NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CONVERSATIONAL PROGRAMMING -~ LCC

A REFERENCE MANUAL FOR A
LANGUAGE FOR
CONVERSATIONAL COMPUTING

J. MITCHELL
J. NEWCOMER
A. PERLIS

H. VAN ZOEREN
D. WILE

Carnegie-Mellon University
Department of Computer Science
Pittsburgh, Pa.
June 1971

This work was supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense
(F46620-70-C-0107) and is monitored by the Air Force
Office of Scientific Research. This document has been

approved for public release and sale; its distribution
is unlimited,

EREEACE

PURP

--B-Q$EE PURPOSE OF THE LCC EFFORT WAS TO STUDY AND CREATE A
CONVERSAT IONAL LANGUAGE. TIME SHARING 1S NOW ACCEPTED AS AN
EXCELLENT WAY TO PROVIDE COMPUTER RESOURCES FOR PROBLEM
SOLVING. YET, WITH FEW EXCEPTIONS, THE LANGUAGES IN WHICH
PROGRAMS MUST BE COUCHED WERE DESIGNED FOR BATCH PROCESSING
ENVIRONMENTS, IF ONE IS TO INPUT PROGRAMS FROM A TERMINAL
AND THE OUTPUT {OR SOME PART OF IT AT LEAST) 1S TO RETURN TO
THE TERMINAL, IT IS NATURAL TO CORRECT (EDIT) PROGRAMS FROM
THE TERMINAL, .

WHAT THEN ARE THE CONSEQUENCES OF PROGRAM CREATION AT
THE TERMINAL? CERTAINLY INTERSPERSING EDITING AND EXECUTION
SHOULD BE ENCOURAGED. IF THE PROBLEMS TO BE PROGRAMMED ARE
¢SMALL® ~-- SO RESPONSE WILL BE GOOD =- THEN THE PROGRAMS
SHOULD BE RUN INTERPRETIVELY, ESPECIALLY IF FREQUENT
MODIFICATION IS TO BE EXPECTED. THUS THE COMBINATION OF
SMALL PROGRAMS AND FREQUENT MODIFICATION LEADS TO AN
I NTERPRET IVE PROCESSOR.

WHAT ARE THE CONSEQUENCES OF [NTERPRETATION? THE
REJECTION OF THE COMPILER APPROACH SURELY MUST HAVE SOME
IMPORTANT EFFECTS ON THE LANGUAGE BEING PROCESSED. ONE
EFFECT TO BE DESIRED IS AN [INCREASED ABILITY TO INTERLACE
EXECUTION AND CREATION, ALGORITHMS DO NOT SPRING INTACT
FROM THE MIND BUT EVOLVE -- BOTH OVER THE SHORT TERM AND THE
LONG TERM. MUCH OF THE DEVELOPMENT OF A PROGRAM SPRINGS
FROM EXPER!ENCE =-- THE ACTUAL BEHAVIOR OF THE PROGRAM UNDER
EXECUTION,

ONE 1S STRUCK WITH THE POSSIBILITY OF EXECUTING
INCOMPLETE ALGORITHMS AND LETTING THE FLOW OF COMPUTATION ON
DATA SAMPLES AID IN THE SEQUENCING OF PROGRAM PREPARATION,
IT 1S TRUE THAT PROGRAMS ARE DECOMPOSED INTO PARTS OR
MODULES FOR A VARIETY OF REASONS: LOGICAL DECOMPOSITION OF
A TASK INTO ITS SEPARATE PARTS; DECOMPOSITION IMPOSED BY THE
LIMITS OF HUMAN ATTENTION {NOT EVERYTHING CAN BE PROGRAMMED
AT ONCE); DECOMPOSITION IMPOSED BY THE UNEVEN UNDERSTANDING
OF THE MECHANICS OF MODULES EVEN WHEN THEIR LOGICAL FUNCTION
IS UNDERSTOOD (PROGRAMMERS TEND TO DO FIRST WHAT THEY KHOW
HOW TO DO BEST). WHAT IS MORE NATURAL THAN HAVING THE
COMPUTER, THROUGH THE PROCESSOR IN WHOSE LANGUAGE ONE 1S
WRITING, ASSIST IN THE SCHEDULING OF THE TASKS?

IT 1S NOT ONLY THE PRESENCE OF THE PROGRAMMER IN THE
LOOP BUT THE WHOLE STYLE OF PROGRAM PREPARATION THAT CAUSES
THIS KIND OF PROGRAMMING TO BE CALLED CONVERSATIONAL. ONE
MUST NOT CLAIM TOO MUCH., THE PROCESSOR IS A WEAK ALLY IN
THE PROCESS OF CREATION AND THE BURDEN OF PROGRAMMING 1S
STILL IN THE PROGRAMMER®S HANDS. LET US SAY THAT A MORE
WILLING ASSISTANT IS BEING FASHIONED THAN WAS EVER PRESENT
IN THE OLD STYLE COMPILER-DOMINATED ENVIRONMENT.

i

APPRO

'E'B‘ég% APPROACH USED FOR THE DESIGN AND CONSTRUCTION OF
THE LANGUAGE FOR GCONVERSATIONAL COMPUTING WAS QUITE
SIMPLE, THE COMPUTER ON WHICH LCC WAS TO BE FASHIONED --
THE |BM 360/67 ~-- HAD AN AMBITIOUS TIME SHARING SYSTEM UNDER
DEVELOPMENT --T$S-~ AND 1T SEEMED REASONABLE TO UTILIZE THAT
SYSTEM AS THE UNDERLYING TIME SHARING SYSTEM SUPPORTING OUR
CONVERSATIONAL LANGUAGE AND ITS SYSTEM., THE ONLY AVAILABLE
TOOL FOR CONSTRUCTING THE LCC SYSTEM WAS THE T§S ASSEMBLER
AND 1T WAS IN THAT LANGUAGE THAT THE SYSTEM WAS BUILT. IT
WAS BELIEVED =~ AND STILL IS == THAT THE USE OF ANY
PROGRAMMI NG LANGUAGE LEADS TO THE DEVELOPMENT OF A STYLE OF
PROGRAMMING AND THAT EACH LANGUAGE HAS A °*CONVERSATIONAL
ANALOGUE®. THE DESIGNERS OF LGG HAD THE GREATEST AFFINITY
FOR THE SYNTAX AND STYLE OF ALGOL 60 AND SO IT WAS CHOSEN AS
THE BASE FROM WHICH TO DEVELOP A- CONVERSATIONAL ANALOGUE.
MANY OF THE CONSTRUCTIONS WERE BORROWED FROM JOSS, THOUGH
LCC ATTAINS A POWER FAR BEYOND THAT OF J0SS. IN RETROSPECT
IT PROBABLY WOULD HAVE BEEN BETTER TO HAVE CHOSEN 1VERSON’S
APL AS THE BASE SINCE THE ARRAY PROCESSING OF APL IS SO MUCH
MORE NATURAL THAN THE ALGOL SCALAR PROCESSING.

A GROUP EFFQRT
THIS REPORT IS THE END PRODUCT OF TWO YEARS WORK BY A
GROUP AT CARNEGIE-MELLON UNIVERSITY'S DEPARTMENT OF COMPUTER
SCIENCE.

THE LANGUAGE AND SYSTEM DESIGN EFFORT WAS DONE BY E.
MCCREIGHT, J. MITCHELL, A, PERLIS, H. VAN ZOEREN AND D.
WILE, H. VAN ZOEREN WAS LARGELY RESPONSIBLE FOR THE
DETAILED SYNTAX SPECIFICATION.

THE SYSTEM ORGANIZATION AND PROGRAMMING EFFORT WAS DONE
MAINLY BY J. MITCHELL, J. NEWCOMER, AND D. WILE. H. WACTLAR
WAS RESPONSIBLE FOR FINAL EDITING AND CORRECTION OF ERRORS
WHEN THE SYSTEM WAS FIRST BEING USED. J. NEWCOMER HAS
PREPARED A DOSSIER OF SYSTEM ROUTINES AND INTERNAL DATA
STRUCTURES NECESSARY FOR ANY REAL UNDERSTANDING OF THE
INTERNAL MECHANICS OF THE SYSTEM.

THE USER?S MANUALS (I1SSUED UNDER SEPARATE COVER) WERE
WRITTEN BY A, LANKFORD (VOLUME | AND VOLUME (1) AND W,
MULLINS (VOLUME 1). THE EXAMPLES AT THE END OF VOLUME 11
WERE WRITTEN BY: Jo. MITCHELL <«= S¢TREE DI!SPLAY PROGRAM?®:
DIANA BUTRICK == *SIMULA/LCC?; A. LANKFORD == ¢ALGEBRAIC
EQUATION SOLVER'; D. WILE -~ *AN [NFORMATION RETR!EVAL
SYSTEM®, THESE PROGRAMS WERE ALL EDITED BY A. LANKFORD TO
IMPROVE THEIR READABILITY.

THE LANGUAGE DEFINITION DOCUMENT WHICH FOLLOWS WAS
PREPARED BY H. VAN ZODEREN,

il

IABLEL QF CONIENIZ

Introduction

LCC Statements

ALTER
ARPRAY
BEGIN ,.. END
CASE
COMBINE
COPY
DELETRE
DISPLAY
EXIT

FOR

GO

GOTO

IF

LINE

LOAD

NEW
NUMBER
OFYF

PART
PAUSE
PRINT
RECOVER
RETURN
SAVE
STEPS
TYPE

UsE

WRITFE

?

?3

{ .0 1}
'

A
Assignments
Procedure calls

WY Y W PN s TR e P e

PROREE s =Y
"

LCC Metavariables

expression
extractor
for-clause
group
identifier
logic-literal
number~-literal
operand
pointer
primary
procedure
statenment
save-obiject
string-literal
structure
subscript-1list
type-obiect
variable

LCC Operands

BEGIN ... BND

CASE
STEPS
?
2%
!
f .. }
- * 8¢ ud
Appendices
A. Explanation of Syntax Notation
B, LCC Syntax
C. Llogging On at a 2741 Terminal
D. Typing LCC Text at a 2741
E. Error Messages
F. LCC Syntax (SX) Error Descriptions
G. Anytomatic Reload Pile
H. Standard Functions
I. Built-in Functions and Procedures
J. Exanmple LCC Conversation

iv

30

30
34
35
35
36
37
38
39
39
4n
42
41
42
42
44
ug
45
45

46

46
46
46
47
48
49
49
u9

51

51
53
59
61
62
63
64
65
66
70

---- Introduction ---—

LCC 1is a langquage for conversational computing which operates
within the TSS monitor system on the IBM 360/67 computer at
Carnegie-Mellon University. In its fundamental design, LCC began
As an amalgamation of (1) the basic elements and statements of the
algorithmic 1langquage ALGOL 60 and (2) the input-output, control,
editing, and €filing statements of the conversational language
JO0SS, but extensive modifications have been made to exploit as
fully as possible the dynamic nature of conversational computing.
The resulting language, with 1its underlying processing systen,
9ives you, the LCC wuser, a very high deqree of power and
flexihility.

The working sentences of the LCC language are statements, a
statement (abbreviated s) being a command which causes LCC to
perform an action {(e.g., a modification of data, an tnput/output
operition, a modification of control). You may type an arbitrary
number of statements, separated from one another by semicolons
(;}, on a single line. Such a statement list is called a step, and
LCC will execute the statements within it from left to right.

Steps in LCC may be used in two different vays, either dalayed
or immediate. Delayed steps are tramslated and saved by LCC, and
they may later be recalled and executed under programmer control.
A delayed step is distinquished by the presence of a preceding
decimal step number which indicates its relationship to other
steps, A step number pust lie between 0001.0001 and 9999,9999, and
it is separated from the step text by either a colon (:)} or a
couwma (,). Both its integer portion, from whick leading zeros may
be omitted, and its fractional portion, from which trailing zeros
may be onitted, must lie bhetween 0001 and 9999, A step nunber
servas both as the editing designator for a step and as a control
designator for the first statement in the step. In addition to the
Step number, any statement in a delayed step pay have one or more
labels associated with it as control designators, a label being an
identifier which immediately precedes the statement and is
separated from it by a colon (:). Tf a step has multiple step
numbers, all must precede its first statement or label, and only
the rigqhtmost number will be used; if a statement has npultiple
labels, each will be significant. Some examples of delayed steps

are:
3.7, GO TO 3.5;
3125.0042: A « B+1; LBO6: C = D#E; LBL: F « G/3
27.85: 27.830, L: M: TYPF Y,Z; RETURN T
Delaved steps will be ordered according to their numbers, and

they may be inserted, modified, or deleted freely while
conversing. They may be typed in any order, and a newly typed step

Introduction

will replace any previously saved step with the same number. For
execution purposes, steps are grouped into parts, with a part
being the orderel set of all steps whose numbers have the same
integer portion. When executed, a part will be treated as an ALGOL
block, 1i.e., vartables which are declared and labels which are
used in it will have local meanings which are valid only when it
is active (i.e., it is being executed). A1]l such local meanings
vill he erased when execution of the part is completed.

An immediate step, which is distinquished by the absence of a
step number, 1is translated and executed when typed and is then
discarded. Immediate steps are used to perform one-time or “desk
calculator” calculations, to control the execution of the delayed
steps of a program, and to perform various editing and debugging
operations. An explicit transfer of control (GOTO) to an immediate
statement 15 not allowed, and consequently immediate statements
cannot be labelled.

Svyntactically, any LCC statement may be used in either an
immediate or a delayed step. When executed, however, each
statemenrt will be checked for validity in the currently existing
context, and at that time, some statemants will be treated as
no-ops (e.9., an immediate ‘*PAUSE’, a delayed ‘507), and some will
lead to errors (2.q9., a global *G0T0’, a global *RETURN").

An LCC statement rmay be empty, in which case it contains no

non-hlank c¢haractars and it performs no action, The various
non-empty LCC statements are listed alphabetically by their
initial keywords or metavariables and described below. Following

the statement descriptions are descriptions of the subsidiary
motavariables (expressions, literal constants, etc.) used in the
lanquage. The abbreviated syntax notation which has been used is
described in Appendix A, and the complete syntax for LCC is
sumnarized in Appendix R,

statement

ALTE

---- LCC Statements --——-

:= (one of the following ——- pp. 3-29)

a
-

R group | | e_,1 =e_2 , e, 3 = ea_U, ... , e_{(2%N-1) = e_{2%Y)
':f ‘

The expressions e_T should evaluate to character strings. LCC
will search the text of the group for substrings which match the
given pattern strings e_1, e_3, ... ¢ 2_(2«N-1), Each substring
which matches an e_{2+J-1) will be replaced by the corresponding
e_(2+«3), and the group will be retranslated with its altered text.

LCC will perform the search as in the ftollowing pseudo-1CC
code:

FOR (each step in the group (ordered on step numbhers)) DO
{ FOR I FROM 1 BRY 2 TO 2#N-1 DO
{ STARP_OF_SEARCH_POINTER « 1;
AGAIN: IF¥ (search finds substring e_I) THEN
{ (replace substring by e_(I+1));
START_OF_SEARCH_POINTEPR - {(position of
1st char after replaced substring);
GO TO AGATIEK } }
IF (any replacements were made) THEN (retranslate) };

for the search LCC will treat both text and pattern strings as
sequences of either contiguous letters and/or digits or individual
non-blank, non-alphanumeric characters, with blanks being ignored
except insofar as they separate alphanumeric sequences from one
another. As an example, the step

4.8: X«IF PQR THEN (TEMP+1) FLSE ‘“15.64 FF’;GO TO 4.41;
will be fourd to contain the substrings (among others)

‘Xe”, M(TEMP’, *+’, Y157, “FP’, ‘G0 TO’,
*41; *, and .’ (twice)

but it will not contain the substrings
*87, “Q’, ‘.67, ‘GDTO’, or ‘TO4’

Examples: .

ALTER STEP 1.6 : X’ = “AX’ , ‘Y’ - ‘BY”’

ALTER PARTS, ‘P + 0O’ = R
ALTER 4.77 , ‘a’ = ©r

ARPA

BEGT

CASE

LCC Statements

Y "F‘ident"‘.,. [""e(:e)" .I]['-] "'1

Al

LCC will assign to each ident in a list the multidimensional
array sttucture specified by the bounds list which immediately
follows it. Bach item in a bounds list gives the limits on one
subscript of an array structure, The number of items is thus the
number of dimensions of the array. An item in a bounds list can he
pither a pair of expressions specifying the lower and upper limits
on the subscript for that dimension or a single expression
specifying the upper limit on that subscript (the lower limit will
be implicitly 1).

Storage will not be allocated for an array until the array is
usad, and even then it will only be allocated for a given row vhen
an element from that row is first accessed.

Examples:

ARRAY LAT1:N, =3:8%K]

ARRAY JIM, JOF[10,15,20]1, DAVE[O0:8)(41(-6:-1]
N s 4 .;. END

The keywords “REGIN’ and ‘END’ delimit a “block?¥, whose list
of athitrary LCC statements will be treated as if it were in a
par*, i.e., there may be local variables valid only within it. LCC
will perform a block entry, after which it will execute the
statements from the list in sequence. This “block statement® will
normally be terminated by “running off 1its end®. A RETURN
statement within it will first terminate the context of the block
Statement and then return from the context in which the block was
enbeddlead.

Txamples:
BE3IN STEP 4.8; PART 251; S - T END
BEGTN NEW A,B; PART 6; PART 8 END

a OF { 5.1 ;3 S_2 3 eee 3 sS_N1}

The expression e will be evaluated and rounded to an integer
J. Tf 1 < J < N, LCC will give control to statement s_J, from
which control will normally pass to the successor of the CASE
statement. It is an error if J is out of the range 1 to N.

LCC Statements 5

Examples:
CASE J+1 OF { X - F(A,B) + C ;

¥ « SORT{Y) + D ;
GO TO 6.2 ;

X « STIN{Y*2) ;
GO TO 6.2 ;
X « 0}

CASP e OF [s_1 ; S_2 ; a.o 7 S_N ; OTHERWISE s_(N+1) }

The expression e will be evaluated and rounded to an integer
J. If 1 € J < N, action is as in the simple CASE statement without
an OTHFERWISE. If J is out of the range 1 to N, control will be
given to statement s_(N+1).

Examples:)
CASE I OF { X«5; OTHERWISE X « 45 }

COMAINE € STEPS > num_1 TO num_2 AS e

A single string will be constructed by concatenating, in step
number order, the text portions of all steps with numbers hetween
num_1 and num_2 inclusive. During this concatenation process, a
semizolon ({;) character will be appended to any step which does
not already terminate with one. LCC will then retranslate the new

string as step e. Steps num_1 to num_2 will not be deleted and
will be unaffected by the COMBINF statement {unless num_1 € e <
num_2) . As 1in a group, it is an error if num_71 > num_2 (unless

num_2 < 1).

Examples:
COMBINE STEPS 6.7 TO 6.83 AS 6.7

COoPY group AS =

If e evaluates to an integer, the set of steps from the
speci fied group will be copied and retranslated as a new group,
with the integer portion of each step number being replaced by the
value of e (which must not he zero). 1If e does not =svaluate to an
inteqer, this statement is equivalent to the statement

COPY group AS e BY .M

LCC Staterments

All steps in the original group must be in the same part. The
source text for the group will not be modified by the COPY, and
the original group will not be deleted.

Examples:
CoPY PART 3 AS 43
COPY STEP 5.61 AS 12.074

COPY group AS e_1 BY e 2

LCC will copy, renumber, and retranslate the ordered set of
steps from the specified qroup. The renumbering will start with
e_1 (or, if e_1 is an integer, with (e_1 + e_2)) and successive
step numhers will be incremented by e.2 (whose value aust lie
between .0001 and .9999). The original group of steps will not be
deleted hy a COPY statement (though it may be changed if some of
the new steps fall within the group). The source text for a copied
step wvill not be modified during the COPY, and it is your
responsibility to make sure that the renumbered steps do not
contain spurious references to steps in the original group. To
insure this, you should use labels rather than step numbhers to
refer from one statement in the qroup to another.

Examples:
COPY ST®PS 14.371 TO 14.4305 AS 814,007 BY .002

DELFETE FILE e

The expression e must evaluate to a string, which will be used
as a file name. LCC vwill delete that file from your file catalog,
and it will take back any storage which that file used.

Fxamples:
DELETE FILE “AB’

DELETE ALL

This statement is effectively equivalent to (but slightly
slower than) the step

FXTIT ALL; DELFTE STEPS; DELETE VALUES

Your working storage will be completely erased, and LCC will be
re-initialized, just as if you had 1oqged‘off and then logged back
ONe.

LCC Statements 7

DELETE | PARTS |
| STEPS |

LCC will erase from working storage both the source and object
codes for all steps (only values will remain).

DELETE VALUES

LCC will arase from vorking storage the current
incarnation-value for each of your 1identifiers, giving every
identifier in your program the meaning “undefined”.

DELETE < STEPS > num_1 TO num_2

LCC will erase from working storage all steps whose numbers
lie betvween num_1 and num_2 inclusive. As in a group, it is an
error if num_1 > num_2 {(unless num_2 < 1).

Fxamples:
DELETE 151.42 To 151.5136

DELETE < STEP > num

Bquivalent to
NELETS STEPS num TO num

Examples:
DELETE STEP 4.231

DELETE PARTS num_1 TO num_2

Eguivalent to

DELETF STEPS (num_1 ¢+ .00601) TO (num_2 + .9999)

LCC Statements

DELETF PART nunm

Equivalent to

DELETE PARTS num TO num

DELETE | < STREPS > | + num_1 < TO nun_2 > 4 .,.

| PARTS i

A DFRLETE statement may include a group list. LCC will then
delete all steps in each of the specified groups.

Fxamples:
DELETE PARTS 4, 7 TO 10, 153, 43
DRLETE 3.71, 3.814, A4 TO (A4 + P - .5)

DELETE + varid 4 .,.

1.0C will replace the current incarnation-value for each varid
in the 1list by “undefined”. Tf a varid referred to a string or
array f{or any other ites for which storage was allocated), the
internal Jinks to that storage will be cut, but the storaqe will
not be taken back until the block within which it was allocated
has been terminated.

Note that an array <lement can be deleted. This feature will
be necessary before you can change the meaning of an array elenent
which is a procedure, a reference pointer, or an array name.

Examples:
DELETE A,BR
DELETE CII,J,u4]

DISPLAY FILE < CATALOG >

LCC will +type out a 1list of the names of all of your LCC
files, The names will be the full TSS names of your files, which
are gqualified by your user number and the internal name LCCFILE.
Thus the file ‘SAVAL’ of user XYZ1ZZ13 will have the full name

XYZ12Z13. LCCFILE.SAVAL

LCC Statements 9

DISPLAY RETURN < STEPS >

LCC will type out a list of the currently active steps, thus
giving a map of the present control status. Step designators will
be typed one per line, and the list will be ordered so that the
innermost (most recent) step will be typed first. For steps inside
parts, LCC will type the step number; for immediate steps LCC will
t ype the characters “##%’; for a procedure call LCC will type the
procelure name., Thus LCC might type the lines

L 2

17.3

FUNCT
anE

4,3
e

in response to your *DISPLAY RETURN’ statement.

DTSPLAY ALL

Equivalent to

DISPLAY PARTS; DISPLAY VALUES

DYSPLAY | PARTS |

Equivalent to

DISPLAY STEPS 1.0007 TO 9999.9999

DISPLAY VALU®S

LCC will type, 1in alphabetical order, the names and current
meanings of all of your defined identifiers (i.e., the meanings

atop each of your variable stacks). Appropriate formats will he
used Ffor values (numeric, 1logic, and string) and references
(label, array, procedure, and pointer). Fach displayed line will

also include a prefixed level number which indicates the level of
the block 1in which that 1identifier was declared, 1i.e., the
outermost block level in which the current meaning will hold. For
global variables, the level number of zero will be suppressed. An
exanple of the displayed output is:

LCC Statements

2 ARR A ARRAY [1:5,3:10,-2:6]
3 LAB IN 3.6
1 Ly £L000000FF
3 NANM SABC
NV -1,234567,15
PROC PROCEDURF
2 SV ‘ST

DISPLAY < STEPS > nus_1 TO num_2

LCC will type in order the source images for all steps whose
pumbers are hetween num_1 and num_2 inclusive. As in a group, it
is an error if num_1 > num_2 {(unless num_2 < 1), Each step will
beqgin on a new line and will include both its number and its text.
Except for possible minor differences in the format of the step
number, a displayed step will look exactly as it did when yon
typed it in.

Examples:
DISPLAY 415.3 TO 415.7

DISPLAY < STEP > nugm
Equivalent to
PISPLAY STEPS num TO num
DISPLAY PARTS num_1%1 TO nnum_2

Equivalent to
PISPLAY STEPS (num_1 + .0001) TO (num_2 ¢ .9999)

Fxamples:
DISPLAY PARTS 4 TO 6

NTSPLAY PART num

Eguivalent to

DISPLAY PARTS num TO num

LCC Statements 11

DISPLAY { < STEPS > | + pua_1 < TO num_2 > 4 .,.
| PARTS |

A DISPLAY statement may include a group list. LCC will then
display all the specified steps or parts, ordering the groups for
typing from left to right in the list.

Framples:
DISPLAY 3.4 TO 3.43, 3.8 T0 4.2, 4.513, 4.902

DISPLAY + varid 4 .,.

LCC will type out the current meaning for each varid in the
list. PBach displayed “meaning” will take up a single line, and it
will include exactly the same information that would be typed for
that variable by a “DISPLAY VALHES’ statement, If no meaning has
heen assigned to a listed varid, the varid will be displayed as
*undefined”.

Examples:
DISPLAY A, C, P, XI1,1), XI[4,7,3)

EXIT

An FYXIT statement is used to delete the context of the part or
step group which is currently active and give you control in the
context of the part or step group which called it. A more precise
description of an EXIT is as follows:

EXIT recognizes only contexts involving explicitly numbered
steps and those involving the user (it regards you as the pumhered
step 0.0). An EXIT statement will delete all execution contexts
down to and including that for the first non-zero numbered step on
the context stack. It will then delete all contexts down to but
not including the first numbered step. If that is a step 0.0, it
gives you control; if not it adds a new step 0.0 context, which
also qgives vyou control. Thus an EXIT deletes all execution
contexts down to, but not including, the first numbered step below
the first non-zero numbered step, and it then gives you control.

LCC Statements

EXTT ALL

LCC will perform successive FXITs until the global state is
reached (i.e., there are no remaining group contexts) and it will
then give control to you.

Fxamples:
IF RRROR6 THEN EXIT ALL

EXIT < TO > < PART > e

1f part e 1is not currently active, LCC will type an error
messaqe and give control back to you. Otherwise LCC will perform
an EXIT. Tf the resulting context is that of part e, control will
be given to you. 1If not, LCC will perform another EXIT, etc.

Examples:
EXIT TO PART 3
EXIT 703

<| FOR ident <|FROM] e_1 >|> <|BY e_ 2 < TO e_3 >|> < WHILE e_4 > DO s

f
! |« \]TO e_3 < BY e_2 >}
| FROM e_1 |

The statement s will be executed repeatedly as long as the
expression e_# is true and as long as the value of the controlled
jdent is within the specified range. With each repetition, the
value of the explicit (ident) or implicit control variable will be
molified as specified by the controlling for-clause. The phrase
‘FROM e_1’ may be omitted if e_1 = 1, *BY e_2’ may be omitted if
@_2 = 1, °T0 e_3" may be onmitted if the loop is to be terminated
in some manner other than that of the controlled variable reaching
a final value (i.e., if e_3 is infinite), and *‘FOR ident’ mav he
opitted if ident does not appear in e_4# or im s {(in wvhich case an
implicit controlled variable will be used).

Operation of a complete iteration statement is equivalent to
that of the LCC hlock

REGIN NEW BYE - e_2, TOE « e_3; ident - e_1;
Lz IF IF BYR > 0 THEN ident € TOE FLSE ident > TOE
THEN IF e_# THEN { s; ident -« ident + BYE;
GO TO L } END

whare the identifiars L, B3YE, and TOF do not occur within any of
the e_TI or in s. Note that, unlike ALGOL 60, the increnent and
terminal expressions e_2 and e_3 are evaluated only once, when

GO

LCC Statements 13

execution of the iteration statement Dbegins, and subsequent
changes to any variables used in e_2 and e_3 will not affect the
control of the iteration.

Examples:
FOR I FROM 1 BY G TO H+1 WHILE N * 3 DO ST
WHILE B <« C DO PART 2
TO T DO PART 345
DO PART 6543
FOR J -« X TO P BY -2 DO F(J,K)

LCC wil)l return control to the context from which you were
called, resunming execution from the point of the call. A GO has
meaning only after you have been called via a statement (PARUSE) or
action (pressing the ATTN or BREAK key) wvhich expects you to
eventually return control to the caller.

G0 <CTO >) e

{ GOTO [

IF

If e is a label, it must be that of a statement in a currently
active qroup. LCC will then EXIT to that group and transfer
executiorn control to the labelled statement. If e is not a label,
it must evaluate to a step number in a currently active group. If
thes step number is 1in the range of the group currently being
executed, LCC will transfer control to the first statement in the
designated step, If the number is not in ranqe, LCC will EXIT froe
the current group context and repeat the above process.

Examples:
S0 TO LABL3
GOTO 6.1
GO 1243.0001 + J

¢ THEN s

If the expression e evaluates as true, execution control is
transferred to s (from which control will normally pass to the
successor of the IF statement). If e evaluates as false, s is
skipped. If e has a 1logic or arithmetic value, it will be
considerad as true 1if it is non-zero or as false if it is zero;
strings will be converted to their equivalent arithmetic values.

14

LCC Statements

Examples:
IF X < 4 THEN PAUSE

IF e THEN s_1 BLSE s_2
If e evaluates as true, execution control will be transferred
to s_1, from which control vwill normally pass around s_2 to the
successor of the IF statement. If e evaluates as false, execution
control will pass around s_1 to s_2, from which control will pass
to the successor of the IF statement.
Exanples:
IF ~P v 0 THEN Z - S ELSE { T « T + 1; TYPET }
ILINE < & >

LCC will upspace your paper {(at your terminal) by one line or,
if an expression e is supplied, by e lines.

Examples:
LINE
LINE 4-J

LOAD < FILE > e

LCC will open file e and, if the file was created by one or
more SAVE statements, load into working storage whatever was SAVEd
there, This is done hy treating the information in the file as a
set of 1lines of input text, each of which will be read and
translated just as if it had heen typed in by you.

LCC treats all files alike, regardless of whether they were
created by SAVE or W#RITE statements. Thus a file may contain
immediate statements which were written (as strings) by a WRITE
statement. These will be both translated and executed during a
LOAD of that file. Any immediate statement may be written and
LOADed, including another LOAD statement.

Examples:
LOAD FILE “0Q13¢

NEW

NEW

LCC Statements 15

ARRAY + + ident 4 .,. {rFe<c<ze>4]). 1 4.,.

This statement acts Jjust like an ARRAY statement except LCC
will construct a new incarnation-value for each ident before
assigning it its specified array structure.

Examples:
NEW ARRAY a3, A4[10, 20, 5:301, AS[5]}

’— ident 4 . g

This declaration statement causes a nev incarnation-value (IV)
with the meaning ™“undefined” to be constructed at the current
nesting level for each ident in the list. In the usual case that
the old IV is on a lower level, this newv IV will be linked to the
old one, which it will temporarily supersede, In case the old IV
is on the current level (i.e., the ident is being redeclared in
this block), it will be replaced by the new one.

A declaration holds only within the scope of the block in
which it 1is executed. when that block is terminated, all 1IVs
declared in it will be erased, and the meanings which the
corrasponding idents had before their declarations were executed
will be restored.

Examples:
NEW A,B
+ ident - | ¢ 14 .,-
| pointer |
{ procedure)
| structure |

This statement acts much 1like a simple NEW statement, but
instead of giving each newly constructed IV an undefined meaning,
LCC will assign it a specified initial “value”, Declarations and
assignments will be made from left to right in the NE# 1list, hut a
“value” will ba constructed before the ident to which it is to be
assigned is declared. Thus, for example, in the statement

NEW A « B + A

the old value of the variable A will be added to B to obtain the
initial value of the new A.

16

LCC Statements

Examples:
NEW § « *SS", T «- U - ¥, W = >X
NEW ¥ « v(A,B) PART 9 {NEW P « VQ4RV, S = 6}V
NEW A < ARRAY{3,0:5], B, C = 26, D = ARRAY[X:Y]

NUMBER AS e_1 < BY e_2 >

LCC will automatically type out for you at the beginning of
each input line a step number followed by a colon (:). Before
translation, the supplied number will be appended as a prefix to
whatever step text you type. The numbering sequence vill pormally
start at e_1, with successive step numbers being incremented by
¢_2, but if any numbers in the segquence (including e_1) turn out
to be integers, they vwill be skipped. Thus it is guite acceptable

for the numbering to cross part boundaries. If e_2 is given,

value must lie between .000%1 and .9999; if the “BY’ phrase 1is

rissing, e_2 will be assumed to he .01.

LCC’s automatic numbering will continue until you turn it off;
this is done by inputting an empty step, i.e., by pressing the

RETURN key immediately after the step number.

Fxamples:
NUMBER AS 17.3 BY .002

NUMBER group AS e_1 BY e_2

LCcC will renamber and retranslate the ordered set of steps
from the specified group. The renumbering will start with e_1 (or,
if e_1 is an integer, with {e_1 + e_2)) and successive step
numbers will be incremented by e_2 (vhose value must lie between
.0001 and .9999). The original group of steps will be deleted by a
NUMBFR statement (otherwise this statement acts exactly the sanme
as the corresponding COPY statement, which does not delete the
group). The source text for a step will not be modified by a
NUUMBER statement, and it is your responsibility to make sure that
the renuabered steps 40 noct contain spurious references to staps
in the original 4group. To insure this, you should use labels
rather than step numbers to rvefer from omne statement in the group

to another.

Examples:
NUMBER STEPS 7.7 TO 8.2 AS 25 BY .02

LCC Statements 17

NIMBER group AS e

If e evaluates to an integer, the set of steps from the
specified group wwill be renumbered and retranslated as a new
group, with the integer portion of each step nuaber heing replaced
by the value of the expression e {which must not be zero). If e

does npot evaluate to an integer, this statement is equivalent to
the statement

NUMBER qgroup AS e BY .01

All steps in the original group must be in the same part. The
source text for the group will not be modified by this NUMBER
statement, but the original group will be deleted (otherwise this
statement is identical to the statement *“COPY group AS e’).

Examples:
NUMBER 8.07 AS 14.253
NUMBER STEPS 6.4 TO 6.5 AS 1016

\

NUMBER group BY e

Fguivalent to
NUMBER group AS X RY e
where X is the truncated value of the first step number in the

JrOoup. This statement is used mainly to tidy up the fractional

step numhers for a part without changing its name (i.e., its part
number).

Fxanmples:
NUMBER PART 803 BY (INC » .0001)

NUMBER group

Equivalent to

NUMBER group BY .01

Examrples:
NUMBER STEPS 43.001 TO 43.18

18

OFF

QFF

LCC Statements

LCC will perform an “EXIT ALL’ and it will then log you off. &
ressage will be writtem to indicate the elapsed time and tke
processor time used Auring your conversational session. Your
auntomatic reload file will be erased by this OFF statement (see
Appendix G).

Examples:
: I¥ DONE THEN OFF

SAVE

This statement acts Jjust like a simple OFF statement except
for its treatment of your automatic reload file, which will not be
erased and thus may be reloaded when you begin your next
conversational session (see Appendix G).

PART num

A new block context will be set up for the sequence of steps
from num+.0001 to num+.9999. Execution will then begin within that
context at the first step vhose number is > num+.0901 and it will
normally continue through successively higher numbered steps.
Control will be returned when the part “runs off its =2nd” or when
it executes a RETHUR¥ statement, an EXIT statement, or a GOTO which
transfers out of its range.

A part may be called either as an operand in an expression (in
which case it should return a result) or as a statement. In the
latter case 1t should not return a result, but if it does, LCC
will type the value of the result at your terminal.

Exanmples:
PART 5
TO PART 17 DO PART ABACAD

DART num f S_1 3 S_2 7 .= 7 S_N }

A new bhlock context will be set up for the seguence of steps
in part num,. Execution control will then be transferred to
statement s_1, from which control will normally pass to s_2, s5_3,
... in order up to s_N, from which control will pass to the lowest
numbered step in parTt num. Thus the statement list within the

LCC Statements 19

braces is treatel as if it were a step numbered num+.00009 in a
part context which is expanded to include that step.

Examples:
PART (J + 2) { NEW A«»BI[CJ; TYPE D ¢ A; E«16 }
PART 3 { NFW A - G-H ; NEW D « ¥ R / PART 2 ¢ }

DPAUSE

LCC will +type a message giving the step number of the PAUSE
statement, after which it will give control to you.

Examples: :
IF X < 4 THEN PAUSE

PAUSE e

LCC will type out the string supplied by the expression e,
after which it will give control to you.

Examples:
PAUSE “HALF DONE’

PRINT < FILE > e

LCC will print (on the line printer in the computer room) the
contents of file e, which must have been generated by an LCC SAVE
or WRITE statement. File e will not bhe changed by being printed,
but if you PRINT a file during a conversational session, you will
not be allowed to delete it later on in that same session.

Examples:
PRINT FILF “PRNTFIL’

RECOVER < & >

LCC will treat a RECOVER statement as a dummy statement unless
you give it from a user state which was entered because of an
error in a delayed step. In the latter case, your furnished
expression e, which will only be acceptable if the operaticn which
caused the error halt should have produced a result, will be used
as that result, and LCC will resume execution from the point of

20 LCC Statements

the error as if the operation had been completed, As an example,
if your program halts with the error message

ERROR ORQ1 AT 4.1 DIVISION BY ZERO
you may resume execution by typing the statement
RECOVER 3,20

Pxecution will then continue just as if the d&ivide operation had
bean completed normally and had yielded the result 3,20.

In some cases it is possible to resume execution after errors
vhere no explicit result is involved. In those cases you may use a
simple RFCOVER statement which furnishes no result expression. As
an example, if vyou attempt to call part 3 when part 3 is eapty,
LCC will halt execution of your program with an etror message such
as

ERROR PCO2 AT 5.2 PABRT 3 DOES NOT RXIST, YOU CANNOT CALL
You could then resume execution by typing the lines

3.1: LOAD STUFF
RECOVER

Examples:
RECOVER X + Y

RETIORN

LCC will delete the current execution context and return
control to its caller, resuming execution from the point of the
call.

RETURN e

This statement acts just like a simple RETURN statement except
the value of e is computed before the RETURN is performed, and
that value is the result of the call.

Examples:
RETURN X - Y ¢ 3

Trm

P

LCC Statements 21

RETURN pointer

This statement acts just like a simple RETURN statement except
the specified reference pointer is constructed before the RETURN
is performed and that pointer is the result of the call.

Examples:
RETURN o VBL{I+1)

RETURN procedure

This statement acts like a simple RETURN statement except a
reference to the given procedure is constructed before the RETURN
is performed and that reference is the result of the call. Thus if
a procedure PR, which is called via the statement

RED « PR{X,Y,7)
returns with the statement
RETIURN ¥ (A,Y) PART k6 @

the effect (except for possible side effects) is to perform the
assignment

RED « 9 {A,H) PART 66 v

Fxamples:
RETURN v STFPS 4.8 TO AZ ¢
RETURN v (B,C) { PART 7; PART 25 } v

SAVE save-obiect

LCC will put the save-ohject (a list of steps and/or values)
into the currently open file. A step will be SAVEd in the sanme
form that would be used to DISPLAY it, which is, except for
possible wminor differences in the format of the step number, the

same form that you used to type it in. The current meaning of a
variable will be SAVEd as an assignment statement which assigns
that meaning to the variable. Thus a SAVEd file can be reloaded

merely by executing it; this is done by means of a LOAD statement.
Note that no context information will be Kkept with a SAVEA
variable, and it will be up to you to recreate the proper context

into which to later load the file. Only variables whose meanings
are values (numeric, 1logic, or string), pointers, or arrays will
be SAVEd. An array will be saved as a structure assignment

followed by assignment statements for each of its SAVE-able

22

SAVE

STEP

LCC Statements

elements,

A SAYE statement does not save nuperic values to their full
precision (about 17 digits) but only to the precision of the
printing routines (10 digits). Thus a SAVEd and relOADed progran
may not function exactly the same as if it had been run in a
single session, This will not usually be noticeable, but it will
show up if numbers such as PI and EE {vhich are initially accurate
to the last bit) are saved or if, <for example, X = 1/3 is SAVEd.
tn the latter case we would normally get 3 # (1/3) to print as 1
{(due to rounding in the outpnt routines; 3 ¢ {1/3) = 1 is PALSE,
however), but after saving and reloading X ve would get 3 &« X to
vield .9999999999,

Any number of SAVE statements can be executed to generate a
given file; each will append its lines at the end of those already
in the file.

Fxamples:
SAVE STEPS 35.6 TC 35.8
SAVE X, YIlI,11, v(1,21, 2
save-object AS < FILE > e

Equivalent to
USE FILF e; SAVE save-object

Fxanmples:
SAVE PARTS 45 TO 493 AS FILE *CAT’

S num_1 TO num_2

This “step call” is an “execute” statement, vhich may be used
to perform steps from scoe other portion of your prograt as if
they had been copied in-line in its place. As in a group, num_1
pust be < num_2 (unless num_2 < 1), LCC will set up a new group
context (non-block) €for the serquence of steps from num_7 to num_2.
Pyxecution will then begin at step pum_1, and it will continue

through successively higher numbered steps. This step call will
normally be terminated either by a RETNRN statement without a
vyalue or by *running off the end” of the stef group. An BXIT

statement will terminate the step call and return control to you
in the context of its calling group.

Examples:
STEPS 3.8 TO 3.93

LCC Statements 23

STEP num

-3
-
=]

USE

ey

Equivalent to the statement

STEPS num TO num

F type-obiject 4 .,.

For a type-object consisting of an expression e, LCC will type
the value of e, left-justified on a line. A numeric value will be
rounied to 10 significant decimal digits and typed as an integer
or a decimal number, with an exponent part heing appended if
necessary. A logic value will be typed as TRUE or FALSF or as an
B8-digit hexadecimal number (i.e., it will have the form of a
logic-literal). A string value will be typed as is without
surrounding quote marks.

LCC will ignore an empty type~object in this unformatted TYPE
statement.

A for-clause in a type-object merely specifies control over
another type-object, but the controlled objects will be typed just
as if the for-clause were outside the TYPE statement instead of
inside. As an example, the type-obiject

(for-clause e_2 , e_3)

will, under control of the for-clause, type values for e_2, e_3,
e_2, e_3, «.. , one per line.
Examples:

TYPE A + B, , C

TYPE P, (FOR I TO 19 DO I, CABITILJID)

< FILE > e

The expression e must evaluate to a string whose body will be
used as a file nane. LCC will open that file and use it in any
subsegquent SAVE or WRITE statement which does not mention a file
explicitly. Only one such file can be open at any time, so file e
will be closed either by a logoff or by executing any filing
statement (including another USF) which explicitly mentions a
different file,

A file name must be an identifier (ident) of length £ 8 which

?

LCC Statements

does not contain any lover

case letters or underline (
characters.

Exanples:
USE FILE “QRIC’

WRITF + type-object 4 .,.

This statement is Just 1like
type-objects will be

at your terminal.
to write 2a given file;

each will append its lines at the end of
those already written.

Examples:
WRITE A, BsC
WRTTE (POR I TO 10 DO (FOR J TO 10 DO FISHII,J)))

WRITE + type-object 4 .,. AS K FILE > e

?

$

Fgquivalent to

USE FILE e; WRITE + type-obhiject 4 .,.

< string-literal > varid 4 .,.

For each varid in the list, the following process will be
performed: LCC will type either a standard identifying message or,

jf vyou preceded the varid by a string-literal, the string which
you supplied. It will then give control to you. You must type the
text for an exoression and return control to LCC (by pressing the
RETURN key). Your expression will then be evaluated and assianed
to varid.
Fxamples:

?A,B

2 YTYPE RANK” RNK{3}, RNKI4]

< string-literal > varid 4 .,.

This statement acts like the regular ? statement except LCC

will treat each of your typed expressions as the body of a string

)

a TYPE statement except the
written on the currently open file instead of
Any number of WRITE statements can he executed

heas

mw

. TR
L meay R RN T

LCC Statements 25

{i.e., it will surround each expression by quote marks). Thus the
value assigned to each varid will alvays be a string.

A slight variation is possible here in the use of single-quote
marks, which need not be doubled to appear in your requested
string body, Thus if you type

AB’C*D
in response to the statement
?$ ST

the effect will bhe exactly the same as if you had executed the
statement

ST =~ “AB’’C*‘p’

Examples: -
: ?8 S, ‘T STRING 7 T

This “compound statement” will be treated as a single control
unit whose sub-statements will be executed sequentially from left
to right. A compound statement is not a block and it may not have
its own 1local variables; therefore its main use is within a
controlling statement such as anp IF, CASE, or iteration.

Examples:
IF ~P v O THEN 2 « 5 FLSE T« T+ 1; TYPR T }

The expression e must evaluate to a string, whose contents
Will be treated as statement data to the LCC translator. When a !¢
statement is executed, the string which it supplies will he
brocessed just as if it were a step which was just typed in. 1If
the string turns out to be an imnediate step, it will be executed
as the current statement. Tf not, it will be stored as usual for a
delayed step and control will pass to the successor of the !
statement, This statement is usefyl mainly in programs which
Tenerate nev program text during execution.

Fxamples:
! A+« B +C; a Translate this later’
! SaorT
! “STEP 8.44%;: ¢ Same as the statement STEP 8.44

26

A<

var

var

LCC Statements

 character 4 «es 2>

No operation will be performed. The character sequence will be
tFeated merely as a comuent, with all characters following the
first A in a step being conmpletely ignorei.

Examples:
A TRIS IS A COMMENT LINE.

- e

The variable designator var is first elaborated (cycling all
the way down 1its pointer chain if it begins one) to obtain the
walaborated address” of a value {(non-reference) entry. Then the
expression e 1is evaluated to yield a numeric, logic, oOT string
value. That value is assigned to the elaborated address of var,
with no conversions of any sort being performed.

Exanples:
K« M A (FO
P[3] ~ A ¢ (B« B ¢ 1) ¢ B{N)
T« J =K«

e v<¢(¥ ident 4 .,.) > |

var is treated as in an expression-assignment. A reference to
the qiven procedure will bo constructed and assigned to (the
elaborated address of) var. The procedure body is either the
expression e OT the statement list, and the listed idents are
formal identifiers 1in that bodv. When the procedure 1is called,
actual parameters nust be supplied to replace the formal
jdentifiers during execntion of @ or the 1ist of statements s. For
a procedure with no parameters, the formal identifier list is
normally omitted. If so, parentheses cannot be used to surround a
procedure-body axpression, because they would be treated as
parameter Aelimiters. To get around this syntactic ambiguity, LCC
allows an empty formal parameter list to precede a procedure-body
expression e (but not a statement list).

once var has been made a procedure name, any mention of it in
an expression ot assignment will cause the procedure to be
avaluated, Thus the meaning of the var cannot be changed unless it
is first redeclared or DELRTEA.

var

var

LCC Statements 27

Examples:

PROC - ¥(F,G) P + G * HY

G+ Vv PART 81 { NEN Z <« Z + 1; Q« Q } ¢
clI,J) - 9v(X) PART 371v _

P3 « v { PART 4; PART 68; I « I + 1 } v
Fe«9v () IF X < 48.3 THEN T+#1 ELSE T ¥

~« ARRAY [Fe < : e >4 .1 10 14{. 1

LCC will assign to var the multidimensional array structure
spacified by the given bounds list. The bounds list gives the
number of dimensions of the array structure and the limits on each
of its subscripts. An item in the bounds list can be either a pair
of expressions specifying the 1lower and upper limits on the
subscript for that dimension or a single expression specifying the
upper limit on that subscript (the lower limit will be implicitly
1).

Storage will not be allocated for an array until that array is
used, and even then it will only be allocated for a given row when
an element from that row is first accessed. LCC keeps identifying
information for each element in an array, and therefore arrays
need not be homogeneous. Thus, for example, in a given rovw an
array could contain elements which were procedures, pointers,
nuseric values, string values, and even arrays.

Note that if the var above is an identifier, this statement
form 1is exactly equivalent to an ARRAY statement. Thus the two
statempents

A ~ ARRAY[O0:4,6]
ARRAY A{0:4,56]

are equivalent, However, 1if the var is subscripted, we can with
this statement specify that an array element is to be itself an
array, an effect which is not possible with an ARRAY statement.

Examples:
LA - ARRAY[1:N, -3 : 8#%K]
P{2,8) < ARRAY(S5,10,24]

- pointer

var is treated as in an expression-assignment. The specified
reference pointer will be constructed and assigned to (the
elaborated address of) var.

28

var

LCC Statements

LCC cannot allow a variable to point tc another which is
declared in an inner (higher) nesting level; therefore such an
assignment will lead to an error message and will be rejected. An
assignment which would create a circular pointer chain, as in

A« > B R« > A
wvill also bhe redected.

Examples:
ND <« >AHII,J)

< (< F]e)
] pointer {
| procedure |

"{o'-)))

The procedure referenced by var is performed, using the itens
in the list as actual parameters. This is done by setting up a nev
block context, declaring as NEW all formal idents listed in the
definition of var, assigning, 1in order, each actual parameter to
the corresponding formal ident, and then transferring control to
the body of var. Ccontrol will be returned when the procedure
executes a RETURN statement, when it “runs off its end” (which
causes an implicit RETURN to be executed), when it executes an
EXIT statement, or when it executes a GOTO which transfers out of
its body. A procedure may be called either as an operand in an
expression (in which case it should return a result) or as a
statement. A procedure statement should not return a result, but
if it does, the value of the result will be typed out at your
terminal.

As an example, suppose we have executed the procedure.
assignment

R« 9 (A, B, C) PART 3 v ;
and we execute the step
R (X~-72,9{G)G+«H/ 39, >2¥%);5;

A new block context will be opened, LCC will perform the
statements

NEW A - X - 2 ;
NEW B« 9¢ (G) G «H / 3 v ;
NEW C - > W ;

and execution will begin in the new block context at the first
step in part 3. After normal termination of the part, the block
context will be closed and LCC will proceed with the successor to

LCC Statenments 29

the procedure call, i.e., statement S.

Procedures need not have parameters; thus the actual parameter
list may be omitted. If more actual parameters than formals are
supplied, the leftmost actuals will be used, with the extra ones
being stacked for the duration of the procedure incarnation. If in
a subsequent nested procedure call too few actual parameters are
suppiied, the wextra actual parameters from outer procedure calls
will be used, with those from the innermost calls being used
first.

Examples:
FTR
F{A,X-Y)
FN(P+1, 20, YV R ¢ PART 2 v)

———— i - o ——— — ——— i

~=w=~ LCC Metavariables =-—-

binary-operator ::= |e|t|s|/]#]c|+|-|<|S|=]|2]>|# || +~]|A|V][=]|0]
unary-operator ::= | ¢+ | - | & | ~ |
e 1= rimary

» 1 binary-operator e

1 p

| unary-operator e

| e_

| IF e THRN e_%1 ELSE

I
|
=2 }
e_2 |

An expression (e) in LCC is a combination of value entities
(primaries) with operator symbols vhich acts as a rule for the
computation of a value. Syntactically, an expression may be
deqgenerate (i.e., a single primary), it may be a prefixed
unary-operator acting on a value, it may be the combination of two
values with an infix binary-operator, or it may be conditional,
with a distributed operator (IP ... THEN ... BELSE ...) which
selects one from a given pair of values.

The value of an LCC expression will normally be used as a
constituent in a statement. However, if an expression appears in
place of a statemant (or if a syntactically correct LCC statement
turns out to have a value), its computed value will be typed back
to you. This gives LCC its “desk calculator* feature, vhereby you
need merely to type an expression to obtain its immediate
evaluation -- there is no need to write a “program” to do so.
Note, however, that if LCC, when scanning for a statement, finds
as its first item an IF, 7?2, or !, it will treat what follows as a
statement, not an expression. If that is not what you nmean, you
may use parentheses around your exprassion, and LCC will then
traat it correctly.

A conditional (IF) expression acts much like an IF statement.

If the expression e evaluates as true, the value of the
conditional expression is e_1; 1if e evaluates as false, the value
is e_2. Thus, if the variable AVAL = 1, the value of the
expression

TF AVAL € 5 THEN 825 ELSE 839
is 825.

The unary-operators are “+/, -7, “4/, and *~’. 1 unary ‘*+7 is
reiundant, and +e = e nc matter whether e is a number, a logic
value, or a string. A unary ‘-’ is a negation operator which
changes the sign of any non-zero value to which it is applied {a
zero 1is always positive). “4* is a truncation operator whose
result is the integer portion of the value to which it is applied.
Thus +2.8 = 2, #-3.1 = -3, and 341 = 3413, v=f and ‘47 are
arithmetic operators which can act only on numeric values; if they

LCC Metavariables 31

are applied to logic values or to strings, those values will be
converted to numbers before thke operations are performed. *~’ is a
complement operator whose result is the bit-by-bit logical
complement of the 32-bit value to which it is applied (i.e., each
binary 1 becomes a zero and each binary 0 becomes a one). Thus

~TRUE = PALSE (= 4£0), ~4FEDO = (FFFPO12F
Vote that multiple unary-operators may precede a primary; if so
the operations which they represent will be performed from right
to left. Thus

-3.1 = 4(-3.1) = -3 = =43.1

-(‘301)
i~+~(PFFFFFFC = -3

Like the unary-operators, the binary-operators can act only on
values with the proper data attributes. If one is used with values
having improper attributes, appropriate conversions (with a bias
from string to logic value to npumber) will be automatically
pecformed before the operator is executed.

The binary-operators “t7, &7, /7 V37 Ner 47, and ‘-’ are
numeric operators; each acts on numeric values to produce a
numer ic result, *$’ daenotes exponentiation, with e_1 as the base
and e_2 as the exponent. The operators ‘+’, “-“, and ‘+’ have the
conventional meanings of addition, subtraction, and
multiplication, */’ is the usuwal numeric (real) division, with a
real result; ‘t’ (integer divide) and ‘¢’ (modulus, or remainder
divide) cause a real division operation to be performed, but ‘&’
gives only the integer portion of the real result as its value
(i.e., A+ B = +(AsB)) while ‘e’ gives only the remainder (i.e.,
A e B=A-B « (AsB)), Thus

3.2 22 =1, 3.2 2 =1
4,7 & «3 = '1, 4.7 .
tar, ‘vr, and AR are logic operators; each acts
bit-by-corresponding-bit on logic values to produce a logic value.
They have the conventional wmeanings of logical AND, OR, and
equivalence.

‘o is a string concatenation operator which causes the hody
of string e_2 to be appended to that of e_1.

The operators “e«’ and ‘ee’ will shift a logic value or a
string left or right. e_2, which will be truncated to an integer,
is the length of the shift, while e_1 is the value to be shifted.
Shifts will be by bits for logic values and by characters for
strinas. A shift of a (fixed length) logic value will cause any
bits which are shifted out of the value to be lost; vacated
positions at the other end of the value will be filled in with
zeros. A string, however, does not have a fixed length. Characters
shifted “off the end” will be lost, but there will be no *vacated
positions® -- the string merely becomes shorter. Thus we will get

LCC Metavariables

the following results:

SABCDEFG’ == | = ‘pABC’
“ABCDFRFG*® e 2 = SCDEFG’
“ABCDEFG’ e 2 == i = cr

The relational operators “<*, g7, ‘=7, ‘27, >/, and “#’ can
act on any operands with matching attributes. The meanings of the
relations are ohvious for numeric operands. Fach produces as its
result a Boolean value (TRUE or FALSE). For logic values, ‘=’ and
v+’ et bit-by-bit to produce logic values which will be,
respectively, the 1logical equivalence and exclusive OR of their
operands (i.e., L = M 1is the same as 1L = M, and L # M is the sane
as ~(LzM)). If the other relations (<, £, 2, >) are applied to
logic values, those values will first be converted to numbers and
then the usual rules for relations on numbers will he followed.
Relations on strings will be performed character-by-character from
left to right, with the shorter string being extended, if
necessary, to the right with blanks. The normal 360 collating
sequence Wwill be used in comparing characters. The result of a
string relation will be a Boolean value (TRUE or FALSE).

The assignment operator ‘-’ in an expression takes as its left

operand a var, i.e., a reference entity which specifies a variable

name. Its right operand can be any expression. The value of an
expression e_1 « e_2 is the value of e_2, and as a side effect
that value is also assigned to e_1. Note that a '+’ in an

expression takes as its left operand only that entity immediately
to its 1left, while its right operand is the vhole expression to
its right. Thus the statement

A{0) « A[1) « B + C =D ¢ E« F + G
will be performed as if it had been written

A{0) = (A[11 « B + (C « D & (E « F + G)))
Note also that a ‘«’ in an assignment statement is treated
differently from one in an expression in that it does not produce
a result and its right-hand side need not be an expression.

If the sequencing of operations in an expression is not

explicitly specified by the use of parentheses, the operations

will be ordered within it from left to right, but with the
following additiomal rules of precedence:

LCC Metavariables 33

First:
Second:
Third:
Fourth:
Fifth:
Sixth:
Seventh:
FRighth:
Ninth:
Tenth:
Eleventh:
Twelfth:

- +(unary) -{unary)

+ .

Ar 8- e
Al N

> > #*

~—

+
¥

(as explained above)
P «ee THEN ... ELSE ...

-t Q<>

Thus the statement
X« A-~-B ¢t 2/ C+ 14D

will be performed as if it had been written
X« ((A - ((B Y 2) 7C)) + (4D))

If a conversion of a value to one of different attributes is
necessary, it will automatically be performed by LCC as follows:

number - logic value: LCC will truncate the number and strip
off its sign; the binary representation of the resulting
integer is truncated to 32 bits to form the logic value.
Thus

=-25.7 becomes £19

number = string:

logic value - string: 1LCC will transform the internal
representation of the number or logic value into its
external form (that which would be typed by an output
statement), That external form will be the body of the
resulting string. Thus

-25.7 becomes V=25.T77
LFF12 becomes *4,0000FF127

logic value - npumber: LCC will use the logic value as the
low-order 32 bits of the positive integer result. The
other bits of the result will be zeros, and thus its value
will he between 0 and 2¢32 - 1, As an example

£L2F becomes 47

string - number:

string <« 1logic value: LCC will translate and evaluate the
expression which is the body of the string. This must
yield another value (possibly again a string) which may
nead another conversion, etc, Thus if A = Y8, B = 13,

34

extractor ::=] e_1
|

LCC Metavariables

*A o B becomes 42.1

|
a8

<e_2>|
e_2 |

Tf an entity has a logic or string value, it may be followed
by an extractor, which will select a portion of that value for use

as a primary. An extractor must have one of the forms listed

abova, vwhere e_1 and e_2 are expressions which evaluate to
inteqers, and 1< e_1 < e 2 <N (N is the number of bits or
characters in the originral entity value). If e_1 is missing, it is
assumed to be 1; if e_2 is missing, its assumed value is N. VNote
that an extractor can follow any operand or parenthesized
expression; it is not restricted to variables.

A logic value is a quantity whose 32 constituent bits are
numbered, starting with 1, from left to right. when a subfield is
extracted from a logic value LV, the result is a logic value
consisting of those bhits of LV with 1indices from e_1 to e_2

inclusive, right Justified in a field of zeros. Thus if
LY = 4FFOQOFF00, then

LV 15:12) = £000000FO (= 4FO)

The constituent characters in a string are also numbered,
starting with 1, from left to riqht. When a substring is extracted
from a string SV, the result is a string consisting of those
characters of SV with indices from e_1 to e_2 inclusive. Thus if
Sy = “PORCUPINE”, then

sv [6: 1 = *PINES

1f an extractor follows a subscript, the character pair *]1(°
nay be replaced by the single character *,”’. A value may not be
extracted from an extracted value, and thus it is an error to
follow one extractor with another.

Examples:
YRLLOW{3:101 o RED
o3, NN, 1:J31 - RI:18)
{(a + B + C)YI[5:8]
p{y, T+1)135,1411(23:]

LCC Metavariables 35

{= (| |TO e <BY e>|

for-clause ::= <|FOR ident <|FPROM|e>|> <|BY e <TO e>|> <WHILE e> DO
!
| FRON e

See the 1iteration (POR) statement description on page 12 for
an explanation of the control exercised by a for—-clause.

Examples:
POR I FROM 1 BY G TO H WHILE N # 3 DO S
TYPE P,(FOR I TO 10 DO(FOR J TO 5% DO ctr, a1 ,rIID)

{ | PART | < num < TO num > >
{ | PARTS |

| | STEP |

] | STEPS |

| num < TO nam >

A group is a specification of a step or a contiguous set of
steps. A single step is normally specified by the keyword ‘STEP’
followed by a num, but if the group scanner finds a num without a
preceding keyword, it will assume the presence of the word ‘STFRP’.
A set of steps is specified as one of

STEP? nua TO num
STEPS num TO num

or merely as
num TO nam

A part or set of parts is similarly specified as
PART nunm

or as one of

PART num TO num
PARTS num TO num

{the keywords *PART’ and ‘PARTS’ cannot be onmnitted).

In scanning for a group, as well as everyvhere else in LCC,
the translator always considers the keyword ‘*STEP’ equivalent to
“STEPS’ and the keyword ‘PART’ equivalent to “PARTS’. Thus, for
example, you can write

DISPLAY PARTS 6
DFLETE STRP 4.7 TO 5.3
IP 4 < B THEN PARTS 6

LCC Metavariables

Whenever the construction ‘num_1 TO num_2’ is used in LCC, you
pust have num_1 € num_2, wunless num 2 < 1, in which case LCC will
increment it by the integer portion of num_1. Thus, for example,

DISPLAY STEPS 3.6 TO .9
is equivalent to

DISPLAY STEPS 3.6 TO 3.9

Exanples:
ALTFR STEP 1.6 : “X’ - “AX’ , ‘Y’ - “BY’
COPY PART 3 AS 413
“STEPS 4.5 TO 4.73*
NUMBER 7.7 TO 8,2 AS 25 BY .02
digit ::z= (O} 1]213184)51617]81}9]
letter ::= |A|B|C|D|nggslH|;|J|K|L|H|N10|p|ojR;5|T|U]V|ﬂ}xlv|2|
lalbjc|ale|£lg{hlijilk|1Imin)olplaic]sitiujv|wixiyiz]
ident t:= letter < b | digit | A «.. >
| letter |
fF o4 |
Tdentifiers (idents) are used to name entities in LCC. An

jdentifjer consists of a sequence cf one or more letters, digits,
and/or underline{(_) characters, the first of which must be a
letter. Some identifiers are keywords in LCC and are reserved for
that purpose; you cannot use them as nanes. Others, such as the
names of the standard functions (see Appendix H) and the other
built-in LCC functions and procedures (see Appendix 1) are
privileged identifiers in the sense that they are given meanings
when LCC is initialized. You may use a privileged identifier as a
variable name by declaring it, but if you do, its original meaning
will be superseded and may be lost.

Even though an identifier can be arbitrarily lomg, LCC will
retain only its first (leftmost) 8 characters, with all other
characters beinq ignored. Thus identifiers must be uniquely
distinquishable within their first eight characters.

Fxamples:
X
RED
ALGOL_60
RUMPELSTILTSKIN

LCC Metavariables _ 37

hex-digit 1= |l digit Y A | B}t C | D | E| F |

logic~-literal ti=

num

R

=~ =
o
[
o]

A logic-literal in LCC 4is written either as a hexadecimal
value or as one of the Boolean values ‘TRUE’ or ‘PALSE’. The 16
hexadecimal digits are specified by the decimal digits 0 through 9
and the letters A through P, with the “digits” 10 through 15 being
represented by the letters A through F respectively. A logic value
is represented in LCC as a 32 bit quantity; therefore a
logic-literal can contain up to 8 hex-digits, which amust be
contiguous, i.e., imbedded blanks are not allowed. The optional
letters L’ and ‘R’ in a hexadecimal literal indicate left and
right justification respectively. If neither letter is present, an
‘R’ will be assumed. Thus '

LLFB1 = (PB100000

The Boolean values are equivalent to hexadecimal values as
follovws:

FALSE
TRIE

£0 (32 binary zeros)
LFFFFFFFP (32 binary ones)

Note, however, that when tested in an IF clause, any non-zero
value will be considered to have the guality “true”. Thus the
statement

TYPE IF (123 THEN *“T’ ELSE ‘P’
will print T/, even though (123 # TRUE.
Examples:

FPALSE

£L9AB7
LLFF

[1]
8

=)} int + . 4 int |
! ident)
I Ce) f

A numr is used to specify the number of a step or a part. Tt
¥will usually be a decimal number, i.e., a number without an
exponent. However, it may also be an ident whose value is a step

number, or a parenthesized expression which evaluates to a stap
number.

318

int

1.CC Metavariables

A part or step cannot have a negative number; therefore LCC
will take the absolute value of each evaluated num bhefore using
it.

Pxamples:

STEP 1420.35

PART (J + 2)

DRLFETE STEPS A TO B

s2= b digit 4 ...
number-literal ::= | | int <+ . 4 <int > > | < , < | + 1 > int >

| 1+ . 4 int |] - |
| o €1 1 > int
| } -

A decimal arithmetic constant in LCC is written as a
number-literal. A number-literal is a sequence of digits, possibly
including a decimal vpoint, optionally followed by an exponent
part., An exponhent part consists of the delimiter character 4
followed by an optionally signed decimal exponent, As a special
case, if the base value of a number is to be 1, the number-literal
can he written using only an exponent part. Thus

o=15 = 1,15

Blank spaces are not allowed within a nuaber-literal; thus 3.7 ,-5
and 5, 14 are illegal.

Numeric values will be stored by LCC as long (double word)
floating-point System/360 gquantities. This allows a precision of
about 17 decimal digits, though for output LCC will usually round
a number to 10 digits. The maximum absolute value of a number is
approximately 7.237,75; the pinimum non-zero absolute value is
approximately ,=75.

Examples:
15
7.36
w2
6e2p-5
1318,
.5

LCC Metavariables 39

operand ::= | BEGIN F+ s 4 .;. END |
| CASEe OF (e 4 .,. < , OTHERVISE e >) |
) PART num < { F s A .;. } > |
] | STEP | num < TD num > !
1 | STEPS | |
| ident i
| logic-literal |
! number-literal |
| string-literal |
] var < (< + | e | 4 ape >) > |
|] pointer | |
| ‘| procedure | |
| 2 €% > < string-literal > < ident > |
! oe |
i { +s 4 .;. }]
| * group * |

Most of the operands are described 1individually below
(starting on page U6). For ident and logic-, number~, and
string-1literal, sae the descriptions of the individual
zetavariables, For the part call and the var call, see the
descriptions of the corresponding statements.

An LCC operand may be characterized most simply as an entity
which returns a result; a statement is an entity which does not
return a result. In many cases, operands and statements look alike
(e.g., a part or step call, a procedure call, a block) and the
distinction between them must be made by context or it may have to
be made dynamically during execution,

pointer ::= > varid

A pointer is used to indirectly reference an incarnation of a
variable, It 1is thus an object which acts as an alias for the
obhject to which it points. Whenever a variable containing a
pointer 1is used in an expression or an assignment, the object to
which it eventually points will be accessed or modified, not the
original variable or the pointer. A pointer may point to another
peinter, and thus we may have pointer chains. A pointer chain must
end at a non-pointer {(cycles will not be allowed) and it is that
final element to which any pointer in the chain refers. As an
example, after we axecute the statements

A - oB; B = a€; C « 17

the value of A + B + 1 will be 35. If we then execute the
assignment statement

A - ‘FISH'

LCC Metavariables

the value of C will be changed to the string “FISH’.

Pointers may be assigned, RETURNed, or passed as actual
parameters. Their main uses are to construct list structures or to
refer to particular incarnation-values which might otherwise bhe
unavailable in inner blocks of a program, Moreover, if a procedure
is to store a result into a variable which is to be passed to it

as a patrameter, that parameter must not be the variable name but
rather a pointer to it.

Examples:
TiI0,6} « o2
NEW PTR « =3Q, Q@ - 5
RETURN >AR3([(2,I,-4)
PR{5, =X, N)

primary ::= | operand | < [| extractor | 1>
| subscript-list < | 1{ | extractor > |

] e !

. —
—
1]
gt
—

A vprimary begins with either an operand or an expression
enclosed in parentheses, and it may be optionally followed by a
subscript-list and/or an extractor. A primary is a value entity
(numeric, 1logic, string) as distinguished from a reference entity
{label, procedure, array name, pointer), though this distinction
cannot be checked by LCC until the primary is executed.

Examples:
X[{COLOR, SIZE, WT-2]
GREEN
YELLOWIB3:10)
QI3T1INR]1IT:J]
(A + B - C)YI5, :10]
FR(A,B) IC)

procedure := ¢ < (F ident 4 .,.) > | v

| e
| + s 4 5. |

The procedure bhody 'is the expression e or the statement list,
anl the listed idents are forrmal identifiers in that body. When
the procedure 1is called, actual parameters pust be supplied to
replace the formal identifiers during execution of e or the
statement list, For a procedure with no parameters, the formal
jdentifier 1list may be omitted (see the description of the
procedure assignment statement on page 26).

LCC Metavariables 41

Examples:

PROC « v(F,G) P + G = H¥

G « Vv PART 81 { NEW 7 - Z + 1; NEW Q } ¥
2= | statement |

| ident : s |

Any statement in a delayed step may be preceded by one or more
label identifiers which name that statement and allow other
statements to branch or ‘GG’ to it. Labels are not usually
necessary, because step numbers can also be used as transfer
points for GOTO’s, but they are useful for naming statements
within a step or for naming statements in a part or group which is
to be renumbhered.

Labels do not always work correctly in LCC, and at present
there are some situations which wmust be avoided. The known
incorrect cases (as of October 24, 1969) are listed below.

1. Labels in steps called via step calls (as 1in
STEPS 3.7 T0O 3.8) do not work correctly and if used will
usually lead to errors later on in your conversation.

2. Labels in a (BEGIN-END) block statement or expression do
not work «correctly and the errors they lead to will not
norsally be caught by LCC.

3. If a step containing labelled statements is added to an
active part, the labels will not be declared during the
current activation of that part. In future activations,
however, they will operate correctly.

4. Labels in the statement list of a procedure or inside the
braces of a part call do not work correctly and will
nermally be ignored by LCC.

Examples:
3.7: A: B = 3
13.452, I « I + 1; L: M2 J = J + 1
F:s Gz H: K =« J + 1

LCC Metavariables

H

save-obiject ALL

PARTS
STEPS
VALUES

!
l
!
!
| <{ PART | > F num < TO num > H .,,
|
|
|
|

+9
-

! PARTS |

| STEP |

] STEPS |
+ varid 4 .,.

ek — Y . At i —

A save-obiject, wvhich may be either SAVEd, DELETE4, or
DISPLAYed, can be a set of contiguous steps (as in a group), a
list of sets of steps ot parts, a list of the meanings associated
either with selected variables or with all the variables in your
program (VALUES), or a combination of all of your steps and all of
your values (ALL). As in a group, if the word ‘PART’ or ‘STEP’ is
missing before a num in a save-object, the word “*STEP’ will be
assuned. Note that if a save-object begins with an identifier,
that identifier will be treated as the first such in a varid list
rather than the first num in a step list.

Fxamples:
DISPLAY VALUES
DISPLAY X, ¥, 21{u,J)
DELETE STEPS 4.6, 7.1 TO 10.6, 15.3, 4.8902
SAVF PARTS 45 TO 493 AS FILE ‘CAT’
statement

See the descriptions of the individual statements, starting on
page 3.

string-character ::= | any-CMU-character-hut-a-quote |
LI
} rs ‘

string-literal z::= * ¢ string-character + ... > 7

A string-literal 1in LCC is written as a sequence of zero or
more string-characters enclosed vithin left and right single-quote
characters, The legal string-characters are the A8 characters on
the *CMNU Type-Ball”

LCC Metavariables 43

plus the 26 lower case letters and the space (blank) character. In
order to avoid ambiguity, you must type in tvwo successive left or
right single-qguote characters to get one inside your string. Thus
if you execute the step

S « “AB’’'’CDM‘*; TYPE S
LCC will type back the value

ABfrCD®
which is the body of S. An exception to this rule is the treatment
of a string body which is typed in response to a string read (?2%)

request. Single-quotes need not be doubled to appear in such a
string.

The lower case letters cannot be typed out at your terminal by
a CMU type-ball, although they can be printed by the line printer
in the computer room {(via a PRINT statement). A lover case letter
can he typed in from your terminal by preceding the corresponding
upper case letter by a vertical bar (}) vhich acts as an “escape
character®., Thus the string

“]AB]C| D] EPGH’
vill be printed on the printer as
aBcdePGH

Lower case letters will be typed out on your teraminal as their
upper case equivalents, Thus the above string would be typed as

ABCDEFGH
Because of the use of the vertical bar as an escape character,

you must alvays type two successive vertical bars to get one into
your string. Thus if you type in

CHAH =1 8~
LCC will type back the string body

LCC Metavariables

1+1=141~]

Other than for lower case letters, you will not need to use escape
characters with the regular CMU type-ball. Escape characters will,
however, be necessary if you use some other type ball or if you
use a teletype for your conversation with LCC, but these uses will
not be described here. :

Exanples:
‘BLUE’
“ABC’ o ‘DEF’ o S
! *A« B + C; ¢ TRANSLATE THIS LATER /

structure ::= ARRAY [+ e <:e > A .| I |. 1]

A structure specifies the dimension and the subscript bounds
which are to be assigned to a given var, thus making that var into
an array. See the var - ARRAY . . . statement on page 27 for a
more complete description.

Fxamples:
LA « ARRAY[1:N, -3 : 8#K]
NEW A - ARRAYI3,0:5), B, C =~ 26, D - ARPAYI[X:Y]
A{B,C) « ARRAY [1:51(0:6]
subscript-list z:= e 4 . 30 1.

Any array desigrator (an array name oOr A reference to an
array) may be followed by a subscript-list, which will select an
element from the array., Each expression in the subscript-list vill
he evaluated to a number, rounded to an integer, and used as an
index to obtain a constituent from the array, with the validity of
the indexing being determined dynamically. The selected
constituent element may again be an array, and the subscription
process may then be repeated. Wwhen multiple subscripts are used,
any character pair “1{’ may be replaced by the eaquivalent single
character *,’. '

Exanmples:
X [COLOR, SIZE, WT-2]1 + Y[3]
P(A,B+1) [T13{J) « n{1,21031 /7 K

LCC Metavariables 45

empty ::= (i.e., the null string of characters)

type-obifect :1:= | e]

varid

| empty
] { for-clause ¢+ type-object 4 .,.) |

See the description of the TYPE statement {(page 23).

Examples:
TYPE CI3], , DEF + 1, ‘STR/
WRITE (FOR I TO 100 DO AITI], BITI]) AS *FILE6’
TYPE (FOR I T0 10 DO (FOR J TO 10 DO AlI,Jd1))
t:= | operapd | < [subscript-list 1] >
] (e) |

A var begins with either an operand or an expression enclosed
in parentheses, and it may be optiorally followed by a
subscript-1list, A var must be a reference entity which specifies a
variable name, though LCC cannot check whether or not the var is a
reference until it is executed.

Examples:
P[3) « A + (B« B + 1) + H(N)
I« J+ K = M
(A + B) ICc1{D]) « 3
(?P){Q} « 5
HIJ1(1,2)[3,4](5) « 6

ident < [subscript-list] >

A varid is an identifier optionally followed by a
subscript-list, i.e., a varid is the designator of a variable.
Expressions in the subscript-list may be separated from one
another either by a comma or by the character pair *)[’ (i.e., a

subscripted varid is also a varid, vhich may again be
subscripted).

Examples:
ND + 2ARIT,J)
AIB]IC]
? A1, B213, J+1), ¢, D{K]I[9}

---- LCC Operands -—--

RAEGIN + s <+ .;. END

The keywords ‘BEGIN’ and “END’ delimit a “block”, whose list
of arbitrary LCC statements will be treated as if it vere in a
part, i.e., there may be local variables valid only within it. LCC
will perform a block entry, after which it will execute the
statements from the list in sequence. This “*block expression” will
normally be terminated by a RETURN statement which supplies a
value. Such a RETURN wil} terminate the block context, and the
returned value will be used as that of the operand. A RETURN
statement without a value will first terminate the context of the
block expression and then rcteturn from the context in which the
block is embedded.

Fxamples:
¥ « Y + BEGIN NEW A; PART 6; RETURN A END - Z

CASE e OF (e_1 , e_2 , 4ss o, €_N)

The expression e is evaluated and rounded to an integer K. TIf
1 < K < N, the value of this CASE expression is the value of e_K.
It is an error if K is out of the ramge 1 to N.

CASE e OF (e_t , @_2 , +s+ o, ©_N , OTHERWISE e_{(N+1))

"his statement operates like the ordinary CASE expression
above except if K 1is out of the range 1 < K € N, the value is
e_{N+1).

Fxamples:
i ~ CASE I-J OF (A, B+1, C-D, OTHRRWISE E/6) * H

STPPS num_1 TO nump_2

As in a gqroup, num_t must be < num_2 {unless num_2 < 1). LCC
will set up a new group context (non-block) for the seguence of
steps from num_1 to num_2. Execution will then hegin at step num_)
and it will continue through successively higher numbered steps.
The context for this step qroup operand will normally be
terminated by a RETURN statement, whose result will be the value

LCC Operands 47

of the operand. It is an error for the group to return without a
value. An FXTT statement will terminate the step group context and
return control to yvyou in the context of its calling group.

Note that there is a possible syntactic ambiguity when a step
group operand is used inside an iteration clause. An example is
the statement

FROM STEPS 3.5 TO 3.8 BY 2 DO PART 8
In anvy such ambiguous cases, the keyword ‘T0’ will always be
associated with the step call rather than with the iteration

clause,.

Examples:
M - X - STEPS 5.3 TO 5.46

STEP num

)

Fquivalent to the operand
STEPS num TO num

Examples:
TEMP « STEP 1420.35 * 2

If LCC encounters a question mark as an operand, it will type
a message and give control to you. You must then type an
expression and return control {(by pressing the RETURN key). The
typed expression will be translated and evaluated, and its result
will be the value of the operand. Note that the typed expression
may involve your program variables, whose current meanings will be
used in its evaluation.

Exanmples:
Y - ?A + 2?2 4+ 2?*LENGTH’ LNG + ?2$“READ STRING’

string-literal

This operand performs like a simple ? operand except LCC will
type out the user-supplied message string instead of the systenm
message.

48

?

H

(%]

LCC Operands

Fxamples:
T « 2 “TIME'

< string-literal > varid

This operand is equivalent to one of the expressions

(varid « ?)
(varid « ? string-literal)

varid must he an optionally subscripted variable identifier. You
will bhe asked for a value as for the simple ? operands described
above. That value will be assigned to varid before being used as
the value of the operand.

Fxamples:
X « 2Y - 3 & ?2V'2

5 < string-literal > < varid >

This operand is the same as an ordinary ? operand except LCC
will treat your typed response as the body of a string (i.,e., it
will surround the <characters which you typed with gquote marks).
Thus the value of a 2% operand will alwvays be a string. As an
example, if you respond with the character sequence

ALPHA + BETA
to LCC’s regquest for the operand ?$PC in the statement
T - S o 23%PQ
the effect will be to perform, ir order, the assignments

PQ < “ALPHA + BETA’;
T « S o YALPHA + BETA’;

A slight variation is possible here in the use of single-quote
marks, which need not be doubled to appear in your requested
string hody. Thus if you were to type

B\.l"",

in response to the above request for ?$ PQ, the effect would he to
pecrform the assignment

PO -— \B\\‘l‘"’,..l

LCC Operands 49

Fxamples:
G + ?% “INPUT N’ EN o E¥

D

The expression e nmust evaluate to a strinqg, whose contents
will be treated as expression data to the LCC translator. When a !
operand is executed, the string which it supplies will be
translated and converted to a value. That value will then be used
as the value of the operand. Thus an operand !ST, where ST has a
string value, has the same effect as the expression

(ST +)

which forces the value of ST to be converted from a string to a
number before the addition can be performed.

Examples:
XY « FP{1-SIN(Z), !P) *= 3

{f +s 4 .;. 1}

LCC will treat the statement sequence from this “compound
expression” as a single control unit vhose sub-statements will be
executed sequentially from left to right. A compound expression is
not a block and does not have its own local variables. 1t will
normally be terminated by a RETURN statement, whose value will be
the value of this operand. A RETURN statement without a value will
first terminate the <context of the compound expression and then
return from the context in which that expression is embedded.

Examples:
YZ5 « T + { FOR K TO N DO F{(K,L,N); RETURN K } / 2

* group *

The value of this operand is a string consisting of the text

of the specified group. That string will contain only the source
text for a step —— not its number, If the group includes more than
one step, the strings for the individual steps will be

concatenated 1in step-number order to form the operand, with no

semicolons, blanks, or any other characters being inserted betuween
successive text strings.

50

Examples:

LCC Operands

S « “STEPS 4.5 TO 4.73% o “STEP 6.1”
1 %14,301”

Appendix A 51

---- Explanation of Syntax Notation ----

Optional presence -- These delimiters surround a construct
which may either be present or absent.

Alternatives - These delimiters surrtound a set of
alternatives, one and only one of which must be present.
The alternatives are usually listed vertically, but for a
few metavariables, such as “digit” and “letter”, where
there are many alternatives, they will be listed
horizontally and separated from one another by | |
delimiters.

Grouping -- These bracketing delimiters are used for grouping
only.

Repetition -- The immediately preceding syntax construct,
which will be surrounded by + 4 Tbrackets, may be
optionally repeated a number of times, with the construct
between the dots (a comma, a semicolon, or either a conmnra
or the character pair *1(’) being used to separate the
individual constructs. Thus the notation

e d.,.

could mean any of the following

Repetition -- The immediately preceding construct may be
optionally repeated a number of times, with no separators
(or spaces) between the individual constructs.

(1]
L 1]

This separator may be read ‘is defined to be’., It is used in
the same sense as in Alqgol 60 syntax notation (BNF) for
defining LCC metavariables,

52

Iin

The

Appendix A

the syntax descriptions, lower-case words or phrases are
used to name metavariables. As used here, a metavariable
is a description-~language variable which is wused to
simplify the description of LCC. A metavariable is not
itself an LCC construct, but it is defined (often
recursively) in terms of LCC elements, Whenever a
metavariable is used in the syntax description of LCC, it
nust be replaced by a set of LCC characters satisfying its
definition in order to obtain a valid LCC construct. As an
exanple, the metavariable “digit® can be any of the atomic
characters 0 or 1 or 2 or 3 or 4% or 5 or 6 or 7 or 8 or 9.

upper case words used in the syntax are primitive LCC
elements which must be wused (and spelled) exactly as
written (except for the equivalent LCC words ‘PART’ and
‘PARTS’, which may be used interchangeably, and ‘*STEP’ and
‘STEPS’, which may also be interchanged), These primitive
*keyvwords” are reserved identifiers in LCC, and they may
not be used to name variables. The current LCC keyvords
are the following:

ALL NEW
ALTER NUMBER
ARRAY OoF

AS OFF
BESIN OTHERWISE
BY PART
CASF PARTS
COMBINE PAUSE
cory BRINT
DELETE PUNCH
DISPLAY READ
DO RECOVER
ELSE RETURN
END SAVE
EXIT SHARE
FALSE STEP
FILE STEPS
POR THEN
FORM TO
FROM TRUE
GO TYPE
GOTO USE

1P VALUES
N dHILE
LINE WITH

LOAD ARITE

Appendix B 53

---- LCC Syntax ~—--

binary-operator ::= |«]t]s|/]#]e|+]-|<||={ 21> F |+ >=]A]VIZ]0}

digit 2= 01 1)1 2131415 6171819]

]
"
.

]

| primary 1
| unary-operator e |
) e binary-operator e |
| IF e THEN e ELSE e |

empty ::= {i.e., the null string of characters)

extractor ::= | e <e > |

e l

for-clause ::= <|FOR ident <|FROM} e >|> <]BY e < TO e >|> <WHILE e> DO

I - | | |TO e < BY e >}
| FROM ¢
group 1= 1 | PART | < num < TO num > > |
	PARTS	
¥ sSTRP		
	STEPS	
num < TO nuam >		
hex-digit t:= | digit | A | B | C{ D} E | F |
ident 1:= letter < + | digit | 4 ... >
] letter |
1k _ 4 |
int 22= + digit 4 ...
letter ::= IA|BICID}E|F|G[H|TJI|K|L{M|N|O|P|QIRISIT|U|VIV|X|Y|Z]
lJajblcldlelfiglh|i}itkil|mintolplqirisitiu|v|v|x]|yiz]

Appendix B

logic-literal 1= | FALSE |
| TRUE i
I |

[]

num ::= | int + . 4 int |
| ident]
] (e) }
number-literal ::= | | int < F . 4 < int > > | < 4, <] +] > int > |
11 +. 4 int | P - f
| » < + | > 1int |
1 =]

operand s3= | BEGIN + s < .;. END !
: | CASE e OP (Fe 4 .,. <, OTHERWISE e >) |

| PART num < { #+ s 4 ;. } > |

] 1 STEP | num < TO num >]

1 { STRPS | {

] ident i

| logic-literal k]

] number-literal i

| string-literal |

Il var - < { <€ + | e I 4 e 23 > |

i | pointer {]

I | procedure | |

] 2 <$ > < string-literal > < ident > |

P te |

| { +s4 .3. } |

{ * group * !
pointer ::= > varid
primary ::= | operand | < [| extractor I

| (e | | subscript-list < | }[| extractor > |
| I » |
procedure 2= v < (F ident 4 .,.) > | e] ¢
| s 4 7. |

s $3= | statement |

1 ident : s |

Appendix B

save~-object ::= | ALL

| PARTS

! STEPS

| VALOES

| < | PART
}

1

|

|

> + nun < TO bum > 4 .,.

| STEP
| STEPS
F varid 4 .,.

!
| PARTS |
I
!

statement 3= (see list of statements starting on

string~-character 3= | any-CMU-character-but-a-quote |
L5

|
I !

string-literal 13= Y < F string-character 4 ... > '
structure 13= ARRAY [Fe < :ze>A4 .| } }J. 1
. |
subscript-1list t:= Fe 4 .} M)
1« |

type~obiject 3:= | e |

| empty !

] (for-clause # type-object 4 .,.) |
unary-operator 13T]+ 1 -1 ¢ 1 =~
var 1= | operand | < [subscript-list] >

| (e)

varid 3= ident < { subscript-list 1 >

55

next page)

56 Appendix R

statement = one of the following syntactic forms

ALTER group | : } F e = e 4 .,.

< NEW > ARRAY + + ident 4 .,. [F e <

[1]

e>H4 | 10 1.14.,.
|

BEGIN + s A4 .;. END

CASE e OP { F 8 4 .3. < OTHERWISE s > }

-

COMBRINE < STEPS > num TO nunmn AS e

COPY group AS e < BY e >

DELETE | FILE e !
| save-obiject |

DISPLAY | FILE < CATALOG > |

! RETURN < STEPS > |

| save~obiject |
EXIT < | ALL 1 >

| < TO > < PART > e |

for-clause s

| GOKTO >} <e>
| GOTO i

IF @ THEN s <€ ELSE s >

LINE € e >

LOAD < FILE > e

Appendix B

NEW + ident < « | a i >4 .,.
| pointer]
] procedure |
| structure |

NUMBER | AS e | < BY e >

] group < AS e > |
OFF <« SAVE >
PART nua < { Fs 4 .;. } >
PAUSE < e >
PRINT < FILE > e
RECOVER < e >
RETIRN <

e >

| |
| pointer |
{ procedure |

SAVE save-obilect < AS < PILE > e 2>

] STEP | num < TO num >
} STEPS |

TYPE + type-obiject 4 .,.

USE < PILE > e

WRITR F type-object 4 .,. < AS < FILE > e >
? < £ > < string-literal > varid A4 .,.

{f +s 4 .;.)

Appendix B

A € F character 4 ... >

var - | e |
| pointer |
| procedure |
! I

structure

var < { € + | e |
| pointer |
| procedure |

4 ape > >

1-

2.

3.

wn
.

Appendix C 59

---- bprocedure for Logging On to the LCC System ~--~
-——— at a 2741 Terminal —-———

Set the pover switch (at right of kXeyboard) to ON.

Make sure the terminal mode swvitch (on left side of 2741) is
set to COM. It will be set to COM if and only if the keyboard
is locked, which you can easily test by trying to press the
RETURN key.

Push the TALK button on your Data~Phone.

Lift the phone receiver and dial the coamputer, vwhich will
answer and then emit a continuous tone. ¥hen you hear the
tone (a beep), press the DATA button and replace the
receiver., You are now connected with the TSS monitor systen,
which will, after a short delay, ¢type back to you a message
similar to ‘

RO01 TSS AT CMU TASKID=0031 09/23/69 17:31 8345 SDA=0053

Type your B-character user nuamber and press the RETURN key. TSS

will respond with a one or two line greeting message and, on
a new line, an initial underline character (_) followved by a
backspace, leaving the typing element positioned at the first
position on the line.

If this is to be your first session with LCC, type the
characters

SHARFE USER,LCC,USER
and press RETURN. TSS will respond with another

underline-backspace. This SHARE command needs to be typed
only once, and on subsequent runs you should omit it.

Type the characters

DDEF LCC, VP,USER.LCC,OPTION=JOBLIB

and press RETURN, TSS vill aqgain respond with an
nnderline-backspace.

AQ

The

Appendix C

Type the characters

LCC

and press RETURN, After a short delay, LCC will respond with
a polite greeting such as

LCC: GOOD ATTERNOON

It will then indent four spaces and give you'control. You are
now communicating directly with the LCC processor, which will
analyze all succeeding lines which you type.

complete logon record for vyour first LCC run will thus be
similar to the following:

B001 TSS AT CMU TASKID=0031 09/23/69 17:31 8345 SD0A=0053
XYZ172213

15222 235EP 69-T1TS5S UP TILL 24:00

SHARE USER,LCC,USER

DDEF LCC,VP,USER.LCC,OPTION=SJOBLIB

Lcc

LCC: GOOD AFTERNQON

For subsequent runs, everything will look the sampe except for
the omission of the “SHARE’ line.

Appendix D 61

-=== Typing LCC Text at a 2741 --—--

The characters, including blanks, which you type will be sent
to LCC line-by-line in the order you type then. Hovever, 1if you
discover before you finish typing a line that you have made an
error on that line, you may backspace past the incorrect
characters, thus deleting them from the line being sent to LCC
(though not, obviously, from your typed page). You may then
complete the 1line by typing the correct characters or, 1if no
correction is needed, merely press the RETURN key. Each time you
press BACKSPACFE, you will delete one character from the line; thus
five BACKSPACEs would erase the last five characters (including
blanks) which you typed. After backspacing, you should manuvally
upspace the paper in your 2741 to avoid any confusion which would
be caused by strikeovers.

If your whole line is wrong, you may cancel it all by pressing
RETURN immediately after typing either the character ‘o’ or the
character ‘/’. LCC will completely iqgnore the line, and it will
merely unliock the keyboard for the next line -- it will not indent
the typing element after such a line cancellation, Note that a ‘o’
and a “/' will act to cancel a line only when they are followed
immediately by a RETURN. In all other cases they are sent along as
legitimate LCC characters.

When you complete a line, you must terminate it by pressing
the RBRTURN key. This will cause the sequence of characters which
you typed to be sent to the LCC processor for syntactic analysis
and possible action. LCC will scan your line from left to right in
order to translate it into an internal interpretable code. If your
line 1is syntactically incorrect, an error message will be typed
back to you, indicating {by a *]’) the position in the line of the
item which had just been scanned when the error was encountered
and {by a number) the kind of error which was found (see Appendix

B). Tf your line is correct, LCC will determine whether it is a
complete step or whether you plan to supply an additional line to
continue it, You must indicate such continuation by typing a

hyphen or minus character (*-’) just before pressing RETURN. The
next line will then be concatenated vith the current line such
that its first character will follow directly after the last
character before the hyphen, and the hyphen will be deleted.

Bach line will be analyzed as above until a step is found to
be complete. LCC will then determine whether the step is immediate
or delayed by checking its step number. If it has a number, the
step is delayed, and it will be saved internally so that it may be
called into execution at some later time. If it has no number, the
actions specified by the step will be performed immediately. When
all such actions have been completed, LCC will indent one or more
spaces, unlock the keyboard, and return control to you.

Appendix E

--~- FError Messages -—-—--

Translator (syntax) errors -- A vertical bar character (])
will be typed under the position in your step text which
had just been scanned by the translator when it discovered
the error, and a message of the form

ERROR SXnn text

will be written. *nn” is a two digqgit number vhich
specifies the translator error which has been encountered,
and “text” is an atbreviated description of the error (see
Appendix P for some expanded descriptions of the errors).
The error message will be left-jfustified on the line
containing the ‘|’ marker unless the marker occurs wvithin
the first 10 characters on the line, 1in which case the
message will be typed to the right of the marker.

Execution errors -- Execution error messages are of the fora
ERROR mmmm text

vhere “mmnm” is a four character internal error designator
and *text” is a string which describes the error which has
been encountered. Examples are

FRROR UNO1 V(45,11 IS UNDEFINED

ERROR GOO3 STEP 2.15 NOT IN AR ACTIVE CONTEXT
ERROR VEO3 SURSCRIPT QUT OF RANGE

ERROR ORO1 AT 61.4 DIVISION BY ZERO

L complete 1listing of all the errors caught by LCC, with
explanations of their causes and descriptions of any
possible recovery options, may be found in the reference
document *LCC Error Messages”.

1
21:
24

262
27z
28:
30:
32z
34+
35:
36:
38;
39:
40:
41
44z

Q6

97

99.

Appendix ¥

-~~~ LCC Syntax (SX) Prror Descriptions -——--

This should have been a statement, but it isn’t one.
This literal constant is malformed.

This must be an operand. It isn’t one.

This must be an operator or a delimiter. It isn’t one.
No [’ to match this ‘}°.

An extracted value may not be subscripted.

In the current language context, this is meaningless. _
This should be a statement terminator (BEN¥D, }, ;, ELSE, ¥v).
No *(f to match this “)’.

No ‘BEGIN’ to match this ‘END’.

No “IF’ to match this *‘*THEN’,

No “THEN’ to match this ‘ELSE’.

Your “ must meet its patch here,

You need a step or part number here.

A controlled variable must be an identifier.

Your CASE statement needs a *{’ here.

Your CASE axpression needs a *(’ here.

The “OTHERWISE’ must be last in a CASE list.

You can’t store into an extracted value.

You can’t have more than an expression here.

You need ‘AS’ here.

A parameter may only be delimited by *,’ or ‘)’.

This step is missing an “END’.

This step is missing a “}’.

No *{’ to match this *}’.

You need to specify some subscript bounds here.

You can only request iaput to a variable, not an expression.
You need ‘*FROM’ or *IN’ or a statement terminator here.
No ¥’/ to match this one.

You need a ‘)’ to end this formal parameter list.

You need a save-obiect or a group designator here.

You need a group designator here.

This must be an identifier.

This must be a ‘«’,

You need a “*:’ or a %,” to delimit this ALTER list.
This can’t follow an iterated output element.

This should be a step number, but it isn’t one.

63

Whoops -- the first phase of the translator has just had a
stack indexing error, which should be impossible. Please show

your listing to an LCC implementor.

The translator has Just run into some sort of a semantic
error. It could be due to something simple, like an unmatched
YEND’, but if vyou can’t find a mistake, please ask an LCC

implementor for some help.

Congratulations: you have Hjust found an error in the LCC

syntax tables. Please tell an LCC implementor about it.

6l

ippendix G

---- Automatic Reload FPile -—-—-

There is a possibility that during a conversational session a
hardvare or software failure will kill LCC and/or TSS and break
off your conversation. 'In that case LCC will lose all of its
temporary records of your interactions, which would normally
include all of your delayed steps and all “values® which had bheen
assigned to your variables as well as all the stacked informationm
on the status of your program’s execution at the instant of the
system failure, The values and the execution information will be
irretrievably lost, but LCC 1includes a special feature to save
your delayed steps, thus lessening the catastrophic effects of the
system crash.

This feature is the ‘automatic reload file’, a file on which
your delayed steps are antomatically saved while your conversation
progresses. If there are no system failures during your session,
this file will be deleted when you log off (unless you explicitly
retain it with an “OFF SAVE’ statement), but if the system fails,
the file will not be deleted and thus will be available for
reloading when you next call LCC. PRach time you call LCC, a check
will be made to determine whether your automatic relocad file
exists. If it does not, nothing is domne, but if it does, you will
be given control after the message

AUTOMATIC RELOAD? Y OR N

You then have the option either to restore your delayed steps by
loading the file (by typing ‘Y’ and pressing the RETURN key or by
merely pressing RETURN) or to ignore the file and delete it (by
typing ‘N’ and pressing RETURN). Steps will be added to the reload
file in sets of 5 in the order you type them; thus you may lose
your last five typed steps after a crash, but no more. Remember
that no values or context information will be automatically kept,
so you may have to perform a lot of initialization to resunme
execution from the point of the crash.

Nam

A BS
ARCC
ARCS
ARCT
cos
COTA
ENTI
EXP
LN
LOG
SGN
STGN
SIN
SORT
TAN

Appendix H 65
---- Standard Functions -—==--

The standard functions which are included in LCC as predefined
procedures are listed below. Bach requires as an argument (ARG)
one actual parameter which pust evaluate to a number. The
arquments of the trigonometric functions (and the results of the
inverse trigonometric functions) must be in radians.

e Function Definition
Absolute value | ARG |
0s Arccosine arccos (ARG)
N Arcsine arcsin(ARG)
AN Arctangent arctan (ARG)
Cosine cos{ARG)
N Cotangent cotan(ARG)
£R largest integer < ARG
Fxponential @ t ARG
Natural logarithm In{ARG)
Common logarithm loqg,{ARG)
Sign IF ARG > 0 THERN 1 ELSE TIF ARG < O
Sign (same as SGN) THEN -1 ELSE O
Sine sin{ARG)
Square root ARG ¢+ (1/2)
Tangent tan (ARG)

66

Appendix I

~=== Built-in LCC PFunctions and Procedures ----

The special functions and procedures which are included in the
LCC system are described below. To use the name of a standard or
built-in function as a variable, you must declare it as “NEW’, The
function’s original meaning will then Ye lost for as long as your
declaration is in effect. TIf you declare one of these identifiers
on level zero, its original meaning will be lost for the duration
of your conversational session unless you reinitialize your LCC
environment by executing a ‘DELETE ALL’ statement.

—r e —— o s -

COLLATE (arg)

Arg must be an expression vwhich evaluates to a string. The
value of the function COLLATE is an integer associated with the
lettmost character of the value of arg. A unique integer is
returned for each valid LCC character, and the integers will be
ordered according to the System/360 EBCDIC collating sequence for
the associated characters. The space or blank character comes
first in the <c¢ollating sequence and thus has the smallest
associated integer, The other valid LCC characters are listed
below 1in order of ascending collating sequence (left to right and
top to bottom).

tAaviti~+s3].< (4]} x

v

F 4« ¥

-

$ «) ~ -/ & f , A 2 =27V P % o0 v =\

1]

RExamples: The following steps define a function ALPHA which
returns the value TRUE if the first character in its atgument
string is alphabetic (lower or upper case); othervise it
returns FALSE.

ALTER 1.6, ‘LL’-COLLATE(*|A’), “0UL’-COLLATE(*Z”);
ALPHA < ¥ (X) ((Y « COLLATE(X)) 2 LL) A (X < 0L} ¥;

— b
L

.
o hn

Appendix I 67

This parameterless function has as a counstant value the base
of the natural logarithms, i.e., 2.718281828 ... Its value is as
accurate as is possible in a Systea/360 double-word.

EXTERNAL { arg)

This procedure allows you to temporarily add to your LCC
environment a non-1LCC procedure or function which is to be called
from your LCC program. Its argument must be a pointer to the name
of the procedure or function to be added {(e.g., > WAM). The effect
of FEXTFRNAL is temporary and lasts only until you log off or
reinitialize with a “DELETE ALL’ statement.

The external procedure or function to be added must satisfy
the standard TSS (FORTRAN) linkage conventions and its name must
appear as an entry point in one of your effective TSS job-library
stack mpembers. The value which it returns (if any) nmust be a
double-word number placed in floating-point register zero. All
FORTRAN double-precision 1library functions which do not involve
arrays satisfy these conditions and are acceptable EXTERNAL
functions. Any other experimentation is at your own risk.

Examples: The following statements indicate to LCC that you wish
to use the FORTRAN procedures “*DSIN” and ‘DCOS’.

EXTERNAL(2DSIN);
EXTRRNAL(=DCOS);

INTERNAL (arq_1% , arg_2)

This procedure should not be called by a normal user. Its nanme
is included here merely to forestall possible naming conflicts.

LENGTH (arq)

Arg must be an expression which evaluates to a string. The
function LENGTH will have as its value the length {(in number of
characters) of that string.

68

PT

Appendix I

Examples:
The value of LENGTH(“YYZ’) is 3.
The value of LENGTH(S o 1234), where S = ‘CMU’, is 7.

This parameterless function has as a constant value the
mathematical constant pi, i.e., 3.141592653 ... Its value is as
accurate as is possible in a System/360 double-word.

SCANN (arg_1 , arg_2 , arqg_3)

SCANN is a procedure which scans a string to obtain its first
atamic elenent, Its first arqument (arg_1) must be an expression
which evaluates to a string, and arg_.2 and arg_3 must be pointers
(i.e., >V and »W, where V and W are arbitrary variables). SCANN
will search the string supplied by arg_1 for its first (leftmost)
atom, Tt will store that atom into the variable pointed to by
arg_2 (i.e., V), and it will store into W a string consisting of
everything from arg_1 which is to the right of its first aton.

For scanning purposes, an atom is one of the following:

1. A contiquous string of alphabetic and/or numeric
characters (e.g., “ABCD’, ‘3457, “P42G", “64AB2").

2. A single non-alphanumeric character (e.g., Ce?, NP, M1,
\(I \.l)
¢ L -

Blanks which precede an atom will be ignored, and an aton will be

terminated by a blank, another atom, or the end of the string
which contains it.

Fxamples: The step

SCANN(® AR +ABRCsDE’, »L, »R); SCANK(R, >LL, 2RR)

will set L to “ABY, R to “ +ABC#DE’, LL to ‘+’, and RR to
“ABRC*DE’.

SPLYITT (arg_1 , arg_2 , arg_3 , arg_¥4 }

SPLITT is a function which searches a string (of atoms) for a

Appendix I 69

specified substring. Its value will be TRUE if the substring can
be found or FALSE if it cannot. Its first two arquments wmust be
expressions which evaluate to strings, and its last two arguments
must be pointers {i.e., >V and »W, vhere V and W are arbitrary
variables). SPLITT will treat both strings as sequences of atoms
(see the SCANN procedure above) and, searching from left to right,
it will attempt to find a sequence of atoms in arg_2 which matches
the atomic sequence arqg_1. If such a sequence is found, SPLITT
will return the value TROUE and, as side effects, it will store all
of arg_2 to the left of the match into the variable pointed to by
arg_3 (i.e., V), and it will store everything to the right of the
match into W. If no matching subsequence is found, V and W will be
left unchanged.

Note that the matching done by SPLITT is atom-by-atom rather
than character-by-character. This means that the character string
arqg_! need not be contained exactly in arg_2 to obtain a match,
though it must be except for blanks which may surround atoams
(i.e., the strings “A+B’, ™ A +B’, “A + B’ are all equivalent
in this atomic sense). Effectively then, all extraneous blanks in
arg_1 are deleted before the match is performed, and arg_2 cannot
be searched for sequences of blanks.

Examples: The operand

SPLITT{*AB’, “ABC:AB«AB+1’, =L, »>R)

has the wvalue TRUE and it sets L to “*ABC:’ and R to
‘«AB+1’, The operand

SPLITT(*3 . 4 7, *3.4 :A + B7, »LL, >RR)

has the value TRUE and it sets LL to “’ (the null string)
and RR to ™ :A + B’,

70

Appendix J

---- Example LCC Conversation ----

A THIS IS THE RECORD OF AN ACTUAL CONVERSATION BETWEEN A USER
A (AT A RFMOTE 274% TYPEWRITER) AND THF LCC SYSTEH.

A THE POLLOWIMG ARE NUMBFRRS (LITERAL NUMERIC CONSTANTS) IN LCC:

15

.00065
.00065

1234567890.
12345678990

A WFE CAN APPEND AN EXPONENT TO GET LARGER (OR SMALLER) NUMBERS:

6.2,12
ch2,+13

3.721,-5
.00003721

6.35,-42
«H35,-41

12345, 2,+65
. 123452,+70

A AN EXPONENT ALONE IS ALSO A NUMBER.

w4

L0001
wl?

« Tat 16
A NUMBERS ARE OPERANDS WHICH CAN BE COMBINED INTO EXPRESSIONS,
A USTNG THE UNARY PREFIX OPERATORS {WHICH ARE WRITTEN TO THE
A LEFT OF AN OPFRAND):
A - NEGATE
A + {(HAS NO EFFECT)
A [TRUNCATE (STRIP OFF THRE PRACTIONAL PART)
A AND THP BINARY INFPIX OPERATORS (WRITTEN BETWEEN TWO OPERANDS):
A + ADD
A - SHBTRACT
A * MOLTIPLY
A / DIVIDE
A 4 RAISE TO A POWFR
A I¥ ¥% TYPE IN AN EXPRESSION, LCC WILL EVALUOATE IT AND TYPE BACK
A THT RESULT. THUS WE CAN USE LCC TO PERFORM ‘DESK CALCULATOR’
A OPFRPRATIONS.
A LET’S TRY A FEW EXPRESSTONS TO SEE WHAT WILL HAPPEN.

Appendix J 71

2+ 2
4
38
24
-5
-5
2345-876
1469
1/3
. 3333333333
277
. 2857142857
25
32
2% 32
4294967296
2345.6789¢ & T GOOFPED. TO CANCEL THIS LINE I’LL TYPE o AND RETURN
ERROR SX03 |
A T GOOFED AGAIN =-- I HIT THE RETURN KEY PIRST INSTEAD OF THE ‘o’
A KEY, SO LCC TRIED TO TRANSLATE THE LINE. ITS TRANSLATOR FQUND
A THAT T HAD A MISSING OPERAND, WHICH T ALREADY KNEW.
a I’LL TRY IT AGAIN ON THIS LINE -- o
A LCC IGNORED THAT LINE AND MERELY UNLOCKED THE KEYBOARD TO LET ME
A TYPE ANOTHER ONE. LCC WILL NEVER INDENT AFTER A CANCELLED
A LINE, EITHER A ‘*o? OR A “/7 WILL CANCEL A LINEF, BUT TO DO
A SO IT MUST RE TYPED IMMEDIATELY BEFORE A CARRIER RETURN.
A AN EMBEDDED ‘of OR “*/7 HAS NO SUCH CANCELLATION PROPERTIES,
A LCC WILL ALSO TGNORE BLANK LINES AND ANY LINES (SUCH AS THESE)
A WHICH BEGIN WITH A DELTA (a). THUS COMMENT LINES MAY BE

A TYPED WITHOUT ANY ANALYSIS FROM THE LCC SYSTEM.
NOTZ THAT IF I FORGET THE ‘A’ ON A COMMENT LINE, LCC WILL OBJECT.
FRROR SXO4 |
A IT SAYS ‘THAT’ ISN’T AN OPERATOR, WHICH IS CERTAINLY TRUE. AN
A ENGLTSH SENTENCE DOESN’T USUALLY TURN OOUT TO BE A VALID
A LCC STATEMENT.

A IF YOQU MAKF AN FRROR AND NOTICE IT BEFORE YOU SEND THE LINE TO

A LcC (I.F., BEPORE YOU HIT THE RETURN KEY), YOU CAN CORRECT

A THE ERRCOR BY BACKSPACING TO THE LEFTMOST BAD CHARACTER AND

a RETYPING IT AND ALL THE CHARACTERS WHICH FOLLOWED IT. ANY

A CHARACTERS BACKSPACED OVER (NOT JUST THE LEFTMOST ONE) WILL

A BE DELETED FROM THE LYNE. I’LL SROW YOU AN EXAMPLE:

12.34,56 THE *,* SHOULD BE A *+’. I’LL BACKSPACE AND RETYPE 1IT.
+56 a4 T UPSPACED MANUALLY TO AVOID STRIKEOVERS.

68.34
A STRIKEOVERS WON’T BOTHER LCC, BUT I WOULDN’T BE ABLE TO READ
A WHAT I TYPED.

A NOW LET’S TRY SOME MORE EXPRESSIONS.

$2345,876
2345

+345
345

72

Appendix J

234 ¢ 12.5 & 54.2 / 6,3 - 2

232.1129167

a TINARY OPERATIONS ARE NORMALLY DONE BEFORE ¢S, WHICH ARE DONE

A BEFORE % AND /, WHICH TN TORN ARE DONE BEFORE + AND -.
LY HOWFVER, WE CAN CHANGE THIS IMPLICIT HIERARCHY OF OPERATIONS
A RY USING PARENTHESES.

12.78 = (92.5 / .341 - .00058) ¢t (3 « .788)

7228636.11

& THIS WAS DONE AS IP IT HAD BERN WRITTEN
12.79 % (((92.5 7 .341) - ,00058) ¢+ (3 = .788))

7228636. 11

A BESIDRS THE UNARY AND BINARY OPERATORS WE CAN USE SOME OF THE
A STANDARD MATHEMATICAL FURCTIONS SUCH AS

A SQRT SQUARE ROOT

. SIN SINE (ARGUMENT IN RADIANS)

A cos COSINE (ARGUNENT TN RADIANS)

A TN ~ LOGARITHM (BASE E)

[EXP EXPONENTIAL (EtARGUMENT)

A

ARCTAN ABCTANGENT (ANGLE IN RADIANS)
A LET’S TRY A PEW OF THEM.

SQRT(3)

1.732050808

SORT (234)

15.29705854

SIN(S)

-. 9589242747

LN (2)

6931471806

sXP(Y)

2.718281828

A

THOS FAR IN THIS CONVERSATION, NO VALUES HAVFE BEEN RETATNED BY
LCC, BUT IF WE WISH TN KEFP A COMPUTED NUMERIC VALUE, WFE CAN
STORE IT TNTO A VARYABLE. VARIABLES ARE DESIGNATED RY
TDENTIFIERS, WHICH YOU CAN CHOOSF FREELY (EXCEPT FOR LCC
KFYWORNS LIKE STYPE’ AND “IF’, WHICH HAVE SPECIAL MEANINGS).

AN IDENTIFIER MUST BREGIN WITH A LETTER AND IT CAN CONTINUE
¥ITH LETTERS, DIGITS, OR UNDERLINE (_) CHARACTERS., IDENTIFIERS
CAN BE AS LONG AS YOU LIKR, BOT LCC WILL IGNORE ANY CHARACTERS
AFTER THE FTIRST 8.

I’LL PICK SOME IDENTIFIERS AND STORF VALUES INTO THEM. NOTE THAT,
UNLIX? ALGOL, LCC DOES NOT REQUIRE ME TO DECLARE AN IDENTIFIER
BEFORE I USF IT.

> > > D> D> >0 bD

A+~ 5; Bed ; LCC - 111868 ; FISH « 0 ; NOVEMBER « 18 ; A_B_C =« 35
5 WE CAN CHECK THE VALUES WHICH WERE STORED RBY TYPING THEM OuUT.

TYPE A,B,LCC,PISH,NOVEMBER,A_B_C

Appendix J 73

4

111868

0

18

35
A NOW WE CAN USE THESE VARIABLES AS OPERANDS IN FURTHER CALCULATIONS
A+B

9
SORT(B+FISH)

2

LCC 7/ NOVEMBER - (LCC s A_B_C)
-3909165.111

A WE CAN CHANGE THE VALUE OF A VARIABLE WHENEVER WE WISH:

A « -742.8 ; B = B-1; FISH«34-B; TYPE A, 8,PISH

-742.8

3

1
& THE CONSTRUCTION A+ 5 IS A STATENENT, IN PARTICULAR, AN
A ASSIGNMENT STATEMENT. THE “TYPE’ STATEMENT IS ANOTHER KIKD OF
A STATEMENT WHICH CAUSES EACH OF A LIST OF EXPRESSION VALUES TO
A BE TYPED BACK TO US {ONE VALUE PER LINE). WE CAN PUT MORE THAN
. ONF STATEMENT ON A LINE BY SEPARATING THE SUCCESSIVE STATEMENTS
A BY SEMICOLO¥S (AS ABOVE). A SENICOLON AFTER THE LAST STATEMENT
A ON A LINE IS OPTIONAL.
A WE CAN MAKE AN ASSIGNMENT INSIDE AN EXPRESSION, OR WE CAN BOTH
A TYPE AND ASSIGN IF WE WISH.
T« A/ (C«B-1) + 100; TYPE T,C

-271.4

2

TYPE P - LCC + 1
111869
TYPE CAT <« DOG -~ 3;
ERROR UNO1T DOG IS UNDRFINED
A THAT DIDN’T WORK BECAUSE I FORGOT TO GIVE A VLAUE TO THE VARIABLE

A DOG. I°LL DO SO AND TRY AGAIN. NOTE THE ERROR MESSAGE FROM
a LCC’S EXECUTOR, WHICH WAS UNABLE TO CONTINUE AFTER FINDING AN
a MNDEFINED VARTABLE.
DOG + 45
TYPE CAT - DOG - 3

99997

JoJeReLeM=-N«0; A WE CAN ASSTGN A VALOE TO A WHOLE SET OF VARIABLFS.
TYPE T+J+K+L+M+N; A THEY WILL ALL BEF ZERO.

4
IJKLMNOPQRSTUVWHXYZ - 5; TYPR IJKLMNOP; A LCC IGNORES THE REST.
5
A WE CAN TEST THE VALUES OF VARIABLES BY MEANS OF AN “IFP? STATEMENT.
a EXAMPLES ARE:
IF A < B THEN TYPE 3 EBLSY TYPE 0O
3

IF B+P # LCC THEN TYPE 9999

74

9999

LTS R O R R

[]

T N -

s S8 B

aw

.
A
A
.

Appendix J

IF WE WANT TO PERFORM MORE THAN ONE ACTION DEPENDING ON A
CONDITTON, WE CAN COMBINE A SET OF STATEMENTS INTO A SINGLE
COMPOUND STATEMENT VIA THE STATEMENT BRACKETS { AND }.

THUS WE CAN TYPE:

IF A/JR € P THEN { T « 3 ; W « 04 35 TYPE T+W };

IF T = p THEN IP A # B THEW TYPE 3 BELSE TYPE 4 ELSE TYPE §

A
A

a

F- - - S -

NOTE THAT ANY STATEMENT (EVEN AN TP STATEMENT) CAN FOLLOW A
“THEN’ (OR AN “ELSE’).

SO MUCH FOR THE BASIC ‘DESK CALCULATOR’ FEATURES OF LCC. SUPPOSE
WE WISH TO WRITE A PROGRAM AND STORE IT INSIDE LCC. THUS FAR
IN THIS CONVERSATION, NONE OF QUR STATEMENTS HAVE BREN KEPT
AFTER BEING EXECNTED, THOUGH LCC HAS SAVED THE VALUES WHICH WE
ASSIGNED TO OUR VARIABLES. WE CAN SAVE STATEMENTS WHICH ARE
TO BE CALLED OUT LATER FOR EXPCUTION BY GIVING THEM ‘STEP
NUMBFRS’ WHICH BOTH IDENTIFY THEN FOR OUR FUTOURE USE AND ALLOW
LCC TO ORDFER THEM PROPERLY. AS AN EXAMPLE, LET’S WRITE A
STIMPLE PROGRAM TO COMPUTE FACTORIALS.

3.1: FACT « 1;

A
A
A
A
A
A
A
A
A

3.
3.
3.
3.

A

THE STRP NUMBFR, 3.1, CAN BE SEPARATED INTO TWO PORTIONS, THE
INTECER PORTION, WHICH IS THE “PART NUMBER’, AND THE FRACTIONAL
PORTION. SINCE THE INTEGER PORTION IS 3, THIS STEP IS STORED
IN PART 3, AND THE PRACTION INDICATES ITS POSITION RELATIVE TO
OTHER STFEPS IN PART 3. PART NUMRERS MUST BE BETWEEN 1 AND 9999,
AND THE STEP FRACTION MOST BE BETWEEN .0001 ANKD .9999. LEADING
7EROS IN THE PART NUMBER AND TRAILING ZEROS IN THE FRACTION MAY
BR OMITTED.

LET’S GO ON WITH OUR PROGRAM.

-

2000: FACT = FACT #* N; WEYLIL CCMPUTE N! AND PUT IT INTO FACT.
3: IF N = 1 THEN RETURN
uo: N« N-=-1;

5. GO TO 3.3; & WE CAN TRANSFER CONTROL TO A NUMBERED STFP.

~

NOW LET’S SEE WHAT PART 3 1L.OOKS LIKE.

DTSPLAY PART 3 ; A THIS WILL TYPE OUT THE STEPS IN PART 3.

A
A
A

FACT = 1;

FACT « FACT = N; A WP?’LL COMPUTE N! AND PUT IT INTO FACT.
IF N = 1 THEN RETURN ;

N+~ N-13;

GO TO 3.3; A& WE CAN TRANSFER CONTROL TO A NUMBERED STEP.

NOW I7LL GIVFE A VALUE TO N AND CALL PART 3. FXECUTION WILL BEGIN
WITH STEP 3.1 AND PROCEED TO SUCCESSTVELY HIGHER NOMBERED STEPS
UNLESS WE EXPLICITLY TRANSFER CONTROL WITH A *GO TO’ STATEMENT.

Appendix J 75

N < 5; PART 3

TYPE PACT
q . .
A HMMM... THAT’S NOT 51 —w= T GUESS I HAVE A BUG.
4 OH, YES; STEP 3.5 SHOULD GO TO 3.2. I’LL CHANGE IT BY RETYPING
A STEP 3.5, THAT WILL FRASE THE OLD STEP AND REPLACE IT BY MY
a NEW ONE.
3.5 GO TO 3.2 ;
4 NOW TRY AGATN.
NS5 ; PART 3
TYPE FACT
120
A THAT’S BETTER. LET’S FIX STEP 3.3 SO IT WILL RETURN THE VALUE
.1 OF FACT.
ALTER STEP 3.3 : “RETURN’ - ‘*RETURN FACT’
A THAT CHANGED THE TEYT OF STEP 3.3 BY SUBSTITUTING ONE STRING FOR
A ANOTHER. THE KEYWORD “STEP’ WAS OPTIONAL IN THYS ALTER
a STATEMENT, AND I COULD HAVE USED A *,” IN PLACE OF THF et
DISPLAY STEPS 3.3 TO 3.5; 4 LET’S CHECK THE TAIL END OF COR PaART,
3.3 JF N = 1 THEN RETURN FACT H
J.4: NN -1 ;
3.5 GO TO 3,2 ;
4 LOOKS 0.X. A PURTHER WORD ABOUT THAT DISPLAY STATEMENT -- IN
A SPECIFYING A GROUP OF ONE OR MORE STEPS OR PARTS, THE KFYWORDS
A YSTEP’Y AND ‘STEPS’ ARE FEQUIVALENT EVERYWHERE IN LCC, AS ARE
A *PART’Y AND ‘PARTS’. MOREOVER, IN MOST CASFES, SUCH AS THIS
A ONE, THE KEYWORD “STEP’ MAY BE OMITTED. THUS I COULD JUST
A AS WELL HAVE SAID
A DISPLAY STEP 3.3 T0 3.5
A OR DISPLAY 3.3 TOo 3.5
4 NOR I’LL TRY PART 3 AGAIN.
Ne6; PART 3
720
N<10;PART 3
3628800

N+0; PART 3;

ATTN AT 3.2

-15

A THAT WENT INTO A LOOP, AND I HAD TO HIT THE ‘ATTN’ KEY TO GET
A OUT OP IT. I GUESS THE PROGRAM IS STILL BUGGY.

4 I‘LL THINK ABOUT IT. * * * * *

TYPE FACT,¥ ; A T WONDER WHAT MY VARIABLES ARE NOW?

A OH, I SEE —-- PART 3 WON’T WORK FOR ANY VALUES LESS THAN 1.
a I‘LL FIX IT RY ADDING ANOTHER STATEMENT.

3.15: T¥® N € 0 THEN RETURN FACT ;

N - 0; PART 3; & TRY AGAIN.

76

Appendix J

A THAT’S MOCH BETTER. NOTE, HOHEVER,.THAT T STILL HAVEN’T GOTTEN

A OUT OF MY ORIGINAL LOOP (YOQU CAN TELL BY THE INDENTATION - 7
A SPACES INSTEAD OF 4). I CAN SAY “GO’, WHICH WILL GO ON FRONM
A THE? POINT WHERE T HIT SATTN’, BUT THAT WON’T DO MUCH GOOD.

A 1°LL TRY IT ANYWAY TO SHOW YOU.

G0
!
ATTN AT 3.2
a YOU SEE, I’M BACK IN THE 100P AGAIN. TO GET OUT, I’LL FORCE AN

. END TO PART 3 BY GOING TO STEP 3.15.
GO TO 3.15
0
A FACT STILL HAS TH® VALUE OF ZERO BECAUSE IT WAS ERRONEOUSLY
A MULTIPLIED BY THE ZERO VALUE OF N. NOTE ALSO THAT N HAS BEEN
A COUNTED DOWN AGAIN BY THE LOOP.
TYPE N
-5 7
s WE CAN HAVE PART 3 ASK US FOR A VALUE OF N BY USING A RFQUEST
A STATEMENT.
3.05: 2N
PART 13
AT 3.05 N «5; A I'LL SET N TO 5.
120 '
A WE CAN INCLOUDE OUR OWN MFESSAGE IN THE REQUEST BY PUTTING A STRING
A RETWEEN THE QUESTION MARK AND THE VARIABLE NAME (N).
3.05: 2 ‘TYPE N FOR N!7 N
PART 3
TYPE N FOR N! 4
24
s WE CAN USE ANOTHER PART TO CALL PART 3 REPEATEDLY. WE’LL Use
& PART 25. LET’S USE A * NUMBER’ STATEMENT TO GENERATE THE STEP
A NAMAERS AUTOMATICALLY.

NUMBER AS 25 RY .1

265,1: PART 3

25.23 ? 0 TYPE 1 TO 30 OV, 0 TO STOP f FLAG;

25.,3:IF FLAG = 1 THEN GO TO 25.1;

25.4:
A THFE AUTOMATIC NUMBRRING IS5 TURNED CPF BY PRESSING THE RETURN KEY
A IMMEDIATELY AFTER THE STEP NUMBER Is TYPED TC US.
PART 25; A NOW CALL OUR PROGRAM.

TYPE N FOR N1} 1

1

TYPF 1 TO GO ON, O TO STOP 1
TYPR N FOR Nt 6
720

TYPE 1 TO GO ON, O TO STOP 1

TYPE N FOR N!' O
1
TYyp® 1 TO GO ON, O TO STOP 1
TYPE N FOR Nt 8
40320

Appendix J 77

TYPE 1 TO GO ON, 0 TO STOP 1

TYPE N POR N! 2.4

'

ATTN AT 3.4

4 OH, OH =-- I’M IN A LOOP AGAIN. I’LL PLANT A “PAUSE’ STATEMENT
A - INSIDE IT TO SEE WHAT IS HAPPENING.
3.21: PAUSE ; A THIS WILL GIVE ME CONTROL AFTER STEP 3.2 IS DONE.
GO; 4 NOF I’LL GO ON WITH THE LOOP.
PAUSTE AT 3.21
TYPE FACT,N; A I’LL TAKE A LOOK AT THE VARIABLES.
15604. 49567
~T.6
GO 3 a4 IF I SAY GO, THE PROGRANM WILL GO THROUGH THE LOOP AGAIN.
PAUOSE AT 3.21
TYPE FACT,N
-134198, 6628
-B.6
4 AS YOU CAN SEE, OUR PHROGRANM DOESN’T WORK POR NON-INTRGERS.
A LET’S FIX IT BY TRUNCATING N WHEN WE ENTER PART 3.
3.06, N « I¥N;
A NOW TO GET RID OF THE PAUSE STATEMENT. 1I’LL USE A “DELETE’
a STATEMENT, WHICH WILL ERASE IT,.
DELETE STEP 3,21
GO; A LET’S GO ON.
ERROR GO10 STEP 3.21 CHANGED; GO CANNOT BE USED
A OH,0H -- I FORGOT THAT I CAN’T CONTINUE NORMALLY AFTER I DELETE
AN ACTIVE STEP. THERE ARE A NUMBER OPF WAYS TO RECOVER FRON
THIS SITUATION, BUT THE SIMPLEST IS TO START OVER. TO DO
THAT WE HAVE TO GET OUT OF THE CURRENT PART CALLS, AND THE
FASIEST WAY IS TO EXECUTE AN *FXIT ALL’ STATEMENT, RHICH
WILL TAKE US BACK TO THE ORIGINAL USER STATE. REMENMBER THAT
CURRENTLY WE ARE IN PART 3, WHICH WAS CALLED FROM PART 25,
WHICH WAS CALLED BY ME, 50 QUR CONTROL NESTING DEPTE IS 2
(I COULD THOS USE TWO SIMPLE “EXIT’ STATEMENTS INSTEAD OF
THE “EXIT ALL’).

IFP WE AREN’T SURE WHAT OOR CURRENT CONTROL STATE IS, ¥E CaAN
FIND OUT BY MEANS OF 2 *DISPLAY RETURN STEPS’ STATEMENT,
WHICH WILL LIST THE STEPS CURRENTLY BEING EXECUTED. LET’S
SEE WHAT OUR STATUS TS NOW.

L 2 - - NS S

DISPLAY RETURN STEPS

* k%

.21

25.1

%k
4 THE “#4«’ INDICATES AN IMMEDIATF STEP, WHICH IMPLIES THAT WE,
A 2ATHER THAN A SAVED PROGRANM STEP, ARE IN THE CONTROL CHAIN.
a NOTE THAT WF ARE IN THE LIST TWICE; WE ARE IN CONTROL NOW
A (TOP ENTRY) AND WE CALLED PART 25, WHICH WOULD NORMALLY
a RETURN CONTROL TO US (BOTTOM ENTRY). THE “EXIT ALL°’,
A HOWEVER, ISN’T NORMAL; IT ERASES THE CONTROL CHAIN SO THAT
A CONTROL REVERTS TO THE ORIGINAL GLOBAL STATE WHERE ONLY A
A SINGLE ‘#+¢’ WOULD BE DISPLAYED.
& THE AMOUNT OF INDENTATION WHICH IS DONE BEFQRF LCC GIVES 0P

78

Appendix J

A CONTROL TO LET US TYPE A STATEMENT DEPENDS ON THE NUMBER OF
A TTMES WE ARE THEN IN THE CONTROL CHAIN, WHICH IS THE NUMBER
A OF ‘s¢&’ ENTRIES IN THE “DISPLAY RETURN’ LIST. INITTALLY WE
A ARE ON USER LEVEL 1 {IN THE CHAIN ONCE) AND LCC WILL INDENT
a 4 SPACFS. FOR USER LEVEL 2, INDENTATION WILL BE 7, FOR LEVEL
a 2 IT WILL BE 10, FOR LEVEL 4 IT WBAPS AROUND TO 1. THERE-

a AFTER, POR HIGHER NESTING LEVELS THE INDENTATION WILL FOLLOW@
a THE SEQUENCE

a 4, 7, 10, 1, 4, 7, 10, 1, ...

a LET’S GO ON.

EXIT ALL
DISPLAY PART 3; & LET’S SEF WHAT PART 3 LOOKS LIKE.

3.05: ? “PYPE ¥ FOR N!7 N

3.06: N « N;

3.1: FACT -~ 1;

3.15: IFP N < 0 THEN RETURN ®ACT ;

3.2: FACT « FACT = N3 A WE?’LL COMPUTE N! AND PUT IT INTO FACT.
1. 3: IF N = 1 THEN RETURN FACT ;

3.48: N - W - 1 ;

1,5 GO TO 3.2 ;

PART 25 ; & LOOKS FINE., NOW IT SHOULD WORK FOR ALL REAL VALUES OF N.
PYPE N FOR N! 2.4

2
TYPF 1 TO GO ON, O TO STOP 1
TYPE N FOR N! -34.8
1
TYPE 1 TO GO ON, 0O TO STOP 0
A THAT’S ENOUGH OF THAT. WE CAN NO¥ SAVE PART 3 ON A FILE FOR USE
A NURING SOME FUTURE INTERACTION SESSION. I‘LL PUT IT ON THE
A FILE ‘FACT?Y,

SAVE PART 3 AS FILE ‘FACT3'
A THAT CREATED A NEW FILE NAMFD SFACT3’ AND STORED THE TEXT FROHN

A PART 3 ON IT. THE TFXT OF PART 3 WILL BE RESTORED IF WE LOAD
s “FACT3’ (USING A “LOAD’ STATEMENT) DURING A FUTURE CONVERSATION
A wIiTH LCC.

OFF: A LET’S LOG OFF AND END THIS SFSSION.
OoN LCC PROM 16335:48 TO 17:17:12
CPl TIKE USED: 00:00:06: 86

Secu.n!z Liasaification
L -

DOCUMENT CONTROL DATA-R&D

(Security clasatiication of title, body of abairact and indexing arnotation must be entered when the averall regort iy clarailied)

Y REPORT TiTLE

1. ORIGINATING ACTIVITY (cﬂmﬂf]l. aurhor) Za. REPORT SECURITY CLASSIFICATION
Department of Computer Science ENCLASSIFIED
Carnegie-Mellon University 2b. GRoU

‘ Pittsburgh, Pennsylvania 15213

Conversational Programming~~LCC A Reference Manual For A Language For
Conversational Computing.

4. DESCRIFTIVE NOTES (Type of report and inclusive dates)

Scientific Interim

—
8. REFORT DATE

f58 CONTRACT OR GRANT NO.

b, PROJECT NO,

® ALTHOR(S) (Firef name, middle Initiai, las! name)

J. Mitchell, J. Newcomer, A. Perlis, H. Van Zoeren, D, Wile.

74, TOTAL NO. OF PAGES 7b. NO. OF REFS

1971 85 None

92, ORIGINATOR'S REPORT NUMBER(S)

F44620-70-C-0107

A0827-5

8b. OTHER RERORT NO{S) (Any other numbers that may be essigned
this report)

61101D

- DISTRIBUTION STATEMENT

This document has been approved for public release and sale;
its distribution is unlimited.

t X

FUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

TECH, OTHER Alr Force Office of Scientific Research
1400 Wilson Boulevard (SRMA)
Arlington, Virginia 22209

. ABSTRACT

This document describes LCC, a Language for Conversationmal Computing which runs
under TSS on an IBM 360/67. The statement syntax of LCC stems from that of Algol
60 and JOSS, but LCC has been designed to exploit as fully as possible the dynamic
nature of conversational computing. Thus LCC is a fully interpretive system

with extensive features for conversational control and with capabilities for

a) dynamic block structure, block expressions, and recursion, b) interspersed
editing and execution (use of program text as data and vice versa), c¢) dynamic
variable attributes, and d) interlaced program execution and creation (program-

directed program preparation). The complete LCC syntax and a sample conversation
are included.

DD 71473

Security Classilication

Security Classiflcation
14. ! LINK A LNk 8 ' LINK €
KEY WURDS
ROLE wY ROLE w. nOLE wT

Security Classification

