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ABSTRACT 

This paper deals with multipoint iterations without mem­
ory for the solution of the nonlinear scalar equation 
(m) 

f (x) = 0, m ^ 0. Let P n( m) be the maximal order of itera­
tions which use n evaluations of the function or its deriva­
tives per step. We prove the Kung and Traub conjecture 
p (0) = 2 n ^ for Hermitian information. We show p (m+l)^p (m) 
and conjecture P n( m) = 2 . The problem of the maximal order 
is connected with Birkhoff interpolation. Under a certain as­
sumption we prove that the Polya conditions are necessary for 
maximal order. 

1. INTRODUCTION 

We consider the problem of solving the nonlinear scalar 
(m) 

equation f (x) = 0 where m is a nonnegative integer. We 
solve this problem by multipoint iterations without memory 
which use n evaluations of the function or its derivatives 
per step. For fixed n we seek an iteration of maximal order 
of convergence. This problem is connected with Birkhoff in­
terpolation and can be expressed in terms of the incidence 
matrix E = (e. .) where e. . = 1 if f v j y(z.) is computed and 
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k oo 
e.. = 0 otherwise; z. £ z., and 2 S e.. = n. (Note XJ i J . . . n i l 

J L=1 j=0 J 

that the problem of Birkhoff interpolation has been open for 
7 0 years, see Sharma [72].) 

Let p (m) be the maximal order of multipoint iterations. 
n-1 

For m = 0, Kung and Traub showed that P n(0) ^ 2 " . We show 
that pn(m+l) ^ P n( m) a n c* conjecture Pn(flO = 2*1 \ For m = 0 
we prove the Kung and Traub conjecture for Hermitian informa­
tion, i.e., if f ( z ) is computed, then 
f ̂  (z^,. . . ,f ̂  ^(z_j,) are also computed. Under a certain 
assumption we prove that the Polya conditions are necessary 
for the maximal order, i.e., the total number of f , f f ^ 
evaluations has to be at least j+1 , j = 0,1,...,n-1. We show 

n— 1 
also that p (0) ^ n(n+l) . Some special incidence matrices 
k n 

E are considered and maximal orders of iterations based on 
E are discussed, n 
2. THE n-EVALUATION PROBLEM 

We consider the problem of solving the nonlinear scalar 
equation 

(2.1) f ( m )(x) = 0 

where f: D C (C -> (£,, (£ denotes the one dimensional complex 
F 

space and m is a nonnegative integer. We assume that there 
r- r- (l11) r (m) , v n / -(m+1) f v 

exists a simple zero a of f ^ f {a) = 0 f i {a) , ana 
that f is analytic in a neighborhood of a. Let 3 denote a 
class of such functions. 

We solve (2.1) by stationary iteration and assume that 
x.j is a sufficiently close approximation to a. To get the 
next approximation ^2 t o a w e n e e c * some information on f. We 
assume that this information 3t = ^(x^f) is given by some 



values of the function and its derivatives at the points z 
defined as follows. Let 

.1 k 
Z ] : f ( 1 )(z 1),...,f ( ^ ( z . , ) , 

1 

: k .k 

denote points and numbers of derivatives which are computed 
where nonnegative integers {j 1} satisfy the relations 

,i .i 

Furthermore, 

V < V+l f o r 1 = 1. 2..-.>k and u-1,2,.,.,^-1, 

1̂1 + M<2 + ... + M-k = n. 

(2.2) Z ' " *' ,1 

f ^ 1 ^ ^ ) , - - - ^ ^ ^ ^ ^ . ) ) for i - 1,2,. ..,k, 

^ Z j for X ] / , and i / j, i,j = l,2,...,k, 

X2 " Z k + T 

This means that every z ^ is the function of the previous 
information computed at z^,...yz^ and the next approximation 

= zk +i depends on n evaluations. Sometimes we shall use 
the notation z^ = zA^^) or z^ = z (x..,f) to stress the de­
pendence on x^ and f. 

To simplify further notations we define an incidence  
matrix E = (e. .) of the information jft» i = 1 ,2,. .. ,k and 
j = 0,1,..., as follows. Let 



if we compute f^(z.) 
(2.3) e = < 1

 ( i ) 
1 J (0 if we do not compute f J (z.), 

where 00 
(2.4) S e . . ~- 0 for i = 2,3 k, 

J-0 l J 

, k ^ 
(2.5) |E I = T I e.. = n, (thus k < n+1). 

n i=1 j-0 1 J 

The condition (2.4) means that at every point z^, i > 2, we 
compute at least one derivative. (We consider f to be the 

(0) 
zeroth derivative f .) However we do not, at this point, 
insist on any information being computed at z = x . We show 

(m) 
in Lemma 3.2 that f must be evaluated at x̂  . The condi­
tion (2.5) means that we use exactly n evaluations. Let 
(2.6) e n = {(i,j): e = 1, i = l,2,...,k; j = 0,1,...} 

Hence the information 5t can then be defined in terms of the 
incidence matrix E as follows: 

n 
(2.7) 5t = 5 K x i ; f ) = [ f ( j ) ( 0 : <i,j) € e£}. 

The concept of an incidence matrix is used in Birkhoff inter­
polation, see Sharma [72]. We shall show some connections 
between the n evaluation problem and Birkhoff interpolation. 

Having the information 51 we define the next approxima­
tion x 2, x 2 = z ^ , as x 2 = rI)(x1 ; 9t(x..;f)) where CD is a given 
function. 

We call cp an iteration function if for every f 6 % with 
(m) 

f (<*) = 0 there exists 5 > 0 such that for any 
| x-j -0f| ^ 6 , the sequence 



( 2 - 8 a ) xd+l = ^ v f ) ) > d = 1 ' 2 -

is well-defined and 

(2.8b) lim x, = a, j a 

(2.8c) a = CD(CV, 5ft(cy;f)) 

Such iterations are called k-point iteration without mem­
ory since they use exactly n new evaluations at k distinct 
points. If k > 1 they are called multipoint iterations (see 
Traub [61], [64], and Kung and Traub [74]). Let § be a class 
of iterations cp with k ^ 1. 

Since these iterations are stationary and without memory 
it is sufficient to define how x^ is generated from x^ and to 
measure the goodness of cp by examining some properties of 
X £ - Oi as x.j tends to a. 

We want to find an iteration for which x^ approximates a 
as closely as possible, i.e., we seek an iteration with the 
maximal order. In a previous paper (Wozniakowski [75]) we 
proved that if a set of iterations $ is not empty then the 
maximal order of iteration is equal to the order of informa­
tion. This gives us a powerful technique for proving maximal 
order. Let us briefly recall what we mean by orders of itera­
tion and information. 

We shall say {?(•; x^)} is equal to f with respect to 9t 
(briefly denoted by 1 = f) iff 

(i) f, F(-; x}) g % 

(n) f (a; X ] ) = 0 and £{m)(a) = 0 where 3 = S(x ) and 
lim SKxp = a t 



(iii) lim f ( j )(a; X ] ) = g ( j )(a) where g( a) = 0 and 

8 6 j = 0,1,... 

(iv) gi( X l; f) = 9l(x i ; f), i.e., f^Cz.jx.,) = f ( j ) (z±) 

for (i,j) € e k. 
n 

The first three conditions mean that f(x; x^) is sufficiently 
regular with respect to x and tends to a function g, g £ % 
as x.j tends to The condition (iv) means that f and f have 
the same information 5t at the point x^. Therefore any itera­
tion cp will produce the same approximation x^ for f and f, 
cp(x.j ; 9t(x.j ; f)) = cp(x̂  ; 5t(x.. ; f)) . Since we cannot recognize 
f from f using information (2.7), we should approximate not 
only the zero a of f, but at the same time, the zero 5 of f. 
This leads us to the following definitions of orders of iter­
ation and information. 

Let A be a set defined by 

( ) lxo~^l 
A={q 3> 1; Vf 6 3,f W(a) = 0, Vf ffc f, lim sup — = 0 , VOO) 

A number p = p(cp) is called an order of the iteration cp iff 

iO if A is empty, 
(2.9) p(cp) = < 

(sup A otherwise. 

Using this convention p(cp) always exists; however the only 
interesting cases are for A ^ 0. Furthermore, let 

B - {q*1; Vf € ^ f ( m > ( a ) = 0,Vf ffc f,llm sup 1 = 0,Ve>0}. 

A number p = p(5t) (sometimes denoted p = P( E
n)) i s called an 

order of the information 51 if 



0 if B is empty, 
(2.10) pCtt) 

sup B otherwise. 

We know that if $ £ 0 then 

(2.11) sup p(cp) = pCTO 
cp€$ 

and pOJt) = p(I^) where 1^ is a generalized interpolatory 
method. (See Wozniakowski [75].) 

We are now in a position to define the n-evaluation 
problem (see Kung and Traub [73] and [74]). For fixed n and 
m we wish to find a number k = k(n,m), points z. = z.(xj for 

k , k, 1 1 1 

i = 2,3,...,k, an incidence matrix E , E = n, and an iter-
k n 1 n 

ation cp which uses E (see (2.8)) such that p(cp) is maximal. T n 
Due to (2.11) this is equivalent to maximizing the order of 
information 9t, i.e., to find E* such that 

n 
(2.12) p (m)= sup p(E k), 

n k n 

E n 

(2.13) p(E*£) = p n(m). 

We recall the Kung and Traub conjecture for m = 0 (Kung and 
Traub [74]) : 

(2.14) p n(0) = 2 n " \ 

They showed two different matrices E , n ^ 2 5 for which the 
n-1 

order of iteration is equal to 2 (see Section 3), so we 
know that 
(2.15) p n(0) £ 2 n ' \ 

We now show a relationship among the P n( m) f o r different m. 



Lemma 2.1 
Let cp = cp(̂ ) be an iteration of order p for the problem 

(m) 
f (x) = 0 which uses n evaluations per step. Then there 

* * * (m+1) exists an iteration cp = cp (91 ) for the problem f v 7 (x) = 0 

which also uses n evaluations and has the same order p. 

Proof 
Let E - (e. .) be the incidence matrix of 9t and *k * n 1 J 

E = (e..) be defined by n ij 

* - f 
if e. . = 1 

otherwise. 

* * k Let 9t be information with the incidence matrix E based on 
n 

the points = z^(x.), i = 2,...,k, from 9t. For any f̂  from 
% f(™+1)(a)X= 0 f f / m + 2 ) ( a ) , define 

f(x) = f'(x). 

Thus, f € % f ( m )(a) = 0 + f ( m + 1 ) ( c ) , and f<J>(x) . f< j + 1 )(x). 
Hence 

91*(Xl; = «R(Xl; f). 
*\ 

Let us define cp by 

cp"(Xl; 9l"( X l; f^) = CDCX-J, «ft(Xl; f)). 

Since f̂  is arbitrary it easily follows that p(cp ) = p(cp). • 
From Lemma 2.1 and (2.15) we immediately get 

Corollary 2.2 
n 1 

p (m) ^ p (m-1) > 2 for any m ^ 1. • 
n n 

Although Corollary 2.2 states that P (m) is at least p^m-l) 
we propose 



Conjecture 2.3 

3. EXISTENCE OF ITERATIONS 

Recall that $ is a class of iterations defined by (2.8). 
In this section we show what we have to assume on the infor­
mation $ to be sure that § is not empty. We shall prove that 
$ = 0 if any of the following three conditions hold: 

(1) If z. (x-) does not converge to oi. 
(m) 

(2) If we do not compute f (x^), i.e., = 0. 
(3) If n = 1 under the assumption on sufficiently reg­

ularity of cp as a function of x^. 

We prove this in the following Lemmas. 

Lemma 3.1 
Let cp be an iteration which uses the information 5ft. 

Then for any f £ % f ( m )(a) = 0, 

lim z (x.j ; f) = a for i = 1,2,...,k+1. 
x^->a 

Proof 
Suppose on the contrary that there exist £ £ % £(<y) = 0, 

an index i, 2 ^ i < k, a number e > 0 and a sequence { xj) 
such that 

lim x. = a and |z.(x.)-a| ^ € for j ^ i n. I 1 I i 1 0 

Let J = [x: | x-or| < e}. Define f 1 : J -* <£, such that 
f 1 (x) = f(x) for x G J. Since f1 € 3 there exists 6 1 > 0 
such that any x^ , |x-j-cv| ̂  6^ is a good initial approximation. 

P (m) = 2 1 1" 1 V m > 0, n ^ 1. 



Setting X.. = x , for large j, where |x -or| ^ 8-j , we get 
z^( xj) J a n c* 5t(x̂  ; f^) is not well defined which contra­
dicts (2.8a). I 

Lemma 3.2 
k 

Let 9t be any information with the incidence matrix E . 
(m) n 

If $ £ 6 then e n = 1 , (i.e. we have to compute f (x-)). 
1m 1 

Compare Theorem 4.1 in Kung and Traub [73] which proves 
this result for m = 0. 
Proof 

Let cp € $ and suppose on the contrary that = 0. Let 
f be any function from 3 , f ^ ( a ) = 0. Let x^ be sufficient­
ly close approximations to a, x^ ^ a. From (2.2) we get 
5 5 3 min | z. (x 1) - x., | > 0. 

2^i<k 1 

Define f ( m ) ^ ^ 
(f(x) - ;—— (x-x n) m for I x-x-I < 6 

F , ( X ) = < 1 ^f(x) otherwise 

Cm) 
Note that f} € 3 , f\ ( X ^ = 0, and 

f ^ C X ^ = f ( j ) ( X l ) for j J m 

(z±) = f (^(z ) for any j and i = 2 k. 

(m) 
Since we do not compute f (x^) then 

5l( X l; f^ = 9l( X l; f). 

But x.j is the zero of f̂  and due to (2.8c) it follows 

x 2 = C P ( X ; 5 f l ( X 1 ; F ) ) = C P C ^ 1 ; W X ^ F J ) ) = . 



Thus, x, = x- and lim x, 4 a which contradicts (2.8b). • 
d i d d 

An iteration function cp can be treated as a function of 
x, cp(x) = cp(x; 9t(x; f)) for x close to a. We shall prove 
that if cp is sufficiently regular then the number of evalu­
ations n has to be at least two. 

Lemma 3.3 
If an iteration cp is a sufficiently smooth function of x 

then n ^ 2. 

Proof 
It is enough to prove Lemma 3.3 for the real case. As­

sume on the contrary that n = 1. From Lemma 3.2 it follows 
(m) 

that this unique piece of information is given by f (x^). 
Let 

cp(x; f (x)) = x + g(x, f (x)). 

From (2.8b) it follows 

g(a, 0) = 0 V ot such that f ( m )(a) = 0, f £ 3 

From this and the regularity of cp we can express g(x, y) 
g(x> y) = y M x , y) 

for an integer k ^ 1 where h(x, 0 ) ^ 0 and h(x) = h(x, f(x)) 
is a continuous function for x close to a. 

Let h(a) jfi 0 and for simplicity we assume that h(a) > 0. 
(If h(of) < 0 then the proof is analogous.) Let f € 3 be a 
polynomial of degree m+1 and f^ m +^(x) = 1, f(o') = 0. There 
exists 6 = 6(f) > 0 such that for any x-, | x--a| ^ 8 the 
sequence x d + ] = cp(xd, f m (xd>) = x d + f ^ ^ ) h(xd> is 
well defined for any d and converges to <y (see (2.8)). For 



e , = x-of we get d a 

(3.2) e d + , = [1 + e^"1 h(* d>] V 

If is close but different from QI then e^ ̂  0 for any 
d. Since lim e^ = 0 then for any d̂  there exists d ̂  d̂  such 

i I i d . I I 

that I e ^ + i I < \ed\ > 

(3.3) | 1 + e ^ 1 h(x,) I < 1. 1 d a 1 

We consider two cases. 

Case I. Let k be odd. Then for large d we have 

e^"1 h(x d) - e^"1 h(a) > 0 

which contradicts (3.3). 

Case II, Let k be even. We prove that h does not change 
sign for x £ [ C Y - S , o+6]. If so, then by the continuity of h 

/V "k /V 

there exists x such that h(x ) = 0 and 0 < |x -a| < 5. Set-
ting x^ = x we get x^ = x which contradicts (3.3). Thus 
h(x) £ h n > 0 for |x-a| £ 5. Define f • [a-8, 0+8] -> W such 
that f 1(x) = f(x). Since also belongs to % (a) = 0, 
there exists 8- > 0 such that x,, - = cp(x • 9t(x • f-)) is 
well defined whenever |x^-a| ^ 8^. Let x^ > a. Keeping in 
mind that 9t(xd; f^ s ̂ 0^5 f ) > from (3.2) we get 

e a + i £ 0 + e d " l h o ) e d 2 ( 1 + « i " 1 V d « r 

Hence, there exists an index d such that e^-j > 8, and since 
fi(x^u_i) i s n o t defined we get a contradiction with (2.8a). • 



4. HERMITIAN INFORMATION 

In this section we deal with a special case of the n-
evaluation problem when the information 5t is hermitian. 

Definition 4.1 
5t is called hermitian information if the incidence matrix 

(which is now called hermitian) satisfies 

6ij = 1 * 6i0 = 6i1 = = ei,j-1 = 1 V € 6 n " 

This means that if f^(z.) is computed then f ^ ( z . ) , # # . , 
f ^ (z/) are also computed. 

Let s. denote the number of evaluations at z.s i.e.. 
e. i = 1 and e. = 0 . Then I,s.-1 l, s. ' l ' l 
(4.1) s-j + S 2 + ••• + s^ - n where s^ ^ 1 for i = 1,2,...,k. 

For given n and k we want to find s^ and z^, i = l,2, # #.,k, 
to maximize the order of information. Let pn(m,H) be the 
maximal order of hermitian information. Note that 
P n(m) ^ P n(m,H). 

First we shall discuss a property of hermitian informa­
tions for the problem f(x) =: 0, i.e., m = 0. 

Theorem 4.1 (m = 0) 
The order p(E ) of the hermitian information 51 with the 

8 
incidence matrix E satisfies 

n 
k k 

(4.2) p(E*) ^ s |-| (s.+l). -
n 1 i=2 • 

Proof 
It is easy to verify that if f = f then 



(4 .3) f(x; X l ) = f(x) + G(x; x ) f~| (x-z ) X  

1 i=1 

for an analytic function G. Since f' (a; tends to g1(a)^0 
then setting x = a in (4.3) we get 

G(a; x ) k s± 

(4.4) (a-a) = g, ( q ) (1 + o(1)) M (or^) • 

Define by 

a-z. a-z. 
1 - 0 and - + «>, Ve > 0 q. -e 
l 

q.+e 1 

where e^ = x^ - a. Since z^ = z (x.j) tends to e* (see Lemma 
3.1) then q i exists and q̂^ ̂  0 for i = 1,2,...,k. Note that 
q 1 = 1. 

Let p.| = q.j = 1 and 

j 
J 1 i=l 1 

From (4.4) we get 
\s 

(4.6) a-a 
p k + r c g'(a) 

G(a; x ) ^ \a-z 
^- (1 + o(l)) f l 

1 
i - i l e v 6 

e1 

0, Ve>0, 

where 6 = e/n. For G(a; x.,) = const ^ 0 we get 

(4.7) 
p k + l + e 

-* » , Ve > 0. 

Now we shall prove that there exists a function f such that 



(4.8) q. ^ p. for i = 1,2,...,k. 

Let f be any function such that £ £ £(ot) = 0 and 
f^(Of) ^ 0 for j = 1,2,... . Since p^ = , the condition 
(4.8) holds for i = 1. Assume by induction that this holds 
for i ^ j. Suppose by the contrary that 

j 
J+l J+ 1

 i = = 1 i i 
Define 

j 
r = 2 s.. 

i=1 1 

Case I. Let r = 1 . This means that j = 1, = 1 and 
Z2 = z2^ xl* ^( x p) approximates ot with order greater than 
P 2 = 1 • 

Define 
x - f(x ) - z 

(4.9) h(x-, f(xj) = ! ^ + 1. 
I I z^ - x̂  

It is easy to verify that 

h(xv f( X l)) = ff (or)(l + o(1)). 

Case II. Let r > 1 and f be the Hermite interpolatory poly­
nomial of degree less than r defined by 

f ( l ) ( Z i ) = f ( l ) ( z . ) , i = l,2,...,j; 1 = 0,1,...,s.-l. 

Let a be the nearest zero of f to z, = x r Then 



(4.10) / " " s / ' ^ - ^ f o l + oO)). 

i=i 

Note that S is a function of and information 01 (x̂  ; f) = 
= { f ( 1 ) ( z . ) : i = 1 , 2 , . . . , j ; 1 = 0, l , . . . ,s . - l } . Recall that 

1 1 Pi+1 z,.+1 = z^+1 (x1, 9t (x1 ; f)) and z^+1 - a = o(e^ J ). Define 

S " ZI±l -
(4.11) h(x1,!Jl(x1; f)) = 1 7 - f ' ( z

j + 1 ) . 
- V 1 

Thus h is the lefthand side of (4.10) where a is replaced by 
2 j+1 • Since 2 i s a better approximation to of than S, it 
is straightforward to verify that 

f ( r ) , V 

(4.12) h (x r gi( X l; f » - r ; 0 + o(D). 

This means that in both cases using r evaluations of the func­
tion and its derivatives given by 9t we can approximate the 
rth normalized derivative. We prove that this is impossible. 

Note that h (see (4.9) or (4.11)) is a continuous func­
tion of x.j at x̂  - a and 

(4.13) h(«, 3t(of; f)) = • w . 
r • 

Let fi (x) = f(x) + (x-o/)r and let us apply h to the function 
f , Thus 

f ( r ) 
h( a , St(a; f)) = h(o, *Jl(«; f,)) = , W + 1 

• r« 
which contradicts (4.13). 



Hence q ^ ^ p^ + 1 which proves (4.8). Keeping in mind 
p(E^) = P k + 1 and using (4.5), (4.8) we get 

k k k-1 k-1 
p(E*) = 2 q s ^ S p . s = S p s + p s ^ (1+s ) 2 p s 

n i=l 1 1 i=l 1 1 i=l 1 1 k k k i=l 1 1 

k 

1 i=2 1 

which proves Theorem 4.1. • 
We want to show that a bound in (4.2) is sharp, i.e., 

there exist points ... tz such that the order of informa-
k 

tion is equal to ŝ  [ |̂  (s ^-Hl) -

Let w , p, = l , 2 , . . . , k , b e the Hermite interpolatory 
polynomial of degree less than r = s. + s 0 + ... + s de-

Mi 1 2 M̂  
fined by 

(4.14) w ( j )(z.) = f ( j ) ( z . ) , i = 1,2,...,^5 j = 0,1,.,.,s.-l 

Let a be the nearest zero of w to z. = x,. (If s, = 1 p. Mi 1 1 1 
then ct^ = x^ - p f(x ) for any nonzero constant p.) 

Define z ,, as a point such that 
M.+ I 

(4.15) z = a + 0 ( e S , 0 s> s - ft ( s.+l). 
M-+' M< 1 Mi 1

 i = 2 1 

From (4.14) it follows 

(4.16) a -a -
M-

(pf (a)-l)(a-z,) + o(a-z-) r = 1 

(r ) 
r •f'fe) nCof-z.) 1 + o(ft (a-z ) % if r >1 V ( a ) i-1 1 i=l 1 M. 



From (4.15) we get 

( 4 . 1 7 ) V , - A - 0 ( . V l ) , q ^ + , - S , ft (. 1 + 1), 

which proves that the order of information SFL based on the 
k 

points z +̂.| from (4.15) is equal to ŝ  [H (s^+1). 
An iteration which uses this information 9t and has the 

maximal order can be defined as follows. 
For jj, = 1,2 ,... ,k 

(i) construct w from (4.14) using a divided-difference 
algorithm, 

(ii) apply Newton iteration to the equation w (x) = 0 
setting 

- 1 

W H E R E 

( 4 . 1 8 ) I Q = R I O G 2 ( S ^ + 1 ) 1 . 

( I F S 1 = 1 T H E N Z 2
 = X L " P F ( X - | ) - ) 

T H E N ( 4 . 1 5 ) H O L D S A N D 

k+1 
( 4 . 1 9 ) Z K + 1 - a = 0(e} ) , Q. k+1 

s, n (s.+i) 
1 i=2 1 

Furthermore if B > q , - in (4.15) then we can specify the 
H |J.+1 

constant which appears in the ! !0 l f notation in (4.19)# Note 
that 8 > q ... if we redefine i n in (4.18) as the smallest 

PI P.+ 1 0 

integer such that ig > 1°S2^ s
n+l +^ * P»" 



Lemma 4.2 
Let 9 be the iteration defined as above, z^+-j = 

cp(x1, *Jl(x1 ; f)) . If {3 > q^ + 1 for p, = 1 ,2,... ,k then 

Z k + l ( x l ) ' 0 1 

(4.20) lim ! = a _ q. , , k+1 x,-»a , X k+1 

where 

C 

and 

'1 u (xrof) 

p.— 1 s (s +1). 
M . O M n M J + 1 3 + 2 

U+1 r ' r. 

.(s +1) 
^ for (j, = 1 ,2, 

M. = l 

< - ' ) l f F o - 1 £ 1 > 1 i.f (a; 

-Pf (a) + 1 if i = 1. 
If 

(4.21.) K ^ 

then 

i-1 . \f(i)(oi) < K 1" 1 for i = r 1,r 2 >...,r f e 

q k + 1 - 1 

(4.22) c • K £ lim 
Zk+1 ̂ ' < * 

(x1 -a) 
lk+1 

- qk+1 _ 1 

where 
1 if r 1 > 1 

s (s„+1)...(s +1) 
c - U M j K if v} = 1 and k £ 2 

M. if r ] = 1 and k = 1 

Note that the righthand side of (4.21) follows from the 
analyticity of f. 



Proof 
Let C . = lim (z.-A)/(x--A) \ Note that C, = 1 . From 

( 4 . 1 5 ) , ( 4 . 1 6 ) and since 3 > q , we get 

^ S i qa+l z = a - A + z -a = M 1~1 (z.-a) + ^ e , ^ ). H+1 p, p,+l p, r^ 1 = 1 1 I 

Thus 
s 

( 4 . 2 3 ) C , = M ft C . 1 . 
^ (J. i=1 

Since = 1 we get after some tedious calculations 

H-l s (s +l)...(s + 1 ) 

C = M D M 1 + 1 1 + 2 ^ 

r . , r. 

which proves the first part of Lemma 4 . 2 . - -
q.-l q.-l 

Let r- > 1 . Assume by induction that K < C. ^ K 
is true f 

( 4 . 2 1 ) we have 

This is true for i = 1 since = = 1 . From ( 4 . 2 3 ) and 

r - 1 + s-(q--l) + ... + s (q - 1 ) q , . - 1 
I C I * K H 1 1 ^ > = K V 1 

P + 1 

and similarly we get a lower bound9 

L^t r̂  = 1 . Assume by induction that 
c.K 1 ^ I C . L 1 c. where c, = 1 , c 0 = |M-I and i— 1 l1 l 1 2 1 1 1 

s2(s3+l)...(s i+l) 
= | M ^ | " for i ^ 3 . This is true for 

i = 1 and 2 since = q̂  = = 1 and = . Then 

I C I < X V L _ 1 | M I S 2 + S 2 S 3 + S 4 S 2 ( S 3 + 1 } ' *' V 2 ( S 3 + 1 } * ' ' ( % - 1 + 1 \ 

= K ^ c , 

and similarly we get a lower bound. Hence ( 4 . 2 2 ) holds which 



completes the proof. • 
Lemma 4.2 in the case r̂  > 1 states that the asymptotic 

constant C^+^ depends exponentially on the order c^+i• This 
property makes an analysis of the complexity of iteration 
easier (Traub and Wozniakowski will analyze it in a future 
paper). 

We are now in a position to answer the following ques­
tion. For given n and k, k ^ n, find nonnegative integers 
s n, s O J .... s. to maximize the order of information 1 2 k 

max 
s n+.. .+s. —n 1 k 

S I I | (s.+l). Using a standard techniq 
i=2 1 

ue 

it is easy to verify that 

f n - r (4.24) (n + (k-1) 1 + < 2 n-1 

n-1 for k = n-1 or n. If k is a divi-for k <• n-2 and p, = 2 
k 

sor of n-1 then the optimal s^ are given by 

I , n-1 , n-1 ^ = 1 + — and s± = for x = 2,...,k. 

For k = n the optimal s^ = 1. Furthermore from Theorem 7.1 
in Kung and Traub [74] it follows that there are exactly two 
cases which maximize the order of information, 

k = n-1, s 1 = 2 
k = n, s. = 1 l 

= 1 for i = 2,...,n, p n-1 = 2 
n-1 

for i = 1,...,n, p = 2 
n 

n-1 

The first case means that we use f and f' at the first point 
and f at the other points. The second case states that we 
use n function evaluations. From Theorem 4.1 and (4.24) we 
get 



The Kung and Traub conjecture holds for hermitian in­
formation (p (0,H) = 2 n ~ 1 ) . • 

The next part of this section deals with the general 
(m) 

problem f (x) = 0, m ^ 1. It seems to us that hermitian 
information is not always relevant for that problem especial-

Cm) 
ly for large m. Note that we have to compute f (x^) and if 
the information is hermitian then we have to assume n ^ m+1. 

(m) (ni) On the other hand if we use f (z^),...,f (z ) (which is 
nonhermitian) then the order of information is 2 n \ However 
it is interesting to know the optimal order of information 
for special hermitian cases, e.g., f, ff at ẑ  followed by 
n-1 function evaluation at the other points for the problem 
f 1(x) = 0, (see Lemma 4.5). 

Recall that p (m.H) denotes the maximal order of hermi-n ' 
tian information. In general we do not know pn(m,H) . We 
only show some bounds on it. 

Lemma 4.4 
p (m,H) < 2 n ~ \ 

Proof 
If f = f then 

(4.25) f ( m )(x) - f ( m )(x) = [ G C x ) ^ (x-z.)"1] ( m ) 

i=l 1 

1 m 
for an analytic function G. Let G(x) = —(x-a) • Since 

( -i-i ( -i-i "\ ^ * f (a) tends to g (a) ̂  0 as x^ tends to a then setting 
x = a in (4.25) we have 

k si 

a-a = c(cy,x1)|—|(^-z-) 1 

i=1 
where C ( Q / , X^) tends to a nonzero limit (see (4.4)). 



The proof of Lemma 4.4 may now be obtained analogously 
to the proof of Theorem 4.1. 

Lemma 4.5 
Let n ^ m+1 ^ 2. Then 

n— 1 
Pn(m,H) ^ c q(m) 

where 1_ 
C = C ( m ) = (l +2m-h/E)' Q ( M ) = 

and t = 1 + 4m. 

Proof 
Define s. = m+1 and s. = m for i = 2,...,k. Let 

Z2 ~ Xl + ^ f ^ xi^ f o r P ̂  0 a n d let z , p, ̂  3, be the 
nearest zero to z . of the polynomial w^ m^ where 

U.-1 (JJ 

w^ j )(z ) = f ( j )(z ) , i = l,2,...,w-l; 
(it J- J-

j - 0,1,...,m-L, 

and w is of degree ^ (p,-L)m. It is straightforward to veri-
fy that 

q 
z -a = 0((x -a) ^) M* 1 

where = q 2 = 1 and for 2: 3, 

q^ = m ( q i + ...+q^ 2) + ^ = q ^ + m q ^ r 

It is easy to verify that 
/ \k+L 

q k + L C I 2 
where c = c (m) = 2/(1 + 2m + Jt). 



For a given n let k = L(n-1)/mJ = + 9 where 
m 

-1 < 9 < 0. The total number of evaluation is equal to 
km + 1 £ n. Hence p (m,H) > p. (m,H) ^ q, , - ^ 

n km+l k+l 
. , vn-1 (]+Jt\ ^ , Nn-1 , . , ^ q k + 1 ^ c q(m) \2 J ^ c q(m) which proves Lemma 

4.5. • 
Lemma 4.4 and 4.5 state that p (m,H) as a function of n 

is exponentially bounded from below and above. However 
lim q(m) = 1 . 
m->oo 

5. GENERAL INFORMATION, m = 0 

We deal with the n-evaluation problem for m = 0. For 
small n it is possible to verify the Kung and Traub conjec­
ture and to characterize the information sets for all itera­
tions which have maximal order. 

For n = 1 the unique piece of information is given by 
f(x^). Since f(x) = f(x) + (x-x.j) has the same information 
as f then p^(0) = 1. This means that for any y = y(x.j ,f (x.j)) 
the distance o*-y can be at most of first order in cv-x̂  . How­
ever y is not, in general, an iteration function, see Lemma 
3.3. Note also that for any m, p^(m) = 1. 

For n = 2, Kung and Traub [73] proved that the maximal 
order of iteration equals two under a certain assumption on 
the iterations considered. Using our technique we find the 
order of information for any 31 with n = 2. Note that if 5JI 
is hermitian information then P O J T ) ^ 2 , by Corollary 4.3. 
Thus it suffices to consider the non-hermitian case. Let us 
first consider one-point iterations, i.e., k = 1 and 
91 = { f ^ ) , f ( j ) ( X l ) } for j ^ 2. Then f(x) = f(x) + (x-x^ 
and p(9t) = 1. Let us pass to two-point iterations, i.e., 
k = 2 and ft = [ f ^ ) , f ( j ) (z )} where j ^ 1 and 



z 2 = z 2(x 1,f(x 1)). If j ^ 2 then f(x) = f(x) + (x-Xj) and 
p(51) = 1. Let j = 1. Then f(x) = f(x) + (x-x1) (x-2z 2+x 1). 
From this we get 

3-a - (a-x.j)(a-y), y = 2 z 2 ~ x i . 

Since y = y(x^,f(x^)) then a-y can be at most of first order 
in (crx.j). Hence p(9t) ^ 2 and p(9t) = 2 if, for instance, 
z 2 = x^ + pf(x^), for any constant (3^0. 

It is easy to verify that, in addition, p 2(m) = 2 for 
any m. 

For n = 3, p^(0) = 4. There are a number of information 
sets 5JI for which p(9t) = 4 . A proof and discussion may be 
found in Meersman [75]. 

Unfortunately the proof technique used to establish the 
cases n = 2, 3 cannot be used for general n since there are 
too many sub-cases to investigate. 

We now wish to discuss some general properties of the 
n-evaluation problem. 

Recall that E = (e..) is the incidence matrix of the 
information 9t and let 

r k 
(5.1) M = 2 s e.. 

J=0 i=l J 

(r) 
denote the total number of evaluations f,ff,...,f at 
z^,...,z^, r — 0,1,... . 

The incidence matrix satisfies the Polya conditions 
n 1  

if 
(5.2) M r ;> r+1 for r = 0,1,...,n-1. 

k ; 
(See Sharma [72].) If E satisfies the Polya conditions then 

n 
e ^ = 0 for any i and j > n. This means we do not use 



derivatives of order higher than n-1 . Note that hermitian 
k t E satisfies the Polya conditions. Furthermore all known 
n k information sets with maximal order of information have E 

t n 
which satisfy the Polya conditions. 

Let j f = j'(E ) be a nonnegative integer such that 

M ^ r+1 for r = 0,1,...,j' and M . f l 1 < j !+2. r j +1 

Since jf+l < M . £ M . . , ^i f+l thene. . . , = 0 which means 
that we do not use the (jf+l) derivative. We shall call such 

k k k ' i ! = i1(E ) an index of E . E satisfies the Polya condi-J J n n n J 

tions if and only if its index is equal to n-1. 
We introduce the concept of the polynomial order of in­

formation pol(9t) defined by 

1 0 if B is empty 

| sup B otherwise 
where 

B = [q :> 1 : Vf € % f (a) B 0, Vf | f and f-f € n n, 
I **** I 

lim sup — L 2 ^ ^ = 0, Ve > 0}, 
I I q-e 

and n denotes a class of polynomials of degree ^ n. Compare 
with the order of information where is not assumed that 
f-f €11 , see (2.10). Thus pfljt) < polOJt). Similarly let n 

pol(n) = sup p(5l). This gives 

(5.4) p n(0) < pol(n). 
We show some properties of pol(n). From Section 4 it 

n—1 n—1 follows that pol(n) ^ 2 and pol(n) = 2 for hermitian 



information. Furthermore it is possible to show that 
n— 1 

pol(n) = 2 for n = 1,2,3 and that pol(n) is an increasing 
function of n. 
Lemma 5.1 

Let i1 be the index of the incidence matrix E of 9t. J n 
Then 

polCtt) ^ pol(j f+l). 

Proof (Compare with the proof of the Schoenberg Lemma in 
Schoenberg [66] and Sharma [72], Lemma 1.) 

k k Let E., denote the first (if+l) columns of E . Assume J n 
f € II l + r Then z. = zfy; ^(x^ ; f)) = zfy; ^ (x] ; f)) 

k 
where is the information based on E. f Let h £ II. • ,n and 

(5.5) h ( j )(z.) = 0 for (i,j) £ e k and j < j \ l n 

The total number of homogeneous equations in (5.5) is equal 
to M., = jf+l and since we have j f+2 unknowns then there 

J (i) exists a nonzero h satisfying (5.5). Furthermore h J (x) = 0 
(i) k for j ^ j f+2 which means that h V J'(z ) = 0 for all (i,j) £ 

Define f(x) = f(x) + h(x) we get 

(5.6) S?-of = ^ T J ^ (1 + o(l))h(a). 

But h(<y) depends only on E , and it can be at most of order 
pol(j ?+l). This proves that pol(iJl) ^pol(j'+l). • 

Since pol(n) is an increasing function of n we immedi­
ately have 

Corollary 5.2 
A necessary condition for 51 to have the maximal polynom-

k 
ial order pol(n) is that its incidence matrix E satisfies 

n 



the Polya conditions. | 
1 

We believe that pol(n) = 2 . However to find even a 
crude upper bound on pol(n) seems to be hard. We give an 
upper bound on pol(n) under the following conjecture. 
Conjecture 5.3 

Let cp.| ,cp2,.. • ,9 be any n-point iterations. Then there 
exists a function f € 3 such that 

(5.7) lim 
cpi(x1 ; Sfl(x1 ; f)) - a 

pol(n)+g = +°°, Ve > 0, Vi <: n. 

Assume for simplicity that C^ = C^(f,cp^) = lim |£cp̂ (x̂  ; 

9t(x.| ; f)) - a]/e^°^^\ exist for i = 1,2,.].,n. The con­
jecture 5.3 states that they are all different from zero for 
one function. Note that it holds for n = 1. 

Lemma 5.4 
If (5.7) holds then pol(n) < nl for n :> 3. 

Proof 
k / Let E be the incidence matrix of W # Let 0 p h £ II and / .\ n , n 

h U ; ( Z j L ) = 0 for (i,j) £ e*. Then 

h(x;x..) = a(x 1) (x-hp (x-h2) ... (x-h^) 

where 1 ^ j < n and a(x^) is chosen in order to ensure that 
h(x;x.j) tends to an analytic function as x^ tends to at. 
Note that h- = x. and h. = h. (z-,z0 ,... ,z. ) depends on at I I l l 1 2 k 
most (n-1) evaluations. If lim h. = ot then h. can be treat-

x-|-># 1 1 
ed as an iteration. From (5.7) we get 

L, I ^ I Ipol(n-1)+l-T _ N h . - A ^ c eJ , c > 0, 



for any e > 0. Since it holds for any 91 we have 

pol(n) < (n-1) pol(n-l) + 1 < n pol(n-l) < nl • 

The next part of this section deals with a restrictive 
class of n-point iterations. We use n evaluations per step 
and we assume that an iteration is exact for a function 
f G TI n - 1. We shall say that CP £ § R if cp(x ; ; f)) = a 
whenever f £ fl . and x. is close to ot. Note that all itera-n-1 I 
tions considered in Section 4 belong to $ . 

n 

Next we shall say that the problem is locally well- 
poised for f if for every h £ II - such that 

n-1 

h ( j )(z ) = 0 for (i,j) € e
k  

1 n 

it follows h = 0 for all X ] close to x. 
Note that Birkhoff interpolation for E k is well-poised 

and if V(x1 ,x 2,... ,xfc) h V j ; ( z i ) = 0 for (i,j) £ 
h £ n =* h 2 0 (see Sharma [72]). Thus, if Birkhoff inter­
polation is well-poised than the problem is locally well-
poised but not in general vice versa. 

Lemma 5.5 

If an iteration cp is exact for f € II cp G 5 , then 
n-1 T n 

k * (i) satisfies the Polya conditions, 
(ii) the problem is locally well-poised for f £ II y 

(iii) pCTO * n(n+l) n~\ 

Proof 

Suppose that the problem is not locally well-poised for 
f € II • Then there exists a nonzero h £ TI - such that n-1 n-1 



h ( j )(z,) = 0 for (i,j) € e\ Define f(x) = f(x) + h(x) . 
Since f € II , and f («) ̂  0 then n- l 

a = Cp(x1,OI(x1,f)) = cp(xr5l(Xl,f)) / 3. 

This contradicts that cp € $ . Hence (ii) holds. Let j' be 
k n 

the index of E . If j' < n-1 then there exists a nonzero 
n (i") k h € n., + 1 such that h V J /(z.,) = 0 for all (i,j) £ e Q , see the 

proof of Lemma (5.1). This contradicts that the problem is 
locally well-poised. Thus, (i) holds. 

To prove (iii) it suffices to note that if 

V ~W k ~ k . E* £ E* then p(E K) ^ p^*) 
n n n n n ri 

k ~k for n ^ n where by E = (e,,) < = (e. .) we mean 
n k ij n ij 

e. . ̂  e. . for (i,j) G e . 
Define EL as a hermitian matrix where n = kn, n 
e = 1 for i = 1,2,...,k and j = 0,1,...,n-1. 
ij 

k ~k 
Of course E ^ E^ and from Theorem 4.1 we get n n 

p(g£) * nCn+l) 1 1" 1 

which proves (iii). 

6. FINAL REMARKS 

The problem of the maximal order of n-point iterations 
is connected with Birkhoff interpolation which has been open 
almost 70 years. The main difficulty is to estimate the dif­
ference between the zeros, of any two functions with the 
same information, f ̂  f. Note that f can belong to II .j for 



all f if the problem is well-poised. However up to now we 
do not know when Birkhoff interpolation is well-poised. 
There are many reasons to believe that hermitian information 
(interpolation without gaps) is optimal. However there also 

n— 1 
existsnonhermitian information with order 2 

For nonhermitian information 51 it is hard to find the 
order pOJt). We know the order of such information only in a 
few cases. The first one is a Brent iteration based on 
3d - {f(z 1),f'(z 1),...,f ( j )(z 1), f ( r )(z 2),f ( r )(z 3),...,f ( r )(^} 
for suitable chosen z^ where 0 < r ^ j+1 (see Brent [75]). 
This information uses n = j+k evaluations and has the order 
p(9t) = j + 2k - 1 , see Meersman [75]. Note that this problem 
is well-poised. The second example is Abel-Goncarov informa­
tion given by 

01 = {f(z 1),f'(z 2),...,f ( n" 1 )(z n)l, 

see Sharma [72]. Recall that if z^ = ẑ  for i = 2,...,n 
then we get one-point information which has the order n (even 
in the multivariate and abstract cases). For Abel-Goncarov 
information it is possible to prove 

n ^ pC!Jl> ^ 2n 

but we do not know whether this upper bound is sharp. Final­
ly let us mention lacunary information given by 

3t = {f(z1),f"(z1),f(z2),f»(z2),...,f(Zk),f«»(zk)} 

and n = 2k, see Sharma [72], It is possible to verify that 

\ 2 n / l ^ p(3t) < | 2 n 

but the exact value of p(9t) is unknown. 
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