NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

510.7808
C28r
71-2

c.2

L*(F)

Final Version

by

A. Newell

D. McCracken
G. Robertson
L. DeBenedetti

Department of Computer Science
Carnegie-Mellon University

January 25, 1971

This work is supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense
(F44620-70-C0107) and is monitored by the Air Force Office
of Scientific Research, It may not be cited or reproduced
without the written permission of the authors.

N

oy

TABLE OF CNNTENTS

Sections Start-Page

1-8 1 Introduction

9 2 Symbols

1~ 3 Types

11) Cells (T/C)

12 4 Integers (T/I)

13 u Characters (T/K)

14 4 iLists (T7L)

15 5 Machine Code (T/M)
16 6 Proaram Lists (T/P)
17 6 The L*L Lanquage

18 6 Working Cells

19 6 Operand Communication
20 6 bInterpretation

21 8 . ‘Control

22 8 HExternal Interface
23 9 Name Table

24 9 _ Read

25 10 | Vrite

2R 11 Assembiv

27 11 Operating Systenm

2R 12 Structure of Kernel Processes

17
iR
12
13
14
15
16
17

18

TARLE OF CONTENTS

LIST OF APPENDICES

Memory Map of L*{(*32) Kernel
Functional Outline of Kernel

Kernel Processes

Kernel Data

Bootstrap Processes

Booptstrap Data

Table of System Names

Abbreviations Used in Nanmes

Outline of Bootstrap Saquence
Detailed Kern=] Process Descriptions
Detailed Kernel Data Nescriptions
Operational Notes

Listing of Bootstrap File BOOT,LSF

Listing of Editor Pile EDTTR,LSP

Listing of Stepping Monitor File STPMP, LSF
Listing of Utilitv Poutine Pile UTILF,LSF

Listing of Dictionary Prile DTITF,LSF

Changes from Version 37 to Version 1312

L+(®) 1

1. L+ is a system on the PDP1" for constructing software
systeas, vhich is under development at cmn by A, Nevell,
D. McCracken, G, Robertson and P, Freeman,. This version,
L#(F), 1is the sixth to be designed and the third to become
a running system, It is not the final version, by any
matter of means. ©Rach of these versions involves radical
redesign of one or more aspects of the systen, Thus, L*(G)
{the next omne, nov in the process of heing developed) is
not merely a polishing of TL.*x(FP), hut differs substantially
from it. We are making L*(F) availahle in a complete form
with documentation to let others see what we are doing, to
let them plav with it, and to submit a version to the
discipline of being completed and exnosed +to external
users. At some stage we will simply ahandon L*(F) and it
will have to live or die on its own.

2, This document provides a descriotion of L#{F) without a
detailed design rationale. 1A few principles are given when
they are appropriate to orient the user toward the systen.

3. L* intends to be a complete system for running and
constructing software systems. It does operate within the
limits of the 1%-53 nponitor systen of the PDP1),
Completeness implies that one should be able to perfore and
to construct systems for performing:

Processing of achitrary data tvpes,
€.9., symbolic structures, lists, numbers, arrays,
bit strings, tables, text,

Fditing

Compiling and assembling

Language interproting

Dehugging

Operating systems (within the ppp13 monitor),
e.q., Tasource allocation, space and time
accountina, exotic control (parallel and

suparvisory control).

Communication between user and systen,
e.9., external lanquages, dynanmic syntax, displavys,
ete.

b, L* is a kernel system, It starts with a small kernel of
code and dJdata and is grown from vithin the system. Thus,
IL*+ does not perform all the functions above when it exists
only as a kernel. Tt does have means to construct systems

Lx(¥) 2

for them all. Whether gracefully or not we’ll just have to
sea,

L* is for the professional vproqrammer. It assumes
someone sophisticated in systems proagramming who wants to
build up his own system and who will modifv any presented
system to his own requirements and prejudices.

L can be used with onlvy a small amount of
sophistication in list processing, but this is nmostly
just for plav,

L+ is intended to be transparent. All mechanisams in the
total system are open for unlerstanding and modification.
No mechanisms are under the floor.

L* is intended to provide complete access to the machine
{(the PDP12), so that all the 1°’s facilities can be
utilized {except, again, what the monitor prevents),

The memory lavout of the 1L*(F) kernel is shown in
Appendix 1. The kernel consists of a collection of
routines, a few small tables, a large symbol tabhle, and an
initial allotment of available space. There is also a high
segment {(not shown) that contains one word for each symhol
in the main segment. These are for symbol descriptions and
will be Jdascribed later, The rontines cluster into a
series of subsystems, which are used in ipoendix 2 to label
areas of the kernel, Aippendix 2 aives the names of
routines and data for each of these suhsystoms. There are
248 names in all, andi Appendix 3 and Appendix 4 1list then
all in alphabetical order with one line definitions.

These names are those chasen by us, the Adesigners,
However, the names can all be changed.

The kernel is written in MACRO-1" . A listing may be
obtained from disk (see Appendix 12 for Adetails),
(The names in the MACRN-1" code are not changeable,
of course, unless yonu want to build your own kernel
== which is 0K with us.)

Symhols. There are symbols in L#, which are addresses
(18 bits) and serve to name all the data structures, Tha
symbol for a structure is invariably the address of the
first word of +he structure. Symbols may be tested for
equality (=S) or inequality (<S, >3). FNew symbols may be
obtained by adding an increment to a 7iven symbol (+IS),
Conversely, the difference between two svmhols (an inteqer)

1"-

L« (F) 3
may be ohtained (-SS),

Symbols mav he created (C) or erased (E}, and are always
tied to the creation or destruction of the structure naned
by the symbhol. That is, symbols do not exist in
abstraction from the structures they name. (This follows
from the fact that a svmbol is the address of some word of
the structure it Adesiqnates.)}

Types. Everv symbol has a type, which determines the
structure of the data obdject the synbol designates. There
are originally 6 types : cells (?/7), 1integers (T/T),
characters (T/K), 1lists (7T/L), machine code (T/M) and
program lists (T/P). However, other types may be created
andi types may also be destroyed. Only the minimum
necessary types have been set up initially. TFor instance,
there are wmany Xinds of structures in the kernel that do
not have types of their own, even though it might be
appropriate (e.q.,, external interfaces, tables of various
sorts).

The type itself is abstract. That 1is, there 1is no
symbol in the system that Adesignates the type. Por each
type there is a characteristic symrhol, which is a symbol of
the given type and designates a null structure of that
type. These are the symbols ¢, */1, T/K, T/L, T/M and
T/P ; they serve as names of the tvypes,

To each type is associated a type inlex, which is an
integer that 1is used to access tables orqanized by type
{(called type tables). The type tables initially hold space
for 15 types, hat it jis possible to extend the tables tn
more tvpes,

Symbols can be compared on Y*ype (=T), the characteristic
symbol of the synmbol’s type can he obtained (T) or the type
index can be obtained (TT), 2 svyrhol c¢an also have its
type revlaced (RT),

The type svystem for L*(®) is mechanized by having
associated with each address a second cell which holds the
type index for the given address, hence effectively making
it of a given tvpe. These extra cells constitute the high
seqment, By convention of tha ppo1- monitor the
relationship between an address X and its corresponding
cell in the hiqh segment is an increment of 4776017 geotal
(called T™p), The symbol description word for a symhol
holds the type index in the address field of the cell
(called the <S-field in L*). The hiqh order 1% bit field
(called the N-field in L*) is not used for anything in the
kernel, However, it is available far any use the user
wishes to make of it {(e.q., as the holder for an
attribute~value association list for each symbol),

The main import of having types is that (1) a process

1.

12,

13.

14,

Le(™) 4

nay tespond differentially to the types of its operands and
(2) the availability of type information does not impose
structural constraints on the data structures, either by
pre-empting bits in the structures themselves or forcing
type indicators to be given explicitly with operands. A
price is paid, of course, in takinag half the total memory
to contain the type information, (More exotic ways of
holding the type information, which would conserve memory,
require more processing to determine the type. There are
reasons to prefer the extreme point on the
remory-processing exchange to make type Aetermination as
fast as possible),

Cells (T/C)., A cell is simply an isolated word with no
specified internal structure, The two operations
performable on cells are tests for equality of contents
(=C) and replacing the ccontents of one cell by another
(RC), This is the residual tvpe, in that anything not
otherwise typed is considered to be ™/C

Integers (T/I), 2An integer is a full word integer in
the PDP10 format, i.e., tvo’s-complement., The operations
that canr be performed on integers are tests for equality
{=I) and for inequality (<I, >I), the replacement of one
integer value with another (RI), and the standard four
arithmetic operations (+1, ~-I, *1, /I, /RT), where there
are two division operations, one for the integer part, one
for the remainder.

Since integers are simply bit patterns in full cells, =T
and BRI are identical with =C and ®C . Hovwever, hoth names
are included in the kernel to nmake clear the sets of
operations for each data type,

While internallvy integers are binary twvo’s-complement,
for external comnmunication they must be taken to some base.
There is a cell, WIB » that holds the bagse for the
integers,

Characters (T/K). Fach of the 128 characters in the
PDP10's 7-bit ASCITY character set has a corresponding
internal symbol in L*, These make up 3 senarate type, No
operations are proper to this type. YNames have been given
to all non-printing characters; printing characters can use
their own print name (vith some addition to distinquish the
character from a symbhol with a one character name),

Lists (T/L). The main operating data type initially
available in L* is the list. The structure of the lists is
entirely conventional. Rach list cell holds two symbols,
the symbol (or content) of the list cell (S) and the name
of the next list cell (W):

15.

L* (F) 5

v ———

The null list is NTL, which is T/1L 1like any other 1list
cell:

NTL ¢+)] NIL | NIL |

However, the routines that erase symbols recognize NIL aad
will not let it be erased, NIL in the N field of a list
cell terminates the list.

The name of the list is the address of the first cell of
the 1list, Thus, there 1is no way to name a list with no
cells on it. The “most null™ list possible is:

. ————— - -

—— e a =

The basic operations on a list are finding the symbol in
a 1list cell (5), finding the next list cell (N), replacing
the symbol in a list cell with another (®), and replacing
the 1list cell to be next (RN). Besides these there are
processes for inserting a symbol into a list at a point (I)
and inserting it after the point (IA) ; also, for deleting
a list cell (D) and deleting the cell after (DA).

Two procasses eyist in the ¥ernel for creating and
erasing T/L (C/L, ®/L). These illustrate a point about the
kern=2l: that all the processes in the kernel are made
available to the user. The two routines above are used in
other varts of the ¥ernel, so are made available,. They
could easily be coded within 1# itself using C and E ,

Machine code (T/M). All the machine cole used in the
kernel is T/M , which allows it to he recognized. No
operations exist initially for manipulating machine code
directly, though of course it can be processed by
operations of other types (e.q., =C, RC, R, RN, etc.).
Create (C) and erase (E) of course work on T/M, 4Hust as
they do on any type,.

L+ (F) 6

16. Program lists (7T/P). Program lists are distinct from
lists of T/L (i.e., from data lists), which permits one to
be executed as program and the other haniled as data,
There 1is no reason why there should not be many data types
which are structurally identical bnt are typed separately
for some particular purpose,

17. The Lx*xL language. The kernel comes with a single
programming lanquage, called L#*L , ready to function with
ease. The kernel also has T/M, of course, hut it is not so
easy at the start to create new programs of T/M or modify
existing ones, L#*T. is a list lanquage in the sense that
the program structures are lists (i.e., T/P). Tt also
peraits the processing of lists (i.e., data structures of
T/L or T/P), bhut it equally permits processing of all other
data types., What determines the efficacy of its processing
of particular data tvypes 1is oprimarily vhether the
opaerations are available for the data types, The kernel
comes with a good basis for list processing, a reasonable
basis for integer processing, and only minimal or indirect
bases for the others (including the as-yet-uncreated
types).

L*l. is a very simple language, It is not the only
language that can be created in L%, nor does it even occupy
a privileged position, except that one is forced to start
with it, It should be possible to construct a second
language within L+, such that L#*l remains only as a command
langnage, or even is excised from the system entirely.

18, Working cells, In setting up the system a number of
cells are required to hold symbols, either temporarily or
to define the current context. All these cells are called
W cells and their names start with W (mnemonic aid, no
structural significance). These cells are T/L, since they
are all stacks (i.e., 1lists which can be pushed and
popped),

19, Operand communication., When processes are axecuted they
must acquire their operands and provide their results in
some fashion so that the appropriate data can flow within
the entire set of processes makinag up a total activity, 1In
L*L this communication takes place via a single symbol
stack of T/L , called ¥ (for the working stack). Thus,
each process expects to find its operands in the W stack,
and pushes its results into the ¥ stack (after removing its
inputs, naturally). Of course, processes can commonicate
with each other in any other way they wish (e.g., via some
set of mutuyally understood cells or 1lists), but such
arrangements are not part of the conventions of L=*IL,

27, Interpretation, Fach type has an interpreter for syabols of

L* (F) 7

that type that are to ke interpreted. Thus, to define a
systenm of interpretation it suffices to aive the
interpreters for each type, The initial interpreters are

as follows:

Type Interpreter

T/C JI/S
T/X .I/3
T/K +I/5
T/71 .I/8
T/H s I/M
T/P LI/P

Action

Push symbol into

Push symbol into

Push symbol into

Push symbol into

Fxecute syambol as machine language
subroutine,

Sequence Aown program list, interpreting
each svambol in turmn.

e =

Thus, the distinction between proaram and data is carried
by the type of the symbol -- data (T/C, T/I, T/K, T/1) gets
put into the operand stack, obprogram (T/M and T/P) gets
interpreted further,

The L*L lanquage is essentially as simple as it can be
and still provide unrestricted phrase structure. There is
no syntax in the program list other than sequencing. Rach
symbol is interpreted in isolation from its fellows, fore
and aft, though of course it is interpreted in the context
of the data stack, W, and all the other cells and lists
with their current valnes. Tut these constitute the

semantic context,

not the syntactic context, of the symbol.

The act of interpretation occurs not only on a symbol of
some type, but in the context of some symbolic structure.
For example, a program list can occur for interpretation

within another

progranm list, or it can occur for

interpretation within a machine lanquage routine. The

interpretation

to be the same in some abtract sense,

But the total processing is not the same, for the symbolic

context is not

the same. In particular, the interpreter

{(for T/P, the type of the symbol in guestion) cannot find

the symbol to

symbolic context,

interpreted without knowledge of the
Thus, there must he separate

interpreters, not only for each type, but for each context
in which 4interpretation can occur, In the initial
situation this is only T/P and T/*, although the number of

such contexts could
L+ALGDL and want

increase. For example, one might have
to execute T/P programs in it as

procedures. The set of contexts in which interpretation
can occur is not even necessarily limited to one per type:
one could have a polish prefix lanquaqe (e.q., T/PP) in
which routines vere written as (F X Y Z) so that the first
position (where the ¥ is) is a distinguished context fron

the others (where

the X, Y, Z operands are), Different

interpreters would be required for the tvo contexts. (The
remarks of this paragraph may seem abstruse; they are meant

to explain the

double sets of interpreters that occur

throughout Appendices 2, 3 and 17,)

21,

22‘

L#{F) a

The above intorpreters are not the only ones that occur
in the kernel. Spacial interpreters are used for T/K for
kFoth reading and writing to an external interface. These
operate in conijunction with interpreters for other types,
since interpretation is always the result of a set of
interpreters (over types and contexts of interpretation),

Control., Control operations manipulate the sequence of
symbhols ultimately interpreted. They do this by
manipulating the stacks which contain the information about
what symbols and lists remain to be interpreted (WXS, WXN,
WHS, WHN). These stacks are T/L and are open to inspection
and modification by the user, as well as by the initial
control operations vrovided in the kernel, As a nmnemonic
quide, all (ani only those) routines that affect these
stacks start with a periol (.). A1l of these control
actions occur in program lists. Control in T/M code occurs
according to the conventions of machire codinag.

The control actions make use of the structure of the
program in terms of 1lists and sublists, and there is no
conditional transfer to another location. Termination (.)
stops 1interpretation of the current program 1list and
ascends to the next higher list, Double termination ¢(,.)
stops interpretation of both the current program list and
the one immediately above it, thus ascending two levels.
Repeat (.R) starts over on the present program list (at the
same level, thus forming an iterative loop). These control
actions can be Adevendent on data, to wit, on whether the
synbol in W is NTL (-) or not NTI, (+). { YNote: the symbol
in W is an input to these processes:; hence, it is no longer
in W after they have been interpreted,)

Besides termination and repeat, there are two execute
operations, + X executes the symbol in W (after popping it
to make the operands for it available); .XCX executes the
syrbol one down in ¥ after going into a new context given
by the symbol in the top of W,

The last control action is .0 which is the guote
operation, It is the one kernel operation that is not
totally context free. Tt outputs to W +he symbol that
follows it (the occurrence of ,Q, that is) in the proagram
list. Thus, the symrol following a .Q in the program list
is never interpreted.

External interface, The PDP1" Monitor provides a vay
for data to move across the interface to and from the
various peripheral devices of the PDP1M", To use this vay
requires accepting the data formats soecified by the
monitor, Thus there are small tables, called interfaces,
and buffers to receive and hold sequences of bits for
transmission. The kernel comes bprovided with two such

23,

24,

L*(F) 9

interfaces, TTY for communicating with a teletype, and DSK
for communicating with the disk, Additional communication
{to printers, Adectapes, etc.) takes place outside of L=,
via say DPID, At a later stage of developrent nev
interfaces c¢an be built; but the ¢two provided make it
possible to get started conveniently.

The DSK interface is set up to read a file called
BOOT,.LSF and to write a file called PTIL®,LSF . The TTY is
set up to read and write the user’s teletype,.

Name table, A mechanism must he vprovided right at the
start for making correspondences hatween extarpal names and
internal svmbols, This is the name table (NT), It
consists of a sequential table with nairs of words, the
first holding a string representation of the external nane
in 7-bit characters, the second holdino the corresponding
symbol (in the S-field). The limitation to one word for
the name 1implies a limitation to S characters, where any
7-bit characters are permissihle, The +three operations
that are appronriate with the name table are locating the
symbol given the name (LSNT), locating the name given the
synbol (LNNT), and creating a symbol given a name (CSNT).
Tn the latter case the type of the new stracture must be
given (in WTC).

The kernel itself 1is coded in ¥ACRO- 1N assembly
lanquaae, so that its symbols (on the MACRO-10 listing) are
in the MACRD-12 syehol table, M1 of the symbols of
interest in this table are mapped into the initial T* name
table (NT1), and appear in Appendices 2, 3 and 4.

Pead. In reading from an external interface, the
interface itself is activated, filling the buffer, as
dictated by the PDP1” Monitor conventions. This buffer is
scanned to create a list of characters (accarding to the
specifications of the interface), RD, the basic read,
simply creates this list (of type in WTCKL) and outputs it
to W. Reading of this list in order to extract information
from it is done by interpreting it in Read Context with the
reading interpreters (.I/K and .TDP/R} for T/K . These
interpreters execute an action associated with each
character. The actions are processes stored in a character
table (in W®AKT), which has an entry for each of the 128
characters. Thus, reading the list is an active process
that executes an arhitrary process for each character
(including blank)., What actually happens depends entirely
on the nature of these actions,

RKT1 holds a set of character actions which serves as
the 1initial interpretation of the input stream. These
actions are described in Appendix 10, Essentially they
produce the following:

Le(F) i

(1) Strings of characters corresponding to nanmes resplt
in their corresponding internal symbols being
pushed onto W.

(2) Strinas of digits (vossibly preceded by + or -)
result in an irteger bheing defined according to the
base in WIB, with its name input to W,

(3) Semizolon (;) immediately terminates the line, after
whichk norrally the next 1line 1is read in and
interrreted.

{4) Exclamation mark (') immediately executes the
process in the top of W, i.e,, it does a ,¥ .,

(%) Duot2 (') immediately executes ,0Q, so that it puts
into W the next character (even if it is the space
character) in the input stream,

It car be seen that the last three actions are simply the
irmediate evocation of three of the control actions
available for a program list. The character actions taken
together essentially define a simple poastfix system, such
that one puts the operands first into W following with the
process to be executed and then fires it (!), Comments can
he hidden behind the semicolon.

The executive (FXPC) continues to real 1lines from the
input interface until an end-of-file is reached. ©®D itself
breaks the input stream into shorter lists on the
occurrence of a break character (in WPDBK), This is
initially the line-feed character (KLF). (This is needed
to avoid gqgetting an entire disk bufferful back as one &40
character list, which could cause initial space problens).

Write. Writing to an external 1interface is done by
interpretingy symbols im a sppcial context of interpreters,
In this Write Tontext, T/L‘ and T/P symbols are bhoth
interpreted with ,1/P (or .IP/P). 1i.e., hy sequencing down
the 1list interpreting each symbol in turn. /K is
interpreted by ,TWR (or ,YPWR) which 1lays down in the
output buffar the 7-hit ASCIT code corresponding to the
character symbol being interpreted. Buffers are given to
the PDP1? Nonitor for output to the actual interface as
soon as they have been filled up, and also at the end of a
complete writing operation (interpretation),. Thus, 1lists
of character symbols are mapped by the writing interpreters
into the corresponding strings of characters at the actual
interface,

26,

27

L% (F) 11

Assembly, The assembly operations ara provided to allow
access to the basic machine by depositing (assembly write)
and extracting (assembly read) bit patterns in memory.

Any svymhol 2 has associated with it a bit string defined
as the low order K bits of A - B where " is taken from the
type table in WBTT (the current base type tahle) and K from
the type table in WNBTT {(the current number of bits type
table) according to the type of 3, This association can be
two-way, 1i.2., for a given ¢type one can reconstruct a
symbol by adding ® to the value aof a bit string of length
K,

The W cell WPTR is used to hold a machine byte pointer
(T/C) for assembly operations, Ryte pointers can be
created and inittalized to point to a given location (CPTR)
and can be erased (%), Byte pointers can he moved a given
number of bits to the right or left within the current word
{MVPTR). There are no special operations for changing the
word address of a hyte npointer; however, the “replace
symbol®™ 1list process (R) will accomplish this since the
word address field of a byte pointer corresponds to the
s-field.

The two assembly operations, reading and writing, are
hoth done by interpretation in a special context of
interpreters. The key interpreters for "ssenbly Read are
ones which extract a bit string according to the type of
the interpr2ted symbol (using the hyte pointer in WPTR) and
push the associated symhol into ¥ (,I7Y¥ and .IPZX). Por
Assembly Write there are interpreters (.IDP and ,IPDP)
which 1eposit the bit string associated with the
interpreted symbnl into memory at the location specified by
the byte pointer in ¥PTR .

There are sets of interpreters in the kernel for both
Assembly Pead and Assembly Write. Thev are identical to
those in the initial interpreter set (see section 27),
except that the interpreters for T/K are changed to ,IFX
and .1PRX for Assembly Read, or ,INPP and .TPDP for Assembly
Write,

Operating system. Grouped under what we <call the L=
operatina system are processes which verform the following
functions :

(1) Error handling and recovery (ERRNOR).
(2) Debugging cavabiliries (DERUG).

(3) saving of core images for later restarting (sV),

(4) Resettina I/0 interfaces for reuse (RSI¥, RSIFB,

28,

L+{FM) 12

RSIFR) .
{5) Enterinag monitor mode from L (HALT),

{h) Fnterina L* from monitor mode (“CONTINUT® ¢ “START
7™ (STI47) , “START 141% (ST141) , “STADT 142w
{(s™142Y),

(7) Context-chanaing (PCX, RCY, ucx, s4rcy),

(8) obtaining core from the Monitor, and returning core
(rsp),

(9) sSpace-exhausted condition bandling (routines in
SPYXTT).

See Appendix 17 for detailed descriptions of the processas
appearing above within parentheses,

Definition of the space-exhausted processes (function
(9) abnve) is delayed until the bootstrap: initial
available space lists for each tvpe suffice until the
bootstrap sequence ¢an Aefine CSp/> ¢ OSP/T , CSP/L , CSP/M
and CSP/P and store them into tyne table SpPXTT See
Apperdix 12 for details of these create-apace processes,

Under function (%) above, there are several other vays
of getting 1into mnnitor mode from L%, and users may very
well discover yet others, The following is a 1list of
conditions we know will cause entry into monitor mode from
L= :

{a) Control-~, One will suffice if Lx is doing T/0,
otherwise two are required,

(b) A PNP1® monitor-detected error. FT.g., “ILLEGAL U(1TQ
AT [JS®ER NONT3I2w,

(c} The L* process HALT .

(1) The L+ process SV .

(e) Returning from the call on DERUG in ST1471 .

(f) Returninqt from the call on RYPC in ST14N .

(q0) Zxiting from the very first call on TXZC pade by L=+

wher it first comes up.

Structura of the kernel processes, In order that they
might be wuysed in wmany Adifferent contaxts, most of the
kernel processes were coded as independent little units
wvhich obtain their inputs and pass back their outputs via
machine registers. We call these units the stens of the

L*(F) 13

processes, Calls on the processes from machine code (e.g.,
from other ©oprocesses in the kernel, or possibly fronm
compiled code) are made directlvy to the stems with
registers (R1,R2,etc.) used for input-output communication.
{ R6é 1is the highest register available for this purpose;
hence, it would not be possihle to have a process expecting
more than six inputs without adonting some additional
corventions)., These process stems are all called via a
PNSHI MSTKP,<stem addr> instruction, and return to their
caller with a “POPJ ¥STKP,™ instruction; i.e., the 1linkage
is always done through the machine stack MSTX ,

When kernel processes are called by the pmpachine code
interpraters .I/M and .IP/M , input-output communication
must be done through W . To handle this, the kernel
processes npust have “prefirxes™ which surround the process
ster to transfer inputs from W to registers for the sten,
and outputs from registers back to W when the step has
completed, { “prefix™ is actually somewhat of a misnomer
since the prefix does often surround the stem),

The input-outout characteristics of the kernel processes
are such that onlv 8 different tynes of prefix are needed.
To conserve space, 8 prefix subroutines (P21, P17, P11,
P12, p20¢, P21, P22 apd P33} vwere created which take a
nonstandard input (in R6) telling which ©process stem is
being interfaced with., These prefix subroutines operate hy
first transferring inputs from W to registers (81 for W(}),
R2 for W(1), etc.). 7Tf no output handling is necessaryvy (as
it is not in P1f and P29), the process stem (address in R6)
is transferred to, and it will return to the caller of the
entire process., When outpnt handling is necessary, the
stem 1is called as a subroutine of the prefix subroutine.
Then when the stem returns control, outputs are out back
into W from the registers, and control is returned to the
caller of the entire process.

The name of a kerrel process names the entire process
including the profix, The name of the stem in the MACRO-17
listing is obtaired by oputtinad a *y* in front of the
process name, Below 1is an example of the code for a
typical kernel process with a orefix :

<prefix> RN: Jsp 56,P20 ;s call prefix subroutine p22
: with ™6 pointing to sten

<stem> ZRN: HRLM R2,(R1) ; replace next of W(“) input
: bv (") input

<stem> RETURN ; return to caller

Note that prefixes of kernel processes are in a
preferred position in that they always immediately precede
their stem, This will of course nnt always be the case,
particularly if a stem is ever to have more than one
prefix.

Decimal Octal

-

9¢

417

519

6R7

g1y

3]

145

641

g7

1233 |

1456

2147

2226 1

Appendix 1 - Map of L* Kernel

i etk R i Tl s R ——

Roegisters and Proqgram Status

N o e TR I s . g S k. o — T T " e

Operating System
start locations
error locations
system initialization
prefix routines
operations

Symhol Operations
symbols
types

Data Type Operations
cells T/
inteqgers T/7
lists T/1L T/p

L+I. Operations
control
operand communication
interpreters

External Intarfaca Operations
name table
read
write

e

T D L e W —— L — . o A, . i st T " T e i

|

T/C (except NIL, WPTR,

WITT, WIPTT, R, WXS,

WHS, WHY : T/L)

<~- LSTART 140 {return)

<-= JSTART 141 {(debnq)

== ,START 142
{continue after save)

1174

1366

2272

3AB3

3939

2195

4451

5745

7139

2525

3722

EARR

7543

17143

17543

13243

15743

Appendix 1 - Map of L+ Kernel

l — o ——— T — —— . — . 2 A i LB ok .

| Symhols of Varions Tyrpes

{ T,/ L, /K, T/, T/, T/D
{ Interfaces
| DSK TTY
| R
Tables
type tables

|
|
| action character table
| name table

| save areas

| rachine stack

| T/C Tnitial Available Space
| 256 (decimal) cells

| T/M Tnitial Available Space

| 256 (decinal) cells

| T/I Initial Availakle Space
| 256 (decimal) cells

| T/L Initial Availabhle Space

i 1282 (decimal) cells

} + 64 reserved cells

} T/P Tnitial Available Space
| 1304 (decimal) cells

) e e e

-

-
I

— . AR R ——

T/C,T/1, M /K,
~/L,T/M,T/D

T/C

T/ M

™71

/T

T/P

Appendix 2 ~ Functional Outline of Xernel

SYMROLS -

SYMBOLS -
OPERATTONS: =5 <5 >3 #+T¢ -3 ¢ F
SYMRNLS: TRUE NIL

TYPES -
OPTPATINNS: =T T TI RT
SYMBOLS: T/C T/ /K T/L T/M T/P TH TTN TTT
W CELILS: 47TTT

NDATA TYPES -

TFLLS T/C -
OPFRATINNS: =T NC
SYMROLS: T/C R1 R2 RI R4 RS R6

INTEGPRS T/T -
OPERATTONS: =T T >T +T -1 * /T P
SYMPOLS: T/Y

CHARACTERS T/K -

OPERATINDNS: (NONR)
SYMBOLS: T/K KRFLL KBSP KLF RKVT KPF KTAB
KCR KSP KALT KTN KES

LISTS T/L -
OPERATIONS: S NRRM T IAD DA C/T =/1 7L
SYMBOLS: ™/L

MACHINE COD® T/M -
OPERATIONS: (NONE)
SYMBOLS: T/M P21 P17 P11 P12 P22 P21 P22 P11

PROGRAM LTSTS T/P -

OPZRATIONS: (SA¥E AS FOR LISTS)
SYMBOLS: T/D

I*L: INTTTAL LANGUAGF AVATTABLE TN L=*

CONTROL -~

OPFPATTONS: . M . vet .- .R u?"’ « R- .x .ch .Q

NOP
OPERAND COMMUNICATION -
OPERATIONS: PNV

W CFLLS: W
TNTERPRETERS -
OPERATIONS: « I/M . T/P I/S ,IP/M ,TB/P ,IP/S
SYMBOLS: + ITT .IPTT STOP
W CELLS: WXS WXN WHS WHN WITT WIPTT

EXTERNAL INTERFACE -
NAME TABLE -

Appeniix 2 - PFunctional Outline of Kernel 2

OPFRATIONS: LSNTWR LNNTW CSNTW LSNT LNENT CSNT

SYMBOLS: NT1 NPIT NTIN
W CRLLS: WNT WTC
READ -
OPERATIONS: RD .T/E ,IP/K ABND ANK ADK A+K A-K ACCD ACCK
SYMBOLS: AKT 1 NACC TISGN INIM INUMF OCTAL DECML
ROCY RDTT™ RDPTT
W CFLLS: 2D WTCKL WPDBK WK WAEKT WIPB
WRITE -
OPFRRATIONS: ¥ CYNKL CVIDL , IW® ,TPHER
SYMBOLS: DCTAL DECML WRCX WRTT WEPTT
W CELLS: WWR WTCKL WIB
INTFRFACES AND FILES -
SYMBOLS: TTY DSK
ASSEMBLY -
OPERATIONS: . IDP . IEX .IPDP ,IPTX CPTR MVPTR
SYHMROLS: ARTT AEPTT AWTT AWPTT RTT NBTT STVERW
¥ CFLLS: WDPTR WRTT WNBTT

NPEZRATING SYSTREM -

OPERATIDNS: FYEC DFRIOG ERROR 2CX ®CYX "CYX SWPCY HALT
SV RSTF RSTFB RSIFR CSP

SYMBOLS: DRCY SPTT SPXTT ST14N STI141 ST14?2
N/C N/I N/L N/M N/P N/RL
MSTK MSTEP MSTKN MSTXM
RISV P2SV R3SV R4SV RRSV “™SPSY

W CEILS: WDBC ¥DBCX WSPTT WSPYXT WSDRL

Appendiix 3 - L*(F) FKernel Processes 1

In the coluon £ollowing the name 1is the name of the prefix
sthroutine used by the process, indicating the numher of standard inpuots
and outputs the process has., Although there 1is no vprefix subroutine
pamed P20 , it is wused to indicate a process has no inputs and no
outputs. { Such processes actually have a no-op as a prefix)., A blank
entry indicates that the process does not have a prefix for standard
handling of inputs and outputs.

*T P31 MULTIPLY W{(1) TIYFS ¥(2), RFSULT TO W() (T/1)

+7 P37 ADD W(1) TH W(2), PRSULT TO W(?) (T/T)

+1I3 P21 ADD INTEGER W{(") TO SYMBNL W{1), SYMBOL PESULT ¥{())
-1 P31 SURTBACT W(1) FROM ®W{(2), RESIULT™ 70 W{(?) (/1)

=585 P31 SORTRACT SYMBOL W{(1) PROM SYMBOL w(2), RESULT TO W{(2) (T/I)
. P2 EXTT UNCONDITICNALLY

. ¥ P12 FXTT I® %{*) NDT = NTL (PCP W)

.= P12 EXIT TF W{) = NTL (POT W)

' PR EXIT TWO LEVELS NNCONDITIONATLY

oo P1C EXIT TWO LEVELS TIF W{{) NOT = NIi (POP W)

se P17 FXTT TWD LEVELS IF §(9) = NTL (POD W)

LI INTERPFETER FOR PEADTNG (T/K)

LI INTTIAL TNTERPYETER FOR T/M

.I/P INITIAYL. INTEPPRRTER FOR T/P

. I/S INITIAL TNTERPREFTER ¥0pP T/70,T/7,T/L

»IDP INTERPRETFER FOR DEPOSITING (T/K)

L IRX INTERPRFTER FNR FXTRACTING (T/K)

L IP/K TNTEZRPRETER FO™ READING IN T/P CONTEYT (T/K)

TIP/7Y INITIAL TNTERPRETER FOR ™/M IN T/D CONTEXT

LIDP/P INTTIAL TINTFRPRETER FOR T/P IN T/P CONTEXT

LIP/8 INITTAL INTFERPRETER FOR T/C,T/T,"/L,T/K TN T/P CONTEXT
LIPHP INTERPRETER FOR DEPOSITING IN T/P CONTEXT (T/K)
.TPEX INTERPRETER FOR TXTRACTING IN T/P CONTEXT {(T/K)
.IPWR INTFRPRETER FOR WRITING IN T/P CONTEXT (T/K)

. TUR TNTERPRETER FOP WRITING {T/K)

.0 P21 TNPUT NEXT SYMBOL TO W AND ANVANCE PAST IT

R PN2 REPEAT CURPENT LEVEL

R+ P10 PEPEAT CURRENT LRVEL IF W({(?) NOT = NIL, POP W

+R- P1® REPEAT CURRFNT LRVFL IF¥ W(®) = NTL, POP W

. X P1" EXFCUTE W{(“) AFT"R REMQVING IT

LXCR P2C EXFCUTE W{1) I¥ CONTEXT W (?)

/T P31 DIVIDE W(2) BY W(1), INTEGER QUOTIEN™ 70 ®(0) (T/I)
/RY P31 DIVIDE W(2) RY W(1), REMAINDER TO W(*) (T/I)

<I P21 TEST INTEGZR W(?) < INTEGER W(1)

<8 P21 TEST SYMBOL W(?) < SYMBROL W(1)

=C P21 TEST CONTENTS OF CFLL W{?) = CONTENTS OF CELL W(1)

= P21 TEST INTEGRR W(?) = TNTEGER W{(1)
= P21 TEST SYMBOL W(') = SYMROL 9(1)

=T P21 TEST IT ¥{) IS SAMFE TYPE A% W(1)
>T P27 TEST TINTEGER W(7) > INTEGER W(1)
>5 P21 TEST SYMBOL R{(*) > SYMROL %({1)
A+K ACTION FOR CHARACTER +

A~K ACTION FOR CHAPACTER -

ABND BOUNDARY ACTION

ACCD P12 ACCUMOLATE DYGIT CHARACTER TNTO T/T INUM
ACCK P12 ACCUMULATE NAME CHARACTER INTO T/C NACC
ADK ACTION FOR DIGIT CHARACTERS

Appendix 3

- L*{(P) Kernel Processes

i

ANK RACTION FOR NAMZ® CHARACTERS

e P11 COPY W(M)

C/L P?1 CREATE T/L SYMROL

CPTR P11 CRPATE BYTZ POTNTER POP LOCATION W(7)

CSNT P11 CREATE SYMROL WITH NAME W(") TN NA¥® TABLE

TSNTW P21 CREATE SYMROL WITH NAME W(1) IN NAME TABLZ W(")

ZSsP P21 CRZATE SPACF PROM MONITOR OF LRENGTH W{(1) OF TYPE OF W(")
CVvIDL P11 CONVERT INTEG®R W() TO DIGI™ LYST

CYNKL P11 CONVERT NAME ¥{2) TO CHARACTRR LIST

D P17 DELETE CPRLL W(7)

DA P10 DELETE CELL AFTER W(I)

DEBJG PAN TWNTER DEBUGGTNG MODE

= P12 ERASE SYMBOL W({n)

E/L P13 ERASE T/1 SYMROL W(2)

EL P1Y ERASE LTST W(n)

2RRY MACHINE STACK UNDERFLOW ERRORP

mRR1 CENTRAL PROCFSSOR TRAP FRROR

TRR2 BON-EXISTENT ,TPTT ENTRY ERROR

TRR3 NON~EYTISTRNT ,ITT ENTRY FRROR

TRRU NON-EYISTENT ARPTT EWTRY ERROR

TRRS NON-EXISTENT ARTT FNTRY ©WRROR

TRRE NON-EYTSTENT AWPTT ENTPY RRROR

ZRR7 NON-EXTSTWNT AWTT ENTRY FRROR

ERRB NON=-FEYISTENT RDDPTT ZINTRY FRENR

ERRY NON-EXTSTENT RDTT FNTRY ERRQOD

ERR17 NON-EXTSTENT SPXTT ENTRY TRROR

TRA1 NON-EYTST®NT WRPTT ENTRY RRRNR

ERRT2 NON-FEXISTENT WRT™ ENTRY ERROR

TRN73 SETWP FRROR RETURN DURING A RESTAPT

TRRIY CORE 040 TRROR RETURN IN CSP

TRR1S CUT OF SPACE T¥ NAME TABLE - CSNTW

ERR1A ERROR RETOR¥ FROM OPEN - RD

ERR17 FRROR RETURN FROM LOOKOP - RD

FRn18 BERROR RETIQN *RQOM IN - RD

PRR12 ®RROR RETURN TROM OPEN - WR

rRP2C FRROR RETURN FROM FNTER - WR

TRR21 ERROR RETHRN PROM OUT - WR

ERR22 ERROR BETHRN FROM QUT - ,IWR OR ,TOWP

TRRIR PNO INTERPRET “RROR ROUTINT TN WERR AFTZR NERIN SWAP
TXFRC P20 MATN EXECUTIVS : READ AND INTERPRET LINES FROM ™Y
HFALT POC 50 INTO MONITOR MODE

Y P20 INSERT W(1) AT W(?) (PUSH AND REDPLACT)

Ia P20 TINSTRT W(1) AFTEP W(") (PUSH, ADVAMNCT ANN REPLACE)
LNNT P11 LOTATE NAMT FOR SYMROL W(D) TN NAMT TABL®S

LNNPW P21 LOCATE NAME FOR SYMBOL W{(1) TN NAM? TARLY W(3)

LSNT P11 LOCAT® SYMBOL FOF NAME W{(0) IN NAMT TAALES

LSNTW¥ P21 LOCATE SYMROL FOR NAMF W(1) TN NAMF TABLE &(?2)
MVPTR P20 MOVE BYTF POINTER W(?) W(1) BRITS WITHIN CUORRENT WORD
N P11 GET NEXT OF W(7)

NOP P0N NN OPERATINN

p P12 PUSH W

P PREFTX RTN FOR PPOCESSES WITH NO INPUT AND 1 ouTePUT
P17 PREFIX RTN POR PROCESS®S WITH 1 INDPUT AND NO ouTenT
P11 PREFIX RTN POR PROCESSES WITH 1 INPUT AND 1 ouTPUT
P12 PREFIX RTN FOR PROCESSES WITH 1 INPUT AND 2 OUTPUTS
P27 PREFTX RTN POR PROCESSES WITH 2 YNPNUTS AND NN ouTPOT

p21
P22
P31
PCY

RC
RCY
an
RT
RN
RSIFP
RSTFR
RSTFR

RT
ST14°
STH41
ST142
SV
SWPCX
T
ncx

WP

pic
p20C
P27
P16
P11
P27
P22
P10
P10
P10
P20
P11

PO
P10
P
P21
Pi1C
P10
p22
p20

Appeniix 3 - L*{F) Kernel Processes

PREFIX RTY FOR PROCESSES WITH 2 TNPIHTS AND 1 0UTPOT
PREFIX RTY FOR PROCESSES WITH 2 TNDIUTS AND 2 OUTPUTS
PREFIX RTN FOR PROCESSFS WITH 3 INPUT™S AND 1 QUTPOT
PUSH CZONTEYT ACCORDING TO CONTRYT LTISZT W(")

REPLACE SYMROL OF W(") RY w(1)

REPLACE COMNTENTS OF CZLL W(T) BY CONTENTS 0OF CELL W(1)
REPLACE CONTFXT RCCORDING TO CONTEYT LIST w())

READ PROM TINTERFRC® W(3), PERESHULT W(*) = CHARACT®R LIST
REPLACF VATUE OF INTEGER W(") BY VALUE OF INTEGER W(1)
BPEPLACT NEXT OF ®(2) BY W(1)

RESET INTERFACT W(")

RESET TNTFRFACE RUFFERS (W(") TS RUFFER HFADER)
RESET TNTERFAC® RING (W(3) POTNTS TNTO BUFFFRPR RING)
REPLACE TYPE OF SYMBOL W(?) WITH TYPE TNDEX W(1) (T/1)
GET SYMBOL OF W(.)

REENTER EXEC

ENTER DEBUGGING MODFE

CONTINDE A7TER SAVFE

SET 1IP TO SAVE FOR RESTART

SWAP CONTEXT ACCCRDING TO CONTEXT LIST W{(O)

OUTPUYT CHARACTTRISTIC SYABOAL FOR TYPT OF W{(M)

SET VALUE OF INTEGE® W(7) = TYPE INDTX OF W(1)

PGP W

POP CONTEXT ACCORDING TO CONTEXT LIST W)

PEVERSE W(3) AND W(T)

WRITE W{(1) TO INTERFACF W({3)

LTPTT
LI7T
AKTY
ARPTT
ARTT
ARPTT
AWTT
R/K
nTT
DECML
nSK
INOM
INIMPF
TSGN
JBAPR
JRCNI
JBCOR
J3FF
JBHRL
JBRODPC
JRREL
JBREN
JBSA
JaTpl
KALT
KBRLI
KBsp
KCR
KErm
KLF
KsP
KT AR
KTN
KVT
¥SPSY
MSTK
MSTKM
MSTKN
MSTKP
N/C
N/Y
N/L
N/M
N/P
N/EL
NACT
NBTT
NYTT
NT1
NTIT
HTIN
OCTAL
R1
R1SY
R2
R25V

Appendix 4 - L*(F) ¥Kernel Data

STANDAPD TINTERPRETRER TYPE TRBLE FNOR T/P CONTEXT
BASIC INTTRPRETTR TYP® TARLR

INITIAL ACTYION CHARACTER TABLE

ASSEMPLY PRAD INTERPRRTFR TYPE TABLE FOP T/D CONTFXT
ASSEMRLY RERD TNTFRPRETER TYP® TABLE

ASSEMBLY WRITT INTERPRETEF TYPF TARLE FDOR T/P CONTPET
ASSEMBLY WRITY TNTERPPRETER TYPE TABLE

INTEGER WHDSE VALUE IS BASE OQF CHARACTPRR SYMROLS
BASE TYPF TABLE .

T/7T CONSTAMNT FQT DECIMAL PADTY

INTEPFACE FDR DISK

T/T NUMBER ACCUMULATOR FOR DIGIT CHARACTER ACTION
T/T NUMBER FLAG FOR DIGIT CHARAZUTER ACTTON

T/I SIGN INDICATOR PFOR DIGI™ ACTION

JOB DATA AREA LOCATIONS
SEE PDP-17 REFTERENCE HANDBOOK
{(LONK IN TNDEX),

® wd sy YE G ¥ i 48 s =

ALTMODE CHARACTER
BELL CHARACTER

BACKSPACE CHARATTER

CARRIAGE RETHURN CHARACTRR

FORM FZED CHARATTER -

LTINE FEED CTHARATTER

SPACE CHARACTER

TABR CHARACT®R

CHARACTZTR TABLE NUMTER (SIZE)

VERTICAL TAB CHARACTE®D

CELL FOR MSTKP CONTZINTS AT TIMF OF IRPGR
MACHINT STACK

MACHINE STACK MAYIMIM :

MACHINE STACK N'MMRER (0ODPERATING SIZE)
MACHINE STACK POINTER '

NIIMBPR OF TNITIAY, T/C AV.SP., CELLS
NUMBFPR OF INITTAL T/Y AV.SP. CELLS
NUMRBRER OF TNTTIAL T/L AV.SP. CRELLS
NUMBFR OF INITIAL ™/M AV.SP. CFPFLLS
NUMBER OF IMITIAL T/M AV.SP. CFLLS

NUMBER OF INTTIAL T/L RFSERVED AV, SD, ~PLLS
NAME ACCUMULATOR TOR MNAME CHARACTZER ACTTON
NUMBER OF RITS TYDPP TARLE

NULL LIST (LIST TERMTINATOPR)

INTTTAL NAMFT TABLY

INITIAL NAME TABLE TNDEY (NC. OF ENTRTES)
INITTAL NAMP TARLE SIZE

T/I CONSTAN™ FOR OCTAL RADIY

MACHTNE RESTSTER 1

CELL FOR R1 CONTENTS AT TIME OF BRROP

REG, 2

CELL FOR R2 CONTENTS AT TIMF OF ERROR

n3
R3SV
o4
RUSYV
RS
nesv
R%
DY
RDPTT
RDTT
STYEN
Sp/2
sep/sT
SP/L
Se/M
sp/sp
SP/RL
S°TT
5PYCX
SPXTT
sTop
T/C
/T
T/7K
T/L
T/
/P
™
TR
™Y
Y
TTY

W
WAKT
#BTT
WOR
WDRCX
#EPR
¥ZROL
WHN
WHS
win
WIPTT
WITT
WK
WNTBTT
WNT
WPTR
WRCY
WRN
WRDRK
WRODTT
WRTT
W3SPR L
wspmT
WSPYT

Appendix 4 - L+{(F) Kernel Data

REG. 3
C®LL FOR R3 CONTENTS AT TTIME OF FRROR
REG. 4
C®LL FOR R4 CONTENTS AT TIMFE OF ERRORA
REG, S
CELL FO®R BR CONTENTS AT ™IM® OF TREOR
REG. 6

CONTEXT LIST FDR RFAD INTERPRRTATION

READ TNTERPRETER TYPE TAPLE FOPR T/P CONTEXT

R™AD INTERPRETER TYPE TABLE

T/T CONSTANT =7

INITIAL T/C AVAILABLE SPACFE LIST

INITIRL T/7 AVATLABLE SPACFE ILIST

INITTAL T/L AVATLABRLE SPACE LIST

INTTIAL T/ AVATLABLE SPACE LTST

INITIAL I'/P AVAILABTE SPACE LIST

INITIAL T/L TRESZRYED AVAILARL? SPACE LIST

SPACE TYPE TABLT™ (HOLDS AV.SP. LTSTS)

SPACE FYHANSTED CHONTEXT SWAP LTST

SPACE EXHATSTED TYPZ TABLF (HNLDS SPACE EXHAUSTED PROCESSES)
T/P EXECUTIONN CONTWYXT DELIMITER FOR WHN STACK
CHRPACTERISTIC SYMBOL FOR TYPE CELL { = 9)
CHARACTERISTIC SYMBNL FOR TYPT TNTEGER (= 1)
CHABARCTERISTTIC SYMBOL ¥0NP TYPT CHARACTEPR { NULL CHARACTER)
CHARACTERISTTIC SYMBOL POR TYPT LIST (= NTIL,NIL)
CHARACTERISTIC SYMBOL FN® TYDPT MACHINT (RETORN)
CHARACTTERISTIC SYMROL FOR TYPR PRNGOAM ((Nom))
TYPE DISPLACEMENT (= 400707 QCTAL)

SYMBOI FNR PNSITIVE RWSULT FPOM TTSTS

TYPE TABLY SIZF (ALSO MAXIMII® NO., OF TYPES)
CHARACTRERISTIC SYMROL TYPFR TABLT

INTERTACTY FOR USFTR’S TRLETYDPE

OPERAND COMMUNICATION STACK

CELL ®OP CHAPACTEDP ACTION TABLE

CFELL FOR PASE TYPFT TARLT

CELL TOR DNERIG RONUTINF

CELY. F0OP DERBRNG CONTEXT SWHAP LIST

CELL FOR EPRRORT HANDLING ROQU™TN®

CELL FOR FPRO® LOCATION

HIGHER ROMTINE NEXT STACK

HIGH®R ROUTINF SYMENIL STACK

I i

T E E R D

W CPLL FOR TNTEGER RADIY

W CELL POR PRPOGRAM CONTEIXT INTERPRITER TYPE TABL®
W CELL FOP TNTERPRWTER TYPF TABILT

W CELL FOR CHARACTER BEING TNTERPRRETED

W CELL ¥OR NHUMBTR OF RITS TYP® T™ARLT

W CELT FOR NAME TARLES

W CELL FOR BYPT® POINTFR

CONTEXT LIST TOR WRITZ INTFRPRETATION

W CELL FOR READ INTERFACE

W CELL FNR READ RATAK CHARACTER

WRTTE INTERPRR®T?R TYPF TABLE FOR ™/P CONTIXT
WRITE INTERPRETZ R TYPF TABLE

W CELL FOR RESFERVED T/L SPACE

W CFLL FOR SPACT TYPF TARLE

W CELL FOR SPACE IXHAUSTED TYPE TABLF

W
WTOK L
§TTT
RV R
WEN
WYS
7ERD

Appeniix & - L+{F) Xernel Nata

CELL TOR TYP® BTTNG CREATED

CELL FOR TYPE OF THARACTE® LTSTS REINT TRIATTD
CELL ¥OR CHARACTERISTIC SYMBOL TYPF TRRIT

CELI FOR WRTT?™ TNTRPFPACT

CIHRRENT INSTRIUCTICON NFXT CTLL

CHRRENT INSTRUCTION SYMENL CFLL

T/I CTONSTANT =0

=g ®x

tonandix & - Lx{(F) Bootstrap Procensas

AR ASSEMBLY BRZAD STARTTING AT W(M) ACCORDTNA 0 LIST W{1)
L ASSEMRLY WRITE STARTING AT W{7) ACCORDIHG TO LTIST W(1}
AWARY ASSEMRLY-WPITT STYRIT IMITIARLTZATION

AWRS ASSEMBLY-WRTTE RESET

CP.LF WRITP KZR AMD KLF TO CHURRENT WRITT INTETFACTS

7sp/C ADD 270070 CELLS NF T/C AVAILABLE SPACE

CSP/T ADD 2757 CPLLS OF T/ AVAILABRLE SPACE

CSP/I, ADD 2077 CELLS OF T/L AVAILARLE SPACH

T8P/s% ADD 2707 CTLLS OF T/M AVATLABLE SPACE

CsSp/P ADD 2002 ZTELLS N% T/P AVATLABLFE SPACE

CSpT ADD 27230 CELLS ™0 AVAILABLE SPACE FOR TYDPR W(")

cvsI CONVRRT SYMBOL W(") TO TNTEARER

DCKA DPLETE ZURRENT CHARACTRR ACTION FOR CHAZACTRR W{(")
DEF/T SET WTC TO T/I FOR NEFTINTNG INTEGIRS

DEF/L SET WTC TO T/L TFOPF DFREFINING LTSTS

NE®/R SET WTC TO T/7P F0OR DEFINING PROGRAM LT3S™S

DETT DELETE =NTRY FOR W({1) IN TYPF TABLFE ¥ (")

RNPKI END CHARACTER LIST

TNDL ACTTON POR ™)™ - FND LIST

ENDL?Y SURBPROGRAM NT¥ TNDL

ENDL2 SUBRPROGRAM OF RMDL

ENDL3 SURPROGRAM OF ENDL

TTKEA THS®RT W{1) RS CURRWN™ CHYARACTER ACTION FTNR CHARACTRR W(")
TIZTY INSERT W{2) AS CORPTNT FNTRY OF TYPT TANLR W({7) FOR W(1)
L¥KIP LTNE 0P W{1) CELLS STARTING WITH %w(7) I¥®™) 34 LIST

PR PRINT ®w{™)

PRT PRINT TNTEGERP W(Q)

PRPL PRINT LIST W(M)

DPRLS PRINT LIST YUSINA PRSTY FOR FITMENTS
PRN PRINT NAME W (")

nENT SUBPRNAGRAM OF PN

PRN2Z SIUBPROGRAM OF PN

PRS PRINT SYMROL w()

PRST?' PRSTY ROATTHE (JSED FOP PRSTR

PRSTR PRINT STRUCTURE W(D)

PRSTY CUPPENT PRPINT ROUTINE MSPD RY PRLS TO PRINT LIST RLEMPNTS
BCK2 REPLACE W (1) AS CURRENT CHARACTER ACTTON TOR CHARACTER W(M)
A0 READ DSK FTILE NAMTD W(7) (WITH EXTENSION “1S5F%)

rETT REPLACT EBNTRY FOR W(1) IN TYPT TARLE W() RY W(2)

RSTRW RRSTORE R(7) FROM WSAVE

SAVE SAVE ¥QR PTWETART

SAVEW SAVE ¥W(2) I¥ ¥SAve

SCKA GET CURRENT CHAZACTER ACTION FOR CHARACTER W(7)

SETRD SPT DSK THPRPIOT THD DREAD FROM FTLE N2MZD W{") (EYTENSION “LSF"“)
STTT GET ENTRY OF W(1) IN TYPE TABLE W ()

SFTWF SET DSK QUTPUT 70 WRITE TO FILE NAMED W{") (EXTENSTON “LSF“)
SPAZ® WRITE A BLANK CWARACTRR TO CURRENT WRITT TINTIERPACTS

STRKL START CHARACTTR LTST

STRL ACTION FOR “(™ - START LIST

STRL1 SUBPEOGRAM OF STPL

STRL2 SUBPROGRAM OF STRL

ISFN ACTTON FOR ®:™ - USE NAME IN W (D)

WRF WRITE DSK FILE WAMED W{C) (WITH EYTEINSION “LSFW)

WRWWP WRITE W({D) TO CHURR¥NT WRITE INTERWACRS TN STACK WWER

. TCX
ARCX
AW CX
nacx
ONTL
PWIDT
DHIT™
NWRD
20 B
nWHR
TS
SpPeLY
m

T2

73

TU

TS
™YPL
w’\

w1

w2

w3

Wl

L)
WARPT
WARTT
WAWP T
WAWTT
we
WPLR
WSAV S
WIISEN

Rppendix 6 - L*(F) Bootstrap Data

COMTEXT LIST FOR STANDAPD TNTZFPRETATTON

CONTEYT LIST FOL 3ASSFMBLY EFAN INTERPRUETATION
COMTEYXT LTST TOT ASSEMRLY WRITE IMTERPRITATTON
DERNS SWAP CONTEYT LIST (TN WNRCY)

CFLL FOR DERNG 3WAP OF NTL

CELL FOP DERIG SWAP OTF wIDTT

CELL FOR DRAIG SWAD OF YITT

CZLL FOP DERIG SWAP OF WRD

CELL FNR DFRIG SWAP OF WRDOK

CZLI FOR DERIC SWAP OF WWCT

TEMPORARY T/T CTLI

/T WORK CPLI USED RY CSP/L WHFN PESTORING RPSRRYED SPACE
TEMPORARY WORK CFLL ("INSAFE)

TEMPOPARY WNRK 7~7PILL (IINSAFT®)

TEMPORARY WOPK CRLL (NNSAFE)

TEMPORARY WNARK CELL (TINSAF®)

TEMPORARY WNPK CELL (UNSATER)

TAMPORARY WORK ~RLL (UINSAFR®)

ASSOCIATION LIST OF TYPES POP “g™ ACTION

WORK C=LL (SAFF)

WORK CBLL (SAPF)

WORK CTLL (SAFPD)

WORK CELL (SAFE)

WORK CRLL {SATE)

WORK CEILL (SAFPER)

CTLL FOR T/P TONTTIXT™ ASSEMBLY RTAD TNTEF?PRETER TYPT TPABLE
CTLL POW BSSEMRLY RFPAD TNTFRPRETEIR TYPF TABLW
CELL F'OR T/ ZONTTYT ASSEMALY WOITS INTTSAPRETER TYP® PAJLW
CPLL FOR ASSEMBLY WRTITE® INTERPRETHR TYDR TARLE
CFLL T0O HOLD CUMRBREANT LTST BWING CTRTATID

CELT. TO HOLD # FLOOR

CRLL 7SED BY SAVEW

CFLY. TD HCLD TISEN STGNAT

I &

Popendix 7 - Complete List of System Names

Meaning of Code lLetters: K=Kernel, B3=Rootstrap, P=Process, D=Data .

« XCOY

/RI

>S5

A+ K
A-K
ABND
ACCD
ACCK
ADK
AKTY
ANK
AR

KD
KP
Kr
Kp
Kp
KD
Kp
XD
Kp
Kp
KP
Kp
Kp
Kp
KP
BD
KP
KP
KP
KP
K P
KP
KP
KP
XD
KD
KD
KP
Kp
KP
Kp
kP
KP
KP
KP
KP
KP
Kp
KP
KP
Kp
KP
Kp
KD
Kp
KP
Kp
Kp
KP
KP
KD
Kp
BP

MOLTIPLY W{1) TIMES W(2), RESULT Tn w(") (T/1)

ADD w{(1) TO W(2), RESULT TO ®{(*) (7T™/7T)

ADD INTRGRR H(2)} Tn SYMAOL W{1), SYM3NL RESULT W{M
SUBTRACT W(1) FROM W(2), RESHLT T0 W(?) (T/1)
SURTRACT SYMI0OL Y(1) FPOM SYMBOL W(2), RESHULT TO () (T/1)
EYIT UNZONDITIONALLY

EXIT IF W() NOT = NIL (POP W)

EXIT IF w{?) = NWIL (POP W)

FYIT TWO LFVSLS TINTONDITIONALLY

EXIT TWD LRVELS TF W(2) NOT = NIL (POP W)

ZXTT TWO LEVILS TF W(") = NTL (POP W)

INTRRPRETER FOR READING (T/K)

INITIAL INTR?PPRRTRER TFOR T/N

INTTIAL TNTERPRETFR ¥OR T/D

INITTAL INTFRPRETER FOR T/C,7/I,7/L

CONTEXT LTST POR STANDARD INTERPRETATION
TNTERPRETER FOR DEPOSITING (T/K)

INTFRPRETER FOR FYTRRCTING (T/XK)

INTERPRETER FOT NEADING TN T/P CONTEYXT (I/K)
INITIAL TNTFERPRETER FOR T/M TN T/P CONTEXT

INITIAL INTEPPRETER FOR T/P IN T/P CONTEXT
INITIAL INTERPERFTER FOR T/C,T/T7,T/L,T/X IN T/P CONTEXT
INTERPRETER FOR DEPOSTTING IN T/P CONTRXT (T/K)
INTERPRETREP FOR EXTPACTING IN T/P CONTEXT (T/K)
STANDARD TINTZIRPRFTRR TYPF TARLE FPOR T/P CONTEXT
INTERPRETER FOR WRITING IN T/P CONTEXT (T/K)
STANDARD TNTTZRPRETER TYPF TABLFR

INTERPRRETER FOR WRITING (T/K)

TNPOT NRYT SYHBOL TO W AND ADVANCT PAST TIT

REPEAT CURRENT LF¥VEL

REPEAT ZHRFENT LRVFL TF W({Y) NOT = NTL, POP W
REPRAT CURRENT LIVEL IF W(3) = NIL, POP W

EXRECUTE ¥W{) AFTESR RFMOVING IT

EXECUTE W(1)} TN CONTEXT W(Y)

DIVIDE W (2) BY W(1), TINTEGER QUOTIENT TO W{()) (T/T)
DIVIDE %¥(2) RY W(1), REMATNDER T0 W () (T™/T)

TEST TNTEGER W({0) < INTEGER W(1)

TEST SYMBOL %(7) < SYMBOI w(1)

TEST CONTENTS OF CELL W(7)} = CONTENTS 0OF CFLL W(1
TEST INTEGER W{2) = INTEGER W(1)

TEST SYMBOL W(N) = SYMROI W (1)

TEST TF W({) IS SAME TYPE AS w(1)

TEST INTFGFR W(?) > INTEGFR W(1)

TEST SYMBOL W(2) > SYMBOL W (1)

ACTION FOR CHARATTER +

ACTION FOR CHARACTRR -

BOUNDARY ACTIOW

ACCUMULATE DTGTT CHARACTER INTO T/I THNUM
ACCUMULATE NAME CHARACTER INTO T/C NACC

ACTION FOR DIGIT CHARACTERS

INITIAL ACTTION CHARACTER TABLE

ACTION FOR NAMF CHARACTERS

ASSEMBLY READ STARTING AT W{Z) ACCORNDING TO LIST W(1)

tppeniix 7 - Complete list of System Names

ARCY BD CONTEXT LYST FOR ASSWMRLY TEAD TNTRRPRTTATION

ARPTT KD BSSEMBLY RPAD TNTEPPRRETER TYPE TARTE T™0R T/P CONTEXT
ARTT KD ASSEFBLY READ TNTEPPRETFER TYPE TARLT

y BP ASSEMBLY WRTTF STAPTING AT W(7) ACTOPNDTNG ™0 LIST W€(1)
AWA3I BP ASSTMBLY-WRITF STIXRIT INITTALIVATTOW

RRCY BN COMTEXT LTST FOR ASSTMPLY WRITT INTERPRETATION

AWPTT ¥D ASSPMBLY WRITE TMTRRPRFTER TYP® TARLZ TOP T/P CONTEXT
AWTRS BP ASSEMBLY-WRFTTE RESAT

AgmT KD ASSEMBLY WRITE INTERPRETER TYPT® TARLT

R/K KD INTEGER WHOSF VALUT TS BASE OF CHARACTRR SYMBOLS
ATT KD BAST TYPE TAHLF

C KP CorY W(™)

C/7L EP CRTATE T/L SYMBROT

CPTR KP CREATE BYT® POINTEF FOR LOCATTON WD)

CE.LFP BP WPTITE KCR AND KLF TO CURRENT WRTTE TNTFRFACES
CSNT KP CREATE SYMRNT, WTTH NAMT %(*) IN NAMFE TARBLE
CSNIW KPP CREATE SYMBOL WTTH NAMY W({1) TN NAME TARLE W{9)
cep KP CRTATFE SPACE FROM MONITOR® OF LFNGTH %{1) NnF TYPPT OF W(3)
TS®/C BP ADD 200" CELLS OF T/C RVATLABLFT SpaACr

cep/I BP ADD 20f1 CELLS OF T/T AVATLABLT SpaCrw

Cs®/L BP ADD 2007 CELLS OF T/L AVAILARLE SPACF

T8d/¥ BP BADD 2077 CPLTS OF T/M AVAMILABLT SPACT

CSP/P BP ADD 2207 C®PLLS OF T/P AVAILARL® SPACT

CSPT BP ADD 2007 CFTLLS TO AVAYLARLFE SPACE FPOR TYPE W{(")
CVIDL KPP CONVERT TNTEGER W{{) TC DIGYT LIST

CVNKIL KP CONVERT FAMF W{2} TO CHARACTRR LIST

CY=Y BP CONVERT SYMROL W{(2) T0O TNTEGER

n KPP PELETE CFLL #4{7)

DA KP DELETE CFLL AFT=R W{7)

NBCX BD DEBUG SWAP TONTRYT LTIST {IN WDRCX)

DCKA BP DELETE TURRENT CHARACTRER ACTION FOR CHARACTRR W{(?)
DERING KP FNTER D¥NUGGING MONDF

DFCMI. KD T/Y CONSTANT FOR DFCIMAL RADIY

NEF/Y BP SET WTC TO T/I FOF DEPINTNG TNTEGFPS

DEF/L BP SET WTC 70 T/L FNR DFFININA LISTS

NDEF/P BP SET WITC TO T/P FOR DEFIVTING PRNGRAM LISTS
DETT BP DFLETE FNTRY FOR W(1) IN TYPT™ TARLF W(")

PNTL BD CELL FOR DEBUG SWAP OF NTL

DSK KD INTERFACE FDR DISK

DWIPT BD CFLL FOR DER'G SWAP NP WIPTT

DWITT BD CELL FOR DFBUG SWAP OF WITT

N¥ RD BD CFLL FOR DERYG SWAP OF WRD

TWRDDB BD CELL FOR DERNG SWEP OF WRDRK

DWWR BD CFLL FOR NREBIG SWAD OF WUWR

b KP EPASE SYMBOL w(1)

/L KP BTASE T/1 SY¥BOL wW()

TL KP FRAS® LIST W(™)

“NDKL BP ENND CHARACTEP LTST

ENDL BP ACTION FOP “)™ - FND LIST

TNDL1 BP SURPPOGRAM DF PNDL

ENDL2 BP SHUBPROGRMM OF ENDL

TNDL3 BP SUBPROGRAM OF ENDL

ERR) KP MACHINE STACK UNDERFLOW FERROR

nERT KP CENTRAL PROCFESSOBR TRAP TRROP

FRR2 KP NON-TXISTENT .TPTT ENTRY ERRNR

ERR3 KP NON-RXTSTENT ,TTT TNTRY TRROR

Appeniix 7 - Complete List of System Names
=P RY KP NON-FXISTENT APP™T ENTRY FRROR
TRTHR KP NON-RXISTINT ARTT ENTRY FRENR
ERRA KP NON-Z=XTSTFENT AWPTT ENTPY ERRNE
PRR7 KP NON-SXTSTENT AWT™ ®NTRY FRROR
TRR3 KP NON-EXTSTTNT RDPTT ENTRY FPRAPR
2RR9 KP NON-ZXTSTENT RDT™ ENTRY FPRPOR
ERR1" KP NON-EXISTFNT SPX™T FNTRY ERROR
FRR11 KP NON-EZXTSTENT WFP™T ENTRY FRROP
PRR12 KP NON-EXISTENT WRTT FNTRY ERROP
ERR13 EKP SFTIWP PRROR RETURN DHNRING R BTSTART
T"RR1U4 KP COPR UUD ©RRAR RUTIHRN TN CSP
ERR1S KP OUT OF SPACF IN YAMT TABLE - CYNTW
ERR16 KP EPROR RETHRN FROM OPEN -~ RD
ERR17 KP ERROR RETUPN PROM LOOKUP - RD
FPR1A KP EPPOR RETIIRN FPROM TN - RD
PPR19 KP FRROR RETURN FROM OPEN - WP
mRR2° KP FRPOR RRTURN FROM FNTER - WR
FRR21 EP FREROR RETURN FROM NUT - WR
FRR22 KP ERROR RETI'RN PRO™M QUT - _TWR NP ,IPHR
PREOR KP INTWRPRET TRPOP POUTINE IN WERD AFTRP DFRUG SWAP
PXET KP MAIN EXFCHUTTVE : READ AND TNTERPRFT LINPS FPOM TTY
HALT EP GO TNTO ¥OXT™OR MODFE
I KP INSERT W(1) AT w(") (PUSH AND REPLACR)
IA KP INSERT W(1) AFTER W(Z) (PUSH, ADVANCE 2MN REPLACE)
TTKA BP INSERT W{(1) AS CHUFRENT CHARACTRR ACT ON POR CHARACTER #(7)
IETT BP INSFRT W(2) AS CUPRENT ENTRY NF TYPT TARLF W(1) FOR W (1)
TN!TM KD T/T NUMRTP ACCUMULATOR POR DIGTT CHARACTRR ACTTON
TNUMF KD T/T NUMRY¥P FLAG FOPRP DIGIT CHARACTED RArTTAN
ISGN KD T/I SIGN INDTCRTOR FOR DIGTT ACTION
TT BD TEMPORARY T/7T CELL
JBAPR KD
JBCNT KD :
JBCOP KD ¢
JRER KD s JOR” DATA APEA LOCATIONS
JBHEL KD : SFE PDP-17 RFFFRENCE HANDRNOK
JROPC KD : (LOOK TN INDEY),.
JBRSL KD :
JRPRMN KD :
JRSA KD =
JBRTPC XD :
KALT KD ALTMODE CHARACTER
KBFLL KD BFIL CHARACTF®R
KBSP KD BACKSPACE CHARACTEPR
KCR KD CARRTAGR® RETTIRN CHARACTRR
K¥F KD FOEM FETD CHARACTER
KL% KD LINE FERM™ CHARACTFR
KSPp KD SPACE CHARARCTER
KTAB KD TAR CHARAC™ER
RTH KD CHARPACTER TARLE NUMBER (SIZF)
RVT KD VERTICAL T™AB CHARACTER
LNKJP BP LINK UP W(1) CFLLS STARTING WITH W()) TNTO A LIST
LNNT KP LOCATF NAME FOR SYMBOL W{C) IN NAME TABLZS
LNNTW KP LOCATE NAME PFOR SYMROL W(1) IN NAME TARL®T w{3)
LSNT KP LOCATE SYMBOL POR NAME W(D) IY NAME TABLRS
LSNTW KP LOCATR SYMBOL FOR NAME W(1) TN NAMF TABLE W{M)
MSPSY KD CELL FOR MSTXP CONTENTS AT TIME OF ERROR

Mopendix 7 - Complete List of System Names

MSTK KD MACHINFE STACK

MSTKM KD MACHINE STACK MAYIMUM

MSTRN KD MACHINE STACK NNOMBER (OPERATING STZ®)

MSTKDP KD MACHINE STACH POTNTER

MYPTR KPP MOVRE BYTE POTNTER W(7) W{1) BITS HITHIN CUPRENT WORD

¥ RP GET NEXT NF w(M)

N/C KD NOUOMBER DOF INTTTAL T/C RV.SP, CELLS
N/T KD NUOMBER OF TNTITTAL T™/1 AV.SP, C(FLLS
N/L KD NOUMR®R JF INITIAL T/L AV.SP, <CFLLS
N/M KD NUMBZR OF INITIAL T/M AV.SP, CRLLS
N/P KD NOMR®R NF INITIAL T/M AV,SP, (TLLS

N/RL KD NUMBER OF INTTIAL 7/ RESERVID AV.SP, CZLLS
NACC KD NAME ACCUMNOLATNR ¥OR NAMTE CHARACTERR AC™ION
KBT? KD NIMBER OF BTTS TYPT TABLF

NIT KD NTLYL. LIST {(LTST TERMTMATOR)
NOP KP ND NPEPATINON
NT 1 KD INITIAL NAME TABLE

NT1T KD TNTITIAT NAME TABLE INDEX (NO. OF 7"NTRIES)
NTIN KD INTITTAL NAME TABLE STZIF
OCTAL KD T/T CONSTANT FOR OCTAL RADIX

p KP PUSH W
P~ 1 KP PREFIX RTN PFNOR PROCESS®ES WITH NO TNPUT AND 1 OQUTPUT
Pt KP PRFFIYX RTN FNR PROCESSFES WITH 1 TNPU™ AND NO QUTPYT
P11 KP PRFFIX RTN FNOR PROCESSYS WITH 1 INDPIO™ AND 1 nuTDROP
P12 KP PRFFIX PTY FNOR PROCESSRES WITH 1 TNDPIT AND 2 NUTPUTS
p27 KP PREFIX RTN POR PPOCESSFS WITH 2 INPOTS AND NO ONTPUT
p21 KP PRT®TX RTN POR PPOTESSES WITH 2 INPUTS AND 1 OUTPUT
P22 KP PREFIX BTN FOP PROCESSES WITH 2 TNPOTS AND 2 OUTPUTS
P31 KP PRTFIX RTN FOR PROCESSES WITH 3 TNPU™S AND 1 QUTDHT
PCY KP PUSH CONTFEXT ACCORDTNG TO CONTRXT LIST W(?)

PR BP DPRTNT W(3)

PRT BP PRINT INTEGF? W(")

PRL BP PRINT LIST W(()

PRLS BP PRINT LIST USING PRSTX FOR ELTEMENTS

PRYN BP PRINT NAME W (2)

PRV BP SUBPROGRAM NF DRN

PRN2 BP STEBPROGRAM D= PRY

PRS BP PRTNT SYMBOL W({D)

PRSTT BP PESTYX ROUTIN® USED FQR DPRSTR

PRSTR RP PRTNT STRUCTURE W(™)

PRSTX BP CURRENT PRINT ROTTINY USTD BY PRLS TO DPPINT LTST EZLEMENTS

R KP REPLACE SYMBOL OF w(') BY w(1)

R1 KD MACHTINE REGISTER 1

R15Y KD CFLL FOR R1 CONTENTS AT TTME OF WRROP
n2 KD PEG. 2

R25V ED CFLL POR R2 CONTYNTS AT TIME OF RRRON
r3 KN BRFG., 3

RSV KD CFLL FOR R3 TONTEINTS AT TTME 07 TRROR
4 KD REG, 4

Y sy KD CELL FOR P4 CONTWNTS AT TIME OF RWRROR
R5 KD BR®G, 5

R&5Y KN CFLL FOR RS CONTENTS AT TTME OF ®RROR
RA KD REG. &

RC KP REPLACE CONTZENTS OF CFLL ®{((C) BY CONTENTS OF CELL W(1)

RCKA BP REPLACFE W(1) AS CURRWNT CHARACTER ACTION FOR CHARACTER W(7)
PCX KP REPLACE CONTEYT ACCORDING TO CONTEXT LIST W(")

np
RDCX
Dy
RDPTT
rpTT
RETT
RI

ny
RSIF
RSIFR
RSIPPR
RETRW
RT

s
SAVR
SAVEW
SCFKA
SETRD
SETT
STTHR
SEVEW
5p/C
sbrst
SprsL
Sp/M
Sp/p
SP/RL
SPACFE
SPCLI
SpTT
SPXCX
SPYTT
ST147
ST141
STI42
5T0P
STPKL
STRL
STRL1
STRL2
SY
SWPCY
T/C
™I
T/K
T/L
T/ M
T/P
R

™

T2

T3

Ty

75

D

KP
KD
BP
KD
KD
BP
Kp
KP
KP
KEp
KP
Rp
KP
KP
BP
BP
BP
BP
BP
Bp
KD
KD
KD
KD
KD
KD
KD
BP
BD
KD
KD
KD
Kp
KP
KP
KD
BP
BP
BpP
RP
Kp
Kp
KP
KD
KD
KD
KD
KD
KD
BD
BD
RD
BD
BD
BRD
KD

Appeniix 7 -~ Complete List of System Names

READ FPROM TNTERFACF W(Z), PRT™SULT W(") = CHARACTYR LIST
CONTEXT TIST FOR R™AD INTERPRETATIONYN

PEAD DSK FIL™ NAMED W(Y) (WITH EXTRNSION “LST%)

READ INTERPPITER TYPE TABLT FOR T/P CONTRXT

READ INTFRPRET®R TYPE TARLE

PEPLACE FNTRY POR W(1) TN TYPT TABL® ®w{J) RY W(2)
REPLRCE VALUT OF TINTEGER W(0) BY VALUE O™ INTEGER W(1
RFPLACE NEXT OF W(") BY W (1)

RESET INTERPACTE W(7)

PESET INTERFPAC® ROFPERS (W{(1) IS RUFFER HEADER)

RPSET INTERP!?CE RING (W(3) DPOTNTS INTO BUFPFEP RTNG)
FESTORP W(Z) FROM WSAVR

RFPLACE TYPZ OF SYMBOL W(’) WITH TYPF TNDEYX @ (1) (/1)
GET SYMBNL 07 W{")

SAVE FOR PESTART

SAVE W(2) TN WSAVF

GET CURRENT CHARACTER ACTION FOR THARACTER W(")}

SET DSK TNPUT TO RTWAD PROM FILRT NAMED W(") (TXTENSION ®L5P"%)
GET TNTRY OF W(1) IN TYPE TABLT W(“)

SET DSK OUTPUT TH WRITE TO FTLY NAMED W () (EYTENSION “LSF™)
T/1 CONSTANT =7

INITIAL T/C BVAYLRRLE SPACP LIST

INITIAL T/ AVATLABLE SPACE LIST

INITIAL T/L AVAILABLT SPACYE LIST

INITYAL T/M AVATLABLE SPACE LIST

INTTTAL T/P AVAILABLE SPACE LIST

INITIAL RESERVED T/L AVATIABLE SPACT LTST

WRTTF A BLANX CHARACTER TO CURRRNT WRITE INTERFACES

T/I WORK CFLY. USZD BY CZSP/L WHEN RESTORITNG RESTRVED SPACTH
SPACE TYPE TABTE (HOLDS AV,SP., LTISTS)

SPACE EBYHAUSTED ZONTFRXT SWAP LYST

SPRCT EYHAUSTED TYPE TABLE (HOLDS SPACR SXHAUSTED PROCESSES)
REFNTER EXEC

FNTRR DERUGGTNG MODE

CONTINUOE AFTTIR SAVF

T/P EXECUTION CONTEXT DRLTIMITFR FDOR WHN STACK

START CHARACTER LIST

ACTION FOP ™ (™ - START LTIST

SURPROGRAM OF STRL

SUBPROGRAM 0O STRL

SET P TO SAYE FOR RESTART

SWAP CONTEYT ACCORDING TOC CONTEXT LIST Ww(0)

QUTPUT CHARACTERISTTIC SYMBOL FOR TYP? OF W{M)
CHARACTRRISTIC SYMBOL TOR TYPT CRILL (= YY)
CHARACTERISTIC SYMDOL FOR TYPE TINT®GZR (= 7)
CHARMCTRPISTTYC SYMBOL FOR TYPF CHARACTT?R (NULT, CHARACTER)
CHARACTERTSTIC SYMRBOL FOR TYPE LIST (= NIL,NITL)
CHARACTFRISTTIC SYMROI FOR TYPF MACHINF (= RFTIRN)
CHARACTERISTIC SYMBOL POR TYPF PRONGRAM (= (NOP))
TEMPOPARY WOREK CTLI. (UINSAFR)

TEMPORARY WOTK CRELL (UNSAFT)

TEMPORARY WORK CRLL (UNSAFF)

TEMPORARY WORFK CELL (TUNSAFF)

TEMPORARY WORK CTLL (UNSAFR)

TEMPORARY WORK CELL (UNSAPE)

TYPE DISPLACZMENT (= 40300C OCTAL)

TT
TRUF
mmN
TTT
TTY
TYPL
f]

ncx
SN
v

°d

H'\

w1

W2

W3

wy

W5
WAKT
WAPPT
WARTT
WAWPT
WAWTT
WRTT
wC
WDR
WNBCX
WERR
WERRT,
WPLR
WHN
WHS
WIB
WIPTT
WITT
WK
WNBTT
WNT
WPTR
WR
WRCX
WeD
WR DBK
WRF
WRPTT
WRTT
WRWWER
WSAVFE
WSPRIL
WSPTT
WSPYT
ure
WTCKL
WTTT
WISEN
WW R
WXN

KP
KD
KD
KD
KD
BD
KP
Kp
BP
KP
KD
BD
BD
BD
BD
BD
BD
KD
ED
BD
BD
BD
KD
BD
KD
KD
KD
Kb
BD
KD
KD
KD
KD
KD
KD
KD
KD
KD
Kp
KD
KD
KD
BRP
KD
KD
2p
BN
KD
KD
KD
KD
KD
KD
BD
KD
KD

Appendix 7 - Complete List of System Names

SET VALUF OF TNTEGER W(Z) = TYPE INDFX OF W(1)
SYMBNOL FOR POSTTIVE RESULT FROM "MRSTS

TYPY TABLE STZE (RLSO MAXIMUM NO, OF TYPES)
CHARACT®OISTTC SYMROIL TYPE TARLFE

TNTERFACE *07 USFR’S TRLETYPR

ASSQCTATTON LIST OF TYPES FOR “g™ ACTIONW

POP W

POP CONTEXT ACCORDING TO CONTFYT LIST W(")
ACTION FOR ™2™ - USE NAME IN W(D)

REVERSE W(N) AND W(1)

OPERAND COMMUNICATION STACK

WOFRK CELL (SAFFR)

WORK CELL (SAFF)

WORK CFLL (SAFE)

WORK CFLL (SAFR)

WORK CELL (SAF®)

WORK CELL (SAFE)

CELL FOR CHARAST®R ACTION TABLF

CELL FOR T/P CONTEXT ASSTMALY BTAD INTERPRETER TYPT TARLE
CELL FOPR ASS¥MPLY READ TNTERPRET®R TYP® TABLE
CELL FOR T/P CONTEYT ASSFMBLY WRIT® INTERPRETFR TYPE TABLE
CFLL FOR ASSEMBLY WRITF INTERPRETER TYPR TABLE
CELL FOR BASF¥ TYPE TABLF

CELL TC ®OLD CURRENT LIST RETNG CREATED

CELL FOR DFBUG ROUTINE

CRLL FOR DEBUG CONTRYT SWAP LTST

CELL FOR ERBOR HANDLING ROUTINE

CELL FCR FRROR LOCATION

CELL T0 HOLD W FPLOOR

HIGHER RNUTINF NEXT STACK

HIGHER RNATINT SYMROL STACK

W CELL FOR TNTEGER RADIX '

W CELL FOR PROGRAM CONTEXT TMTWRPRTTSR TYPF TARLE
W CTLL FOR INTERPRT"TER TYPE TABL®

W CELL FOR CHARACTER RBRTNG INTERPRTPTED

W CFLL FOR NUMPRER OF BITS TYPE TABLE

W CELL FOR NAME TABLES

¥ CFLL FOR BYTE POINTER

WRITE W(1) TO INTERFACE W(")

CONTEXT LTST FOR WRTTT TNTZRPRETATTONM

¥ CELL FOR RIAD INTERFACT

¥ CELL FOR R7AD RBRREAK CHARACTER

WRITE DSK FTLE NEMED W(?) (WYTH TXTENSTON “ILSF™)
WRIT® INTTRPRETER TYPF TABL® FOR T/P CONTEXT
WRITE TINTERPRETRR TYPE TARLE

WRITE W(7) TO CURRFNT WRITE INTERFACTS IN STACK WWPR
W CELL USFTD 7Y SAVEW

W CFLL FOF RTSFRVED T/L SPACT

W CELL FOR SPACE TYPT TARLE

W CELL FOR SPACE EYHAUSTED TYPR TABLF

W CELL FOR TYPE REING CREATED

W CELL FOR TYP® OF CHARACTER LISTS BFSIMG CREATED
W

W

W

C

NEX D IO gl

CELL FOPF CHAPACTFRISTIC SYMBOL TYPE TARLRE
CELL T0 HNOLD OSEN SIANAL

CELL FOR WRITE INTERPACE

TERENT INSTRUCTINN NRXT CELL

Appendix 7 - Complete Tist of System Names

WXs KD CURRENT TNSTRUCTION SYMBOL CPLL
ZERD KD T/T CONSTANT =0

*ppendix 8 - Abbreviations Used For Names

A APTER ACTINN ASSEMBLY
ACC ACCUMHULAT® ACCHMULATNR

AKT ACTION-CHARACTF ~TARLT

ALT ALTMODE

AR ASSEMBLY-READ

AW ASSEMBLY=-WRTTF

B BASE BIT RPEAK RHFFER

RN D BOUNDARY

RSP BACKSPACE

o CELL CnNDPY CRPATF

TR CARRIAGE-RETHRN

cv CONVIRT

~x CONTEXT

n DEL®TE DISPLACTMRNT DIGTT
DB DERUG

np DEPOSIT

% ERASE

EY FXTRACT

F FLAG

FF FORM~-FRED

H HTGHER

T INTEGEP INSFRT TINDEX

TP INTRRFACR

Jr JOR-DATA-APRA~LOCATTON

K CHARACTER

KT CHAPACTRR-TABLF

L LIST LOCAT™E LOCATION.

L¥ LINF-FEFD

" MACHINE MAYTIMIIY

N NEXT NAME NUMUFPR

N NAMP-TRBLF

N1 NUUMREP

p PROGRAM PHUCHE DPREFTIX POINTFR
PTR POTNTFR

0 QUoT®

» REPLACE PREPFAT PRESERVR REGTSTTR RINA
RD READ

RS RESET

S SYMBOL STACK

SGN SIGH

Sp SPACE

ST START

STK STACK

av SAVE

SWP SWAP

T TYPE TABL®E

iy TYPE-TABLE

n POP-UD

v REVERSE

vT VRRTICAL~TAR

W WORKING~CELL

WR WRITE

X EXFCUTE FYXHAOGSTED

/X OF-TYPE-X

. I INTERPRETER ‘ ‘
.IP INTERPRETER-FOR~-T/P-CONTEXT

7ZX STEM-OP-PROCESS-X

Appendix 9 - BRootstrap Ontline 1

I. OUTLINE OF INITTAL BOOTSTRAP

1.

13,

11.

12,

TI,

S O

‘@)v LI IET Y)

XS P, KCR,

DEFINE RCKA - PFPLACE CPRRENT CHARACTER ACTTON
W(?)=CAARACTFR, W(1)=ACTTON

DEPTNY A:(...) BY CHARACTPR ACTTONS FOR

()

(13

0SEN STRL ENDL

ADD ABND TO CHARACTER ACTTONS FOR ! : ()

SET P NERUG SWAP LIST

DEFINE WIRKING CELLS (T”S AND WS} AND SAVE AND RESTORP
PROCESSES (SAVEW RSTRW).

DEFTNE TYPE DECLARATION PPOCESSFS AND & ACTTON
DEF/P DEF/L DEF/T
AT TDO MAKE A OF TYPF T BY CHARACTFR ACTINN FOR @&

DEFINE ™, ,.™ TO CRWATE LTST OF CHARACTERS (NF TYPE WTCKL.S)
BY CHARAZTER ACTION POR “

DEFINT PRINT PRNCESSFPS
WRHWR SPACE CR,LF PRN PRT PRS PR PRI

DEFINZ TYP® TARLE RND TURRRNT CHARACTER ACTION PROCHSSES
RETT IRTT DETT SEPT

ICKA

NCKA SCKA (RCKAR DEFINED TN 1,)

DEFINE ELEMFNTARY SPACZ PROCESSES

CSPT

DEFINE

LNKUP CSP/I CSP/L C5P/M CSP/P CSB/C

ASSEMBLY PROCESSES

AW AR

DEFINE FILF NAMING PROCRSSTS
AWSBY AWRS
SETRD SETWR (W(0)=SYMBOL AND USES TXTFRNAL NAME OF IT JLSP)
RDF WRF® (READ AND WRTTE FROM DSK PTLF W("))

CHARACTER ACTIONS AFTER BOOTSTRAP

-z
-9

- BNK = NAMFT ACTION

- ADK - DIGIT ACTION

A+K = PLUS ACTTON

A-K - MTINMOS ACTION

0 = QUOTE ACTION

» = COMMENT ACTION (®=XITS LINE)

(ABND ,ICX .XCX) - EXECHUTE ACTION (ALSO BONNDARY ACTION)
(ABND USEN) - NAMING ACTION

(ABND STRL) - START LIST ACTION

(ABND ENDL) - END LIST ACTTON

TYPE ACTION

CHARACTER LIST ACTION

KLF,RFF,KVT,KTAR - ABND - BOUNDARY ACTTON

OTHER PRINTING CHARACTERS -~ ANK
ALL OTHERS ~ NOP

.I/P

Appendix 17 - Detailed Descriptions of Kernel Processes 3

character action table (in W cell WAKT) with the 7-bhit code
for the character being interpreted, +I/K exits upon
return from the character action.

»I/M 1is the interoreter for T/4 used in all
interpretation contexts defined in the kernel and
bootstrap, Tt appears as the entry for T/M in all the
following interpreter type tables: +¥TT, ARTT, AWTT, RODIT
and WRTT., ,I/M"s only action is to call the symbol to bhe
interpreted (input in ?1) as a machine code subroutine,

+I/P is the interpreter for T/ userd in all
interpretation contexts dafineq in the kernel and
Pootstrap. Tt anpears as the entry for T/P in all the
followina internreter type tables: .TT™, ARTT, AWTT, RDTT
and WRTT, ,I/P operates as follows:

Descend: Push WYS onto WHS and WXN onto WHN,
Put STOP into WXN to delimit scope of current T/P
exacution,
Put symhol to be interpreted (input to .I/P in R1)
into WYSs,

Interpret: Interpret symhol in WYS by calling the
aporopriate interpreter obtained Ffrom the current
interpreter tvne table contained in W cell WwWIPTP,
(This 1is interpretation within the scope of a T/P
list, hence WIPTT is used rather than WITT).

Topon return, continue,

Advance: If WXN,S = YIL, gq0 to AscenAd,

If WXN,S= STOP, go to Exit,

Otherwise, nut the symbol of thr cell pointed to
by WXN into WXS, and advance WXN to noint to the next
cell or the list (hy putting the link of the cell
pointed to hy WXN back into WXN),

Then gqo to Tnterpret,

Ascend: Pop WHS into WXS and WHY into W¥N.
Go to Advance,

Exit: Pop WHS into WXS and WHN into WYN.
Exit froe T/P execntion context by returnina to
the original caller of ,I/p.

+15

- T/7K

Appendix 1° - hetailed Descriptions of Kernel Processes 2

*IS adds the value of W(2) to symbol w(1). The symbol
result is output w(n)y,

~I subtracts the value of W(1) from the value of W{(2),
storina the result as the valus of W((), (") is left as
output,

-fS subtracts the symhol ®(1) from the symbol W®w(2),
storing the integer result as the value of W("), (') is
left as outnut,

+ ©xits one level unconditionally hy putting NIL into
WYN,

.+ exits one level if input (") is not NIL by putting
NIL into WX¥., The input is alwavs removed,

.~ exits one level if input W(®) is NTL by vputting NIL
into WXN, The input is alwavs removed,

v+ exits two levels unconditionally by putting NIL into
both WXN and WHN,

+o+ exits two levels if the input W(0) is not NIL by
calling .. ., The input is always removed,

e exits tvwo levels if the input W{") is NTL by calling
++ « The input is always removed.

«I/K is a readinqg interpreter used for T/ in Read
Context, Tt appears as the entry for T/K in the
interpreter type tabhle RDTT. . I/K obtains the (character)
symbol to be interpreted fron R1, stores it in call WK, and
then interprets the appropriate character action. The
character action is obtained by indexing into the current

lI/p

Appendix 17 - nNetailed Descriptions of Kernel Processes 3

character action table (in W cell WAKT) with the 7T=-bit code
for the character being interpreted. +I/K exits upon
return from the character action.

»I/% is the dinteroreter for /" used in all
interpretation contexts Aef ined in the kernel and
bootstrap, Tt anpears as the entry for T/ in all the
followina interpreter type tables: .YTT, ARTT, AWTT, RDIT
and WRTT. .I/M’s only action is to call the symbhol to bhe
interpreted (input in "1) as a machine code subroutine,

+I/P is the interpreter for ryn used in all
interpretation contexts defined in the kernel and
hootstrap. T+ avpears as the entry for T/P in all the
follovwing interoreter type tables: .TITT, ARTT, AWTT, RDTT
and WRTT. ,1/P operates as follows:

Descend: Push WY5 onto WHS and WXN onto WHN.
Put STOP into WXN to delimit scope of current T/P
execution,
Put symbol to be interpreted (irput to ,TI/P in n1)
into wW¥s,

Interpret: Interpret symhol in WY¥S by calling the
aporopriate interpreter obtained from the current
interpreter tvne table contained in W cell WwIDTT,
(This 1is interpretation within the scope of a T/P
list, hence WIPTT is used rather than WITT),

Tpon veturn, continue.

Advance: If WXN,5 = YIIL, g0 to Ascend,

If WXN,S= STOP, go to Exit,

Otherwise, nut the symbol of the cell pointad to
by WXN into WXS, and advance WXN to noint to the next
cell or the list (hy putting the 1link of the cell
pointed to by WX¥ back into WXN).

Then go to Tnterpret.

Ascend: Pop WHS into WYXS and ®WHY into WYN,
Go to Advance,

Exit: Pop WHS into WXS and WHN into WIN.
Exit from T/P execution context by returning to
the original caller of .T1/P.

Appendix 1) - Detailed Descriptions of Kernel Processes 4

L1/5

.1DP

.IP/K

LIP/M

.1/5 is the data interpreter and appears 1in .ITT for
v/L, T/, T/ and 7/C, and in ARTT, AQTT, RDTT and WRTT for
m/L, T™/I and T/C. The operation of ,I/5 is simply to nbpush
onto W the symbol being interpreted,

LIDP is the interpreter for devositina, and appears as
the entry for T/K in interpretar type table 2WTT. 1Ilet A be
the symhol heing interpreted (input to ,IPP in RV,

LIDP first ohtains the entry for 3 in the current bit
number tvpe table (in ¥ cell WNRTT). This entry is an
integar whose value is now deposited inta the S-field (bits
6-11) of the PDP1{ byte pointer in W cell WPTR,

Next the entry in the cnrrent hase type tahle (in W cell
WBTT) for A is ohbtained, (Tt is an inteader; call its value

R).

Finally, the valye 3 - B is deposited wusing an IDPR
(Increment and nNePosit Ryte) instruction on the byte
pointer in WPTR,

.TEY is the interpreter for extracting, andi apoears as
the entry for T/¥X in interpreter tvpe tahble ARTT., Tet A be
the svmbol heing interpreted (input to .TEY inp R1),

LI%X first obtains the entry for A in the current bit
number type table (in W cell WNBTT), This entry is an
integar whose value is now deposited into the S-field (bits
f~11) of the »np1Y hyte vointer in W cell WPTR,

Yext, a bit pattern 1is extracted using an TLDB
(Increment and Loa" Byte) instruction on the bhyte nointer
in WPTR. Then the entry in the currant hase type table (in
¥ cell WBTT)Y for A is ohtained. (It is an inteqer: call
its value B).

Finally, the symbol obtained by adding to B the bit
pattern =xtracted above is pushed onto W.

.IP/¥ is the reading interpreter that appears as the
entry for T/K 1in interpreter type table .TPTT, ,IP/K is
identical to ,T/K except that it gots its input (the symhol
to be interpreted) from WXS rather than 7?1 since ,.IP/X is
used within the scope of T/P interpretation.

.IP/M is the machine code interpreter for 1intecrpreting
T/M symbols appearing in T/P lists, It is the entry for

Appendix 12 - Detailed Nescriptions of Kernel Processes 5

TR/P

+IP/S

LIPDP

+IPEX

.IPHR

+IWR

T/¥ in all the following interpreter type tables: . TPTT,
ARPTT, AWPTT, RDPTT and WRPTT. Tt operates identically
with ,I/M excent that its inpnt (the symhol to be
interpreted) is gotten from WXS rather than n1t.

-IP/P is the intetpreter for T/P symbols appearing in
T/P 1lists, It is the entry for T/P in all the following
interpreter type tahles: .I"™TT, ARPTT, AWPTT, RDOPTT and
WRPTT.

Its operation is not like the operation of .,I/P; in
fact, all .TP/M does is to push WXS onto WHS and WXN onto
WHN, move the contents of WXS to WXN, and then exit.

In the initia) Ls system, .TP/P will always be called by
the “Interpret® part of ,1/P, and hence when .IP/P returns
to .I/P, WXN will be set up so that ™Advance®™ will start
down the new T/P list,

+IP/S is the interpreter for data avpearing in T/P
lists, It appears in ,TPTT for T/L, T/T, T/K and T/C, and
in ARPTT, AWPTT, RDPTT and WRPTT for T™/L, T/T and T/C. It
operates identically with ,T/S except that its input (the
symbol to be interpreted) is obtained from WYS rather than
R1. .

»IPDP is the interpreter for depositing within the scope
of a T/P list, and is the entry for T/K in interpreter type
table AWPTT, It operates identically with ,IDP except that
it obtains the symbol to interpret from WXS rather than R1.

+IPEX is the interpreter for extracting within the scope
of a T/P list, and is the entry for T/K in interpreter type
table ARPTT, Tt operates identically with ,IEX except that
it obtains the symbol to internret from WXS rather than AR

+IPHR is an interpreter for writing and is used to
interpret T/K appearing in T/P lists when in Write Context,
It avpears in interpreter type table WRPTT as the entry for
T/K. +IPWR 1is identical with .THP except that its input
{the symbol to be interpreted) is qotten from WXS rather
than R1.

+IWR is a writing interpreter used for T/K in VWrite

'R*

-R_

Appendix 1) - nNDetailed Descriptions of Kernel Processes 6

Context, Tt appears as the entry for T/K in the
interpreter type tahle WRTT,

+IWR subtracts the base for the svabol heing interpreted
(obtained as an integer from the type tahle in W cell ®BTT)
from the symhol itself, The resulting bit vpattern is
deposited into the appropriate output buffer if there is
room, otherwise an output operation is done first.

Thete are two implicit inputs to IRR, both related to
the particular interface being written to. These are the
channel number (from the right half of the first word of
the interface block) and the buffer hoader address (fron
the left hal€ of the fourth word), and thev are set up hy
WR before it interprets its wW(1) input.

Note that the size of the above bit pattern deposited in
the buffer is determined by the particular outpnt
interface, and not by any L% mechanism.

If .TWR pust 4o an output operation (hecause the buffer
is full), and an error return occurs, error location PRR22
is called,

+Q (Quote) outputs the next symbol in the current
Program list and causes interpretation to skip over it. TIf
+0 appears as the last symbol on a progqras list, it will
cause control to ascend until the following symbol is
found.

+F repeats execution of the current level by putting the
top element of WHS, which is the higher routine symbol
stack, into WX¥, which holds the pext operation on the
current level,

+R+ repeats the current level if inbut ¥(") is not NTIL
by putting the top element of wHS into WYN, The input is
always removed.

+R- repeats the current level if input W{M) is NTL by
putting the top element of WHS into WXN. The input is
always removed,

X interprets (eXecutes) the symbol W(0) (after removing
it from the stack) by calling the appropriate interpreter
obtained from the interpreter tyve tahle contained in w

A"ppendix 17 - Detailed Descriptions of Kernel Processes 7

cell wWITT,

. XCX +XCX interprats (executes) the symbol W(1) in the
context specified by context list wW(), which is in the
form expected by PCX, ®CX, and 1iCX.

The operations PCY and then BRTY are performed on the
context 1list W("), The symhol ¥(1) is then internreted by
calling the appropriate interoreter from the interpreter
tvpe table contained in ¥ cell WYTT. UOUnon return from the
interpreter, the original context is restored by performing
CX on the context list which was input ("),

/T /1 divides th» value of W(2) hy thr value of w1y,
storing the quotient as the value of W(%). W(3) is left as
out put.

/RI /7RT divides the value of W(2) hy the value of Wi,

storing the remainder as the value of W), W(") is left
as output,

<Y <I tests if the value of W(*) < the valne of w{1y, If
not, the output is NTL. If so, the outont is W{1) (unless
W(1) is NIL, in which case the output is TRU®),

<5 <S tests if the symbol W(?) 1is 1less +han the symbol
w1y, If not, the outnut is WTL, TIf so, the output is
W(1) (unless W(1) = NT1L, in which case the output is TRUT
Y.

=C =C tests if the value of 9(®) = the value of W1y, If
not, the outnut is NIL, Tf so, the output is W(1) (unless
W(1) is NTL, in which case the ontput is TROR),

=T =] is identical to =C .

=5 =5 tests if the svymbol W{(?) = the symbol W(1). If not,
the output is NJL, TIf so, the output is W{(1) (unless W(1)
= NIL, in which case the ogtput is TRUT),

& |

i}

>T

>3

A+K

ABND

Appendix 10 - netailed Descriptions of Kernel Processes]

=T gets the type indexes of W(>) andi W(1) which are
storel as the contents of the cells whase addresses are
W(2) ¢+ TD and W{(1) + Tp roespectively., Then it tests if the
type of W{) is the same as the type of W{1)., If not, the
result is NIL. If so, the output is W(1) { unless Wiy =
NIV, in which case the output is TrUE),

»>T tests if the value of W(") > the value of Ww(1). TE
not, the output is NIL. TIf so, the output is W{1) (unless
W{1) = NIL, in which case the output js TRYE).

>S5 tests if the symbol W(") is qreater than the symbol
W{1). If not, the output is NTI. If 30, the output is the
symbol W(1) (unless W{(1) is NIT, in whirh case the output
is TRUR),

A+K is the initial character action (entry in AKT1) for
the character r+°, Tt operates by first testinag if the
number flag integer TNUMF = 1 (indicating that only digit
characters havn nccurred since the last boundary
character), and if so sets INUMF = -1 to indicate a name
rather than an intedger is to be recoqnized. Thus, for
example, a string like ®_13+_* (vhere *_* is a boundary
character) will be recognized as a name *“13+"% rather than
the integer +13, A+R completes its operation by always
callina ACTF to accumulate the current character heing
interpreted (obtained from cell WK) into NACC, the nane
accumulator cell,

A-K is the initial character action (entry in AKXT1) for
tke character '-’, Tt operates identically to A+K excent
for the additional action of updating the integer sign
indicator ISGN. ISGN is used to keep a (mod 2) count of
the number of ’-¢ characters since the last boundary
character, and thus represents sign for integers.

ABND is the initial character action lentry in ART1) for
tab (KTAB), line feed (KLF), vertical tab (KVT), form feed
(KFP), carriage return (KCR), and space {(KSP). These
characters are called *“houndary characters®™ since they act
as boundaries for the recoqnition of names and integers,

ABND first tests the name accumulator cell WACC to see
if the previous character was also a houndary action, and

Appendix 1" - Detailed Descriptions of Kernel DProcesses Q

if so it exits., Wext it tests the value of TNIMF to see
whatter it is a name or an integer that should be
recognized.

If TNOMF = 1, a new T/ cell is created and given the
valne of the integer INUM if TSGY = ", or the complement of
that value if ISGYy¥ = 1,

Tf INTMF doesn’t = 1 (hence is -1), then ABND calls LSHT
{(Locate Symhol in Name Table) with the address of the name
accumnlator cell WACC as input, If the symbol is not
located, C3NT (Create Symbol in Name ™able) is called to
create an entry for the name accumulated in WaACC.

Finally, ABND pushes onto W as output the inteqger
created in the first c¢ase, or the symbol 1located or
created. Then the contents of the four cells NACC, INUM
¢« INIOMF and TSGN are set to zero, and ABND eyxits,

ACCD ACCD is used (by ADK) to accumulate digit characters for
recoqnition of integers., Tt has one standard input which
is a Aiqit character symbol whose digit value (21,004,
it accumulates into inteqger INUM by first multiplying TNUM
by the current radix in W cell WIR and then adding to TNI'M
the new diqit value. A special check is made for overflow
in the multiplication, and the high order bit of TINIM ig
set on if overflow occurs. This was necessary to make
recoanition of negative numbers written in twos complement
form work (e.g. octal 40COANCCO0N0S7),

ACCK ACCK is used by ANK, ADK, A4K and 21-X to accumulate
characters into the name accumulatnr cell NACC. Tt has one
standard input which is a character symbal whose 7-bit code
is shifted into the low order position of cell NATC, TF
more than five characters are accumulated (betwvesn boundary
actions), the first ones are shifted out the left of the
accunrulator and are lost, Bit " (leftmost hit in cell) of
NACC 1is not reset after the shift so that it may retain a
spurions setting if characters are shifted out the left of
the accumulator,

ADK ADX is the initial character action {entry in AKT1) for
all the diqit characters (0,1,...,9)., Tts overation is as
follows:

If INOMF = 7, indicating that the previous character was
a boundary character, TNUMP is set = 1 to indicate that an
integer is provisionally to be recognized. Then ACCK is
called, with the current diqit character heing interpreted
(from cell ¥K) as input, to accumulate the character into

AVK

1

C/L

CPTR

Appendix 17 - Detailed Pescriptions of Kernel Processes 17

the name accumulator NACC,

Next, a test is made to see if THUMP = -1, and if so,
ADF exits since there is no chance for an integer to be
recoanized; otherwise ACCD is called to accumulate the
current digit character into the integer accumulator THIAM,

ANX is the ™pame™ action, and is the initial character
action (entry in BKT?) for all printing characters excent :
(TAB,LF,VT, FF,R,SP,!,”,,1,2,3,4,5,6,7,3,9,+,-,3). It
operates hv setting TNUMF = -1 to indicate a name is to he
recoaqnized and then calling ACCK to accumulate the current
character (from cell WK) into name accumnlator NACC.

C {Copy) first accesses the space type table in W cell
WwsPT™? to find the availatle space list for the type of
input wW{(7),

If the available space list is NKTL, C first checks to
see if inout W{3) 1is T/L, and if s0 stores the reserved
space list from ¥ cell WSPPL as the available space 1list,
(This 1is necessary for execution of the space-exhausted
routine, which is responsihle for restoring the Treserved
space after it has allocated more list space). VNext, C
swvaps into snace-exhausted context by calling SWPCY with
context swap list SPXCY as input. Then it executes
(interprets) the space exhausted process ohtained as the
entry for the tvpe of W(?) in the type table in W cell
WSPXT. Upon returmn, SWPCY is called again with input SPXCY
to swap back to the previous context, and rontrol transfers
to the heginning of C for another trv,

If the availatle space 1list is not found to be
exhausted, C unlinks the top cell, copies the full-word
contents of input W(!) into it, and leaves it as output
LAGD N

C/L (Create type List) is similar to ¢ except that it
has no input telling what tvpe of cell to obtain from
available space and how to initialize it, Tt always
outputs a T/L cell which has not heen initialized (and
hence still links into the available spvace list for T/L).

CPTP is to be used to create PDPIN hyte pointers and
initialize them to point at the start of a given location
{input W(2)). Most common usage of CPTR will be to create
A pointer to oput into W cell ¥oTR for use with .IDP and
. TEY.

Appendix 1" - Detailed Descriptions of Kernel Processes 11

CPTR calls C with the syrbhol T/C as input to obtain a
cell for the pointer, Tt initializes 8=, pP=34, I=¥=",
Y=(¥{)) input) in the pointer and leaves it as output W(C),

CSNr CSHNT is nsed to add a new entry in thke current name
table (specified by ¥ cell WNT) for an input pame W(D), Tt
merely calls CSNTW to create the symbol for the innut nane
in the name table residing in WNT,

CSNTW CSNTW adds a new entry to a particular name tahle (input
®(")) for an input name W{1). The name input is a cell
containing right-justified ASCTIT characters (as in the nape
accumulator NACT into which ACCK accumulates characters),

CSNT first aets thke current index for the 1input name
table, which 1is located in the word imrmediately preceding
tte table itself, The index is compared with +he tahle
size from the next preceding word, and EPR15 is called at
this poinrt if the index is not 1less than the size,
Otherwise, the table is not full, so the new entrv is made
as follows:

C is called with input WCT.S to create a new symbol of
the tvype of the symhol in W cell WCT. At the location of
the new entry, which is determined hy adding twice ¢the
index to the input tabhle address, are stored the packed
characters of the input name in the first word and the
newly created syashel in the second word (right half). Then
the index of the table is incremented hy one, and CSNTW
exits with the new symbol as output W(7),

!
wn
v}

CSP is the routine which allows additional space to be
allocated from the monitor, or space to be returned, Tnput
W(1) is thes =size (T/1I) of the change 1in allocation;
positive if space is to be ohtained, negative if space 1is
to be returned to the nmonitar, Since the monitor only
allocates in 1% bhlocks (2720 actal), the value of W(1)
should be a multiple of that size, Any new space obtained
from the monitor is made to have the same type as that of
input W("), W{(0) is not used if the value of W(1) 1is
negative,

Output from CSP is the address of the block of space
obtained from the monitor if the value of input w(1) was
positive, otherwise the output is NTL since no space was
obtained,

CSP does some housekeeping in updatinag the Job Data Area
locations JOBFF, JOBSA and JOBHRL (L* symbols JBF®, IBSA

Pppendix 17 - Netailed Descriptions of Kernel Processes 12

CVIDL

CVNKL

DA

DERIG

and JBHRL) to ensure that the monitor SAVE Ffunction saves
the correct amount of core in both the 1low and high
segments,

If an error return from the CORZ MU0 occurs, indicating
that the reaquersteil additional corea 1is not currently
available, error location ®PR14 is called.

CVIDL expects an integer (T/I) as input W(?) and outputs
a list of the same type as WTCKXL.,S of character symbols
which are the diqgit characters for the revpresentation of
the integer 1in the current radix (in ¥ cell WTR), TIf the
value of integer W({M) is neqgative, CVTD' outputs a 1list
with a minus signr character followed by the digits of the
absolute value of the input,

CVIDL operates by successive divisions by the current
radix (from W cell %IR), using the remainders to build the
list of Aigit characters,

CYNKL exnects a cell cortainina packed right--dustified
ASCIT characters as input W{'), {The same form as the name
cells in the nam= table), By successive shifting, masking,
and testing for null characters, CVNKL bnilds a list of the
same type as WTCKXL.S of character symhols f€nor the packeil
characters (irn left to riqht order from the packed cell)
and outputs it,

D deletes the svymbol in list cell W{(?), Tf w(") is not
the last cell in a list, then the full-word contents of the
next cell is copied into it, and the next cell is erased
(usinag E). Tf W{') is the 1last cell in the list, the
symhol in that c2ll is replaced hy NIL,

DA (Delete After) derletes the symbol in the cell after
¥(?) by replacing the link of W(*) by the link of the cell
after W(%)., Ther it calls B to erase the cell vwhich was
previously after ®("),

DEBUG is used to swap 1into “dnbugqing context® for
execution of diaanostics, etec. when something has gone
wrong., It operates as in the following T/P list:

(WBDCX S SWPCYX WDB S .X WBDCYX S SWPCY)

B/L

[£5]

LW}

Appendix 17 - Detailed Descriptions of Kernel Processes 13

T,e,, it swaps into Debug Context, ex~cutes the contents
of cell WRD, and then upon return swaps back to the
previous context.

DEBIG is called when a “START 141" is done 1in monitor
rmode.

¥ {(Frase) first checks if #W(2) = *TL, and if s0 exits
without erasing. 0Otherwise it returns W(?") to the front of
the available space list which is the mantry for the type of
W{3) in the type tahle in W cell WSPTT.

P/L (Erase tyne List) assumes that input W(?) is T/L and
returns it to the front of the available snace list which
is the entry for T/L in the type table in ¥ cell WSPTT.

FL assumes that input W(7) is a list an? 1iterates Adown
the list eraszing (via B) each cell on tho list.

-~ TFRR22 These error locations are called at the site where
an error is detectel in a kernel process to initiate
handling of the error. There is a unique error location
for each of the 23 different errors which can be detaected
in the kernel, Bachk error location is a “JSP RA,TRROR™
instruction which transfers control to the central error
routine TFRPENP with RA retaining the 1identity of the
particular error location.

Pelow are listed the separate eorror locations with a
description of the conditions causinag each error.

PRRM This symbnl is put on +he hottam of the machine
stack (MSTK) so that an attemnt tao 40 a P2THRY with an
empty stack will give eceontrol to the TRRM arror
location, 7f conrse, the TPP” at tha hottom of the
stack will not b» “seen™ if it i« popped off as data
rather thap beinc treated as a return link.

PRR1 This syrbol sits in the riqht half of Job Data Area
location JOMAPR (L% symbol JBAPR), and thus is where
control is passed when one of the conditions enabled hy
an APRENB 17UO0 is detected by the monitor. The traps
enabled by L# are pushdown overflow, momory protection
violation, and non-existent memory flaqg.

Appendix 12 - Detailed Descriptions of Kernel Processes 14

When an E*R1 occurs, the Job Data Area locations
JIBRCNT and JNATPC (L# symbols JBCNT and JBTPC) rontain
useful information.

JRCNT contains the state of tha APR (Arithmetic
PRoczessar) vwhen the trap occurred, and can be used to
Adiscover which of the threo vossihle conditions
actually caused the trap, as fonllows:

In the riaht half of the JRCNT word,

bit 19 (272077 octal) indicates pushdown overflow,
bit 22 (277"° octal) indicates memorv protaction flaq,
hit 23 (127°2" octal) indicates non-existent memorv.

JNTPC contains the PC (Program Counter) of the next
instruction to be exccuted when the trap occurred,
(Thus the right half is the address of ¢the next
instruction). This will help 1locate the offending
instruction,

ERR2 - EPRI12 These are error locations called by an
interpreter when it attempts to interpret some symbnl
with a type table which has no valid interpreter for
the type of that symbol. Frror locations TRR? - FRR12
are merely used to fill in the unused entries in kernel
tvype tables, one error 1location per type table as
follows:

ZRR2 +IPTT
FRR3 LITT
TRPY ARPTT
TORS ARTT
FTRRA AWNDTT
TRET AWTT
rRRRA RDPTT
RRRO RDTT
BRR12 SPYTT
ERR11 WRDTT
ERRT12 WRTT

SPYXTT is really an exception sinne it 1is not an
interpreter type table, but holds processes. Thus
ERR1Z will be interpreted as a T/M process, while the
other error locations above will he called directly as
if they were interpreters,

ERR13 A part of the cleanup SV has to do after return fron
the SAV® 1in monitor mode is to reissne the STTHWP UUN
to reenable writing in the high segment (the monitor
SAVE command sets write protection back on as a side

Appendix 17 - Detailed Descriptines of ¥ernel Processes 15

effect). Prror location ZTRR13 is called 1if an error
retuyrn from the STTUWP MU0 occurs, which 1is an
indication that either the monitor svstem does not have
a two-reqgister cavabilitv (impossible on our svstem} or
that the user has heen meddling without write
privileges (sea pnr=-17 reference Handhook, under
*meddlina™),

FRR14 This error location is called in CSP if an error
return occurs from the CORE U0 attempting to allocate
core from the monitor. This 1indicates that the
additional amount of core requested is not available,
either because of hardware limitations or because a
larage load of other users is oh the system,

FRRP15 This is the “outr of space in name tahle™ error
detected by CSNTW (Create Svmbol in Name Table W("))
when the index for the input name table {is not less
than the size of the name table,

PRR16 This error occurs if PN gets an arror return when
attempting to OPRN the interface to be read fron,
indicating that the device (specified hy the Adevice
name in word 3 of the ianput interface hlock) dnes not
exist or is allocated to another -Fob.

ERR17 This error occurs if RD gets an error return when
attenptina to LOOKNP the file to he read fronm,
indicating that the user’s directory was not found or
that the file (specified in words 5 and f of the
interface block) was nnt found or was vead protected,

FRR18 This error occurs if RN gets an error return while
doing an input (IN instruction) €rom the interface.
The error detected will he one represented by one of
the file status bits (see PDP-1" Peference Handihook,
under “rile: status bits®™), Due to an oversiaght in the
L«F system, the file status 1is not made readily
available whon an ERR18 does nccur.

ERR19 This is an error Adetected hy WR which corresponds to
FRR16 Adetected hy RD, i.e. it indicates the specified
device tryina to he OPFNed does not exist or is
allocated to another 5ob,

i3

75}

Appendix 1% - Detailed Descrintions of Xernel Processes 16

g

"RR2C This error occurs if WR gots an error return from an
ENTRR U0 {(which is analogous to LNOXKDP, but for ountput
files). Tt indicates one of several opossible error
conditions:

The user’s directory was not founl (if the dJdevice
has a directory).

The file *o0 be written was found +to alreadvy exist
and wvas bheina currently written or renamed, or was
write protected,

®RR21 This error occurs if WR gets an o~orror return fron
doing the final output {(DUT instruction) of a write
operation., The possible errors are those which can bhe
reflected in the file gtatus hits (see PNP-1? Reference
Handbook, under *File: status bhits“), although Aue to
an oversight the status is not readily available when
an RRR21 occurs.

FPR22 This error ocrurs if JTWR or ,TPY¥P (the writing

interpreters) qets an ercor r~turn from output
operations. The conditions are identical to those for
ERR21T,

FRROR uniformly handles kernel errors represented by
error locations FRRC =~ FRR22 hy initiating aporopriate
context-swapping and executing an arbitrary user-written
error routine, while preserving the identity of the
particunlar error. Tts detailed operation is as follows:

ERROR expects a non-standard input in %% which 1is the
address of the current error location +1, FRPROR uses this
input to store the current error locatior in ¥ cell W®RRL.
Next, the contents of R1 - RS and MSTKP are copied into
cells R1SV - RS5S5V and MSPSV rospectively, and reserves
machine stack space is opened up by increasing effective
stack size from MSTKN to MSTKM. Then th~ symbol TRPOR 1is
replaced by HALT in the current error location so that a
recursive error will execute HALT? rather than call TRROR
recursively, Next, A swap into Debhug Context is made hy
executing SWPCY with inout WDBCYX.S, and then the symbol in
W cell WFRR is executed, Upon return, SWPCX is called to
swap back out of Debng Context, the symbol ERROP is put
back into the current error loration, andi P1 - RS and MSTKP
are restorel from the save cells R1SY - RS5SY and MSPSY,
{Note that this effectively closes off reserved machine

Aopendix 17 - Detailed Descriptions of Kernel Procossges 17

stack space since MSTKDP was copied 1into MSPSY bafore
reserved space was opened ahove.) Control will return to
the caller of the current error locrtion (errors are
initiated by calling the appropriate error location),
unless of course the machine stark pointer was altered in
cell MSPSV hefor~ it was restored fronm there,

XSS FXEC is *he main oxecutive which is called when the L*
kernel 1is rtun for the first time, It reads from the
current read interface (WRN,S) and executes the resulting
list in Read Context. If an end-of-file is detected from
the read interface, it is reset and BXRC exits,
Specificallv, ZY7C operates as in the following T/P list:

(C WRD S RD P .- P WIXEC I RDCX .XCOX WEXZC S WEXEC D EL .R)
WRD S RSIF)

where WEXEC is a save cell private to TX7C,

Calls on EXET can of course he nested within other
exacutions of EYYC to any level. In fact, the “START 140"
command in monitor mnde causes such a nested call onr EYRC,

HALT HALT gqoes 1into monitor mode (without releasing 1I/0
devices currently in use). A TWCONTINUE™ comwmand from
monitor mode will cause control to return +o the caller of
HALT, A MSTART 140% or “START 141" command way also be
issued from rmonitor mode. (See ST147 and sT141),

T I inserts symbol W(1) in front of the svmhol in cell
W(?)., It creates a new cell of the same type as W{"), The
full-word contents of w(7) is covied 1into the new cell,
then the 1link of W(") is 1linked to the new cell, and
finally the symbol ¥(1) is stored as the contents of wW{"),

A TR inserts symbol W(1) after the symbhnl in cell ®(7),
Tt first creates a new cell of the type of W(?), ™hen it
stores the link of W(J)) as the link of *he new cell anAd
stores the address of the new cell in the link of W(Y),
Finally the svmbnl W(1) is stored as the contents of +the
hew cell.

LNNT LNNT searches the current name tables for symhol W(?) by
calling LNNTW to search for W(0) 1in particular name tables
from W stack WNT. Tt starts with the tor name table in WNT
(WNT,S) and will continne to pake calls on LNNTR for

Appendix 17 - netailed Descriptions of Kernel Processes 18

LNNTW

LSNT

LSNTW

MY PTR

successive name tables from the WNT stack until either the
symhol 1is located, or all the name tables in WNT have been
searched in vain, 1In the forwer case, the address of the
name cell in the name tahle for the located symbol is
output; in the latter case, the output is NTL,

LNNTW searches backwards through the entries of name
table N(f) for o»ane with the svmhol W(1), By searching
backwards, LNNTW will find the most recent entry for tha
symbol ¥(1) if more than one exist. If the search is
successfnl, LNNTW outputs the location aof the name eall
found {i.=. the cell containing the packed ASCTT
characters of the c¢xternal name). If the search 1is
unsuccessful, LNYTW outputs NTL,

LSNT is directly analngous to LNNT, except that it has a
name cell as inpnt (%)} amd1 1is searching for a
corresponding symhol, rather than vice-versa,

LSNTH# is directly analoaous to LNNTW, oxcept that its
input W(1) is a name cell and it searches far the svambol
with that name in name table W("), rather than searching
for the name aiven the symhol as LSNTH does.

MVPTR is an operation on PNP1Y hyte pointers (which are
Just T/C initially in L+), to be used in conjunction with
CPTR and the deponsiting interpreters (,IDP and .IPDP)Y and
extracting interpreters (.TIEX and .IPEY¥), fThe input cell
W(C) is the byte pointer; the W(1) input is an inteqger
which 1esiqnates the numher of bhit positions (within the
current word) the pointer is to be moved (positive for
right, neqgative for left), Thereo is no nrimitive PLocCess
in the L* kernel for movinag a bhyte pointar a number of
words, hut this may be accomnlished hy operating on the
right half of th~ pointer (which correspondis to the address
field for bvte pointers) with integer-symbhol conversion and
integer processes,

MVPTR operates by subtracting the value of W(1) from the
value of the P field of the hyte pointer ¥(%)}. T* checks
for one special case: if the D value comes out negative, it
is zeroed insteadl.

MVYPTR has no nutnut,

N outputs the next of cell W(?) (W{N).N).

NOD

P™1

1)

P11

P12

p2°

Appendix 17 - Detailed Descriptions of Kernel Processes 19

Mo oneration.

» Pushes W,

P11 is th~ nprafix routine for proncesses with non inputs
and 1 outpnt, It has a nonstandard inpnt in R6 which is
the location of the stem of the calling process. (The sten
is the central machire code portion of the process divorceq
from special input-output considerations. It accepts
inputs and returns nutputs in reqisters), pa1 operates by
first callina the process stem as a suhrnutine, then upon
Teturn it pnshes the output in R* into W and returns to the
caller of the prncess,

M) is the prafix routine for processes with 1 input and
no outputs, Tt op=rates by first popping W(?) into input
reqister 21, then passes control to the nrocess stem (input
to P12 in R6), which will itsnlf return to the caller of
the process,

P11 is the prefix routine for processrs with 1 input and
' output. Tt overates by copying W(?) into input reqister
R1, callinag the process stem (inout to P*'1 in RA), and upon
return copying the output Ffrom reqgister R1 into ¥ and
returning to the caller of the process.

P12 is the prefix routine for processes with 1 input an4d
2 outputs, Tt operates by first copyina #(7%) into input
register R1 and calling the process stem (input to P12 in
RB) . Upon return it copies the outpnt from register R?2
into W, pushes the outout from register "1 onto W, and then
returns to the caller of the process.

P27 is the prefix routine for processes with 2 inputs
and no outputs, Tt onerates by popping W{?) into input
register R1, W{1) into input register 2, and then passing
control to the ©process stem (input to ©2" in RR), which
itself returns to th2 caller of the process,

p21

P31

PCY

R

RC

RCX

Appendix 17 - Detailed Descriptions nf Xernel Processes 2"

P21 is the prefix routine for processns with 2 inputs
and 1 outpnut, Tt opnerates by first nopping W(?) into input
register R2, and calling the process stem (input to P21 in
RK) ., flpon retnurn, P21 copies the outout from reqgister R1
into W and returns to the caller of the DIrocass.

P22 is the prafix routine for processes with 2 inputs
and 2 outputs, It operates by first copying WwW(?) into
input register P1, W(1) into input reqister R2 and W¥(9)
with the output from reqister 21, and calling the process
stem (inout to P22 in R6). Upon roturn, P22 replaces W(1)
with the output from reqister 2, and returns to the caller
of the process.

P31 is the prafix routine for processes with 3 inputs
and 1 output, It oporates by first popping W{?Y) into input
register R1, popning W again into reqister R2 to get the
W(1) idinput, and then convying the W{2) innut from ¥ into
register R3, P31 then calls the process stem (input to P31
in R6), and upon return rcopies the output from register R1
into W and returns to the caller of the bprocess.

PCX (Push ConteXt) nushes every othar symbol 1in the
input list W{(") starting with the second.

If the inout list w(f) is (A1 21 ,.. Aan Rn) , each Bk
is operated on as in the program : (B% $ 7k I} , The 3%k
are normally thouaoht of as cells whose contents snecify
current context in some way, hence PCYX is a process which
saves the current context prior to changing to a new
context,

B replaces the contents of W(*) hy the symbol W(1),

RC {Replace Cell) replaces the full-word contents of
W(() by the full-werd contents of W (1).

The input to PCX (Replace ContaXt) skould be a list of
pairs (A1 21 ... an Bn) ., Each pair is operated on as
in the proaram : (Ak S Bk R) » 1.e. the contents of each
Bk is replaced by the contents of the corresponding Ak.

The Bk are normally thouqh+ of as cells wvhose contents
specify current context in some manner, hence RCY is one of

Appendix 10 - Detailed Fescriptions of ¥ernel Processes 21

the basic context-chanaing mechanisms in the system (see
alsn SWPCY),

”D Reads characters from interface %¥(") and produces a list
of the type of WTCKL.S which it ontputs. Tt opens the
interface and selects a file for the input if necessary.

As each character is read in from the buffer, ®RD adds
the base for the characters to the character code to nhtain
a character synmbol. {Null characters (code=") are
ignored),. Tt then finds the type of list to he created
from W cell WTCKL and calls C to create 3 cell, The symhol
is put into the new cell and the new cell is linked to the
rest of the list.

Characters are read until the ceurrent *hreak™ character
{in W cell WPDX3, initially KLF) is ancoantered, At this
point readiing is terminated and the *next®* of the last
list cell is set to NIL. The created list {(whict contains
the “*hreak™ character as its last symbol) is output W("),

rT RTI (Peplace Integer) is identical to rC .
N RN replaces the next of cell ¥(") by the symbol wW(1),.
RSTF RSTF resets an I/0 interface and will be usged most often

in the following situations:

(1) "o reset interfaces closed by th~o monitor when a
SAVE was done,

{2) To reset an interface that has qotten an end-of-file
indication and is now to bhe regsed {ZXZC 1oes this),

(3) To reset the PSY¥ interface vhen a new file is to he
read or written (see RDF, WR™ in the Rootstrap Process
Descriptions),

The operation of RSIF is as follows:

First the three flaq hits (OPTN done, TNTFR done, LONKIP
done) in the left half of the first word of the interface
block are set off, the project, programmer numbers are
zeroed (indicating user’s own are to he used), the channel
ruonber used for the interface is ?ELEASed (thus ensuring
that a file previously open on the 1interface is now
closed), and finally both input and output buffers for the
interface are reset nsing RSTFPR,

Aprendix 17 - NDetailed Descriptions of Kernel Processes 22

RSIFR

RSIPR

RT

sTig”

5141

The input to RSIFB is the address of a three word block
called a buffer header {input or output), {The input and
output huffer header addresses are contained in the
interface bklock, TTY and DSK are the two interface blocks
defined in the kernel). RSIFP sets the use bit on in the
buffer header {high order bhit of first word), and then
calls PRSIFR to reset the buffer rina vhose address 1is
contained in the right half of the first word of the buffer
header,

The input to "SIFPE is the address of the second word of
one buffer in a ring of buffers, (I.e, a circular list of
buftfers, The right half of the second word of each huffer
is a link to the next buffer in the rimng). FRach buffer in
the ring is reset by zeroing its flag bit, which is the
high order bit of the second word in the buffer,

RT (Replace Type) takes as input a svmhol W(7) and a
type index as the value of W({(1) . It sets the tyne index
of W(Z) to the value in W(1) by replacina the contents of
the cell whose address is W(?) + T2 by the low order half
of the value of W(1),

S outputs the symbol of cell W(') (W(Z).S),

ST14G is the entrv point at which L* is entered when a
"START 147 command is issued in monitor mode, Entry at
ST14" causes a recursive call on BEY®C; extting from this
call on FYRC returns one to monitor mode. If then
YCONTINDZ™ is tyned, control returns to the caller of the
routine which caused the original entrv into monitor mode
(i.e. Dbefore thsa “START 14°%), Normally, this routine
vhich caused the oriainal entrv into monitor mode will be
HALT,

ST141 is the point at which L* is entered when a “*START
141* commarnd 3is issued in monitor mode, Entry at ST141
causes the following to happen:

The contents of working registers R1 - RS are copied
into cells R1SY =~ R5SV, and MSTKP is copied into cell
MSPSV. Then reserved machine stack s«pace is opened up
(i.e, the effective size of the machine stack is increased

Aprendix 1Y - Detailed Descriptions of Xernel Processes 23

5T142

sV

from MSTKN to MSTKM), and NERUG is called, lpon return
from DERNG, the machine stack space is closed off aqain
{i.e. the ecffective size reduced from HMSTKM back to
MSTKN), and monitor mode is entered, Tf then “CONTTNUR® js
typed, control returns to the caller of the routine which
causel the original entry into monitor mole (hefore the
“START 141%™,

Note that due to an oversight, chanaing the inteqgers
MSTEN amd MSTKM will not affect the way ST141 manipulates
the machine stack pointer since ST1471 obtains the size of
reserved stack space from a source othear than MSTKN and
MSTKN.

$T™142 is an entcry point to the mniddle of the SV routine
which &s meant to bhe used when saving for restart to
reenter L#* after the wmonitor SAVE command has been
completed, Issning a “STAPT 142™ ontside of an axecution
of SY will result in an unpredictable context svwitch since
the reqister contents are clobbered,

S5V does the set-up work to allow the monitor SAVE
command to be wused, then Adoes the necessary cleanup to
continue after the SAVF is done.

Tt first saves the registers (NI, R1 - R&, WPTP, WTPTT,
WITT, W, WXS, WXN, WHS, WHN, MSTXP) and the first eight
wvords of th2 high segment (the “Vestiaial Job Data Area®,
clobbered by the monitor), and then qoes into monitor mode,
At this point the user is expected to issue a SAVE command
(e.qa. “SAVE DSK LSFR®™) and then reenter L* by the monitor
command “START 142, The reentry point is inside SY where
a SETOWP U070 is issued to reallow writing in the hiah
seqment, the first eiaght words in the high secdgment are
restoredl from their save area, an APPE¥BR N0 is issued to
reenable central processor traps, the PC (Program Counter)
fiags are reset with a “IFCL 17,.+1% instruction, the
registers are restored from their save area, and control
returns to the caller of SV with the output TRUT in W(°) to
indicate execution is continuing after a save.

If the saved files are RU¥ at some later ¢time (e.gq.
*RUN DSK LSFB™), the same cleanup occurs as ahove after the
“START 142", except that the output in w(3) is ¥NIL to
indicate a saved program is beinq restarted,

One of the side effects of the monitor SAVE command not
handled by SV’s cleanup is that all the I/n interfaces
currently in use are closed. The I* prcgram must reset
those interfaces (with RSTF) hefore attempting to use thenm
again,

Apprendix 17 - NDetailed Descriptions of Kernel Processes 24

SWPCX SWPCYX (S¥WaP ConteXt) expects a list of pairs (A1 B1 ...
An Bn) as input W(") and exchanges the full-word contents
of each Ak with the full-word contents of the corresponding
Bk. SWPCX 1is used instead of PCY, PCYX and UCY in cases
vhere full-word contents must he changed and where context
changes with respect to the particular context cells (the
Ak’s and Bk’s) are not potentially recursive,

T T ontputs the characteristic symhol for inout wW(3),
which is the aontry for W(?) in the type table in W cell
WTTT,

TI TT outputs the type index of symbol W(1) as the value of

Wi, The type index is found as the contents of the cell
vhose address is W(J) + TD .

n U (Up (pop)) pops ¥ (i,e. it remaves W(®)),

nex ICX (Up (pop) ConteXt) is the inverse of PCX, I+ vpops
evaery other symbol in the 1list W(0) starting with the
second. '

If the input list w({2) is (A1 R1 ,,. An Rn) , each Bk
is operated on as in the program : (®k D} . The Bk are
normally cells vhose contents specify cirrent context in
some wav, hence "X has the effect of restoring some
previously pushed context,

v V reverses W(*) and W{(1) in W,

WR WR writes the 1list in W(1) to the interface W(7),
opening the interface and selecting a file for the outpu*
if necessarvy. Writing to the interfare 1is done by

interpretiny W(1) in Write Context (via .¥CX) .

The interpreters .IWR and .IPWR do the actual work of
depositing characters into the output buffers and writing
them out wh2an they become filled, WM doas one last output
operation to write out the last partially filled buffer
when control returns from interpretation of W(1).

LYDTT

+ITT

AKT1

ARPTT

AWPTT

AWTT

Appendix 11 - Detailed Descriptions of ¥Xernel Data 1

Standari interpreter type table for execution
{interpretation of symbols appearing within T/P lists,
Tnitially contains the following entries : ,IP/% for T/ ,
.1psp for T™/P , and .I1P/S for ts/¢, T/7, /K and T/L ,

Standard interpreter type table for execution outside of
T/P lists (e,g., bty .¥ and ,¥CY apnd from T/M routines),.
Initially contains the followina entries : ,T/M for T/M ,
.I/p for ™/ , and ,7v/s for T/C, T/T, T/¥ andi T/L .

The character action table which is initially in W cell
WAKT . It 1initiallvy contains the following character
actions :

ABND for KCR KLF KVT FFF KCR KSP

X for !

ANK for L% E () x, ./

: < =>2@ [N] ¢t -

all upper and lower casn letters
r

. 0 for

ADK for n123I 484567829
A+K for +

A-F for -

. for :

NOP for all others

Interpreter type table to he used when in Assembly FRead
context to interpret symbols occurripq within a program
list, 1Its initial entries are : .IPEY for T/K, .IP/M for
T/%, .IP/P for T/P, and ,IP/S for T/C, T/T and T/1 .

Tnterpreter tvpe table to be used when in Assembly Pead
context to interpret svmbols not occurring within a proagram
list. Tts initial entries are : .TEX for T/K, .I/M for
T/H, .Ts/7P for T™/?, and ,1/5 for T™/C, T/ and T/L .

Interpreter tvpe tahle to be used when in Assembly Write
context to intarpret symbhols occurring within a proaranm
list, TIts initial entries are : ,IPDP for T/K, ,TB/M for
T/M, .IP/P for T/P, and .IP/S5 for ™/C, T/1 and T/L .

Interpreter type table to be used whern in Assembly Write
context to interpret symbols not occurring within a progqramn
list, 1Its initial entries are : .IDP for T/K, .I/M for

/K

RTT

DECYL

DSK

INUM

INYIMF

JBAPR

Appendix 11 - Netailed Descriptions of Kernel Data 2

7", .7/P for T/P, and .1/S for T/C, T/1 and T/L .

Inteqer whose value is the null chararter symbhol (T/K)
vhich is the hase of ¢the 128 cell block of character
symbols. Appears as the entry for T/K in the hase type
table BTT .

Tnitial current base type table in % cell WRTT, Its
only 1initial entry is integer 2/K for T/K . The current
hases are accessad via WBTT by ,TDP , .IPDD , ,[TRY and
.IPEX . The current character base is accessed via WBTT by
+IWR , ,TPW™ and RD .

An integer (T/I) with value = Jdecimal ten, Not
initially used anywhere in kernel, hut intended to be used
to change current integer radix in % cell WT3 to decimal.

Interface block for reading and writing the 4isk. Nses
two 272 octal “vwori buffers for both input and output.
Initially set to read from file ™“RBOOT.LSF* and write to
file “*FILE,LSFP* . [IUses channel 1 .

Integer accumulator used by ADK (the diqit character
action) +to accumulate a value (via process ACCD) as diqit
characters are being interpreted., Also referenced by ABND
(the boundary action) to actuallv create an integer (when
appropriate), ani to clear the integer value,

Integer flag used by ABND, ANK, ADK, A+X and A-K to
distinguisk hetween integers and names being accumuylated.
Cleared hy ABND ,

Integer flag nsed by A-K and ABND to record whether an
integer 1is positive or negative when one occurs. Cleared
by ABND .

PDP12 Job Data Area 1locatinn (JOBAPR) which contains
trap 1location for central processor interrupts, Initially
set by L* to contain ERR?T .,

JRBRCONT

AJBCOR

JBFF

JBHRT.

JROPC

JBREL

JARREN

JRSA

Appendix 11 - Detailed Descriptions of Kernel Data 3

Job Data Area location JORCNI. ~ontains state of
arithmetic processor as stored hy CONT AP? when an enabled
trap sccurs. (See process description for 7ZRR1),

Job hata Area location JOBCOR. Lnft Half contains
highest location in low seqgment with non-zero data (set by
T.OADER), Pight Half contains user arqument on last SAVE or
GET command (set by Monitor). Not refer=nced by kernel.

Job Data Area location JOBFF, Right Half contains
address of first free location following the low segment,
Maintained by CSP to point to the top of core in the 1low
seqgment so that the SAVE command will work correctly,

Jobh Data RArea location JORHRL., Left Falf contains first
free location in bhkigh segment relative to high seqment
origin., Right Half contains highest legal user address {in
the high seqment. Left Half 1is nupdated by CSP when
additional core is obtained so that the SAVE command will
work correctly, Right Half is used by CSP to locate the
current top of the high segment whken additional core is to
be obtained.

Job Data Area location JOROPC., Msed hy monitor to store
previous contents of the user’s program counter when a DDT,
RRENTER, START or CSTART conmmand is issued,

Job Data Area location JORRFEL, Contains higqhest 1low
seqmnent core adAress available to the user,

Job Data Area 1location JOBREN, Contains starting
address used by REENTFR command. Can be set hy user to
provide an alternate entry point.

Job Data Area location JOBSA. Teft Half contains first
free location in lov seqgment. Right Half contains starting
address of user’s program. Left Half is updated by CSP to
ensure that the SAVR command will work correctly. Right
Half is set by L* to start execution at the proper location
within the process SV so that saved seqments will continue

Appeniix 11 - Detailed NDescriptions of Kernel Nata 4

when they are RUN

JBRTPC Job Data Area location JORTPC, Where Monitor stores
proarar counter of next instruction to be executed when an
enabled central nrocessor trap occurs.

KALT Altmode character. Code = 175 octal,

KBELL Bell character, Code = (77 octal.

Kesp Backspace character, Code = 1% octal,

KCR Carriage return character. Code = *1%5 octal,
KFF form feed character., Code = 714 actal,

ELF Line feed character, Code = 212 octal.

Ksp Space character (blank), Code = 74> actal,

KTAB Horizontal tab character. Cole = %11 octal.

KTN Integer whose value is the size of character +tables

{iritially 128 de~cimal)., VWot referenced by kernel,
KvT Vertical tab character. Code = 713 onctal,

MSPSY Cell used by ST141 to read out and by EPROR to read out
and restore the contents of the machine stack pointer MSTKP

*

MSTK

¥STKM

MSTKN

MSTKP

N/C

NI

N/L

N/M

N/P

Appendix 11 - Detailed Descriptions of Kernel Data 5

Contionous block of cells of length MSTKM appearina in
the kernel immediatecly before initial T/C available space.
ised throughout the kernel for T™/M routine 1linkage and
saving of register contents over machine code subroutine
calls,

Inteqer whose value is the actual maximum size of the
machine stack MSTK ,

Integer whose value 1is the stack size used in the
machine stack pninter MSTKP under normal conditions, When
an attempt is made to push more than MSTXN entries onto the
stack, a nushdown overflow arror trap nccurs {see process
description for ERR1), ST141 and FFPAR increase the
operating stack size in MSTKP from MSTKN to MSTKM over the
scope of their execution to provide reserved stack space
for temporary use,

Register (17 octal) containing the PDP1? =stack pointer
for the machine stack MSTK., The Left Half contains the
negative connt of nnused words left in the stack, the Right
Half contains +*he address of the current top entry on the
stack,

Integer whose value is the count of cells on initial T/C
available space.

Tnteger vhose value is the count of cells on initial T/1
available space,

Integer whose value is the count of cells on initial T/L
available space (not countina reserved ™/L space).

Integer whose value is the count of cells on initial T/M
available space.

Integer whose value is the count of cells on initial T/P
available snace.

N/RL

NACC

NBTT

¥IL

nmYy

HTY

NTIN

Appendix 11 - Netailed Descriptions of Xernel Data 6

Integer whose value is the count of cells on initial
reserved T/L space (in W cell WSPRL),

Cell used hy PCCK to accumulate characters being
interpreted into packed form for use by ABYD if a name is
to be looked up or entered into the name table, ABND also
clears NACC hefore exiting,.

Tnitial current number-of-bits type table in ¥ cell
WNBTT ., Tts initial entries are SEVEN for T/K and 7¥RO for
all other tyves., The hit sizes for =ach type are used via
WNBTT by the Deposit and T"xtract interpreters ,TDP , ,IDPDD
¢y +IEX and .IPEX .

Spvecial T/l symbol used throughout the kernel as the
list terminator and as the negative signal from tests., NIL
kappens to be *he symbol ¢ (register =zero), but this is
mainly for convenience,

The initial name table in W cell WNT which contains all
the names listed in 2ppendices 3 and 4 . The name table is
a contiguous block of cells of length twice the value of
integer WNTIN |, Each name entry is two cells lona and
contains the right-fustified packed ASCIT characters of the
external name 1in the first cell, and the corresponding
internal symbol in the right half of the second word. NTIT
+ Wwhich is an integer whose value aives the current number
of entries in the tahle, is assumed to ha +he cell
immediately preceding the first cell of the table itself
(NT1). NTIY , which is an 1inteqer whose constant value
aives the maximum number of entries the table will hold, is
assumed to occupv the cell imwmediately preceding NPIT .
The current name table is accessed via W cell WNT by the
kernel processes LSNT , LNNT and CSNT .

Tnteger whose value specifies the current number of
entries in npame table NT1 . Used to locate the current
last entry in the table for searching and raking new
entries . Occupies cell immediately preceding NT1 .

Integer whose value specifies the wmaximum number of
entries name table NT1 will hold. Compared with NT1I when

OCTAL

p1

P2

R2SV

R3

R3SV

4]

RYSY

R5

Appendix 11 - NDetailed Descriptions of Kernel Data 7

new entries are heing made to detect overflow of NTY
Occupies cell immediately preceding NTYT .

Integer (7/7) with value = decimal =iqght. Used as
initial contents of W cell WIR to indicate octal integer
radix .

Register 7 ., Used in the kernel as an input-output
register for machine code subroutine calls, and as a work
register .

Cell used by ST14?' to read out and by ERROP to read out
and restore the contents of P1 .,

Register 2 . 9Used in the kernel as a second input
register for machine code subroutine calls, and as a work
Teqgister ,

Cell used by ST1471 to read out and hy WRPOR to read out
and restore the contents of ?2 ,

Pegister 3 . TUsed in the kernel as a third input
reqister for machine code suhroutine calls, and as a work
register,

Cell used by ST141 to read out and by ERPOR to read out
and restore the contents of R3 ,

Register 4 , 0sed in the kernel as a work register .

Cell nused by STIUT1 to read out and hy BRROR to read out
and restore the contents of ®»u4

Register 5 , O0Osed in the kernel as a work register .

RS SY

il

RDCX

RDPTT

ROTT

STVURN

sp/C

Sp/Y

Appendix 11 - nNetailed Descriptions of Kernel Data R

Cell used by ST141 tn read out and by RRROR to read out
and restore the contents of RS ,

Register 6 , Used in the kernel as a work register, by
the error locations EPR? -~ TRR22 to transmit to the common
error routine FRRO® the identity of the particular error,
and by machine process prefixes to transmit the location of
the process stem to the prefix subroutine (P71, etc.).

Context list used by EYRC as inout to .¥CYX when
executing the character list obtained from RD . RDCY is
defined as : ((*DTT) WITT (RDPTT) WIPTT) , which causes
the current interpreter type tables +to become PRDTT and
PDPTT over the scope of the execution of the character
list.

Tnterpreter tvpe table to be nsed when in Read Context
to interpret svymbols occurring within proqram lists, 1Its
initial entries are : ,IP/X for T/K , .TP/¥ for T/74 , .TP/D
for ™~ , and .IP/S for T/C, T/I, and ™/L , The context
list RDCY , when used as innut to ,¥XCY , will cause
interpretation to occur in %ead Context (i.c., using °"DPTT
and RRTT).

Tnterpreter tvpe table to he used when in Read Context
to interpret svymbols not occurring within a program list,
Tts initial entries are : . I/K for T/K , ,T/M for T/ ,
+T/P for P , and .I/S for T/C, T/T and T/L . The context
list RDCX , when used as input to ,.vYCX , will cause
interpretation to occur in Read Context (i.e., using RDTT
and EDPTT),

Integer (T/I) constant with value = 7 . !Ysed as initial
entry for T/K in tvype table NRTT .,

Initial available snace 1list for ™7/C . Appears as
initial entry for 7T/C in tvpe table SPTT .,

Tnitial available space 1list for T/1 ., Appears as
initial entry for T/I in type table SPTT .

5P/L

5P/M

sSp/P

SP/RL

spTT

SPYXTT

STOP

Appendix 171 - Netailed Descriptions of Fernel

Tnitial availabhle space

Data o

initial entrvy for ™/L in tvpe tahle sPT™T ,

Tnitial available snace

initial entrv for T/% in tvpe table SPTT .

Initial availabhle space

initial entry for T/P in type table sPTT ,

Tnitial reserved availahle svace list for T/L .

as initial contents of W cell wspny ,

Initial available space
Tts 1initial entries
SP/1. for T/I ,

Context list used
is defined as :

that the standard

are
sSe/M for T/M

by €
space~exhausted routines in Space-Zxhausted Context.
((.7TTT™)Y WITT (,IPTT) WIDTT)

list for T/L ., Appears as
list for T/M Appears as
list for 1T/P . Appears as
Aopears

tvpe tahle in W c¢ell wsp™

: Sp/C for T™/C , SP/T for T/T ,
r and SP/P for T/P ,

C/L execute
SPYCX

¢ which means

and to

interpreter type tables ,ITr and ,IPTT

are used in Space~Fxhausted Context,

Initial space-exhausted
WSPIT SPXTT has no
responsibility of the
space-exhausted routines
initial available space of

T/L svabol usad tn mark
stack WHW
T/P? list was interpreted,.

routine type table in W cell
antries 1initially : it is the

L* hootstran to define
and put them into SPYTT bhefore

any type is exhausted,.

the level in the higher routine

where a 7/P symbol occurring ocutside of another

Each STOP mark in WHN oparallels

a return link in the machine stack MSTK to the point where

a T/P symbol vwas interpreted from a machine
to
called, then watches for the STOP each time it Ascends
reappears.
symbols within other T/P lists is done by ,IP/D

+I/P causes the STOP

exits when the STOPpP

code routine,
pushed onto WHN when first
and
of T/P
closed

be

Interpretation
, A

subroutine vhich causes a Descend and returns to L1T/P .

T/

T/T

T/K

T/L

/M

Appendix 11 - Detailed Descriptions of Kernel Data 11

Entry for Type Cell in the initial characteristic symbol
type table TTT . PRepresents a null symbol of Type Cell ;
its initial full-wori contents are zero . Can be used
wvhere some arbhitrary symhol of Type Cell is needed, or for
creating null Type Cell symbols with process C { as in CPTR
).

Fntry for Type Integer in the initial characteristic
symbol type table TTT . Represents a null symhol of Type
Inteqer ; its initial value is 2ero . Can be used vwhere
some arbitrary syrbol of Type Tnteger is needed, or for
creating null Tyoe Integer symbols with process ¢ (as in
ABND when an integer is recognized).

Entry for Type Character in the 1initial characteristic
symbol type table TTT , Also symhol for null character,
and bhase svymbol for characters, Not used for creating Tvpe
Character symbols since that is normally not allowed,

Fntry for Type List in the initial characteristic symbol
type table TTT . Represents a null symbol of Tyne List :
its initial symbol and next (T/L.S and T/L.N) are bhoth =
NIL . Can be used when an arhitrary symhol of Type List is
needed, or for creating null Type TList svmbols with process
C . (Note that process C/L does not create null Type List
symbols since it doesn’t initialize the cells it outputs),

Entry for Type Machine Code in the initial
characteristic symhol type table TTT , PRepresents a null
symbol of Type Machine Code ; its initial contents
{full-word) are a RFTURN (POPJ MSTKP,) instruction. Can
be used where an arbitrary Type Machine Code symbol is
needed, or possikly for craating null Type Machine Code
symbols with process C ,

Bntry for Typa Proqgranm List in the initial
characteristic symhol type table 77T ., Represents a null
Program List ; its initial contents are T/P.S = ¥NOP and
T/P.N = NTL (i.e., T/P : (NOP)), Tfsed as initial contents
of W cells WTC and WTCKL ., Can bc used when an arbitrary
Type Program List symbol is needed, or for creating null
program lists with process C .

TRUE

TTN

ey

mpy

tppendix 11 - Detailed Nescriptions of Kernel Data 11

Tnteder whose valne is the Type Displacement, which is
the displacement fror a symbol to the symbol-description
word for that symbol (i,e., the word holding the svmbol’s
Type Index). The valuc used for L*(7) is #777"") octal,
which puts all the symbol-descrintion words into the high
segment provided by the PNP1™ Manitor. Changina the value
of TD will not effectively change the Type Displacement
since it is assembled into machine <code instructions
throughout the kernel. '

T/L symbol output as a positive result from kernel test
processes when the W(1) input was NTL and merely leaving
the W(1) input as output wonld result in confusion, The
processes which 1o this are : =5 , <§ , >3 , =T , =C , =T ,
<I and >I , TRUE is also output by SV when continuinqg fust
after a SAV® has heen done.

Tnteger whose value is the size of existing tvpe tables
(number of cells) , which is also the maximum number of
types allowed, The value does not control any processing
in the kernel (e.qg., no checks are made when accessing type
tables to see if ar index > the value of TTN is being used)
; it is only for infoarmation,

Initial characteristic symbol type tahble in W cell WTTT
. Holds null symbols of each tyne, initially as follows :
T/C for Type Cell, T/I for Type Integer, T/FK for Tyvoe
Character, T/1 for Type List, T/M for Type Machine Code,
and T/P for Type Program List, Used via WTTT by kernel
process T ,

Tnterface block for reading and writing the user’s
teletype. lses two 27 octal word buffers for both input
and output., Operates on channel 2 in AS°TT Line mode.

T/L cell used to communicate inputs and outputs between
successively interpreted processes. The prefix subroutines
(P71 - P31) hanidle the transfer of inputs from W to
rege List ind outputs from registers back to W for calls on
machine cod2 processes, The processes .T/S ¢ +TP/S , ABND
» +IEX and ,TPEX are all nrocesses which don’t use the
Standard prefixes and thus push their outputs directly onto
.

WRKT

WRTT

WDR

WDRIY

WFRRL

WHN

WHS

Appendix 11 - Detailed NDescriptions of Kernel rata 12

¥ cell which holds current character action table
tinitially a%7T1) used hy .T/K and .IP/K

W cell whirch holds current hase type table (initially
BTT) used by ,IDP , ,IPDP , .ITX , ,IPFX , ,I®WR , .IDPWP and
RD ,

W c¢ell which holds Dehug rcoutine (initially FEXEC)
executed by DEBUAR

W cell for holdina current Dehng Context Swap List used
as input to SHPCY by DEBUG to swap contexts before and
after executing the Detug routine in WNB, and by ERROR to
swap contexts bafore and after executina the error routine
in WRRR , WDBCX is empty in the kernel ; the L* bootstrap
is responsible for =setting up a swap list and putting it
into W¥DBRCY .

¥ cell for holdina the current gqeneral error handling
routine executed? in Dehua Context by FRROR , Tnitially
holds HaLT ,

W cell sat by FPROR to hold aldress of narticular error
location which wmade call to %nmNR . Used to identify
nature of error when one occurs,

W cell (register 15 octal) used in L*! interpretation as
stack to hold address of next c¢ell in proqram list to he
interpreted at each higher level. When a Descend occurs
{as in ,I/P and .IP/P) the current next proqgram contained
in W cell WXY¥ is pushed onto WHN to preserve it. When an
Asceni occurs (as in .Q and ,I/P) the contents of WAN is
popred into WXN . Setting the contents of WHN to NIL
(i.e., the contents of the top cell) has the effect of
terminating execution of the next higher program list,
This fact is used by .. s o+ and ,.- ,

W cell (register 16 octal) used in L+L interpretation as
stack to hold addresses of highar level progqrams being
interpreted, When a Nescend occurs (as in .I/P and .IP/P)
the current program being interpreted contained in ¥ cell
WXS is pushedl onto WHS to preserve it. When an Ascend

WTH

WIPT™

WITT

WK

WNRTT

ANT

WPTR

Appendix 11 - hetailed Descriptions of Kernel Nata 13

occurs f(as in .9 and ,I/P) the contents of WHS is popped
into W¥Xs . LR , R+ ard ,R- work by copving the contents
of WHS into 9Y¥N¥ , thus making the higher level program next
at the current level.

W cell which holds inteaer whose value is the current
radix for integers. 9sed hy processas ACCD and CVTDL ,

W cell (register 1} octal) which holds current
interpreter type tabhle for symhols oeccurring within T/P
lists, Initially contains LTIPTT . Changes nf
interpretation context are =ffected by changing the
contents of WIPTT (and WITT)., Referenced in the kernel by
LT/P

W cell (reqister 11 octal) which holds current
interpreter typ= table for interpretatinn of symbols not
occurring within T/P lists, Ynitially contains .T7T .
Changes of interpretation context are effected bv changing
the contents of WITT (and YIPTT). Referenced in the kernel
by DERUOG , FRROR , C , C/L , X , .XCX , .I/% and ,IP/K ,

¥ cell set by ,I/K and ,IP/K to contain the current
character heing interpreted, Tsed hv character action
routires to aet the character they are interpreting, (e.qg.,
by ANXK , ADK , A+F and RA-K).

W cell which holds current numher of hits type table
{initially NBTT). TUsed by ,IDP , .IPDP , .TEX and .IPFY ,

W cell for stack of current rname tahles, Initially
contains only ™NT1 , LSNHNT will search eiach name table in
the stack starting with the top until it locates its input
symbol or has searched all name tahles in vain. LNNT
searches similarly trying to locate its input name, CSNT
creates an entry for its input name in the name tahle in
the top of the WNT stack (i.e., the contents of cell WNT),

W cell (register 7) to hold the address of a PDPI7 bhyte
pointer wused for Aepositing and extracting bit patterns,
when ,TDP , .IPDP , ,TEX and .IPIX use WPTR they assunme
that 3t contains a byte nointer which voints to the field

WRCX

WRDBK

WRDPTT

WRTT

WSPRL

Apperdix 11 - Detailed Descriptions of Kernel Data 14

to ke overated upon. WPTR is initially emptv, but pointers
can he created by CPTF and then stored into WPTR for use in
depositing and extractinag., BRvyte nointers can also he noved
a number of bits within the current word pointed to by
mypTe

Context list used bv WR as input to .YCY when executing
the 1list input to WR as W(1), WRCY is defined as : (
(WRTT) WITT (WPPTT) WIPPTT)} , which causes WRTT and WRPTT
to become the current interpreter tvype tahles over the
execution of the list heing written,

W cell which holds current read interface (initially
TTY). Used by FYEC to obtain the interface to he read from
(i.e., the interface to bhe the W(") inbut to B&2BND), RYEC
also resets {via RSIT)} the current interface in WRD when an
end-of-file is Adetected.

W cell containing current Tead hreak character
(initially ¥L%), flsed by 2N to determine when to stop
reading characters from the actual external interface and
return with its output character list, "0 will continune to
read characters nntil it encounters one that is the same as
the one currentlv 1in WRDBK ; thus, thn last character on
the list outpnt by BD will always be the current hreak
ckaracter, and will be the anlv occurrance of the break
character on the list,

Interpreter type tahle to he used when in ¥rite Context
to interpret svmhols occurring within program lists, Tts
initial entries are : ,IPWR for T/X , ,IP/M for T/M , ,TP/P
for T/ , and ,TP/S for T/C , T/I and T/L . The context
list WRBCYX , when used as input to ,¥YC¥X , will cause
interpretation to occur in ¥rite Context (i.e,, using WRPTT
and WRTT),

Interpretar type takle to be uscd when in Write Context
to interpret symbols not occnrring within a program list.
Its initial entries are : ,IWR for T/K , .I/N for T/M ,
,I/P for T/P » and .I/s for 7T/C , T/T and T/L . The
context list WRCYX , when used as input to .¥XCX , will cause
interpratation to occur in Write Context (i.e., using WRTT
and WRPTT).

W cell to hold the reserved available space list for T/L
{necessary since execution of space-exhausted routines

WSPTT

Wsmr

WTC

WRn

WXN

Appendix 11 - Netailed Descriptions of Kernel Data 15

reguires somre T/71, space as working space before additional
space c¢an he ohtained from the monitor). ®Rhen C or C/L
detects that 7T/L space has been oxhausted, it will make the
reserved space list from WSPRL the curreont available space
list for T/L in the type table in WSPTT hefore calling the
space-gxhausted process from the type table in WSPYXT ., The
space-exhausted process is qiven the responsibility of
building a fresh recerved available space list and storing

‘it into WSPRYL ,

W cell for current available space type table (initially
contains SPTT), Nsed by ¢ ani C/L for obtaining cells
from available space lists, and by ® and E/L for returning
cells,

¥ cell for current space-exhausted process type tahle
finitially contains SPXTT). Used by C and C/L to obtain
the current space-exhausted process when available space of
some type is exhausted,

W cell which specifies current ¢type heing created
(initially contains T/P). Used by C3NTW which is called by
CSNT , which is called by ABND when a name has come across
the input interface which isn’t 1efined in the current nanme
tables, CSNTW creates a new symhol of the same type as the
symbol currently 1in WTC to go with the nav name it enters
into the name table,

W cell which contains tke type to bhe nsed for creating
character lists (initially contains 7/P). ¥fsed by RD ,
CYNKL and CVIDL .

¥ cell which holds the current characteristic symbol
type table (initially "TT), Used hy process T .

¥ cell which holds current ountput interfaces (to be
treated as a stack of interfaces, all of which wounld
receive output), Not referenced in kerncl, bhot to he usecd
by print routines defined in bootstrap.

W cell (register 14 octal) which holds next operation at
current level during L*1 interpretation, When an Advance

WX S

Appeniix 11 - Jetailed Descriptions of Kernel Data 16

nccurs, the contents of WYN is replaced hvy the link of the
cell pointed +to bvy the oariginal contents, Nurinag a
Descend, WXN is nushed onto WHY ; during an Ascend, WHN is
popped into WXN . TIn .T/P , WYXN = NIT when attempting to
Advance sianals the ond of the current level and trigqgers
an Ascend; WXN = STOP when attemnting an Advance triggers
an Ascend followed by a return to the rcaller of ,I/P .
Setting WYN = NTL has the effect of terminating
interpretation of the current level; this fact is used by
the control operations . s oF 4 o= 4, .. 4, .+ and .-,
The repeat operations .R , .R%+ and .R- operate by copving
the current contents of WHS (the hiagher rcutine cell) into
WYN .

W cell (register 13 octal) which holls current symbol
being. interpreted, During Rdvance, hefore WXN is stepped
ahead, W¥S gets the symbol of the cell pointed to by the
contents of WXN (i.e., the next svmbol to be interpreted).
During a Descend, WXS is pushed onto WHS ; during an
Ascend, ¥HS is popped into WXS , Interpreters for symbols
occurring within program lists (,IP/K , ,IBP/M , .IB/P ,
LIPS, LIPDD , L,IPEY and . TPWR) all get the symhol tn be
interpreted as input from WXS . (The remaining
interpreters receive the symbol to he interpreted in R1),

T/1 constant with value = 7. Used as initial entry in
type tables RTT and ¥BTT for all types except M/K

Appendix 12 - Operational Notaes 1
(1) TO RUN THFE VERSTON OF L*(F) WHICH TNCLUDES THE RONTSTRAP, DO
(IN COMMAND MODT):
R LSFA

THE SYST®M WILL RESPOND WTTH “VX¥Y RESTARTED™ AND POT YOU IN
CONTROL BY READING FROM TH® TTY ,

(2) TO GET A ZOPY OF TH® L#*(F) KFEPNEL MACRO-17 LISTING, USE THE®
FOLLNWHING PIP COMMAND:

LPT:«NDSK:LSP.LSTI167,77374]

(3) TO GET™ COPIRS OF THF RNOTSTRAP FTLE, ON-TINE EDTTNR FTLE AND
STEPPTNG MONITOR FTLT TINTC YOUR DSK APFA SO THAT YON CAN
RUN THROUGH THE BOOTSTRAP, USE THE POLLOWING PIP COMMAND:

NSK:/X+-5YS:RCOT,LSF, RDTTF,LSF,STPMT,LSP

(4) TO RUN THROUGH THE LOADI¥G OF THE BOOTSTRAP DO:
R LSF
NSX WRD 7 1?
THE SYSTFM WILL RPSPOND WITH ™INITIAL ELOOTSTRAP LOADED™,
IF YOU THEN DO IN L& THT FPOLLOWING:
EDTITF PDFI
STPM®™ BDF!

THIS WILL PRRING Y00 TO THE SAME POINT WHERF YNU WOULD BFE
AFTER RUNNING LSTA ,

(5) TO DO A SAVE POP RTESTAPT (ONLY TF YOT HAVE THE ROOTSTRR?
ROTITIN®RS LOADED) DO:

SAVE!

THIS WILL PUT YOU INTC MONITOR MODF. NOW DO:

Appenlix 12 - Operational Notes 2

SAVE DSK <FTIE NAME>

THIS WTLL CRTATE THY TWY FILBS <FILE NAME>,LOW AND
<FTLE NAME>, HGH YHICH CONSTTTUTE A SAVED VERSION OF YOUR L=
SYSTEM., NOW DO THE MONITOP COMMAND:

START 182

THE L* SYSTEM (1.7, THE PPOCESS CALLED “SAVI“) WILL
FESPOND WITH “VXX CONTINDING™, AND YOU ARE BACK IN L*.

AT SOME LATER TIME YOO MAY RESTART YOOR SAVED L# SYSTRM BY
TSSHING THE MONITOR COMMAND:

FON DSK <FTLE ¥WAME>

WHERE <FILE NAM®> IS OF COURSE THE SAME NAMS YOU USED WHEN
YCU DTD THE ®SAVI™ COMMAKD, THR SYSTPM WIIL PRESPOND WITH
*VXX RESTARTED®™ AN" CONTTNUZT WHMERE YOU LEFT OPF., THYS TS
IN FACT HWOW THR SYST"M LSPA IS CREATED: PY RONNING LSF (THE
BARE KERNFL), LOADING THF 300TSTRAP, “DTTOR AND STEPPING
MONTTOPR, AND THEM SAVING IT WITH <FTLE NAMZ> LSPA ,

*ppeniiz 13 - Listing of Rootstrap File BONT.LSF 1

INTTTIAL BOOTSTPAP ~ T.x(F)

A1)

NEFINE ROUTINE FOPR RFPLACING CHARACTER ACTTION
BCKA : (WAKT S ,0 T/F TTN -SS +IS ®)

g «p

T/T WTC R Y

ITT ™ ¢ ; DEFINE TEMP TNTEGTR CFLL FOR BOOTSTRAP

T/P WTC R 1

P RCKA R ! 4TS PCKA I ' =-SS RCKA T ! TITN PCKA Y ! T/K RCKA T !
.0 RCKA T ! S BCKA I ! WAKT PCKA T !

; *¥ DEPTNE CHARACTER ACTTONS FOR NANME : (...,) =«

; DEFINF ACTION FOR
; USTN : (WUSEN S)

T™L WTC R !

T/T. C ! WUSEN R !

I/P WTC P !

S5 USEN R ' WOSEN 0OSEW I ?
USEN ": RCKA 1!

DEFINE ACTION FO® (

STRL : (P WUSEN S =$ STRL?T P N FL P NTL V BN W~ I WFLR §)
5T2L1 (STRL2 V)

S5TRL2 (.+ WTC 5 C ..)

ey =y

-~ we
"

T/ HTC R
T/L C ! WFPLR R ?
we o

/P NTC 7!

S STPL R ! WPLR STRL T ¢ T STRL I ! ®C STRL T !
RN STRL T ¢ VvV STRL T ! NTL STRL T ! P STAL T !

FL. STRL. T ! N STRL T ! P STRL T t

STRL® STRL T ! =S STRL T ! S STRL T ! WUSENW STRL T ¢
P STRL T ¢

V STFLY R ' STRL2 STRLT1 T !

++ STRL2 ®» 1 C STRL2 T 1 S STRL2 T ¢ HTC STRLZ2 T !
.+ STRL2 T 1

STRL 7 (RCKA !

DEFINE ACTION FOR)

ENDL : (ENDL1 U WC S D P WOSEN S =S ENDL? WC D)
FENDLT1 ¢ (P WFLR S =5 .+ HC S TA .R)

ENDLZ : {(ENDL3 M)

- WE we np

Appendix 12 - Listing of Bootstran Tile ROOT.LSF 2
s ENPL3 =+ (.% WC § ,.)
L ENNL 2 1! WO ENDL T 1 ENDT.2 ENDYT T 1
=5 RNDPT. T ' S EHDL T ! WIS TN PNDT T
P BNDL T 1 D FNDL T !¢ S ENDL T 1
¥C ENDL T ¢ [} TENDL T 1t PNNT.T TNDT T ¢
B ENDL1 R ! TR BNDLT T ¢ S PNOLI1 T
WC FXDLYT T 0 .+ ENDLT T 1 =S E¥DI1 I !
S ENPLYT T ! WPRPLR ENDLT T ¢ P BE¥DLY T 1?
U »ynl2 R ! ENDT 3 ENDL2 I !

e« ENDL3 R T S FNDI2 T ! WC FNOL3 T
.+ FENDL3 T !

ENDL ”) RCKA !

; ADD ROTNDARY ACTYON TO SOME SPRCYAYL CHARACTERS

T/L WTC R 1!

LICK ¢ (G ITT)} WITT (LIPTT) WIPTT)
T/7P WTC R !

(ABND .TCY ,XCX) 7t RCKA !

(ABND US®N) 7: RCKA!

{(ABND STRL) *{ RCKA!

(ABND FNDL) ’) PRCKA!

7 SET UP DEBUG SWAP LIST TQ TORCE READ FR20% TTY

T/L WTC R!?

DURD: (TTY)

DWRD%®: (KLF)

NWER: (TTY)

DNTIL: (NTL)

DRITT: (,ITT)

DWIPT: (.TPTT)

DBCX: (DWRN WRAD DWRNR WRDBE DWWR WWR DNIL NIL DWITT WITT DWIPT &IPTT)
EBCY WDRCX R!

; DEFINF WORKTNCG CELLS AND SRVING UTTLITY RTNS

W3 P BT 00 W2 U2 W3 U We Y ws e
T Ut TYT U! T2 9 T3 UL TY Y TS U1
WSAVE Ut

T/P WTC R!?

SAVEW: (WSAVE T)

RSTRY: (WSAVE S WSAVE D)

Appendix 13 - Listing of Bootstrap Pile BONT, LSF

; DEPINF TYPZ DECLAPATION PRNNTINFS

DEF/L: (7T/1L WTC R®)

DEF/P: (.0 T/P WTC R)

DEF/T: {(T/T WTC ®)

7 DEFTN® @ ACTTON - A@T MAKTS A NF TYPT T

DEF/L!

TYPL: (I ™/T 'L T/L P T/P M T/M *C T/C)

DEF/ D1

(WHN ¥ S S > I WHN N P S NV R ; G7T NFXT CHAR., AND ADVANCT
TYPL (P S WY S =S .+ N N P R+ HALT) ;: PTND CYAR, SYMROL
N 5 WIC T ABND P WTC S TT® TT V RT ; MAKE SIURT N®P TS Typw
KT D WC D)

& RCKA?

7 DEFINR % ACTION - %, ,,™ CRTATRS LT5T OF CHAPACTEPS

STRKL: (WTCKL S C WC T WFLPR 5)
ENDKL: (ENDLT1 U WC S P D WC D)

(ABND WHN M P SAVEW 5 7 GET TNPUT TIST
STRKL V 3 START K-LIST
(P S ,0 ™ =5 .+ PSSV NDP DNs) 7 TERMTNATE ON ™ OR FOL
N RSTRW P ©NDKIL) : ADVANC™ BRYOND ™ AND F¥D LTST

™ RCEM!

: DEPINE ONTDPIT ROUTINES

WRWWR: (W" I WWPR (P S WD S V WP N P P+ U) WO D)
CVSI: (SAVFW T/I C P RSTRW V R)
PRN: (P LNNT P PPN1 P WRWWR FL)
PRN1: (PRN2 V I CVNKIL)
PRN2: (. + U1 CVSI P CVIDL V ¥ ,.)
ERT: (,0 ™(=™ WRWWR CVIDL P WRWWN® FL .0 ™)™ WRWWD)
PRS: (P PRN P T/YT =T (,~ PRI ..) U)
PR: (P PRN ,0Q ™: ™ WRWWR PRSTP CR,I¥)
PRSTR: (P T/1 =T (.- PRY ..)
P T/L =7 (,- PRLS ..)
P.Q T/P =7 (.- PPRLS ,.)
P .O T/K =T (,- P LNNT P (,- U ,,) 01 ,0 “7* WRWWR WREW® ,,)
PRN) ; PRINT NAMF ONLY OF ALL OTH R TYPRS
ERLS: (. Q ™(™ WRWWP
(PS PRSTX N P ,- SPACE .R)
U .0 ")™ WRWWR)
FRST': (P LNNT P (.~ V I CYNKL P WRWWR FL ..) O PRSTR)
PRSTY PRSTX R!
PRL: (.0 PRS .,Q PRSTYX P PR .Q PRST1 .Q PRSTX R)
SPACT: (.0 ™ ™ WERWWR)
CR.LF: (.Q (RCR KLF) WRWWR)

Appendix 13 - Listina of Bootstrap File ROOT, LSF 4

s DEFTNE ™YPT TABLE AND CHAPACT®? ACTION TABLF DPRACESS®S

SETT: (V IT> TT +IS)
PETT: (V IT® TT +75 R)
IETT: (V ITT TI +I5 T)
DETT: (V TT> TT #+TS D)

SCKA: (WAKT S .Q T/K IT) -85 +IS S)
ICKA: (WART S ,Q T/K TT" -SS +7S 1)
PCRA: (WAKT 5 .0 T/K ITF =SS +IS N)
; DEFTNFE ELEMENTARY SPACZ PROCRSSES

: CSPT - ADD 227" CELLS ™) AVY,SP FOR TYPZ W(")
CspT: (P ;SAVE TYPFP SYMBOT

202Y ¥ ; GET NO. OF CTLIS

Csp : GET CELLS OF CORRECT TYPE FROM MONITOR
P ; COPY START ADDR

FASALAINN

LNKUP LTNK WP THE 2777 CSLLS

V WSPIT S RETT) ; PUT IN AV.SP TYDP® TARLE

7 LNKUP -~ LTNK W(1) CRLLS STARTTNG AT W(C) INTO A LIST
LNKUP: (P WY T ; SEVF START ADDPR

V +TS W1 T 3 SAVE END ADDR +1
CRNE : GTT CURRPNT CFLL
P 14TS P : GFT NEXT CFLY
W1 S =5 .+ ; FXTT YF END
PR R : SAVE NUXT AS CHRRENT
V 2N .R) ; STORE NE¥T AS LINK OF CIHPRENT
0 NIL V PN ; LINK OF LAST CTLL WIL
W3 D W1 D)
CSP/P: (.Q T/P CSPT) ; SPXTT RTN FOR T/D
CSP/L: (T/L CSPT T/L C P WSPRL R N/PL SPCLI&T RI
(P NTL ¥V I SPCLT -1 SPCLI +I 0 =T ,®- [)) ; SPXTT ®TN FOR T/1,
CSP/¥: (.0 T/M CSPT) : SPYTT PTH FOR T/M
CSP/T: (T/I CSPT) :SPXTT R™N FOP T/T
CSP/C: (T/C CSPT) i SPXTT BTN FOR T/C

INSTALL RTNS IN CURRENT SPACR

CSP/P T/P WSPYT S! RETT!
! EXHAUSTED RTN TYPR TABL®

S
CSP/L T/1, WSPXT St RETT!
CSP/M T/M WSPXT S5' RETT!
S
S

LTI TY

C5P/T T/T WSPXT S! R¥TT!
CSP/C T/C WSPXT S! RETTH

; DEFINE ASSEMBLY PROCESSES

Appendix 13 Listing of Bootstrap File BOOT, LSF 5
NEF/LY

WAPTT: {(ARTT)
WARPT: (ARPTT)
WAWTT: (AWTT)
WAWPT: (AWTTT)
ARCX: (WARTT WITT WARPT WIPTT) : CONTEXT LIST FOR AR
AWCX: (WAWTT WITT WAWPT WIPTT) ; CONTEXT LIST PNOR AW

CURRENT ASSEMBLY READ TYPE TABLE
CURRFNT AR T/P TYPE TABLF

-y w3

DEF/P?
AR - START AT W(?), EXTCUTE LIST W(1) INTERPRFTEN WITH
ARTT AND ARPTT, THEN MAKE 3% LIST OF TYPE
WTCKL.S OF ALIL TH® EXTRACTER SYMBOLS.
B: (CPTR WPTR I ; CREATE PTR TO LOC (™)
"STPKL V¥ START 4 LIST nNn¥® TYPF WTCKL.S
ARTX , XCX EXECUTE LIST W(1) A/C AR CONTEYT LTST
FNPKL BROTLD THE LIST
WPTR S WPTR D 3 POP WPTR AND ERASE CREATED POINTER

P ome W W

-

SR
'

; AW - START AT W{"), EXECUTE LTST W{1) TXTERPRFTED WITH
H AWTT AND AWPTT,
AW: (CPTR WPTR I ;7 CREATE PRT TO TOC W(")
AWCY L, XCX ; EXECOTE LIST W{(1) A/C AW CONTFXT LTST
WPTR S5 WPTPR D %) ; POP WPTR AND ERASE CREATED POINTER

; DEFIN® FILT NAMING PRNCESSTS

7 PHRBT - SETUD FOR STYRIT BV
AWABT: (6 .Q T/K WNRTT S IETT : PUSH & FPOP STZT
3/K =4° ° +I ,Q T/K WBTT S ITTT™) ; DUSH NULL-47 PNOR PASQE

;y MWRS - POP STYRTT SETOP FPNP AW
AWRS: (,0Q T/K WNBTT S DETT .0 T/K WBTT S DETT)

: SETRD - W(7)=SYMBOL AND USTS EXTFRNAL NAME OF TT ,LSF

SETRND: (DSK BSTF BRWERI ; SETHP TOR SIABIT AW AKD PESET TNTERFACE
LNET CVNKL DSK 4 4I5S P C V BRI AW ; LAYDPOWN STYRIT FTLF NAME
.0 TLSF® DSK 5 4IS P " ¥V BRI MW ; TAYDOWN SIVBIT TXTPNSTON
AWPS) ; CLEAN-UP AND EXIT

; SETWR - W(I)=SYMBOL AND NS®S EYT NAMT OF IT .LSF

SETWR: (DSX PSTF AWFBI ; SETIDP 70F SIXRBIT AW AND RESET™ TNTERPACF
LNNT CVUNKL DSK 17 +IS P 0 V PT AW ; LAYDOWN STYRIT™ FILF NiIME
.0 “LSF™ DSK 11 #IS P © V RT AW ; LAYDOWUN SIXBTT EXTENSION
AWRS) ; CLEAN~UYP AND EXIT

; RDF -~ SIMPLE VERSION - RFAD FROAM FTL® W()) INTERTACY® nag
RDF: (SETRD NSK WRD I)

; WRT - STMPLE VERSTON - WPITE FTILE W(") INTERFACE DSK
WRF: (SETWP DSK WWR T)

Appendix 13 - Listing of Bootstrap File 300T.LS*

;7 DPFINE SAVT POR RESTAPT ROUTINE

SAVE: (SV TTY RSIF DSK RSIF ((.- .0 “v32 CONTINUING™® ,)
«0 ™32 RESTARTHD™) WRWWD CP,LF)

;7 TND OF TNTTIAL BOOTSTRAP - NOTIFY TNSFR AND Gn TN HIM

r

CR.LF! “INITTAL ROOTSTRAP LOADED™ WRWWR! CR,L¥? CR.L¥!
TTY WRD R!?

‘ppendix 14 - Listing of Rditor File EDITF.LSF

SIMPLE ON-LINE EDITING SYSTEM FOR La(F)
EDT CHANGES KCR TO GET NEXT AND PRTNT SYMBOL TN NTXT,

BY PRINTING FIRST SYMBOL. ENT ALSO PUOTS TDTND TN W
AS MARKZR, ROTH FOR USER AND FOR EDT, (377 BILOW),
DO NOT REMOVE MARKFER,

IT ALSO RETURNS ACTTON FOR RCP TO DPREVIOUS VALUE,
FDTCRA IS ACTION FOR CR,
EDTD ALLOWS USERP TO GO DOWN A LFEVET,

NOTE: ONE TS NOT “IN A SYSTYMN™ WTTH =hT, BOT STMPLY CAN
STFP THROUGH PROGRAMS AT WTILL, DOING WHATTVER
OTHEPRY PROCESSING STEMS APPROPRIATE. IT TS A 600D
TDEA, HOWFVRR, TN LXT EDT, CLTAN 1D FQR YOU,

N WE N wg wmg W NGB NI WE ws W wy NE W

EPT: (EDTSTOL RN EDTND&L .0 FDTCPR ,0 KCR ICKA EDTST)
ERT,: ({(P EDTND =S ,+ U ,R) PRS CpR,L® .0 KCR DCKM)
PDTCR: (P EDTND =5 .- EDT., ..) : NUIT IF NC MORW
(NP .- P S PPS SPACE ,,) ; P2TNT SYMBOL TF FIND NE¥YT
+Q "= WRWWR PR5 SPACF) 7 PRTNT =NIL AND DEMOVE NIL IF
EDTD: (P S EDTST RN EDTST)

CR.LF! “PDT LOADED™ WRWWR! CPR,LF!?
™Y WRD R!

LEAVING NFXT IN W TN BT TIDTTED &S DESIRED. =DT STARTS

ED™. REMOVRES ALL SYMBOLS TN W DOWN ™0 (AND INCLONING) ZDTND,

Appendix 15 - Listing of Steoping Mornitor File STPMP,.LSF 1

STFPPTNG MONITOR FOR L*(F) - 5STp
ESTP! CHAN3ES KCR TO STEP THROUGH A PROGRAM (W(")),.
ESTP TS A CLOSED SURROUTTNE AND CAN BF¥ EXTCUTED FRNM
WITHIN A PROGRAN.
AT EACH POTINT IT EXFCUTES AW ARIITRARY ROUTINE FROM WESTD,
THF DEFAULT PRINTS W (PRL), WITH THE SYMBOL TO BY
FXECUTED SITTING IN THF TOF OF W.
DOING KCR EXECUTES W(M) aNp LDVANCIS TO THE NEXT ONF.
THUS, W(T) CA¥ BE CHANGED BEFARE CR, CHANGING WHAT TS FXECHTED.
THE SAME PATH IS POLLOWEN AS WITH REGULAP TNTERPPETATION,
THF USFR MAY AL™FR THT CONTROL FLOW RBY NSING ONE OF
THZ FCLLOWING CONTPOL PROCTSSFS: B, H.- 5.+
fee Beu= Buu# S,R S,.R- £, Re
TO EXIT A LEVEL WHEN CNDE DPORSN'T SHOW TT: uwe g,

" Wy wg

“d We wg W Wi

£STP. ! ERMTINATES THE STEPWIS®H FXTCIHTION AND RETURNS KCR
T ITS PRINP STATFE, &£STP, REMOVES THE ITEM PRONM ¥, BuUT
¥ WILL STILL HAVE ARGUMENTS TF A ROUTINE WAS
TERMINATED TN MID-STRFAM,

EAUTOY CONTINUES THT STEPWISE EYECUTION IN AUTOMATTC MODE
INTTT AN EMANU IS EXECUTED NP UNTTL NORMAL TERMINATTON,

ESTPD! ALLONWS THE NSTR T DESTEND NONE LIVFL TO STEP
THROMSH A NAMED OROGRAM SOUR~I1.IST,

NO™E: ACCEUSSFS TO WHS OR WHN ART CHANGED TO ACCESSES TO
SWHS DR EWHN, Y0U MAY RON INTO PROBLEMS IF YON TRY
TO REACH ACROSS THE ROUNDARY (ILE. THE LEVEL ESTP
WAS FNTERED),

WE e N %5 e M wy % N owg e WA A WA W ag ws N we wg W

55TP: (RWXSeL R NIL SWYNWL R «0 SS5STPY .0 RCR ICKA +0 NOP £DSC &STDPX ERXFC)
RSTPD: (SWYS R ,Q NOP §DSC)
ESTPY: (5,X (SADV .+ BASC + T+ AESTP, ..,) EWXS S WSSTPeL S . X)

FAOTO: (NIL AAVISY R (8,X (FADV .+ SASC . P+ FSTP. ..) EWXS S ussTP
S . X SAUSW S ,E-))

(W PPL) WESTP P!

E3TP.: ((RASC . R+) »D KCR DCXA ,0 ™, £END “ WRWWR WESTP

ra

+X TRUE £EXSW R)
SADV: (EWXN S P S gEW¥xS R p N BWHXN B)
5B5C: (EWHSEL N P ,- suysg 5 SWXS R EWHS D SWHNGT S EWIN 2 RWHN D)

EDSC: (SWXS S EWHS T EWYN S SWHN I RWXS S SWYN R)

Appendix 15 - Listing of Stepping “onitor Tile
H.X: (P T SITLEL SBAL ,X)
ITL: (T/P &/P T/M £/ T/L &/1L /Y . X T/K . X T/C .Y¥)
/P2 (P LNKNT (,- ,Y ,.) EWXS R EOSC)

£/M: (EIL/M SBAL ,X)

STPMF,LSF

EIL/M@ID= (I 8' .+ 5.+ I— 5'- L) s.l Il+ F’I.+ Il— Sl.-

R E&E.,® R+ E.R+ ,R- F.R= .0 £,0 X £.X)
£/L: (ETL/L SBAL)

FIL/1.&L: (WHN SWAN WHS EWHS)

S.2 (NTL SWYY m)

etz (L= &)

Foe=z (.+ §.)

ooz (HIL SWXN 2 NIL EWHN R)
Eoo+: (.- &,.)

E..o-2 (. %+ E..)

f.R: (GEWHS 35 RWXYN R)
f. R+ (,~- 5, R)

F.R-: {.+ F, W)

£.0: (FWXN S S sADV 1)

SRAL: ((V WO T (P S W) S =5 ,+ N NP P+ 05 WM § ,.)

AEMANY: (TRUR 5 AUSWeL R)

N S) WY D)

EEXEC: (NTL EEXSWEL R (EFXSW S .+ WRN § RD P SPYSV&L R

PCX L XCX £RXSVY 5 EL L R))
s RETUFN Tn 1S®ER

CR.LF! “STPM LOADER™ WRHEWR! <R, F!?
TTY WRD R !

2

ALER LR TEE L R TI T I TR VRRT T I I

WE WA W W W wE R NS WG A W W %

Ppoendix 16 - Listina of Utilities File HTILF.LS? 1

OTILITTES PNP L*(*™)

CTYP - CREATE NEJd TYP® W(Y) SIMTLIAR TO W(1)

CRLK - CREATT BLNC¥ W(?) WORNS T.ONG OF TYPE W(1)
CT? - CREATE NWH TYPF ™ABLE

LODTT - LOAD TYPE TABLE W{") WITH %(1) AS ENTRIES
XTT = FXTCOT® W(1) BY TY?® TABLT W(")

RNNT - RFPLACT NAME W{(1) RY SYMRNL W{) IN NAM? TABLE

CTYP - CREAT™E NEW TYPE MAXES (W(2)) THF CHARACTFRISTIC SYMAROL
FO® A NEW TYPE STMILAR T™n (¥(1)). CTYP SETS
P THE CHRRENT TYPE TARLZS WITH THE APPROPRIATR TNTRTES.
A BLOCK OF SPACE TS OBTATNFD BOR THE N=W TYP®, BOT NO
ATTEMPT IS MADE TO "UILD A SPACE EYHAOUSTEN ROUTINF,
ERR1Y Y5 USED FOR THT SPACY TYXHAUSTED 7TV,
NOTE: AFTYR DOING A CTYP, YOU MAY WHTCH TO DO ANY OR ALL OF
THE FOLLOWING:
/- 1 (===) ; DEFINE THE CHARACTFRISTIC SYMBOL
(?/- CSPT) I/- WSPYT S! PRTT! . DEFTNT 2 SPACT-RX, PRTN,
{(p T/~ =P ,- PR-~ ,.) DPRSTR T! ; NEFINT A PRINT RTN,
/- TYPL T! - TYPL T! SFTHP &- FOP DTFINTNG T/-
-= 5TITL It T/- EITL IV SETUDP £STP TO HANDLE T/~

-y

6 T.BI®TI PI! ¢ COURRENT HIGHEST TYPF INDEX
DPEF/PY
CTYP ¢+ (W~ T W1 1T ; WY«NFW TYPR, W1eMONFY
Wl S W™ s Rz : STTUP CHARACTERISTIC SYMBOL
T.HI 1 TLHT +7 ; FIND NEW TYPE THNDFX AND BUMDP TNDEX CNT
W. S RT : SET TYPF OF CHARACTERISTIC SYMBOT
W1 S .TTT SFPT " S ,ITT RTTT ; CARPY QVER ENTRIFS FOR TYPZ TARLES
W1 S .IPTT SETT 42 S ,IPTT RUTT
¥1 S ARTT SRTT™ WD) S ARTT PRTT
W1 S ARPTT SETT Wr S ARPT™™ RETT
¥1 S AWTT SETT W) S AWTT RRTT
W1 S AWPTT SETT W° S AWPTT n®TT
W1 S RTT SPTT WC S BTT™ RETT
W1 S NBTT SETT W" S NBTT RETT
Q0 ERRIC WD S SPXT™ RETT
W1 S RDTT SETT W) S RDTT pETT
W1 S RDPTT SETT W S RODPTT RPTT
W1 S WRTT SETT W0 S WRTT RETT
W1 S WRPTT SFETT W" S WRPTT RETT
W0 5 P TTT RETT s SET CHRAR., SYMDOL INTO TYPT TYP? DARLT
W2 S CSPT 7 GET A 3LNCKX OF SPACE FOR THE N3IW TYPF

http://ut.ILF.lsf

fppendix 17 - Listing of Ntilities Filse 711, =, LSF

D W1 D) ; CLIAN-UP AND RYTIT

CRLE ~ CPREATZ BLOCK W(?) WOPDS LONG OF TYPE w (1)
CBLE: (P W™ T W1 T W2 1 ; WieW1«LENGTH, W2+TYPF
(W' 5 207° &I .- HALT) ; ERPOR TF BLOCK TOO TARGE
W2 S C P W3 I SAVEW : W3=WSAVR«CURRENT LOC
(¥ S =1 7 +T P Y =T .+ 2 R ; BXTT T7 WE HAVZE FNOUGH
W2 S C RIS 1 +IS P §3 R =S R+ REPFAT TP SEQUIINTTAL
R

.y A

W1 S W2 R W2 S C P W3 R WSAVE) START OVER T® NOT
T W3 D W1 DHW2 D W3 D RSTRW) CLTAN-UP AND RXIT.

¢ CTT - CRTATE NEW TYPE TABLFE

CTT: (T/C TTH CRLK)

7 LODTT - LOAD TYP™ TABLE W(7) WITH W{(1) AS ENTRIZS

WC-START, W1<END, W2«FNTRY
T +IS WY R ,P)

LOBTT: (P W3 I TTWN +IS W1 T W2 1
(W S W1 5 =5 ,+ W2 S W) 5 » §°
W2 D W1 D W2 D)

I/} =

} LXTT - EYECUHTE W(1) BY TYPE TABLE W(")

r

JATT: (V ITY PT 478 § ., X)

; FNNT - REPLACF NAMF W(1) BY SYMBOL W{{) IN NAME TADLF

,

RNNT: (V LNNT 1 +IS R)

: NOTIFY USER AND RETURN TO HTM
CR.L¥! “OTILITIES LOADED™ WRWWR! CR,TF!
TTY WPD R! :

BB NE e W %4 g NE N e W %E WE W %8 we Y ws

ippendix 17 - Listing of Dictionary File DTC™F, LSF

DTTTTONARY TRTE FOR L&(F) WTTH SYNTAY ACTIONS AND CONTREXTS
AEQUTREMENTS: NITTLF
FOP¥ OF NODE OF TREE:
NODE: (CHRBRACTER RETOG-LTIST UP-LINK NODE ... NODT)
FORM OF RECOG-LIST:
RECOG-LIST: (CONTEXT SYMROL ,,. CONTEXT SY¥ROL)
NODE OF DEFINTTION OF A SY¥ROIL IS "LACED IN A CONTEXT-¥ODFE
LIST POINTEDR TO BY THE N™XT-PAPT OF SYMBOL-DESC. WO®RD,
NN} TS THE WAMF NCDF ACTIOM USTD FNPR ALL CHATRACTTRS, EXCEPT
THOSE HAVTNG SPECIAL ACTIQNS,
RB¥D1 TS THE POUNDAFY ACTTON FOR THE DICTTONARY.

SYNTAY RCTIONS APF OF THE PNRM:
(PRECERENCF-0OPPRER IMMFNIATFR-ACTION DELAYED-ACTTION)
+ZATT POTNTS TO TE™ CURRFNT SYNTAX IMCTION TYPE TABLF:
ZAW - TEPUT SYMBROL TO W
ZR = SYNTAX ACTINN INTEPPRETEP (FOR T/2Z1)

TRET&L: (NTT NIT NIL) ¢ TNTTTAL DRTCTTONAPRY T2RR
[TRE~ WN&T R 7 WN HOLDS POINTER T0 CORRENT NODE IN DT

LEF/DY
NNA: (WN S NN (NP .~ PSS WK S =8 ,R- § RN R TROT) .+ T/L
CPWN S VR PNILYVIPWKSYTITDPWNSNINTIAUYNR)

ABND1: (WN S DTRTEE =5 ,+ ((TNU™p

=T - T/I C P {7S6N 2 N /7T
£ =T 4+ 7 INTIM TNOM ~T O) TNUM RT ..) WN S NS P (.+ 1§ T/L
CPWESNPRPHTC S C P SAVPY
UWN S NSP WTC SCDP SAVFW V

TNUM PT ™ INUMT RI 2 TSAN 21

ABND2) DTPEF WN R
«ZATT S ,¥XTT)

oD H <

ABND?: ((WNCT™Y S V I WSAVE S TD +7S P (N .+ WN § T/L C P SAVEW

B WCTX S WSAVE S I RSTRW V BN ,,) N » SAVEW WN S V T WCTX 3§
RSTRW I} RSTRW)

ANK1: (-1 INUMF RI NNR)

ADK1: ((INUMF 7 =T ,- 1 INUMF PT) NNA TINUMP -1 =T »+ WK S ACCID)

A-

K1: ((INMMF 1 =T ,- -1 INUMF FT) TSGN 1 TSGN +I T NNR)

A+K1: ((INUMF 1 =T .- -1 IXUMF RT) NNR)

-
’

/L T/ZA CTYP?
T/7A: ()
(T/ZA CSPT) T/ZA WSPYX™ S! RETTH
(P T/2A =T .~ PRLS ..) PRESTP I!
T/2A TYPL IY 77 TYPL I!

«X &ITL TY T/ZA EITL I!

DEFIN® ROUTINES FOR SYNTAX ACTTONS

CREATE TYPT SYNTAX ACTION (T/27)
MAKE T/2%ZA THE YULL ACTTNN

LTI 1]

DEFINE A PRINT BTN, FOR T/ZA
SFTUP ¢7 POR DFFINTING T/7A

A ws

R ABND2 ,,) LSCSL P (.- § ..)

DEFINE A SPACE-EX, PTN. PQP T/7A

SETUP ESTP TO DO T/ZR PRNPTRLY

topendix 17 - Listing of Pictionarv File DICTF,LSF 2

CTTt ,ZATT6C RY ; CRPATE THE SYNTAX ACTTON TYPR TABLE
7AW .ZATT S¢ LODTT! ; AND LOAD TT WITH ZAW (NOP)
ZA T/Z2 LZATT S! RETT! ; SETHP ZA AS ACTION POR T/22

(ABND .Q ZAW T/ZA ,ZATT S ITSTT) ‘[RCKA! : SETUP f{-) mn TUPN OFF
(ARND T/ZA .ZATT S DETT) *) RCKA! ;7 SYNTAX ACTION FOR -

; ZA - SYNTAY ACTION INTRRPRETER
Zh: (WO T ((W) S S WZAGL S S >T .+

WZn S N N 5 ,X ;7 EXTFCUTE DELAYED AC

EZ2® S5 5 WZA D ;7 GET PRRC, ORDER & POP
¥, 5 5 =I .R-) ; REPFAT UNLESS P,N, SAMT
¥Y S NP .- 85 ,X : FXECNT® TM, AC

W's NNP,- ;) EYIT T¥ NO DPLEYRED AC
WA S WZr T)Y 1 ; STAC¥ DFLAYED AC

WM

FTRX: (377777777777) ; DRPINZ POTTOM ACTION WITH P,0.=LAPGPST PNS, NUM
RTAX WZA R1 ¢ WIZIR IS TH® DELAYFD ACTTON STACK

;7 DEFINZ POUTINES FOR CONTFYT HANDLING

7 BNDT - PFPLACE NAMF Ww{1) WITH STRUXY W{(") IN CURRTNT CONTEYT

FEDT: (W) I P W1 T IND™ P SAVEW N S ((LSCS1 P .+ 01 WSAVE § W%
SP W SVYI WCTX SVTI ,.) %W SV R) W S TD 4IS P W2 T N
((.+ /L C P BRSTFW V R P WCTY S V T W2 S RN ,,) W2 S N
((LSCST P .+ 7T W2 S N P RSTRW ¥V T WCTYX S V I ,.) RSTRY V¥ RN
W D W1 D W2 D)

7 LSISL - LOOKUP SYNPOL IN CONTRYT-SYMRQL LTST

TSCSLe ((WT T WCTX ; SEARCH CONTRYT STACK ¥OR R®ACH ENTRY TN LIST
(PS W1 T W) S (PSW®1S=57" _,4UNNTP P .R ®10D o+
NP LB+ ,.) VUN ¥ D)

: LSTST - LOORUP SYMBOL TN CTRRENT CONTEXT ONF CONT®YXT-SYMROL LTST
LSCS5%: ({(P S WCTY S =S .+ N N P R+ .0 W)

BTCTY®L WCTX®L RY! ; WCTY IS CONTEXT STACK (HAS DBOT™OM CONTEXT INITIALLY)

NO#, DEFINE ROUTINFS TO EFFRCT THT SWITCH FROM NT TO DT

L 1)

SWTCH PUTS ALL NAME TABRLE FNTRTIRS INTO THE DTCT, TREE AN¥D
THEN REPLACFS THE OLD NAM™ TARLFE FUNCTTONS WTTH 0T FUNCTIONS,
SWTCH: (NT1Y 2 7 &I NT1 V IS Wl I ; ALL N7 ENTRT®S TO DT
NT1 (P CVNKL CVKDN WNSV&L R 1 +TS P S P TD +IS ((P N .+ T/L C
PWNSY S VR P HCTY S VI VPN ,,) NPHANSY S Vv 7T HCTY S V I)
WNSV S N ({(P S ,+# V T/L C ™ SAVEW R WC™ S WSAVFT § T RETRY

VR ..) 5 IWCTY S HNSY S W S T) 1 4TS P WY § >§ LREM

-0 ABND1 .0 ABND RRTN .0 ANK1 .0 ANK RRTY .0 A-K1 .0 A-K "RTN
«Q A+KY1 .0 A+K RRTN .0 ADK1 .0 ADK RRTN .0 LNDT «Q LNNT RRTN
«+0 CVDNK ,Q CVNKL RRTN ,Q RNDT .Q PNNT RRTN WO M)

“d =g

Appendix 17 - Listing of Dictionary File DICTP.LSF

7 RETN - RIPTACE RTN W(2) WTTH RTN W(1)
RPTN: (P W2 I ®C ,Q T/P 2 TI WO 5 AT 4~ D)

: LNDT - LOOKIP NAMF IN DT PEPLACES TANNT
LNDT: (TH 4TS N P .- LSCSL P .- %)

; CYKDN -« CONVERT K-LIST TO DICT NOD&
CYKDN: (P S WK R NNA N P ,R+ 0TI HN S DTREFT WN R)

; CYDNK - CONVERT DICT NODE TO K-LTST RYPLACFS CVNKL

CVDNK: (P S ,) WKLSV&P R (N N S ® ,- P S .0 WKLSV I .R) I .0
WKI.SV N NIL .0 WKLSV RC)

SWTCH! ; SRITCH FROM NT TO DT!

; NOW, RTTURN ™0 USER

CR,LF! “DICT LOADERP™ WRWWR! CR,LF!
TTY WRD R!

(1)

(2)

(3)

(1)

(")

(6)

(7)

(8)

Appendix 13 - V37 to V32 Changes 1

T. Changes to the Kernel

Machine stack space was doubled from 128 to 256 words.

The size of initial T/L reserved space was doubhled from
32 to 64 cells,

Sizes of both initial T/L and T/P available space were
increased by 327 cells to 128 cells for T/L and 1344 cells
for T/P.

Processes with no inputs and no outputs were given a
null oprefix instruction (a JFCL) s0o that the address of
the process + 1 is the start of +the nprocess sten. This
makes these processes consistent in this respect with
processes of other invut-output characteristics.

A “START 41* (Debuqg entrance from monitor) now Teads
out the contents of R? - RS into new cells RISV - RSSV ,
and MSTRP into new cell MSPSY before calling DEBUG,

The internal save areas and mwachine stack have been
moved avay from the operating system processes to
immediately before initial T/C available space, It would
now bhe possible to expand the machine stack by nre-empting
T/C availahle space (if not alreadvy used Ffor other
purposes).

FYRC has been modified so that the current read
interface 1is reset (RSIF) when an end-of-file is detected,
Tt now operates analogouslvy to the following T/P list:

((WRD 5 2D P ,- P WEXEC I RNCX , ¥CY
WEXEC S WEYZ?C D EL .R) ®W°D S RSIF)

Ahen the current read interface (WRD,S) is TTY , this
addition to TX"C allows one to exit from a nested call on
EXEC with a control-7 (end-of-file signal for TTY) and then
continue reading successfully from the TTY at the outer
level.

ERROR has bheen modified so that the working reqgister
context (R1-R5) and machine stack pointer (MSTKP) are read
into cells R1SV-15SY and MSPSV hefore the swap into debug
context and execution of WFRR.,S . After return from WERR,S
and the swan back out of debug context, R1-RS and 4STKP are
restored from the cells R15V~-R55Y and MSPSV. This makes

(o)

“an

(12)

(13

(14

(15)

Appendix 18 - ¥3" to V32 Changes 2

error recovery much more feasible, hut is Just a stopgap

'solution,

As an error racovary example consider ERR1S, the “out of
space in name table® error. TFf we look at the point in
CSNTW where the arror occurs, ve see that only the contents
of R1 (addr of name table) and RS (current name table
index) are nmeaningful. Thus, we can wWwrite an error
recovery routine to be placed into WERP which will set up a
nev name table complete with size and index words, insert
it onto WNT, put its address into cell R1SV, put an initial
table index of zero into cell R5SV, and exit, Execution
will continue immediately after the error call location in
CSNTW with the contents of R1 and RS roflecting the new
name table, and error recovery will be complete.

CSP was modified to make it return space to the monitor
if the value of the size W(1) is negative. TIf the value of
W(1) is zero, core allocation is not changed, ¥hen no
space is obtaired from the menitor, CsP outputs NIL,

<$,> , =€, =I , <T , >I have been modified so *hat
if the test succeeds and the W (1) input was NTYL, then TRU®E
is left as output rather than the W(1) input. { This is
how =5 and =T already worked in V3>),

C (Copy W(?)) has heen modified to work as the
documentation says it should; namely, by copving the
contents of input W(7) into the new cell which is output,
In V30 C always created null structures rather than
copying.

C and J/L now swap into space-exhausted execution
context (SPXCX) before executing snace-exhausted routines (
and swap back +o the previous context upon return), This
eliminates the possibility of space-exhausted routines
failing if space is exhausted within some strange
interpreter context (e,g. Write Context).

LNNTH has been changed to search name tables backwards,
s0 that most recently defined names will be found first
when duplicate names exist for a symbol. LSNTW was also
changed to search hackwards for consistency,

RD was changed to access the character hase througqh the
current base type tahle in WETT rather than directly.

In RD the SETSTS (set status) instruction to reset the
end-of-file flag irmmediately after an end-of-file condition

(15)

1n

(12)

(19

27

.y

Appendix 1% - ¥3° to v32 Changes 3

vas detected has heen removed since it didn’t really work.
The problam of “permanent™ end-of-file indications from the
TTY has been solved by other means, (See (7)).

-IRP and ,IPW¥? were corrected to refercence the current
base type table through W cell WBTT, rather than directly
as BTT.

The space~exhausted context swap list (SPYXCX) was added
as an initial T/1 structure., (See (12)).

Adlitions were made to the write interpreter type
tables:

In PTT: .I/M for T/M
«1/8 €for T/71I,T/C

In WRPTT: +IP/M For T/
+IP/S for T/1,T/C

Initial T/M availahle space was moved from betvween
initial T™/L £ T/P available sopace to between initial T/C &
T/ available space,

The following names were added to NT1-

MSPSY
15V
R25V
R3SV
RUSY
RSQYVY
SPYCX

II. Changes to the tootstrap

The character action for ! now qoes 1into standard
interpreter context for ewecution as in (ABND .ICX .XCX)

The Debug swap list was expanded to include DWITT and
DWIPT swapped with WITT and WIpP™T raspectivelv, DNITT
initially contains .JITT » and DWIPT initially contains

(3

(4)

(1)

(1)

(2)

(3)

(4)

(5)

(&)

)

(8)

Appendix 13 - v¥3° to ¥32 Changes 4

L.IPTT , 50 that standard interpretation will occur in Debug
mode,

A bug in PRSTR was fixed, (YMamed T/K symhols were
being printed incorrcectly,)

SAVF was updated to vreflect the current version number.

TIT. Changes to the Flitor (=pT),

The name FDTNN was changed to FDTD (for consistency
with £§STPD in the stepping monitor).

IV. Changes to the Stepping Monitor (ESTD),

ESTP was made a closed subroutine so that it could be
called from within a program.

The name £STOP was changed to £S5TP, (for consistency
with EDT. 1in the editor),

A bug in £/P was fixed so that exacuting nnnamed progranm
lists with .Y now works,

A bug in ASTPD was fixed so that von can alter W(%) and
then step down the appropriate routine.

&STP.. was changed so that it prints *,.&2ND* and then
execites the routine in WESTP .,

SBAL was changed so that tempovrary work cell T1 is no
longer clobberend,

EITL was changed so that T/71, T/K and T/C now have
appropriate stepping monitor interpreters.

2 routine £MAYU was added so that one can go into

L 1o

Appendix 19 - 73" tqo v132 Changes

autoratic mode (£aAUITO) an4 then leave

place (i.e., ao into manual mode).
1n the routine that is heing stenpped

T

3 8482 DDkLS4 4825

EMANT must
throuqgh,

bhe

5

it at a specifiag

placed

