
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

PROTOCOL ANALYSIS AS A TASK FOR
ARTIFICIAL INTELLIGENCE

D. A. Waterman and AT Newell
May 24, 1971

This paper is to be given at the Second International Joint
Conference on Artificial Intelligence, London, September 1-3, 1971.
It may not be reproduced without the permission of the authors. This
research has been supported primarily by Research Grant MH-07722 from
the National Institute of Mental Health and in part by the Advanced
Research Projects Agency of the Office of the Secretary of Defense
(F44610-70-C-0107) and is monitored by the Air Force Office of Scientific
Research.

Departments of Psychology and Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania

CIP Working #178

PROTOCOL ANALYSIS AS A TASK FOR ARTIFICIAL INTELLIGENCE

D. A. Waterman and A. Newell

Departments of Psychology and Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania

Abstract

We are attempting to automate protocol
analysis, which is a form of data analysis in
psychology for inferring the information proc­
esses used by a human from his verbal behavior
while solving a problem. The paper discusses
protocol analysis as a task in artificial intel­
ligence. The discussion is based on (but
broader than) our current program, PAS-I, which
creates a description of a subject's changing
knowledge state from his verbal behavior.

I. Introduction

A form of data analysis, called protocol
analysis, has been much used in recent work in
the psychology of thinking and problem solving.
The subject talks while attempting to solve a
problem, his verbalizations are transcribed,
and the underlying information processes are
inferred from their content. Examples of tasks
subjected to protocol anaJLysis are various
puzzles, such as Missionaries and Cannibals
(4) or cryptarithmetic (12, 13, 17, 26) elemen­
tary logic problems (14, 15), chess (6, 7, 16),
binary-choice sequence prediction (9), geometry
proofs (4), word problems in elementary algebra
(20), concept identification for the induction
of various logical and sequential concepts (19),
and various understanding tasks (21).

Our long-term goal is to automate protocol
analysis. Careful protocol analysis is time-
consuming, and extensive analyses requires
automatization. A considerable increase in
objectivity may occur, since the analysis will
be accomplished with determinate rules, rather
than by a human with indeterminate intellectual
powers. Finally, an explicit representation
may be possible of the evidence provided by a
protocol for or against a given theory of human
problem solving.

Two side interests are served by this
project. First, the task to be automated --
the analysis of protocols -- requires an
artificial intelligence program, since the
functions involved include extraction of meaning,
inference from data, and induction of new sets
of rules. Second, since understanding the con­
tent of freely produced natural language is cen­
tral to protocol analysis, the results may be of
interest to those concerned with semantics.

We currently have running an initial
system for automatic protocol analysis, called
Protocol Analysis System I (PAS-I), designed
to handle protocols for the task of crypt­
arithmetic. A complete description of the
program with examination of its behavior in
some detail is the subject of a companion paper
to be presented to a psychological audience
(25). The present paper examines protocol
analysis as a task for artificial intelligence
-- the essential problems, the task represen­
tations, and the methods. It draws extensively
on our early experience with PAS-I, but goes
beyond it at several points.

II. Methodological Preliminaries

Automating protocol analysis is a long-
term effort involving many difficulties. This
puts a premium on adopting a sensible strategy
for carrying out the project. We describe here
some of our cardinal tenets.

First, the system is primarily for our
own use. We ourselves are involved in study­
ing cognitive processes and analyzing protocols.
We expect others to use automatic protocol
analysis techniques when they are developed;
but adaptation to the needs of others is a
postponable task.

Second, initial attempts at a difficult
task should focus on a specific variant. Gen­
erality can come later. Thus, we have picked
a specific problem solving situation, crypt­
arithmetic, and ignored all others, such as
chess, logic, concept identification, etc. The
selection of cryptarithmetic is based on the
relatively sophisticated and successful develop­
ment of a particular style of protocol analysis
for this task in prior work. Success with
cryptarithmetic could lead to rapid scientific
gains in terms of questions already posed in
this area that cannot be explored without
extensive analysis of many protocols. Conse­
quently, this specialization may provide an
early justification of the work, even without
solving any of the problems of generalization
that clearly lie just beyond.

Third, developing complex programs is an
experimental activity. The touted procedure
of careful planning, followed by complete
specifications prior to coding, is exactly the

wrong way to proceed. Every component of the
system will be redesigned and recoded not once
but many times. The important step is to get
a version of the program written and running, to
obtain feedback for the next iteration. Thus,
the current set of design decisions in PAS-I do
not represent conceptual commitments on how the
task should be done, but simply our current
selection of mechanisms to try. This system
uses SN0B0L4 for the linguistic front end and
LISP for the analytical back end clearly a
temporary expedient.

Fourth, complex software systems should
be designed and built by very few people (here
two), a principle much quoted in computer
science. For artificial intelligence systems
of moderate size, we think this principle is
actually feasible. It does appear essential for
experimental programming.

Fifth, one should aim at full automatiza­
tion and not at some optimal man-machine
symbiotic system, even though the latter is the
desired goal. Selection of a man-machine system
as the top-level goal invariably puts strong
emphases on the division of labor between man
and machine and on the hardware and software
for communication. Both of these aspects seem
secondary in importance, especially in a long-
term development. Moreover, posing the design
problem as the optimal division of labor encour­
ages attitudes like "the man should do what
requires creativity and intelligence; the
machine should do what requires drudgery and
repetitive calculation." These distort the
design and are ultimately self-limiting in terms
of preconceived notions of the powers and limi­
tations of both computers and men. We prefer to
devote our efforts to automating the central
intellectual functions involved in protocol
analysis. Adaptation to an appropriate man-
machine system is then a secondary effort.

III. Framing the Problem

Protocol analysis, as it currently stands,
is an informal art, where each investigator uses
materials in ways that suit his needs. The work
in cryptarithmetic (13, 17) constitutes a
refined form of protocol analysis, involving a
definite series of data analytical steps and
considerable detail of the verbal utterances.
We follow the general scheme of this analysis,
though it constitutes a substantial narrowing
of the task.

The experimental situation is fixed. The
subject is given a problem by means of instruc­
tions as shown in Figure 1. A tape recording
is made of his utterances throughout the
session. Note is taken of each act of writing
and its time, so coordination-is possible with

2 -

the speech. This audio tape constitutes the
primary data to be analyzed. Figure 2 gives
a transcription of the tape for the initial
part of a session analyzed previously (13)
(called S3's session).

The final output of an analysis is a
description of the subject as an information
processing system. It consists of two struc­
tures. The first structure is the problem
space, which specifies the kinds of knowledge
the subject can have about the task -- what he
can come to know. This can be done in a
grammar-like way by giving a language. Any
expression in this language represents a
possible state of knowledge of the subject,
hence a possible point in the problem space.
Included in the notion of a problem space are
the means to obtain new information from old:
a finite set of operators which take a state
of knowledge as input and produce a new state
of knowledge as output. These operators are
incremental, adding or modifying only a small
part of the total knowledge state. Figure 3
shows a simplified version of the problem
space for S3, using BNF.*

At the top of Figure 3 are the entities
about which something can be known. Below this
are seven expressions, e.g., (EQ D 5) says the
subject knows that D is 5. The knowledge state
is the conjunction of a number of such expres­
sions. At the bottom are the four operators
by which the subject can produce new knowledge.

The second structure is a production
system (similar to Post or Floyd productions),
consisting of an ordered set of productions.
Each production consists of a condition part
and an action part, conventionally written as:

condition -> action .

The condition part consists of tests that can
be applied to states of knowledge, as given by
the problem space. The action part consists of
a sequence of one or more operators. A produc­
tion system can be applied to a state of know­
ledge by executing the action of the first
production (in an ordered list) whose condition
is true of the knowledge state.** A production

The notation in Figures 3-6 has been changed
from the original paper (13) to conform with
that used in PAS-I.
If the action is a sequence of N operators
then a corresponding trajectory through N
nodes of problem space is generated by a
single production. Without loss of gener­
ality actions could be limited to a single
operator.

- 3 -

system forms a complete process if it is
iteratively applied to each new knowledge state
that is generated by its actions. Figure 4
gives a simplified illustrative fragment of the
production system for S3. Production Pi, for
instance, has a condition that is satisfied by
expressions such as (EQ R 7) or (AEQ L 1). If
the condition is satisfied, then two operators
are applied. The first, FC, selects a column to
work on; the second, PC, processes that column
to obtain new knowledge. The production system
requires some additional operators, not in the
problem space of Figure 3. These operators (FC
and FL) obtain the operands for the main problem
space operators, rather than obtaining new know­
ledge about the task.

Besides these two static structures, which
constitute the model of the subject, the analy­
sis also provides two dynamic representations of
the subject 1s behavior. The first, called the
Problem Behavior Graph (PBG), describes the
trajectory of the subject through the problem
space. Each node of the graph represents a
particular state of knowledge and each branch
represents the operator that was applied at that
state. Since the subject may return to the same
state of knowledge at different times, the graph
is conventionally drawn with a distinct node for
each distinct visit to a knowledge state. Thus,
conventionally time runs across the page from
left to right and then down. Figure 5 shows a
simplified problem behavior graph for the initial
part of the session of S3. The knowledge states
are represented by the nodes (square boxes) and
the application of the operators by the branches.
Comparison with Figure 2 will show that some
actions are not represented explicitly, e.g.,
writing results (at lines 8, 9, 12, and 13) and
obtaining a letter to work on (lines 14-19).
S3 processes column 2 twice (lines 22 and 25)
and this is shown as a back-up in the PBG.

The second dynamic representation is the
trace of the behavior of the production system,
which shows the sequence of knowledge states that
the production system generates in attempting to
model the subject's behavior. Figure 6 shows
the initial part of the trace from the illustra­
tive production system of Figure 5. Both the
production and the operator being evoked are
given at the left. The next line below gives
the output, which can be an intermediate result
(such as the column found by FC) and a new
addition to the knowledge state. The trace does
not carry through the back-up of Figure 5, since
additional productions are required beyond the
fragment in Figure 4 to recognize the need for
repeating and to accomplish it.

These two representations, the trace and
the PBG, provide the primary means of assessing
the adequacy of the model of the subject, as
given by the problem space and the production

system. Various measures can be taken on them
to summarize the degree of correspondence and
to pinpoint the aspects that are especially
well accounted for or that create important
difficulties.

As stated, these constructs may seem
arbitrarily imposed. In fact, they derive from
a particular theory of human problem solving.
This theory has been expounded at length in
Newell and Simon (17) " and there is no need
to redescribe it here. We will take these four
structures, illustrated in Figures 3-6, as the
required outputs of a protocol analysis.

The boundary conditions of the task of
protocol analysis are now fixed, with the audio
t;ape on one end and the four structures that
make up the psychological model at the other
end. Within this domain, however, are many
subtasks: description, prediction, induction,
evaluation, etc. Each offers its own challenge
as an effort in artificial intelligence, though
all are ultimately intertwined.

The diversity of subtasks within protocol
analysis is compounded by the necessity of
several intermediate representations between
the tape and the psychological models. Current
knowledge is simply not organized for direct
transformation between the two. In fact, to
proceed further in delineating protocol analy­
sis we must propose a concrete set of these
intermediate representations. Figure 7 shows
our current set. This is a critical step, for
it fixes much of the analysis. These represen­
tations are determined primarily by the form of
current knowledge. Either we conform to the
representations in which a given source (e.g.,
linguistic knowledge) is expressed or we cannot
use the knowledge. Conceivably knowledge could
be reworked into some new representation, but
this is quite difficult. Thus, we settle for
conventional representations and a conventional
decomposition of the task.

The first intermediate representations
a r e linguistic ones, involving phonemes, words,
phrases, and sentences. The two types of
linguistic representations currently employed
are shown in Figure 7. The lexical represen­
tation consists of the stream of words uttered
by the subject, including word fragments,
prosodic features, timing information, and para-
linguistic features. It is the typical output

The theory is an outgrowth of work over more
than a decade (18). For earlier versions of
the theory as it will be used here, see (12,
13, 16). Also a brief summary is included in
the companion paper (25).

4
produced by a human transcriptionist from the
audio tape (see Figure 2) . The second lin­
guistic representation is the topic represen­
tation. This is a segmentation of the lexical
representation into units called topic segments,
each concerned with a single task topic. In
Figure 2 each numbered line is a topic segment.
Other linguistic representations are possible
(e.g., one into sentences based on a grammat­
ical analysis). We also indicate in Figure 7
that linguistic rules are a necessary source
of knowledge in order to work with any of the
linguistic representations of behavior. These
rules are based primarily on conventional
linguistic knowledge (as contained in grammars
and lexicons), but also have a component that
is idiosyncratic to the subject as well as one
related to conversational rules.

The next representations are called
semantic ones. They hold the task-related
meaning to be extracted from the linguistic
representations. They consist of a set of
semantic elements, each of which makes an
assertion about the experimental situation at
some time. The elements fall into two classes.
The first, called problem-space elements,
asserts the occurrence of some basic item in
the problem space, either knowledge the subject
has (called a knowledge element) or the occur­
rence of an operator (called an operator ele­
ment) . The second class, called indicator
elements, asserts relations between various
elements of the problem space, e.g., that a
given knowledge is an input to a given occur­
rence of an operator. Table 1 gives brief
descriptions of the semantic elements currently
in use. For brevity, we will drop the word
element, when the context is clear, and simply
refer to knowledge and operators.

The semantic elements can be arranged as
functional units or groups. The operator group
consists of an operator along with the knowledge
it uses (its input) and the new knowledge it
produces (its output). The protogroup is a
conjecture of an operator group, formed at an
early stage in the analysis.

The next representations are the ones of
psychological significance: the PBG (problem
behavior graph) and the trace of the protocol
system. In terms of the semantic elements just
defined, the nodes of the PBG are operator
groups. Besides the two behavioral represen­
tations (the PBG and the trace) there are two
structural representations: the problem space
and the production system. It can be seen from
Figure 7 that the problem space is necessary to
define the elements at the semantic level.

Finally, there are various representations
which we have called assessment representations.
These are of little interest here, being

primarily the results of measurement and statis­
tical algorithms executed on the appropriate
basic structures (PBG, trace, problem space and
production system).'*'

The various subtasks encompassed by proto­
col analysis can be defined in terms of the
representations in Figure 7. They arise from
the many ways one can obtain information expres­
sed in a particular representation, when given
the information in other representations.
Figure 8 lists seven broad categories of the
subtasks, which run the gamut of recognizable
scientific activity. Additional variations can
be defined easily.

In the form in which they arise in proto­
col analysis these subtasks are all specific
enough not to have been dealt with directly in
the artificial intelligence literature. The
work that seems most related are those usually
classified as inductive programs. The work on
Dendral (5) is by far the closest, since it too
deals with problems of inference in an actual
scientific context (the structure of organic
molecules). The inductive problems usually
dealt with (8, 10, 11, 22) are taken in the main
from formal puzzles. They seem somewhat remote,
though their general lessons about creating
spaces of hypotheses are quite relevant. Work
by Amarel (1, 2, 3) on inducing functions from
input-output tables is also relevant to one
class of induction problems that arises here.
More generally, Amarel has attempted to outline
a class of theory formation problems which would
cover a number of the types described here.
Work on language, not only linguistic theory and
computational linguistics, but also work on
semantics and on programs to understand lin­
guistics, is also relevant.

These subtasks do not each require an
independent approach and an independent program,
as they are defined with respect to the same
representations and sources of knowledge.
Neither can they be developed all at once. We
have started with the problem of behavior
description. PAS-I finds the PBG from the"topic
representation, given the linguistic rules and
the problem space. As will be seen, this task
is not merely "descriptive," but involves
inferring meaning from a sequence of words. It
also involves inferring the current knowledge
state of a human, given that some past knowledge
may have been discarded.

PAS-I constitutes our current state of
technical accomplishment, and we will comment on
it in some detail. However, the purpose of the

However, representing the total evidence a
protocol offers for a given problem space is
an unsolved representational problem.

- 5 -

paper is to describe the larger task of protocol
analysis; PAS-I simply tackles one component
task. Thus, we will discuss the problem of
describing behavior starting with the pure lexi­
cal representation (i.e., before segmentation
into topics). We will also discuss the descrip­
tion of behavior beyond the PBG to the trace of
the production system.

The remaining behavior description problem
is the recognition of speech — going from the
audio tape to a lexical representation.
Although we will not discuss the problem here,
it must be included within the scope of protocol
analysis. The evidence from current work in
speech recognition implies that the recognition
process makes use of linguistic, semantic, and
task information. Thus, significant feedback
exists from the levels of analysis we do deal
with (Figure 7) to the input data associated
with these levels.

Of the other tasks in Figure 8 we will
discuss here only induction. Current manual
analyses of protocols have not moved much beyond
descriptions of behavior and induction of the
various static structures. Indeed, making
protocol analysis easier to do appears to be a
precondition to tackling these other tasks.

IV. Description of Behavior: PAS-I

PAS-I takes as input a linguistic repre­
sentation in terms of topic segments, i.e.,
groups of words dealing with a single task focus,
and delivers as output the PBG. Both the prob­
lem space and the linguistic rules are taken as
given (the production system is not involved).
The problem space is that used by most adults
with a Western, moderately technical education,
the so-called augmented problem space (17).

Figure 9 shows the overall flow diagram
for PAS-I. The first stage consists of a trans­
formation from a linguistic representation (the
topic segments) into a set of semantic elements.
In the second stage these elements are processed
and refined to produce tentative groupings of
elements. The third stage involves processing
these groupings, refining them further by means
of inferential techniques to produce groups
consisting of one operator element and its
associated input and output knowledge elements.
In the final stage these groups of elements are
incorporated into the PBG. Feedback exists
between the last two stages. The inference
processes (determining unknowns and finding
origins of knowledge) make strong use of the
knowledge state of the subject. Consequently,
the PBG must be recomputed with every change of
knowledge, so it can provide an accurate esti­
mate of current knowledge. As a result, pro­
cessing does not proceed in a pipeline fashion

in which each representation is computed com­
pletely on the basis of lower level information.*

The feedback loop emphasizes a general
principle: that information at any level can be
brought to bear to determine a particular item.
Thus, the separate intermediate representations
do not have validity independent of the total
analysis. Extensive use of feedback indicates
a breadth-first, parallel scheme of computation.
But matters will not remain even this simple
and subsequent versions will use data not yet
processed to help analyze the data currently
being processed.

The Linguistic Processor

Figure 10 illustrates the operation of the
initial stage, the Linguistic Processor, in

%more detail. A single topic segment is handled
at a time. It is processed by a grammar to
yiffld a set of semantic elements. This grammar
is philosophically a key-word grammar that
responds directly to cues for the occurrence
of the various elements.

Each example of Figure 10 shows the topic
segment, its analysis in terms of linguistic
classes, and the final semantic elements pro­
duced. Figure 11 gives (in a modified BNF
notation**) the fragment of the grammar needed
to process the examples of Figure 10. These
represent only a small part of the rules used
by the Linguistic Processor (see the companion
paper for the complete grammar and a detailed
description of its use). Notice that often
more than one element can be produced from a
single segment. The segments usually reflect
a single topic, yielding one problem space
element, plus possibly some related indicator
elements. But, as example (f) shows, the
grammar does not depend absolutely on there
being only one topic per segment and can gener­
ate two independent elements. The ability of
the grammar to do this is relatively weak, and
the assumption that the sequence of words
reflects a single topic is strongly built- in.

Currently, the first two stages do not
depend on feedback and can be produced on
separate passes. Later versions of PAS,
however, will incorporate feedback to all
stages.

** .
Here a vertical bar (|) indicates disjunction,
and the absence of a blank indicates con­
catenation, e.g., <a> := B C D | EF defines
the class a, consisting of all expressions
containing B, C, and D, in that order, or
containing EF. Thus BCD, EF, BCAD, BRCLD,
and QBSSCRDA are all members of class a.
The null string is represented by < >.

_ 6 -

An important feature of the Linguistic
Processor is its avoidance of a standard gram­
matical analysis. No irrevocable commitment
is implied thereby, though we are disposed to
explore such a strategy thoroughly. Language
is highly overdetermined; the meaning of a
sentence can be inferred from many partial
aspects: syntactic, semantic, paralinguistic,
and contextual. An extremely strong semantic
component is available in the problem solving
theory for cryptarithmetic, as represented in
the problem space. Thus, it seems appropriate
to see how far semantic analysis can carry us.
Actually, grammars are not available for the
sort of fragmented and ungrammatica1 speech
with which we have to deal, though the depar­
tures from full grammatical!ty do not seem
insuperable.

To show the limits of the present analysis,
Figure 12 lists several examples of some of the
more complicated types of fragmented and
ungrammatica1 utterances the Linguistic Proc­
essor accepts as input. Those segments for
which the linguistic analysis is clearly
inadequate and where no improvement in the key­
word type grammar appears likely to suffice
(outside of including the segment itself as a
special case) are marked with asterisks. In
the unmarked examples, however, enough task
information was extracted to enable the rest
of the system to provide an adequate analysis.

The grammar is given; i.e., it is not
determined by the analysis. It is, however,
based on several kinds of knowledge. Basic
grammar and dictionary knowledge in some way
enters throughout. There is considerable
special usage due to the task definition, e.g.,
the use of letters and digits and the relevance
of terms such as "writing11 and "column at the
left." Though these words retain their normal
English usage, they are in the grammar only
because of the particular task and its physi­
cal arrangement. Beyond the task definition
is the problem space. Certain arithmetic
concepts, such as "even" and "odd" would not be
included for a subject who did not use the
augmented problem space. Thus, it appears that
the linguistic rules are not independent of the
other structures posited in Figure 7, Finally,
the subject sometimes chooses uncommon ways of
saying things. In a limited grammar, it may be
necessary to consider the uncommon ways as
idiosyncratic to a subject.

The Semantic Processor

The second stage of PAS-I is the Semantic
Processor. Here a stream of linguistically
derived semantic elements is arranged into
initial approximations of operator groups, each
containing an operator element and the sur­
rounding knowledge and indicator elements. We

call them protogroups, to emphasize the sub­
stantial inferential gap between these initial
groupings and the final operator groups that are
input to the PBG.

Actually forming the protogroups is the
last step in a three-step process illustrated
in Figure 13. The first of these steps does
temporal integration. The second normalizes,
mapping a wide variety of occurrences of know­
ledge, and indicator elements such as (IF),
(BECAUSE), (THEREFORE), (THEN), (OR), etc.,
into a single element such as (BECAUSEOF ...)
or (COND...). The third does the actual group­
ing. During the course of these three steps
all the indicators are assimilated one way or
another. Some indicate the relationship of
input or output. Others (e.g., (), the empty
clement) indicate a break in the verbal stream,
so %that a single operator group cannot span
this. Thus, some groups are formed only with
knowledge elements, as in the third protogroup
in Figure 13.

One effect of the first step of the group­
ing process is to combine information that
existed in adjacent topic segments. This can be
seen in Figure 13, at the left, where the occur­
rence of (DIGIT 2) is combined with the prior
occurrence of (EQ G 1) to give (MEQ G 1 2) ,
i.e., "G must equal 1 or 2." Other forms of
recombination also occur, e.g., (NEG) and
(EQ G *D) in the same segment become (NEQ G * D) ,
i.e., "G is not equal to some unknown digit."

The source of the rules used by the
Semantic Processor is the limited task environ­
ment in which the subject is working. G cannot
be 1 and 2, so it must be 1 or 2. Digits tend
to be mentioned only in connection with letters;
more strongly, if a letter is in the immediate
neighborhood, the probability that it is asso­
ciated with the digit is quite high. The source
of the final grouping (step 3) , is the basic
assumption that everything can be described in
terms of operators and their inputs and outputs
and that mention of inputs and outputs occurs
in the immediate neighborhood of the operator.

The Group Processor

After grouping has taken place, the next
stage, the Group Processor, attempts to obtain a
complete picture of what the subject knows at
each moment and what operators he applies. This
stage consists of two main parts, the first (the
Determine Unknowns Mechanism) attempting to fill
in unknowns in existing operators and knowledge
elements, the second (the Origin Mechanism)
attempting to infer operators and knowledge that
were not verbalized by the subject during the
experimental session.

The first part is the analog of anaphoric
reference in the system. Many of the elements
created by the Linguistic Processor have

- 7 -

variables in them (denoted *L, *D, *C, etc.).
Examples occurred in Figure 10 (c and d) .
During this step an attempt is made to match
incomplete elements (elements with variables)
against the possibilities defined by the current
context. One possibility is that an element
identical to the candidate already exists in the
knowledge state. Then, the value is simply
filled itt| as shown in Figure 14 (a). The know­
ledge state is defined at this level by acces­
sing the PBG, which is kept updated.

A second possibility is that the candidate
is concerned with the processing of a column.
The various columns are considered and an
estimate made of how well the candidate fits
the column; if the fit is close enough then the
value of the variable is determined by matching
to the appropriate element generated from the
column. Figure 14 (b) illustrates this process
for operator element (PLUS A *L) and knowledge
element (EQ T * D) . The unknown for the operator
element is found by direct comparison with the
letters in the columns. However, the unknown
for the knowledge element is found by proc­
essing the columns containing T (in this case
only column 1) In a one-step attempt to find
its value. No attempt is made to determine the
values of unknowns directly in terms of prior
linguistic representations. It is more profit­
able to work in terms of the good semantic
representation at hand, the PBG.

The second part of the Group Processor,
the Origin Mechanism, attempts to posit opera­
tors and knowledge that did not occur in the
linguistic representations. The basic genera­
tor of these inferences is the principle that
each operator has inputs and outputs and that
all knowledge was produced earlier as the out­
put of some operator. Also involved is a
continuity principle that knowledge once pro­
duced is available in the knowledge state
thereafter.'' These two principles permit us to
infer, for any knowledge, the existence of an
operator that produced it, and for any operator

the existence of knowledge for inputs and out­
puts that are compatible with it,*

Table 2 gives a list of knowledge elements
and the operators which can generate them. To
infer an operator given its output we test each
operator (defined as a possible candidate by
the table) to see if it could generate the
output when subject to the constraints of the
current problem situation. Of the operators
which pass this test, the one whose inferred
inputs are most consistent with the current
knowledge state is chosen as the most likely
generator of the output. The process now con­
tinues recursively, as operators for generating
the inferred inputs are themselves inferred.

Figure 15 shows how this works. At the top
of the figure we have the knowledge state that
i*s assumed, and below it the operator group
under consideration. The top of the tree is the
knowledge element whose origin is to be deter­
mined; it is part of the operator group. The
tree itself is composed of operator groups
which overlap such that the output of one opera­
tor may also be one of the inputs to another
operator. For example, at the first level the
leftmost group consists of operator (PC 6) ,
inputs (EQ C6 0) (EQ D 5) (EQ G 2) , and output
(EQ R 7) (i.e., operator PC on column 6 with
D=5, G=2 and carry=0 produced R=7). Each group
at the first level represents a different
hypothesis that could have produced (EQ R 7).
At the lower levels the groups represent
hypothesis that could have produced the inputs
to the higher level groups. The tree is
generated in a breadth-first fashion, and at
each level the decision about which path to
take is based on a measure of the agreement
between the inputs for each path and the current
context. In Figure 15 the encircled branches
show the path chosen to represent the origin of
(EQ R 7). These branches indicate that a PC
on column 1 with Ci=0 and D=5 produced C2=l, an
AV produced L/=3, and a PC on column 2 with C2=-l
and LF=3 produced R=7.

This continuity principle can be modified to
take into account separate memories, so that
the principle applies only to Short-Term
Memory, subject to a limited capacity, and
that parts of the knowledge state stored in
other memories (Long-Term Memory or External
Memory) must be retrieved by recall opera­
tors. But these complications are not
considered here.

* The subject could possibly make an error in
applying an operator. However, the concept
of problem space implies that it is used only
if the operators can be applied with reason­
able reliability. Thus, in general, errors
in operator function are rare events and
cannot be predicted.

- 8 -

The PBG Generator

The final stage of PAS-I generates the PBG.
It is evoked whenever an operator group has been
produced by the Group Processor. Due to the
operation of the latter, a chain of groups, each
with completed input and output elements and
operators, may be produced at one time.

The PBG Generator works as follows. It
takes a single operator group, consisting of
one operator and its associated input and output
elements and incorporates it into the existing
PBG. In the simplest case the group is merely
tacked on to the growing end of the PBG. However,
if there exists a direct inconsistency between
one of the output elements of the group and any
currently active output element in the PBG, a
restructuring of the PBG must occur. A know-
Ledge element (and its node) is considered
currently active if it belongs to a node lying
along the lower (growing) edge of the PBG tree.
Thus the conjunction of all currently active
output elements constitutes the current knowledge
state. PBG growth consists simply of adding a
new node to the last currently active node in
the tree. PBG restructuring consists of aban­
doning nodes (or groups of nodes) by redefining
the location of the last currently active node.
Thus restructuring is equivalent to returning
to a prior point in the problem space, i.e.,
a prior knowledge state.

The rationale for restructuring is the
following. As the subject traverses the problem
space he may discover contradictions in his
solution, or perceive that certain information
is irrelevant. He will then abandon all infor­
mation which initiated the contradiction or was
found irrelevant, thus returning to some pre­
vious knowledge state. This abandonment or
backing-up procedure is what makes the PBG tree
structured.

An example of PBG growth is given in
Figure 16.* In this artificial example*" the

* The PBG in Figure 16 is essentially a dual
representation of the one in Figure 4. Figure
4 has nodes for knowledge states and branches
for operators; Figure 16 has nodes for opera­
tor groups and branches for the resulting
stcites of knowledge. The two representations
carry the same information. Though both
figures deal ostensibly with the same seg­
ment of behavior (Figure 2) , they are both
artificial examples for purposes of illus­
tration.

The companion paper (25) contains examples
from actual protocols.

input under consideration is the set of operator
groups shown at the top of the figure. The
first five groups are, in fact, the ones which
the example of Figure 15 produces. Figure 16
shows the PBG at two stages: after the growth
of 7 and 9 groups. The output of group 8 con­
flicts with that of node 5, leading to the
abandonment of nodes 4, 5, 6 and 7. Note that
value assignments (in this case node 4) which
lead to conflicts are eliminated as well as the
conflicting information itself.

We have traced through the operation of
PAS-I, primarily by example. It generates a
description of the behavior of the subject,
given the input linguistic representation and
also the structural models of the linguistic
rules and the problem space. The space of

* possible descriptions is sufficiently rich that
a genuine inferential procedure is required to
find one adequate description. We have not,
at this stage of development, attended to
whether there exist alternative descriptions
within the space and, if so, how to choose a
preferred one.

V. Description of Behavior;
Obtaining Topic Segments

PAS-I takes the topic segment as input,
though the lexical representation (the sequence
of words) would appear more natural. The reason
for not extending the analysis back another
stage is that the appropriate lexical represen­
tation is missing.

The fundamental basis for topic segmen­
tation is twofold: the nature of English, where
elementary expressions usually involve a single
topic; and (more fundamentally) the serial
nature of human information processing at this
level of cognitive behavior. The subject
attends to one thing at a time; consequently
he will have a single topic to comment upon if
he follows the instructions of Figure 1. (Some
confusion between adjacent topics may occur, but
this does not alter the basic situation.)

The segmentation can be made on the basis
of three sources of knowledge: task structure,
syntactic structure, and prosodic structure
(i.e., pauses, breaks, stress, intonation).
These provide substantial redundancy, so the
problem does not appear difficult. From the
task, there should be reference to no more than
one variable type (i.e., letter or carry) and
one value type (digit, even-odd, etc.). A topic
can contain one of each, of course, since it
often expresses a relation between a variable
and a value (e.g., D is 5), Certain things
are lost by this, e.g., disjunctive notions,
such as "R could be 7 or 9,11 but in PAS-I
later mechanisms compensate for this. From

- 9 -

syntax, a topic should have a single verb and
not extend over sentence boundaries. From the
prosodic information, boundaries between topics
are generally indicated by breaks, pauses, and
downward intonations. Using just these three
principles, without refinements, the entire
protocol of S3 could probably be segmented into
topics 15)o correctly.

Much of this information is contained
already in the punctuation, as it comes from
the human transcriptionist. Thus, given the
punctuation, topic segmentation appears almost
too easy. On the other hand, without punctua­
tion we have the lexical representation as a
sequence of words, and the task of topic segmen­
tation appears to become quite difficult. In
this form the task is artificially hard, since
the transcriptionist had available not only the
sequence of words, but also prosodic information
as well as meaning. Thus, it is not reasonable
to attempt the task mechanically until a lexical
representation is available that incorporates
prosodic information as well as lexical items.*

VI. Description of Behavior:
Trace of the Production System

PAS-I stops with the PBG, not because of
the difficulty of proceeding further, but simply
as the current state of development. The next
behavior description task is to produce the
trace of a production system (recall Figure 5)
given the PBG, the problem space, and a production
system.

This task seems easier than the one done
by PAS-I. The production system, being a com­
plete program can be run by a suitable inter­
preter (as illustrated in Figure 6) to produce a
trace of the changing knowledge state. The task
seems to be simply one of simulation, but in
actuality it is more complex.

First, the trace must be identified with
the behavior given by the PBG. Both the produc­
tion system and the PBG (i.e., the given data)
are imperfect. Consequently, the task of crea­
ting the trace requires matching it at every
stage to the PBG and dealing with exceptions.

Another artificial problem is disambiguating
sentences such as "Suppose I make this a 6"
versus "Suppose I make this A 6," or in
general distinguishing between "a" and "A",
"be" and "B", "Gee" and "G", "are" and "R",
etc. In these cases the auditory represen­
tations contain additional clues to recog­
nition that are lost if one simply considers
the sequence of lexical items. Therefore,
we do not attempt such disambiguation yet.

Further, the trace may contain several steps for
each one in the PBG. For example, the produc­
tion system may predict the occurrence of opera­
tors that simply were not picked up in the PBG
from the verbal behavior. Thus, a failure to
match at a given step is not conclusive, since
convergence may occur if additional steps are
taken.

Second, the production system may embody a
more detailed model of the information proc­
essing than is used for the problem space. This
means that the trace could contain operators
that never occur in the PBG. For instance, in
the manual analysis of S3 the problem space was
given in terms of four operators (PC, AV, GN and
TD, as shown in Figure 3) . The production
system added to this additional operators whose
function was attention direction or recall (e.g.,

* FC, find column and FA, find antecedent expres­
sion). These operations are often not explicit
in the verbal behavior and only become evident
when a complete model of the process is
attempted.

Third, the production system may be incom­
pletely specified. This often arises because
the operators themselves are incompletely
specified. For example, the problem space
defines PC by giving only the types of input
information it can use and produce (knowledge
elements associated with a specific column).
It does not define the fine structure of the
operator. A production system may add to this
definition a program that works whenever actual
digits are available (e.g., producing T=0 in
column 1, D+D=T, if D=5 is given). But PC may
remain undefined in other cases (e.g., in
column 2, L+L=R, where carry =1, but nothing is
known about L) .

A scheme to handle these three problems has
the following components:

An interpreter of production systems
that generates the next line of trace.
This line may have symbolic indica­
tors in it for outputs that could not
be computed due to lack of speci­
ficity.

A match routine that compares a line
of trace with a knowledge state of
the PBG:

If the two are identical where
definite data is given, and
the PBG data passes all tests
associated with any incom­
plete operators in the trace
then advance to the next node
of the PBG and let the inter­
preter advance to the next
trace line.

- 10 -

If the PBG data is not identi­
cal to the trace, and yet is
not inconsistent with it,
advance the trace only.

If the PBG data and the trace
are inconsistent, fail.

A back-up mechanism that permits the
decisions of the match routine to be
tentative, so that alternative
matchings of trace to data can be
tried.

Below are examples of identity, consistency, and
inconsistency, assuming that D=5 and C2=l have
already been established as elements in the
trace and PBG.

Trace

(PC
(PC

1)(EQ T 0)
1)(EQ T 0)

(PC 2)
(PC 2)

PBG

(EQ T 0)
(EQ T 6)
(ODD R)
(EQ G 1)

Comparison

identica1
inconsistent
consistent
inconsistent

Note that (ODD R) passes the tests associated
with the incomplete operator PC, but (EQ G 1)
does not.

This scheme does not contain any general
mechanism for putting a simulation back on the
track after error. But it is responsive to
fitting the partial results of the production
to the existing data in the PBG. As a side
effect it produces a sequence of stipulated
outputs of the incomplete operators. The use­
fulness of this sequence will be discussed in
the next section.

Implementing the above scheme is not a
task of the magnitude of that accomplished by
PAS-I. It would produce, however, a sophis­
ticated simulator, capable of working jointly
with an imcompletely specified production system
and with the PBG data that the system has to
match.

VII. Induction of Rules

The description of behavior faces certain
issues of inductive inference: what a given
lexical sequence means and what knowledge a
person possesses at a given moment. Inducing
the various rule structures from the behavior
faces different issues. Since we do not yet
have operational programs for these inductive
tasks, we are limited to framing specific prob­
lems. We will discuss briefly the induction of
operators, the induction of productions and the
induction of the problem space. We will not
discuss the induction of linguistic rules.

Induction of operators

The problem space defines the general
characteristics of an operator — essentially
its range and domain -- but does not define
the action input/output relation. For example,
from the problem space of Figure 3 we know that
PC processes columns, using information about
the letters and carries associated with a column
and producing new information about associated
letters and carries. But we have not defined
the output it will produce from a specific set
of inputs.

Given the successful formation of a PBG, a
series of exemplars is obtained of the action of
an operator. A portion of such data for the
session of Figure 2 is shown in Table 3 (the
full table has 76 entries). The task is then
the following. Find a process that will work
for all inputs of the form shown and will pro­
duce the outputs shown when given the corres­
ponding inputs. The data need not be consistent.
Thus, it is permissible to designate exceptions
or to partition the input-output table as
deriving from several distinct processes.

As in many induction tasks, trivial solu­
tions are possible. Since the input-output
table is finite, the table itself could be taken
as memorized. This is equivalent to saying the
subject does not calculate the result, he simply
knows it. For example, in item 1 of Table 3
(D=5 and carry = 0 in column 1) he simply knows
that 5+5=0 with 1 to carry. Likewise, in item 2
(carry--! and L+L=R in column 2) he simply knows
that R is odd.

This solution is unsatisfactory, since we
believe the subject must process information to
arrive at certain results. Item 1, which appears
to involve just the addition table, might plaus­
ibly be memorized; item 2 would seem to require
processing.

Thus, additional conditions must be placed
on the induction task. One possibility is to
consider the operator itself as a miniature
production system with its own special set of
operators. Then memorization can be equated
with having a production (i.e., a condition-
action rule) that yields a result directly in
terms of the inputs. For example, letting
(operand d) indicate that the number d is labeled
an operand and, similarly, (sum d) that d is
labeled a sum, i.e., a result, then the following
productions would be admitted:

(operand 1) (operand 1) — > (sum-2)
(operand 1) (operand 2) — > (sum 3)

...
(operand 9) (operand 9) --> (carry 1) (sum 8),

11

These productions represent the basic addition
table. However, no production like the follow­
ing would be admitted:

(operand 1)(operand X)(operand X) — > (sum odd).

This task of induction is non-trivial
(1,2,3). For instance, in prior analyses of S3
(by hand) two different programs for the column
processing operator have been induced (13; 17,
Ch. 6) , neither of which is entirely adequate to
represent the data of Table 3, Yet the task has
a closed character that makes it amenable to the
inductive techniques used elsewhere in artificial
intelligence. Furthermore, if one considers the
corresponding tables, not for PC, but (say) for
the operator that generates all values of a
variable defined by a given set of relations,
(e.g., generate R for R odd and R>5), the task
appears easier. For instance, one table for
the generate operator (13) showed that the
values generated were always correct (i.e.,
satisfied the given relations) and almost always
went from low values to high. These two speci­
fications essentially defined the process.

Induction of the production system

The information given is the PBG, the set
of nodes giving the knowledge state at each
point in time and the operator that advanced
(or modified) that knowledge state. The desired
result is an ordered set of productions which,
when applied at each node, lead to the evocation
of the operator that in fact occurs at that node.

The basic space of productions is comprised
of those that can be formed in some production
language. Its conditions are in terms of know­
ledge elements; its actions are in terms of
operators with inputs specified by some operand
identification procedure associated with match­
ing the condition. Although we have not
designed a production language for our automatic
system, a formal version of this type of lan­
guage can be found in (17, Ch. 2) .

As before, we could make a large input-
output table, with one entry for each node of
the PBG. The input would be the total knowledge
state at the node; the output would be the opera­
tor at the node (not the operator's output).
Then a trivial solution is the production system
that has a separate production for each node,
namely, the one with condition equal to the
knowledge state and action equal to the operator.

This, however, is a useful trivial solu­
tion. It permits posing the problem of induction
of the production system as the problem of con­
structing a set of common subroutines. That is,
the problem is how to rewrite the set of N pro­
ductions (N, the total number of nodes) as a set

of K (much less than N) parameterized produc­
tions. A natural way to proceed is by incre­
mentally attempting to reduce the number of
productions. Two productions with the same
actions are compared on their conditions (i.e.,
the knowledge states), looking for the common
elements. Additional clues exist, e.g., that
an evoked production probably uses the infor­
mation that was just added to the knowledge
state. The problem of the induction of a pro*
duction system has already been investigated
relative to machine learning of heuristic (23,
24) and some of these techniques appear appli­
cable .

An alternative approach (the one that
scientists appear to use) is to hypothesize a
general form for a production and then see how
many situations it fits. This raises an impor­
tant point about induction problems: the prob­
lem is never posed in an unstructured way.
There is always a space of possibilities that i
evoked on the basis of past experience and know
ledge (and whose selection constitutes in some
sense the real inductive leap). Thus, after
only a few analyses (such as the manual ones
already accomplished), much is known about the
general character of production systems in
cryptarithmetic. For instance, almost every
subject has a production that is concerned with
making use of new information, i.e., a produc-
ion of the form:

(EQ letter digit) — > (FC letter),(PC column)

like PI of Figure 4. Similarly, all subjects
have a production for backing down the tree,
going from the contradiction of one fact to the
contradiction of the antecedent fact. Knowing
such productions exist reduces the task of
induction considerably, since specific searches
can be made for nodes where these .productions a
evoked. Currently, such productions exist as
particularized variants for each experiment
studied, but generalized forms do not seem
difficult to obtain. Even without a general­
ized form, strong clues exist concerning which
nodes would be candidates for the evocation of
such productions, hence which subset of nodes
should be collected for attempting, as a sub-
task, the induction of (say) a "use new infor­
mation" production.

The induction of the production system
takes on a form distinct from the induction of
operators (which is the more general form of
inducing a function from its input-output
table). The reason is that productions were
chosen to express models of human subjects
because of their factorability into a series of
independent pieces. Thus, the form of the
process (as a set of productions) is already
fixed and does not have to be induced from the
data.

- 12 -

Induction of the problem space

We assume that the subject is operating in
some problem space. The question is to deter­
mine its nature: what kinds of knowledge can
the subject have and what sorts of operators
does he apply to obtain it.

The major issue (as with all induction
problems) is what is known of the space of all
problem spaces. We know, by definition, that
they consist of a set of knowledge and operator
elements. Further, we know these both relate to
the task of cryptarithmetic, and we have good
linguistic grounds for positing how it will be
talked about. For example, the subject will
refer to "N", rather than to "the-stick-like
character with two verticals and one diagonal.,f

If such linguistic assumptions are violated,
we have a more difficult task of induction.

It appears to be the case in cryptarithme-
tic that examples of operator and knowledge
elements occur in relatively isolated and simple
linguistic contexts. Thus evidence can be
gleaned for the induction where there is little
language complexity or simultaneous occurrence
of conceptual elements to complicate matters.
Table 4 shows some of the topic segments from
the protocol of S3 that appear suitable for this
task.

This suggests an inductive program built
around an elementary grammar and a dictionary
composed of verbs, relation terms, and task terms
(i.e., letters, names, words, numbers, positions,
etc.). Working with open language requires a
large dictionary with definitions relevant to
the task, in this case cryptarithmetic. Then
we can expect such a program to identify from a
subject 1s protocol the collection of knowledge
and operator elements he is using to define his
problem space.

Creating a list of problem space elements
is a useful first step. For the problem space
affects the entire protocol analysis sketched
in Figure 9. It directly influences the opera­
tion and organization of the Linguistic
Processor, the Semantic Processor, and the Group
Processor. If a quite new problem space were
obtained by the above procedure, how would the
analysis of Figure 9 be carried out? Operational
success in inducing the problem space lies not
just in recognizing the elements, but in knowing
how to use them — i.e., how to integrate them
into the analysis. This part of the question is
clearly premature, for we have only begun to
develop operational notions of how the problem
space effects our analysis, and are in no
position to rise above this to programs that
create protocol analysis schemes.

VIII. Conclusion

We have attempted to lay out the task of
protocol analysis as a field for work in arti­
ficial intelligence. Our base is rather
narrow: protocol analysis in cryptarithmetic
according to a particular style (17). Our
reasons for this narrow base were set out in
some methodological preliminaries. But even on
this narrow base a wide range of intellectual
scientific activities emerges: description of
behavior, recognition of speech, induction of
rules and structure, fitting of parametric
models, generalization of models, prediction
of behavior, and assessment of validity. We
attempted to give substance to these tasks,
starting with the description of behavior, for
which we have a running system, PAS-I. We
followed this with discussions of the tasks
that, on the basis of current work, seem some­
what understood: extension of the behavioral
description down toward the lexical level;
extension up toward the production system trace;
and induction of rules. The other tasks appear
currently to be more remote.

The task of protocol analysis is a real
one in experimental psychology, existing
independently of any interest in it as a task
in artificial intelligence. Unlike many tasks
that currently hold central fascination in
artificial intelligence, protocol analysis
exhibits a lack of formality and an inherently
inductive character that seems to characterize
much other scientific (and real world) activity.
Even Dendral (5), which is the closest attempt
so far to deal with a complex scientific intel­
lectual activity in artificial intelligence,
rests heavily on the formality and tidiness of
its empirical domain (chemical structures and
numerical measures of their spectra). Protocol
analysis is nowhere near so tidy. However, it
too rests on certain simplicities -- e.g., the
simplicity of the cryptarithmetic task itself.
Thus, it is simply one step further along the
road toward the full spectrum of scientific
activity.

PAS-I currently does but a single task,
however strongly one might feel that this task
is intellectually significant. One purpose in
emphasizing the spectrum of tasks encompassed
by protocol analysis (recall Figure 8) is to
note that serious, professional, long-term
intellectual activity is not a single monolithic
endeavor. Rather, it is a collection of inter­
related tasks, tied together by common repre­
sentations, common sources of knowledge and
common memory of methods, heuristics, solutions,
and difficulties. Soon we must come to grips
with such intellectual conglomerates.

13 -

Acknow lo dgmc n t s

Discussions with H. A. Simon have been of
much benefit throughout this work. This research
has been supported primarily by Research Grant
MH-07722 from the National Institute of Mental
Health and in part by the Advanced Research
Projects Agency of the Office of the Secretary
of Defense (F44610-70-C-0107) and is monitored
by the Air Force Office of Scientific Research.

References

1. Amarel, S. An approach to automatic theory
formation. In von Foerster, 11. (ed.),
Illinois Symposium on Principles of Self-
Organization, University of Illinois,
1962a.

2. Amarel, S. On the automatic formation of a
computer program which represents a theory.
In Yovits, M. C., Jacobi, G., and Goldstein,
G., (eds.) Self-Organizing Systems, Spartan
Books, Washington, D. C., 1962b, pp. 107-
175.

3. Amarel, S. Representations and modeling in
problems of program formation. In Meltzer,
B., and Michie, D. (eds.), Machine Intel­
ligence 6, American Elsevier, 1971.

4. Bree, D. S. The understanding process, as
seen in the geometry theorems and the
Missionaries and Cannibals problem. Ph,D
Thesis Psychology Dept., Carnegie-Mellon
University, 1968.

5. Buchanan, B., Sutherland, G., and
Feigenbaum, E. A. Heuristic Dendral: a
program for generating explanatory hypothe­
ses in organic chemistry. In Meltzer, B.,
and Michie, D. (eds.), Machine Intelligence
4, American Elsevier, 1969, pp. 209-254.

6. DeGroot, A. D. Thought and Choice in Chess.
Basic Books Inc., New York, 1965.

7. DeGroot, A. D. Perception and memory
versus thought: Some old ideas and recent
findings. In Kleinmuntz, B. (ed.) Problem
Solving: Research, Method, and Theory,
Wiley and Sons, New York, 1966, pp. 19-50.

8. Evans, T. G. A program for the solution of
a class of geometric-analogy intelligence
test questions. In Minsky, M (ed.)
Semantic Information Processing, MIT Press,
Cambridge, Mass., 1968, pp. 271-353.

9. Feldman, J. Simulation of behavior in the
binary choice situation. In Feigenbaum,E.,
and Feldman, J. (eds.), Computers and
Thought, New York, McGraw-Hill, 1963,
pp. 329-346.

10. Hunt, E. B., Marin, J., and Stone, P. J.
Experiments in Induction. Academic Press,
1966.

11. Johnson, E. S. An information processing
model of one kind of problem solving.
P s yc 11 o1ofti c aI Mo no ft r a p h s , vol. 78, no. 4,
whole no. 581, 1964.

12. Newell, A. On the analysis of human problem
solving protocols. In Gardin, J. C. and
Jaulin, B. (eds.), Calcul et Forma Lisation
dans les Sciences dc L THomme, Centre National
de la Recherche Scientifique, 1968, pp. 146-
185.

13. Newell, A. Studies in problem solving:
Subject 3 on the crypt-arithmetic task
DONALD-K2ERALD=R0BERT. Computer Science

* Dept., Carnegie-Mellon University, 1967.

14. Newell, A., and Simon, H. A. Computer sim­
ulation of human thinking. Science, vol.
134, no. 3495, 1961, pp. 2011-2017.

15. Newell, A., and Simon, H. A. GPS, a program
that simulates human thought. In
Feigenbaum, E., and Feldman, J. (eds.),
Computers and Thought, McGraw-Hill, 1963,
pp. 279-293.

16. Newell, A., and Simon, H. A. An example of
human chess playing in the light of chess
playing programs. In Wiener, N., and
Schade, J. P. (eds.), Progress in Bio-
cybernetics, vol. 2, Elsevier Publishing
Co., Amsterdam, 1965, pp. 19-75.

17. Newell, A., and Simon, H. A. Human Problem
Solving. Prentic Hall, Englewood Cliffs,
N. J., 1971 (in press).

18. Newell, A., Shaw, J. C , and Simon, H. A.,
Elements of a theory of human problem sol­
ving. Psychological Review, vol. 65, no. 3,
May 1958, pp. 151-166.

19. Newsted, P. Toward a process-oriented
theory of concept identification. Ph.D.
Thesis, Psychology Dept., Carnegie-Mellon
University, 1970.

20. Paige, J. J., and Simon, H. A. Cognitive
processes in solving algebra word problems,
in Kleinmuntz, B. (ed.) Problem Solving:
Research, Method and Theory, New York,
Wiley, 1966, pp. 51-119.

21. Reitman, W. R. Cognition and Thought.
New York, Wiley, 1965.

22. Simon, H. A., and Kotovsky, K. Human acqui­
sition of concepts for sequential patterns.
Psychological Review, vol. 70, no. 6, 1963,
pp. 534-5^6.

- 14 -

23. Waterman, D. A. Machine Learning of heur­
istics. Ph.D. Thesis, Computer Science
Dept., Stanford University, 1968.

24. Waterman, D. A. Generalization learning
techniques for automating the learning of
heuristics. Artificial Intelligence, vol.
I, nos. 1 and 2, 1970, pp. 121-170.

25. Waterman, D. A., and Newell, A. Prelimi­
nary results with a system for automatic
protocol analysis. Cognitive Psychology
(to be submitted), 1971.

26. Winikoff, A. W. Eye movements as an aid
to protocol analysis of problem-solving
behavior. Ph.D. Thesis, Electrical Engi­
neering Dept., Carnegie-Mellon Univ.,.1968.

The expression at the side is a simple arithmetic sum in disguise. Each
_ letter represents a digit, that is, 0, 1, 2, 9. Each letter is a

D O N A L D D - 3 distinct digit. You are given that D represents the digit 5; thus, no
, „ „ N L T „ other letter may be 5. + G E R A L D J

~ T What digits should be assigned to the letters such that when the letters
R O R F R T

are replaced by their corresponding digits the above expression is a
true arithmetic sum? %

Please talk all the time while you work, saying whatever is on your
mind at each moment, however fragmentary, trivial, apparently irrelevant,
impolitic, or indiscreet. Whenever you fall silent for more than a
moment the experimenter will ask you to "please talk.11

FIGURE 1. Instructions for Cryptarithmetic Task

1. Each letter has one and only one numerical value --
2. Exp: One numerical value.
3. There are ten different letters
4. and each of them has one numerical value.
5. Therefore, I can, looking at the two D fs —
6. each D is 5,
7. therefore, T is zero.
8. So I think I'll start by writing that problem here.
9. I'll write 5, 5 is zero.
10. Now, do I have any other T's?
11. No.
12. But I have another D.
13. That means I have a 5 over the other side.
14. Now I have 2 A's
15. and 2 L's
16. that are each --
17. somewhere --
18. and this R --
19. 3 R's —
20. 2 L's equal an R --
21. Of course I'm carrying a 1.
22. Which will mean that R has to be an odd number.
23. Because the 2 L's
24. any two numbers added together has to be an even number
25. and 1 will be an odd number.

FIGURE 2. Initial Phrases of Transcription of S3 Problem Session

- 15 -

Knowledge Elements

I A|B|D|E|G|L|N|0|R|T
d := 0|l|2|3|4|5|6|7|8|9
c := C1|C2|C3|C4|C5|C6|C7

col :== 1|2|3|4|5|6|7
v := l\c

Iset : = I \l Iset

eq := EQjAEQ
rel := EQ|AEQ|GR|SM|ODD|EVEN|PEQ

(EQ I d)
(AEQ I d)
(GR V d)

(SM V d)

(ODD
(EVEN V)
(PEQ V df)

Operator Elements

(PC col v)

(AV v)
(GN U)
(TD I d)

FIGURE 3. Elements

Letters in the display
Digits assignable to letters
Carries into a column
Columns (from right to left)
Variables: letters or carries
Sets of letters
Equality relations
Relations
I is inferred equal to d
I is assumed equal to d
v is greater than d
V is smaller than d
V is odd „
V is even
V is possibly equal to d

Process col for information about V
(v is optional)
Assign a value to V
Generate the possible values of V
Test if d is legal for I

from the Problem Space for S3

PI: {eq v d) — > (FC v) , (PC col)
P2: (GET v) — > (FC v), (PC col v)
P9: (GET Iset) --> (FL Iset), (GET I)
Pll: (EQ Id) — > (TD 1 d)

Additional operators

(FC V) Find a column containing variable V
(FL Iset) Find a letter in set Iset

Additional knowledge elements

Itrs := (D T L R A E N B 0 G) A set of letters
(GET Itrs) The goal is to find the values of the

letters in Itrs
(GET V) The goal is to find the value of V

FIGURE 4. Simplified Productions from the Production System for S3
(Knowledge in the right side of a production, e.g., (GET I)
is simply copied into the knowledge state.)

- 16 -

22

(AEQ D 5)
(PC 1) (EQ T 0)

(EQ C2 1)1
(PC 2)

(ODD R)

23 25

(PC 2)
(ODD R) (ODD R)

FIGURE 5. PBG for Initial Part of S3 Problem Session

PHRASE PRD OPR RESULT KNOWLEDGE STATE

(AEQ D 5)(GET LTRS)
PI (FC D)

5 1 (AEQ D 5)(GET LTRS)
6 (PC 1)
7 (EQ T 0)(EQ C2 1)(AEQ D 5)(GET LTRS)

Pll (TD T 0)
+ (EQ T 0)(EQ C2 1)(AEQ D 5)(GET LTRS)

10 PI (FC T)
11 - (EQ T 0)(EQ C2 1)(AEQ D 5)(GET LTRS)
14 P9 (FL LTRS)
18 R (EQ T 0)(EQ C2 1)(AEQ D 5)(GET LTRS)

(GET R)(EQ T 0)(EQ C2 1)(AEQ D 5)(GET LTRS)

P2 (FC R) 2 (GET R)(EQ T 0)(EQ C2 1)(AEQ D 5) (GET LTRS)
20 (PC 2 R)
22 (ODD R)(GET R)(EQ T 0)(EQ C2 1)(AEQ D 5)(GET LTRS)

FIGURE 6. Trace of Production System for S3
(Order of evocation of productions cannot be
derived from the partial set of productions
shown in Figure 4.)

- 17

S T R U C T U R E

P R O D U C T I O N
S Y S T E M

P R O B L E M
S P A C E

L I N G U I S T I C

R U L E S

B E H A V I O R

P S Y C H O L O G I C A L

T R A C E

PBG

N o d e

A

S E M A N T I C

G R O U P
Protogroup
Operator Group

I
E L E M E N T

Knowledge
Operator
Indicator

L I N G U I S T I C

T O P I C

Segment

I
LEXICAL

W o r d
Prosodic Feature
Paral inguistic Into.

K

T A P E
Audio

Figure 7. Representat ions for Protocol Analysis

- 18 -

Description of behavior; Find the representation of behavior at some
level, given the representation of behavior*at some lower level.

Recognition of speech: Find the lexical representation of behavior given
the audio representation (special case of description).

Induction of rules; Find a static structure (linguistic rules, problem
space, production system), given a representation of behavior.

Fitting of models; Find a static structure, given a representation of
behavior and a class of structures described in a parametric or systematic way.

Generalization of models: Modify a static structure that is adequate for
some set of behaviors to encompass a newly given behavior in some
representation.

Prediction of behavior; Find the behavior in some representation, given
some static structures along with the defining conditions for an experi­
mental situation.

Assessment of validity; Find the validity, expressed in some representation,
of a given static structure or behavior in some representation.

FIGURE 8. Varieties of Subtasks in Protocol Analysis

Topic
Segments

[two D's]
feach D is 5]
[therefore, T is zeroj

L I N G U I S T I C

P R O C E S S O R

Semant ic
E lements

(NUM D 2)
(EQ D 5)

(THEREFORE)(EQ T 0)

S E M A N T I C P R O C E S S O R

S t e p l

T e m p o r a l
Integrat ion

Step 2

N o r m a l ­
ization

Step 3

Extract
Next
Protogroup

Protogroup
Op: (PC 1)
Kn: (BECAUSEOF (EQ D 5)(EQ T 0))

P B G

G E N E R A T O R

C1 = 0 V — ^ T = 0
D = 5

P B G
Informat ion

Group

Op: (PC 1)
In: ((EQ C1 0)(EQ D 5))
Out: (EQ T 0)

Extract next
E lement

Determine
Unknowns
M e c h a n i s m

Origin

M e c h a n i s m

KM-

G R O U P P R O C E S S O R

Figure 9. F low D i a g r a m of PAS- I

- 20

(a), (b).

Segment: [EACH D IS 5]

Analysis:

Elements:

<lctter> <equal> <digit>

<optdigit>

<eq> I
(EQ D 5)

[SOMEWHERE —]

< >

(?)

<c). (d).

Segment: [THEN THIS WILL BE 7,] [BECAUSE I KNOW I 'M NOT CARRYING 1]

Analysis:

Elements: (THEN)

<equals> y

<eq>

(EQ *L 7)

<then> <pronoun> <equal> <digit> <because>

(BECAUSE)

<neg> <carry> <digit>

\ /
<carryecp>

<eq>

(NEG) (EQ *C 1)

(e). (f).

Segment: [2 L 1S EQUAL AN R —] [WE 'LL HAVE 1 + 1 THAT «S 3 OR R —]

<two> <letter> / <equal> <letter> <digit> <ad> <digit> <digit> <prep> <ietter>

Analysis:

<letdig>

<sum>

^ / i / I V

<optletdig> <letdig>

<letdigs>

<eqc>

Elements: (EQC (PLUS L L) R)

<letdig>

<letdigs>

<ltr>

<sum>

(PLUS 1 1)

<eq>

(EQ R 3)

FIGURE 10. Examples of Linguistic Processor Operation

- 21 -

<cq> := <carrycq> | <lcttcr> <cqual> <optdigit> | <pronoun> <cqvials> <digit> | <digitXprcp><iU
<sum> := <lctdigsXad> <letdigs> | <twoXletdig>'S
<eqc> := <sum> <oqual> <optlctdig>
<carrycq> : = <carry> <digit>
<ltr> := <pronoun> <letter> | <lctuer> <pronoun> | <letter> j <pronoun>
<optletdig> := <digit> | <letter> | < >
<optdigit> := <digit> | < >
<letdigs> := <letdig> | <pronoun>
<letdig> := <letter> | <digit>
<equals> := <equal> | »S
<equal> := IS | BE | EQUAL
<letter> := D | L | R
<digit> := 1 | 3 | 5 | 7
<carry> := CARRYING
<because> := BECAUSE
<then> := THEN
<prep> := OR
<pronoun> := THIS
<neg> := NOT
<ad> := +
<two> := 2

FIGURE 11. A Subset of the Grammar Used by the Linguistic Processor

5. Therefore, I can, looking at the two D»s —
*16. that are each
*17. somewhere
24. any two numbers added together has to be an even number
25. and 1 will be an odd number.
38. if I have to carry 1 from the E + 0.

*50. it's not possible that there could be another letter in front
of this R is it?

69. and it's the L 1s that will have to be 3»s,
*72. Now, it doesn't matter anywhere what the L's are equal to —
*79. that is, itself plus another number equal to itself.
118. Then again, that's assuming that N is less than 3,

*161. in order to have the 0 = the 0.
202. And also am using R as 9 instead of a 7

*230. and it doesn't seem as though I'm going to be able to carry more
than 1 in any case.

*282. Of course, it all has to satisfy the fact that I have 10 letters
for 10 numbers.

"286. I'm only two numbers short, aren't I?

FIGURE 12. Types of Complex Utterances Analysed by the Linguistic Processor
(The examples are taken from the protocol of S3; those marked
with asterisks cannot be handled by the current system.)

Initial
Semantic Elements

(NUM D 2)
(EQ D 5)
(THEREFORE) (DIGIT 0)
(LETTER R)
(UNLESS)
(PLUS D G)
(EQ G 1)
(DIGIT 2)
(BECAUSE)(EQ D 5)

(?)

(IF) (EQ *L 7)
(AND) (EQ D 5)
(THEN) (NEG) (EQ G *D)
(CIN 1 (PLUS D G))

STEP 1

(NUM D 2)
(EQ D 5)
(THEREFORE) (EQ *L 0)
(LETTER R)
(PLUS D G)
(MEQ G 1 2)
(BECAUSE) (EQ D 5)
()
(IF) (EQ *L 7)
(AND) (EQ D 5)
(THEN) (NEQ G *D)
(EQ C6 1)

STEP 2

(NUM D 2)
(BECAUSEOF (EQ D 5) (EQ *L 0)
(LETTER R) STEP 3
(PLUS D G) ^ >
(BECAUSEOF (EQ D 5) (MEQ G 1 2))
()
(COND ((EQ *L 7) (EQ D 5))(NEQ G *D))
(EQ C6 1)

Protogroups

1st protogroup

(NUM D 2)
(BECAUSEOF (EQ D 5)

(EQ *L 0))
(LETTER R)

2nd protogroup

(PLUS D G)
(BECAUSEOF (EQ D 5)

(MEQ G 1 2))

3rd protogroup

(COND ((EQ *L 7)(EQ D 5))
(NEQ G *D))

(EQ C6 1)

FIGURE 13. Examples of Semantic Processor Operation

- 23 -

(a) Knowledge State: (EQ D 5) (GREATER R 7)(EQ CI 0)

Determine
Unknowns

(EQ *L 5) > (EQ D 5)

(EQ *C 0) > (EQ CI 0)

(GREATER R *D) = = = £ > (GREATER R 7)

(b) Knowledge State: (EQ D 5)(EQ CI 0)

c6 c5 c4 c3 c2 cl
D O N A L D

Display: + G E R A L D

R O B E R T

Determine
Unknowns

(PLUS A * L) = = = £ > (PLUS A A)

(EQ T *D) {> (EQ T 0)

FIGURE 14. Examples of Inferences by Determine
Unknowns Mechanism

Knowledge Sta te : (EQ D 5) (EQ C1 0) (EQ C 7 0) (EQ G 4) (EQ C 6 0)

Operator G r o u p : Operator (PC 4) E lements (EQ R 7) (EQ L 3)

(EQ C6 0) (EQ D 5) (EQ G 2) (EQ C6 1) (EQ D 5) (EQ G 1) / (EQ C 2 1) (EQ L 3)

(RECALL C6) (R E C A L L D) (AV G) (AV C6) (R E C A L L D) (AV G)

(AV R)

(EQ C2 1) (EQ L 8)

4>

(PC 1) (AV C2) (AV L)

(EQ C1 0) (EQ D 5)

(R E C A L L C1) (RECALL D)

F igure 15. Operat ion of the Origin M e c h a n i s m

- 25 -

Initial or Given

Knowledge State: (EQ D 5) (EQ C1 0) (EQ C 7 0) (EQ G 4) (EQ C 6 0)

Operator Groups:

Operator

(1) . (R E C A L L D)
(2) . (R E C A L L C1)
(3) . (PC 1)
(4) . (AV L)
(5) . (PC 2)
(6) . (R E C A L L G)
(7) . (R E C A L L C6)
(8) . (P C 6)
(9) . (AV L)

Inputs

(
(

(EQ D 5) (EQ C1 0)

(

(EQ C 2 1) (EQ L3)

(

(

(EQ D 5) (EQ C 6 0) (EQ G 4)

()

Outputs

(EQ D 5)
(EQ C1 0)
(EQ C 2 1)
(EQ L 3)
(EQ R 7)
(EQ G 4)
(EQ C 6 0)
(EQ R 9)
(EQ L 2)

P r o b l e m Behavior

G r a p h 1-7.

1 2 3 4 5 6 7

- o
C 1 - 0 L - 3

1-9.

1 2 3 4 5 6 7 8

G - 4
9

- 2
C 6 - 0

Figure 16. Example of P B G Generat ion

- 26 -

S E M A N T I C E L E M E N T S

KNOWLEDGE MEANING OPERATORS MEANING

(LETTER I)

(DIGIT d)

(PLS u)

(IN v d)

(EVEN V)

(ODD ^)

(EQ y d)

(PEQ v d)

(GREATER y d)

(SMALLER y d)

(CIN d col)

(COUT col)

(MEQ v d2 d2)*

(NEQ v d) *

(AEQ i> d) *

(COND e e) *
J. Ct

An occurrence of
the letter I

An occurrence of
the digit d

u is added to
something

y is in column d

V ±s even

V is odd

V equals d

One possible value
for y is d

y is greater than d

y is smaller than d

The carry into column
col

carry
is d

The carry out of
column col is d

U must equal either d^ or dg

y is not equal to d

y is assumed to have
the value d

If g is true then
is true

(FC y) Find a column
containing y

(NUM I d) the number of

Vs is d

(PLUS Uj Ug) u^is added to

(EQC (PLUS Uj plus u,, equals

(COUNT I) Count the number of Vs

(RECALL v) Recall the value

of V

(PC d) * Process column d

(GN I)* Generate possible

values for I

(IG c)* Ignore the carry a

(AV Assign some value
to V

(FA e)* Find the antecedent
of element e

(FN £) * Find the negative of the
antecedent of e

(TD v d)* Test if v can be
equal to d

(TE e) Test if e can
be true

INDICATORS

(OR)

(IF)

(AND)

(YES)

(NEG)

(QUES)

(THEN)

(BECAUSE)

(UNLESS)

(ASSUME)

(DIFFICULT)

(THEREFORE)

(CORRECTION)

(INSTEADOF)

These elements are generated by the Semantic Processor rather than the Linguistic Processor.

TABLE 1. Examples of Semantic Elements Used in PAS-I
(I represents an arbitrary letter, d a digit,
c a carry, V a letter or carry, w a letter,
carry, or digit, e a knowledge element, and
col an element such as (PLUS A A) which
indicates a column.)

- 27 -

KNOWLEDGE ELEMENTS OPERATORS

EQ PC, GN, IG, FA, TD, TE, AV

PEQ PC, GN, FA

MEQ PC, GN, FA

NEQ FN, TD, TE, PC

AEQ FA, AV

EVEN PC, FA, TD, TE

ODD PC, FA, TD, TE

GREATER FC, FA, TE

SMALLER PC, FA, TE

TABLE 2. Knowledge Elements and Operators
for Generating Them

Inputs Operator Outputs

1. (EQ CI 0)(EQ D 5) (PC 1) (EQ T 0)(EQ C2 1)

CM (EQ C2 1) (PC 2) (ODD R)
3. (EQ D 5)(ODD R) (PC 6) (EVEN G)
4. (EQ C2 1)(EQ L 1) (PC 2) (EQ R 3)
5. (EQ D 5) (PC 6) (GREATER R 5)
6. () (PC 5) (PEQ E 9)(EQ C6 1)

c6 c5 c4 c3 c2 cl

D 0 N A L D

Task: + G E R A L D

R 0 B E R T

TABLE 3. Input/Output examples for PC of S3

- 2 8 -

TOPIC SEGMENTS SEMANTIC ELEMENTS

Knowledge

6. [EACH D IS 5 .] EQ
12. [BUT I HAVE ANOTHER D .] IN
21. [OF COURSE I 1 M CARRYING UH 1 .] EQ-
22. [WHICH WILL MEAN THAT R HAS TO BE AN ODD NUMBER .] ODD
35. [G HAS TO BE AN EVEN NUMBER .] EVEN
96. [R COULD BE 9 ALSO .] PEQ

118. [THEN AGAIN , THAT »S ASSUMING THAT N IS LESS THAN 3 ,] SMALLER
135. [BUT A CAN N'T EQUAL 5 .] NEQ
201. [AND ALSO AM USING R AS 9 INSTEAD OF 7 .] AEQ
213. [AND R HAS TO BE GREATER THAN 5 .] GREATER

Operators

10. [NOW , DO I HAVE ANY OTHER T 'S ?] FC
15. [AND 2 L 'S] PC

130. [A + A -] PC
151. [SUPPOSE 0 WERE 1] AV
200.
201.

[OF COURSE NOW MY E CAN N'T BE A 9 ,]
[SINCE I iVE USED THE 9 FOR R .] TD

TABLE 4. Topic Segments for Induction of Problem Space

