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Abstract 

The problem of representation and handling of constraints is here con
sidered, mainly for picture processing purposes. A systematic specification 
and utilization of the available constraints could significantly reduce the 
amount of search in picture recognition. On the other hand, formally stated 
constraints can be embedded in the syntactic productions of picture languages. 
Only binary constraints are treated here, but they are represented in full 
generality as binary relations. Constraints among more than two variables are 
then represented as networks of simultaneous binary relations. In general, 
more than one equivalent (i.e., representing the same constraint) network 
can be found: a minimal equivalent network is shown to exist, and its com
putation is shown to solve most practical problems about constraint handling. 
No exact solution for this central problem was found. Anyway, constraints 
are treated algebtaically, and the solution of a system of linear equations 
in this algebra provides an approximation of the minimal network. This solution 
is then proved exact in special cases, e.g., for tree-like and series parallel 
networks and for classes of relations for which a distributive property holds. 
This latter condition is satisfied in cases of practical interest. 
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1, Introduction 

In writing this paper we had in mind mainly the problems of a particular 
field, namely picture recognition and description. However, the problem of 
proper representation and economic handling of constraints is very general 
and is important in many problems of operations research, engineering and 
computer science. For instance, many practical design problems consist of 
finding any solution which satisfies all topological and geometrical restric
tions [1]. Even when an optimization problem must be stated, the chosen 
constraint representation is essential in determining the nature of the 
mathematical problem involved and its difficulty. Unfortunately, many prac
tical constraints are difficult to handle, because they involve in a complicated 
way many variables. For instance, we can mention the noncrossing condition 
among electrical paths in an integrated circuit layout or as a more esoteric 
example, the restriction to be faced in the design of computer rooms that 
all magnetic tape units must be in sight from the operator. 

In picture processing, constraints play an important role, but they 
are unlikely to be representable in a linear or anyway simple form. Here 
constraints are better known by the name of (geometrical, topological, 
structural) properties of the class of picture under consideration. But in 
fact they are present as fixed characteristics in explicit models or are 
implied by recognition routines which do not take into account configurations 
without the desired property. 

However, we believe that an explicit and consistent treatment of con

straints can bring valuable advantages. To show x*hat we have in mind, we 

present some Scenarios. 
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a) Speed up of the recognition process. Often recognition subroutines 
search a picture for specific elements or features. The search space 
is usually more than two-dimensional, because other free parameters must 
be determined at the same time (e.g., the angular position of a stroke, 
the vertex structure in a cube [2]). For efficiency, what we are looking 
for must in general be dependent on what we have already found out about 
the particular picture. More precisely, it is useless to look for features 
which are possible a priori, but are not consistent with the part of the 
picture we have already recognized. For instance, if the problem is to 
recognize human faces [3] we must of course limit the search for particular 
elements (eyes, nose, mouth, ears, etc.) to the areas of the picture where 
they may ever be present. A second step is to establish constraints 
between pairs of elements. If for instance the position of one ear has 
already been determined, the area in which the mouth could be found is 
further restricted. Such binary constraints, if formally stated, can be 
intersected and composed. For instance, if also an eye has been deter
mined, the allowed area for the mouth can be considered the intersection 
of the constraints given by the ear and the eye. Furthermore, the pres
ence of elements yet unfound, such as the nose, but for which constraints 
have been defined, could transmit further constraints from determined 
elements to the sough ones. In conclusion, if all those constraints 
are superimposed, the search space can be reduced. Only the first few 
elements will be time consuming. For the others, the recognition procedure 
should be essentially a check of the evidence we have already gathered. 

b) Optimal recognition. In particularly bad cases, combined evidence from 

all elements is required before accepting a picture, because many acceptable 
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candidates are present for each feature. This situation arises mainly 
during preprocessing or anyway during recognition of unstructured 
entities (see [4] for the limit case of optimal detection of curves). 
In this case it is convenient to assign a merit figure to the various 
alternatives, and then to find the best one with an optimization procedure. 
Again, systematic handling of constraints is vital in reducing the combi
natorics involved. 

c) Imperfect models. A model can be imprecise because it is too simple, or 
because something present in the model is missing in reality. In the 
former case the model will not be as powerful as it could be, but it will 
work; while in the latter case the picture could be rejected as not satis
fying the model. The missing part could be simply obscured by the noise. 
If the model is organized in terms of constraints, a model without the 
critical part could be systematically built taking into account the 
constraints transmitted from one part of the model to the other through 
the missing part. 

d) Linguistic methods. The application of parsing mechanisms in picture 
analysis is very promising [5,6]. These methods work well if the struc
ture of the image is mainly topological, as in bubble chamber tracks, 
chemical structures, block diagrams [7,8]. If geometrical information 
is essential, it can be embedded in the syntax rules only in simple cases, 
as in the linguistic description of mathematical formulas [9]. If the 
allowed geometrical relations can be expressed as a set of simultaneous 
constraints, they can be formally added to the rewriting rules of the 
grammar under the form of applicability conditions [10]. In this way, 
perhaps the geometrical consistency of the various rules can be proved 
at a grammar level. This fact would guarantee that all the pictures 
generated by the grammar are consistent and representable on the plane. 



In this paper we have limited our formalization to binary constraints. 
On the other hand, they are represented in the most general way, i.e., as 
algebraic relations between sets of possible values of pair of variables [14]. 
For many variables, a constraint is then represented as a network of simulta
neous binary relations. 

Of course, an n-ary constraint cannot always be represented exactly by 
an n-vertex network of binary constraints. However an optimal approximating 
network can be given easily. On the other hand, many different but equivalent 
networks can represent the same n-ary constraint. All the networks equivalent 
to a given one can be ordered by set inclusion. A least element is proved to 
exist and it is called the minimal network. Minimal networks are shown to 
have all the constraints as explicit as possible. 

The problem of the determination of the minimal network from a given 
one is then shown to include most of the practical problems mentioned above 
about constraint composition and transmission. Unfortunately, no general 
algorithm was found. This is not surprising, since very tough problems, 
like the graph coloring problems, fit this scheme. 

Approximate solutions are considered instead. In those networks (which 
are called closed) all those global constraints are explicit that can be 
transmitted through all the possible paths in the network. The problem of 
determining a closed, equivalent network is then stated algebraically. If 
the operations of intersection and composition of constraints are defined, 
the above problem can be shown equivalent to the solution of a system of 
linear equations in this algebra. Since composition does not distribute, 
in general, over intersection, an iterated Gaussian elimination algorithm is 
required for finding the solution of the system. 
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In the last section, some special cases are investigated, in which 
closed networks are minimal, i.e., in which our algorithm computes the 
exact solution. If the topology of the network is restricted, tree-like 
and series-parallel closed networks are proved minimal. The same result is 
also achieved if we restrict the class of allowed relations to a class where 
composition distributes over intersection. This is the case when the sets 
of possible values of variables have a lattice structure and the relations 
satisfy a monotonicity assumption. This condition is satisfied in some 
cases of practical interest, such as the shortest path problem in a graph 
(possibly with negative weights) and its multimensional equivalents. Here 
our algorithm becomes the well-known Floyd algorithm [13]. 



2. IlDiPluJLlitfiĉ  

In this section a constraint between two variables is represented, in 
complete generality, by a relation between two sets. Elementary algebraic 
properties of relations are then recalled. 

If a constraint exists between two variables and X2 9 X^ == {xi,i> 
* 2 £ X 2 = ^X29if^9^29n I then in general not all possible pairs (x^ r 9 ^ g) 
are allowed. The set of allowed pairs is called a relation between sets and X 2. 
In general, it is convenient to consider ordered pairs and thus to distinguish 
between a relation and a relation R 2]^ ^ o r instance, if X]_ « {-̂ J and 

= jl,2,3] then R 1 2 = |(l,l),(2,l),(l,3)j- is a relation. Any relation 
is thus a subset, proper or improper, of the product set X = X-̂  x of all the 
pairs. A standard way of representing subsets is to use the characteristic 
function F: 

F : X1 x X 2-* {o,l] 5 F((x 1 > r , x 2 > s)) - 1 iff (x 1 # r , x^ s) £ R 
In other words to each pair in X a binary digit is associated, which is 1 if 
and only if the pair belongs to the relation. Being characterized by a binary 

Ni.N2 

number of N-̂ Ng digits, 2 different relations exist between X̂^ and Xg. 
Usually, these digits are arranged in a N]_ x Ng matrix [%2,rs*' w h o s e r o w s 

correspond to the elements of set X^ and columns to set X 2. Thus we have: 
R12,rs - 1 («l,r ' *2tJ € R12 

In our example, the characteristic binary matrix is: 
10 1 

R12 = |l 0 0 
In what follows, relations will be mainly represented in roatrix notation. 

R12 

. "1 
The inverse R^ of a relation R-̂  is defined as the transpose: 
-1 T 

R12,rs " R12,rs = ^ s r 
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For relations, being sets, we can define the usual operations of negation 

»32-~|Hl2 i f f R12,rs = n R12,rs (r « 1,...,% ; s = 1,...,N2) 
union or logical sum 

R12 * R12 ̂  R ^ R12,rs " *h,„ V l£>,rs 
intersection or logical product 

R12 = R12 n R12 i f f ^.rs * R12,rs^ R12,rs 
and the partial ordering relation of set inclusion 

R12 - R12 i f f R12,rs R12,rs 
An empty relation and an universal relation can be defined 

<*12,rs-0 ' U 1 2 , r s = 1 

such that 
R12 U 012 " R12 i R12 n U12 = R12 

for all R^2# ^ m s relations between two sets form a complete lattice with 
greatest element U and least element 0 and where the operations of sup and 
inf coincide with union and intersection respectively* 

Next step is to consider a constraint R-jjj between variables and X2 
and a constraint R23 between variables Xj and x^. There will be an induced 
or transmitted constraint Ry between variables x^ and x^ : a pair (x^ r > x3,s^ 
is allowed, if at least one value x^^ exists, such that both (x^ r , X2^t) 
and (x2 t y x^ Q) are allowed by Rq^ and R23 respectively. This requirement 
defines the operation of composition of relations: 

R13 = R12 # ^3 i f f R13,rs -\f R12,rt A R23,ts 
Note that composition, in matrix notation,is just binary matrix multiplication. 

For example, we may have 
R13 = R12 * ̂ 3 = 

R12 = 1 0 0 ; R 2 3 " 
1 0 
1 1 
0 1 

1 1 
1 0 
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It is very easy to see that composition is associative, and that an identity 
relation exists, defined only between a set and itself, 

^ r s " 1 i f f r = 3 

such that 
R 1 2 # J 2 2 =  Jll # R 1 2 " R 1 2 

for every relation R^. 

The defined operations of union,intersection and composition have an 
useful monotonicity property* If f(R]J2) is any expression involving the opera
tions of intersection, union and composition among relation R^ and any number 
of constants, from R-̂  £ R^ we have f(R][2/ S f(RI2>» T h i s Property 
is obvious if we notice that function f, written in binary form, contains 
binary sums and products, but no negations. 

A particular case of a relation happens when one of the two sets (say the 
first) has just one element. These relations, in binary form, are representable 
as vectors and are in a one-to-one correspondence with the subsets of the 
second set. Actually, in what follows we will always assume the existence of a 
fictitious one-element set XQ, to have an homogeneous way of representing 
subsets. Especially useful in our formalism are the fundamental vectors 
VQ«L and V^Q> i.e., the vectors with only one nonzero element* For instance, 
the image in R̂ ? of the element x, can be defined as represented by the vector: 

RQ2 = V 0 1 • R12 

where VQI is the fundamental vector corresponding to element X]_ > r: 
V01,t 35 1 i f f t " r 

A relation R^ is called total if every element of X-^ and X2 is in rela
tion with some other element. In our formalism, R-ĵ  is total iff 
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V01 # R12 / ̂02 a n d RL2 # V20 i 1̂0 
for every fundamental vector Vq-̂  and V20 • Given any total relation R^* 
it is easy to see that R^ • U23 • U13 and Un • R12 • Ui2* 

In what follows we are mainly interested in the operations of intersec
tion and composition, so we will use the symbol + for intersection and the 
simple concatenation for composition* Unfortunatê , composition does not 
distribute over intersection. In general 

&L2 (h£3 + R23) R]2 R23 *  R12 R23 
For instance, if 

11 1 0 0 ft 1 0 0 0 R12 * Jo o| ' ^3 " |l o| J "23 
then 

R12 (R23 • ̂  s 013 ? R12 ̂ 3 + R12 *fe 88 |o S| 

A special case arises when distributivity does hold. In general, we say 
that the relations 

Rik ' 1 ^ 1> # # #> n J * ̂  k 

form a distributive set of relations with respect to set if 
m m_ m in.. 

(2.D (E V o i Rik) (-Xl V i Q) - Z. £ V 0 i R i k R k j V j 0 

I# i$ ipk &k 
for every set of fundamental vectors , V̂ q (i * l,...,m î k) and for 
every m . In (2.1) the indexes of the sums go from 1 to m. Actually, the 
ordering is immaterial and thus we require (2.1) to hold whenever the indexes 
assume any set of m values. Note that distributivity defined in terms of 
fundamental vectors is more general than simple distributivity. For instance, from 

V 0 1 R]j2 (R23 v30 + V3Q) " V01 R12 R23 v30 + v01 R12 *23 V30 
for every V 0 1 , V^q and V^ 0 , <2.2) follows, but not conversely. 

(2.2) Rj2 (rJ3 + R 3̂) - Ru bJ3 + Rj^ R^ 
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3# Networks of constraints 

In this section, constraints among n (n>2) variables are considered. 
A straightforward formalization of such constraints as n-ary relations is 
possible, but the quantity of information involved grows exponentially with 
n, and so no hope exists to handle it for any practical n. Networks of binary 
relations as defining an n-ary relation are then introduced. An optimal approxi
mation theorem is proved, and just one minimal network is shown to exist. 
Finally, a problem is stated, called the central problem, which embodies 
most practical problems posed by networks of constraints. 

Generalizing the approach followed in section 2, it is clear that an 
n-ary constraint can be considered to allow some (or none or al]) among the 
possible n-tuples of values of n variables. Thus an n-ary relation ̂  is 
any subset of X « X 1 x X2 x ... x X n . The set X can be visualized as an 
n-dimensional space. An n-ary relation p thus represents a "solid11 in this 
space. Given an m-dimensional subspace S « X^ x ... x X. , any n-tuple a 
and any n-ary relation p in X can be projected on S yelding the m-tuple a s 

and the m-ary relation Pg • The number of distinct n-tuples is N^...Nn and N^...Nn 

thus 2 is the number of distinct n-ary relations. If ML « ••• * N = N 
i n 

then N n bits are required on the average for storing a n-ary relation.Practical 
values for N and n in picture processing applications are 1000 and 20, and thus 
the information involved is enormous. One way out is to consider a restricted 
class of, n-ary relations * 

A_ network R of binary relatL ons is defined as a set of sets X = j xi>"»> xn} 
plus a relation from every set X^ to every set Xj (i,j » l,...,n). Furthermore, 

T 
£ I±± (i * l,...,n). If RJLJ = Rji the network will be called symmetric* 
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The network of relations R can be thought of as representing an n-ary relation: 
P - {a | a £ X * X x x ... x X n ; ( V ifj) S * X± x Xj ; a g € R±.J 

In other words an n-tuple a is allowed by p iff its projections on all the 
two-dimensional subspaces S of X simultaneously satisfy the binary constraints 
of the network R. Note that if some R^j « then ̂  - 0., while if p « X then 
Rij s Uij "•̂ ••••>n ; î j) and R^ * 1^ (i » l,...,n). 

An obvious way of visualizing a network is by a directed graph. Vertices 
Vi,...,Vn correspond to sets Xp...,Xn, and an arc VjVj is present from to V. 

3 
iff R^ ^ Uj^ (i ̂  j) or Rj^ 7̂  Iii« Relation Rij. is then associated with the 
direct arc VjV... For instance the following n-ary relation ^ is represented 
by the network R in Fig. la: 

C - {<xl,l"' *2,1 ' x3,l} ' ( x l A > ' x3,2> > <xl,2 * *2,3 ' 
or, in a more compact notation, 

/l 1 2 
(3.1) P - 113-

1 1121 
where the indexes of the allowed n-tuples form the columns. 

A network R is determined by giving in orderly fashion all its binary.rela
tions, and this requires roughly B * n 2 N 2 bits. Clearly B < N11 except for very small 
values of N and n. This argument shows that the class of n-ary relations 
representable by networks is narrower (in fact, much narrower) than the class 
of all n-ary relations. 

Given an n-ary relation p , the simple projection formula (3»2) generates 
a network Rf which is, in a sense, the best possible excess approximation of |>. 
(3-2) R^ - ^ s j a € p and S = X ± x Xjj 
In words, if p is expressed in column form, R̂ ^ is obtained by taking the i-th 
and the j-th rows (and merging repeated pairs). Note that R^ — "I and that 
i tT t 
Rj-j s Rji 9 "*"#e# R * s sy™1^1*^0* 
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T 
Some properties of R are proved by the following theorem. 

t 
Theorem 3.1 The network of relations R defined by (3#2) represents an 
nary relation pf such that 
(3.3) pep 

tf 11 
Furthermore, no network R exists, which represents an n-ary relation p 
such that 

P £ P" c c' 
Thus,in particular, p • p if p is representable by a network. 
Proof Formula(3.3) is easy proved, because n-tuples aep satisfy network Rf 

by construction. We will prove the second part by contradiction. Let a be an 
n-tuple such that a © p but a ̂  p . Thus some projection b of a does not 
satisfy a relation of R , say b « ag , S * X i x X^ , b (£ R^j , while b t R^j. 

t ' — 
But if the pair b was included in R̂ j it means that an n-tuple a £p exists, — ' § it such that ag « b. This is a contradiction because then^a p while we 
assumed p£ P • 

1 1 Q.E.D. 
As an example of the projection procedure let us consider the following 

relation: 
(3.,) r (ill) 
The approximating network is: 

£ 3 -12 [l 2 21 
^3 = (l 2 l) s |l if 

*23 
1 o 
i i 

*!! = *22 R 33 
The induced n-ary relation is 

. /I 1 2 1\ (3.5) P = 1 2 2 2 
1 11211/ 

A partial ordering among networks of constraints having the same number n 
of vertices can be introduced in a natural way. The ordering relation is defined 
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as follows: 
(3.6) Rf S r" iff R[j £ Rij (if J 88 lf**n) 
The reflexive, weakly antisymmetric and transitive properties for network inclusion 
descend from the same properties for set inclusion • It is also clear that 
the set of all networks with n vertices is a lattice under c because a least 
(R-jj - 0̂ j) and greatest (Rjj « U^j if i ̂  j ; R^ » I) networks exist. Thus 
union and intersection between two networks are defined. It is also immediate 
to see that 
(3.7) Rf £ Rf implies p's p" 
where R? and Rf! represent p' and p M. 

We have seen that not all the n-ary relations are representable by a net«~ 
work of constraints. It can also happen that an n-ary relation p is representable 
by many distinct networks. For instance, relation (3*1) can be represented 
by the networks in both Fig.la and Fig. lb. Two networks Rf and Rlf which repre
sent the same n-ary relation p are called equivalent. 

The next theorem proves the existence of a pdpima^ network M representing j?. 

Theorem 3.2 Let Sp be the equivalence class of all networks representing 

the same relation p • If 
n! £ Sp and r" £ Sp 

also 
R « rt fl rI! € Sp 

(See for instance Fig la,b,c). As a consequence, a minimal (with respect to £ ) 

network M representing p exists, and can be obtained from p by the projection 

formula (3-2). 
Proof To prove this theorem, we first notice that R £ R and R 5 R , and 
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thus an m-tuple a satisfying R satisfies also Rf and r" for (3.7) • Conversely, 
if a satisfies R* and Rn it satisfies also R • In fact, for each subspace 

f ft f IT 
S - X± x Xj , if a s £ R±^ and a s £ R^ then a g £ R 0 R = R by the definition 
of intersection. Finally, the network obtained by formula (3*2) must be mini
mal: if any pair b is erased by any relation R^, the represented 
relation p is changed, 

1 Q.E.D. 
Given an n-ary relation p representable with a (minimal) network of 

constraints M, and a subspace S«Xi x x X m of X, one could ask if the pro
jection |>g of p : 
(3.*) (>s = { a s | a £ p j 
is representable with a network of m nodes. Interestingly enough, in the 
general case the answer is no, and a counterexample is given in Fig. 2. 
There, relation p is 

P = {(xl,l  9 *2,1 ' X3A 9 x4,l^ ' (X1A ' *2,2-' x3,2 > x4,2^ ' 
(xl,2 > *2,1 , x 3 > 1 , x ^ ) } 

If S = X-̂  x X2 x Xy p s is given by (3«4)# But, as we saw, (3*4) is not 
representable with a three-vertex network. If p^ is representable for all S, 
then p and all networks representing p are called decomposable. If not, the next 
theorem gives the best approximating network for p^. 
Theorem 3.3 The best, minimal approximating network of p g is the complete 
subnetwork vF• of M corresponding to the set of vertices S « , ... , Xĵ j. . 
Prpo£ This property descends immediately from theorem (3.1) and from the fact 
that if T = X^ x X^ is any bidimensional subspace of S, we have: 

( P S ) T - P T . 
1 I Q.E.D. 
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In the remainder of the paper we will be often concerned in proving that 
a network R is minimal: M » R. The next theorem gives a characteristic 
condition for R to be minimal. 

Theorem 3 . L A necessary and sufficient condition for a network R to be 
minimal, is that if a pair b satisfies the generic reletion R.., an n-tuple 
a satisfying R exists, such that ag « b , S « X^ x X^ • 
Prpof Nepessity. If R is minimal and b € R^j, an n-tuple aep must 
exist such that ag * b, because otherwise R with R̂ j = - j b̂ » would 
be equivalent to R and smaller. 
Sufficiency Under our assumption, no pair can be erased from any R^j still 
obtaining an equivalent network. Thus R is minimal. 

Q.E.D. 
The last theorem can be modified as follows. 
Corollary Given any relation R̂ ^ of R, if whenever a pair b belongs 
to R, , , an n-tuple a satisfying R exists such that a g = b , S » X ^ x X , , 

ij 3 
then R. » Mi < • ij J 

Proof This statement follows from the previous theorem and from the 

equivalence of R and M. 
Q.E.D. 

The above theorem shows that a minimal network of constraints is perfectly 
explicit: as far as the pair of variables x^ and x^ is concerned, the rest of 
the network does not add any further constraint to the direct constraint M^. 
Minimal networks are likely to represent an n-ary relation in a redundant 
way. In our application, for instance, we expect to define constraints almost 
only between geometrically adjacent elements. As a result, the density d of 
connections (defined as the average number of arcs per vertex) should be bounded,like 
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that of a planar graph, d < 3 * or at most should grow logarithmically 
with the number of vertices, but not linearly like in a complete graph* 

From the above reasoning should be clear that̂ in our applicationfnet
works of constraints will never be given or stored as minimal networks* 
Furthermore, the trivial way of getting the minimal network, i.e., generating 
the n-ary relation p from the given R, and then M from p with (3*2) will be 
impossible in continuous cases and always practically infeasible. Therefore 
the problem of computing M from R in an economic way is nontrivial. On the 
other hand we can show that most of the practical problems arising from the 
use of networks of constraints can be naturally reduced to the central problem of 
deriving M. In fact, in the first scenario described in the introduction, if 
V0k ^ 88 -̂'•••'m) a r e the fundamental vectors corresponding to the already 
determined values of the first m variables, the intersection of images 

clearly represents the set of allowed values for the p-th variable. In 
scenario b), if we want to eliminate a variable (related to m others variables) 
using a sequential optimization method, we must optimize the objective function 
separately for all the feasible m-tuples of related variables. The set of those 
m-tuples is p g , if S is the subspace of the related variables. By theorem (3.3) 

is the best approximating network of p g. Finally, in scenario (c) the 
minimal subnetwork M 3 corresponding to the parts which are not missing con
stitutes the best reduced model. 

In a planar graph, the number n of vertices is related to the number a of 
arcs by the relation 

a < 3n - 6 
Equality is achieved if all the faces are triangular. 
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4* Approximate solution of the central problem 

In this section we consider the problem of computing the minimal network 
equivalent to a given network. No exact general algorithm, besides complete 
enumeration, was found. However, an approximate solution is given, which 
generates an equivalent "closed" network. 

In a generic network of constraints, a certain pair (x. , x. ) can be 
allowed by the direct relation R^j (or also by Rj^ t Rii and Rjj) but can be 
actually forbidden because it is not possible to give to all the other variables 
any set of values allowed by all the constraints. To recognize such pairs and 
erase them, namely to make explicit the global constraint, is the essence of the 
central problem. The central problem, in its generality, is very difficult. 
Graph coloring problems, for instance, are very neatly represented by networks 
of constraints: relations are all of the type U - I , i.e., all pairs allowed 
except those of the same colour. The number of allowed colours (i.e. the cardi
nality of sets X^) and the topology of the graph characterize the particular 
problem. For instance, Fig. 3 shows the network of constraints representing the 
problem of coloring a tetrahedron with three colours: an impossible task* 
However, it is difficult to recognize it with a sequence of local examinations 
of the network, and without "higher order" reasonings. Needless to say, no hope 
exists to extend such tricks to the general case. Therefore we look for an 
approximation of the minimal network M, i.e., a network Y which is as explicit 
as possible and still computable with local operations. 

Let us consider an ordered pair of values 
b - (*i,r > xj,s> 



« 19 a 

and a path 
P « (Vi - V ± , ... , V i p , ... , V l m « Vj) m > 1 

in the complete network R from vertex to vertex V • The pair b is 
alloyed by the path, P if the variables 

X i = x i Q , ... , x i p , ... , x i m = Xj 
can be given suitable values 

xi,r " xio,r0 > ••• > xi p.r p > ••• > xi m,r m
 = xj,s 

which satisfy the relations 

V i ' # # # ' 9 " # 9 

along the '̂path P. Note that the same vertex V k can occur in a path any number 
of times, and different values can be given to its variable x^ for each occur
rence. A pair b is called legal if it is allowed by all the paths P from 
Vi t o V j * W e s e e t h a t t h e P1*0^1*^ o f be:*-n£ legal is decidable in a finite 
number of steps. Finally, a network is called closed if any pair b which is 
not legal is also not allowed by the direct relation R̂ j • 

It is clear from the definition that minimal networks are closed. The 
converse is, in general, not true. For instance, the network in Fig. 3 (repre
senting the uncolorable tetrahedron) is closed but not minimal. This also 
means that many closed networks equivalent to a given network may exist. Given 
a network R, its closure Y is defined as the largest closed network not larger 
then R but equivalent to R. The next theorem proves the uniqueness of the closure. 
Theorem L.l The set of closed networks not larger than R but equivalent 
to R (which is ordered under S ) has a largest element Y. Therefore Y is the 
only closure of R. 

* A path in R is any sequence of vertices. A vertex can occur more 
then once in a path, even in consecutive positions. 
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Proof We must prove that the union of two closed networks Y* and Y" both 
not larger than R but equivalent to R is a closed network Y not larger 
than R but equivalent to R. In fact from R 2 Y? and R 2; Y" we have 
R 2 Tf U Y M * Y . From R 2 1 2 Y ?, R equivalent to Y* and (3.7) twice, 
we have Y equivalent to R. Let ̂ ± ^ r 3 * !• Then for X - Y U Y either 
Yij,rs = l o r Yij,rs 85 1 o r b o t h > s ay Yij,rs " 1 9 T i i^ n t h e ^ ± r b 18 r> xj,s^ 
is allowed by P in Y? for closure. Thus b is allowed by P also in Y, because 
the same set of path values satisfying Y F satisfies also Y, for Y* Q Y. 

Q.E.D. 

The closure Y of a network R can \>$ characterized as being the solution 
of the following system of equations. 

(4.D Y . . - £ % k V + d i j 
where 

d^j « IJLj if i • 3 ; dij • • Uij otherwise. 
A network of relations Y is called a solution of sysftpm (4*1) iff: 
i ) The relations Y^ satisfy equations (4*1)• 
ii) No other network Y F exists, such that Y F satisfies equations (4»1) 

and Y ? 2. Y . 

Note that condition (ii) is necessary for ruling out solutions which are 
not equivalent to R (like the trivial case » 0^) and that it does not 
imply uniqueness of the solution a priori. We can prove the following 
theorem. 
Theorem 4.2 Any network Y which satisfies system (4*1) is: 
a) Not larger than R. 
b) Closed. 
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If furthermore Y is a solution of system (4*1)$ then Y is: 
c) Equivalent to R 
d) The closure of R 
Therefore only one solution exists. 
Proof a) From (4-1) we have 

Thus, by the mono tonicity property of composition: 

And finally, from (4*1) 

b) Given any path P we will prove that if Yij f I. s " 1 a n d Y satisfies equa
tions (4.1) then the pair b » (*i,r * xj,s^ l s a l l o w e d *>y P in R, i.e. 
the relations of R along P can be satisfied. We vcdll prove this result by 
induction on the length m of the path P. If m=l the proof is trivial, 
because Y-JJ is the only relation which must be satisfied. If the result is 
true for every path of length (m-1) it is true also for paths of length m. 
In fact, from (4.1) we have: 

*ii - ^ * £ Rii Y i L 
Therefore at least one value x*+ r„ must exist, such that R̂- ~ ~ * 1 and 

ul> rl ^ L0 1l , rO rl 
Yilim^l^m " ̂  ^ r e l a t i o n ^ 1 i s s a t i s f i e d by (xio,ro > *L1$VX) > 
while YN. ̂  ~ - - 1 implies that the m-1 relations R 4 . , ... , R. 
can be satisfied according to the induction assumption. 
c) If an n-tuple satisfies Y, it satisfies also R, because Y £ R for a). 
Conversely, let a « (x, , ... , x ) be an n-tuple satisfying network 
R, namely R I I = 1 (i,j « l,..,n). We will prove that a satisfies 

J' i j 
network Y too. In fact, if we assume Y. . = 0 for some i.i , it is possible 

1 J , r i r j 
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t 

to find a larger network Y Y (against ii)) satisfying (4#1) and 

such that Y.. = 1 . For proving it, let 

Yij,r.r. " 1 J 4>rs « Y i J > r s if r / ^ a n d s / r j 

It is immediate to see that equations 

0 n vN> 
i J ' V j k=l 

are satisfied, while from Y satisfying we have: 

from monotonicity of union and intersection. So we have 1 J 

0 tS- 0 

Now, if we compute iteratively 

p £ ~ P-1 
- X . R., Y, . + d, . 

we will have 

Y° £ Y 1 c . . . . o y p 

from monotonicity of intersection and composition. Thus for some q we will have 

Y q = Y q + 1
 = Y

T 

satisfying (4.1) and such that Y* 2 Y ° 3 Y. 

d) Let Y be the closure of R. From the definition of closed network, applied to paths 

of length two, we have: 

Y i j * Y i k \5
 + a±j 

Then from Y £ R 

Y £ R,, Y + d 
ij n i k kj U i j 

Summing up, we have:: 

— n — 
Y - . S H ^ik V + d< . 

1J l£l kJ 1 J 

Actually, we must have equality, i.e.,(4»l)> because otherwise with the iterative 

method shown in part c) a network .Y* can be found which satisfies (4*1)• Then 
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the proof of part c) shows that a network Y £ Y ^ Y can be found which 
satisfies (4#1) (and thus is closed and not larger than R) and is equivalent 
to R. The existence of Y would contradict the maximality of Y proved in 
theorem(4.l). Thus Y satisfies i). On the other hand, if Y is any solution, 
we must have Y £ Y for the same reason. Thus Y satisfies ii) and is 
the only solution. 

Q.E.D. 
The next corollary gives a simple way for characterizing a closed network. 

Corollary A necessary and sufficient condition for a network Y to be 
closed is to satisfy the following system of equations: 
(4-2) Y ±. = £ Y ± k Y k . + = l,...,n) 
Proof. According to theorem (4.2b), if Y satisfies system (4*2) Y is closed. 
Conversely, if Y is closed, it must be the closure of itself and thus by 
theorem (4»2d) must satisfy equations (4*2). 

Q.E.D. 
The next theorem proves a. useful property of closed networks. 
Theorem 4.3 In a closed network Y, the loop relations and the relations 
among different vertices satisfy the following equation: 
(4.3) Y ± i = Y^ U.± + I±± (i,j - l,...,n) 
Proof From (4.2) we have 

T i i £ *ij Yji • hi 

and from monotonicity 

Furthermore, from (4*2) We have 
Y. £ Y.. Y, . 
xj xi ij 

In binary form we have: 
Yij,rs ^ Yii,rr A ?±i,rs (r = 1,...,N± ; s = 1,...,N.) 



or, from a truth table 
Y. • C Y.. 
ij>rs 11,rr 

Making the union with respect to s: 
V:' Yij,rs^ *ii,rr (r - 1 , . . . , ^ ) 
s=l 

Equivalently we can write 
Y,, U.. + I.. <£ Y.. 
ij ji 11 ii 

Therefore we have 

Y" • ^
 d* * 

Given a network R with n vertices we can give an algorithm for computing 
its closure Y. 
Algorithm C 
Step 1 Y° = R 
Step, 2 Execute next step for k « l 9 m . . , n 

3iep_l (4-4) Y*. = Y^T1 + y^ 1 Y ^ 1 Y ^ 1 (i,j = l,...,n) 
Step 4 If Y*1 $ Y° then let Y° = Y* and go to step 2 ; else let Y - Y11 and stop. 

Theorem L . L Algorithm C computes the closure Y of R . In particular, if 
Ŷ j r g = 1 in the network Y31 obtained at the end of the first iteration, then 
pair (x. . , x. ) is allowed by all the paths from V. to V. in R. 
Proof We will prove that i) Y is not larger than and equivalent to R; 
ii) Y is closed ; iii) for every closed network Y1 equivalent to R and not 
larger than R we have Y* £ Y £ R. 
i) Each application of step 3 produces a network Y equivalent to the prece
dent Yk""1. In fact, clearly Y k ^ Y k" 1. On the other hand, if the second 
term in the right member of (4#4): 

\/k Y k 1 A Y k _ 1 A Y k _ 1 = 0 V Yik,rt Ykk,tt n Ykj,ts u 

is zero for some r,s it means that no value for x^ can be found which 



satisfies relations Y^f1 , Y^f1 and Y^/1 for x. « x. and x* =x, e. 
lk kk kj 1 j j,s k k-l Thus no n-tuple is excluded by Y which is not excluded by Y • Therefore, 

from transitivity of equivalence and inclusion, Y is equivalent to R and Y £ R. 

ii) We will prove that if a pair is allowed by Y* then is allowed by all paths 
in Y*V We assume that when step 3 was executed (k-l) times, if a pair 
(x̂  , x 4 a) is allowed by the relation then it is allowed also 
by all the paths in Y° with extrema in V̂^ and V. and having all the inter-
mediate vertices with indexes < k-l. If k « 1 the assumption is trivially 
true. We will prove the same property for k after the k -th execution. Let 
us consider any path P from V i to V̂ . having intermediate vertices with indexes 
< k. If vertex does not belong to this path, the induction step 
is proved. If it does, path P can be decomposed in three paths: 
a) a path from V.̂  to V k 

b) a finite (possibly zero) number of circuits from V k to 
c) a path from to 
All those paths have intermediate vertices with indexes < k-l. 
According to the step (4*4) , if Y ^ r s = 1 , then a value x k^ t can 
be found such that Y*""1 ^ = 1 , Y^ 1

 x = 1 and = 1. Thus by 
ik,rt kk,tt kj,ts 

the induction assumption we can give to all the intermediate variables of 
paths a),b) and c) suitable values which satisfy the corresponding constraints 
in Y^. When the algorithm stops, we have Y n = Y^ = Y and thus Y is closed. 
iii) Let Y 5 R be any closed network equivalent to R. We will have 
t k t 

Y £ Y for all k and for all iterations of algorithm C. Thus also Y- £ Y. 
Inductively, let us assume that Y1 ~ Y k 1 before the execution of step 3. 
This is certainly true for the first execution of step 3 in the first itera
tion: Y° = R . Then Y ? ^ Y k. In fact, if network Y* is plosed, it satisfies 
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equations (4.2) for the corollary to theorem (4.2). In particular, we have: 

4\j + dij > \3- 4<j 
and therefore for the monotonicity of composition and intersection: 

' cz f ' T 

xij xik Ykk k̂j + aij 
and thus 
(4.4) - y!. + y ! k Y ; k y;. . d i J 

But from the induction assumption and monotonicity we have: <*•'> 4* 4 4 4 * *« s * 4"1 C ^ 
Now note that the dj_j term in the right member is redundant because if i ̂  j 
then d^ = U ± 1 and if i » j then d i ± * I ± i and Y ^ 1 £ R^ a j 
Thus from (4-3) (4*4) and (4*5) we have 

Y.\ C Y
k . 

1 J Q.E.D. 
It is interesting to see how the number of iterations required by algorithm 

C is dependent on the order of vertices in step 2. For instance, in network R 
in Fig.(4a), if k « 1,2,3,4 then only one iteration is necessary for finding 
the closure Y (Y^ » $ij)# ̂  k =

 4,1,2,3 then two iterations are necessary. 
Fig. (4b) shows the network Y? obtained at the end of the first iteration. 

According to the above theorem, if Y?. in the network Y obtained 
ij,rs 

at the end of first iteration, then the pair (x̂  - , x. _) is allowed by 
P J , 5 

all paths in R. For instance in the above example for i « 1 , j •» 2 and r - s.» 1 
and for path P = (V^ , , , V 2) , values x^i , x ^ , x^ 1 and x ^ ^ 

satisf3'r the three relations R^ , R^k > al o n£ Note how this condition 
is not sufficient for Y f being closed. Tims in general one iteration of 
algorithm C is not sufficient. On the other hand, each iteration of algorithm C 
produces an equivalent, strictly smaller network, and thus convergence is assured. 
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5. Fxact solution of thg central problem for particular classes of networks. 

In the last section we have been able to give only an approximate solu
tion to the central problem in the general case. A closed network instead of 
the minimal network was obtained. We can now ask if there are particular 
cases in which a closed network is always minimal. 

In general, given a network R and a pair of vertices V i , Vj we are inter
ested in knowing if the relation Y. . of the closure Y of R coincides with 
the relation M.of the minimal network equivalent to R. In this case, net-
work R will be called regular with respect to pair-VjVj* If R is regular with 
respect to all pairs of vertices, it will be called regular. Thus for a 
regular network R we have Y = M. In this section we will see that interesting 
classes of networks are regular. 

We can determine regular classes of networks in essentially two ways: 
either constraining the topology of the network or restricting the type of 
allowed relations. We will consider the former case first. 

A symmetric * series-parallel network (spn) with respect to a pair 
of vertices V.V- is usually defined recursively as follows: 
a) A complete symmetric network with two vertices and Vj is a spn. 

x f r t? « 
b) Given two spnfs with respect to V^V^ and V^Vj , the network obtained 

letting V* and V? coalesce is a spn with respect to V-jv" . 

In what follows, symmetry will be almost alwaĵ s required, since a mini
mal network is obviously symmetric, while symmetry is not assured for a closed 
network. On the other hand, an equivalent, symmetric and not larger network R T 

can be immediately computed from any R with the formula: r! . = R. . + rT.. 
-̂v) J jX 

Its closure Y is then symmetric, as is obvious from algorithm C. 



c) Given two spnfs with respect to V^V^ andV?Vj , the network obtained letting 
f 1 1 t it 

vi 35 vi 551 vi a n d vj 55 v j " vj i s a s P n ̂ t h respect to • 
As usual, all missing arcs VjV. are assumed to correspond to the universal 
relations U^j. 

In the last section we saw that in a closed network Y a relation Y^j makes 
explicit the constraints given by all the paths from to Vy The next lemma 
proves that a closed network has the same property for all the subnetworks which 
are series parallel with respect to VjVj. 
Lemma 5*1 Let Y be a sj'mmetric closed network, and let R be any subnetwork 
of Y which is a spn with respect to V̂ V... Let M be the minimal network 
equivalent to R. We have: 

(5.1) T ± j C M J J 

Proof According to the corollary to theorem (3*4) we must prove that if 
1ij,rs * then an m-tuple satisfying R (R has m vertices) such that x^ = x±,r 
and x^ = xj, s can be found. We will use induction applied to each step of the 
recursive definition of a spn: we assume that the property is true for the 
component networks and we prove it for the resulting network. For steps of 
type a), if Y^j > r s = 1 then Yj^^ g r

 s 1 for symmetry, while Y^^ r r * 1 and 
Yjĵ ss =1 for (4#3)» For steps of type b), let be the vertex in the middle 
of the series. If Y ^ r s =1 and Y is closed, then a value x^ » Xj^t exists 
such that Y ^ ^ 8 1 and ^ g «1 and therefore the recursive assumption can 
be applied because no constraint exists in R between two vertices in different 
components. In definition c), the recursive assumption can be directly applied 
to both components. 

Q.E.D. 
As an example of application of this theorem, let us consider again the 
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coloring problem represented by the closed but not minimal network Y in Fig. 3 . 

In Fig. 5a we have a subnetwork R which is a spn with respect to all pairs 
of vertices except V2V,j. In Fig. 4b we have the minimal network M equivalent 
to R. Note that Y^ £ (in fact, Y^ - M ) for all pairs except VgV^. 

The next theorem proves the regularity of some classes of networks. 
Theorem 5.1 a) Tree networks '• are regular. 
b)Symmetrical series-parallel networks with respect to a pair V.V., possibly 
with trees rooted at any vertex,, are regular with respect to VjV , 
Proof a) Let R be a tree network, and let Y be its closure. Given a 
pair ViV\, let P be the only connecting path in R.If Y i j , r s

 = 1> suitable 
values can be given to the vertices of P which satisfy the relations of Y 
along P, since Y is closed. It is now easy to see that suitable values can 
also be given to the other variables. It is sufficient to evaluate them 
following the tree structure of R, i.e.,in such a way that each new vertex 
to be evaluated is adjacent in R to one already evaluated vertex (more than 
one vertex is not possible: a circuit woiild be present). Inductively, let 
xh,t ^ e v a , l u e already assigned to x^. To x^ we can assigne any value 
X j ^ g such that Y h j ^ t s = !• Such a value must exist, because otherwise 
Yhh,tt * 0 f o r t h e o r e m (4#3) and thus Y p h t t = 0 for all p (again for the 
same theorem) so that the value x̂ ,t could not have been given previously 
to x^ according to this procedure. At the end, all the variables have been 
evaluated and satisfy the Y constraints along the tree, and thus also all 
the R constraints, because Y £ R for theorem (4.1a), and R has constraints 
only along the tree. Therefore also Y is satisfied , because Y and R are 

As with spn, the branches of the tree correspond to symmetric, 2-vertex networks, 
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equivalent. Thus Y is minimal and R is regular. 
b) Let R be the spn and let Y be its closure. Let Y* be the subnetwork of Y 
topologically equivalent to R. We have Y £ Y* S R, But Y is equivalent 
to R and thus also Y F is equivalent to both Y and R from (3»7) twice. Now let 
M be the minimal network equivalent to Y* and thus to Y and R. For Lemma (5»l) 
we have Y ^ £• K^j • But M and Y are equivalent and M is minimal. Thus 
M^j * Y^j and R is regular with respect to ViVj. If trees are present 
at some vetices of the spn, we can find a feasible n-tuple evaluating the 
vertices of the spn first, and then evaluating the vertices of each tree as in 
in part a) of this theorem 

Q.E.D. 
In the remainder of this section, we want to determine a class of regular 

networks by restricting the type of allowed relations • We need the following 
definition. A network R such that relations R ^ and Rj^ (i = l,...,n ; i ̂  k) 
firm a distributive set of relations (see condition (2.1)) for all k, is 
called a distributive network. We can now prove the following theorem. 
Theprgm,5*? A closed, distributive network Y is decomposable. Furthermore, 
its symmetrization 

is minimal. Thus in particular if Y is symmetric, it is minimal. 
Proof We will prove first that if variables x^, ... , x^-i can be given 
values x, , ... , x v n ^ which satisfy relations Y ± * (i,j = 1 ,...,k~l), 
a value x̂ ^ can be given to variable x k which, together with the previous 

9 k 
values, satisfy relations Y - H (i,j = l,...,k). From the assumption we have 
Yij,r r = 1 o r equivalently 

V0i Yjj V j 0 - u00 "̂ J = 1 > ••• > k~ 1 

where the fundamental vectors Vq^ and V^q are defined as 
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vOi,r - 1 viO,r " 1 iff R - r ± 

From the corollary to theorem (4»2) we have 
€ Yj^ J kj I,J - 1, ... , k-l 

From monotonicity, we obtain: 
V0i Yik Ykj vj0 = U00 

Summing with respect to i and j: 

| * ^ VOi Yik Ykj VjO " % ) 
Applying distributivity (2.1) we have 

( T V 0 i Y i k ) ( jT Y k j VJQ ) = U Q 0 

Then a value x^ r can be found, such that 
(8 T o i t« ̂  •x -4 (§ y« v u •1 

or, completely in binary form, 
Yik, r ir k " 1 A N D TKJ,R KR ' 1 I'J " L . — K - L 

Therefore, from theorem (4»3) we have 

k̂k,r r = 1 
k k 

Finally, adding the inductive assumption, we have 
Yii r r 1 U i " ^ ' k 

Observing that the ordering of variables is immaterial and using the above 
proof as induction step, we have shown that if a k-tuple b satisfies any 
complete subnetwork ̂  of Y , 5 88 £ vi > ••• > V* at least one n-tuple 

1 k 
a exists, whose projection on S is b, which satisfies Y. On the other hand, 
if b does not satisfy Y^y a does not satisfy Y by definition. Thus the 
projection p of the n-ary relation p represented by Y is representable 
by If5" and therefore Y is decomposable. Furthermore, Y is minimal. In 
i f Y ^ 58 1 t h e unordered pair b » (x. , x. ) satisfies the two-vertex -LJ>~S x 9 r j,s 
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subnetwork Y^, S = ^X^ * X.}. Then by the first part of this theorem 
an n-tuple a exists, such that a satisfies Y and a<j * b • But Y is 
equivalent to Yf and thus a satisfies Yf as well. Therefore Y* is minimal 
for theorem (3*4)• 

Q.E.D. 
In what follows, it is convenient to consider a particular case in which 

a slightly different distributive property holds. Given a network R, let us 
consider the set D of All the relations equal to all the possible expressions 
obtained by combining relation with the operations of intersection and 
composition. If in D right and left distributivity of composition over inter
section always holds, R is called star-distributive. In this case, given any 
expression, it can always be reduced to a sum of products using distribu
tivity. It is immediate to see that each term of the sum is the constraint 
represented by a path between the same pair of nodes. Therefore every relation 
D in D represents the global contraint transmitted by some set of paths 
ij 
between vertices Vĵ  and V^. Especially interesting then are the limit relations 
D̂ j representing the global constraint transmitted by all the paths 
in R between and Vj. D* is the corrisponding network, called limit network. 

The next theorem proves some interesting properties of D 
Theorem 5.3 Let R be a star-distributive network, let D be its limit net
work, let Y31 be the network obtained after one iteration of algorithm C, and 
let Y be the closure of R. We have: 
a) D* « • Y11 

h) D * Y 

Therefore Y « Y n and one iteration is sufficient for algorithm C. 

* As usual, we assume D^ £, 1^ (i * I,...,n) 
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Prpof a) According to theorem (4*4)> if *ij, r s * t h e n t h e P**1* 
(xj r , xj,s) i s allowed by all the paths in R* Therefore 

On the other hand, Ŷy is obtained, in algorithm C , with a finite number 
of intersections and compositions of relations of R. Therefore Yjj is the 

ft 
sum of some of the terms of which D̂ ^ is the sums thus 

D ? . £ Y» 
Therefore we have 

Dij = Yij 
b) It is very easy to see that is the solution of system (4«l)» We prove 
first that D* satisfies equations (4»1)# In fact, let us consider the rela
tion Djlj • It is equal to the sum of the terms corresponding to all paths 
between and V.. The first factor of each term must be one of the relations 
Rik (k ~ 1*•••*!*)• Partitioning the paths and factorizing R^, we clearly 
obtain the right member 

ft ft In fact if i * j the condition Lj^ holds by construction. Since D 
satisfies (4.1),from theorem (4#2) we have 

D* e Y 
But we have 

Y £ f 1  

and, from part a) 
ft n 

D* = Y 
Thus we have also 

Q.E.D 
D* = Y 
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It may be interesting to see how in the star-distributive case algorithm C 
is nothing else that the solution by Gaussian elimination of the system of 
equations (4.1). We will show it with an example. If n » 3» we have 

Ylj = Rll Ylj + R12 Y2j + R13 Y3j + dlj 
Y25 ' ^21 T U + %2 T2J + *?3Y3J + d2j J-1—..n 
Y3j = *31 Tlj + *32 Y2j + R33 Y3j + St 

Now it is easy to see from a truth table that the solution of the single equation 
Z - A Z + B 

is 
Z - A B 

if we are interested (as we are) only in the largest Z. Thus applying 
distributivity,the first equation of our system becomes: 

Ylj = all dlJ + Rll R12 Y2j + Rll R13 Y3j 
Then substituting in the other two equations, multiplying and factorizing,we get 

Ylj = hi dlj + Rll R12 Y2j + hi h3  Y3t 
Y2j = ^ 1 Rll dlj + ( R22 + % Rll R12> Y2j + ( R23 + hi Rll  R13^ Y3j + d2j 
Y3j = a31 Rll dlj + ^2 + R31 Rll R12^ Y2j + (̂ 33 + &31 Rll R13^ Y31 + d31 

The matrix of coefficients of this new system is exactly equal to Ŷ " 
if we notice that R1;L — 1 ^ and thus = and furthermore 

\l Rll = Rkl + Rkl hi' A f t e r elimination of Y 2j and Y we obtain: 
Ylj = ^ll dlj + A2 d2j + A3 d3j 
Y * Y ^ d + Y ^ d + Y ^ d *2j Z21 Qlj 22 Q2j X23 3J 
Y3j = ^ 1 dlj + ^ 2 d3J + A3 d3j 

For example, if we write the first equation for j - 2, we have: 
Y12 * Yll U12 + Y12 * Y13 U32 
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But it could be possible to see that 
yij Jik Ukj 

In conclusion we have 
Y. . - Y?. 
We can also point out that algorithm C is similar to the Warshall algorithm 

[ll] for finding the closure of a relation or to the Floyd algorithm [12] for 
determining the shortest path between all pairs of nodes in a weighted graph, 
or to the algorithm for deriving a regular expression from a left linear 
grammar or from a transition graph [13]• The similarity is not casual. In fact 
all these algorithm can be considered the solution by Gaussian elimination 
of a linear system of equations in a suitable algebra. We can find the same 
analogy in Jordan algorithm for matrix inversion in the usual linear algebra. 
The only difference is that in this case the solution of the single equation 

Z = A Z + B 
is 

Z = (1 - A)" 1 B 
while in our algebra, as already pointed out, the solution is 

Z = A B 

In what follows we impose restrictions on our relations for obtaining 
distributive and star-distributive networks. 

Let us define a partial ordering < in the set of values of the 
"kit 

xariable x^. If X^ is finite, a complete lattice structure is thus 

Actually, the terms of the type Yr^ U^j would not even exist, if variable 
elimination had taken place separately for the different values of index j. 

"kit 

For notational simplicity we will consider the partial ordering as defined 
on the set of indexes as well. For instance r < s is equivalent to x^^ < x^ s« 
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superimposed on X^ together with the operations of sup and inf • A total 
relation R^. between a set X^ and a set X^ will be called monotone if it 
has the following properties: 

i) (5.2) if Rij > r s
 = 1 and t > r then %j #ts 85 ^ a n (* conversely 

if Rij, r s
 83 1 and t <: s then Rij#rt * 1 

ii) (5.3) if Rij,p3 - 1 > Rij,qs * 1 a n d r s inf(p,q) then Rij, r s * 1 and 
i f Rijfrp * 1 • Rij,rq « ! and s » sup(p,q) then Rij, r s

 88 1 
The next theorem will clarify the kind of relations allowed by the above 

definition. 
Theorem 5 . L Given a total relation R^j* a necessary and sufficient condi-
tion for R to be monotone is that a defipipg function  

f. . : x _ * . x . 

exists, such that 
(5.4) = 1 iff 8<f i > 3(r) 
and 
(5.5) fydn^rx,^)) = infCf^r^f^Crg)) 
£T,by duality, that an inverse defining function 

Si j ! X j Xi 
exists, such that 

and 
(5.7) gij(sup(si^2)) - sup(gij(s1),gij(s2)) 
Proof We will prove this theorem only for conditions (5.4) and (5*5). The 
proof in term of the inverse defining function is exactly dual. 
Sufficiency From equation (5.5) we have 

(5.8) if r x < r then f±i^i) < fij(r2^ 
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Therefore if R. . = 1 and t £ r from (5«4) and (5.8) we have 
H i I*S •ij.rs 

s < fi;j(r) £ f±J(t) 
and thus 

Rij,ts " 1 

If Rij # r g
 88 1 and t < s we have 

t < s < fitJ(r) 
and thus 

Rij,rt = 1 

If Rij, r p » 1 » Rij,rq = 1 a n d s = 3UP(P»<j) w e h a v e 

p < fi(5(r) and q £ fij(r) 
and thus 

s = sup(p,q) < fij(r) 
therefore 

RiO,rs = 1 

I f Rij,ps = 1 ' Rij,qs = 1 and r = inf(p,q) we have 
s < fij(p) and s < fij(q) 

and thus 
s < inf(fi()(p),fi(].(q)) = f±J(r) 

therefore 
Rij,rs = 1 

Necessity If a relation R.., is monotone it can be put in the form (5.4). 
In fact, given an element r of X^ let us compute the superior f̂ -(r) of 
the image of r in H. For (5*3) we have 

R i j ' r f i j ( r ) " 1 

Thus, for (5*2), equation (5#4) is satisfied* Function ^ ( r ) satisfies 
equation (5.5)• In fact, for (5#2) we have: 
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Hij.r^iiifCr^)) - 1 a n d ^ j . r ^ i n f C r ^ ) ) " 1 

and thus, for the definition of f: 
f^inffrpivj)) < qjCtl) and f^inf^,^)) <, ^(r^ 

Therefore 

( 5 . 9 ) f ± (infCrp^))- £ i n f ^ (r^f^i^)) 
On the other hand, we have 

From ( 5 . 2 ) 

^j^r^nfCf^C^),^^^)) 8 8 1 a n d R i ^ r
2

i n f ( f i j ( r l ) , f i j ( R 2 ) ) 

Thus from ( 5 # 3 ) 

^J.infCr^rjj) inf(f (r^,^ .(r,,)) " 1 

Therefore 
fijCinfCrx,^) £ in^fijC^).^^^)) 

Finally from the above relation and (5«9)# equation (5*5) follows. 
Q.E.D. 

A few examples will clarify the kind of relations allowed by the mono-
tonicity constraint. For instance, if the partial ordering is also total, 
equation (5#5) can be substituted by equation (5#8), i.e. the defining function 
must be monotone. In Fig. 6A we see a monotone relation represented by a bipar
tite graph. We have ^ ( 5 ) = k > f I ; J ( 4 ) - f^O) = 2 , f ( 2 ) * f^l) * 1 . 
Conversely, gij(l) - 1 , gij(2) 88 3 > 6IJ(3) - gij(^) - 5* A special case 
of monotone relation, with infinite sets, is represented by the "shortest path" 
constraint 

s < ^ ( r ) 38 r + d 
In fact, the shortest path problem in a weighted graph is a special case of 
our central problem. The network of relations R can be obtained from the 
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weighted graph as follows. The set of values for each variable is the set of 
integers and all relations R ^ j (i.j « l,...,n) are monotone. If R^ is spe-
cified by the defining function f̂ j we have 

where are the arcs weights : t̂ j « tj^ , t ^ » 0 
We will see that the minimal network M has the same form: 

x j * *lj<*i> - *i + d
i ) 5 

and thus d.. represents the length of the shortest path from vertex to vertex 
Vy As a check, note that d^j < t^ and so M^j £ % j # 

If the sets X^ are finite, the restriction to total relations could look 
heavy* On the contrary, a"floor" value x^ Q and a "ceiling11 value x^ ̂  can 
always be added to X^ such that 

Ri* *. n<* = 1
 for all s and R , . = 1 for all r 

Fig. 5b shows the relation in Fig. 5a without ceiling in X^ and floor in Xy 

In general, monotone relations are considerably more powerful than simple 
"shortest path" constraints. For instance, the lattice structure of multidi
mensional euclidean spaces can be used for specifying multidimensional rec
tangular domains. In Fig 6c we see how defining functions f. . of R. . and 
gj i of RJJJL restrict to a rectangle the image of x ^ r in R i j + R^. Different 
points x. can generate different rectangles, provided equation (5.5) is 
satisfied. 

The next theorem proves the closure of the class of monotone relations under 
the operations of intersection and composition and gives the rules for 
performing such operations in terms of the defining functions. 
Haggggpi. 5#5 a) If R!^ and R ^ j are monotone relations represented by the 
defining functions f. , and f 1 4 , then the sum: 

i j J 
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Ri.1 = Rij + % j 
is a monotone relation represented by the defining function 
( 5 . 1 0 ) F 1 ; J ( R ) » lnf(FIJ(r).FJJ(r)) 
b) Likewise, the product 

Rij s Rik R
k j 

is represented by 
( 5 . 1 1 ) f±j(r) = fkj(fik(r)) 
Proof a) Relation R^j defined by (5.4) and (5.10) is evidently the 
intersection of R^j and R±y Furthermore R^j is total, in fact we have at least 

Rij,rf. .(r) ' 1 a n d Rij,g..(s)s = 1 

where g(s) is defined dually. Finally, function f* A satisfies equation (5*5): 

f ± (inf(ri,r2)) - infCf^CinfC^.rg)),^^^^,^))) -
= inf(inf(f' (r1),f^(r2)),inf(f^.(r1),f^(r2))) = 
= infCinfCf^C^),^ ( r ^ ) , ^ ^ ^ ^ ) , ^ ^ ^ ) ) ) -
- inf(fi.(r1),f..(r2)) 

b)The "if" part of (5.4) is trivial. For the"only if" part, if Rij, r s • 1 then 
an index t exists, such that R^j^t = a n (* Rkj,ts * ̂ ' Rik,rt 
implies t ̂  fik(i*)» Thus from (5.8) we have 

•fkj^> * fkj( fi k( r» - hjM 
But Rjcjjts = 1 i mPli^ s 8 ^ ̂ kj^) ^ t h u s 8 ^ fij(r) • Relation i s also 
total because at least 

R. . „ / \ = 1 and R. . „ / 0\ e « 1 ij,rf_(r) iĵ gĵ jiŝ s 
Equation (5.5) is proved as follows: 

^(^f(rlfr2)) - fkj(fik(inf(ri,r2)) = f^ixifCf^Cr^.f^))) = 

- ' l n f( fkj< flk ( rl»»V flJ ( P2 ) ) ) = ^ ' i J ^ ' V 1 ^ 
Q.E.D. 
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Next theorem proves the distributivity of monotone relations. 
Theorem 5.6 a) Any set of monotone relations 

R I K 9
 R K J = 1 > f n 

form a distributive set of relations with respect to set X^, i.e. 
(5.12) ( I V0. R i k ) ( f 1^ VjQ ) = f t V0. R i k ^ V 

1=1 J=l ° 1*1 J«l 
for all fundamental vectors V Q ^ and V ^ . 
Proof For theorem(5.4) vectors R Q k - R I K and R^Q - R ^ repre
sent subsets of X^ of the form 
(5.13) R - 1 iff t < t and R = 1 iff t > t 

Ok,t kO,t 
Furthermore, intersection of two subsets of this form produces a subset of 
the same form. If 

t ti 

Ôk * Ôk * 
we have 

R Q k f t - 1 . iff t < infCt1,^) 
And if 

t " 
R K O ~ v> +

 \o 
we have 

R^j t - 1 iff t ^ sup(t?.t') 
We will prove that subsets of this form satisfy both left and right distributivity: 

(5.14) R 0 k (RkO + Rk0) " Hojcio + SOK^KO 
(5-15) (Hjk + % K ) %0 - R O K R k O + aOk RkO 
In fact, the right member of (5.1), in binary form, is: 

< V* *ok,t A \o,t > A < V* »ok,t A 4,>t) 
Applying binary distributivity, we have y y (Rok,t AR0k,to) A < %o,t A Rko,t> 

tx=l t2»l 1 '2 1 2 
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or equivalently 
N N V* 

( 5 . 1 6 ) Vkaok,tA(H' kO^A^o + 
t̂ l Is5 2"* 

From ( 5 . 1 3 ) , if tt 
R™ = 1 , R , . = 1 , R. » 1 and R = 1 Ok,^ 9 ok,t2 kO,tx kO,t2 

then a valiie 
t « sup(t15t2) 

can be found, such that 
it 

Rok,t = 1 ' W " 1 "* ako,t " 1 

Therefore equation (5.16) becomes 

V* «bk,t A ( 4 , t A < 0, t) 
i.e., the left member of (5#14). Formula (5*15) can be proved dually. 
From closure under sum, left and right distributivity we have: 

( £ Ro-k> < £ 4 >- ^ ^ 44 
i.e., formula ( 5 * 1 2 ) 

Q.E.D. 
The next corollary will be useful in establishing star-distributivity. 

t it t tt 

GorQll&XX If R i k f R i k > R i k '.^j > R k i and R^ are monotone relations 
we have: 
(5.17) R ^ . • H^) = R . k < . • R ^ 
(5.18) ( R ! K + R^k) R,. - R ! ^ + Rj kR k j 

Proof Equation (5#1?) can be written as 
VOi Rik Vj0 + V j 0 ) = ^ i ^ k ^ ^ O + VOi Rik Rkj VjO 

for all fundamental vectors VQ^ and V^.Q. Therefore it descends from (5*12). 
The same is true for (5»18). 

Q.E.D. 
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We can now prove our final result* 
Theorem, 5.7 Let R be a network of relations such that: 
i) its relations R. . (i,j « l,...,n ; i ̂  j) are monotone and 
ii) the loop relations (i « 1,...,n) of the network Y31 obtained after 

one iteration of algorithm C are equal to unity. 
We can prove that: 
a) Network R is star-distributive. 
b) Network Y n is equal to the closure Y of R. All relations 

Y"ij (i,j =» l,...,n ; î j) are monotone. 
c) Network Y is distributive. 

d) Network R is decomposable and the symmetrization Yf of its closure Y 
is minimal. 

Proof a) From condition ii) and Y n £ R we have R.. • I... Expressions 
obtained by combining relations (i, j = 1, . ..,n ; i ̂  j) with the operations 
of intersection and composition evaluate to monotone relations for theorem 
(5.5). The unity elements R^ can be involved in an expression either under 
composition or under intersection. In the former case a monotone relation is 
trivially obtained. In the latter case the unity 1^ must be intersected with 
an expression representing the global constraint given by a set of circuits 
from to in R. In fact we can assume inductively that no unity is involved 
in this expression, and in this case distributivity holds for the corollary 
to theorem (5.6), and the expression can always be reduced to a sum of products. 
The result of the intersection operation must be again unity, because Y^^ r r= 1 
for all r, and thus for theorem (4.4) all pairs (x. , x. ) must be allowed 

i,r x,r 
by all circuits from V. to V. in R. In conclusion, the set D of all expressions 
contains expressions that either evaluate to monotone relations or to identities. 



= 44 

Left distributivity 
(5.19) E i k ( E K J • E ' * J ) = E . K E K J • E ^ E ^ 
always hold* In fact, if all relations are monotone, this property is proved 
by the corollary to theorem (5*6)« If E^ k is a unity, both members evaluate to 
E ^ + E • If E kj or E^. is a unity, say Ekjfwe have k - j and (5-19) becomes 

Eik + Ekk> - Eik % + Eik Ekk 
But then E k k « I k k for Y k k - I k k, and therefore both members evaluate to 
Eik • r^ i e s a m e Proof holds for right distributivity* 
b) This part follows from a) and theorem (5*3)« 
c) This part follows from b) and theorem (5.6)* 
d) This part follows from c) and theorem (%2)* 

Q.E.D. 
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In this paper we have presented a formal treatement of networks of binary 
constraints. The main practical result was the discovery of an algorithm for 
adding to the direct constraint between .each pair of variables the indirect 
constraints transmitted by all the paths in the network. In particular cases 
the resulting constraint was proved equivalent to the global constraint repre
sented by the entire network as seen by that pair of vertices. This result 
allows the partial or total utilization of the global constraint structure 
for reducing the set of feasible values of a variable to be determined, when 
the values of other variables are known. 

For the practical computer implementation of this method, the following 
requirements can be suggested: 

a) In the application under examination, most constraints must be reasonably 
represented or approximated by binary constraints or simple networks of binary 
constraints. Note that if we allow a constraint among m variables to be repre
sented by a network of n vertices, with n > m, then the negative result of 
section 3 no longer holds, and many representations of the constraint, trivial 
and not, can be found. For instance, the ternary relation (3.4) which is not 
representable with a 3-vertex network, can be represented by the 4-vertex 
network in Fig. 2, as seen from vertices V̂ , V 2 and V^. 

b) The resulting binary relations (finite or infinite) must be capable of 
being stored in an economical way in a computer memory. For instance, if the 
variables are points of m-dimensional spaces, a relation R̂ j could be stored 
representing the images in X of all elements x ^ r of as m-dimensional 

Or just one, if all the other images can be obtained from it by a fixed 
procedure (e.g. translation). 
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domains. Known tecniques of domain encoding can then be used* For instance, 
two given points are sufficient for determining a rectangular domain: this 
is often the meaning of functions ̂ j( r) and gji(r) representing a monotone 
relation • 
c) The operations of intersection and composition must be easily definable 
in the chosen class of relations* In particular, this class must be closed 
under those two operations* For instance, this is the case of relations 
represented by domains, convex domains, domains enclosed by polygons or convex 
polygons, rectangular domains* 
d) The closed network is then obtained with algorithm C# The closed network 
should then be close to the minimal* For instance, we have coincidence for 
rectangular domains, and we expect reasonable closeness for convex domains* 
Bad results can be expected if the relations allow most pairs and forbide a 
few isolated pairs, like in graph coloring problems* Anyway, if the addition 
of a further constraint destroys regularity (i.e* closed ̂  minimal), it is, 
nevertheless, convenient to add it. Maybe its addition will not be entirely 
exploited, but the monotonicity property of intersection and composition 
certifies that the modified closed network will be more restrictive* 
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Ei£*_l« Examples of networks of constraints. As a graphical convention, if 
both arcs and V J T ± exist, but only V.V, is labeled with relation R<,, 
then arc Vpnf is assumed labelled with 1 J R L . Networks a), b) and cj*3 

are equivalent, and network c) is the intersection of networks a) and b). 
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1 0 1 1 J 
E L F T * I N T H I S N E T W O R K , T H E R E L A T I O N I I 0 1 I S A S S O C I A T E D T O E V E R Y A R C . 

|l 1 o| 
T H I S N E T W O R K R E P R E S E N T S T H E I M P O S S I B L E P R O B L E M O F C O L O R I N G A F O U R - V E R T E X 
C O M P L E T E G R A P H W I T H T H R E E C O L O R S . T H I S N E T W O R K I S S Y M M E T R I C A N D C L O S E D 
B U T N O T M I N I M A L . 



EAEJL&JL *) A symmetric network of constraints. b) The network of constraints Y 
equivalent to a) computed by algorithm C in one iteration, with order of 
elimination (U,l,2,3)* 
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E;Ut 5. A ) A S E R I E S - P A R A L L E L N E T W O R K W I T H R E S P E C T T O A L L P A I R S O F V E R T I C E S 
" B ' I T S M I N I M A L E Q U I V A L E N T N E T W O R K . A L L N O N L A B E L L E D A R C S 

0 1 1 
E X C E P T V G V ^ . 

A R E A S S U M E D L A B E L E D W I T H 1 0 1 
1 1 0 
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3 

4 
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r 

i i 

c.._. 

6. a) An example of monotone relation. b) The relation in a) 
without "ceiling" in Xj. and "floor" in Xj, c) The rectangular 
image of element x ± f F as allpwed by the intersection of two monotone 
relations R±i and R^» 
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