
NOTICE W A R N I N G CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

L*(F)
Final Version

by

A. Newell
D. McCracken
G. Robertson
L. DeBenedetti

Department of Computer Science
Carnegie-Mellon University

January 25, 1971

This work is supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense
(F44620-70-C0107) and is monitored by the Air Force Office
of Scientific Research, It may not be cited or reproduced
without the written permission of the authors.

TABLE OP CONTENTS

Sections Start-Page

1-8 1 Introduction

CT. 2 Symbols

10 3 Types

11 4 Cells (T/C)

12 4 Integers (T/I)

13 4 Characters (T/K)

14 4 Lists (T/L)

15 5 Machine Code (T/H)

16 6 Program Lists (T/P)

17 6 The L*L Language

18 6 Working Cells

19 6 Operand Communicat ion

20 6 Interpretation

21 00 . Control

22 8 External Interface

23 9 Name Table

24 9 Read

25 10 Write

26 11 assembly

27 11 Operating System

28 12 Structure of Kernel Processes

TABLE OF CONTENTS

LIST OF APPENDICES

1 Memory Map of L*<?32) Kernel

2 Functional Outline of Kernel

3 Kernel Processes

4 Kernel Data

5 Bootstrap Processes

6 Bootstrap Data

7 Table of System Names

8 Abbreviations Used in Names

9 Outline of Bootstrap Sequence

10 Detailed Kernel Process Descriptions

11 Detailed Kernel Data Descriptions

12 Operational Notes

13 Listing of Bootstrap File BOOT.LSF

14 Listing of Editor File BDTTP.LSF

15 Listing of Stepping Monitor File STPHF.LSF

16 Listing of Utility Routine File OTIIP.LSP

17 Listing of Dictionary Pile DTCTTF.LSF

18 Changes from Version 30 to Version 32

L*(F) 1

L* is a system on the PDP1* for constructing software
systems, which is under development at СИП by A. Newell,
D. McCracken, G. Robertson and P. Freeman. This version,
L*(F), is the sixth to be designed and the third to become
a running system. It is not the final version, by any
matter of means. Bach of these versions involves radical
redesign of one or more aspects of the system. Thus, L*(G)
(the next one, now in the process of being developed) is
not merely a polishing of T,*(F), but differs substantially
from it. We are making L*(F) available in a complete form
with documentation to let others see what we are doing, to
let them plav with it, and to submit a version to the
discipline of being completed and exposed to external
users. At some stage we will simply abandon L*(F) and it
will have to live or die on its own.

This document provides a description of L*(P) without a
detailed design rationale. A few principles are given when
they are appropriate to orient the user toward the system.

L* intends to be a complete system for running and
constructing software systems. It does operate within the
limits of the 10-.SO monitor system of the PDP13.
Completeness implies that one should be able to perform and
to construct systems for performing:

Processing of arbitrary data types,
e.g., symbolic structures, lists, numbers, arrays,
bit strings, tables, text.

Editing

Compiling and assembling

Language interpreting

Debugging

Operating systems (within the PDP10 monitor),
e.g., resource allocation, space and time
accountincr, exotic control (parallel and
supervisory control).

Communication between user and system,
e.g., external languages, dynamic syntax, displays.

гпл1 kernel system. It starts with a small kernel of
code and tiata and is grown from within the system. Thus.
Т.* does not perform all the functions above when it exists
only as a kernel. It does have means to construct systems

for them
see.

L*(F) 2

L* is for the professional programmer. It assumes
someone sophisticated in systems programming who wants to
build up his own system and who will modify any presented
system to his own reguireraents and prejudices.

L* can be used with only a small amount of
sophistication in list processing, but this is mostly
just for play.

L* is intended to be transparent. All mechanisms in the
total system are open for understanding and modification.
No mechanisms are under the floor.

L* is intended to provide complete access to the machine
(the^ PDJ>10), so that ail the 1?'s facilities can be
utilized (except, again, what the monitor prevents).

The memory layout of the L*(F) kernel is shown in
Appendix 1. The kernel consists of a collection of
routines, a few small tables, a large symbol table, and an
initial allotment of available space. There is also a high
segment (not shown) that contains one word for each symbol
in the main segment. These are for symbol descriptions and
will be described later. The routines cluster into a
series of subsystems, which are used in Appendix 2 to label
areas of the kernel. Appendix 2 aives the names of
routines and data for each of these subsystems. ^here are
248 names in all, and Appendix 3 and Appendix 4 list them
all in alphabetical order with one line definitions.

These names are those chosen by us, the designers.

However, the names can all be changed.

The kernel is written in MACR0-1C . A listing may be
obtained from disk (see Appendix 12 for details).
(The names in the MACPO-10 code are not changeable,
of course, unless you want to build your own kernel
— which is OK with us.)

Symbols. There are symbols in L*, which are addresses
(18 bits) and serve to name all the data structures. The
symbol for a structure is invariably the address of the
first word of the structure. Symbols may be tested for
eguality (=S) or inequality (<S, > S) . New symbols may be
obtained by adding an increment to a given symbol (•IS).
Conversely, the difference between two symbols (an integer)

just have to all. Whether gracefully or not we'll

L*(F) 3

Symbols may be created (C) or erased (E>, and are always
tied to the creation or destruction of the structure named
by the symbol. That i s r symbols do not exist in
abstraction from the structures they name. (This follows
from the fact that a svmbol is the address of some word of
the structure it designates.)

Types. Every symbol has a type. which determines the
structure of the data oblect the symbol designates. There
are originally 6 types : cells (T/C), integers (T/T),
characters (T/K), lists (T/L), machine code (T/M) and
program lists (T/P). However, other types may be created
and types may also be destroyed. Only the minimum
necessary types have been set up initially. For instance,
there are many kinds of structures in the kernel that do
not have types of their own, even though it might be
appropriate (e.g., external interfaces, tables of various
sorts).

The type itself is abstract. That is, there is no
symbol in the system that designates the type. For each
type there is a characteristic symbol, which is a symbol of
the given type and designates a null structure of that
type. These are the symbols T/C, T/I, T/K, T/L, T/H and
T/P ; they serve as names of the types.

To each type is associated a type index, which is an
integer that is used to access tables organized by type
(called type tables). The type tables initially hold space
for 15 types, but it is possible to extend the tables to
more types.

Symbols can be compared on type (=T), the characteristic
symbol of the symbol's type can be obtained (T) or the type
index can be obtained (TT). A symbol c^n also have its
type replaced (RT).

The type system for L*(F) is mechanized by having
associated with each address a second cell which holds the
type index for the- aiven address, hence effectively making
it of a given type. These extra cells constitute the high
segment. By convention of the P D D 1 " monitor the
relationship between an address X and its corresponding
cell in the high segment is an increment of 400CC0 octal
(called TD) . The symbol description word for a symbol
holds the type index in the address field of the cell
(called the S-field in L *) . The high order 1* bit field
(called the N-field in L*) is not used for anything in the
kernel. However, it is available for any use the user
wishes to make of it (e.g., as the holder for an
attribute-value association list for each symbol).

The main import of having types is that (1) process

may be obtained (-SS).

L* (?) 4

may respond differentially to the types of its operands and
(2) the availability of type information does not impose
structural constraints on the data structures, either by
pre-empting bits in the structures themselves or forcing
type indicators to be given explicitly with operands. A
price is paid, of course, in taking half the total memory
to contain the type information. (^ore exotic ways of
holding the type information, which would conserve memory,
require more processing to determine the type. ^here are
reasons to prefer the extreme point on the
memory-processing exchange to make type determination as
fast as possible).

Cells (T/C). A cell is simply an isolated word with no
specified internal structure. The two operations
performable on cells are tests for equality of contents
(=C) and replacing the contents of one cell by another
(RC). This is the residual type, in that anything not
otherwise typed is considered to be ?/c .

Integers (T/I). An integer is a full word integer in
the PDP10 format, i.e., two's-complement. The operations
that can be performed on integers are tests for equality
<=T) and for inequality (<l f > I) , the replacement of one
integer value with another (RI), and the standard four
arithmetic operations (+1, - I , * I , / 1 , / R I) , where there
are two division operations, one for the integer part, one
for the remainder.

Since integers are simply bit patterns in full cells, =T
and RI are identical with =C and PC . However, both names
are included in the kernel to make clear the sets of
operations for each data type.

While internally integers are binary two's-complement,
for external communication they must be taken to some base.
There is a cell, WIB , that holds the base for the
integers.

Characters (T/K). Each of the 12fl characters in the
PDPlO's 7-bit ASCII character set has a corresponding
internal symbol in L*. ^hese make up a separate type. No
operations are proper to this type. Names have been given
to all non-printing characters? printing characters can use
their own print name (with some addition to distinguish the
character from a symbol with a one character name).

Lists (T/L). The main operating data type initially
available in L* is the list. The structure of'the U s £ s is
entirely conventional. Each list cell holds two symbols,
of t h e ^ * 1 if 2

 CO?ie?iJ ° f t h* U s t C e l 1 (S) a n d *"i or the next list cell (N):

L* (F) 5

0 17 18 3S

! N t S t

The null list is NIL, which is T/L like any other list
cell:

MIL : J NIL j NIL I

However, the routines that erase symbols recognize NIL and
will not let it be erased. NIL in the N field of a list
cell terminates the list.

The name of the list is the address of the first cell of
the list. Thus, there is no way to name a list with no
cells on it. The *most null"* list possible is:

L : | NIL | NIL j

The basic operations on a list are finding the symbol in
a list cell (S) , finding the next list cell (N), replacing
the symbol in a list cell with another ("), and replacing
the list cell to be next (RN). Besides these there are
processes for inserting a symbol into a list at a point (I)
and inserting it after the point (IA) ; also, for deleting
a list cell (D) and deleting the cell after (DA).

Two processes exist in the kernel for creating and
erasing T/L (C/L, S/L). These illustrate a point about the
kernel: that all the processes in the kernel are made
available to the user. The two routines above are used in
other parts of the kernel, so are made available. They
could easily be coded within I* itself using C and E .

Machine code (T/M). All the machine code used in the
kernel is T/M , which allows it to be recognized. No
operations exist initially for manipulating machine code
directly, though of course it can be processed by
operations of other types (e.g., = C # RC, P, RN, etc.) .
Create (C) and erase (E) of course work on T/M, lust as
they do on any type.

L*(F) 6

17. The L*L language. The kernel comes with a single
programming language, called L*L , realy to function with
ease. The kernel also has T/M, of course, but it is not so
easy at the start to create new programs of T/M or modify
existing ones. L*T. is a list language in the sense that
the program structures are lists (i.e., T / P) . It also
permits the processing of lists (i.e., data structures of
T/L or T / P) , but it equally permits processing of all other
data types. What determines the efficacy of its processing
of particular data types is primarily whether the
operations are available for the data types. The kernel
comes with a good basis for list processing, a reasonable
basis for integer processing, and only minimal or indirect
bases for the others (including the as-yet-uncreated
types).

L*L is a very simple language. It is not the only
lanquage that can be created in L*, nor does it even occupy
a privileqed position, except that one is forced to start
with it. It should be possible to construct a second
lanquage within L*, such that L*L remains only as a command
language, or even is excised from the system entirely.

18. Working cells. In setting up the system a number of
cells are required to hold symbols, either temporarily or
to define the current context. All these cells are called
W cells and their names start with W (mnemonic aid, no
structural significance). These cells are T/L, since they
are all stacks (i.e., lists which can be pushed and
popped).

Operand communication. When processes are executed they
must acguire their operands and provide their results in
some fashion so that the appropriate data can flow within
the entire set of processes makina up a total activity. In
L*L this communication takes place via a single symbol
stack of T/L , called W (for the working stack). Thus,
each process expects to find its operands in the W stack,
and pushes its results into the W stack (after removing its
inputs, naturally). Of course, processes can communicate
with each other in any other way they wish (e.g., via some
set of mutually understood cells or lists), but such
arrangements are not part of the conventions of L*L.

20. Interpretation. Each type has an interpreter for symbols of

16. Procrrara lists (T/P). Program lists are distinct from
lists of T/L (i.e., from data lists), which permits one to
be executed as program and the other handled as data.
There is no reason why there should not be many data types
which are structurally identical but are typed separately
for some particular purpose.

L* (F) 7

Type Interpreter

T/C .I/S
T/I .I/S
T/K .I/S
T/L . I/S
T/M .1/1

T/P . T/P

that type that are to be interpreted. Thus, to define a
system of interpretation it suffices to crive the
interpreters for each type. The initial interpreters are
as follows:

Action

Push symbol into V
Push symbol into W
Push symbol into W
Push symbol into W
Execute symbol as machine language

subrouti ne.
Sequence down program list, interpreting

each symbol in turn.

Thus, the distinction between prooram and data is carried
by the tyoe of the symbol — data (T/C, ^ / 1 , T/K, T/L) gets
put into the operand stack, program (T/M and T/P) gets
interpreted furt her.

The L*L language is essentially as simple as it can be
and still provide unrestricted phrase structure. There is
no syntax in the program list other than seguencing. Each
symbol is interpreted in isolation from its fellows, fore
and aft, though of course it is interpreted in the context
of the data stack, W, and all the other cells and lists
with their current values. Hut these constitute the
semantic context, not the syntactic context, of the symbol.

The act of interpretation occurs not only on a symbol of
some type, but in the context of some symbolic structure.
For example, a program list can occur for interpretation
within another program list, or it can occur for
interpretation within a machine language routine. The
interpretation is to be the same in some abtract sense.
But the total processing is not the same, for the symbolic
context is not the same. In particular, the interpreter
(for T/P, the type of the symbol in guestion) cannot find
the symbol to be interpreted without knowledge of the
symbolic context. Thus, there must be separate
interpreters, not only for each type, but for each context
in which interpretation can occur. In the initial
situation this is only T/P and T / % although the number of
such contexts could increase. For example, one might have
L*ALGOL and want to execute T/P programs in it as
procedures. The set of contexts in which interpretation
can occur is not even necessarily limited to one per type;
one could have a polish prefix language (e.g., T/PP) in
which routines were written as (F X Y Z) so that the first
position (where the F is) is a distinguished context from
the others (where the X, Y, Z operands a r e) . Different
interpreters would be required for the two contexts. (The
remarks of this paragraph may seem abstruse; they are meant
to explain the double sets of interpreters that occur
throughout Appendices 2, 3 and 10.)

L*(F) 8

The above interpreters are not the only ones that occur
in the kernel. Special interpreters are used for T/K for
both reading and writing to an external interface. These
operate in conjunction with interpreters for other types,
since interpretation is always the result of a set of
interpreters (over types and contexts of interpretation).

Control. Control operations manipulate the sequence of
symbols ultimately interpreted. They do this by
manipulating the stacks which contain the information about
what symbols and lists remain to be interpreted (WXS, WXN,
WHS, WHN)• These stacks are T/L and are open to inspection
and modification by the user, as well as by the initial
control operations provided in the kernel. As a mnemonic
guide, all (and only those) routines that affect these
stacks start with a period (.). All of these control
actions occur in program lists. Control in T/M code occurs
accordinq to the conventions of machine coding.

The control actions make use of the structure of the
program in terms of lists and sublists, and there is no
conditional transfer to another location. Termination (.)
stops interpretation of the current program list and
ascends to the next higher list. Double termination (..)
stops interpretation of both the current program list and
the one immediately above it, thus ascending two levels.
Repeat (.R) starts over on the present program list (at the
same level, thus forming an iterative loop). These control
actions can be deoendent on data, to wit, on whether the
symbol in W is NTL (-) or not NIL (•). (Note: the symbol
in W is an input to these processes; hence, it is no longer
in W after they have been interpreted.)

Besides termination and repeat, there are two execute
operations. .X executes the symbol in w (after popping it
to make the operands for it available); .XCX executes the
symbol one down in W after going into a new context given
by the symbol in the top of W.

The last control action is .0 which is the quote
operation. It is the one kernel operation that is not
totally context free. Tt outputs to W the symbol that
follows it (the occurrence of .Q, that is) in the program
list. Thus, the symbol following a .Q in the program list
is never interpreted.

External interface. The PDP1 n Monitor provides a way
for data to move across the interface to and from the
various peripheral devices of the PDP1^. To use this way
requires accepting the data formats specified by the
monitor. Thus there are small tables, called interfaces,
and buffers to receive and hold sequences of bits for
transmission. The kernel comes provided with two such

L*(F) 9

23. Name table. A mechanism must be provided right at the
start for making correspondences between external names and
internal symbols. This is the name table (NT). It
consists of a seguential table with oairs of words, the
first holding a string representation of the external name
in 7-bit characters, the second holding the corresponding
symbol (in the S-field). The limitation to one word for
the name implies a limitation to S characters, where any
7-bit characters are permissible. The three operations
that are appropriate with the name table are locating the
symbol given the name (LSNT), locating the name given the
symbol (LNNT), and creating a symbol given a name (CSNT).
In the latter case the type of the new structure must be
given (in W T C) .

The kernel itself is coded in * ACRO-10 assembly
language, so that its symbols (on the BACRO-10 listing) are
in the NACRO-10 symbol table. »11 of the symbols of
interest in this table are mapped into the initial T> name
table (NT1), and appear in Appendices 2, 3 and 4.

2U. Read. In reading from an external interface, the
interface itself is activated, filling the buffer, as
dictated by the PDP1- Monitor conventions. This buffer is
scanned to create a list of characters (according to the
specifications of the interface). PD, the basic read,
simply creates this list (of type in WTCKL) and outputs it
to W. Reading of this list in order to extract information
from it is done by interpreting it in Read Context with the
reading interpreters (.I/K and .TP/K) for T/K . These
interpreters execute an action associated with each
character. The actions are processes stored in a character
table (in W A K T) , which has an entry for each of the 128
characters. Thus, reading the list is an active process
that executes an arbitrary process for each character
(including blank). What actually happens depends entirely
on the nature of these actions.

AKT1 holds a set of character actions which serves as
the initial interpretation of the input stream. These
actions are described in Appendix 10. Essentially they
produce the following:

interfaces. TTY for communicating with a teletype, and DSK
for communicating with the disk. Additional communication
(to printers, dectapes, etc.) takes place outside of L*,
via say PIP. At a later stage of development new
interfaces can be built; but the two provided make it
possible to get started conveniently.

The DSK interface is set up to read a file called
BOOT.LSF and to write a file called FII.E.LSF . The TTY is
set up to read and write the user's teletype.

L* (F) 10

(1) Strings of characters corresponding to names result
in their corresponding internal symbols being
pushed onto W.

(2) Strinas of digits (possibly preceded by • or -)
result in an integer being defined according to the
base in WTB, with its name input to W.

(3) Semicolon (;) immediately terminates the line, after
which normally the next line is read in and
interpreted.

(4) Exclamation mark (!) immediately executes the
process in the top of W, i.e.. it does a .X .

(5) Quote (') immediately executes , Q, so that it puts
into W the next character (even if it is the space
character) in the input stream.

It can be seen that the last three actions are simply the
immediate evocation of three of the control actions
available for a program list. The character actions taken
together essentially define a simple postfix system, such
that one puts the operands first into w following with the
process to be executed and then fires it (!). Comments can
be hidden behind the semicolon.

The executive (EXEC) continues to real lines from the
input interface until an end-of-file is reached. itself
breaks the input stream into shorter lists on the
occurrence of a break character (in WPDBK). This is
initially the line-feed character (KLF). (This is needed
to avoid getting an entire disk bufferful back as one 640
character list, which could cause initial space problems).

Write. Writing to aft external interface is done by
interpreting symbols tfc a special context of interpreters.
In this Write Context, T/L r and T/P symbols are both
interpreted with . I/P (or . I P / P) . i.e., by sequencing down
the list interpreting each symbol in turn. T/K is
interpreted by .TWR (or .TPWR) which lays down in the
output buffer the 7-bit ASCII code corresponding to the
character symbol being interpreted. Buffers are given to
the PDP10 Monitor for output to the actual interface as
soon as they have been filled up, and also at the end of a
complete writing operation (interpretation). Thus, lists
of character symbols are mapped by the writing interpreters
into the corresponding strings of characters at the actual
interface.

L* (F) 11

Assembly. The assembly operations are provided to allow
access to the basic machine by depositing (assembly write)
and extracting (assembly read) bit patterns in memory.

Any symbol A has associated with it a bit string defined
as the low order к bits of A - В where n is taken from the
type table in WBTT (the current base type table) and К from
the type table in WNBTT (the current number of bits type
table) according to the type of A. This association can be
two-way. i.e., for a given type one can reconstruct a
symbol by adding В to the value of a bit string of length
K.

The W cell WPTR is used to hold a machine byte pointer
(T/C) for assembly operations. Byte pointers can be
created and initialized to point to a given location (CPTR)
and can be erased (H). Byte pointers can be moved a given
number of bits to the right or left within the current word
(MVPTR). There are no special operations for changing the
word address of a byte pointer; however, the ^replace
symbol* list process (P) will accomplish this since the
word address field of a byte pointer corresponds to the
S-field.

The two assembly operations, reading and writing, are
both done by interpretation in a special context of
interpreters. The key interpreters for assembly Read are
ones which extract a bit string according to the type of
the interpreted symbol (using the byte pointer in WPTR) and
push the associated symbol into W (.IFX and .ТРЕХ). For
Assembly Write there are interpreters (.IDP and .IPDP)
which deposit the bit string associated with the
interpreted symbol into memory at the location specified by
the byte pointer in WPTR .

There are sets of interpreters in the kernel for both
Assembly Pead and Assembly Write. They are identical to
those in the initial interpreter set (see section 2 0) ,
except that the interpreters for T/K are changed to .IEX
and .ТРЕХ for Assembly Sead, or .1ПР and .IPDP for Assembly
Write.

Operating system. Grouped under what we call the L*
operating system are processes which perform the following
functions :

(1) Error handling and recovery (ERROR).

(2) Debugging capabilities (DEBUG).

(3) Saving of core images for later restarting (SV).

(4) Resetting I/O interfaces for reuse (RSIF, RSTFB,

RSIFR) .

L*(F) 12

(5) Entérina monitor mode from L* (HALT).

(6) Entering L* from monitor mode (^CONTINUE* . mSTART
l ^ 1 (ST1U*) , mSTAT?T 1 a 1 m (ST 1 4 1) , *STAPT 142*
(ST142))•

(7) Context-chanainq (PCX, PCX, ÏÏCX, SWPCX) .

(8) Obtaining core from the Monitor, and returning core
(CSP).

(9) Space-exhausted condition handling (routines in
SPXTT).

See Appendix 10 for detailed descriptions of the processes
appearing above within parentheses.

Definition of the space-exhausted processes (function
(9) above) is delayed until the bootstrap; initial
available space lists for each type suffice until the
bootstrap sequence can define CSP/C , C S D / I , CSP/L , CSP/M
and CSP/P and store them into type table SPXTT . See
Appendix 12 for details of these créate-^paco processes.

Under function (5) above, there are several other ways
of getting into monitor mode from L*, and users may very
well discover yet others. The following is a list of
conditions we know will cause entry into monitor mode from
L* :

(a) Control-C. One will suffice if L* is doing I/O,
otherwise two are required.

(b) A PDP1? monitor-detected error. E.g. f M L L E G A L UUO

AT USER 00^732*.

(c) The L* process HALT .

(d) The L* process SV .

(e) Returning from the call on DEBUG in ST141 .

(f) Returning from the call on EX*C in ST140 .

(g) Exiting from the very first call on EXEC made by L*
when it first comes up.

Structure of the kernel processes. In order that they
might be used in many different contexts, most of the
kernel processes were coded as independent little units
which obtain their inputs and pass back their outputs via
machine registers. We call these units the stems of the

L*(F)

processes. Calls on the processes from machine code (e.g.,
from other processes in the kernel, or possibly from
compiled code) are made directly to the stems with
registers (R1,R2,etc) used for input-output communication.
(R6 is the highest register available for this purpose;
hence, it would not be possible to have a process expecting
more than six inputs without adopting some additional
contentions). These process stems are all called via a
pgSHJ F!STKP,<stem addr> instruction, and return to their
caller with a mPOPJ MSTKP, m instruction; i.e., the linkage
is always done through the machine stack *STK .

When kernel processes are called by the machine code
interpreters . I/tf and .TP/M , input-output communication
must be done through W . To handle this, the kernel
processes must have ^prefixes* which surround the process
stem to transfer inputs from W to registers for the stem,
and outputs from registers back to w when the stem has
completed. (mprefix* is actually somewhat of a misnomer
since the prefix does often surround the stem) .

The input-output characteristics of the kernel processes
are such that only 8 different types of prefix are needed.
To conserve space, 8 prefix subroutines (P0 1, P10, P11,
P12, P20, P21, P22 and P31) were created which take a
nonstandard input (in R6) telling which process stem is
being interfaced with. These prefix subroutines operate by
first transferring inputs from W to registers (R1 for W (0) ,
P2 for W(1), e t c) . If no output handling is necessary (as
it is not in P1C and P 2 0) , the process stem (address in R6)
is transferred to, and it will return to the caller of the
entire process. When output handling is necessary, the
stem is called as a subroutine of the prefix subroutine.
Then when the stem returns control, outputs are put back
into W from the registers, and control is returned to the
caller of the entire process.

The name of a kernel process names the entire process
including the prefix. The name of the stem in the MRCPO-10
listing is obtained by putting a in front of the
process name. Below is an example of the code for a
typical kernel process with a prefix :

<prefix> RN: JSP R6,P20 ; call prefix subroutine P20
; with D 6 pointing to stem

<stem> <%RN: HRLM R2,(R1) ; replace next of W P) input
; bv W(i) input

<stem> RETURN ; return to caller

Note that prefixes of kernel processes are in a
preferred position in that they always immediately precede
their stem. This will of course not always be the case,
particularly if a stem is ever to have more than one
prefix.

Appendix 1 - Map of L* Kernel 1

Decimal Octal
0 0

96 1U0

417 641

519 B07

667 1233

814 14 56

1127 2147

1174 2226

Registers and Program Status

Operating System
start locations
error locations
system initialization
prefix routines
operations

Symbol Operations
symbols
types

Data Type Operations
cells T/c
integers T/T
lists T/L T/P

L*I, Operations
control
operand communication
int erpreters

External Interface Operations
name table
read
write

Assembly Operations

T/C (except NIL, WPTR,
WITT, WIPTT, w, wxs,
WHS, WHN : T/L)

<-- .START 140 (return)
.STA*T 141 (debug)

< — .START 142
(continue after save)

T/H

Appendix 1 - Map of L* Kernel

1174 2226

1366 2526

2?"2 3722

3683 ^143

3939 7543

4195 1-143

4451 10543

5795 13243

7139 15743

Symbols of Various Types
T/C,T/I,^/K,T/L,T/M,T/P

Interfaces
DSK TTY

Tables
type tables
action character table
name table
save areas
machine stack

T/C Initial Available Space
256 (decimal) cells

T/M Initial Available Space
256 (decimal) cells

T/I Initial Available Space
256 (decimal) cells

T/L Initial Available Space
1280 (decimal) cells
• 64 reserved cells

T/P Initial Available Space
1344 (decimal) cells

T/C,T/I,T/K,
T/L,T/M,T/P

T/C

T/C

T/M

T/I

T/L

T/P

RpDendix 2 - Functional Outline of Kernel

DATA. TYPES -
CELLS T/C -

OPERATIONS: =C PC
SYMBOLS: T/C R1 R2 B3 R« RS R6

INTEGERS T/I -
OPERATIONS: =T <I >T +1 -I *I /1 PI
SYMBOLS: T/I

CHARACTERS T/K -
OPERATIONS: (NONE)
SYMBOLS: T/K KRELL KBSP KLF KVT KPE KTAB

KCR KSP KALT KTN KES

LISTS T/L -
OPERATIONS: S N R RM I IA D DA C/L 2/1. EL
SYMBOLS: T/L

MACHINE CODE T/M -
OPERATIONS: (NONE)
SYMBOLS: T/M P:1 P10 P11 P12 P2>? P21 P22 P31

PROGRAM LISTS T/P -
OPERATIONS: (SAKE AS FOP LISTS)
SYMBOLS: T/P

L*L: INITIAL LANGUAGE AVAILABLE TN L*

CONTROL -
OPERATIONS : . .• .-- .R .R+ . R- .X . XCX . Q

NOP
OPERAND COMMUNICATION -

OPERATIONS: P n V
W CELLS : W

INTERPRETERS -
OPERATIONS: .I/M .T/P .I/S .TP/M .TP/P .IP/S
SYMBOLS: .ITT .IPTT STOP

W CELLS: WXS WXN »HS WHN WITT BIPTT

EXTERNAL INTERFACE -
NAME TABLE -

SYMBOLS -
SYMBOLS -

OPERATIONS: =S <S >S *IS -SS C 5
SYMBOLS: TRUE NIT.

TYPES -
OPEPATTONS: =? T T I RT
SYMBOLS: T/C T/I T/K T/L T/M T/P TO TTN TT"
W CELLS: W?TT

Appena ix 2 - Functional Outline of Kernel

OPERATIONS:
SYMBOLS:
W CELLS:

LSNTW LNNTW CSNTW LSNT LNNT CSNT
NT1 NT1I NT1N
WNT WTC

REAP -
OPERATIONS :
SYMBOLS:

W CELLS :

RD .T/K .IP/K Ä8ND ANK A DK A+K A-K ACCD ACCK
A KT 1 MACC ISGN INfTM INWMF OCTAL DECML
ROC* RDTT RDPTT
WÌD WTCKL WPDBK WK WAKT WIB

WRITE -
OPERATIONS:
SYMBOLS:
W CELLS:

W> CVNKL CVIDL . IWR .IPWR
OCTAL DECML WRCX WRTT WRPTT
WWR WTCKL WIB

INTERFACES AND FILES -
SYMBOLS: TTY DSK

ASSEMBLY -
OPERATIONS: . IDP . IEX .IPDP .IPEX CPTR MVPTR
SYMBOLS : ARTT AEPTT AWTT AWPTT BTT NBTT SEVEN
W CELLS: WPTP WBTT WNBTT

OPERATING SYSTEM -
OPERATIONS:

SYMBOLS :

W CEILS:

FXEC DEBÖG ERROR PCX PCX TICX SWPCX HAL*
SV PSTF RSTFB RSIFR CSP
DBCX SPTT SPXTT ST14^ ST1U1 ST1U2
N/C N/I N/L N/M N/P N/RL
MSTK MSTKP MSTKN MSTKM
R1SV «>2SV R3SV R4SV R^SV *SPSV
WDBG WD3CX WSPTT WSPXT WSPRL

Appendix 3 - L*(P) Kernel Processes 1

In the column following the name is the name of the prefix
subroutine used by the process, indicating the number of standard inputs
and outputs the process has. Although there is no prefix subroutine
named POO , it is used to indicate a process has no inputs and no
outputs. (Such processes actually have a no-op as a prefix) . A blank
entry indicates that the process does not have a prefix for standard
handling of inputs and outputs.

*I P31 MULTIPLY W(1) TIMES W (2) , RESULT TO W(0) (T/I)
+1 P31 ADD W(1) TO W(2), RESULT TO W (1) (T/I)
+IS P21 ADD INTEGER W() TO SYMBOL W (1) , SVMBOL RESULT W(0)
-I P31 SUBTRACT W(1) FROM W (2) , FESULT ^O W(0) (T/T)
-SS P31 SUBTRACT SYMBOL W(1) FROM SYMBOL W (2) , RESULT TO W(0) (T/I)

POO EXTT UNCONDITIONALLY
.+ P10 EXTT I? W O) NOT = NTL (POP W)

P10 EXIT TF »(') = NIL (POP W)
POO EXIT TWO LEVELS UNCONDITIONALLY
P1C EXIT TWO LEVELS TF W(0) NOT = NIL (POP W)

..- P O EXTT TWO LEVELS IF W O) = NIL (POP W)

.I/X INTERPRETER FO^ READING (T/K)

.I/M INITIAL INTERPRETER FOP T/M

.I/P INITIAL INTERPRETER FOR T/P

.I/S INITIAL INTERPRETER FOP T/C,T/T,T/L

.IDP INTERPRETER FOP. DEPOSITING (T/K)

.IEX INTERPRETER FOR EXTRACTING (T/K)

.IP/K INTERPRETER FO" READING IN T/P CONTEXT (T/K)

.I?/M INITIAL INTERPRETER FOR */H IN T/P CONTEXT

.TP/P INITIAL INTFPP.PETER FOR T/P IN T/P CONTEXT

. IP/S INITIAL INTERPRETER FOR T/C,T/I,T/L,T/K IN T/P CONTEXT

.IPDP INTERPRETER FOP DEPOSITING IN T/P CONTEXT (T/K)

.I"EX INTERPRETER FOP EXTRACTING IN T/P CONTEXT (T/K)

.IPWR INTERPRETER FOR WRITING IN T/P CONTEXT (T/K)

.TWP INTERPRETER FOR WRITING (T/K)

.0 P01 INPUT NEXT SYMBOL TO W AND ADVANCE PAST IT

. F POO REPEAT CURRENT LEVEL

. R + P10 REPEAT CURRENT LEVEL IF W O) NOT - NIL, POP W

.R- P10 REPEAT CURRENT LEVEL IF H C O = NTL, POP W

.X Pf> EXECUTE H O) AFTER REMOVING IT

.XCX P2C EXECUTE Wtl) IN CONTEXT W(0)
/1 P31 DIVIDE W(2) BY W (1) , INTEGER 0UOTIENT TO W(0) (T/I)
/RI P31 DIVIDE W(2) BY W (1) , REMAINDER TO W D (T/I)
<I P21 TEST INTEGER W(0) < INTEGER W(1)
<S P21 TEST SYMBOL W O) < SYMBOL W(1)
=C P21 TEST CONTENTS OF CELL W(0) = CONTENTS OF CELL W(1)
=1 P21 TEST INTEGER W(0) = INTEGER W(1)
=S P21 TEST SYMBOL W O) - SYMBOL W(1)
=T P21 TEST IF W O) IS SAME TYPE AS W(1)
>T P21 TEST INTEGER W(0) > INTEGER W(1)
>S P21 TEST SYMBOL W O) > SYMBOL W (1)
A+K ACTION FOR CHARACTER •
A-K ACTION FOR CHARACTER -
ABND BOUNDARY ACTION
ACCD P10 ACCUMULATE DIGIT CHARACTER INTO T/I INUM
ACCK P10 ACCUMULATE NAME CHARACTER INTO T/C NACC
ADK ACTION FOR DIGIT CHARACTERS

Appendix 3 - L*(F) Kernel Processes 2

ANK ACTION FOP NAME CHARACTERS
C P11 COPY W(0)
C/L P01 CREATE T/L SYMBOL
CPTR P11 CREATE BYTE POINTER FOR LOCATION W(C)
CSNT P11 CREATE SYMBOL WITH NAME W(0) IN NAME TABLE
CSNTW P21 CREATE SYHROL WITH NAME W(1) IN NAME TABLE W(0)
CSP P21 CREATE SPACE FROM MONITOR OF LENGTH W(1) OF TYPE OF W(0)
CVIDL P11 CONVERT INTEGER W(0) TO DIGIT LIST
CVNKL P11 CONVERT NAME W(0) TO CHARACTER LIST
D P10 DELETE CELL W D
DA P1C DELETE CELL AFTER W(C)
DEBUG POO ENTER DEBUGGING MODE
* P10 ERASE SYMBOL WÍOI
E/L P10 ERASE T/L SYMBOL W(0)
EL P10 ERASE LIST W(O)
ERR") MACHINE STACK UNDERFLOW ERROR
ERR1 CENTRAL PROCESSOR TRAP ERROR
EPR2 NON-EXISTENT .TPTT ENTRY ERROR
ERR3 NON-EXISTENT .ITT ENTRY ERROR
ERRU NON-EXISTENT ARPTT ENTRY ERROR
ERR5 NON-EXISTEMT ÄRTT FNTRY ERROR
""IRRÖ NON-EXISTENT AWPTT ENTRY ERROR
ERR7 NON-EXTSTENT AWTT ENTRY ERROR
ERR8 NON-EXISTEMT RDPTT ENTRY ERROR
ERS9 NON-EXTSTENT ROTT ENTRY ERROR
ERR1T NON-EXTSTENT SPXTT ENTRY ERROR
EPR11 NON-EXISTENT WRPTT ENTRY ERROR
ERRI 2 NON-EXISTENT WRTT ENTRY ERROR
ERR13 SETUWP ERROR RETURN DURING A RESTART
^RRIU CORE UUO ERROR RETURN IN CSP
EPR15 OUT O w SPACE IN NAME TABLE - CSNTW
ERR16 ERROR RETURN FROM OPEN - PD
ERR1" 7 ERROR RETURN FROM LOOKUP - RD
ERR18 ERROR RETURN FROM IN - RD
FRR19 ERROR RETURN FROM OPEN - WR
ERR2C ERROR RETURN FROM ENTER - WR
ERR21 ERROP RETURN FROM OUT - WR
SRP22 ERROR RETURN FROM OUT - .IHR OR ,I?WR
ERROR POO INTERPRET ERROR ROUTINE IN WEHR AFTER DEBUG SWAP
EXEC POO MAIN EXECUTIVE : READ AND INTERPRET LINES FROM TTY
HALT POO GO INTO MONITOR MODE
I P20 INSERT W(1) AT W<0) (PUSH AND REPLACE)
IA P20 INSERT W(1) AFTER W(C) (PUSH, ADVANCE AND REPLACE)
LNNT P11 LOCATE NAME FOR SYMBOL W(0) IN NAME TABLES
LNNTW P21 LOCATE NAME FOR SYMBOL W(1) TN NAME TABLE W O)
LSNT P11 LOCATE SYMBOL FOP NAME W(C) IN NAME TABLES
LSNTW P21 LOCATE SYM ROL FOP NAME W(1) IN NAME TA8LE W O)
MVPTR P20 MOVE BYTE POINTER W(0) W(1) BITS WITHTN CURRENT WORD
N P11 GET NEXT OF W O)
NOP POO NO OPERATION
P P12 PUSH W
P31 PREFIX RTN FOR PROCESSES WITH NO INPUT AND 1 OUTPUT
P10 PREFIX RTN FOR PROCESSES WITH 1 INPUT AND NO OUTPUT
P11 PREFIX RTN FOR PROCESSES WITH 1 INPUT AND 1 OUTPUT
P12 PREFIX RTN FOR PROCESSES WITH 1 INPUT AND 2 OUTPUTS
P20 PREFIX RTN FOR PROCESSES WITH 2 INPUTS AND NO OUTPUT

Appendix 3 - L*(F) Kernel Processes 3

P21 PREFIX RTF FOR PROCESSES WITH 2 INPUTS AND 1 OUTPUT
P22 PREFIX RTN FOR PROCESSES WITH 2 INPUTS AND 2 OUTPUTS
P31 PREFIX RTN FOR PROCESSES WITH 3 INPU mS AND 1 OUTPUT
PCX PIC PUSH CONTEXT ACCORDING TO CONTEXT LIST W O
R P20 REPLACE SYMBOL OF W O BY W(1)
RC P20 REPLACE CONTENTS OF CELL W O BY CONTENTS OP CELL W(1)
PCX P10 REPLACE CONTEXT ACCORDING TO CONTEXT LIST W O
RD P11 READ FROM INTERFACE W O . RESULT W O = CHARACTER LIST
RI P20 REPLACE VALUE OF INTEGER W O BY VALUE OF INTEGER W(1)
PN P20 REPLACE NEXT 0 ' W O BY W(1)
RSIF P1C RESET INTERFACE W O
RSTFB P10 RESET TNTFRFÄCE BUFFERS (W O IS BUFFER HEADER)
RSTFR P10 RESET INTERFACE RING (W O POINTS TNTO BUFFER RING)
RT P20 REPLACE TYPE OF SYMBOL W(0) WITH TYPE TNDEX W(1) (T/T)
S P11 GST SYMBOL OF W O
ST140 REENTER EXEC
ST1U1 ENTER DEBUGGING MODE
ST142 CONTINUE A"TER SAVE
SV P01 SET HP TO SAVE FOR RESTART
SWPCX P10 SWAP CONTEXT ACCORDING TO CONTEXT LIST W O
T P11 OUTPUT CHARACTERISTIC SYMBOL FOP T Y P 7 OF W O
TI P21 SET VALUE OF INTEGER W(0) = TYPE INDEX OF W(1)
U P1C POP w
UCX P1C POP CONTEXT ACCORDING TO CONTEXT LIST W O
V P22 PEVERSS W O AND W(1)
WP P20 WRITE W(1) TO INTERFACE W(0)

Appendix 4 - L*(F) Kernel Data

. TPT T

. ITT
AKT1
A.RPTT
AR TT
AWPTT
AWTT
B/K
RTT
DECI L
DSK
TNUM
mm p
ISGN
J8 APR
J3CNI
JBCOR
J3FF
JBHPL
JBOPC
JBREL
JBREN
JBSA
JBTPC
KA LT
KBELL
KBSP
KCR
K F W

KLF
KSP
KT AR
KTN
KVT
MS PS V
MSTK
MSTK M
MSTKN
MSTKP
N/C
N/I
N/L
N/M
N/P
N/RL
NACC
NBTT
NIL
NT 1
NT 11
NT1N
OCTAL
R1
R1SV
R2
R2SV

STANDAPD TNTERP
BASIC INTERPRET
INITIAL ACTION
ASSEMBLY READ I
ASSEMBLY READ T
ASSEMBLY WRITE
ASSEMPLY WRITE
INTEGER WHOSE V
BASE TYPE TABLE
T/I CONSTANT FO
INTEP FACE FOR D
T/T NUMBER ACCU
T/T NUMBER FLAG
T/I SIGN INDICA

RETER TYPE TABLE FOR T/P CONTEXT
ER TYPE TABLE
CHARACTER TABLE
NTERPPETFR TYPE TABLE FOR T/P CONTEXT
NTFRPRETER TYPE TABLE
INTERPRETER TYPE TABLE FOR T/P CONTEXT
INTERPRETER TYPE TABLE
ALUE IS BASE OF CHARACTER SYMBOLS

1 DECIMAL PADIX
ISK
MULATOR FOP DIGIT CHARACTER
FOR DIGIT CHARACTER ACTION

TOR FOR DIGIT ACTION

ACTION

JOB DATA AREA LOCATIONS
SEE PDP-10 REFERENCE HANDBOOK
(LOOK IN INDEX).

ALTMODE CHARACTER
BELL CHARACTER
BACKSPACE CHÄRACTEP
CARRIAGE RETURN CHARACTER
FORM FEED CHARACTER
LINE FEED CHARACTER
SPACE CHARACTER
TAB CHARACTER
CHARACTER TABLE NUMBER (SI7E)
VERTICAL TAR CHARACTER
CELL FOR MSTKP CONTENTS AT TIME W> ERROR
MACHINE STACK
MACHINE STACK MAXIMUM
MACHINE STACK NUMBER (OPERATING SJE2E)
MACHINE STACK POINTER
NUMBER OF INITIAL T/C AV.SP. CELLS
NUMBER OF INITIAL T/T AV.SP. CELLS
NUMBER OF INITIAL T/L AV.SP. CELLS
NUMBER OF INITIAL T/M AV.SP. CELLS
NUMBER OF INITIAL T/M AV.SP. CELLS
NUMBER OF INITIAL T/L RESERVED AV.SP. CELLS
NAME ACCUMULATOR FOR NAME CHARACTER ACTION
NUMBED OF BITS TYPE TABLE
NULL LIST (LIST TERBTNATOP)
INITIAL NAME
INITIAL NAME
INITIAL NAME
T/I CONSTANT

TABLE
TABLE INDEX (NO. OF ENTRIES)
TABLE SIZE
FOR OCTAL RADIX

MACHINE REGISTER 1
CELL FOR P1 CONTENTS AT TIMS OF ERROP
REG. 2
CELL FOR R2 CONTENTS AT TIME OF ERROR

Appendix U - L*(F) Kernel Data

R3
R3SV
m
R4SV
85
R5 SV
R6
9PCX
FDPTT
RDTT
SEVEN
SP/3
SP/I
SP/L
SP/H
SP/P
SP/HL
S°TT
SPXC X
SPXTT
STOP
T/C
T/T
T/K
T/L
T/M
T/P
TD

TRUE

TTT
W
WA KT
W3TT
WJ)B
WD PCX
WEPR
WS SRL
WHN
WHS
WID
WIPTT
WITT
WK
WN BTT
WNT
WPTR
WRCX
WRD
WRDBK
WRPTT
WRTT
WS"RL
WSPTT
WSPXT

(= RETURN)
(= (NO"))

REG. 3
CELL FOR P3 CONTENTS AT TIME OF ERROR
REG. U
CELL FOR RU CONTENTS AT TIME OF ERROR
PEG. 5
CELL FOR P5 CONTENTS AT

 m

T M E OF ERROR
REG. 6
CONTEXT LIST FOR PFAD INTERPRETATION
READ TNTERPPETE? TYPE *APL2 FOP T/P CONTEXT
READ INTERPRETER TYPE TABLE
T/I CONSTANT =7
INITIAL T/C AVAILABLE SPACE LIST
INITIAL T/T AVAILABLE SPACE LIST
INITIAL T/L AVA TLABLE SPACE LTST
INITIAL T/W AVAILABLE SPACE LTST
INITIAL T/P AVAILABLE SPACE LIST
INITIAL T/L RESERVED AVAILABLE SPACE LIST
SPACE TYPE TABLE (HOLDS AV.SP. LISTS)
SPACE EXHAUSTED CONTEXT SWAP LIST
SPACE EXHAUSTED TYPE TABLF (HOLDS SPACE EXHAUSTED PROCESSES)
T/P EXECUTION CONTEXT DELIMITER FOR WHN STACK
CHARACTERISTIC SYMBOL FOR TYPE CELL (= 0)
CHARACTERISTIC SYMBOL FOR TYPE INTEGER (= ^)
CHARACTERISTIC SYMBOL FOR TYPE CHARACTER (NnLL CHARACTER)
CHARACTERISTIC SYMBOL FOR TYPE LIST (= NIL, NIL)
CHARACTERISTIC SYMBOL FOR TYPE MACHINE
CHARACTERISTIC SYMBOL FOR TYPE PROGRAM
TYPE DISPLACEMENT (= ftQPCOO OCTAL)
SYMBOL FOR POSITIVE RESULT FROM TESTS
TYPE TABLE SIZE (ALSO MAXIMUM NO. OF TYPES)
CHARACTERISTIC SYMBOL TYPE TABLE
INTERFACE FOR USER'S

 T

ELETYPE
OPERAND COMMUNICATION STACK
W CELL s'OP CHARACTER ACTION TABLE
W CELL FOP BASE TYPE TABLE
W CELL ^OR DEBUG ROUTINE
W CELL FOP DEBUG CONTEXT SWAP LIST
W CELL FOR ERROR HANDLING ROUTINE
W CELL FOR ERROR LOCATION
HIGHER ROUTINE NEXT STACK
HIGHER ROUTINE SYMBOL STACK
W CELL FOR INTEGER RADIX
W CELL FOR PROGRAM CONTEXT INTERPRETER TYPE TABLE
W CELL FOR INTERPRETER TYPE TABLE
W CELL FOR CHARACTER BEING INTERPRETED
W CELL *OR NÖMB3R OF PITS TYP* ^A№2
W CELT FOR NAME TABLES
W CELL FOR BYTE POINTER
CONTEXT LIST FOR WRITE INTERPRETATION
W CELL FOR READ INTERFACE
W CELL FOR READ BREAK CHARACTER
WRITE INTERPRETER TYPE TABLE FOR m

/ P CONTEXT
WRITE INTERPRETER TYPE TABLE
W CELL FOR RESERVED T/L SPACE
W CELL FOR SPACE TYPE TABLE
W CELL FOR SPACE EXHAUSTED TYPE TABLE

Appendix ü - L*(F) Kernel Data

WTC V CELL FOR TYPE B^TNG CREATED
WTC^L W CELL FOR TYPE 0* CHARACTER LISTS BEING CREATED
WTTT W CELL *0R CHARACTERISTIC SYMBOL TYPE T*BL*
»WR W CELL FOP WRIT? INTERFACE
WXN CURRENT INSTRUCTION NEXT CELL
WXS CURRENT INSTRUCTION SYMBOL CELL
ZERO T/I CONSTANT =0

AonerHix 5 - L*(F) Bootstrap Processes 1

AR ASSEMBLY READ STARTING AT W C M ACCORDING LIST W(1)
AW ASSEMBLY WRITE STARTING AT W p) ACCORDING TO LIST W(1)
AW6BI ASSEMBLY-WRITE SIXBIT INITIALIZATION
AWPS ASSSMBLY-WPTTE PESET
CP .LF WRITE KCR AND KLF TO CURRENT WRIT.E INTERFACES
CSP/C ADD 2C0? CELLS OF T/C AVAILABLE SPACE
CSP/I ADD 2 r 0 ^ CELLS OF T/I AVAILABLE SPACE
CSP/L ADD 2C0^ CELLS OF T/L AVAILABLE SPACE
CSP/M ADD 2^00 CELLS OF T/M AVAILABLE SPACE
CSP/P ADD 2™-? CELLS 0* T/P AVAILABLE SPACE
CSPT ADD 200H CELLS TO AVAILABLE SPACE FOR TYPE W(^)
CVSI CONVERT SYMBOL W(C) TO INTEGER
DCKA DELETE CURRENT CHARACTER ACTION FOR CHARACTER W(-)
DEF/I SET WTC TO T / I FOR DEFINING INTEGERS
DEF/L SET WTC TO T/L FOP DEFINING LTSTS
H E^/P SET WTC TO T / P FOR DEFINING PROGRAM LIS^S
DETT DELETE ENTRY FOR W(1) IN TYPE TABLE \HO)
ENDKL END CHARACTER LIST
FNPL ACTION FOR m) * - FND LIST
ENDL1 SUBPROGRAM OF ENDL
ENDL2 SUBPROGRAM OF ENDL
SNDL3 SUPPROGRAM OF ENDL
ICKA INSERT w(1) AS CUPREN^ CHARACTER ACTION FOR CHA pACTFR W(^)
TETT INSERT W(2) AS CURRENT ENTRY OF TYPE TABLE W O FOR W(1)
LNKUP LINK UP W(1) CELLS STARTING WITH W(V> INTO A LIST
PR PRINT W(0)
PRI PRINT INTEGEP W(0)
PPL PRINT LIST W(0)
PRLS PRINT LIST USING °RSTX **OP ELEMENTS
PR N PRINT NAME W (r)
PRN1 SUBPROGRAM OF PRN
PRN2 SUBPROGRAM 0* PRN
PRS PRINT SYMBOL W (A)
PPST1 PRSTX ROUTINE USED FOR PRSTR
PRST R PRINT STRUCTURE W(0)
PRSTX CURRENT PRINT ROUTINE USED BY PRLS TO PRINT LIST ELEMENTS
PCKA REPLACE W(1) AS CURRENT CHARACTER ACTION FOR CHARACTER W O)
R D v READ DSK FILE NAMED W (0) (WITH EXTENSION *LSF m>
RETT REPLACE ENTRY FOR W(1) IN TYPE TFL B LS W() BY W(2)
RSTRW RESTORE W(0) FROM WSAVE
SAVE SAVE FOR RFSTART
SAVEW SAVE W(0) IN WSAVE
SCKA GET CURRENT CHARACTER ACTION FOR CHARACTER W O
SETRO SET DSK INPUT TO READ FROM FILE NAMED W O (EXTENSION *LSF m)
SETT GET EN^RY OF W(1) IN TYPE TABLE W(C)
SFTWR SET DSK OUTPUT TO WRITE TO FILE NAMED W O (EXTENSION *LSF m)
SPACE WRITE A BLANK CHARACTER TO CURRENT WRITE INTERFACES
STRKL START CHARACTER LTST
STRL ACTION FOR - START LIST
STRL1 SUBPROGRAM OF STPL
STRL2 SUBPROGRAM OF STRL
USEN ACTTON FOP - USE NAME IN W O
WRF WRITE DSK FILE NAMED W(C) (WITH EXTENSION *LSF m)
WRWWP WRITE W(0) TO CURRENT WRITE INTERFACES IN STACK WWP

„ Appendix 6 - L * (F) Bootstrap Data 1

• T C X C O N T E X T L I S T F O P S T A N D A R D I N T S P P R E T A T T O N
A R C X C O N T E X T L I S T F O R A S S E M B L Y R E A D I N T E R P R E T A T I O N
A W C X C O N T E X T L I S T F O R A S S E M B L Y W R I T E I N T E R P R E T A T I O N
P R C X D E B U G S W A P C O N T E X T L I S T (I N W P B C X)
D N I L C E L L F O R D E B U G S W A P O F N I L
D W I P T C E L L F O P D E B U G S W A P O F W I P T T
D W I I M C E L L F O R D E B U G S W A P O F W I T T
D W R D C E L L F O R D E B U G S W A P O P W R D
D R«RDB C E L L F O R D E B U G S W A P O F V R D B K
D W W R C E L L F O R D E B U G S W A P O F W W *
T T R T E M P O R A R Y T / I C E L L
S P C L I T / I W O R K C F L L U S E P B Y C S P / L W H F N R E S T O R I N G R E S E R V E D S P A C E
T ~ T E M P O R A R Y W O R K C E L L (U N S A F E)
T1 T E M P O R A R Y W O R K C ^ L L (U N S A F E)
T2 T E M P O R A R Y W O R K C E L L (U N S A F E)
T3 T E M P O R A R Y W O R K C E L L (U N S A F E)
T U T E M P O R A R Y W O R K C E L L (U N S A F E)
T S T E M P O R A R Y W O R K C E L L (U N S A F E)
M Y P L A S S O C I A T I O N L I S T O F T Y P E S F O P *$> M A C T I O N
W> W O R K C E L L (S A F F)
W1 W O R K C E L L (S A * E)
W2 W O R K C E L L (S A F E)
W3 W O R K C E L L (S A F E)
W U W O R K C E L L (S A F E)
W5 W O R K C E L L (S A F E)
W A R P T W C E L L F O R T / P C O N T E X T A S S E M B L Y R E A D I N T E R P R E T E R T Y P E T A B L E
W A R T ? R C E L L F O R A S S E M B L Y R E A D I N T E R P R E T E R T Y P F T A B L E
W A W P T W C E L L F O R T / P C O N T E X T A S S E M B L Y W R I T E I N T E R P R E T E R T Y P E T A B L E
W A W T T W C E L L F Q R A S S E M B L Y W R I T E I N T E R P R E T E R T Y R E T A B L E
VC W C E L L T O H O L D C U R R E N T L I S T B E I N G C R E A T E D
W F L R W C E L L T O H O L D W ^LOOP,
W S A V E W C E L L U S E D B Y S A V E W
W U S E N W C F L L T O H O L D U S E N S I G N A L

Appendix 7 - Complete List o* System Names

leaning of Code Letters: K=Kernel, 9=Rootstrap, P=Process, D^Data .

*I KP MULTIPLY W(1) TIMES W { 2) , RESULT TO W (r) (T/I)
+T KP ADD W(1) TO W (2) , RESULT TO W O) (T/T)
+ IS KP ADD INTEGER W(0) TO SYMBOL W (1) , SYMBOL RESULT H O)
-T KP SUBTRACT W(1) FROM » (2) , RESULT TO W O) (T/T)
-SS KP SUBTRACT SYM30L W(1) FPOM SYMBOL W (2) , RESULT TO W O) (T/T)

KP EXIT UNCONDITIONALLY
.+ KP EXIT IF W O) NOT = NIL (POP W)

KP EXIT IF «(i) - NIL (POP W)
KP EXIT TWO LEVELS UNCONDITIONALLY
KP EXIT TWO LEVELS IF W O) HOT = NIL (POP W)
KP EXIT TWO LEVELS IF W O) = NIL (POP W)

.I/K KP INTERPRETER ^OR READING (T/K)

.I/M KP INITIAL INTERPRETER FOR T/M

.I/P KP INITIAL INTERPRETER wOR T/P

.I/S KP INITIAL INTERPRETER FOR T/C,T/I,T/L

.ICX BD CONTEXT LTST FOR STANDARD INTERPRETATION

.TOP KP INTERPRETER FOB DEPOSITING (T/K)

.IEX KP INTERPRETER FOR EXTRACTING (T/K)

.IP/K KP INTERPRETER w O F READING TN T/P CONTEXT (T/K)

. I"/M KP INITIAL INTERPRETER FOR T/M TN T/P CONTEXT

.IP/P KP INITIAL INTERPRETER FOP T/P IN T/P CONTEXT

.TP/S KP INITIAL INTERPRETER FOR T/C,T/T,T/I.,T/K IN T/P CONTEXT

.TPDP KP INTERPRETEP FOR DEPOSITING IN T/P CONTEXT (T/K)

.IPEX KP INTERPRETER "OR EXTRACTING TN T/p CONTEXT (T/K)

.IPTT KD STANDARD INTERPRETER TYPE TABLE FOR T/P CONTEXT
,TPi*R KP INTERPRETER FOR WRITING TN T/P CONTEXT (T/K)
. ITT KD STANDARD INTERPRETER TYPE TABLE
.IWR KP INTERPRETER FOR WRITING (T/K)
.0 KP INPUT NEXT SYMBOL TO W AND ADVANCE PAST IT
. R KP REPEAT CURRENT LEVEL
.R+ KP REPEAT CURRENT LEVEL IF W O) NOT = NIL, POP W
.R- KP REPEAT CURRENT LEVEL IF W(0) = NIL, POP W
.X KP EXECUTE W(C) AFTER REMOVING IT
.XCX KP EXECUTE W(1) TN CONTEXT W O)
/1 KP DIVIDE W(2) BY W (1) , INTEGER QUOTIENT TO W O) (T/I)
/RI KP DIVIDE W(2) BY W (1) , REMAINDER TO W O) (T/T)
<I KP TEST INTEGER W(C) < INTEGER W(1)
<S KP TEST SYMBOL W(0) < SYMBOL W(1)
=C KP TEST CONTENTS OF CELL W(0) = CONTENTS OF CELL W(1)
=1 KP TEST INTEGER W(0) = INTEGER W(1)
=S KP TEST SYMBOL W(*) = SYMBOL W(1)
=T KP TEST IF W(C) IS SAME TYPE AS W(1)
>T KP TEST INTFGER W O) > INTEGER W(1)
>S KP TEST SYMBOL W(0) > SYMBOL W(1)
A+K KP ACTION FOP CUARACTER +
A-K KP ACTION FOR CHARACTER -
ABND KP BOUNDARY ACTION
ACCD KP ACCUMULATE DIGTT CHARACTER INTO T/I TNUM
ACCK KP ACCUMULATE NAME CHARACTER INTO T/C NACC
ADK KP ACTION FOR DIGIT CHARACTERS
AKT1 KD INITIAL ACTION CHARACTER TABLE
ANK KP ACTION FOR NAME CHARACTERS
AR BP ASSEMBLY READ STARTING AT W (0) ACCORDING TO LIST W(1)

Appenìix 7 - Complete list o r System Names

AR CX
A P P T T
APT?

AW63I
AWCX
S W P T T
A W PS
Ä W T ?
B/K
B T T
r*

C / L
C P T R
C R . L F
C S N T
C S N T W
C S P
CS Р/С
C S P / I
C S

N

/ L
C S ° / M
C S P / P
espr
C V I D L
CVNKI.
C V S T
Vi

DA
D B C X
D C К A
D E ^ U G
D F C M Т.
D E F / I
D F F / L
D E F / P
D E H
D N T L
D S K
D W I P T
D W T T T
D W R D
D W R D В
DWWR

E / L
E L
EN DK L
E N DL
E N D L 1
EN D L 2
E N DL 3
BPS')
E P P 1
E R R 2
E R R 3

BD
KD
KD
BP
BP
BD
KD
BP
K D
KD
KD
KP
KP
KP
B P
KP
KP
KP
BP
BP
BP
BP
B P
BP
KP
KP
BP
KP
KP
BD
BP
KP
KD
BP
BP
BP
BP
BD
KD
BD
BD
BD
BD
BD
KP
KP
KP
BP
BP
BP
BP
BP
KP
KP
KP
KP

C O N T E X T L I S T F O P A S S E M B L Y R E A D I N T E R P R E T A T I O N
A S S E M B L Y РЕАЛ I N T E R P R E T E R T Y P E ""дрт 5 *0R T / P C O N T E X T
A S S E M B L Y R E A D I N T E R P R E T E R T Y P E T A B L E
A S S E M B L Y W P T T F S T A R T I N G A T W O) A C C O R D I N G T O L I S T W (1)
A S S E M B L Y - W R I T E S I X B I T T N I T T A . L I 7 A T T O N
C O N T E X T L I S T F O R A S S E M B L Y W R I T E I N T E R P R E T A T I O N
A S S E M B L Y W R I T E T N T E R P P F T E R T Y P E T A B L E " O " T / P C O N T E X T
A S S E M B L • - W R I T E R E S E T
A S S E M B L Y W R I T E I N T E R P R E T E R T Y P E T » B L F
I N T E G E R W H O S E VALUT! T S BASF, O F C H A R A C T E R S Y M B O L S
B A S E T Y P E T A B L E
C O P Y W O)
C R E A T E T / L S Y M B O L
C R E A T E B Y T E " O I N T E P F O R L O C A T I O N W (C)
W R I T E K C P A N D K L F T O C U R R E N T W R I T E I N T E R F A C E S
C R E A T E S Y M B O L W T T H N A M E W О)
C R E A T E S Y M B O L W I T H N A M E W (1)
C P F A T E S P A C E F R O M M O N I T O R O F

T / C A V A I L A T L P
T / T A V A I L A B L E

A V A I L A B L E
A V A I L A B L E
A V A I L A B L E

A D D
A D D
A D D
A D D
A D D
A D D

2 0
А Л

200?
20 С"
2?0"
200?

CONVERT
CONVERT
CONVERT
DELETE
DELETE

CELLS
CELLS
CSL LS
CELLS
CELLS
CELLS

INTEGER

OF
OF
OF
O

w

OF
TO AVAILABLE SPACE ЕОч
W O) TO DIG TT LIST

IN NAME TABLE
IN NAME TABLE W O)
LENGTH B O) OF TYPE OF W O)

SPACE

T/L
T/M
T/P

S P A C E
S P A C E
S P R C

1 7

S P A C
R

TYPE W O)

NAMF W O) TO CHARACTER
SYMBOL W O) TO INTEGER

CELL W O)
CELL AFTER W O)

LIST

DEBUG SWAP CONTEXT LIST (IN WOBCX)
DELETE CURRENT CHARACTER ACTION FOR CHARACTER W O)
ENTER DEBUGGING MODE
T/I CONSTANT FOR DECIMAL RADIX
SET WTC TO T/I FOP DEFINING TNTEGEPS
SET WTC TO T/L FOR DFFINING LISTS
SET WTC TO T/P FOR DEFINING PROGRAM LISTS
DELETE ENTRY FOR W(1) IN TYPE "ABLE W O)
CELL FOR DEBUG SWAP OF NIL
INTERFACE FOR DISK
CELL FOR DEBUG SWAP

DEBUG
DEBUG
DEBUG
DEBUG

SYMBOL W(0)
T/T. SYMBOL W(0)

CELL
CELL
CELL
CFLL
ERASE
ERASE

FOR
FOR
FOP
FOR

S W A P
S W A P
S W A P
S W A P

OF
OF
OF
OF
OF

WIPTT
WITT
WRD
WRDBK
WWR

) EPASE LIST W С
END CHARACTER LTST
ACTION FOR *) * - END
SURPPOGRAM
SUBPROGRAM
SUBPROGRAM

О F
OF
OF

LIST
FN DI,
ENDL
ENDL
UNDERFLOW ERROR

CENTRAL PROCESSOR TRAP ERROR
NON-EXISTENT .TPTT ENTRY ERROR
NON-EXTSTENT .ITT ENTRY ERROR

MACHINE STACK

Appendix 7 Complete List of System Names

EPR'4 KP NON-EXISTENT APP"T ENTPY FPROR
EPFS KP NON-EXISTENT A RTT ENTRY ERROR
ERR6 KP NON-EXISTENT A WPTT ENTPY ERROR
ERR? KP NON-EXISTENT AWT" ENTRY ERROR
ERR3 KP NON-EXISTENT BDPTT ENTRY FPROR
ERR9 KP NON-EXISTENT RDT~ ENTRY ERROR
ERRl r KP NON-EXISTENT SPX mT ENTRY ERROR
ERR11 KP NON-SXTSTENT WFPTT ENTRY ERROR
EPR12 KP NON-EXISTENT WPTT ENTRY ERROR
ERR13 KP SFTfTWP FRROR RETURN DURING A RESTART
ERR1U KP COPE UUO ERROR RETURN IN CS P
ERR15 KP OUT OF SPACF IN NAME TABLE - CSNTW
ERR16 KP ERROR RETURN FROM OPEN - RD
ERR17 KP ERROR RETURN FPOM LOOKUP - RD
FRR13 KP ERROR RETURN FROM IN - RD
ERR 1Q KP ERROR RETURN FROM OPEN - WR
EPP2" KP ERROR RETURN FROM ENTER - WR
EPP21 KP ERROR RETURN FROM OUT - WR
FPR22 KP ERROR RETURN FPO* OUT - .TWR OR .IPWR
FRROR KP INTERPRET ERROR ROUTINE IN WERP AFTER DEBUG SWAP
EXEC KP MAIN EXECUTIVE : REAP AND INTERPRET LINES FPOM TTY
HALT KP GO TNTO MONITOR MODE
I KP INSERT W(1) AT W O) (PUSH AND REPLACE)
IA KP INSERT W O) AFTEP W O) (PUSH, ADVANCE ANO REPLACE)
ICKA BP INSERT W O) AS CUPRENT CHARACTER ACTION FOR CHARACTER
IETP BP INSERT W(2) AS CURRENT ENTRY O w TY"E TABLE W O) FOR W
TNUM KD T/I NUMBER ACCUMULATOR FOR DIGTT CHARACTER ACTION
TNUMF KD T/T NUMBEP FLAG FOP DIGIT CHARACTER ACT TON
ISGN KD T/I SIGN INDICATOR FOR DIGTT ACTION
TT? BD TEMPORARY T/T CELL
JBAPR KD :
JBCNT KD :
JBCOP KD :
JREP KD : JOB DATA AREA LOCATIONS
JBHRL KD : SFS PDP-10 REFERENCE HANDBOOK
JROPC KD : (LOOK IN INDEX).
JBREL KD :
JBRFN KD :
JRSA KD :
JBTPC KD :
KALT KD ALTMODE CHARACTER
KB ELL KD BELL CHARACTER
KBSP KD BACKSPACE CHARACTER
KCR KD CARRIAGE RETURN CHARACTER
KFF KD FORM FEED CHARACTER
KLF KD LINE PEED CHARACTER
KSP KD SPACE CHARACTER
KTAB KD TAB CHARACTER
KTN KD CHARACTER TABLE NUMBER (SIZE)
KVT KD VERTICAL TRB CHARACTER
LNK3P BP LINK UP W(1) CELLS STARTING WITH W(0) INTO A LIST
LNNT KP LOCATE NAME FOR SYMBOL W(0) IN NAME TABLES
LNNTW KP LOCATE NAME FOR SYMBOL W(1) IN NAME TABLE W(0)
LSNT KP LOCATE SYMBOL FOR NAME W(0) IN NAME TABLES
LSNTW KP LOCATE SYMBOL FOR NAME W(1) IN NAME TABLE W O)
MSPSV KD CELL FOR MSTKP CONTENTS AT TIME OF ERROR

Appendix 7 - Complete List of System Names 4

MSTK KD MACHINE STACK
MSTKM KD MACHINE STACK MAXIMUM
MSTKN KD MACHINE STACK NUMBER (OPERATING SIZE)
MSTKP KD MACHINE STACK POINTER
му PT R KP MOVE BYTE POINTER W P) W(1) BI^S WITHIN CHPRENT WORD
N KP GET NEXT OF W (C)
N/C KD NUMBER O F INITIAL T/C AV.SP. CELLS
N/I KD NUMBER O F INITIAL T/I AV.SP. CELLS
N/L KD NUMBER O F INITIAL T/L AV.SP. CELLS
N/M KD NUMBER О Т INITIAL T/M AV.SP. CELLS
N/P KD NUMBER O F INITIAL T/M AV.SP. CELLS
N/EL KD NUMBER O F INITIAL T/L RESERVED AV.SP. CELLS
NACC KD NAME ACCUMULATOR *OR NAME CHARACTER ACTION
NBTT KD NUMBER OF BITS TYPE TADLF
NIL KD NULL LIST (LIST TERMINATOR)
NOP KP NO OPERATION
NT 1 KD INITIAL NAME TABLE
NT 11 KD INITIAL NAME TABLE INDEX (NO. 0? ENTRIES)
NT1N KD INITIAL NAME TABLE SIZE
OCTAL KD T/I CONSTANT FOR OCTAL RADIX
P KP PUSH W
PC 1 KP PREFIX RTN FOR PROCESSES WTTH NO INPUT AND 1 OUTPUT
PIC- KP PREFIX RTN FOR PROCESSES WITH 1 TNPn m AND NO OUTPUT
PI 1 KP PREFIX °TN FOR PROCESSES WITH 1 I N P U m AND 1 OUTPUT
PI 2 KP PREFIX P

m

N FOR PROCESSES WITH 1 INPUT AND 2 OUTPUTS
P2C KP PREFIX RTN POR PPOCESSES WITH 2 INPUT'S AND NO OUTPUT
P21 KP PPE'TX RTN FOR PPOCESSES WITH 2 INPUTS AND 1 OUTPUT
P22 KP PREFIX RTN FOP PROCESSES WITH ? INPU T

S AND 2 OUTPUTS
P31 KP PREFIX RTN FOR PROCESSES WITH 3 INPUTS AND 1 OUTPUT
PCX KP PUSH CONTEXT ACCORDING TO CONTEXT LIST W O)
PR BP PR TNT W(0)
PPT BP PRINT INTEGER W C)
PRL BP PRINT LIST W(0)
PRLS BP PRINT LIST USING PRSTX FOR ELEMENTS
PPN BP PRINT NAME W(0)
PRN1 BP SUBPROGRAM OF PRN
PR N2 BP SUBPROGRAM 0 ' PRN
PRS BP PRINT SYMBOL W(0)
PRST1 BP PPSTX ROUTINE USED FOR PRSTR
PR ST R BP PPTNT STRUCTURE W Г)
PPSTX BP CURRENT P R I N

m ROUTINE UP^D BY PRLS TO P»INT LTST ELEMENTS
P KP REPLACE SYMBOL OF W(0) BY W(1)
R1 KD MACHINE REGISTER 1
R1SV KD CFLL FOR R1 CONTENTS AT TIME OF ERROR
R2 KD PEG. 2
P2SV KD CELL FOF R2 CONTENTS AT TTME 0*" ERROR
R3 KD REG. 3
R3SV KD CFLL FOR R3 CONTENTS AT TIME 0" ERROP
M KD REG. U
RUSV KD CELL FOR PH CONTENTS AT TIME 0 F ERROR
?5 KD REG. 5
R5SV KD CFLL FOR R5 CONTENTS AT TIME OF ERROR
R6 KD REG. 6
RC KP REPLACE CONTENTS OF CELL W(C) BY CONTENTS OF CELL W(1)
PC К A BP REPLACE W(1) AS CURRENT CHARACTER ACTION FOR CHARACTER W(C)
PCX KP REPLACE CONTEXT ACCORDING TO CONTEXT LIST W(C)

Appendix 7 - Complete List of System Names

R P K P
R D C X K D
P D F B P
R D P P ? K D
R D T T K D
R E T T B P
RT K P

K P
P S I F K P
P S I F B K P
R S I F P K P
" S T R W B P
R T K P

K P
S A V E B P
SA V E W B P
S C K A B P
S E T R D B P
S E T T B P
S F T W R B P
S E V E N K D
S P / C K D
S P / I K D
S P / L K D
S P / M K D
S P / P K D
S P / R L K D
S P A3 F B P
S P C L I B D
S P T T K D
S P X C X K D
S P X T T K D
S T 1 4 0 K P
S T 1 U 1 K P
S T 1 U 2 K P
S T O P K D
S T P K L B P
S T R L B P
S T R L 1 B P
S T R L 2 B P
S V K P
S W P C X K P

K P
T/C K D
T/I K D
T/K K D
T/L K D
T/M K D
T / P K D
T? B D
T1 B D
IT»2 R D
T 3 B D
T U B D
T 5 B D
T D K D

RESULT W O = CHARACTER LIST

«(•)

LTSTS)

(* - START LTST

: H A R A C T E R I S T T C S Y M B O L F O P T Y P E O F WO 1)

Appendix 7 - Complete List of System Names

TT
TPÖP

TTT
TTY
TYPL
0
f?CX
US EN
V
w
W">
W1
W2
W3
HU
WS
WA KP
WAPPT
WARTT
WAWPT
WAWTT
WRTT
WC
WDB
WUBCX
HERR
W E RR I.
WFLE
WHN
WHS
WTB
WIPTT
WITT
WK
WNBTT
WNT
WPTR
WR
WRCX
W P D
WRDBK
HRP
WRPTT
WRTT
WRWWR
WS AVE
WSPRL
WSPTT
HSPXT
WTC
WTCKL
WTTT
WH SEN
WWR
WXN

KD W
BD W
BD W
BD W
BD
KD
BD
KD
KD

W
W
W
W
W

KP SET VALUE OF INTEGER W(C) = TYPE INDEX OF W(1)
KD SYMBOL FOR POSITIVE RESULT FROM m F S T S
KD TYPE TABLE SIZE (ALSO MAXIMUM NO. OF TYPES)
KD CHAP ACT*"* 1ST TC SYMBOL TYPE TABLE
KD INTERFACE w O R USER'S TELETYPE
BD ASSOCIATION LIST OF TYPES FOR ACTION
KP POP W
KP POP CONTEXT ACCORDING TO CONTFXT LIST W C)
BP ACTION FOR - USE NAME IN W(0)
KP REVERSE W(0) AND W(1)
KD OPERAND COMMUNICATION STACK
BD WORK CELL (SAFE)
BD WORK CELL (SAFE)
BD WORK CELL (SAFE)
BD WORK CELL (SAFE)
BD WORK CELL (SAFE)
BD WORK CELL (SAFE)

CELL FOR CHARACTER ACTION TABLE
CELL FOR T/P CONTEXT ASSEMBLY READ INTERPRETER TYPE TABLE
CELL FOP ASSEMBLY READ INTERPRETER TYPE TABLE
CELL FOR T/P CONTEXT ASSEMBLY WRITE INTERPRETER TYPE TABLE
CELL POP ASSEMBLY WRITE INTERPRETER TYPE TABLE
CELL FOR B»SF TYPE TABLE
CELL TO HOLD CURRENT LIST BEING CREATED
CELL FOR DEBUG ROUTINE
CELL FOR DEBUG CONTEXT SWAP LTST

KD W CELL FOR ERROR HANDLING ROUTINE
KD W CELL FOR ERROR LOCATION
BD W CELL TO HOLD W FLOOR
KD HIGHER ROUTINE NEXT STACK
KP HIGHER POnTINF SYMBOL STACK
KD W CELL FOP INTEGER RADIX
KD W CELL FOR PROGRAM CONTEXT INTERPRETER TYPE TABLE
KD W CELL FOR INTERPRETER TYPE TABLE
KD W CELL FOR CHARACTER BETNG INTERPRETED
KD W CELL FOP MUMPER OF BITS TYPE TABLE
KD W CELL FOR NAME TABLES
KD W CELL FOR BYTE POINTER
KP WRITE W(1) TO INTERFACE W O
KD CONTEXT LTST TOR WPTTE INTERPRETATION
KD W CELL FOR READ INTEPFACF
KD W CELL FOR READ BREAK CHARACTER
BP WRITE DSK FILE NAMED W(0) (WTTH EXTENSION *LSF*)
KD WRITE INT FRP PETER TYPE TA3LE FOR T/P CONTEXT
KD WRITE INTERPRETER TYPE TABLE
BP WRITE W C) TO CURRENT WRITE INTERFACES IN STACK WWP
BD W CELL USED nY SAVEW
KD W CELL FOP RESERVED T/L SPACE
KD W CELL FOR SPACE TYPE TABLE
KD W CELL FOP SPACE EXHAUSTED TYPE TABLE
KD W CELL FOR TYPE BEING CREATED

CELL FOR TYPE OF CHAR ACTER LISTS BEING CREATED
CELL FOP CHARACTERISTIC SYMBOL TYPE TABLE
CELL TO HOLD USEN SIGNAL
CELL FOR WRITE INTERFACE

KD W
KD W
BD W
KD W
KD CURRENT INSTRUCTION NEXT CELL

Appena ix 7 - Complete List of System Names

HXS KD CURRENT INSTRUCTION SYMBOL CELL
ZERO KD T/T CONSTANT =0

Appendix 8 - Abbreviations Used For Names

A AFTER ACTION ASSEMBLY
ACC ACCUMULATE ACCUMULATOR
AKT ACTION-CHAR ACTE^-TABLE
ALT ALTMODE
AR ASSEMBLY-READ
AW ASSEMBLY-WRITE
B BASE BIT BREAK BUFFER
BND BOUNDARY
BSP BACKSPACE
C CELL COPY CREATE
CP CARPI AOS-RETURN
CV CONVERT
CX CONTEXT
D DELETE DISPLACEMENT UIOTT
DB DEBUG
DP DEPOSIT
?, ERASE
EX EXTRACT
F FLAG
FF FORM-FEED
H HTGHER
T INTEGER INSERT INDEX
TF INTERFACE
JP JOB-DATA-APFA-LOCATION
K CHARACTER
KT CHARACTER-TABLE
L LIST LOCATE LOCATION
LF LINE-FEED
* MACHINE MAXIMUM
N NEXT NAME NUMBER
NT NAMF-"\ABLF
NHM NUMBEP
P PROGRAM PUSH PREFIX POINTFR
PTR POINTER
0 QUOTE
R REPLACE REPEAT RESERVE REGISTER RING
RD READ
PS RESET
S SYMBOL STACK
SGN SIGN
SP SPACE
ST START
ST K STACK
SV SAVE
SWP SWAP
T TYPE TABLE
TT TYPE-TABLE
U POP-UP
V REVERSE
VT VERTICAL-TAB
W WORKING-CELL
WR WRITE
X EXECUTE EXHAUSTED
/X OF-TYPE-X
.1 INTERPRETER
•IP INTERPRETER-FOR-T/P-CONTEXT
%X STEM-OF-PROCESS-X

Appendix 9 - Bootstrap Outline 1
Г. OUTLINE OF INITIAL BOOTSTRAP

1. DEFINE RCKA - REPLACE CURRENT CHARACTER ACTION
W(v)=CRARACTFR, W(1)=ACTTON

2. DEFINE A:(...) BY CHARACTER ACTIONS FOR î ()
OSSN STRL ENDL

3. ADD ABND TO CHARACTER ACTIONS FOR ! : ()

4 . SET DP DEBUG SWAP LIST

5. DEFINE WDRKING CELLS (T'S AND W'S) AND SAVE AND RESTORE
PROCESSES (SAVEW RSTRW>.

6. DEFINE TYPE DECLARATION PPOCESSES AND & ACTION
DEF/P DEF/L DEF/T
А0Т TO MAKE A OF T Y p

E T BY CHARACTER ACTION FOR &

7. DEFINE
 m

. TO CREATE LIST OF CHARACTERS (OF TYPE WTCKL.S)
BY CHARACTER ACTION FOR *

8. DEFINE PRINT PPOCESSES
WRWWR SPACE CP.LF PRN PRT PRS PR PRL

9. DEFINE TYPE TABLE AND CURRENT CHARACTER ACTION PROCESSES
RETT IETT DETT SETT
ICKA DCKA SCKA (RCKA DEFINED IN 1.)

10. DEFINE ELEMENTARY SPACE PROCESSES
CSPT LNKUP CSP/I CSP/L C3P/M CSP/P CSP/C

11. DEFINE ASSEMBLY PROCESSES
AW AR

12. DEFINE FTLF NAMING PROCESSES
AW6BI AWPS
SETRD SETWP <W(0)=SYMBOL AND USES EXTERNAL NAME OF IT . LSF)
RDF WRF (READ AND WRITE FROM DSK FTLE W(*))

TI. CHARACTER ACTIONS AFTER BOOTSTRAP

к - Z - ANK - NAME ACTION
0 - 9 - ADK - DIGIT ACTION
• - A+K - PLUS ACTION

- А-К - MINUS ACTION
' - .Q - QUOTE ACTION
: - . - COMMENT ACTION (EXITS LINE)
! - (ABND .ICX .XCX) - EXECUTE ACTION (ALSO BOUNDARY ACTION)
: - (ABND USEN) - NAMING ACTION
(- (ABND STRL) - START LIST ACTION
) - (ABND ENDL) - END LIST ACTTON
@ - TYPE ACTION
* - CHARACTER LIST ACTION
KS P, KCR, KLF, KFF,KVT, KTAB - ABND - BOUNDARY ACTTON
OTHER PRINTING CHARACTERS - ANK
ALL OTHERS - NOP

Appendix 10 - Detailed Descriptions of Kernel Processes

character action table (in W cell WAKT) with the 7-bit code
for the character being interpreted. ,I/K exits upon
return from the character action.

. I/H .I/M is the internreter for T/1 used in all
interpretation contexts defined in the kernel and
bootstrap. It appears as the entry for T/H in all the
following interpreter type tables: . T T T , AflTT, AWTT, PDTT
and WFTT. .I/tf's only action is to call the symbol to be
interpreted (input in ^1) as a machine code subroutine.

,I/P .I/P is the interpreter for T/r> used in all
interpretation contexts defined in the kernel and
bootstrap. It anpears as the entry for T/P in all the
followina internreter type tables: . X T T , ARTT, AWTT, RDTT
and WPTT. •I/P operates as follows:

Descend: Push WXS onto WHS and WXN onto WHN.
Put STOP into WXN to delimit scope of current T/P

execution.
Put symbol to be interpreted (input to .I/P in E D

into WXS.

Interpret: Interpret symbol in WXS by calling the
apDropriate interpreter obtained from the current
interpreter type table contained in W cell WTPTT.
(This is interpretation within the scope of a T/P
list, hence WTPTT is used rather than WITT),

rjpon return, continue.

Advance: If WXN. S = MIT,, go to Ascend.
If WXN.S= STOP, go to Exit.
Otherwise, put the symbol of th^ cell pointed to

by WXN into WXS, and advance WXN to noint to the next
cell on the list (by putting the link of the cell
pointed to by WXN back into WXN).

Then go to Interpret.

Ascend: Pop WHS into WXS and WHN into WXN,
Go to Advance.

Exit: Pop WHS into WXS and WHN into WXN.
Exit from T/p execution context by

the original caller of . I/p, returning to

Appendix 1? - Detailed Descriptions of Kernel Processes

•IS adds the value of w(0) to symbol w(1). The symbol
result is output W(0).

- I subtracts the value of W(1) from the value of W (2) ,
storino the result as the value of W(C>. W p) is left as
output.

-SS subtracts the symbol w(1) from the symbol »(2>,
storing the inteoer result as the value of W(C). w () is
left as output.

. exits one level unconditionally by putting NIL into
WXN.

exits one level if input w(f-> is not NIL bv puttinq
NIL into WXN. The input is alwavs removed.

* . , " « S - i t S » ? n e . l e V e l . l f i n p U t
 W (?) I S N T L B ? P U T T I N Q NIL into WXN. T H E input is always removed.

both'wXN Xand HHN l e V G l s u n c o ^ i t 1 o n a l l y by putting NIL into

..• exits two levels if the input W(C) is not n i l by
calling .. . The input is always removed.

..- exits two levels if the input W(C) is NTL by calling
. The input is always removed.

. I/K is a reading interpreter used for T/K in Read
Context. It appears as the entry for T/K in the
interpreter type table RDTT. .I/K obtains the (character)
symbol to be interpreted from R1, stores it in cell WK r and
then interprets the appropriate character action. The
character action is obtained by indexing into the current

Appendix 1? - Detailed Descriptions of Kernel Processes 3

character action table (in W cell VAKT) with the 7-bit code
for the character being interpreted. . I / K exits upon
return from the character action.

'H . I/H is the interpreter for T/1 used in all
interpretation contexts defined in the kernel and
bootstrap. Tt appears as the entry for T / H in all the
following interpreter type tables: . T T T , A P T T , A W T T , P O T T
and W F T T . . I / M ' s only action is to call the symbol to be
interpreted (input in P1) as a machine code subroutine.

'P .I/P is the interpreter for
interpretation contexts defined
bootstrap. It appears as the entry
following interpreter type tables:
and W R T T . .I/P operates as follows:

T / P used in all
in the kernel and

for T/P in all the
•ITT, ARTT, AWTT, RDTT

Descend: Push W X S onto WHS and WXN onto WHN.
Put STOP into WXN to delimit scope of current T/P

execution.
Put symbol to be interpreted (input to ,i/p in *?1>

into WXS.

Interpret: Interpret symbol in WXS by calling the
appropriate interpreter obtained from the current
interpreter type table contained in W cell WTP^T.
(This is interpretation within the scope of a T/P
list, hence WTPTT is used rather than WITT),

qpon return, continue.

Advance: If WXN. S = N11,, go to Ascend.
Tf WXN.S= STOP, go to Exit.
Otherwise, put the symbol of the cell pointed to

by WXN into WXS, and advance WXN to point to the next
cell on the list (by putting the link of the cell
pointed to by WXN back into WXN).

Then go to Interpret.

Ascend: Pop WHS into WXS and WHN into WXN.
Go to Advance.

Exit: Pop WHS into WXS and WHN into WJN.
Exit from T/p execution context by

the original caller of .I/P. returning to

Appendix 1? - Detailed Descriptions of Kernel Processes U

.IDP .IDP is the interpreter for depositine, and appears as
the entry for T/K in interpreter type table AWTT. Let A be
the symbol being interpreted (input to •IDP in P 1) .

.TDP first obtains the entry for A in the current bit
number tvpo table (in W cell WNPTT). This entry is an
integer whose value is now deposited into the S-field (bits
6-11) of the PD»1C byte pointer in W cell WPTP.

Next the entry in the current base type table (in W ceil
WBTT) for A is obtained. (Tt is an in tener; call its value
B) .

Finally, the value A - n is deposited using an IDPB
(Increment and Deposit Byte) instruction on the byte
pointer in WPTP.

.IEJC .IEX is the interpreter for extracting, and appears as
the entry for T/K in interpreter type table APTT. Let A be
the symbol being interpreted (input to . TST in P D .

• I3X first obtains the entry for A in the current bit
number type table (in W cell WNBTT)• This entry is an
integer whose value is now deposited into the S-field (bits
6-11) of the r>npiO byte pointer in W cell WPTP.

Next, a bit pattern is extracted using an TLDR
(Increment and LoaD Byte) instruction on the byte pointer
in WPTP. Then the entry in the current base type table (in
W cell WBTT) for A is obtained. (It is an integer; call
its value B) •

Finally, the symbol obtained by adding to B the bit
pattern extracted above is pushed onto W,

.IP/K .IP/K is the reading interpreter that appears as the
entry for T/K in interpreter type table •TPTT. •IP/K is
identical to .I/K except that it gets its input (the symbol
to be interpreted) from WXS rather than P1 since .IP/K is
used within the scope of T/P interpretation.

•IP/H .IP/H is the machine code interpreter for interpreting
T/M symbols appearing in T/P lists. It is the entry for

,I/S .1/55 is the data interpreter and appears in • ITT for
T/L, T/T, T/K and T/C, and in ARTT, AWTT, RDTT and WRTT for
T/L # T/I and T/C. The operation of .T/S is simply to push
onto W the symbol beina interpreted.

Appendix 1? - Detailed Descriptions of Kernel Processes 5

.IP/P is the interpreter for T/p symbols appearing in
T/P lists. It is the entry for T/P in all the following
interpreter type tables: .T^TT, ARPTT, AWPTT, RDPTT and
WBPTT.

Its operation is not like the operation of .I/P; in
fact, all .TP/P does is to push WXS onto WHS and WXW onto
WHN, move the contents of WXS to WXN, and then exit.

In the initial L* system, .TP/P will always be called by
the "Interpret* part of .I/P, and h*nce when .IP/P returns
to .I/P, WXN will be set U P so that "Advance* will start
down the new T/P list.

.IP/S is the interpreter for data appearing in T/P
lists. It appears in .TPTT for T/L, T/T, T/K and T/C, and
in APPTT, AWPTT, RDPT? and WPPTT for T/L, T/T and T/C. It
operates identically with ,T/S except that its input (the
symbol to be interpreted) is obtained from WXS rather than
P L

•IPDP is the interpreter for depositing within the scope
of a T/P list, and is the entry for T/K in interpreter type
table AWPTT. It operates identically with .IOP except that
it obtains the symbol to interpret from WXS rather than R1.

.IPBX is the interpreter for extracting within the scope
of a T/P list, and is the entry for T/K in interpreter type
table ARPTT. Tt operates identically with .TEX except that
it obtains the symbol to interpret from WXS rather than R1.

.IPWR is an interpreter for writing and is used to
interpret T/K appearing in T/P lists when in Write Context.
It appears in interpreter type table WRPTT as the entry for
T/K. .IPWR is identical with .TW!? except that its input
(the symbol to bo interpreted) is gotten from WXS rather
than B1.

.IWR IWR is a writing interpreter used for T/K in Write

T/H in all the following interpreter type tables: .TPTT,
ASPTT, AWPTT, RDPTT and WRPTT. Tt operates identically
with .1/« except that its input (the symbol to be
interpreted) is gotten from WXS rather than RN.

Appendix 10 - Detailed Descriptions of Kernel Processes 6

is
is

..u I *5 h e S 1 7 * o f t h e a b o v e b i t Pattern deposited in
the buffer is determined by the particular output
interface, and not by any T.* mechanism.

If .IWR must 3o an output operation (because the buffer
is full), and an error return occurs, error location 5RR22
is called.

.0 (Quote) outputs the next symbol in the current
program list and causes interpretation to skip over it. If
.0 appears as the last symbol on a program list, it will
cause control to ascend until the following symbol is

.P repeats execution of the current level by putting the
top element of WHS, which is the higher routine symbol
stack, into WXN, which holds the next operation on the
current level.

.R* repeats the current level if input W(") is not MIL
by putting the top element of WHS into WJTN. The input is
always removed. H U l 1 S

.H- repeats the current level if input W{?) is NIL by
lways qremoved?° P e l e m M l t o f W H S i n t o * « • ?ne input is

i f " J ™ f (« J e f : u t e a) t h e sV»hol »(0) (after removing
o b t a i n ^ f « j £ a c * \ b ? C a l l Ì n q t h e a P P " p r i a t e interprete? obtained from the interpreter tyoe table contained in W

Context. Tt appears as the entry for T/K in the
interpreter type table WRTT.

•IMP subtracts the base for the symbol being interpreted
(obtained as an integer from the type table in W cell WBTT)
from the symhol itself. The resulting bit pattern
deposited into the appropriate output buffer if there
room, otherwise an output operation is done first.

There are two implicit, inputs to . IBR, both related to
the particular interface being written to. These are the
channel number (from the right half of the first word of
the interface block) and the buffer header address (from
the left half of the fourth word), and they are set up by
WR before it interprets its W(1) input.

Appendix: 15 - Detailed Descriptions of Kernel Processes 7

cell WITT.

xcx •XCX interprets (executes) the symbol W(1) in the
context specified by context list W() , which is in the
form expected by PCX, PCX, and UCX.

The operations PCX and then PCX are performed on the
context list W (~) . The symbol W P) is then interpreted by
calling the appropriate interpreter from the interpreter
type table contained in W cell WITT. Upon return from the
interpreter, the original context is restored by performing
HCX on the context list which was input W (~) .

r /1 divides the value of W(2) by thn value of W(1),
storing the quotient as the value of W(0). w(0) is left as
out put.

'I /PT divides the value of W(2) by the value of W(1) #

storing the remainder as the value of w(~). W P) is loft
as output.

<T tests if the value of W P) < the value of W(1) # if
not, the output is NTL. If so, the output is W(1) (unless
W(1) is NIL, in which case the output is TPU1?) .

<S tests if the symbol w(0) is less than the symbol
W(1). If not, the outnut is NTL. IF so, the output is
W(1) (unless W(1) = NTL, in which case the output is THUS
) •

-C tests if the value of w r) = the value of w(1). if
not, the out nut is NIL. If so, the output is W(1) (unless
W(1) is NTL, in which case the output is TPUR) ,

=1 is identical to =c .

=S tests if the symbol W<*> = the symbol w(1). if not
the output is NIL. if so, the output is W(1) (unless W<1)
= NIL, in which case the output is TRUE) .

Appendix 10 - Detailed Descriptions of Kernel Processes

=T gets the tvpe indexes of W(") and w(1) which are
stored as the contents of the cells whose addresses are
W O) • TD and W(1) • TD respectively. Then it tests if the
type of W C) is the same as the type of H I D . If not, the
result is NIL. If s o # the output is W(1) (unless W(1) -
NIL, in which case the output is TRUE) .

>T tests if the value of w p) > the value of W(1). Tf
not, the output is NIL. Tf so, the output is W(1) (unless
W(1) « NIL, In which case the output is TRTfE) .

>S tests if the symbol W P
W(1). If not, the output is
symbol W(1) (unless W(1) is
is TRUF) •

) is greater than the symbol
NIL. If so, the output is the
NIL, in which case the output

A+K is the initial character action (entry in AKT1) for
the character It operates by first testing if the
number flag integer TNUMP = 1 (indicating that only digit
characters have occurred since the last boundary
character), and if so sets INUHF = -1 to indicate a name
rather than an integer is to be recognised. Thus, for
example, a string like * _ 1 3 * _ m (where 9 _ r is a boundary
character) will be recognized as a name m1.1** rather than
the integer +13. A+K completes its operation by always
callinor ACCK to accumulate the current character being
interpreted (obtained from cell WK) into NACC, the name
accumulator cell.

A-K A-K is the initial character action (entry in AKT1) for
the character It operates identically to A + K except
for the additional action of updating the integer sign
indicator ISGN. ISGN is used to keep a (mod 2) count of
the number of characters since the last boundary
character, and thus represents sign for integers.

ABND AEND is the initial character action (entry in AKT1) for
tab (KTAB), line feed (KLP), vertical tab (KVT), form feed
(KFF), carriage return (KCR), and space (KSP). These
characters are called ^boundary characters* since they act
as boundaries for the recognition of names and integers.

ABND first tests the name accumulator cell NACC to see
if the previous character was also a boundary action, and

Appendix 1^ - Detailed Descriptions of Kernel Processes 9

ACCD ACCD is used (by ADK) to accumulate digit characters for
recognition of integers. Tt has one standard input which
is a digit character symbol whose digit value (0,1,... ,9)
it accumulates into integer INUW by first multiplying TNHN
by the current radix in W cell WIR and then adding to TNUH
the new digit value. A special check is made for overflow
in the multiplication, and the high order bit of INTTM is
set on if overflow occurs. This was necessary to make
recognition of negative numbers written in twos complement
form work (e.g. octal 4fOOOCCOO^O").

ACCK ACCK is used by ANK, ADK, A+K and A-K to accumulate
characters into the name accumulator cell NACC. It has one
standard input which is a character symbol whose 7-bit code
is shifted into the low order position of cell NACC. Tf
more than five characters are accumulated (between boundary
actions), the first ones are shifted out the left of the
accumulator and are lost. Bit 0 (leftmost bit in cell) of
NACC is not reset after the shift so that it may retain a
spurious setting if characters are shifted out. the left of
the accumulator.

ADK is the initial character action (entry in AKT1) for
all the digit characters (C,1,...,9) # Its ooeration is as
follows:

Tf INHWF - n , indicating that the previous character was
a boundary character, TNUMF is set = 1 to indicate that an
integer is provisionally to he recognized. Then ACCK is
called, with the current digit character being interpreted
(from ceil WK) as input, to accumulate the character into

if so it exits. Next it tests the value of TNUHF to see
whether it is a name or an integer that should be
recognized.

If INtJWF = 1, a new T/I cell is created and qiven the
value of the integer IN tiff if TSGN = % or the complement of
that value if ISGN = 1.

If INWJF doesn't - 1 (hence is - 1) , then A BNP calls LSNT
(Locate Symbol in Name Table) with the address of the name
accumulator cell NACC as input. If the symbol is not
located, CSN^ (Create Symbol in Name ^ablo) is called to
create an entry for the name accumulated in >JACC.

Finally, ABND pushes onto W as output the integer
created in the first case, or the symbol located or
created. Then the contents of the four cells NACC, INfTN
,INFTMF and TSGN are set to zero, and ABN^ exits.

Appendix 1 A - Detailed Descriptions of Kernel Processes M

the name accumulator NACC.

Next, a test is made to see if TNUBF = - 1 , and if so,
ADK exits sinc« there is no chance for an integer to be
recoanized; otherwise ACCD is called to accumulate the
current diait character into the integer accumulator TNOM.

ANK ANK is the •name* action, and is the initial character
action (entry in AKT1) for ail printing characters except :
(TAB,LF,VT, F F , C P , S ? , ! , T , 1,2 , 3, 4 , % 6 ,7 ,9 , 9, • ,-, ;) . It
operates bv setting TN0«F = -1 to indicate a name is to be
recognized and then calling ACCK to accumulate the current
character (from cell WK) into name accumulator NACC.

C (Copy) first accesses the space type table in cell
WSPTT to find the available space list for the type of
input W(?) .

If the available space list is NIL, C first checks to
see if input rrfO) is T/L, and if so stores the reserved
space list from <? cell WSPP1 as the available space list.
(This is necessary for execution of the space-exhausted
routine, which is responsible for restoring the reserved
space after it has allocated more list space). Next, C
swaps into space-exhausted context by calling £WPCX with
context swap list S^XCX as input. Then it executes
(interprets) the space exhausted process obtained as the
entry for the type of W(0) in the type table in W cell
WSPXT. Upon return, SWPCX is called again with input SPXCX
to swap back to the previous context, and control transfers
to the beginning of C for another try.

If the available space list is not found to be
exhausted, C unlinks the top cell, copies the full-word
contents of input W(") into it, and leaves it as output
W (0) .

C/L (Create type List) is similar to C except that it
has no input telling what type of cell to obtain from
available space and how to initialize it. It always
outputs a T/L cell which has not been initialized (and
hence still links into the available space list for T/L) .

CPTR CPTP is to be used to create PDP1C byte pointers and
initialize them to point at the start of a given location
(input W(0)). Most common usage of CPTP will be to create
a pointer to put into W cell WPTP for use with .IDP and
• TEX.

Appendix 1
л - Detailed Descriptions of Kernel Processes 11

CPTP calls C with the symbol T/C as input to obtain a
cell for the pointer. It initializes S - % P-36, I=X=0,
Y « (W O > input) in the pointer and leaves it as output W(C).

CSNr CSNT is used to add a new entry in the current name
table (specified by W cell WNT) for an input name W O) . It
merely calls CSNTW to create the symbol for the input name
in the name table residing in WNT.

CSNTW CSNTW adds a new entry to a particular name table (input
W P)) for an input name W(1). The name input is a cell
containing r ight--just if ied ASCIT characters (as in the name
accumulator NACC into which ACCK accumulates characters).

CSNT first nets the current index for the input name
table, which is located in the word immediately preceding
the table itself. The index is compared with the table
size from the next preceding word, and E

P

P15 is called at
this point if the index is not less than the size.
Otherwise, the table is not full, so the new entrv is made
as follows:

С is called with input WCT.S to create a new symbol of
the type of the symbol in W cell WCT. At the location of
the new entry, which is determined by adding twice the
index to the input table address, are stored the packed
characters of th^ input name in the first word and the
newly created symbol in the second word (right half). Then
the index of the table is incremented by one, and CSNTW
exits with the new symbol as output W (p

) .

CSP is the routine which allows additional space to be
allocated from the monitor, or space to be returned. Input
W(1) is the size (T/I) of the change in allocation;
positive if space is to be obtained, negative if space is
to be returned to the monitor. Since the monitor only
allocates in 1K blocks (2000 octal), the value of W (D
should be a multiple of that size. Any new space obtained
from the monitor is made to have the same type as that of
input W(*>. W(0) is not used if the value of W(1) is
negative.

Output from CSP is the address of the block of space
obtained from the monitor if the value of input W(1) was
positive, otherwise the output is NIL since no space was
obtained.

CSP does some housekeeping in updating the Job Data Area
locations JOBFF, JOBSA and JOBHPL (L* symbols JBFF, JBSA

Appendix 10 - Detailed Descriptions of Kernel Processes 12

CVIDL CVTDL expects an integer (T/I) as input W(0) and outputs
a list of the same type as W^CKL.S of character symbols
which are the digit characters for the representation of
the integer in the current radix (in W cell WTB). If the
value of integer w(P) is negative, CV7DT outputs a list
with a minus sign character followed by the digits of the
absolute value of the input.

CVIDL operates by successive divisions by the current
radix (from W coll W I B) , using the remainders to build the
list of digit characters.

CVNKL CVNKL expects a cell containina packed right- -justified
ASCII characters as input W(.D. (The same form as the name
cells in the namo table). By successive shifting, masking,
and testing for null characters, CVNKL builds a list of the
same type as WTCKL.S of character symbols for the packed
characters (in left to right order from the packed cell)
and outputs it.

D deletes the symbol in list cell W (0) . If W O is not
the last cell in a list, then the full-word -contents of the
next cell is copied into it, and the next cell is erased
(using E) . Tf W O is the last cell in the list, the
symbol in that coll is replaced by NIL.

DA (Delete After) deletes the symbol in the cell after
W O by replacing the link of W O by the link of the cell
after W O . Then it calls E to erase the cell which was
previously after W O .

DEBUG DEBUG is used to swap into *debugaing context* for
execution of diagnostics, etc. when something has gone
wrong. It operates as in the following T/P list:

(WBDCX S SWPCX WPB S .X WBDCX S SWPCX)

and JBHPL) to ensure that the monitor SAVE function saves
the correct amount of core in both the low and high
segments.

Tf an error return from the COPE UUO occurs, indicating
that the requested additional core is not currently
available, error location 5PP1U is called.

Appendix 10 - Detailed Descriptions of Kernel Processes 13

I.e., it swaps into Debug Context, executes the contents
of cell WRD f and then upon return swaps back to the
previous context.

DEBfTG is called when a *START 1U1* is done in monitor
mode.

E (Erase) first checks if W(0) = NIL, and if so exits
without erasing. Otherwise it returns w(0) to the front of
the available space list which is the entry for the tvpe of
W O) in the type table in W cell WSPTT.

E/L F/L (Frase type List) assumes that input w(0) is ?/L and
returns it to the front of the available space list which
is the entry for T/L in the type table in W cell WSPTT.

SL FL assumes that input w(0) is a list and iterates down
the list erasing (via F) each cell on the list.

3RR3 - FRP22 ^hose error locations are called at the site where
an error is detected in a kernel process to initiate
handling of the error. There is a unique error location
for each of the 7 3 different errors which can be detected
in the kernel. Bach error location is a m J S P P6,ERROR*
instruction which transfers control to the central error
routine ERPOP with R6 retaining the identity of the
particular error location.

Below are listed the separate error locations with a
description of the conditions causing each error.

ERR^ This symbol is put on the bottom of the machine
stack (MSTK) so that an attempt to do a PETtlRN with an
empty stack will qive control to the EPS? error
location. Of course, the EPP r at the bottom of the
stack will not b^ *seen* if it i^ popped off as data
rather than beina treated as a return link.

This symbol sits in the right half of Job Data Area
location JOPAPP (L* symbol JBAPR), and thus is where
control is passed when one of the conditions enabled by
an APREN3 nno is detected by the monitor. The traps
enabled by L* are pushdown overflow, memory protection
violation, and non-existent memory flag.

Appendix 10 - Detailed Descriptions of Kernel Processes 1u

When an E~R1 occurs, the Job Data Area locations
JDBCNT and JOBT^C (L* symbols J3CNT and JBTPC) contain
useful information.

JBCNT contains the state of the APR (Arithmetic
PRocessor) when the trap occurred, and can be used to
discover which of the three possible conditions
actually caused the trap, as follows:

In the riqht half of the JTVCNI word,

bit 19 (2C000C octal) indicates pushdown overflow,
bit 22 (2T A^V oc«-al) indicates memory protection flag,
bit 23 (1000" octal) indicates non-existent memorv.

VTBTPC contains the PC (Proqram Counter) of the next
instruction to be executed when the trap occurred.
(Thus the right half is the address of the next
instruction). This will help locate the offending
instruct ion.

ERR2 - ERR12 These are error locations called by an
interpreter when it attempts to interpret some symbol
with a type table which has no valid interpreter for
the type of that symbol. Frror locations ERP2 - ERR12
are merely used to fill in the unused entries in kernel
type tables, one error location per type table as
follows:

SPXTT is really an exception since it is not an
interpreter type table, but holds processes. Thus
ERR10 will be interpreted as a T/* process, while the
other error locations above will be called directly as
if they were interpreters.

EPR13 A part of the cleanup SV has to do after return from
the SAVE in monitor mode is to reissue the SETJJWP UUO
to reenable writing in the high segment (the monitor
SAVE command sets write protection back on as a side

ERR 2
ERP3
E PPty
E^P5
ERR 6
E R R 7
ER RP
EPR9
ERR 10
ERR 11
ERR 12

• IPTT
• ITT
ARPTT
A R T
AWPTT
AWTT
RDPTT
RDTT
SPXTT
WPPTT
WRTT

Appendix 10 - Detailed Descriptions of Kernel Processes 15

effect). Error location ERR13 is called if an error
return from the SBTUWP fIUO occurs, which is an
indication that either the monitor system does not have
a two-register capability (impossible on our system) or
that the user has been meddling without write
privileges (see PDP-1^ Reference Handbook, under
*roeddling m)•

FRR14 This error location is called in CSP if an error
return occurs from the CORE mto attempting to allocate
core from the monitor. This indicates that the
additional amount of core reguested is not available,
either because of hardware limitations or because a
large load of other users is on the system.

ERP15 This is the *out of space in name table* error
detected by CSNTW (Create Svmbol in Name ^able W(0))
when the index for the input name table is not less
than the size of the name table.

ERR 16 m h i s error occurs if RD gets an error return when
attempting to OPEN the interface to be read from,
indicating *hat the device (specified by the device
name in word 3 of the input interface block) does not
exist or is allocated to another iob.

ERR 17 This error occurs if RD gets an error return when
attempting to LOOKUP the file to be read from,
indicating that the user's directory was not found or
that the file (specified in words S and 6 of the
interface block) was not found or was read protected.

ERR 18 This error occurs if PD gets an error return while
doing an input (IN instruction) ^rom the interface.
The error detected will be one represented by one of
the file status bits (see PDP-10 Reference Handbook,
under n E i l e : status bits*). Due to an oversight in the
L*F system, the file status is not made readily
available wh^n an ERR18 does occur.

ERR19 This is an error detected bv WR which corresponds to
ERR16 detected by RD, i.e. it indicates the specified
device trying to be OPFNed does not exist or is
allocated to another lob.

Appendix *P - Dptailed Descriptions of Kernel Processes 16

*RR2^ This error occurs if WR gets an error return from an
ENTER IHJO (which is analogous to L O O K U P , but for output
files). It indicates one of several possible error
conditions:

The user's directory was not found (if the device
has a di rect orv).

The file to b<* written was found to already exist
and was being currently written or renamed, or was
write protected.

ERR21 This error occurs if WR gets an error return from
doing the final output (OUT instruction) of a write
operation. The possible errors are those which can be
reflected in the file status bits (see PDP-1? Reference
Handbook, under *File: status b i t s *) , although due to
an oversight the status is not readily available when
an ERR21 occurs.

FPR22 This error occurs if .IWR or . IPWP (the writing
interpreters) gets an error return from output
operations. The conditions are identical to those for
ERR21.

RRDR ERROR uniformly handles kernel errors represented by
error locations *RRC - ERR22 by initiating appropriate
context-swapping and executing an arbitrary user-written
error routine, while preserving the identity of the
particular error. Tts detailed operation is as follows:

ERROR expects a non-standard input in R6 which is the
address of the current error location * 1 . ERROR uses this
input to store the current error location in W cell WERRL.
Next, the contents of R1 - PS and *STKP are copied into
cells R1SV - R5SV and MSPSV respectively, and reserved
machine stack space is opened up by increasing effective
stack size from 1STKN to NSTKM. Then th^ symbol ERROR is
replaced by HALT in the current error location so that a
recursive error will execute HALT rather than call ERROR
recursively. Next, a swap into Debug Context is made by
executing SWPCX with input WPBCX.S, and then the symbol in
W cell WERR is executed. Upon return, SWPCX is called to
swap back out of Debug Context, the symbol ERROP is put
back into the current error location, and P1 - R5 and HSTKP
are restored from the save cells R1SV - R5SV and MSPSV.
(Note that this effectively closes off reserved machine

Appendix 1 0 - Detailed Descriptions of Kernel Processes 1 7

stack space since FSTKP was copied into 1SPSV before
reserved space was opened above.) Control will return to
the caller of the current error location
initiated by calling the appropriate
unless of course the machine stark
cell 1SPSV before it was restored

(errors are
error location),

pointer was altered in
from t> e re.

EXEC EXEC is the main executive which is called when the L*
kernel is run for the first time. It reads from the
current read interface (WRP.S) and executes the resulting
list in Head Context. If an end-of-file is detected from
the read interface, it is reset and EXEC exits.
Specifically, EXEC operates as in the following T/P list:

((WRD S RD P P WEXEC I RDCX .XCX WEXEC S WEXEC D EL .B)
WRD S RSI?)

where WEXEC is a save cell private to EXEC.

Calls on EXEC can of course be nested within other
executions of E^EC to any level. In fact, the *START 1 4 0 *
command in monitor mode causes such a nested call on EXEC.

H A L T H A L T goes into monitor mode (without releasing I/O
devices currently in u s e) . A * C O N T I N T J E * command from
monitor mode will cause control to return to the caller of
H A L T . A « S T A R T 1 4 0 * or « S T R R T 1 4 1 * command may also be
issuen from monitor mode. (See S T 1 4 0 and S T 1 4 1) .

I inserts symbol W (1) in front of the symbol
W (0) . It creates a new cell of the same typo as
full-word contents of W (0) is C O D I E D into the
then the link of W O) is linked to THE
finally the symbol W (1) is stored as the

in cell
W (0) . The
new cell,

new cell, and
contents of W O) .

T . " . i n s e r t s symbol W (1) after the symbol in cell W O)
Tt first creates a new cell of the type of W O) . fh*n it
stores the link of w (0) as the link of the new cell" and
stores the address of the new cell in the link of W O)
Finally the symbol W (1) is stored as the
new cell. contents of the

L N N T

Appendix 10 - Detailed Descriptions of Kernel Processes 18

successive name tables from the WNT stack until either the
symbol is located, or all the name tables in WNT have been
searched in vain. In the former case, the address of the
name cell in the name table for the located symbol is
output; in the latter case, the output is NTL.

LNNTW LNNTW searches backwards through the entries of name
table WOO) for on** with the symbol w(1). By searching
backwards, LNNTW will find the most recent entry for the
symbol W(1) if more than one exist. If the search is
successful, LNNTW outputs the location of the name cell
found (i.e. the cell containing the packed *VSCTI
characters of the external name). If the search is
unsuccessful, LNNTW outputs NTL.

LSNT LSNT is directly analogous to LNNT, except that it has a
name cell as input w(0) and is searching for a
corresponding symbol, rather than vice-versa.

LSNTW ^ LSNTW is directly analogous to LNNTW, except that its
input W(1) is a name cell and it searches for the symbol
with that name in name table W(0), rather than searching
for the name aiven the symbol as LSNTW does.

rlYPTP MVPTR is an operation on PDP10 byte pointers (which are
lust T/C initially in L*) , to be used in con-junction with
CPTR and the depositing interpreters (.IDP and .IPDP) and
extracting interpreters (.TEX and .IPEX). The input cell
W(0) is the byte pointer; the W(1) input is an integer
which designates the number of bit positions (within the
current word) the pointer is to be moved (positive for
right, negative for left). There is no primitive process
in the L* kernel for moving a byte pointer a number of
words, but this may be accomplished by operating on the
right half of tho pointer (which corresponds to the address
field for byte pointers) with inteaer-symboi conversion and
integer processes.

KVPTR operates by subtracting the value of W(1) from the
value of the P field of the byte pointer W(0). It chocks
for one special case: if the P value com^s out negative, it
is zeroed instead.

MVPTR has no output.

N N outputs the next of cell w (0) (W(0).N) .

Appendix 10 - Detailed Descriptions of Kernel Processes 19

NOP No ooeration.

n Pushes w.

P A1 i*01 is the prefix routine for processes with no inputs
and 1 output. It has a nonstandard input in R6 which is
the location of the stem of the calling process. (The stem
is the central machine code portion of the process divorced
from special input-output considerations. It accepts
inputs and returns outputs in registers). P01 operates by
first callina the process stem as a subroutine, then upon
return it pushes the output in PI into W and returns to the
caller of the process.

PI. P10 is the prefix routine for processes with 1 input and
no outputs. Tt operates by first popping W O) into input
register R1, then passes control to the process stem (input
to PIO in R 6) , which will itself return to the caller of
the process.

P11 P11 is the prefix routine for processes with 1 input and
1 output. It operates by copying W O) into input register
F1, calling the process stem (input to P 1 1 in P 6) , and upon
return copying the output from register R1 into W and
returning to the caller of the process.

p 1 2 p 1 2 is prefix routine for processes with 1 input and
2 outputs. It operates by first copying W O) into input
register R1 and calling the process stem (input to P12 in
R 6) . Upon return it copies the output from register R2
into w, pushes the output from register ^1 onto W r and then
returns to the caller of the process.

P2' P20 is the prefix routine for processes with 2 inputs
and no outputs. Tt operates by popping W O) into input
register R1, W(1) into input register R2, and then passing
control to the process stem (input to in R *) , which
itself returns to the caller of the process.

Aopendix 10 - Detailed Descriptions of Kernel Processes 20

P 2 1 P 2 1 i s the prefix routine for processes with 2 inputs
and 1 output. Tt operates by first poppinq W(0) into input
reqister R2, and calling the process stem (input to P21 in
R 6) . Upon return, P21 copies the output from reqister R1
into W and returns to the caller of the process.

P22 P22 is the prefix routine for processes with 2 inputs
and 2 outputs. It operates by first copying W P) into
input register P I , W d) into input, register R2 and W(0)
with the output from register P1, and calling the process
stem (input to P22 in R 6) . Upon return, P22 replaces W(1)
with the output from register R2, and returns to the caller
of the process.

P31 P31 is the prefix routine for processes with 3 inputs
and 1 output. It operates by first popping W O) into input

popping W again into register R2 to get the
and then copying the W(2) input from W into
P3 1 then calls the process stem (input to P31

in R 6) , and upon return copies the output from register R1
into W and returns to the caller of the process.

register R1,
W O) input,
register R3.

PCX PCX (Push Context) oushes
input list w(0) starting with

every other
the second.

symbol in the

If the input list
is operated on as
are normally thouaht
current context in
saves the
context.

W O) is (A1 3 1 ... An Pn) , each Bk
in the program : (Bk S Bk I) . The Bk
of as ceils whose contents specify
some way, hence PCX is a process which

new current context prior to changing to a

P. replaces the contents of W O by the symbol W O) .

RC RC (Replace Cell) replaces the full-word contents of
W(0) by the full-wcrd contents of W O) .

RCX The input to PCX (Replace Context) should be a list of
pairs : (A1 B1 ... An Bn) . Each pair is operated on as
in the proaram : (Ak S Bk R) , i.e. the contents of each
Bk is replaced by the contents of the corresponding Ak.

The Bk are normally thought of as cells whose contents
specify current context in some manner, hence RCX is one of

RD

Appendix 10 - Detailed Descriptions of Kernel Processes 21

Reads characters from interface W (n) and produces a list
of the type of WTCKL.S which it outputs. Tt opens the
interface and selects a file for the input if necessary.

As each character is read in from the buffer, RD adds
the base for the characters to the character code to obtain
a character symbol. (Null characters (code=C) are
iqnored). Tt then finds the type of list to be created
from W cell WTCKL and calls C to create a cell. The symbol
is put into the new ceil and the new cell is linked to the
rest of the list.

Characters are read until the current mbreak* character
(in W cell WPDK3, initially KLF) is encountered. At this
point readiinq is terminated and the *noxt m of the last
list cell is set to NIL. The created list (which contains
the *break m character as its last symbol) is output H(0).

P I R I (Replace Integer) is identical to PC .

PN RN replaces the next of cell W (r) by the symbol W(1).

RSIF RSTF resets an I/O interface and will be used most often
in the following situations:

(1) To reset interfaces closed by the monitor when a
SAVE was done.

(2) To reset an interface that has gotten an end-of-file
indication and is now to be reused (EXEC does this).

(3) To reset the PSK interface when a new file is to be
read or written (see RDF, WR* in the Bootstrap Process
Descriptions).

The operation of RSIF is as follows:

First the thr^e flaq bits (OPEN done, ENTER done, LOOKUP
done) in the left half of the first word of the interface
block are set off, the project, pcoqrammer numbers are
zeroed (indicating user's own are to be used), the channel
number used for the interface is EELEASed (thus ensurinq
that a file previously open on the interface is now
closed), and finally both input and output buffers for the
interface are reset usinq PSTFR.

the basic context-changing mechanisms in the system (see
also SWPCX). 7

Appendix 1^ - Detailed Descriptions of Kernel Processes 22

PSIFB The input to RSIFB is the address of a three word block
called a buffer header (input or output). (The input and
output buffer header addresses are contained in the
interface block. T T Y and DSK are the two interface blocks
defined in the kernel). RSIFP sets the use bit on in the
buffer header (high order bit. of first word), and then
calls RSTFR to reset the buffer rina whose address is
contained in the right half of the first word of the buffer
header.

PSIFP The input to ^SIFP is the address of the second word of
one buffer in a ring of buffers. (I.e. a circular list of
buffers. The right half of the second word of each buffer
is a link to the next buffer in the ring). Each buffer in
the ring is reset by zeroing its flag bit. which is the
high order bit of the second word in the buffer.

PT PT (Replace Type) takes as input a symbol W O) and a
type index as the value of W O) . It sets the type index
of W O) to the value in W O) by replacing the contents of
the cell whose address is W C) • TD by the low order half
of the value of W O) ,

S S outputs the symbol of cell W O) (W(0).S) .

ST1*P ST1U0 is the entrv point at which L* is entered when a
START 140 command is issued in monitor mode. Entry at
ST 140 causes a recursive call on EXEC ; exiting from this
call on FXEC returns one to monitor mode. If then
^CONTINUE* is typed, control returns to the caller of the
routine which caused the original entry into monitor mode
(i.e. before the *S TART 1 4 r *) . Normally, this routine
which caused the original entry into monitor mode will be
HALT.

ST141 ST1U1 is the point at which L* is entered when a *START
141* command is issued in monitor mode. Entry at ST141
causes the following to happen:

The contents of working registers R1 - R5 are copied
into cells P1SV - R5SV, and MSTKP is copied into cell
WSPSV. Then reserved machine stack space is opened up
(i.e. the effective size of the machine stack is increased

Appendix 10 - Detailed Descriptions of Kernel Processes 23

ST 142 ST142 is an entry point to the middle of the SV routine
which is meant to be used when saving for restart to
reenter L* after the monitor SAVE command has been
completed. Issuing a *STAPT 142* outside of an execution
of SV will result in an unpredictable context switch since
the register contents are clobbered.

SV SV does the set-up work to allow the monitor SAVE
command to be used, then does the necessary cleanup to
continue after the SAVE is done.

It first saves the registers (NIL, R1 - R6 f WPTP, WTPTT,
WITT, W, WXS, WXN, WHS, WHN, WSTKP) and the first eight
words of the high segment (the *Vestigial Job Data Area*,
clobbered by the monitor), and then goes into monitor mode.
At this point the user is expected to issue a SAVE command
(e.g. *SAVE PSK LSEB*) and then reenter L* by the monitor
command *START 142*. The reentry point is inside SV where
a SETOWP UUO is issued to reallow writing in the high
segment, the first eight words in the high segment are
restored from their save area, an APPENB UUO is issued to
reenable central processor traps, the PC (Program Counter)
flags are reset with a *JFCL 1 7 , . * 1 * instruction, the
registers are restored from their save area, and control
returns to the caller of ^V with the output TRUE in W(0) to
indicate execution is continuing after a save.

If the saved files are PUN at some later time (e.g.
*RUN DSK L S F B *) , the same cleanup occurs as above after the
START 142, except that the output in w(l) is NIT to
indicate a saved program is being restarted.

One of the side effects of the monitor SAVE command not
handled by SV's cleanup is that all the I/O interfaces
currently in use are closed. The L* program must reset
those interfaces (with RSTF) before attempting to use them
again.

from HSTKH to *S?KN), and DEBUG is called. Upon return
from DEBUG, the machine stack space is closed off again
(i.e. the effective size reduced from MSTKM back to
USTKN), and monitor mode is entered. If then *C0NTTNUB* is
typed, control returns to the caller of the routine which
caused the original entrv into monitor mode (before the
START 141).

Note that due to an oversight, changing the integers
WSTKN amd MSTK* will not affect the wav ST141 manipulates
the machine stack pointer since ST141 obtains the size of
reserved stack space from a source other than "STKN and
HSTKH.

Appendix 1 r - Detailed Descriptions of Kernel Processes 24

SWPCX SWPCX (SWaP Context) expects a list of pairs (A1 B1 ...
An Bn) as input W P) and exchanges the full-word contents
of each Ak with the full-word contents of the corresponding
Bk. SWPCX is used instead of PCX, PCX and UCX in cases
where full-word contents must be changed and where context
changes with respect to the particular context cells (the
Ak's and Bk's) are not potentially recursive.

T outputs the characteristic symbol for input W (0) ,
which is the entry for W P) in the type table in W cell

TI TT outputs the type index of symbol w(1) as the value of
W (Q) . The type index is found as the contents of the cell
whose address is W(0) • TD .

U 0 (Up (pop)) pops W (i.e. it removes W (O) .

UCX UCX (Up (pop) Context) is the inverse of PCX. It pops
every other symbol in the list W(C) starting with the
second.

If the input list W(0) is (A1 B 1 ... An Bn) , each Bk
is operated on as in the program : O k D) . The Bk are
normally cells whose contents specify current context in
some way, hence UCX has the effect o* restoring some
previously pushed context.

V V reverses W P) and W(1) in W.

WR writes the list in W(1) to the interface W P) ,
opening the interface and selecting a file for the output
if necessary. Writing to the interface is done by
interpreting W(1) in Write Context (via .XCX) .

The interpreters .IWP and .IPWR do the actual work of
depositing characters into the output buffers and writing
them out when they bocome filled. WR docs one last output
operation to write out the last partially filled buffer
when control returns from interpretation of w (D ,

Appendix 1 1 Detailed Descriptions of Kernel Data 1

• T P T T Standard interpreter type table for execution
(interpretation) of symbols appearing within T / P lists.
Initially contains the following entries : . TP/M for T/H ,
. I P / P for T/P , and .IP/S for T / C , T / T , T/K and T / L .

•ITT Standard interpreter type table for execution outside of
T/P lists (e.g., by .X and .XCX and from T/H routines).
Initially contains the following entries : .T/H for T/H ,
.I/P for T/P , and . T / S for T/C, T/T f T/K and T/L .

AKT1 The character action table which is initially in W cell
WAKT . It initially contains the following character
actions :

ABND
.X
ANK

. Q
ADK
A+K
A-K

N O P

for
for
for

for
for
for
for
for
for

KCR KLP KVT KFF KCR KSP
i
* t % ft () * , . /
: < = > ? & I \ 1 t
all upper and lower case letters
R
^ 1 2 3 4 5 6 7 8 0

all others

APPTT Interpreter t ype table to be used when in Assembly Pead
context to interpret symbols occurring within a program
list. its initial entries are : . IPEX for T/K, .IP/M for
T/H, .IP/P for T/P, and •IP/S for T/C, T/I and T/L .

AFTP Interpreter type table to be used when in Assembly Pead
context to interpret symbols not occurring within a program
list. Its initial entries are : .TEX for T/K, .T/H for
T/M, . I/P for T / p r a n (i t i/ S f o r t/C, T/T and T/L .

AWPTT Interpreter t vpe table to be used when in Assembly Write
context to interpret symbols occurring within a program
list. Its initial entries are : . IPDP for T/K, .TP/H for
T/H, .IP/P for T/P, and .TP/S for m / C , T/I and T/L .

AWTT Interpreter type table to be used when in Assembly Write
context to interpret symbols not occurring within a program
list. Its initial entries are : .IDP for T/K, .I/H for

Appendix 11 - Detailed Descriptions of Kernel Data

Т/Я, .T/P for T/P, and .I/S for T/C, T/I and T/L .

2

P/K Integer whose value is the null character symbol (T/K)
which is the base of the 12R cell block of character
symbols. Appears as the entry for T/K in the base type
table BTT .

PTT Tnitial current base type table in w cell WBTT. Its
only initial entry is integer 3/K for T/K • The current
bases are accessed via WBTT by •TDP , •T°DP , .TEX and
•IPEX . The current character base is accessed via WBTT by
.IWR , .TPWP and RD .

DEC1L An integer (T/I) with value = decimal ten. Mot
initially used anywhere in kernel, but intended to be used
to change current integer radix in W cell WT3 to decimal.

DSK Interface block for reading and writing the disk. Uses
two 2*3 octal word buffers for both input and output.
Initially set to read from file

 m

BOOT. LSF1

* and write to
file

 m

F I L E . L S F
m . Uses channel 1 .

IN01 Integer accumulator used by ADK (the digit character
action) to accumulate a value (via process ACCD) as digit
characters are being interpreted. Also referenced by ABND
(the boundary action) to actually create an integer (when
appropriate), and to clear the integer value.

INU4F e Integer flag used by ABND, ANK, ADK, A + K and A-K to
distinguish between integers and names beinq accumulated.
Cleared by ABND .

TSGN Integer flag used by A-K and ABND to record whether an
integer is positive or negative when one occurs. Cleared
by ABND .

JBAPR PDP 10 Job Data Area location (JOBAPR) which contains
trap location for central processor interrupts. Initially
set by L* to contain EPP1 .

Appendix 11 - Detailed Descriptions of Kernel Data 3

JBCNI Job Data Area location JOBCNI. Contains state of
arithmetic processor as stored by CONI APR when an enabled
trap occurs. (See process description for ERR1)«

JBCOR Job Data Area location JOBCOR. Left Half contains
highest location in low segment with non-zero data (set by
LOADER). Right Half contains user argument on last SAVE or
GET command (set by Monitor). Not referenced by kernel.

JEFF Job Data Area location JOBFP. Right Half contains
address of first free location following the low segment.
Maintained by CSP to point to the top of core in the low
segment so that the SAVE command will work correctly.

JBHRL Job Data Area location JOPHRL. Left Half contains first
free location in high segment relative to high segment
origin. Right Half contains highest legal user address in
the high segment. Left Half is updated by CSP when
additional core is obtained so that the SAVE command will
work correctly. Right Half is used by CSP to locate the
current top of the high segment when additional core is to
be obtained.

JBOPC Job Data Area location JOBOPC. Hsed by monitor to store
previous contents of the user's program counter when a DDT,
REENTER, START or CSTART command is issued.

JBPEL Job Data Area location JOBREL. Contains highest low
segment core address available to the user.

JBR5N Job Data Area location JOBREN. Contains starting
address used by REENTER command. Can be set by user to
provide an alternate entry point.

JBSA Job Data Area location JOBSA. Left Half contains first
free location in low segment. Right Half contains starting
address of user's program. Left Half is updated by CSP to
ensure that the SAVE command will work correctly. Right
Half is set by L* to start execution at the proper location
within the process SV so that saved segments will continue

Appendix 11 - Detailed Descriptions of Kernel Data 4

when they are FPN .

JBTPC Job Data Area location JOBTPC. Where Monitor stores
program counter of next instruction to be executed when an
enabled central processor trap occurs.

KALT Altmode character. Code = 175 octal.

KBELL Bell character. Code * 0*7 octal.

KB SP Backspace character. Code = 01" octal.

KCP Carriage return character. Code = "1r> octal.

KEF Form feed character. Code - 014 octal.

KT,F Line feed character. Code = 0 12 octal.

KSP Space character (blank). Code « 040 octal.

KT AB Horizontal tab character. Code « "11 octal.

KTN Integer whose value is the size of character tables
(initially 128 decimal). Not referenced by kernel.

KVT Vertical tab character. Code = 013 octal.

MSPSV Cell used by ST141 to read out and by EPPOP to read out
and restore the contents of the machine stack pointer HSTKP

Appendix 11 - Detailed Descriptions of Kernel Data 5

WSTK Conticruous block of cells of length MSTKrt appearing in
the kernel immediately before initial T/C available space.
Hsed throughout the kernel for "VM routine linkage and
saving of register contents over machine code subroutine
calls.

PSTKtf Integer whose value is the actual maximum
machine stack FSTK .

size of the

MSTKM Integer whose value is the stack size used in the
machine stack pointer MSTKP under normal conditions. When
an attempt is made to push more than MSTKN entries onto the
stack, a pushdown overflow error trap occurs (see process
description for EPP1). ST141 and EPPOP increase the
operating stack size in MSTKP from MSTKS to MSTKM over the
scope of their execution to provide reserved stack space
for temporary use.

WSTKP Register (17 octal) containing the *>D^1? stack pointer
for the machine stack HSTK. The Left Half contains the
negative count of unused words left in the stack, the Right
Half contains +he address of the current top entry on the
stack.

N/C Integer whose value is the count of cells on initial T/C
avail able space.

N/I Integer whose value is the count of colls on initial T/I
available space.

N/L Integer whose value is the count of colls on initial T/L
available space (not countina reserved T/L space).

N/n Integer whose value is the count of cells on initial T/M
available space.

N/P Integer whose value is the count of cells on initial T/P
available space.

Appendix 11 - detailed Descriptions of Kernel Data 6

N/RL Inteqer whose value is the count of cells on initial
reserved T/L space (in W cell WSPRl).

NACC Cell used by *CCK to accumulate characters being
interpreted into packed form for use by ABMD if a name is
to be looked up or entered into the name table. ABND also
clears NACC before exiting.

NBT! Initial current number-of-bits type table in W cell
WNBTT . Its initial entries are SEVEN for T/K and 7*R0 for
all other types. The bit sizes for each type are used via
WNBTT by the Deposit and extract interpreters . TDP , .IPDP
, .IEX and .IPEX .

NIL Special T/L symbol used throughout the kernel as the
list terminator and as the negative signal from tests. NIL
happens to be the symbol 0 (register z e r o) , but this is
mainly for convenience.

1 The initial name table in W cell WNT which contains all
the names listed in Appendices 3 and 4 . The name table is
a contiguous block of cells of length twice the value of
integer NT1N . Each name entry is two cells long and
contains the right-iustified packed ASCII characters of the
external name in the first cell, and the corresponding
internal symbol in the right half of the second word. NT1I
, which is an integer whose value gives the current number
of entries in the table, is assumed to be the cell
immediately preceding the first cell of the table itself
(NT1). NT1N , which is an integer whose constant value
gives the maximum number of entries the table will hold, is
assumed to occupy the cell immediately preceding NT1I
The current name table is accessed via w cell WNT by the
kernel processes LSNT , LNNT and CSNT .

Integer whose value specifies the current number of
entries in name table NT 1 . Used to locate the current
last entry in the table for searching and making new
entries . Occupies cell immediately preceding NT1 •

NT1N Integer whose value specifies the maximum number of
entries name table NT1 will hold. Compared with NT1I when

Appendix 11 Detailed Descriptions of Kernel Data 7

new entries are beinq made to detect overflow of N T 1

Occupies cell immediately preceding NT1T .

OCTAL Inteqer (m/T) with value = decimal eight. Used as
initial contents of W cell WIS to indicate octal inteqer
radix •

? 1 Register 1 • Used in the kernel as an input-output
reqister for machine code subroutine calls, and as a work
reqister •

R1SV Cell used by ST141 to read out and by ERROR to read out
and restore the contents of P1 .

R 2 Reqister 2 • Used in the kernel as a second input
reqister for machine code subroutine calls, and as a work
reqister •

R2SV Cell used by ST 141 to read out and by ERPOP to read out
and restore the contents of P2 •

Reqister 3 . Used in the kernel as a third input
reqister for machine code subroutine calls, and as a work
register.

R3SV Cell used by ST141 to read out and by ERROR to read out
and restore the contents of R3 .

Register U . used in the kernel as a work register .

R4SV Cell used by ST141 to read out and by ERROR to read out
and restore the contents of R4 .

Register 5 . Used in the kernel as a work register .

Appendix 11 - Detailed Descriptions of Kernel Data 8

R5SV Cell used by ST141 to read out and by ERROR to read out
and restore the contents of R5 •

P6 Register 6 . Used in the kernel as a work register, by
the error locations ERR? - ERR22 to transmit to the common
error routine ERROR the identity of the particular error,
and by machine process prefixes to transmit the location of
the process stem to the prefix subroutine (P?1 f etc.).

RDCX Context list used by EXEC as input to . XCX when
executing the character list obtained from RD . RDCX is
defined as : ((^PTT) WITT (RDPTT) WIPTT) , which causes
the current, interpreter type tables to become RDTT and
PDPTT over the scope of the execution of the character
list.

RDPTT Interpreter tvpe tabic to be used when in Read Context
to interpret symbols occurring within program lists. Its
initial entries are : .IP/K for T/K , .TP/M for T/M , . TP/P
for T/P , and .IP/S for T/C, T/I, and T/L . The context
list RDCX , when used as input to .XCT , will cause
interpretation to occur in Read Context (i.e., using RDPTT
and RDTT) •

RDTT Interpreter type table to be used when in Read Context
to interpret symbols not occurring within a program list.
Its initial entries are : .I/K for T/K , . I/H for T/M ,
•T/P for T/P , and .I/S for T/C, T/I and T/L . The context
list RDCX , when used as input to . Y C X , will cause
interpretation to occur in Read Context (i.e., using RDTT
and RDPTT).

SEVEN Integer (T/I) constant with value = 7 . Used as initial
entry for T/K in tvpe table NPTT .

SP/C Initial available space list for T/C . Appears as
initial entry for T/C in tvpe table SPTT .

SP/I Initial available space list for T/I . Appears as
initial entry for T/I in type table SPTT .

Appendix 1 1 - Detailed Descriptions of Kernel Data

SP/L Initial available space list for T/L
initial entry for m/L in type table sp** .

Appears as

SP/M Initial available space list for T/M
initial entrv for T/* in type table SPTT .

Appears as

SP/P Initial available space list for T/P
initial entry for T/P in type table SPTT .

Appears as

SP/RL Initial reserved available space list for T/L
as initial contents of W cell WSPPL .

Appears

SPTT Initial available space type table in W cell WSPTT
Its initial entries are : SP/C for T/C , SP/T for T/I
SP/L for T/L , SP/M for , and SP/P for T/P •

5PXCX Context list used by C and C/L to execute
space-exhausted routines in Space-Exhausted Context. SPXCX
is defined as : ((.TTT) WITT (.IPTT) WIPTT) , which means
that the standard interpreter type tables .ITT and .IPTT
are used in Space-Exhausted Context.

SPXTT Initial space-exhausted routine type table in W cell
WSPXT . SPXTT has no entries initially ; it is the
responsibility of the L* bootstrap to define
space-exhausted routines and put them into SPXTT before
initial available space of any type is exhausted.

STOP T/L symbol used to mark the level in the higher routine
stack WHN where a T/P symbol occurring outside of another
T/P list was interpreted. Each STOP mark in WHN parallels
a return link in the machine stack MSTK to the point where
a T/P symbol was interpreted from a machine code routine.
.I/P causes the STOP to be pushed onto WHN when first
called, then watches for the STOP each time it Ascends and
exits when the STOP reappears. Interpretation of T/P
symbols within other T/P lists is done by .IP/P , a closed
subroutine which causes a Descend and returns to .T/P .

Appendix 11 - Detailed Descriptions of Kernel Data 11

V C Entry for Type Cell in the initial characteristic symbol
type table TTT . Represents a null symbol of T Y P E Cell ;
its initial full-word contents are zero . Can be used
where some arbitrary symbol of Type Cell is needed, or for
creating null Type Cell symbols with process C (as in CPTR
) .

T/T Entry for Type Tnteqer in the initial characteristic
symbol type table TTT . Represents a null symbol of Type
Tnteqer ; its initial value is zero . Can be used where
some arbitrary symbol, of Type Tnteqer is needed, or for
creatinq null Type Integer symbols with process C (as in
AEND when an inteqer is recoqnized) .

V K Entry for Type Character in the initial characteristic
symbol type table TTT . Also symbol for null character,
and base symbol for characters. Not used for creating Type
Character symbols since that is normally not allowed.

V L Entry for Type List in the initial characteristic symbol
type table TTT . Represents a null symbol of Type List ;
its initial symbol and next (T/L.S and T/L.N) are both =
NIL • Can be used when an arbitrary symbol of Type List is
needed, or for creatinq null Type List symbols with process
C . (Note that process C/L does not create null Type List
symbols since it doesn't initialize the ceils it outputs).

?/M Entry for Type Machine Code in the initial
characteristic symbol type table TTT . Represents a null
symbol of Type Machine Code ; its initial contents
(full-word) are a RETURN (POPJ MSTKP,) instruction. Can
be used where an arbitrary Type Machine Code symbol is
needed, or possibly for creatinq null Type Machine Code
symbols with process C .

T/P Entry for Type Program List
characteristic symbol type table TTT
Program List ; its initial contents are
T/P.N = NIL (i.e., T/P : (NOP)). Used
of W cells KTC and WTCKL . Can be used
Type Program List symbol is needed,
program lists with process C .

in the initial
Represents a null

T/P.s = NOP and
as initial contents
when an arbitrary

or for creating null

Appendix 11 - Detailed Descriptions of Kernel Data 11

TPUE T/L symbol output as a positive result from kernel test
processes when the W(1) input was NTL and merely leaving
the W(1) input a s output would result in confusion. The
processes which do this are : ~S , <S , vs , =T , -C , =1 ,
<I and >I . TRUE is also output by SV when continuing lust
after a SAVE has been done.

TTN Integer whose value is the size of existing type tables
(number of cells) , which is also the maximum number of
types allowed. The value does not control any processing
in the kernel (e.g., no checks are made when accessing type
tables to see if an index > the value of TTN is being used)
; it is only for information.

TTT Initial characteristic symbol type table in W cell WT^T
Holds null symbols of pach type, initially as follows :

T/C for Type Cell, T/I for Type Integer, T/K for Type
Character, T/L for Type List, T/M for Type Machine Code,
and T/P for Type Program List. Used via WTTT by kernel
process T .

^TY Interface block for reading and writing the user's
teletype. Uses two 20 octal word buffers for both input
and output. Operates on channel 2 in ASCII Line mode.

T/L cell used to communicate inputs and outputs between
successively interpreted processes. The prefix subroutines
(P0 1 - P31) handle the transfer of inputs from W to
rege List ind outputs from registers back to W for calls on
machine code processes. The processes . T/s , .TP/S , ABND
, .IEX and .TPEX are all processes which don't use the
standard prefixes and thus push their outputs directly onto

TD Integer whose value is the Type Displacement, which is
the displacement from a symbol to the symbol-description
word for that symbol (i.e., the word holding the symbol's
Type Index). The value used for L * P) is UCC^O octal,
which puts all the symbol-description words into the high
segment provided by the PDP1" Monitor. Changing the value
of TD will not effectively change the Type Displacement
since it is assembled into machine code instructions
throughout the kernel.

Appendix 11 - Detailed Descriptions of Kernel r a t a 12

WAKT W cell which holds current character action table
(initially A*T1) used hy . T/K and •IP/K .

WBTT w cell which holds current base type table (initially
BTT) used by .IDP , .TPDP , .IEX f . TPEX , .IWR , .IPWP and
PD .

WDB W cell which holds Debug routine (initially EXEC)
executed by DEBUG .

WDBCX w cell for holding current Debug Context Swap List used
as input to SWPCX by DEBUG to swan contexts before and
after executing the Debug routine in WDB, and by ERROR to
swap contexts before and after executina the error routine
in WERP • WDBCX is empty in the kernel ; the L* bootstrap
is responsible for setting up a swap list and putting it
into WDBCX .

WERR W cell for holding the current general error handling
routine executed in Debug Context by ERROR . Initially
holds HALT •

WERRL W cell set by ERROR to hold address of particular error
location which made call to E R R O R . Used to identify
nature of error when one occurs.

W cell (register 15 octal) used in L*L interpretation as
stack to hold address of next cell in program list to be
interpreted at each higher level. When a Descend occurs
(as in .T/P and .TP/P) the current next program contained
in W cell WXN is pushed onto WHN to preserve it. When an
Ascend occurs (as in .Q and . I / P) the contents of WHN is
popped into WXN . Setting the contents of WHN to NIL
(i.e., the contents of the top cell) has the effect of
terminating execution of the next higher program list.
This fact is used by .. , ..+ and . .

W cell (register 16 octal) used in L*L interpretation as
stack to hold addresses of higher level programs being
interpreted. When a Descend occurs (as in .I/P and .IP/P)
the current program being interpreted contained in W cell
WXS is pushed onto wus to preserve it. When an Ascend

Appendix 1 1 - Detailed Descriptions of Kernel Data 1 3

occurs (as in . Q and .I/P) the contents of WHS is popped
into WXS . .R , . R + and . R - work by copying the contents
of WHS into W Y N , thus making the higher level program next
at the current level.

WTB W cell which holds integer whose value is the current
radix for integers. Used by processes ACCD and CVTDL .

WIDT^ W cell (register 1? octal) which holds current
interpreter type table for symbols occurring within T/P
lists. Initially contains .T PTT . Changes of
interpretation context are effected by changing the
contents of WIPTT (and WITT). Referenced in the kernel by
• T/P .

WITT W cell (register 11 octal) which holds current
interpreter type table for interpretation of symbols not
occurring within T/P lists. Initially contains . TTT
Changes of interpretation context are effected bv changing
the contents of WITT (and WIPTT). Referenced in the kernel
by DEBUG , ERROR , C , C/L , .X , .XCX , . T/K and .IP/K .

WK W cell set by .I/K and .IP/K to contain the current
character being interpreted. Used bv character action
routines to aet the character they are interpreting, (e.g.,
by ANK , ADK , A +K and A-K) .

WNBTT W cell which holds current number of bits type table
(initially NBTT). Used by .IDP , .IPDP , .TEX and .I"EX .

WNT W cell for stack of current name tables. Initially
contains only NT 1 . LSNT will search each name table in
the stack starting with the top until it locates its input
symbol or has searched all name tables in vain. LNNT
searches similarly trying to locate its input name. CSNT
creates an entry for its input name in the name table in
the top of the WNT stack (i.e., the contents of cell WNT).

WPTR W cell (register ^) to hold the address of a P D P 1 C byte
pointer used for depositing and extracting bit patterns.
When .IDP , .IPD^ , .TEX and .IPEX use WPTR they assume
that it contains a byte Pointer which P O I N T S to the field

Appendix 11 - Detailed Descriptions of Kernel Data 14

to be operated upon. WPTR is initially empty, but pointers
can be created by CP^p a n a then stored into WPTR for use in
depositing and extracting. Dyte pointers can also be moved
a number of bits within the current word pointed to by
WVPTP .

WRCX Context list used by WP as input to .XCX when executing
the list input to WP as W (1) . WRCX is defined as : (
(WRTT) WITT (WPPTT) VIPTT) , which causes WPTT and WRPTT
to become the current interpreter type tables over the
execution of the list being written.

WRD W cell which holds current read interface (initially
TTY). Used by EXEC to obtain the interface to be read from
(i.e., the interface to be the W (n) incut to R P) . FXEC
also resets (via FSIE) the current interface in WRD when an
end-of-file is detected.

WPDBK W cell containing current read break character
(initially . Used by ED to determine when to stop
reading characters from the actual external interface and
return with its output character list. ^D will continue to
read characters until it encounters one that is the same as
the one currently in WRDBK ; thus, the last character on
the list output hy RD will always be the current break
character, and will be the only occurrence of the break
character on the list.

WRPTT Interpreter type table to be used when in Write Context
to interpret symbols occurring within program lists. Its
initial entries are : .IPWR for T/K , . IP/M for T/1 , . TP/P
for T/P , and .TP/S for T/C , T/I and T/L . The context
list WRCX , when used as input to .XCX , will cause
interpretation to occur in Write Context (i.e., using WRPTT
and WRTT) .

WRTT Interpreter type table to be used when in Write Context
to interpret symbols not occurring within a program list.
Its initial entries are : .iws for T/K , .I/H for T/H ,
.I/P for T/P , and •T/E for T/C , T/T and T/L . The
context list WRCX , when used as input to .XCX , will cause
interpretation to occur in Write Context (i.e., using WRTT
and WRPTT) .

WSPRL W cell to hold the reserved available space list for T/L
(necessary since execution of space-exhausted routines

Appendix 11 - Detailed Descriptions of Kernel Data 15

WSPTT W cell for current available space type table (initially
contains SPTT) . Used by C and C/L for obtaining cells
from available space lists, and by E and E/L for returning
cells.

WSPXT W cell for current space-exhausted process type table
(initially contains SPXTT) . Used by C and C/L to obtain
the current space-exhausted process when available space of
some type is exhausted.

WTC w ceil which specifies current type being created
(initially contains T / P) . Used by CSNTW which is called by
CSNT , which is called by ARND when a name has come across
the input interface which isn't defined in the current name
tables. CSNTW creates a new symbol of the same type as the
symbol currently in WTC to go with the new name it enters
into the name table.

WTCKL W cell which contains the type to be used for creating
character lists (initially contains T/P). Used by PD ,
CVNKL and CVIDL .

WTTr W cell which holds the current characteristic symbol
type table (initially TTT). Used by process T .

rMV W cell which holds current output interfaces (to be
treated as a stack of interfaces, all of which would
receive output). Not referenced in kernel, but to be used
by print routines defined in bootstrap.

WXN W cell (register 14 octal) which holds next operation at
current level during L*L interpretation. When an Advance

requires some T/L space as working space before additional
space can be obtained from the monitor). When C or C/L
detects that T/L space has been exhausted, it will make the
reserved space list, from WSPSL the current available space
list for T/L in the type table in WSPTT before calling the
space-exhausted process from the type table in WSPXT . The
space-exhausted process is given the responsibility of
building a fresh reserved available space list and storing
it into WSPPL .

Appendix 11 - Detailed Descriptions of Kernel Data 16

WXS W cell (register 13 octal) which holds current symbol
being, interpreted. During Advance, before WXN is stepped
ahead, WXS gets the symbol of the cell pointed to by the
contents of WXN (i.e., the next symbol to be interpreted).
During a Descend, WXS is pushed onto WHS ; during an
Ascend, WHS is popped into WXS . Interpreters for symbols
occurring within program lists (.IP/K , .IP/M , .IP/P ,
.IP/S , .IPDP , .TPEX and . IPWP) all get the symbol to be
interpreted as input from WXS . (The remaining
interpreters receive the symbol to be interpreted in R1) .

ZERO T/I constant with value = Used as initial entry in
type tables PTT and NBTT for all types except T/K .

occurs, the contents of WXN is replaced bv the link of the
cell pointed to by the original contents. During a
Descend, WXN is pushed onto WAN • during an Ascend, WHN is
popped into WXN . Tn .I/P , WXN = NIT when attempting to
Advance signals the end of the current level and triggers
an Ascend; WXN - STOP when attempting an Advance triggers
an Ascend followed by a return to the caller of .I/P
Setting WXN - NTL has the effect of terminating
interpretation of the current level; this fact is used by
the control operations . ? and •.- .
The repeat operations .R , .R+ and .R- operate by copying
the current contents of WHS (the higher rcutine cell) into
WXN •

Appendix 12 Operational Notes 1

(1) TO RUN THE VERSION OF L*(F) WHICH INCLUDES THE BOOTSTRAP, DO
(IN COMMAND MODS) :

P LSFA

THE SYSTEM WILL RESPOND WTTH *VX>C RESTARTED* AND PTJT YO!T IN
CONTROL BY R EADT NG FROM THE TTY .

(2) TO GET A COPY OF THE L*(F) KEPNEL MACRO-1C LTSTTNG, USE THE
FOLLOWING PIP COMMAND:

LPT:~DSK:LSF. LSTf 167, 7737«]

(3) TO GET COPIES OF THE BOOTSTRAP FILE, ON-T.INE EDITOR FTLE AND
STEPPING MONITOR FTLE TNTO YOUR DSK A nFA SO THAT YOn CAN
RUN THROUGH THE BOOTSTRAP, USE THE FOLLOWING PIP COMMAND:

PSK:/X*-SYS : BOOT. LSF, EDTTF. LSF,STPM?.LSF

(«) TO RUN THROUGH THE LOADING OF THE BOOTSTRAP PO:

R LSF

DSK WRD 3 f

THE SYSTFM WILL RFSPOND WITH '"INITIAL BOOTSTRAP LOADED*.
IF YOU THEN DO IN L* THE FOLLOWING:

EDTTF PD"!

STPM* PDF!

THIS WILL BRING YOU TO THE SAME POINT WHERE YOU WOULD BE
AFTER RUNNING LSFA .

(S) TO DO A SAVE FOP RESTART (ONLY IF YOU HAVE THE BOOTSTRA 0

ROUTINES LOADED) DO:

SAVE!

THIS WILL PUT YOU INTO MONITOR MODE. NOW DO:

Appendix 1 ? - Operational Notes 2

SAVE DSK <-wTL5 NAME>

THIS WTLL CREATE THE TWO FILES <FILE NAME>. LOW AND
<FTLE N A1E>. HGH WHICH CONSTITUTE A SAVED VERSION OF YOUR L*
SYSTEH. NOW DO THE MONTTOP COMMAND:

START 1tt2

THE L* SYSTEM (I.E. THE pPQCESS CALLED *SAVE m) WILL
RESPOND WITH m V X X CONTINUING*, AND YOO APE BACK IN L*.

AT SOME LATE»? TI*E YOH MAY RESTART YOOP SAVED L* SYSTEM BY
ISSUING THE MONITOR COMMAND :

PUN DSK <FTLE VAME>

WHERE <FII.E NAME> IS OF COURSE THE SAME NAME YOO USED WHEN
YOH DTD THE *SAVE* COMMAND. THE SYSTEM W TIL RESPOND WITH
VXX RESTARTED ANT) CONTINUE WHEPE YOU LEFT OFF. THIS IS
IN FACT HOF THE SY CTEM LSPA IS CREATED: PY PANNING LSF (THE
BASE KERNEL), LOADING THE BOOTSTRAP, "DTTOR AND STEPPING
MONTTOP, AND THEN SAVING IT WITH <FTLE N A M E> LSFA .

*. ppenflix 13 - Listing of Pootstrap Filo BOOT. LSF

; INITIAL BOOTSTPAP - L*(F)

; DEFINE ROUTINE FOP RFPLACING C
5

*AR ACTER ACTTON
; RCKA : (WAKT S ,Q T/K ITC -SS + IS P)

T/T WTC P !
ITC ГТ ! ; PSFINE ТЕИР TNTEG^R CELL FOR BOOTSTPAP
T/P WTC R !
P RCKA R ! +TS RCKA I ! -SS RCKA I ! ITO PCKA I ! T/K RCKA
.0 RCKA T ! S RCKA I ! WAKT ПСКА I !

; ** DE'TNE CHARACTER ACTTONS POR NA KE : (. . .) **

; DEFI NE ACTTON FOR :
; T1SEN : (WUSEN S)

T/L WTC R !
T/L C ! WUSEN R !
T/P WTC P !
S USEN R ! WUSEN tlSBW I !
USEN ' : RCKA !

; DEFINE ACTTON FOP (
; STRI, : (P WUSEN S =S STRT.1 P N EL P NTL V RN WC I WFLR S)
; STELI : (STRL2 V)
; ST?L2 : (. • WTC S C . .)

T/T. WTC R !
T/L C ! WFLR R !
WC U !

T/P WTC P •
S STRL R ! WPLR STRL I ! I STRL I ! WC STRL I !
RN STRL I ! V STRL I ! NTL STRL I ! P STRL I !
FL STRL T ! N STRL I ! P STRL I !
STRL' STRL I ! =S STRL I ! S STRL T ! WUSEN STRL I !
P STRL I !

7 STRL 1 R ! STP.L2 STRL1 I !

.. STRL2 P ! C STRL2 I ! S STR L2 I ! WTC STRL2 T !

.+ STR 1.2 T !

STRL '(RCKA !

; DEFINE ACTION FOP.)
; ENDL : (ENDL1 U WC S D P WUSEN S =S ENDL2 WC D)
; ENDL1 : (P WFLR S =S .• WC S TA ,R)
; ENDL2 : (ENDL3 U)

Appendix 13 - Listina of Bootstran wile BOOT. LSF 2

; ADn ROTIN DAPY ACTION TO SOI F SPECIAL CHARACTERS

T/L WTC R !
.ICX : ((.ITT) WITT (.IPTT) WI^TT)
T/P WTC R !
(ABND .ICX .XCX) '! RCKA !
(ABND USEN) RCKA!
(ABND STRL) ' (RCKA !
(ABND ENDL) ') RCKA!

; SET UP DEBUG SWAP LIST TO ^ORCE READ EROS TTY

T/L WTC R!
DWRD: (TTY)
DWRPB: (KLF)
DWWR: (TTY)
DNIL: (NIL)
DWITTj (.ITT)
DWIPT: (.TPTT)
DBCX: (DWRD WRD DWRDP WRDBK DWWR WWR. DNIL NIL DWITT WITT DWIPT WIPTT)
DBCX WDBCX R •

; DEFINE WORKING CELLS AND SAVING UTILITY RTNS

WO U! W1 U! W2 U! W3 U! W4 U! W5 U!
TC U? T1 U! T2 0! T3 U! TU U! T5 U!
WSAVE U!
T/P WTC S!
SAVEW: (WSAVE I)
RSTRW: (WSAVE S WSAVE D)

; ENDL3 : (.+ MC S ..)

E ENDL F ! WC EN DL T ! ENDL 2 ENDT T !
=S END L T ! S ENDL T ! WUSEN FNDT. T •
P ENI'L T ! D ENDL T ! S ENDL T !
WC ENDL T ! [J ENDL I ! ENDL 1 ENDL T !

. P E*?DL1 5 • TA ENDL1 T ! S FNDT.1 T !
WC ENDL1 I ! .+ ENDL1 T ! =S ENDL1 I !
S ENDL 1 T ! HFL" ENDL 1 I ! P E*!DL1 I !

U ENDL2 P ! ENDL3 ENDL2 I !

.. END 13 P ! S ENDL3 T ! WC EN DL 3 T !

.+ END L3 I !

ENDL ') PC*A !

Appendix 13 - Listing of Bootstrap File BOOT.LSF

; DEFINE TYPE DECLAPAT ION POUTINES

DEF/L: (T/L WTC *)
DEF/P: (.0 T/P WTC R)
DEF/J: (T/I WTC S)
; DEFTNF & ACTTON - A&>T MAKES A OF TYPE T
DEF/L!
TYPL: C I "VT 'L T/L 'P T/P ' M T/M 'C T/C)
DEF/P!
(WRN N S S I WHN N P S N V R ; G^T NEXT CHAR. AND ADVANCE
TYPL (P S W? S =S .+ N N P .R+ HALT) ; FIND CHAR. SYMBOL
N S WTC I ABND P WTC S TT? TI V RT ; 1AKE SURE OF ITS TYPE
WTC D WC P)

'& RCKA!

; DEFINE * ACTION - CREATES LIST OF CHAPACTEPS

STPKL: (WTCKL S C WC T WFLR S)
ENDKL: (ENDL 1 U WC S P D WC D)

(ABND WHN N P SAVFW S ; GET TN PITT LIST
STRKL V ; START K-LIST
(P S .0 "* =S . • P S V N P .P+) ; TERMINATE ON m OR EOL
N RSTRW R ENDKL) ; ADVANCE BEYOND * AND FND LIST

'* RCKA!

; DEFINE OUTPUT ROUTINES

P . P* U) WC D)

,0 »)» WRWWR)

WRWWR: (W* I WWR (P S WO S V WP N
CVSI: (SAVFW T/I C P RSTRW V R)
PRN: (P LNNT P PPN1 P WRWWR EL)
PRN1: (PRN2 V U CVNKL)
PRN2: (.* 0 CVSI P CVIDL V E . .)
FRI: (.O'M»* WRWWR CVIDL P WRWWR FL
PRS: (P PRN P T/I =T (.- PPI ..) U)
PR: (P PRN . 0 »: m WRWWR PRSTP CR.TF)
PRSTR: (P T/I =T (.- PR! ..)

P T/L =T (.- PRLS ..)
P .Q T/P =T (.- PPLS ..)
P .0 T/K =T (.- P LNNT P (.- U ,,) U
PRN) ; PRINT NAMF ONLY OF ALL O'TH'P

FRLS: (,Q * < * WRWWR
(P S PRSTX N P SPACE .R)
U .0 *) * WRWWR)

TRST1: (P LNNT P (.- V U CVNKL P WRWWR EL ..) U PRSTR)
PRST1 PRSTX R!
PRL: (.0 PRS ,Q PRSTX
SPAC?!: (.0 * * WRWWR)
CR.LF: (.Q (KCP KLF) WRWWR)

. 0
TYPES

WRWWR WRWW* ..)

P PR . Q PR STI .0 PRSTX R)

Appendix 13 - Listing of Bootstrap File BOOT.LSF

; DEFINE m Y P E TABLE AND CHAP ACTE R ACTION TABLE PROCESSES

SETT: (V IT*> TT +IS S)
FETT: (V IT"1 TT -US R)
IETT: (V IT? TI +TS T)
DETT: (V TT' TI *TS D)

SCKA: (W A KT S . Q T/K ITO -SS +IS S)
ICKA: (PAKT S .0 T/K IT* -SS +TS I)
DCKA : (WÄKT S .0 T/K IT« -SS +IS D)

DEFINE ELEMENTARY SPACE PROCESSES

CSPT - ADD 2'.
CSPT: (P

2? C > V
CSP
p

LNKUP
V WSPT'

" CELLS TO AV.SP FOR TYPE W(^)
; SAVE TYPE SYMBOL
; GET NO. OF CELLS
; GET CELLS OF CORRECT TYPE FPOM MONITOR
; COPY START ADDR

; LINK HP THE 2?"'? CELLS
S RETT) ; PUT IN AV.SP TYPE TABLE

; LNKUP -
LNKUP: (P

LTNK
V) I

W(1) CELLS STARTIMG AT
; SAVE START ADDP

W(C) INTO A LIST

V +TS W1 I
(W* S
P 1 +IS !
W1 S =S ,
P W? R
V PN . R)

U NIL V PN
HO D W 1 D)

SAVE END ADDP +1
GET CURRENT CELL
GFT NEXT CEIL
EXIT IF END
SAVE NEXT AS CURRENT
STORE NEXT AS LINK OF CURRENT
LINK OF LAST CELL NIL

SPXTT RTN FOR T/P CSP/P: (.0 T/P CSPT)
CSP/L: (T/L CSPT T/L C P WSPRL R N/PL SPCLICT RI

(P NTL V I SPCLT -1 SPCLI *I n =1 .P- U))
CSP/*: (.0 T/M CSPT) ; SPXTT "TN PO» T/M
CSP/I: (T/I CSPT) ;SPXTT R T N FOP T/I
CSP/C: (T/C CSPT) ;SPXTT RTN FOP T/C

SPXTT PTN FOR T/L

CSP/P
CSP/L
CSP/M
CSP/T
CSP/C

T/P
T/L
T/M
T/I
T/C

WSPXT
WSPXT
WSPXT
WSPXT
WSPXT

S!
S!
S!
S!
S!

RETT!
RETT!
RETT!
RETT!
RETT!

INSTALL PTNS IN CURRENT SPACE
EXHAUSTED PTN TYPE TABLE

; DEFINE ASSEMBLY PROCESSES

Appendix 13 - Listing of Bootstrap File BOOT. LSF 5

; DEFINE FILE NAMING PROCESSES

; AW6BT - SETU" FOR STXBIT AW
AW6BT: (6 .0 T/K WNBTT S IETT ; PUSH 6 FOP SI2E

3/K -U' " +1 .0 T/K WBTT S TFT?) ; PUSH NULL-UC FOR BASE

; AWRS - POP STXBIT SE^UP FOP AW
AWRS: (.Q T/K WNBTT S DETT .0 T/K WBTT S DETT)

; SETRD - W(0)=SYMBOL AND USES EXTERNAL NAME OF IT . LSF
SETRD: (DSK RSIF AW6BI ; SETUP FOR SIXBIT AW AND RESET TNTEPFACE

LNNT CVNKL DSK M I S P C V PI AW ; LAYDOWN STXBIT F T L r NAME
.Q m L S * * DSK 5 +IS P 1 V PI AW ; LAYDOWN SIXBIT EXTENSION
AWPS) ; CLEAN-UP AND EXIT

; SETWR - WC)=SYMBOL AND USES EXT NAME OF IT . T.SF
SETWR: (DSK RSIF AW6BI ; SE^UP ''OP SIXBTT AW AND RESET TNTERFACF

LNNT CVNKL DSK 10 +IS P 0 V PT AW ; LAYDOWN SIXBIT FILE NAME
.0 mI.SF* DSK 11 +IS P \! V RI AW ; LAYDOWN SIXBTT EXTENSION
AWPS) ; CLEAN-UP AND EXIT

; RDF - SIMPLE VERSION - READ FROM FILE W(?) INTERFACE DSK
RDF: (SETRD DSK WPD I)

; WRF - SIMPLE VERSION - WPI^E FILE W(*) INTERFACE DSK
WRF: (SETWP DSK WWR I)

UEF/L!
WAPT"": (AHTT) ; CURBENT ASSEMBLY READ TYPE TABLE
WARPT: (ARPTT) ; CURRENT AR T/P TYPE TABLE
WAWTT: (AWTT)
WAWPT: {AWPTT)
ARCX: (WAPTT WTTT WARPT WIPTT) ; CONTEXT LIST FOR AR
AWCX: (W AWTT WTTT WAWPT WIPTT) ; CONTEXT LIST FOP AW

DEF/P!
; AR - START AT W (^) , EXECUTE LIST W(1) INTERPRETED WITH
; ARTT AND ARPTT, THEN MAKE A LIST OF TYPE
; WTCKL.S OF ALL THE EXTRACTED SYMBOLS.
AR: (CPTR WPTR I ; CREATE PTR TO LOC W (n)

STPKL V ; START A LIST 0" TYPE WTCKI.S
AR~X .XCX ; EXECUTE LIST W(1) A/C AR CONTEXT LT ST
ENPKL ; BUILD THE LIST
WPTR S WPTR D E) ; POP WPTR AND ERASE CREATED POINTER

; AW - START AT W (^) , EXECUTE LIST W(1) INTERPRETED WITH
; AWTT AND AWPTT.
AW: (CPTR WPTR I ; CREATE PET TO IOC W(C)

AWCX .XCX ; EXECUTE LIST W(1) \/Q AW CONTFXT LIST
WPTR S WPTR D E) ; POP WPTR AND ERASE CREATED POINTER

Appendix 13 - Listinq of Bootstrap File BOOT.LSF

? DEFINE SAVE FOP RESTAPT ROUTINE

SAVE: (SV TTY RSIF DSfC RSIF ((.- .0 *V32 CONTINUING* ..
.0 *V32 RESTARTED*) WRWWR CP.LF)

; END OF INITIAL BOOTSTRAP - NOTIFY USER AMD GO TO HTM

CR.LF! *TNITTAL BOOTSTRAP LOADED* MR WW R.! CR.LF! CR.LF!
TTY WRD R!

Appendix 1U - Listing of Editor File EDTTF. LSF

; SIMPLE ON-LINE EDITING SYSTEM FOR T.*(F)
; EDT CHANGES KCR TO GET NEXT AND PRINT SYMBOL IN NEXT,
; LEAVTNG NEXT IN W TO BE EDITED AS DESIRED. EDT STARTS
; 3Y PRINTING FIRST SYMBOL. EDT ALSO POTS EDTND TN W
; AS MARKER, BOTH FOR TJSER AND FOR EDT. (SEE BELOW).
; DO NOT REMOVE MARKER.
; ED". REMOVES ALL SYMBOLS TN W DOWN TO (AND INCLUDING) EDTND.
; IT ALSO RETURNS ACTION FOP KCP TO PREVIOUS VALUE.
; EDTCRA IS ACTION FOR CR.
; EDTD ALLOWS USER TO GO DOWN A LEVEL.

; NOTE : ONE TS NOT *IN A SYSTEM* WITH EOT, BUT SIMPLY CAN
; ST pP THROUGH PPOGRAMS AT WILL, DOING WHATEVER

OTHEPR PROCESSING SEEMS APPROPRIATE. IT IS A GOOD
; IDEA, HOWEVER, TO LET EDT. CL PA N UP FOR YOU.

EDT: (EDTSTó'L RN EDTND6*L .0 EDTCP .0 KCR ICKA EDTST)

EDT.: ((P EDTND =S .+ U .R) PRS CP.LF .Q KCR DCKA)

EDTCR: ((P EDTND =S .- EDT. ..) ; OUIT IF NO MOPE
(N P . - P S PPS SPACE ..) ; PRINT SYMBOL IF FIND NEXT
. Q '= WPWWR »RS SPACE) ; PRINT «NIL AND REMOVE NIL IF END

EDTD: (P S EDTST RN EDTST)

CP.LF! *EDT LOADED* WPWWP! CP.LF«
TTY WRD R!

Appendix 15 - Listing of Stenpinq Monitor File STPMF.LSF 1

STEPPING MONITOR FOR L*(F) - R STP
RSTP! CHANGES KCR TO STEP THROUGH A PROGRAM («{"•)).

RSTP IS A CLOSED SUBROUTINE AND CAN BE EXECUTED FROM
WITHIN A PROGRAM.
AT EACH POINT IT EXECUTES AN ARBITRARY ROUTINE FROM WSSTP.
THE DEFAULT PRINTS W (PRL), WITH THE SYMBOL TO BE
EXECUTED SITTING IN THE TOP OF W.
DOING KCR EXECUTES W(^) AND ADVANCES TO THE NEXT ONE.
THUS, W(C) CAN BE CHANGED BEFORE C*, CHANGING WHAT IS EXECUTED.
THE SAME PATH IS FOLLOWED AS WITH REGULAP INTERPRETATION.

THE USER MAY ALTER TH* CON^POL FLOW BY U"TNG ONE OF
THE FOLLOWING CONTROL PROCESSES: 5. R.-
R. . R. . - R. . + R. R R. R- R . P+
TO EXIT A LEVEL WHEN CODE DOESN'T SHOW TT: U! R.

RSTP.! TERMINATES THE STEPWISE EXECUTION AND RETURNS KCR
TO ITS PRIOR STATE. RSTP. REMOVES THE ITEM FROM W, BUT
W WILL STILL HAVE ARGUMENTS IF A ROUTINE WAS
TERMINATED IN MID-STREAM.

RAUTO! CONTINUES THE STEPWISE EXECUTION IN AUTOMATIC MODE
UNTIL AN SMANU IS EXECUTED OP UNTIL NORMAL TERMINATION.

RSTPD! ALLOWS THE USSR TO DESCEND ONE LEVEL TO STEP
THROUGH A NAMED PROGRAM SUP-LIST.

NO^E: ACCESSES TO WHS OR WHN APE CHANGED TO ACCESSES TO
RWHS OR RWHN. YOU MAY RUN INTO PROBLEMS IF YOU T * Y

TO PEACH ACROSS THE BOUNDARY (I.E. THE LEVEL RSTP
WAS ENTERED).

DEF/P!
RSTP: (RWXSft'L R NIL '•WYN^L R .0 RSTPV . 0 KCR ICKA .0 NOP RDSC RSTPX REXEC)
RSTPD: (RWXS R .0 NOP RDSC)

RS7°X: (R.X (RADV RASC . R + F,S?P. ..) RWXS S WRSTP^L S .X)

RAUTO: (NIL RAUSW R (R.X (RADV RASC .R+ RSTP. ..) RWXS S WRSTP S .X RAUSW S .R-))

(W PRL) WRSTP R !

RSTP.: ((RASC .R*> .0 KCR DC KA .0 *..REND * WRWWR WRSTP S .X TRUE REXSW R)

RADV: (RWXN S P S RWXS P P N RWXN R)

RASC: (RWHS6*L N R . - R WHS S RWXS R RWHS D RWHN^L S RWXN P. RWHN D)

RDSC: (RWXS S RWHS T RWXN S KWHN I RWXS S RWXN R)

Appendix 15 - Listing of Stepping Monitor w i l e STPMF.LSF 2

8.X: (P T 8I"T,0L SBAL .X)

8ITL: (T/P S/P T/M 8/M T/L 8/L T/I .X T/K .X T/C .X)

5/P: (P LNNT (. - .X ..) 8WXS R 5 DSC)

S/M: (8IL/M SBAL .X)

SIL/M^L- (. 8. .+ S.+ .- 8,- .. 8.. 8..+ ..- 8..-
. R S.R .P+ S.R + . R- 8.R- . 0 8.0 .X 8.X)

8/L: (8TL/L SBAL)

81L/I.&L: (WHN 8WRN WHS 8WHS)

5.: (NIL 8WXN R)
8.+: (.- 8.)
8.-: (.+ 8.)
S..: (NIL 8WXN R NIL SWHN R)
5. . +: (. - 8. .)
8. . -: (. • 8. .)
8.R: (8WHS S 8 WXN R)
8. R + : (. - 8. R)
8. R-: (. • 8. R)
8.Q: (8WXN S S 8ADV !J)

SBAL: ((V W^ I (P S »1 S =S . + N N P ,P» H »!) S ..) N S) W? D)

8MANU: (TRUE 8AUSW0L R)

8EXEC: (NIL 8SXSW6»L R (8EXSW S . + WRD S RD P SEXSVi^L R
PDCX .XCX 8EXSV S EL .R))

; RE^HPN TO USER

CR.LF! *STPM LOADED* WRWWR! CR.LF!
TTY WRD R !

K p o e M i x 16 - List ina of Utilities File U T . I L F . L S F 1

U T I L I T I E S F O P L + C 7)

C T Y P - C R E S T E N E W T Y P E W O) S T M T L I ! \ P T O W(1)

C B L K - C R E A T E B L O C W<0) W O R D S L O N G O F T Y P E W(1)

C T Ï - C R E A T E N E W T Y P E ""ABLE

L O D T T - L O A D T Y P E T A B L E W(">) W I T H W(1) A S E N T R I E S

. X T T - E X E C U T E W(1) B Y T Y P ? T A B L E W O

R N NT - R E P L A C E N A M E W(1) B Y S Y M B O L W < 0) I N N A M E * A B L 5

C T Y P - C R E A T E N E W T Y P E M A K E S <W(0)) T H E C H A R A C T E R I S T I C S Y M B O L
F O R A N E W T Y P E S I M I L A R T O (W (1)) . C T Y P S E T S
U P T H E C U R R E N T T Y P E T A B L E S W I T H T H E A P P R O P R I A T E Ü N T R T E S .
A B L O C K O F S P A C E T S O B T A I N E D B O R T H E N E W T Y P * , B U T N O
A T T E M P T I S M A D E T O B U I L D A S P A C E E X H A U S T E D R O U T I N E .
F,BB1? I S U S E D F O R T H E S P A C E E X H A U S T E D ? T N .

N O T E : A F T E R D O I N G A C T Y P , Y O U M A Y W H T C F T O D O A N Y O R A L L O F
T H E F O L L O W I N G :

T/- : () ; D E F I N E T H E C H A R A C T E R I S T I C S Y M B O L
(?/- C S P T) T/- W S P X T S ! R E T T ! ; D E F I N E A S P A C R - E X . P T N .
(p T/- = T .- P R — . .) P P S T R T ! ; D E F I N E A P R I N T P T N .
! / - T Y P L I ! '- T Y P L T ! ; S F T U P <o>- F O P D E F I N I N G T/-
— 5 I T L I ! T/- & I T L I! ; S E T U P 5 S T P T O H A N D L E ?/-

6 T . H I 0 I PI! ; C U R R E N T H I G H E S T T Y P E I N D E X

D E F / P !
C T Y P :

W1 S
T. H I
WD S
W1
W 1
W1
W1
W1
W1
W 1
W1

< W O I H 1 I
W ̂ S P C
1 T.HT +T
RT
. TTT SETT W"> S
. IPTT SETT WO S
ARTT SETT WO S ARTT PE^T
ARPTT SETT Wf- S ARPT^ RETT

S AWTT SETT WO S AWTT RETT
S AWPTT SETT s A W P T m RETT
S BTT SETT WO S BTT RETT
S N BTT SETT WO 5 N 3 T T RETT

; W - N F W T Y P E , W 1 - M O D E L
; S E T U P C H A R A C T E R I S T I C S Y M B O L

; F I N D N E W T Y P E I N D E X A N D B U M P I N D E X C N T
; S E T T Y P E O F C H A R A C T E R I S T I C S Y M B O L

T T T R E T T ; C A R R Y O V E R E N T R I E S F O R T Y P E T A B L E S
. I P T T R E T T

. 0 E R R 10 WO S S P X T M R E T T
W1
W 1
W1
W1
WO
WD

S
S
S
S
S
s

R D T T S E T T W O S R D T T R E T T
R D P T T S E T T W"! S R D P T T R E T T
W R T T S E T T W O S W R T T R E T T
W R P T T S F T T WO S W R P T T R E T T
P T T T R E T T ; S E T C H A R . S Y M B O L I N T O T Y P E T Y P E T A B L E
C S P T ; G E T A B L O C K O F S P A C E F O R T H E N E W T Y P E

http://ut.ILF.lsf

Appendix 16 - Listing of Utilities File UTILE.LSF

WO D W1 D) ; CLEAN- UP AND EXIT

; CBLK - CPEATE BLOCK W O) WOPDS LONG OF TYPE W(1)

CBLK: (T> ir> T W1 T W2 I ; W R - W 1-LENG^H, W2-TYPF
(W S 2 0 ^ <I . - HALT) ; ERROR TP BLOCK TOO L*RGE
W2 S C P »3 I SAVEW
(w S -1 A +1 P I =T •+ w: R

W3* WSA VE-CURRENT LOC
EXIT 17 WF HAVE ENOUGH

W 2 S C W 3 S 1 + IS P 83 P =S .3r • REPEAT I * SEQUENTIAL
W1 S W" R W 2 S C P W3 R WSAVE R . R) ; START OVER IF NOT
U WO D W 1 D W 2 D W 3 D RSTRW) ; CL3AN-UP AND EXIT.

; CTT - CREATE NEW TYPE TABLE

CTT: (T/C TTN CBLK)

; LODTT - LOAD TYPE TABLE W(^) WITH W(1) AS ENTRIES

LODTT: (P WO I TTN •IS W1 T W2 I ; WC—START, W1-END, W2—ENTRY
(W S W1 S = S . • W2 S WO S R W A S 1 +IS R « R)
WO D W1 P W2 D)

; • XTT - EXECUTE W(1) BY TYPE TABLE W()

• XTT: (V TT^ TI +TS S .X)

; P N NT - REPLACE NAME W(1) BY SYMBOL W (0) IN NAME TABL*

RNNT: (V LNNT 1 + IS P)

; NOTIFY USER AND RETURN TO HTM
CR.LF! ^UTILITIES LOADED* WRWWP! CP.LF*
TTY WPD R!

appendix 17 - Listing of Dictionary File DTC m F. LSF 1

DTCT TONfiRY TREE FOR L*(F) WITH SYNTAX ACTIONS AND CONTEXTS
REOUTR. EVENTS : UTTLF

FO^M OF NODE OF TREE:
NODE : (CHARACTER RECOG-LIST TIP-LINK NODE ... NOD?)

FORM O F RECOG-LIST:
RECOG-LIST: (CONTEXT SYMBOL ... CONTEXT SYMBOL)

NODE OF DEFINITION OF A SYMBOL IS PLACED IN A CONTEXT-NODE
LIST POINTED TO BY THE N^XT-PAPT OF SYMBOL-DESC. WORD.

N.NA IS THE NAME NODE ACTION TJS? d Fnp ALL CHARACTERS, EXCEPT
THOSE HAVING SPECIAL ACTIONS.

ABND1 TS THE ROHNDAFY ACTION FOR THE DICTIONARY.

SYNTAX ACTIONS ARE OF THE FORM :
(PRECEDENCE-ORDER IMMEDIATE-ACTION DELAYED-ACTION)

. ZATT POINTS TO TR^" CURRENT SYNTAX ACTION TYPE ^ABLF:
ZAW - INPUT SYMBOL TO W
ZA - SYNTAX ACTION INTERPRETER (FOR T/ZA)

T T R E ^ L : (NTT. NIL NIL) ; IN TTTAL DICTIONARY TREE
ETREE WNfrl. R! ; WN HOLDS POINTER TO CURRENT NODE IN DT
DEF/P!
NN A : (WN S N N (N P . - P S S W K S =S . R- S WN R. TRUE) . • T/L

C P WN S V R P NIL V I P W K S V I P W N S N N IA WN R)

ABND1: (WN S DTRFE =S (<TWn>»F 1 =T .- T/I C P (TSGN 2 0 /RI
0 = 1 .+ 0 INUM TNUM -I U) TNUM V RT ..) WN S N S P (.+ U T/L
C P WN S N R P WTC S C P SAVFW V R ABND2 ..) LSCSL P (.- S ..)
II WN S N S P WTC S C P SAVFW V I ARND2) DTPEF WN R
' TNUM PI * INUMF RI 0 TSGN R.I P .ZATT S . XTT)

ABND? : ((WC^X S V I WSAVE S TD + IS P (N WN S T/L C P SAVEW
R WCTX S WSAVE S I RSTRW V RN ..) N P SAVEW WN S V I WCTX S
RSTRW I) RSTRW)

ANK1: (-1 INUMF PI NNA)

ADK1: ((INUMF G =T .- 1 INUMF RT) NNA INUMF -1 =T .• WK S ACCD)

A-K1: ((INUMF 1 =1 .- -1 INUMF RI) I^GN 1 ISGN +1 TJ NNA)

A+K1: ((INUMF 1 =1 .- -1 IKUMF P T) NNA)

; DEFINE ROUTINES FOR SYNTAX ACTIONS

T/L T/ZA CTYP! ; CREATE TYPE SYNTAX ACTION (T/ZA)
T/ZA: (0) ; MAKE T/ZA THE -VULL ACTION
(T/ZA CSPT) T/ZA WSPXT S! PETT! : DEFINE A SPACE-EX. PTN. FOR T/ZA
(P T/ZA -T .- PRLS ..) PRSTR I! ; DEFINE A PRINT RTN. FOR T/ZA
T/ZA TYPE I! '7. TYPE I! ; SETUP 6>7, FOP DEFINING T/ZA
.X SITE T! T/ZA SITL I! ; SETUP SSTP TO DO T/ZA PROPERLY

Appendix 17 - Listing of Dictionary File DTCTF. LSF 2

CTT! . ZATT6C R! ; CHERTE THE SYNTAX ACTION TYPE TABLE
ZAW . Z ATT S! LODTT ! ; AND LOAD IT WITH ZAW (NOP)
ZA T/ZA .Z ATT S! RETT'. ; SETUP 7,\ AS ACTION FOR T/ZA

(ABND .Q ZAW T/ZA .ZATT S IETT) '[PCKA! ; SETUP 1-1 TO TUPN OFF
(ABND T/ZA .ZATT S DETT) '1 PCKA! ; SYNTAX ACTION FOR -

; ZA - SYNTAX ACTION INTERPRETER
ZA: (WO I ((WO S S WZAi^L S S >T

WZA S N N S , X ; EXECUTE DELAYED AC
WZA S S WZA D ; GET OR EC. ORDER S POP
w; S S =1 .R-) ; REPEAT UNLESS P.*. SAME
W 0 S N P . - S .X ; EXECUTE TM. AC
WO S N N P . - ; EXIT IF NO DELAYED AC
WO S WZA I) U ; STACK DELAYED AC
W} D)

FTAX: (3 77777777777) ; DEFINE BOTTOM ACTION WITH P.0.=LA pGEST POS. NUM
PTAX WZA P! ; WZA IS THE DELAYED ACTTON STACK

; DEFINE ROUTINES FOR CONTEXT HANDLING

; PNDT - REPLACE NAME W(1) WITH STRUX W(0) IN CURRENT CONTEXT
PNDT: (W) I P W1 I LNDT P SAVEW N S ((LSCS1 P n WSAVE S N

S P W'- S V I WCTX S V I ..) WO S V R) S TD +IS P W 2 T N
((.+ T/L C P PSTPW V R P WCTX S V T W2 S PN ..) W2 S N
((LSCS"" P U W2 S N P PSTRW V T WCTX S V I ..) RSTRW V R))
WO D W1 D W2 D)

; LSCSL - LOOKUP SYMBOL IN CONTEXT-SYMBOL LTST
TSCSL: <(W0 T WCTX ; SEARCH CONTEXT STACK FOR EACH ENTRY IN LIST

(P S W1 I WO S (P S W1 S =S n . *• U N N P . F O W1 D
N P .P* ..) V U N) WO D)

; LSCS1 - LOOKUP SYMBOL TN CURRENT CONTEXT ON CONTEXT-SYMBOL LTST
LSCS1: ((P S WCTX S =S .+ N N P .R• ..) N)

BTCTXö'L WCTX^L R! ; WCTX IS CONTEXT STACK (HAS BOTTOM CONTEXT INITIALLY)

; N0», DEFINE ROUTINES TO EFFECT THE SWITCH FROM NT TO D1-"

; SWTCH PUTS ALL NAME TABLE FNTRTES INTO THE DTCT. TREE AND
; THEN REPLACFS THE OLD N AM F TABLE FUNCTIONS WTTH DT FUNCTIONS.
SWTCH: (NT IT 2 0 *I NT 1 V +IS WC I ; ALL NT ENTRIES TO DT

NT 1 (P CVNKL CVKDN WNSV^L R 1 + TS P S P T D * I S ((P N .+ T/L C
P WNSV S V R P WCTX S V I V PN ..) N P WNSV S V T WCTX S V I)
WNSV S N ((P S .+ V T/L C P SAVEW P WCTX S WSAVF S I RSTRW
V R ..) S I WCTX S WNSV S N S T) 1 +IS P WO S >S .R+ U)
.0 ABND1 .0 ABND RRTN .Q ANK1 .0 ANK RRTN .Q A-K1 .0 A-K RRTN
.Q A*K1 .Q A + K RRTN .0 ADK1 .0 ADK RRTN .0 LNDT .0 LNNT RRTN
. Q CVDNK .Q CVNKL RRTN .0 RNDT .Q RNNT RRTN WO D)

Appendi* 17 - Listing of Dictionary Pile DICTF.LSF .1

T RRTN - REPLACE RTN W O) WTTH RTN W(1)
RPTN: (P WO I RC ,Q T/P 0 TT W^ 5 PT W- D)

; LNPT - LOOKUP NAME TN DT REPLACES T.NNT
LNDT: (TD +TS N P . - LSCSL P S)

; CVKDN - CONVERT K-LIST TO DTCT NODE
CVKDN: (P S WK R NN A N P . R + U W N S DTREE WN R)

; CVDNK - CONVERT DTCT NODE TO K-LTST REPLACFS CVNKL
CVDNK: (P S .0. WKLSV^P R (N N S ? . - P S . O WKLSV I .3) N .0

WKT.SV N NIL . Q WKLSV RC)

SWTCH! ; SWITCH FROM NT TO DT!

j NOW, RETURN TO USER

CR.LF! mDICT LOADED* WRWWR! CR.LF!
TTY WRD R!

Appendix 13 - V30 to

T. Changes to the Kernel

V32 Changes 1

(1) Machine stack space was doubled from 12R to 256 words.

(2) The size of initial T/L reserved space was doubled from
32 to 6U cells.

(3) Sizes of both initial T/L and T/P available space were
increased by 320 cells to 1280 cells for T/L and 13<*4 cells
for T/P.

(4) Processes with no inputs and no outputs were given a
null prefix instruction (a JFCL) so that the address of
the process + 1 is the start of the process stem. This
makes these processes consistent in this respect with
processes of othor input-output characteristics.

(5) A mSTART i U 1 m (Debug entrance from monitor) now reads
out the contents of P1 - R5 into new cells P1SV - P5SV ,
and MSTKP into new cell MSPSV before calling DEBUG.

(6) The internal save areas and machine stack have been
moved away from the operating system processes to
immediately before initial T/C available space. It would
now be possible to expand the machine stack by ore-empting
T/C available space (if not already used for other
purposes) .

(7) FXEC has been modified so that the current read
interface is reset (RSIF) when an end-of-file is detected.
It now operates analogously to the following T/P list:

((WRD S RD P .- P WEXEC I RDCX .XCX
WEXEC S WEXEC D EL . R) WPD S RSIF)

When the current read interface (WRP.S) is TTY , this
addition to EX"C allows one to exit from a nested call on
EXEC with a control-? (end-of-file signal for TTY) and then
continue readina successfully from the TTY at the outer
level.

ERROR has been modified so that the working register
context (RI-RS) and machine stack pointer (MSTKP) are read
into cells R1SV-R5SV and MSPSV before the swap into debug
context and execution of W^RR.S . After return from WERR.S
and the swap back out of debug context, R1-R5 and MSTKP are
restored from the cells R1SV-R5SV and MSPSV. This makes

Appendix 18 - V3~ to V32 Changes 2

CSP was modified to make it return space to the monitor
if the value of the size W(1) is negative. If the value of
W(1) is zero, core allocation is not changed. When no
space is obtained from the monitor, CSP outputs NIL.

<S , >S , -C , =1 , <T ,. >I have been modified so that
if the test succeeds and the W d) input was NIL, then T'RCJE
is left as output rather than the W(1) input. (This is
how =S and =T already worked in V3~-) .

C (Copy W(C)) has been modified to work as the
documentation says it should; namely, by copying the
contents of input * R) into the new cell which is output.
In V30 C always created null structures rather than
copying.

C and C/L now swap into space-exhausted execution
context (SPXCX) before executing soace-exhausted routines (
and swap back to the previous context upon return) . This
eliminates the possibility of space-exhausted routines
failing if space is exhausted within some strange
interpreter context (e.g. Write Context).

LNNTW has been changed to search name tables backwards,
so that most recently defined names will be found first
when duplicate names exist for a symbol. LSNTW was also
changed to search backwards for consistency.

(1ft) PD was changed to access the character base through the
current base type table in WPTT rather than directly.

(15) In RD the SETSTS (set status) instruction to reset the
end-of-file flag immediately after an end-of-file condition

error recovery much more feasible, but is lust a stopqap
soluti on*

As an error recovery example consider ERP15, the mout of
space in name table* error. T? we look at the point in
CSNTW where the error occurs, we see that only the contents
of P1 (addr of name table) and RS (current name table
index) are meaningful. Thus, we can write an error
recovery routine to be placed into WERP which will set up a
new name table complete with size and index words, insert
it onto WNT, put its address into cell R1SV, put an initial
table index of zero into cell R5SV, and exit. Execution
will continue immediately after the error call location in
CSNTW with the contents of R1 and PS reflecting the new
name table, and error recovery will be complete.

Appendix 1« - V3^ to V32 Changes 3

(16)

(18)

(19)

was detected has been removed since it didn't really work.
The problem of "permanent* end-of-file indications from the
TTY has been solved by other means. (See (7)) .

. IWP and . IPW? were corrected to reference the current-
base type table through W cell WBTT, rather than directly
as BTT.

(17) The space-exhausted context swap list (SPXCX) was added
as an initial T/L structure. (See (12)) .

Additions were made to the write interpreter type
tables:

In WPTT: .1/« for T/M
. I/S for T/I,T/C

In WRPTT: .TP/M for T/1
.IP/S for T/I,T/C

Initial T/M available soace was moved from between
initial T/L e T/P available space to between initial T/C S
T/T available space.

(20) The following names were added to W M :

MSPSV
P 1SV
P2SV
P 3S V
PUSV
R5SV
SPXCX

II. Changes to the Pootstr ap

(1) The character action for ! now goes into standard
interpreter context for execution as in : (ABND .ICX .XCX)

n U ™ e ° f t b U q S V a p l i s t w a s e*Panded to include DWTTT and
DWIPT swapped with WITT and WIP-T respectively. DWITT
initially contains .ITT , and DWIPT -initially contains

appendix 13 - V.V to V32 Changes U

TIT. Changes to the Editor (EDT) .

(1) The name FPTPN was changed to EPTD (for consistency
with SSTPD in the stepping monitor) .

IV. Changes to the Stepping Honitor (SSTP) .

(1) SSTP was made a closed subroutine so that it could be
called from within a program.

(2) The name SSTOP was changed to SSTP. (for consistency
with EDT. in the editor) .

(3) A bug in S/P was fixed so that executing unnamed program
lists with .X now works.

<ft> A bug in SSTPD was fixed so that vou can alter W(D) and
then step down the appropriate routine.

(5) SSTP. was changed so that it prints *..BEND m and then
executes the routine in W&STP .

(6) SEAL was changed so that temporary work cell T1 is no
longer clobbered.

(7) SITL was changed so that T/I # T/K and T/C now have
appropriate stepping monitor interpreters.

(8) A routine SMA^fU was added so that one can go into

.IPTT , so that standard interpretation will occur in Debug
mode.

(3) A bug in PPSTR was fixed. (Named T/K symbols were
being printed incorrectly.)

(4) SAY** was updated to reflect the current version number.

Appendix 19 - 7 3 - to V 3 2 Changes 5

3 AMflE 0DbS4 MASS

V

automatic B O d G (5MJ70) and then leave it at a specified
place (i.e. no into manual mode) . BMANFT nuist be placed
m the routine that is being stepped through. P

