clause 3 to satisfy b(X), which
should in fact be frozen out by the cut.

Try QO ce and Bjgs sLQ Cut

The above test actually caused a student who had not shown TOAP
in the first experiment to produce it in the second. The actua

m sperception was to think that the effect of the cut was |oca

to the clause - i.e. no backtracking could take place - but he
then went on to try Clause 3. This clause should have been
frozen by the cut.

B8l *2 Body Jrjomthe Lef 't a\d Cut

Simlarly, RBFL arose for a student who had not exhibited it in
the previous session. She began well:

1 &, uhm first thing is er
2 look for a rule nentioning a(X)
3 and find one here
[indicating C ause 1] :
4 and the first thing I have to prove is b(X)
51 look for a rule telling nme how to prove b(X).
6 | find this one,
7 first thing it tells me to do is look for d(X)
8 so | look for a rule nentioning d(X)

Havi ng succeeded with X bound to 1, she looked for c(l), which
failed, which, in this case, brought her back to the 'same rule’
(line 34), and an attenpt to re-do d(X) (line 36):

28 So | fail at this point here
29 with X as 1...uhm.
30 Kind of conpressed into that..
31 | ooking for another c
32 there isn't one,
33 so | need to find another instantiation for b,
34 cone to the sanme rule again
[indie. Cause 2]
35 to prove b,
36 | have to prove this, do d(X) first thing..

Because shé concentrated on re-satisfying d(X), rather than re-

trying e(l), she lost the enphasis on backtracking. She noved
left to right all the time, and in that sense, never did
backtrack through the cut - she was always noving forward

Paral IPIf Evbornti nn

of
Sub

16
17
18
19
20
21
22
23
24
25

Lin
thi
cor
set
val

10
11
12
13
14
15
16
17
18
19
20

21
22
23

The experimenter queried what the current value of X was:

24
25
26
27
28
29

He
but

1 for X, and was searching for e(1):
ject 12
Then it looks to database to see if e(1) is there

and finds fact 6, that it is,

and them uhm, this instantiates b(X)

and the clause to value 1....uhm

It then tries to prove, I think,

rather than backtrack

and trying to prove d and e again,

I think it then goes to try and prove c.
Looks to database to see if there's c(X)
and ¢ is 8.

e 21 indicates a sense of premature backtracking, which

s example was avoided, and he continued more

1

rectly. In his second protocol, where the cut was included
off again to prove the 'e' goal, but showed the multi

ues for variables bug (line 13):

so it has proved d(1)
and then goes on to prove the next goal -
the cut - which automatically succeeds
and then goes on to attempt to prove e(X)
In the database there are e(1) and e(2),
so two possible ways of succeeding.
It tries the one and then tries the other
It would then, were it not for the cut,
go back to try the alternative solution for d
which would be d(2).
The cut makes it bypass the

alternative solution for d
so it goes back out.
Its now got a proof for b(X)
its now got to prove c(X)...

Present instantiation of X is d(1) e{(1)

uhm.. e(2) would fail because X is the argument
of both d, the functors d and e,

and d(1) has succeeded,

but cannot be retried.

So it has to be d(1), e(1).

was right to suggest that d could not be retried (line
It a
appeared from what he said, that the only reason Prolog did

whether he had the correct reasoning was unclear.

2

try all these options at once was because of the cut (line 2

The next step might indicate the source of error. There were

ad

claneee in the nroeram which he thonocht wonild be 'romnar

33 we look in the database and have two alternatives
34 which are ¢(3) and c(4).

35 Um . so it tries c(3) and er...

36 backtracks because 3 is not 1,

37 and backtracks and then tries er c(4)

38 aid again 4 is not 1 so that fails.

39 So a(X) fails.

but there was some sone spurious backtracking involved (lines 36
-37). These clauses sinply do not match c(l), so there was no
backtracking at this point. But the process of conparing
cl auses resenbles the nmethod he had used earlier within C ause 2
- i.e. in this final stage of the execution, all possibilities
will be searched for, but since they do not match, nothing
happens. However in the previous case, a match was found, which
stops further searching. The student seemed to think it carried
on.

Eailil BN > ' retry”

The last, and nbst common, onission which all but one subject
had was the attenpt to resatisfy e(l) prior to backtracking into
d(l). In one sense this is a mnor slip, since in this program
e(l) cannot be resatisfied. But when it was explained to
students that the attenpt would still be made, wi t hout

exception, they all thought it was a 'stupid thing to do'.
Admittedly, in the context of this program this night be so

But nevertheless, in nore conplex programs, it nay be that e(l)
could be re-satisfied some other way, in which case, execution
would proceed with the instantiation of 1. The interesting
poi nt, though, is the declaration that this is 'stupid'. But
Prol og could not know that the attenpt is dooned to failure. The
judgnent on the part of the students has a ring of neta-Ilevel

reasoning about it, a topic which will be discussed in the next
section.

3. 4.3 SUPERBUGS

This section discusses superbugs where the focus of attention is
upon high level, general strategies that students have which
appear to dispose them towards certain sorts of errors. The
bugs and superbugs identified are:

* Meta-level reasoning superbug
* ldentity bug
* WshfuJ Thinking: bug

* Readi ng superbug
* Left to right control flow
* Leftnost salience for argunents bug

Mata-lovel Reaconine S ner hno*

infer some overall behaviour in the execution domain wusing
either real-world knowledge, or knowledge about formal domains.
Upon occasion, they were correct, though they were not able to
give a blow-by-blow account of the full execution process.

Meta-level reasoning can become troublesome, however, when the
student makes assumptions about the execution domain on the
basis of prior knowledge, or experience with another, perhaps
similar, task, but in this case an intuitive leap is made from
the practical domain to execution domain, and Prolog is assumed
to have made the same leap. This can produce bugs where students
confuse their own reasoning and interpretative strategies with
those of Prolog. This is not a superficial error, and students
get into it because, initially, before they can describe what
Prolog does, they have to understand the program themselves. If
they have multiple ways of viewing programs - e.g. declarative
or procedural - they can begin one way, and inadvertently start
slipping into the other, and then introduce a dose of their own
‘common sense' to help glue up holes in their explanation.

For example, the following student began by interpreting the
program as if she herself were Prolog, and almost immediately
began to identify Prolog's strategies with her own. This allowed
her to *Juckily' pick up an instantiation for X - an
instantiation which would not have been found at this stage:

1 Ok well if I was Prolog - well being not
2 quite Prolog but also myself - uhm the first
3 thing that I'm doing is looking on the rules
4 for 'a' and well.. looking at these 3 rules
5 together looking for what is my shortest path
6 to an instantiation down here. Uhm..I think
7 if I were Prolog I'd just look at number 1 and
8 luckily that would immediately get me a 'c'
9 that's instantiated... so....s0 I would try
10 instantiating X to 3, putting 3 in here

fin Clause 1].

She was right to suggest Clause 1 would be used first (line 7)
but X would not be instantiated to 3 at that point. She had
confused herself with Prolog at this point. It was she who
noticed that the only instantiation for ¢ in the program was
from Clause 9, but the suggestion was (line 7) that this was
what Prolog had done. The experimenter tried to point out the
misapprehension:

EXP: Now are you doing that as yourself or as Prolog?

The subject continued but failed to appreciate the significance
of what the experimenter had said:

11 Oh ah veah I see. Now I'm back to beinge Prolog.

In other words, she still had the spurious instantiation of 3
for X.

Wishful Thinking bug

In this bug, students made assumptions about Prolog's abilities
which left large holes in their account of what was going on. In
a verbal report this technique may be used to gloss over the
fact that the student simply does not know what happens. But one
student, for example, hoped that Prolog would just accept
instantiations, or ‘'take them for granted' rather than have to
prove remaining sub-goals. There are cases where it is more
probable that wishful thinking is a veil for simple lack of
knowledge - the student is not sure how Prolog does something,
and hopes in vain that a sensible guess will carry them past the
trickier bits.

The Reading Superbug

Another superbug which appeared to influence students is the
'‘reading' superbug. Discussion of this superbug is speculative,
based partly on observations of students doing the backtracking
exercise, and partly on the experience of helping students
understand the execution of clauses. Many of their problems
suggested that novices seem to introduce aspects of their
reading skills into the programming domain. The unconscious
expectation 1is that progress through a program will flow from
top-to-bottom and left-to-right, following Western reading
patterns. Again, as with the meta-level reasoning superbug, this
may be harmless, because in some respects Prolog does move from
left to right. But the tacit assumption is that control flow
through a clause or through programs is always left to right.

Emphasis in teaching upon Prolog's search through the database
can confirm this tacit assumption. However, this does not
prepare students to accommodate backtracking, or using clauses
in ways other than originally intended. The common element with
meta-level reasoning superbugs is again that students seem to
assume that Prolog 'does as they do'. But the net result, of
course, is that Prolog is thought to move through programs in
ways which it does not.

Left to Right Control Flow Bug

The first bug resulting from the reading superbug is the tacit
assumption that control through a clause passes from left to
right. As has been pointed out above, this expectation may be
violated, when instantiations are given to the right-most
arguments. In this case, instantiations will appear to be passed
from right to left.

Different instantiations. however. also anpear to onroduce verv

has its rightnost argunent instantiated, it is probably better
named 'split!, but that the clause structures need not change is
somewhat counter-intuitive. In other words, the nane 'append' is
on3y relevant to the programmer’'s intention at a given tinme. The
actual structures which follow the predicate nane haveé a set of
prescri bed behaviours which wll take place whatever the
predicate name, and the precise function is determned by
instantiations in the input at that tine.

However, if a student has watched the 'append' clauses being’
constructed in the normal way, then she is justified in thinking
that the word "append® now means (to the conputer) what the

structures in the clauses define it to mean. This can conbine

wi th what .mi ght appear to be "natural |anguage bugs - when
students attribute *neaning® to predicate nanes it is not a
sinple case of thinking that Prolog Understands® in sone
magi cal way the word 'append'. It is instead a quite reasonable

belief on the part of the student that the term 'append

designates an operation which has been defined wthin the

cl auses, and which she views as an inherently left-to-right

process. So when these clauses suddenly produce what appears to

be radically different behaviour, and the only thing which need

be changed is the predicate nane, students can get very

conf used

L& ~L'2-§ SeQjenjje 12L Argunents Bug

A very closely related bug is one which leads students to
attribute salience to the leftnost arguments, ignoring the
effects on other argunments. For exanmple, in the case where
Prolog identifies a pattern (as in Exanple 3) students are
confused as to how Prol og manages to 'stop' when the pattern has
been established. The clause which achieves this effect of
stopping is:

append([], L, L).

The ancillary know edge which the student nust have is that this
clause can fail (thereby allowing the recursion to continue) in

two distinct ways. The first, nost straightforward case, is if
the first argument 1is not an enpty list. The second way is if
the second and third argunments are not 'matchable’'. That is to

say, the ancillary know edge required to read this clause is
that the two argunents L and L nust be able to be matched
exactly.

The .mistaken reading which often domnates the students

interpretation is that when the enpty list is reached, then the
clause will succeed, no attention bei ng pai d to the
instantiations of the second and third argunents. In the case
of identifying a match within a list, students confuse the facts

that (a\ at Aar'h | H#»y**| nf tho roriirsinn the* firoOoi" araiimopnt w<ill

Here the potential match on the last two arguments can clearly
be seen, since 'mar' matches 'mar', and we have put a variable
into the tail which will unify with the list '[apr, may]'.

Preoccupation with the left-most arguments seemed to be quite
pervasive in many students' interpretations of clauses in
programming surgeries, and they continually needed to be
reminded to 1look at other places in the program to understand
why clauses were failing, or were not producing the correct
output.

3.5 DISCUSSION

A two-levelled view has been taken of these MSc students
interpreting a program designed to investigate backtracking
misconceptions. The first view identifies bugs within the formal
mechanistic, programming domain. From this perspective, students
performing the task of interpreting the program were shown to
have several misapprehensions. Not only were 'try once and pass'
and 'redo body from the left' exhibited, but students'
descriptions showed signs of other misconceptions: multiple
values for variables, the database bug, complications of RBFL
and TOAP with the cut; parallel execution and failure to retry
sub-goals.

But the further analysis which focused on superbug interference
identified other bugs which, when viewed from the formal
mechanistic domain only, could only appear as undifferentiated
muddles. However, these higher level misperceptions do seem to
have a structure - they are not random - and in fact could be
seen to lend coherence to the concrete bugs found in the
mechanistic view. For example, 'try once and pass' and 'redo
body from the left' could themselves be interpreted as examples
(a) of the reading superbug, and (b) of the left-most salience
for arguments.

There are two major points arising from this part of the study.
Firstly, whilst it 1is wuseful to identify the particular
manifestations of errors, it is equally important to Kkeep in
mind the patterns of misconceptions which give rise to specific
bugs. Students may be suffering from a syndrome rather than a
single misapprehension. Unless the aetiology of bugs is
discovered, it is likely that some students will receive
inappropriate remedial assistance, which can leave them in a
more confused state than before, since underlying problems have
not been addressed. Even these students who are receiving a
strong tutorial background in both logic and Prolog's execution
strategies exhibited signs of quite serious misconceptions, and
the protocols illustrate how easily students, who are otherwise
quite competent, can begin to slip into errors.

Secondly, as has been emphasised, superbugs are often developed
from strategies which at some stage in the learning processes
are not only sensible, but may also be the only ones available
to students. For example, meta-level reasoning is an extremely
powerful learning strategy for many purposes, and it is only
under certain circumstances that expectations derived from such
a view are misleading. The problem of bugs from superbugs,
therefore, is not simply a matter of the learner 'getting it
wrong'. The question is whether or not languages, or teaching
methods can be designed so that such intuitive methods can be
fully exploited, and appropriately discarded. This point has
heen made hu Roanar and Saolowav (1982) who dicriice haw ctndent o

intuitions.

Many of these bugs bear resenbl ance to Pea' s (3986)
intentionality bugs (where the conputer is thought to have

foresightedness) in that they all have a simlar effect:
students assunme that Prolog has a sort of neta-level view of the
execution process, and can do things which it cannot. In many

cases, though, this is less to do with an assunption that Prol og
really is 'intelligent' than it is to do with students having a
conposite view of the execution process which includes tacit
assunptions, for example, derived from reading habits, prior
knowl edge, and what the student herself would do to solve the
probl em contained in the program

Anot her facet of interpretation of clauses, and predictions for
behaviour is that beginners often have no choice but to

abductively create 'theories' about what 'should® happen. It
must be borne in mnd that Prolog' s inscrutable syntax can
sonetinmes allow users to per si st in an i di osyncratic

interpretation for rather longer than is healthy. Because no
i medi ately obvious constraints are inmposed upon interpretation,
for exanple, students can hallucinate very nany different
interpretations upon it, none of which reflect with any accuracy
what. Prol og would actually do.

4.0 A NON-NOVI CE PROLOG LEARNER

It mght: be thought that experts in other |anguages would av
many of the sorts of errors described so far. However
probl ens experienced by a student who participated in
| ongitudinal case study illustrated that this is not necessar
the case. '

Alex represents quite a different type of subject than those
far di scussed, because he had |earnt other programm ng |angus
before. But his study is inportant for several reasons. First

it illustrates t he role that prior know edge plays
conceptualising a new donain, and the determnmination with whic
"paradigmd can be adhered to, in the face of contradict

evidence. Secondly, many of the problenms Al ex experienced
the reverse side of what genuine novices go through - becs
Prolog is flexible, learners are not challenged in tkh
interpretation, and msperceptions can persist for a very 1
time. Thirdly, the longer term effects that a fundaner
m sconcepti on has on performance can be traced

The nethodology for the case study follows Anderson et
(1984) Since this form of protocol gathering produces enorn
gquantities of data, the discussion in tifhs section is organi
around the original questions we had about non-novice Prc
| earners.

4.1 ALEX: A CASE STUDY

Alex was a postgraduate student, recently arrived from New
Zealand. As part of his undergraduate degree in New Zealand,
Alex had submitted assignments wusing Pascal, Fortran and a
list-based command language, CPMI. He had learnt BASIC more or
less on his own, and had run a tutorial for psychology students
on an Apple microcomputer. He had also worked with the City
Council using a Cobol database enquiry system (Datatrieve).

Alex's main problem was that his previous experience with
programming was with conventional instruction-oriented languages
(i.e. Basic, Fortran) and, as might be expected, he tried to
construct a view of the Prolog execution domain in which all
operations were 'reducible' to instructional terms of the sort
with which he was familiar. In other words, the building blocks
he tried to use were inappropriate for Prolog.

The major superbug was the data/procedures where basically he
believed procedures to be active, and data to be passive. This
led to considerable difficulties in understanding how to
organise his programs effectively, and several other
misperceptions arose as a consequence.

The first obvious point is that the languages he had learnt are
quite different from Prolog not only in their internal
structure, but in the kinds of problems to which they can be
easily applied. Alex had not vyet had any exposure to Al
programming, and his first brush with it was through Prolog.
Therefore, some of his remarks are better viewed as general
comments on the activity of AI programming rather than specific
to Prolog.

Secondly, his comments indicated that he had learnt his
languages for very specific purposes: for assignments, for
teaching, for working. Alex seemed to fall into the category of
user who is interested in 'process' or 'what can I do with it'
rather than someone who had a theoretical interest in the
principles of a language. He 'never learnt them rigorously' but
wanted to get a 'feel' for them.

It is also worth noting that Alex referred to his previous
background as 'scientific programming' which implied an entire
approach and methodology. In this respect, he was not being
asked simply to give up some concepts or change his view a
little to accommodate Prolog. He was being asked to change his
whole attitude, his strategies and methods in favour of what
looked to him like a sloppy, undisciplined approach which was
bound to be fraught with errors because it did not adhere to
'proper programming principles'.

The net result of these factors was that Alex abpeared to be

him by providing a task which fitted into his conception of
"interesting'

There are several thenes which run through Alex's protocols. The
major theme is the way Al ex perceived the relationship between
data and procedures. Alex's formal introduction to scientific
programming had cultivated the habit of keeping data and
procedures separate. Alex stuck to the view that data is passive
and procedures are active throughout the study period. However,
such an interpretation had major ramfications for structuring
programs, and in particular for structuring databases. Even as
late as the last session, Alex found it hard to think of
appropriate ways of structuring information, even though he had
a tenplate program which he was adapting.

The secondary thenes, which contributed to t he program
organi sation problem were associated wth Prolog's use of
vari abl es, and the use of lists in programs. Variables in Prolog
behave very differently from those in other |anguages, and one
m ght expect to see a certain amunt of confusion initially.
Simlarly, although Alex believed hinself to be experienced in
list processing, the kinds of lists he was famliar wth were
lists wused in I|anguages |like BASK, which have very different.
characteristics to lists used as data-structures in progranmm ng
| anguages I|ike Prol og.

Because of these difficulties, Alex found it difficult to
conceptualise the 'real' Prolog. He seemed to be waiting for the
curtain to be Ilifted on sone core quality which would be
conprehensi bl e, and straightforward to understand. Consequently,
various representations of Prolog used in debugging tools and
trace packages which did not quite tell the 'whole truth' about
Prol og, were momentarily nistaken for the 'real' Prolog, which
caused sone understandabl e confusi on.

Al ex's case study denobnstrates that those students who have a
background in conputing, and who mght be expected to be
orientated towards the programm ng domain, can still get into
difficulties which resenble the sorts of confusions that rea
novi ces experience. The basic strategies Al ex used throughout
his learning period were governed by his prior know edge, and
his conmitnent to a particular view, which happened to be
i nappropriate in this case. As noted earlier, there seenms to be
supporting evidence for Lewis and Mack's (1982) "abducting
learner’ in his protocol, since Alex was highly selective about
what he took notice of, and seened to disregard explanations and
tutorial assistance from either the experimenter or the text
book. Such information as he did take in, he tended to convert
into terms wth which he was fanmiliar. These resistant phases
wer e punctuated, however, by insightful behaviour

Tha data and nrnrodnros' nisnnnrontinn sfsomd to s at tho rnnt

term ‘'list', the idea of using lists as high-level
datastructures would probably not be appealing to him if he
regarded data as ‘'passive' and felt that it was only
'‘procedures' that did anything interesting. The distinction,
then, between data and procedures had a long-term effect on
Alex's ability to write programs with appropriate structures.

We now consideraspecific question set out in our original
proposal.

QQ: 1s it an advantage or a disadvantage to have learnt another
language before tackling PROLOG?

The answer to this question in this particular case is
evidently: it is not an advantage. However, it may be that other
Al languages such as LISP or POP-11 could provide a foundation
for interpreting Prolog more straightforwardly. The major
difficulty - in contrast with the MSc students who had learnt
POP-11 - seemed to 1lie in Alex's attitude towards his own
expertise. That is, he approached the learning situation
defensively, and proved somewhat unwilling to cast off some of
his previously learnt habits.

A further difficulty, though, is associated with the kinds of
building blocks that his experience was constructed upon. This
affected not only interpretation of programs written in Prolog,
but also the approach to problem solving cultivated by other
languages. It was noted in the study of experts above that they
seemed to move between problem specification and Janguage
constructs as the program is designed. Unfortunately for Alex,
most of his specifications did not fit easily into the Prolog
ethos.

This transition may not be easy to make if the older habits have
proved successful in the past. Furthermore, it can be hard for
such a learner to recognise the parts of the new language which
are truly similar to known concepts, and those which are very
different. Several times during the study Alex ignored what was
being said because he believed he already understood. However,
it was clear that whilst he understood, for example, the logic
of the operation in question, he was not recognising that the
technique for implementing it was very different from his other
languages.

The declarative semantics, in this case, served mainly to
disguise these differences. Alex knew, for example, the logic
underlying the 'member' relation, but his misperception of its
implementation 1led him to believe that it was a procedure which
would be called to act upon data (i.e. a kind of function). For
some time he failed to recognise the matching process which
underlies the Prolog version of ‘'member' and this failure
undermined his understanding of recursion in Prolog.

4.2 CONCLUSIONS

We have discussed how a basic misconception in Alex's view
Prolog had far-reaching effects on his subsequent learning
have noted that he was committed to his 'scientific programm:
and was, quite rightly, unwilling to simply give up tl
notions unless totally convinced that it would be worth
while. Learning, in this case, was very clearly influence«
previous experience. He introduced into the situation fac!
which had only limited relevance to the learning of Prolog,
which were very important issues for him.

In this respect, he was as susceptible to superbug interfer
as a real novice, although the source of superbug is fre
lower level in the multi-levelled framework, rather than
higher levels. The main point to bear in mind from !
discussion is that such interference is not simply dealt wit
presentation of ‘'correct' information. Alex had a 'parad.
which had served him well up till now, and which he would
easily relinquish. This paradigm affected his interpretatioi
Prolog, and of the problems which he was trying to soclve.

5.0 SUMVARY

These studi es denonstrate the conplexity of the task which the
novi ce programer faces. The sorts of errors that have been
observed in Prolog |earners have a range and depth that cannot
be accounted for in sinple terns. The nulti-levelled framework
has been used to distinguish superbugs from bugs, and to help
orientate discussion, enphasising the fact that errors and
m sconceptions can have their origin in several. “sources. The
main principle is that each of the domains which bear on Prol og
are governed by rules and constraints which not only limt what
can be done, but also govern what nethods and techni ques can be
used in achieving an intention or goal. The 'meaning' of
problems or prograns within each domain is very different, and
it has been shown that a major difficulty for novices 1is that
they do not understand what the inplications of noving from one
donmain to another are, and what constraints govern the nethods
available for problem representation or problem solution. Due
to this lack of know edge, powerful intuitive strategies are
used, which affect the novice's perception of the problemto be
solved, and consequently disorientate t he programwiting
process.

The major points arising are that; progranmng bugs can have
their origins in very high level msconceptions, and they may
show t hensel ves in various guises. Furthernore, the sane, or
simlar bug may be turned up by different students for quite
di fferent reasons. Superbug analysis is an essential part of
under standing novice performance, and it is enphasised that a
progranmm ng | anguage's ease of use nay depend crucially on the
extent to which it nurtures superbugs.

PRCOBLEM 1:

Suppose we are given the following famly tree, wth
person's age in brackets:

John (57)
I\
/ \
/ \
Mark (25) Paul (36)
J
Tom (15)

and we wish to find all solutions to the question "Does
have two descendants whose ages differ by ten years?"
PROBLEM 2:
Suppose you have a universe of eight aninals:

U=Tal, a2, rl, bl, b2, hl, ol, 02]
classified in the foll owing way:

{aquatics: al, a2

{
ani mal s E {reptiles: rl
{ {
{ {birds: bl, b2
{terrestrials {
{ {herbivores: hi
{mammal s {

{omivores: ol, 02

Wite a datastructure representing this classification,
build up a program for answering the follow ng questions:

1) What is the classification of aninmal X?

2) What aninmals have classification Y?
PROBLEM 3:
Wite a programto check whether a word is a palindrone.
PROBLEM 4:

Wite a program for designing an architectural unit obeying
foll owi ng specifications:

1. There are two roons

2. Each room has a window and an interior door
3. Rooms are connected by an interior door

4. One room also has an exterior door

5. A wall can have only one door or window

6. No window can face north

~3

. Windows cannot be on opposite sides of the unit

PROBLEM 5:

PLEASE DO NOT RUN THIS PROGRAM UNTIL YOU HAVE COMPLETED PART A.

PART A:

Given this program, can you (a) say what it does, and (b)
WITHOUT RUNNING IT FIRST can you say whether it will work.

PART B:

After you have completed Part A you may run the program if you
wish to check what you have said, making any amendments you
want.

THE GIVEN PROGRAM:

begat (john, mark).
begat(john, paul).
begat (paul, tom).

is_aged(john, 57).
is_aged(mark, 25).
is_aged(paul, 36).
is_aged(tom, 15).

has_descendant(X,Z):- begat(X,Z).
has_descendant(X,Z):- has_descendant(X,Y),
begat(Y,Z).

find (X, Y) :- has_descendant(john, X}, is_aged(X, N),
has_descendant(john, Y), is_aged(Y, M),
M is N + 10.

PROBLEM 6:

Given two lists, where the second one is the concatenation of
third one with the first one, find this third list and build up

popul ation density per square mle, and find countrie
simlar population density (differing by less than 5% .

pop(chi na, 825).
pop(india, 586).
pop(ussr, 252).
pop(usa, 212).
area(china, 3380).
area(india, 1139).
area(ussr, 8709).
area(usa; 3609).

PROBLEM 8:

Pl ease wite a programto flatten |ists.

PROBLEM 9:

Wite a program for colouring any planar map wi.th at. nost:
colours, such that no two adjacent regions have the sane col

PRCBLEM 10:

Can you say what this program does? Can you say whether it wi
wor k?

PLEASE DO NOT SPEND MORE THAN 10- 15 M'NUTES ON THIS PRCBLEM
THE d VEN PROGRAM

sinmplify(L, NL) :- conpact(L, LI), sinplifyl (L3, L2),
sinplify2(L2, NL).

compact ([L, []], L).

compact ([L], L).

compact ([LI, [L2]], L) : - concatenate(Ll, L2, L).

conpact ([LI, L2]LN], L) : - concatenate(LI, L2, X),
conpact ([X, LN], L).

concatenate([X LI'], L2, [X L3]):- concatenate(LlI, L2; L3).
concatenate(f], L, L).

sinplifyl
Si rrpll I
simlifyK

sinmplify2(L, NL):- sinp]ify3(L, LI), subtract(L; LI, NL).

3| mpl i fy3([X L], NL):- conmpare(L, X, []), sinplify3(L, NL).
mpl i fy3([X L], [Y|NL]):- conpare(L, X, Y), sinp]ify3(L, NL).
Slﬁpllfy3([] 1).

conpare(, [], []):- ! |

Oorrpare([Y|L] X, [Z|NL]) (linked(X Y), Z=X;
l'inked(Y,X), Z-Y),
conpare(L, X, NL).

conpare([Y| L], X, NL): ~conpare(L, X, NL).

compare([]» _. [])-

subtract(L, []¢L):

([XIL], NL): - menmber (X L), !, sinplifyl (L, NL).
([X|],)[X|l\L]):-sinp.Iify3(L, NL) .

subtract([H T], L, L-J) - menber(H L), !, subtract(T, L, U).
subtract([H|T], L, [H|U]):- I, subtract (T, L, U).
subtract(_, , []).

menber (A [A _]).
nmenber (A, [_|L]):~ menber(A L).

PRCBLEM 11:

Define conbinations of a list, where s(K) indicates tlI
successor of K For exanple, 3 is witten (s(s(s(0))).

PROBLEM 19-

REFERENCES

ADELSON, B., (1984). "When Novices Surpass Experts: t he
difficulty of a task may increase wth expertise', J. Exp.
L§ZChoLofy, k&8MI|IDJg' MOL2LY siB Cognition, Vol J,0, No.5, 483 -
495,

ANDERSQON, J. R, (1982). "Acquisition of Cognitive Skill",
Psychological Review Vol . 89, No. 4, 369-406.

ANDERSON J. R, FARRELL R and SAUERS R, (1984). ‘'Learning to
programin Lisp!, Cogni'tive Science, VolL 8, 87-129.

BONAR, J., and SOLOMY, E., (1982). ‘'Uncovering Principles of
Novi ce Programnm ng', BS"8JLQI E8E2£t MNo. ~£0, Department of
Conput er Science, Yale University, Connecticut.

BUNDY, A., (1984) 'Sinple Prolog Prototypes', work in progress
report, University of Edinburgh.

BUNDY, A, and PAI N, H. (1985) " Eval uati ng Pr ol og
Environnents', work in progress report, University of Edinburgh.

BUNDY, A., PAIN, H, BRNA, P, and LYNCH L., (1986). 'A
Proposed Prolog Story' Departnent of Artificial Intelligence,
Uni versity of Edi.nburgh.

COELHO, H., COTTA, J.C., and PEREIRA, L. M, (1980), 'How to
Solve it with Prolog?, Mnisterio da Habitacao e Cbras Publi cas,
Laboratori o Naci onal de Engenharia Civil, Lisboa.

coowBs, M J., and STELL, J. G, (1985) 'A Mdel for Debugging
Prolog by Synbolic Execution: The Separation of Specification
and Procedure', Departnent of Computer Science, University of
Strat hcl yde.

di SESSA, A., (1982). "Unlearning Aristotelian Phsyics: A Study
of Know edge- Based Learni ng!, Cognitive Sjlerice, Vol. 1, 37-75.

du BOULAY, B., OSHEA, T. and MONK, J., (1981). 'The black box
i nside the glass box: presenting conputing concepts to novices',
Int. J. Man-Machine Studies, 14, 237-249.

EHRLICH, K. and SOLOWAY (1982). 'An Empirical Investigation of
the Tacit Plan Knowledge in Programming', Department of Computer
Science, Yale University, Connecticut.

EHRLICH, K., SOLOWAY, E., and ABBOTT, V., (1982). 'Transfer
Effects from Programming to Algebra Word Problems: a preliminary
study' Department of Computer Science, Yale University,
Connecticut. S

EISENSTADT, M., (1984), 'A Powerful Prolog Trace Package',
Procs. 6th European Conference on AI, Pisa.

EISENSTADT, M., HASEMER, T., KRIWACZEK, F., (1984), 'An Improved
User Interface for Prolog', Procs. INTERACT-84, IFIP Conference
on Human Computer Interaction, London, 1984.

EISENSTADT, M., and BRAYSHAW, M., (1986). 'The Transparent
Prolog Machine: An Execution Model and Graphical Debugger for
Logic Programming', Technical Report No. 21, Human Cognition

Research Laboratory, Milton Keynes.

ELSHOUT, J.J., JANSWEIJER, W.N.H., and WBILINGA, BR.J., (1986) .
'‘Modelling the Genuine Beginner' Laboratory of Psychology,
University of Amsterdam.

ENNALS, R., (1984). Beginning Micro-Prolog, Ellis Horwood.

HARDY, S., (1982) 'The POPLOG Programming Environment' Cognitive
Studies Research Paper, University of Sussex.

JONI, S., SOLOWAY, E., GOLDMAN, R., and EHRLICH, K., (1983)
'Just So Stories: How The Program Got That Bug' Procs. of the
SIGCUE/SIGCAS Symposium on Computer Literacy, Baltimore, June
1983.

LEWIS, C., and MACK, R., (1982). 'The role of abduction in
learning to use a computer system', Technical Report, No. RC9433
(41620), New York: IBM Thomas Watson Research Center.

ORMEROD, T.C., MANKTELOW, K.I., STEWARD, A;P., ROBSON, E.H.,
(1984a) 'Reasoning with Hierarchies Written in Prolog Form',
Nenartment of Mathematice and Comnitter <Studiece Sunderland

PAIN, H., and BUNDY, A., (1985), 'What Stories Should We Tell
Novice Prolog Programmers?', work in progress report, University
of Edinburgh.

PEA, R. D., (1986). 'Language-Independent Conceptual "Bugs" in
Novice Programming', J. Educational Computing Research, Vol.2,
No. 1, 25-36.

PEIRCE, C., (1958). 'The logic of drawing history from ancient

Peirce, Cambridge Mass.: Harvard University Press.

RAJAN, T.,(1985). 'APT: The Design of Animated Tracing Tools for
Novice Programmers', Tech. Report No. 15, HCRL, The Open
University, Milton Keynes.

ROSS, P., (1986). 'Some Thoughts on the Design of an Intelligent
Teaching System for Prolog', Department of Artificial
Intelligence, Edinburgh University.

ROSS, P., (1982). 'Teaching PROLOG to Undergraduates', in AISBQ,
Autumn 1982, 16-17.

SHEIL, B. A., (1980). 'The Psychological Study of Programming',
ACM Computing Surveys, Special Issue, Vol.13, No.1, 101-120.

SOLOWAY, E., (1986) 'Learning to program = learning to construct
mechanisms and explanations', Comms. of ACM, Vol. 29, No. 9,

850-859.
SOLOWAY, E., LOCHHEAD, J., and CLEMENT, J., (1982). ‘'Does

Computer Programming Enhance Problem Solving Ability?' in R.
Seidel (ed.) Computer Literacy, New York: Academic Press.

SOLOWAY, E., EHRLICH, K., (1984). ‘'Empirical Studies of
Programming Knowledge', in IEEE Transactions on Software
Engineering, Sept. 1984.

SPOHRER, J., POPE, E., LIPMAN, M., SACK, W., FREIMAN, S.,
LITTMAN, D., JOHNSON, L. and SOLOWAY, E., (1984) 'Bugs in Novice
Programs and Misconceptions in Novice Programmers' Department of
Computer Science, Yale University, Connecticut.

TAYLOR, J. (1984) 'Why novices will find learning Prolog har
Proceedings ECAT, 1984

TAYLOR J. (1987) 'Programming in Prolog: an in-depth study
problems for Dbeginners learning to program in Prolog', D.F
Thesis, Cognitive Studies Programme, University of Sussex.

TAYLOR J. and du BOULAY J.B.H., (1986) 'Why novices may |
programming in Prolog bhard', Cognitive Studies Research Pe¢
no. 60, Cognitive Studies Programme, University of Sussex.

VAN SOMEREN, M. W., (1984), 'Misconceptions of Beginning Pr¢
Programmers' Memorandum 30, Department of Experimel
Psychology, University of Amsterdam.

VAN SOMEREN, M., (1985) 'Beginners Problems in Learning Prol«
Memo 54, Department of Social Science Informatics and Depart
of Experimental Psychology, University of Amsterdam.

