NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



A CLASS OF OPTIMAL-ORDER ZERO-FINDING METHODS
USING DERIVATIVE EVALUATIONS

Richard P. Brent

Computer Centre,
Australian National University,
Canberra, A.C.T. 2600, Australia

1. INTRODUCTION

It is often necessary to find an approximation to a
simple zero { of a function f , using evaluations of f and
£' . In this paper we consider some methods which are
efficient if f' 1is easier to evaluate than f . Examples of

such functions are given in Sections 5 and 6.

The methods considered are stationary, multipoint, iter-
ative methods, '"without memory" in the sense of Traub [64].
Thus, it is sufficient to describe how a new approximation
(xl) is obtained from an old approximation (xO) to ¢ .
Since we are interested in the order of convergence of differ-
ent methods, we assume that f 1is sufficiently smooth near
L , and that X is sufficiently close to ¢ . Our main
result is:

Theorem 1.1

-There exist methods, of order 2v , which use one evalu-

ation of f and Vv evaluations of f' for each iteration.

By a result of Meersman and Wozniakowski, the order 2v
is the highest possible for a wide class of methods using the
same information (i.e., the same number of evaluations of £

and f' per iteration): see Meersman [75]. The "obvious"
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interpolatory methods have order Vv + 1 , but the optimal or-
der 2v may be obtained by evaluating f' at the correct
points. These points are determined by some properties of

orthogonal and "almost orthogonal™ polynomials.

If v + 1 evaluations of f are used, instead of one func-
tion evaluation and v derivative evaluations, then the opti-
mal order is Zv for methods without memory (Kung and Traub
[73,74], Wozniakowski [75a,b]), and 2\)+‘I for methods with
memory (Brent, Winograd and Wolfe [73]). Thus, our me thods
are only likely to be useful for -small v or if f' is much

cheaper than f.

Special Cases

Our methods for v = 3 appear to be new, The cases v = 1
(Newton's method) and v = 2 (a fourth-order method of Jarratt
[69]) are well known. Our sixth-order method (with v = 3)

improves on a fifth-order method of Jarratt [70].

Generalizations

Generalizations to methods using higher derivatives are

possible. One result is:

Theorem 1.2

For m >0, n3>0, and k satisfying m+ 12k >0,
there exist methods which, for each iteration, use one evalu-
ation of f,f',...,f(m), followed by n evaluations of f(k],

and have order of convergence m + 2n + 1

The methods described here are special cases of the
methods of Theorem 1.2 (take k=m=1, and v =n + 1)
Since proof of Theorem 1.2 is given in Brent [75], we omit
proofs here, and adopt an informal style of presentation.

Other possible generalizations are mentioned in Section 7.



2.  MOTIVATION

We first consider methods using one evaluation of f s
and two of f' , per iteration. Let X, be a sufficiently
good approximation to the simple zero [ of f , f0 = f(xo),

and fé = f'(x Suppose we evaluate f'(io} , where

0)
X0 = %o

and « 1is a nonzero parameter. Let Q(x) be the quadratic

- afo/fé s

polynomial such that

Qxy) = £,
Q' (x)) = £} ,
and . _
Q' Fy = £, ,
and let X4 be the zero of Q(x) closest to Xg - Jarratt
[69] essentially proved:
Theorem 2.1

xy - €= 0(]x, - 5|7
as X -+ L , where

{ 3 if a #2/3 ,
p:
4 if o= 2/3 .

Thus, we choose o = 2/3 to obtain a fourth-order
method. The proof of Theorem 2.1 uses the following lemma:

Lemma 2.1
2 3 . s
If P(x) = a + bx + ¢x° + dx satisfies

P(0) = P'(0) = P'(2/3) =0 ,
then P(1) = 0 .

Applying Lemma 2.1, we may show that (for o = 2/3)

£0xy) - Qlx) = 0¢s%)



where
Xy = %o - fO/f6

is the approximation given by Newton's method, and

s = 15y/5y] = Iy - %

Now
0(s%) ,

4
1
b
1}

and

£1(x) - Q' (x) = 0(8%)

for Xx near Xy S0

£} = [£x) - Qxp)|
s [Exg) - Qx|+ [£18) - Q@) [« |xy - x|
for some £ between Xy and Xy Thus

£(x) | = 08" + 0(6%+6%) = 0(sh ,

and A

4
x; - &= 0([£(x)]) = 0(8") = o(|xy - z[D)
3. A SIXTH-ORDER METHOD

To obtain a sixth-order method using one more derivative
evaluation than the fourth-order method described above, we

need distinct, nonzero parameters, oy and On » such that
P(0) = P'(0) = P‘(al) = P'(az) =0

implies P(1) = 0 , for all fifth-degree polynomials

P(x) = a+bx+ ... + fx5 .
Thus, we want the conditions
4.
Zalc + ... 4 Salf = 0
and 4
2a2c + + Sazf =0

to imply



Equivalently, we want

2u1 3ui 4ai Sai
rank 2&2 3&5 4a2 Sa; =2,
|1 1 1 1|
e i 1 o az usl_
1 1 1
rank 1 O, ag a; =2,
| 1/2 1/3  1/4  1/5_

i.e., for some Wy and LR
i i _ .
(3.1) Wiy o+ Wy, = 1/(1 + 2)
for 0<ig 3.
1 .

Since 1/(i + 2) = [ x'+xdx , we see from (3.1) that oy

and 0, should be choseg as the zeros of the Jacobi poly-
nomial, G2(2, 2, x) = x2 - 6x/5 + 3/10 , which is orthogonal
to lower degree polynomials, with respect to the weight func-

tion x , on [0, 1]

Let y; = x5 - o f /fl, x =% - £,/€) , 8= Ifo/f(')l,

and let Q(x) be the cubic polynomial such that
Qxg) = £ 5 Qxy) = £ ,
and
Q' (y;) = £'(y;)
for i=1,2. Then
4
£f(x) - Qx) = 0(87)
for x between X and Xy o but
_ 6
£(x) - Qxy) = 0(87)

because of our choice of 0y and 0, as zeros of G2(2, 2,x).



(This might be called ''superconvergence': see de Boor and
Swartz [73].)

A Problem
Since
Xy - Xy = 0(62)
and
£1) - Q'(x) = 0(8%)
for x near x proceeding as above gives

N >
[£x)| = 0(8%) + 0(6%+6%) = 0(8”) ,
so the method is only of order five, not six.

A Solution

After evaluating f'(yl) , we can find an approximation

iN =7 + 0(53) which is (in general) a better approximation

to ¢ than is xN . From the above discussion, we can get a
sixth-order method if we can ensure superconvergence at iN
rather than Xy - Define &1 by

oy (g = Xp) = oy (xy = %p)
1 L] - vy -~ _ .
In evaluating f' at Y1 = % * al(xN xO), we effectively

used &1 =0y + 0(8) instead of « so we must perturb o

1 2
to compensate for the perturbation in Oy -

2

From (3.1}, we want &2 such that, for some ﬁl and

Wo s

~ 1 ~ ~1 .
(3.2) w by + W0, = 141 + 2)
for 0< i< 2. Thus

_ N P
1 0y al
k| 1 &, @ | =2
ran 2 5 ’
1/2  1/3 1/4




which gives

&2 = (3 - 4&1)/(4 - 6&1) =a, + 0(38)
Since
wj = wj + 0(8)
for j=1,2, we have
(3.3) ﬁlaf . ﬁzag = 1/5 + 0(8)

(Compare (3.1) with i = 3.) If we evaluate f' at

Yy = X5 * az(xN - xO) , and let Xy be a sufficiently good
approximation to the appropriate zero of the cubic which fits
the data obtained from the f and f! evaluations, then
(3.2) and (3.3) are sufficient to ensure that the method has

order six after all.
4. METHODS OF QORDER 2v

In this section we describe a class of methods satisfying
Theorem 1.1. The special cases V=2 and Vv = 3 have been

given above,

It is convenient to define n = v - 1 . The Jacobi poly-
nomial Gn(2, 2, X) 1is the monic polynomial, of degree n ,
which is orthogonal to all polynomials of degree n - 1 , with

respect to the weight function x , on [0, 1]. Let o o,

10029
denote the zeros of Gn(2, 2, x) in any fixed order. We des-
cribe a class of methods of order 2(n + 1) , using evaluations
. f'(xo) , and f'(yl),...,f'(yn) , where the

points yl,...,yn are determined during the iteration.

The Methods

= 1 = £1
1. Evaluate f0 f(xo) and fO f (xo)
2. If £,=0 set x, = X, and stop, else set § = [fo/féL

3. For i=1,...,n do steps 4 to 7.



(4. Let p; be the polynomial, of minimal degree, agree-
ing with the data obtained so far. Let zs be an

approximate zero of P; > satisfying Z; = X * 0(%)
and pi(zi) = 0(61+2) . (Any suitable method, e.g.

Newton's method, may be used to find zs J)

5. Compute ai,j = ai—l,j (Zi—l - xo)/(zi - xO) for

j=1,...,i-1, (Skip if i = 1.)

< 6. Let q; be the monic polynomial, of_d?gree
1-.
n+1-1, such that P(x) qi(x) I (x--ozi j)]xdx
=] 3
= 0 for all polynomialg P of degree n - i .

(The existence and uniqueness of q; may be shown

constructively: see Brent [75].) Let o be an
]

approximate zero of 93 > satisfying o,
i+l ?
and qi(ai,i) = 0(6” 7).

n =

7. Evaluate f'(yi) , wWhere

L yi = %X * % (75 - %o
8. Let Poe1 be as at step 4, and X, an approximate zero
of 2pn+1 , satisfying Xy = Xg t 0(8) and pn+1(x1) =
0(8 n+3)

Asymptotic Error Constants

The asymptotic error constant of a stationary zero-
finding method is defined to be
1im

P
x0+§ (xl

K = -0/ (xy - 07,

where p 1is the order of convergence. (Since p 1is an
integer for all methods considered here, we allow K to be
signed.) Let Kv be the asymptotic error constant of the
methods (of order 2v) described above. The general form of

Kv is not known, but we have

a; + 0(6)



=
it

1% 9%
K2 = ¢4/9 - ¢2¢3 >

K3 = ¢6/100 + (1 - 5a1)¢2¢5/10 + (3&1 - 2)¢3¢4/5 s
and
- 25(9 - 44a + 42a§)¢4¢5}/3675 ,
where (i)
E (S
i~ iTfT(g)

5. RELATED NONLINEAR RUNGE-KUTTA METHODS
The ordinary differential equation
(5.1) dx/dt = g(x) , x(to) = X5

may be solved by quadrature and zero-finding: to find

x(t0 + h) we need to find a zero of

£(x) = ? du_ g
v &) '
0
Note that f(x0) = - h 1is known, and f'(x) = 1/g(x) may be
evaluated almost as easily as g(x} . Thus, the zero-finding

methods of Section 4 may be used to estimate x(t0 + h) , then
x(t0 + 2h) , etc. When written in terms of g rather than f,

the methods are seen to be similar to Runge-Kutta methods.

For example, the fourth-order zero-finding methods of
Section 2 (with X, an exact zero of the quadratic Q(x))

gives:

gy = 8(xg)

[
|

—th’

gy = glxy + 28/3)



and
(5.2) Xp = X+ 28/[1 + (3gy/g, - 2)3

Note that (5.1) is nonlinear in £g and g1 » unlike the
usual Runge-Kutta methods. (This makes it difficult to
generalize our methods to systems of differential equations.)
Since the zero-finding method is fourth-order, X; = x(t0 + h)
+ 0(h4) » SO our nonlinear Runge-Kutta method has order three

by the usual definition of order (Henrici [62]).

Similarly, any of the zero-finding methods of Section 4
have a corresponding nonlinear Runge-Kutta method. Thus, we
have:

Theorem 5.1

If v >0, there is an explicit, nonlinear, Runge-Kutta

method of order 2v - 1 , using Vv evaluations of g per

iteration, for single differential equations of the form (5.1).

By the result of Meersman and Wozniakowski, mentioned in
Section 1, the order 2v - 1 in Theorem 5.1 is the best poss-
ible. Butcher [65] has shown that the order of linear Runge-
Kutta methods, using Vv evaluations of g per iteration, is
at most Vv , which is less than the order of our methods if
v > 1 (though the linear methods may also be used for systems

of differential equations).
6. SOME NUMERICAL RESULTS

In this section we give some numerical results obtained
with the nonlinear Runge-Kutta methods of Section 5. Consider

the differential equation (5.1) with

L 2
(6.1) g(x) =(2m)%exp(x“/2)
and x{0) = 0 . Using step sizes h = (0.1 and 0.01, we

estimated x(0.4) , obtaining a computed value X, The

10.



error €, Wwas defined by
*h
f exp(-u2/2)du - 0.4 .,
0

1
e, = (2m)7?

All computations were performed on a Univac 1108 computer,
with a floating-point fraction of 60 bits. The results are
summarized in Table 6.1, The first three methods are derived
from the zero-finding methods of Section 4 (with v = 2, 3 and
4 respectively). Method RK4 1s the classical fourth-order
Runge-Kutta method of Kutta (011, and method RK7 is a seventh-
order method of Shanks [65].

Table 6.1: Comparison of Runge-Kutta Methods

Method geiviigiziggs Order 0.1 ©0.01
Sec. 4 2 3 -9.45'-¢6 1.491-7
Sec. 4 3 5 3.16'-6 | -2.47'-11
Sec. 4 4 7 3.86'-8 3.691-15
RK4 4 4 1.95'.5 7.90'-9
RK7 9 7 -5.19'-7 | _1.671.13

More extensive numerical results are given in Brent [75].
Note that the differential equation (6.1) was chosen only for
illustrative purposes: there are several other ways of
computing quantiles of the normal distribution. A practical
application of our methods (computing quantiles of the incom-
pPlete Gamma and other distributions) is described in Brent
[76].

7. OTHER ZERO-FINDING METHODS

In Section 1 we stated some generalizations of our
methods (see Theorem 1.2). Further generalizations are des-
¢ribed in Meersman [75]. Kacewicz [75] has considered methods
which use information about an integral of £ instead of a

derivative of f .



12.

nSporadic' methods using derivatives may be derived as in
Sections 2 and 3. For example, is there an eighth-order

method which uses evaluations of £, f*, f*, and £ at

Xy s followed by evaluations of f' , f'' and f'' at some
point Yy 2 Proceeding as in Sections 2 and 3 , we need a
nonzero o satisfying
I T
1 1 1 1
4 50 6&2 7a3
rank ? 3 =3,
12 200 300 420
24 o0 12002 2100°

which reduces to

(7.1) 2505 - 8402 + 700 - 20 = O .

Since (7.1) has one real root, @ = 0.7449..., an eighth-order

method does exist. It is interesting to note that (7.1) is

equivalent to the condition

1
f xs(x - u)sdx =0 .
0
As a final example, we consider sixth-order methods
using f(xo) , f'(xo) , f"(yl) , and f”'(yz) (These
could be called Abel -Gonlarov methods.) Proceeding as
above, we need 0y and % such that
B 2 3]
2 6&1 120L1 200:.1
2 —
rank 0 6 240¢2 600t2 =2,
1 1 1 1
L _

which gives
4 3 2 _
(7.2) 600L1 - 800¢1 + 60a1 - 24(11 + 3 =20



and
2
Fortunately, (7.2) has two real Toots, al = 0.2074... and

o, = (1 - 6af)/(4 - 120.)

o, = 0.5351... Choosing one of these, we may evaluate f(xo),
f'(xo) and f”(yl) > Where Y1 is defined as in Section 3,
We may then fit a quadratic to the data, compute the perturbed
&1 » and take )

&2 = (1 - 6&1)/(4 - 12&1) ,

etc., as in Section 3. It is not known whether this method

can be generalized, i.e., whether real methods of order 2n

using evaluations of f(xo) R f'(xo) R f”(yl) 3 ey f(n)(yh_fL
exist for all positive n .
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