
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A PROBLEM SOLVING CONSULTANT IN FINANCIAL
ANALYSIS

Markus Lusti

1987

Markus Lusti, Institut fur Infcrmatik, Universitat Basel,
Switzerland

Abstract

Intelligent Tutoring Systems try to cover aspects of domain and
pedagogic competence of an ideal human tutor. A complete intelli-
gent tutoring system can be described by the following compo-
nents: expert model, student model, tutorial model and communica-
tion model.

The paper gives an account of FA-TUTOR, an intelligent tutoring
system assisting students in the solution to problems in finan-
cial accounting (FA). FA-TUTOR consists of an authoring and a
tutoring component. The authoring system helps the teacher to
prepare problems. The tutoring component allows two styles of
interaction: the first giving the student hints about the solu-
tion to a problem, the second displaying the right answer and
allowing the student to traverse the corresponding solution tree,

The emphasis of FA-TUTOR is on the expert model. The implementa-
tion of the problem solving and explanation components is in-
fluenced by the methods of programming expert systems: problems
are solved by reducing goals of Prolog clauses. A trace collects
information relevant to the hints and explanations of the two
interaction styles.

Keywords

Computer Assisted Learning, Intelligent Tutoring Systems, Finan-
cial Accounting, Knowledge Based Systems, Expert Systems, Prolog

* This paper is a summary of a research report about a system
teaching financial accounting to Swiss students (Lusti 1987).
Computer outputs have been translated from german.

1 Introduction

Intelligent Tutoring Systems try to cover aspects of domain and
pedagogic competence of an ideal human tutor. The design and
implementation of such programs is influenced by the methods and
tools for developing knowledged based systems. An ideal intelli-
gent tutoring system can be described by the following model (Fi
gure 1).

Component Tasks

expert model presents information and problems
solves problems
explains solutions

student model identifies bugs
analyses bugs
diagnoses abilities and motivation
diagnoses interaction and learning styles

tutoring model selects information and problems
selects interaction and learning style

communication determines appropriate communication style
model

Figure 1: Functionality of an ideal intelligent tutoring system

Most intelligent tutoring systems implement only a subset of the
tasks described in figure 1. The following sections describe FA-
TUTOR, an intelligent tutoring system for financial analysis (FA
concentrating on the expert and communication model (Figure 2).

Ideal tutoring system Functionality of FA-TUTOR

expert model elaborate

student model rudimentary

tutorial model rudimentary

communication model elaborate

Figure 2: FA-TUTOR and the ideal intelligent tutoring system

2 Teaching objectives

2.1 Teaching Domain

FA-TUTOR's expert model covers some central aspects of financial
accounting. In essence, financial accounting has three distinct
areas of study:

2 the preparation of final accounts, e.g. of balance sheet, pro-
fit and loss statement and funds statement

3 "the interpretation of final accounts.

2.2 Objectives

The main objective of FA-TUTOR is not to teach factual knowledge
but to help students to apply previously learned material to pro-
blems presented by the program. The student is therefore supposed
to have a basic knowledge of the following concepts:

1 doubly-entry bookkeeping

2 final accounts

3 cash flow

4 selected financial ratios.

By solving the generated problems the student learns

1 to record business transactions in a double-entry bookkeeping
system

2 to prepare fijlyiancial statements, namely

- balance sheet

- profit and loss account

3 to calculate selected financial ratios, for example

- liquidity ratios
- gearing ratios
- profitablity ratios
- credit control ratios
- stock control ratios
- cash flow statistics

3 l?ser interface

FA-TUTOR consists of a tutoring and an authoring component (Fi-
gure 3). The authoring component helps the teacher to generate
problems which are presented to the student in written form. If
the student cannot solve the problem in a straightforward way she
may consult the tutoring component for solution hints. If, on the
other hand, she is proficient enough to tackle the problem with-
out help, she can compare her final answer with FA-TUTOR's solu-
tion. If the solutions differ the user can ask for an explanation
of the right solution. The depth of the explanation can be cont-
rolled by the student (see further on).

By enabling novel problems to be generated easily and by subse-
quently monitoring students as they solve these problems, FA-
TUTOR assists the teacher in a very time consuming task. In par-

ticular, the manual generation of accounting problems can be
laborious because the underlying business transactions must meet
a variety of constraints. Such constraints may prevent, for
example, non-negative assets in the final balance sheet or im-
plausible financial ratios.

FA-TUTOR

T u t o r

expert knowledge
explanation knowledge

PROBL:

CASE DATA

!M TEXT

A u t h o r

expert knowledge

TRANSACTION DATA BASE

t e a c h e rs t u d e n t

Figure 3: Architecture of FA-TUTOR

The authoring component (figure 4) accesses a data base of busi-
ness transactions, which can be edited (i.e. the text and the
amounts of transactions can be modified, added, or deleted by the
teacher). A what-if facility allows the author to inspect the
results of choosing different sets of business transactions and
other problem data. Like in a spreadsheet, the effect of such
variations on the final accounts and the financial ratios is
displayed immediately. In calculating the results of different
case data the authoring component uses the same expert knowledge
as the tutoring component. After the teacher has composed a prob-
lem the case knowledge is asserted as a file of Prolog clauses,
and a problem text for the student is printed.

The authoring component allows the teacher

1 to generate problems

- to select case data (especially business transactions)
- to modify the task (e.g. the kind and number of ratios)
- to experiment with different case/task combinations and view
their effects (what-if facility)

- to format the problem text

2 to edit business transactions

- to modify texts and amounts for transactions
- to add transactions
- to delete transactions

3 to customize the default help information pertaining to

- the chart of accounts and the glossary
- the use of the program

Figure 4: The functionality of the authoring component

Some intelligent tutoring systems generate problems at run time,
which allows the adaptation of problems to the state of a stu-
dent's ability and motivation. But this is only feasable if the
task can be parameterized. Task generating systems are possible
in some domains of mathematics (see e.g. Brown/Burton 1978, Bur-
ton 1982, Sleeman 1985). More complex mathematical tasks, for
example problems in SPIRIT (Barzilay 1984), or case texts, for
example in Guidon (Clancey 1979), use a problem data base. FA-
TUTOR' s case data and tasks are too complex to be generated at
run time. The ease of specifying tasks and choosing case data,
however, should compensate for the lack of fully automated prob-
lem generation.

A typical problem text fills three A4 pages and is subdivided
into

- a case part containing the description of all transactions and
other data and

- a task part specifying what the student is supposed to do.

1 the opening balances of the balance sheet in alphabetic order
2 the names of the profit and loss accounts in alphabetic order
3 natural language descriptions of business transactions and
other data.

Since one of the learning objectives is to teach the ordering of
financial statements the names of accounts are given in alphabe-
tic order. Figure 5 shows some examples of business transactions
appearing in case sections.

- We purchase goods on credit for $3000.

- 30 September 1987: We pay a $2000 cheque for the rent. The ren"
is paid half-yearly in arrears on 31 March and 30 September.

- At the end of the accounting period the stock is evaluated at
$62 000.

- The proportion of investements replacing depreciated assets is
60%.

Figure 5: Some examples of business transactions and other case
data

The task section asks the student

1 to prepare financial statements for the current accounting
period

2 to compute selected financial ratios.

Figure 6 summarizes the functionality of the tutoring component.
The following sections illustrate the first aspect of the tuto-
ring subsystem, its two interaction styles.

The tutoring component offers

1 two interaction styles, allowing the student

- to ask for hints during problem solving
- to request an explanation of the final solution after he
has completed a task

2 context sensitive help answering the following questions:

- Where am I?
- How shall I use the program?
- How are the main domain concepts defined?

3 user-friendly interaction characterised by

- little typing
- short response times
- windowing, colour, semigraphics and selective printing

Figure 6: Functionality of the tutoring component

As an example task, we show the calculation of a selected finan-
cial ratio. The ratio "return on equity capital" is the quotient

of (profit + interest) and the average equity capital (Figure 7).
Both the numerator and the denominator can be reduced to other
intermediate terms. The stepwise reduction of a term to more ba-
sic terms is typical for many problems in financial accounting.
Similar problems occur in mathematics teaching; well known examp-
les are symbolic differentiation and integretation (see e.g.
Kimball 1973 and Genesereth 1979).

Figure 7 shows a partial solution tree for the calculation of the
ratio "return on equity capital11. A solution tree contains the
following node types:

1 root node (goal) =
problem answer, e.g. the value of a finacial ratio

2 intermediate nodes =
terms defining the goal, in particular financial ratios and
results from final accounts needed to answer the problem

3 leaves (terminal nodes) =

business transactions required to determine the intermediate
nodes.

return on equity capital

(profit + interest on equity capital) / average equity capita

income - expenditure (closing balance + OPENING BALANCE

reserves + capital account
, , „ „ , L, ,, , „ , j , , ,

OPENING RESERVES + closing reserves

credit entries - debit entry

profit
t

income - expenditure

Legend

uppercase letters: leaves
lowercase letters: nodes (except leaves)
... : subtree (nodes not shown)

Figure 7: Partial solution tree for a selected financial ratio

When the student asks for a hint or for the solution to a prob-
lem, the system solves the problem, protocols the solution path
and offers the student a user-friendly way of traversing the
protocol. The student can traverse it breadth-first (left to
right and right to left) or depth-first (downwards and upwards).

8

The kind of node information depends on the selected interaction
style. Under the interaction style HINT the student gets hints on
how to solve a subtask. Imagine a student who learned the follow-
ing definition of "quick-assets ratio":

quick-assets ratio =
(cash + debtors) / current liablities due within three months.

Although she knows the top formula of the solution tree, she is
unable to remember the subtree for "cash". She therefore expands
the corresponding node and gets the following advice:

"cash = sum of

(1) cash in hand
(2) cash at bank
(3) cash at post
(4) realisable investments"

By typing a number from 1 to 4 she can request further informa-
tion about the elements of "cash".

Working under the interaction style SOLUTION the system presents
the full answer to a subproblem and explains it. Suppose a stu-
dent has found an answer of her own for the "quick-assets ratio".
He can then compare his solution to the teacher's solution by
asking the system about its solution path. The display for the
top level of the tree might be:

"The quick-assets ratio is 1.84, because

(1) 1.84 = (21 900+ 20 800) / 2 320
(2) 21 900 = cash
(3) 20 800 = debtors
(4) 2 320 = current liabilities due within three months"

Realising that her answer is not equal to the displayed answer
because she did not get 20 800, the student follows the solution
path for "debtors". At a later node, she might learn that the
ultimate reason for the wrong result was the incorrect recording
of the second transaction in the problem text:

"The sum of all credit entries in "debtors" is 10 500 and is the
result of the following transactions:

transaction debit account credit account amount

2 bank debtors 7 500
5 post debtors 3 000"

By typing the number of a transaction the student gets additional
information about how to debit and credit the accounts concerned-

1 Expand any node on the current tree level. In the above "cash"
node the student can for instance request hints for all four
child nodes of "cash".

2 Go back to the predecessor node.

3 Go back to the root node (goal).

4 Change the intQrac1;4,pn style.

For most learning objectives, the traversal of solution trees
underlies the interaction between system and student. There are,
however, some domains which are less amenable to deeply struc-
tured deductive explanations. Two important examples are the
classification of accounts and the structuring of financial sta-
tements. Figure 8 shows an example interaction from the latter
domain.

The items of the balance sheet the student is supposed to prepare
are given in random order. Her task is to order the items accor-
ding to accounting standards. She points at the item she thinks
should come next. The system then applies its ordering rules to
the answer, and, if the answer is right, the item is moved to the
column titled "systematic order". Contrary to most other FA-TUTOR
subjects, problems in this domain may have more than one solu-
tion.

In figure 8, the student's first answer ("cash in hand") was cor-
rect. Her second choice ("stocks"), however, contradicts the fol-
lowing rule: "The assets of a balance sheet must be ordered by
liquidity". The system therefore opens a help window and displays
advice on how to correct the mistake. If the student needs more
help she can press any key to get information about the accounts
concerned.

10

balance sheet structure: assets

RANDOM ORDER SYSTEMATIC ORDER

cash at post cash in hand
suspense assets
operational fixed assets
cash at bank
other fixed assets

I stock
debtors
realisable investments

Hint
More liquid assets precede less liquid assets. Look for a more
liquid item.

any key MORE HELP es£ CONTINUE status: HINT

Figure 8: Example from the learning domain "Ordering of financial
statements

3 Architecture

Section 2 looked at FA-TUTOR from a user's perspective. The fol-
lowing sections examine the system's architecture from the imple-
mentor's point of view.

3.1 Expert Model

The expert component of an intelligent tutoring system tries to
model the domain competence of a human teacher. Domain knowledge
enables an ideal intelligent tutoring system to solve and to ge-
nerate problems. An "articulate expert" is also able to explain
solutions. The program not only knows one or more solution proce-
dures but also explains its solution in a user-friendly way.

The difficulty of designing an expert model depends on the compl-
exity of the subject. Algorithmic domains are easier to model
than domains with more or less vague heuristics. For the first
case, numerous examples exist in mathematics and related domains
(for reviews see e.g. Park 1987 and Lusti 1986, 1987). An example
using heuristic knowledge is GUIDON (Clancey 1979, Richer/Clancey
1987). It extends the heuristic knowledge of MYCIN by tutoring
rules and additional facts and rules about how to explain MYCIN's

11

expert model of FA-TUTOR solve problems by processing Prolog
clauses organised in an easily explainable way. Running through
the clauses, the program collects all the information the expla-
nation component needs under both interaction styles. Such expla-
nations may be classified by the following criteria:

1 Comprehensiveness: The explanation component may output all
traced clauses including all instantiated variables, or it only
displays a subset of the clauses and variables. FA-TUTOR uses
both kinds of explanations.

2 Depth: Explanations may rely entirely on the protocol of the
traced clauses, or may also explain implicitly-used knowledge
and solution strategies (like the implicit depth-first strategy
of a Prolog interpreter). FA-TUTOR's explanations essentially
use protocols. Some of them, however, display additional infor-
mation not used by the problem solving component (cf. figure
8).

3 Extent of user control: Most protocols contain a wealth of in-
formation. In order not to overload the user's receptivity an
explanation component may offer powerful traversal functions.

4 Language generation: Algorithms or templates translate the in-
ternal representation of the clauses into a user-friendly ex-
ternal representation. FA-TUTOR uses templates to translate
protocols into natural language text.

5 Implementation: Two main factors determine the implementation
of an explanation component in Prolog:

(a) protocol data structure: The solution protocol may be built
by a meta-interpreter, by an additional argument of the
clauses concerned, or can be asserted as a set of clauses.
In the first two cases, the trace develops locally (without
side effects), in the last case, it is generated globally.

(b) Interdependence of problem solving and explanation: Is it
possible to solve a problem without generating the overhead
of a protocol?

The following example illustrates how those explanations which
are based on a trace of FA-TUTOR'S solution path are implemented.
Figure 9 shows a Prolog rule defining the top level of the solu-
tion tree of figure 7.

ratio("return on equity capital",
Result,
trace(ratio("return on equity capital", Result),

[trace(plusdiv(Result, Profit, Interest, Capital),

3

)
Tracel,
Trace2,
Trace3,

IF
profit_loss_account("profit", Profit, Tracel) AND
interest_on_equity_capital(Interest, Trace2) AND
average("equity capital", Capital, Trace3) AND
Result = (Profit + Interest) / Capital.

Figure 9: Prolog rule illustrating the generation of a solution
protocol in FA-TUTOR

Ratio rules are structured as follows: The first argument of the
rule head contains the name of the financial ratio whereas the
second argument is the result of the ratio. The third argument is
a data structure containing the explanation tree. Its first argu-
ment holds the name and value of the ratio whose calculation is
traced. While the first argument records rule head information
the second lists rule body information being of interest for the
explanation. The variables Tracel, Trace2 and Trace3 in figure 9
contain the protocols of the first three antecedents, plusdiv/4
contributes to the explanation of the fourth antecedent. The ele-
ments of the protocol list have the same structure as trace/2.
Figure 10 shows the recursive nature of trace/2. The explanation
tree can reach a considerable sise. Great care has therefore been
taken to ensure a user-friendly traversal of the protocol.

rule trace

description of
the consequent

description of
the antecedents

:i
trace of
antecedent n

Figure 10: The recursivity of the protocol argument

uy ^ x c u r j ^ / n u ^ c i u f c ? \xvo&j. n g u i c s v e m u JLU
modified variant, which has the following advantages and disad-
vantages :

Advantages

- Explanations are handled locally (i.e. by parameters). This
avoids the notorious drawbacks of manipulating global data by
assert and retract predicates.

- Tree manipulation (building, traversing, deleting) can be easi-
ly described by recursive data structures and algorithms.

Disadvantages

Problem solving and explanation components are not modular
enough. It is not possible, for example, to evaluate a goal with-
out accepting the ensuing protocol overhead. And, what is worse,
it is difficult to develop a shell. A shell enables the teacher
to add learning material (problem solving and explanation know-
ledge) without having to know about the internals of the program.

Meta-interpreters allow a better separation of problem solving
and explanation (Sterling 1986). By using, for example, the
built-in predicate "clause(RuleHead, RuleBody)", a meta-interpre-
ter "solve(Goal, Protocol)11 collects all explanation-relevant
rules in a protocol tree. The protocol is handed over to a predi-
cate "traverse(Protocol)" which offers user-friendly ways of
looking at the protocol. Contrary to the method used by FA-TUTOR,
the information is not contained in additional rule arguments but
collected by using the metaprogramming predicate "clause/211. If
explanations are not needed, a goal can be evaluated without
meta-interpreter, i.e. without incurring any protocol overhead.
Moreover, rules can be added without further protocol arguments.

For efficiency reasons, the explanation component of FA-TUTOR
does not use a meta-interpreter. First, because it is implemented
in a very restricted (but fast) quasi-Prolog (Borland 1986) which
has only few metaprogramming facilities. Second, because meta-
interpreters put a heavy load on system resources. Performance
considerations are particularily important for an intelligent
tutoring system supposed to run on widely available and inexpen-
sive personal computers. The disadvantage of incurring protocol
overhead has been alleviated by lemma generation. The authoring
component saves some computations as lemmas. These are used when
the recording of protocols is not necessary.

With the advent of commercial expert system building tools, it
has been suggested they might be used for the implementation of
teaching aids (Harmon 1987). Figure 11 shows a commonly accepted
but crude model of an expert system. A comparison with figure 3
reveals the similarity between the architecture of FA-TUTOR and a
simple expert system model. To conclude that an intelligent tuto-
ring system can easily be implemented by expert system building
tools available on PC's is, however, hasty. Many tools are not

14

flexible enough to implement all components of an intelligent
tutoring system. This is particularily true for the student mo-
del, the communication model and the explanation component. It
may even be difficult or impossible to implement a knowledge
acquisition component if it deviates so much from a standard
knowledge-base interface as FA-TUTOR does. There are several
other reasons why expert system generators may not be suitable
for the development of an intelligent tutoring system (Wallach
1987):

- The performance of applications created by generators tends to
be slow. This applies particularly if many external routines
are accessed.

- Porting applications to different computers may be more diffi-
cult.

- Language and licensing costs are high.

Explanation
Component

User

C ommun i c at i on
Component

Problem Solving
Component

Knowledge Aquisi-
tion Component

Knowledge Base

Figure 11: FA-TUTOR and Expert Systems

3.2 Tutoring Model and Student Model

A student model monitors the user's problem solving and diagnoses
his ability, motivation and interaction style. The. tutorial model
starts from this diagnosis and devises a therapy for improving
the student's problem solving behaviour.

FA-TUTOR puts the emphasis on the expert and communication model.
It assists with problems which most students with previous (con-
ventionally acquired) knowledge can answer without close guidan-

-one proDiem ana tne learning objectives to tne user's ability and
motivation:
1 The teacher may tailor the problem text to the ability of a
group of students by choosing suitable task data (e.g. ratios)
and case data (e.g. transactions).

2 The authoring system allows the teacher to readily adapt the
main help texts to the students needs.

3 The student can choose freely the learning domain she wants to
cover. In this respect, FA-TUTOR resembles much more an unob-
trusive consultancy system than a teaching system actively
guiding the student.

4 The student can at any time choose between two interaction
styles.

5 The student can easily reach every node of the solution trees.

3.3 Communication Model

FA-TUTOR is essentially driven by pop-up menus. Free input, for
example the text of business transactions, can be typed in by a
full-fledged editor. The explanation component generates text by
substituting instantiated Prolog variables to template placehol-
ders.

A natural-language user interface is an important part of some
intelligent tutoring systems. As most answers FA-TUTOR expects
are out of a small number of alternatives, a natural language
input format would not improve user-friendliness.

The communication interface of FA-TUTOR can be characterised by
the following features:

1 extensive help facilities

At any moment, the student can ask for context sensitive infor-
mation about her position in the menu hierarchy and the use of
FA-TUTOR. In most contexts, she can also request information
about the structure and contents of the accounting chart and
about the definition of concepts used in financial accounting.

2 user-friendly input/output

Pop-up menus, prompts, defaults, editing facilities, plausibi-
lity tests, short response times, visual and acoustic clues and
selective printing contribute to the ease of learning and use.

4 Jmplepientation Issues

Only a few intelligent tutoring systems have been implemented in
Prolog (see e.g. Davies 1985, Begg 1987). FA-TUTOR uses Prolog as
the implementation language for the following reasons:

development, ana moanicat,ion ox tne expert moaei
2 In FA-TUTOR's domain, Prolog's control strategy simulates
effectively the top-down strategy of human problem solvers

3 The built-in pattern matching facility greatly helps with the
user-friendly output of solution protocols by templates.

The size of FA-TUTOR's source code is about 200K (1000 clauses,
object code: 390K). Most of the code concerns the user interface.
In this domain, the advantages of logic programming hardly show.
Instead, Prolog's shortcomings for procedural tasks become no-
ticeable. Non-backtrackable input/output predicates with side
effects force the programmer to deviate from good programming
style. This is particularly true for windowing and cursor manipu-
lation.

As an implementation dialect, Borland's quasi-Prolog was chosen.
The main reasons are good run-time efficiency, easy access to IBM
PC hardware and system software and a comfortable development
environment. The choice of widely used hardware (IBM PC compa-
tibles) and a compiler generating fast code is motivated by the
desire to use the program in schools. Turbo Prolog, however, is
weak in some areas which are commonly regarded as essential for
Prolog. Typed variables and rudimentary meta programming facili-
ties can make programming very awkward.

5 Possible Extensions

The following extensions would be possible without altering the
basic implementation of FA-TUTOR:

1 A teacher-definable accounting chart and additonal rules for
preparing final accounts would allow for more complex trans-
actions. Examples are limited company accounts, taxation, busi-
ness expansion and the inclusion of legal procedures for the
handling of certain accounting procedures.

2 FA-TUTOR's analysis of final accounts is based on internal fi-
gures. The form and minimum contents of external (published)
accounts are determined by legislation. Since these accounts
are open to inspection by the general public, who will include
competitors, only the legal minimum is disclosed. Analyzing
published accounts, therefore, requires an allowance for win-
dow-dressing. Such adjustments may be interpreted as business
transactions, which means that the basic logic of FA-TUTOR
wouldn't change.

3 A funds statement identifies movements in assets, liabilities
and capital during a period, and the net effect on net liquid
assets (the funds). Moreover, it explains how operations of a
business have been financed, and how its financial resources
have been used. A funds statement could be prepared by relying
on the same case data FA-TUTOR uses to prepare its final
accounts.

4 To include teacher-definable ratios, the knowledge-acquisition
component would convert ratio definitions into clause form and
save them in a external database. Such a modification would,
however, be easier using full Prolog. External databases in
Turbo Prolog can only contain facts.

Summary

There are other subjects than financial accounting which are
suitable for such tutoring systems (see Lusti (1987) for an exa-
mination of some other domains, e.g. law and operations re-
search) . The following paragraph summarizes the main domain-inde-
pendent characteristics of FA-TUTOR:

Learning Objectives

1 FA-TUTOR's main objective is not to teach new factual knowledge
but to make students apply previously learned problem-solving
knowledge to new problems.

2 The problems have decidable (unique or multiple) solutions.

3 The problem-solving knowledge is vertically structured, i.e. it
can be represented by (preferably) deep solution trees. Late-
rally structured knowledge is less suitable, because the expla-
nation component essentially protocols solution paths.

Expert Model

4 The main goal of the authoring component is the semi-automatic
generation of an indefinite number of case problems.

5 The expert model solves most problems on its own ("understands
what it teaches").

6 The symmetry of problem solving and explanation facilitates the
generation of explanations from the expert knowledge.

Tutoring and Student Model

7 FA-TUTOR is a consultancy system leaving much initiative to the
student.

8 The tutoring component offers two interaction styles, one
allowing the student to ask for hints during problem solving,
the other allowing him to ask for an explanation of the results
in case his answers are wrong.

Communication Model

9 A user-friendly interface minimises the effort of learning and
using both the tutoring and the authoring component. The
following features contribute to the user-friendlyness of the
system: pop-up menus, windowing, colours, semigraphics, imme-
diate context-sensitive help.

18

Production Environment

10 FA-TUTOR's ideas can be realized on cheap personal computers
widely used in education.

Acknowledgements

I am grateful to Ben du Boulay for encouraging me to write this
paper and to Chris Sothcott for reading the manuscript.

References

Barzilay, A. (1984) An expert system for tutoring probability
theory, PH.D. Dissertation, University of Pittsburgh

Begg, I. M., Hogg, I. (1987) Authoring systems for ICAI, in
Kearsley, G. (ed.), Artificial intelligence and instruction.
Applications and methods, 323-346, Reading, Massachussets, Addi-
son-Wesley

Borland International, Inc. (1986) Turbo Prolog. Owner's Hand-
book, Scotts Valley

Brown, J. S., Burton, R. R. (1978) Diagnostic models for procedu-
ral bugs in basic mathematical skills, Cognitive Science, 2,
155-192

Burton, R. R. (1982) Diagnosing bugs in a simple procedural
skill, in Sleeman, D., Brown, J. S. (eds.) Intelligent tutoring
systems, 1982, London, Academic Press, 157-183

Clancey, W. J. (1979) Transfer of rule-based expertise through a
tutorial dialogue, PH.D. dissertation, Computer Science Depart-
ment, Stanford University

Davies, N. G., Dickens, S. L., Ford, L. (1985) TUTOR - A proto-
type ICAI system, in Bramer, M. (ed.) Research and development in
expert systems, Cambridge, Cambridge University Press

Genesereth, M. R. (1979) The role of plans in intelligent tea-
ching systems, International Journal of Man-Machine Studies,
January 1979.

Harmon, P. (1987) Intelligent job aids: How AI will change trai-
ning in the next five years, in Kearsley, G. (ed.), Artificial
intelligence and instruction. Applications and methods, 165-190,
Reading, Massachussets, Addison-Wesley

Kimball, R. B. (1973) Self-optimizing computer-assisted tutoring:
theory and practice, Technical Report No. 206 (Psychology and
Education Series), Institute for Mathematical Studies in the
Social Sciences, Stanford University

Lusti, M. (1986) Computergestiitztes Lernen und Kunstliche In-
telligenz, in Schulz, A. (ed.), Die Zukunft der Informations-
systeme. Lehren der 80er Jahre. Reihe Betriebs- und Wirtschafts-
informatik, Berlin 1986, 493-503, Springer

Lusti, M. (1987) Methoden wissensbasierter Systeme bei der Ent-
wicklung von Lernprogrammen. Ein Beispiel aus dem betrieblichen
Rechnungswesen, Habilitationsschrift Hochschule St. Gallen

20

Park, 0., Ray, S. P., Seidel, R. J. (1987) Intelligent CAI: Old
wine in new bottles, or a new vintage?, in Kearsley, G. (ed.),
Artificial intelligence and instruction. Applications and
methods, 11-45, Reading, Massachussets, Addison-Wesley

Richer, M. H., Clancey, W. J. (1987) GUIDON-WATCH: A graphic in-
terface for viewing a knowledge-based system, in Lawler, R. W.,
Yasdani, M. (eds.)> Artificial Intelligence and Education. Lear-
ning Environments and Tutoring Systems, Vol. 1, 373-412, Norwood,
Ablex Publishing

Sleeman, D. (1985) Inferring (mal)rules from pupil's protocols,
in Steels, L., Campbell, J. A. Progress in artificial intelli-
gence, Chichester, Ellis Horwood

Sterling, L., Shapiro, E. (1986) The art of Prolog. Advanced pro-
gramming techniques, Cambridge, Massachussets, MIT Press

Sterling, L., Lalee, M. (1986) An explanation shell for expert
systems, Comput. Intell. 2, 136-141

Wallach, B. (1987) Development strategies for ICAI on small com-
puters, in Kearsley, G. (ed.), Artificial intelligence and in-
struction. Applications and methods, 305-322, Reading, Massachus-
sets , Addison-Wesley

