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REPRESENTING IMAGES FOR COMPUTER VISION

David Young

Computer vision is firmly tied to one representation for images: an array of
samples measured on a rectangular grid. For some work, this restriction
matters little; but for much low-level processing, the representation is
crucial in determining the operations that can readily be carried out. I
suggest that the exploration of alternatives may be worth some effort, and
to support this I investigate one possibility: the logarithmically sampled
image. This representation has interesting properties and can support a
number of useful operations. I show in particular how straight line detection
and a fairly general form of two-dimensional matching may be performed
using it, and I suggest ways in which the work may be developed.

Conventional sampling

Vision involves far more than images, but for computer vision, operations on image
representations provide a vital early stage of processing. In computer vision and image
processing (terms which I shall use with distinct senses below), images are converted to a
representation which can be stored in computer memory by measuring the mean brightnesses
of patches of the image, and representing the results in digital form. Almost invariably,
these samples are taken on a rectangular grid over the image, whose layout can be
represented in computer memory using a two-dimensional array. This is a natural and
convenient way of representing images. In particular, the sampling is uniform: any part of
the image is represented in as much or as little detail as any other part. I shall refer to
this rectangular grid representation as the conventionally sampled image, or CSI (Figure 1).

In image processing systems, where the aim is to produce enhanced pictures for a
person to look at. one part of the original image is as important as any other part;
uniform sampling is needed, because it is not possible to predict where in the output
viewers will direct their gaze or attention. Computer vision, on the other hand, has the
goal of interpreting visual information in terms of the layout of surfaces, but it has
inherited the hardware of image processing, specifically cameras and digitisers. It is also
valuable in computer vision research to be able to look at the results of early processing
displayed as pictures. Unfortunately, this is akin to doing image processing, and it is



tempting to forget that there is no reason why any representation used in computer vision
should make sense to us when we choose to display it on a screen and allow our eyes to
wander over it. Combined, the inheritance of the standard technology for image processing,
and the desire to look at the results of early processing, have made conventional sampling
universal as the starting point for computer vision, with the exception of a few systems
using other uniform sampling schemes.

Why bother with alternatives?

In many ways, the representation of the image does not matter. If we are interested
in understanding the geometrical relationships that allow us to extract surface layout from,
say, linear perspective or optic flow, then we will not much care how the system holds its
image data. And if the density of sampling in a CSI is sufficiently great that all the salient
detail is captured, then we might argue that any operation we apply to another
representation could be transformed into an equivalent operation on the CSI.

The response to the first point is simple. The application of techniques such as
stereopsis, motion analysis and texture analysis depends on the development of effective
image-level processes to support them. The answer to the second point lies in the fact that
resources are limited: we cannot necessarily sample the image everywhere as densely as we
choose; in addition an operation that is efficient in one representation may be unreasonable
in another. Computer vision may be simply more effective if its early stages are based on
representations that have been tailored to its requirements. Furthermore, the all-pervasive
nature of the CSI may influence the way that we think about the possibilities for early
processing. Specifically, operations that are uniform across the image are very easily and
economically carried out on the CSI, and so low-level computer vision research concentrates
on such uniform operations. It is generally assumed that any focusing of computational
resources on particular parts of the image will occur only after the preliminary extraction
of edges or other features has taken place.

On these grounds, it seems reasonable to suggest that alternative representations might
lead to a useful extension of our range of techniques. Ideally, I should like to stand back
from the problem, and try to find criteria for the adequacy of image representations, based
both on a better understanding of the structure of the information available in the optic
array, and on a more precise prescription of the needs of later stages of a vision system.
This goal is ambitious, and all I can do here is second-best: to try to shake the dominance
of the CSI by showing one alternative of some interest, both theoretically and in practice.

The logarithmically sampled image

There is a vast range of sampling patterns, but one type in particular seems worth
investigation: that in which the samples lie on concentric rings, with the density of
sampling rising to a peak at the centre. The particular pattern I am interested in has the
same number of samples on each ring, and the pattern of sample points in any small



region of the image looks the same as the pattern in any other small region except for a
rotation and an expansion or contraction (provided neither region covers the centre of the
pattern). These conditions define the logarithmically sampled image or LSI (Figure 1), and
have been chosen to provide interesting properties that can support some powerful
operations. Funt (1980) has used these properties to good effect in producing a diagrammatic
reasoning system based on the LSI.

Wedge
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FIGURE 1: The sampling patterns of the CSI (left) and LSI (right).

A sample in the LSI may be identified by its ring number and wedge number, just as
a sample in the CSI is identified by row and column indices. The very centre of the LSI
can never be used, since the density of sampling increases without limit as it is approached,
so a small hole has to be left there or uniformity imposed in a small region. The relation
between the number of a ring and its radius is that the former is linearly related to the
logarithm of the latter;: hence the name. (In fact there is a more compelling reason for this
name, which arises if the image surface is regarded as the complex plane, but I will not
dwell on that.)

The density with which the LSI samples the image falls off very rapidly with distance
from its centre; far more rapidly, for instance, than the rate at which the density of cones
in the human eye falls off with distance from the foveal centre (Osterberg 1935). The
fall-off means that the position of the sampling centre in the image is of great importance:



any system using an LSI must have the means to determine where to centre it at any
moment in order to extract the most salient information from the image. Resources are not
deployed uniformly across the image, but rather are concentrated on the part where
resolution of fine detail is needed most urgently. Some strategy is therefore needed to
resample the image from different centres as processing continues. The lowest level of a
system using this, or any other, non-uniform sampling must become an active process.

This applies to any sample pattern with a peak of density, but the interesting
properties of the LSI arise because rotations, expansions and diminutions of the image about
the centre of sampling can be represented very simply. These correspond to mere uniform
changes in wedge number or ring number, in the same way that in the CSI translations of
the image correspond to changes in row and column. In the LSI, expanding the image
involves moving every sample value outwards a fixed number of rings, and rotating the
image involves moving every sample value clockwise or anticlockwise a fixed number of
wedges. This gain in one kind of simplicity is at the expense of another, since in the LSI a
translation no longer has the straightforward representation it has in the CSI, and LSI
representations of images shifted relative to one another will no longer have the
straightforward correspondence that their CSI representations have. Again, this demands that
the LSI pattern can be repositioned rapidly on the image, so that we can use a resampling
strategy to try to replace the inherent ability of the CSI to cope with position shifts. If
the image of an object moves, the LSI will have to move with it. The techniques that are
needed are, in effect, analogous to eye-movement control in human and animal vision.

The examples that follow are an attempt to show the potential value of the rotation
and expansion symmetries of the LSI. I do not claim that the methods here find lines or
match similar images better than existing methods; rather that lines can be found and
images matched in rather straightforward ways. This seems enough to merit further work.

Finding straight lines using the LSI

Perhaps a little strangely, the LSI, with its circular pattern, is well suited to the
detection of straight lines in an image. The reason is that any straight line may be mapped
onto any other straight line by a combination of rotation and expansion about the centre of
the LSI, regardless of where that centre happens to be (Figure 2). The LSI allows us to
search efficiently through all possible combinations of expansion and rotation to discover
where a straight line can best be fitted to the image.

To do this, both the image and a template with a straight line on it are represented
using the LSI. It is then possible to use convolution, one of the standard methods of image
manipulation, to find the amounts by which the template must be shifted in ring number
and wedge number to match the image best. The output of the convolution is another LSI,
but one in which the positions of peaks and troughs can be interpreted as the parameters
of straight lines in the original image. A few details of my implementation are given in the
appendix, and a full account will be published elsewhere, but a genuinely typical result for



FIGURE 2: Mapping one straight line onto another with a rotation and an expansion.

an image with a good selection of straight lines in it is shown in Figure 3. The
superimposed lines are the most prominent lines as determined using an LSI centred on the
black dot; the method works well, at least as far as subjective assessment of the results
goes, though of course in the long term that is insufficient. Quite short or weak straight
lines passing close to the centre of the LSI are picked out, whereas lines further out must
be either longer or of greater contrast to be detected.

Fairly general matching using the LSI

By fairly general matching, I mean finding the rotation, scaling factor (ie expansion or
contraction) and translation that match one image as closely as possible to another. The
ability to find such matches in two dimensions can help to support many kinds of higher-
level interpretative processes. (A more general two-dimensional match would also allow
anisotropic expansion, or shear, to be included.)

The CSI is good for finding the best translation match between two images that
already match in scale and orientation. The LSI is good for finding the scale and orientation
match between two images that already match in position, in the sense of having
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FIGURE 3: The results of straight line detection using the LSI. For more details, see

appendix.



corresponding points at the sampling centres. My approach to combining the two is to use
the CSI to generate a position-independent description of both images, then to use the LSI
to match these descriptions in scale and orientation. This is frankly a rather opportunistic
alliance of techniques, but the results are promising enough to make the approach
interesting. The translation-independent description I use is the discrete autocorrelation,
which may be represented in an array just as a CSI can be. The autocorrelation is a
description purely in terms of offsets in the image, and it is unaffected by changes in
absolute position. A great deal of information is lost when it is generated, but enough is
retained to allow scale and rotation matching to be based on it. The method, then, involves
correlating two LSI representations of the ordinary autocorrelations of the images to find
the best scale and orientation match, and then using the CSIs to find the best position
match.

Again, a few details of the implementation are given in the appendix, but Figure 4
shows a typical result. The top row shows the two original images; the one on the right
was manipulated to match the one on the left. The bottom half shows the results, with on
the left one of the original images transformed to reflect the results of scale and orientation
matching, and on the right the results of the full match. The process is generally robust,
though it is best suited to matching fairly simple shapes.

Further work on the LSI

There are some developments that can probably be carried out quickly. In the line
finding technique, the lines which are found could be clipped to line segments to bring the
results closer to a potentially useful representation. In fairly general matching, it may be
worth exploring alternatives to the autocorrelation as a translation-independent description.
Both line finding and matching need to be tried out more systematically, and more objective
measures of their success obtained.

More interesting are the extensions which stem from the need to supply a resampling
strategy, analogous to eye-movements in biological vision. In the line-finding example, for
instance, it might make sense to resample with the pattern centre lying on one of the lines,
or at the junction of some lines. Indeed, many resamplings with a rather sparse LSI may
be more effective than few resamplings with a dense one. These questions need much work.

If the analysis of a static image requires strategies rather like saccadic eye-movements,
then the analysis of an image sequence will require something analogous to tracking eye-
movements. It goes? almost without saying that the LSI is extremely well suited to picking
up rates of expansion in image sequences, and hence to supplying information directly
applicable to the control of action (Lee and Young, 1985). This will only work, however,
if the centres of successive LSIs correspond to the same feature of the image. The LSI must
track the image of a moving object, and there is a considerable challenge in finding effective
ways of carrying this out.
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FIGURE 4: Matching two images in scale, orientation and position. Top row: original
images. Bottom row: second original image transformed to match first original image; left:
matched in scale and orientation; right: matched also in position. For more details, see
appendix.
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The LSI and biological vision

I have made no attempt to model biological vision, though a lesson has been taken
from biology. Natural vision systems do not seem to use uniform sampling very much, and
that certainly reinforces the idea that alternatives for computer vision are worthy of
consideration. The human retinal receptor layout does not correspond to the LSI, but this
does not preclude subsequent stages following a logarithmic pattern, and I would be
delighted to be told of any relevant evidence. There are, for instance, intriguing indications
in papers by Cavanagh (19S5) and van Doom and Koenderink (1982) that closely related
representations may be used at some points in biological vision.

Finally, though, I must return to the point that what I have done is to open up
consideration of new possibilities for computer vision. The principles on which image
representation should be based remain, to me at least, obscure. If anyone can tell me how
to determine the relative merits of the CSI. the LSI, spatial frequency representations or
any of the many other possibilities, without just trying them out in a variety of tasks, I
would be more than pleased to hear from them. So far, this aspect of computer vision has
largely ignored biology, and as so often, it may be the case that we need to understand
natural systems better if we are to get the right methods for artificial vision.
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Appendix: Generating the figures

There is no hardware to obtain LSIs direct from images, so in my experiment to try
out the line-finding method, I started with a CSI 512 pixels square. I resampled this to
produce an LSI with 128 rings and 128 wedges, positioning the centre of the pattern
arbitrarily at the centre of the image. In the centre of the LSI, the samples were much
denser than in the CSI, so detail that should have been present was missing. In the
periphery of the LSI the samples were much less dense than in the CSI. The mask I used
was essentially a straight line, though with a few special effects thrown in: it was
weighted towards the centre of the LSI, smoothed slightly, and differentiated with respect
to ring number in order to pick out changes in grey level. None of these affects the basic
principle, but they made the process more robust. I carried out the convolution using the
fast Fourier transform, which is a computational trick to save processing time, and in fact
I calculated the Fourier transform of my mask analytically. I ranked the peaks of the
convolution result according to their absolute value, and plotted the lines corresponding to
the few strongest on a picture of the original image. Figure 3 shows a typical result, for
an image deliberately chosen to have a fair number of straight lines present.

Processing takes a modest number of seconds on a Sun 3 using POP-11, though doing
the fast Fourier transforms and the logarithmic resampling with external Fortran routines.
There are fast parallel implementations of all the algorithms used, which could be used if
suitable hardware were available.

In my second experiment I obtained two CSIs, each 128 pixels square, of images on
which fairly general matching could reasonably be expected to work. I enhanced the edges
by convolution with a difference of Gaussians operator, and avoided the influence of the
frames of the images by multiplying them by Gaussian-weighted windows. I then formed
their autocorrelations using the fast Fourier transform, and resampled these using the LSI
centred on the origins. Then the two autocorrelation LSIs were convolved together, again
using the fast Fourier transform, with a few extras (smoothing and differentiation) thrown
in for good measure. The global peak of the convolution result was taken to give the
relative scale and orientation of the two images. Using these parameters, one of the CSIs
was scaled and rotated (in fact by means of an intermediate LSI) to match the other, and
a final convolution allowed the translations to be matched. It takes round about a minute
to do all the processing on a Sun 3, but again it is easy to envisage very fast
implementations.

Full details of these processes, and the mathematics of the straight line detection, will
be given in future Cognitive Science Research Papers.


