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Abstract 

We are attempting to automate protocol 
analysis, which is a form of data analysis in 
psychology for inferring the information proc­
esses used by a human from his verbal behavior 
while solving a problem. The paper discusses 
protocol analysis as a task in artificial intel­
ligence. The discussion is based on (but 
broader than) our current program, PAS-I, which 
creates a description of a subject's changing 
knowledge state from his verbal behavior. 

I. Introduction 

A form of data analysis, called protocol 
analysis, has been much used in recent work in 
the psychology of thinking and problem solving. 
The subject talks while attempting to solve a 
problem, his verbalizations are transcribed, 
and the underlying information processes are 
inferred from their content. Examples of tasks 
subjected to protocol anaJLysis are various 
puzzles, such as Missionaries and Cannibals 
(4) or cryptarithmetic (12, 13, 17, 26) elemen­
tary logic problems (14, 15), chess (6, 7, 16), 
binary-choice sequence prediction (9), geometry 
proofs (4), word problems in elementary algebra 
(20), concept identification for the induction 
of various logical and sequential concepts (19), 
and various understanding tasks (21). 

Our long-term goal is to automate protocol 
analysis. Careful protocol analysis is time-
consuming, and extensive analyses requires 
automatization. A considerable increase in 
objectivity may occur, since the analysis will 
be accomplished with determinate rules, rather 
than by a human with indeterminate intellectual 
powers. Finally, an explicit representation 
may be possible of the evidence provided by a 
protocol for or against a given theory of human 
problem solving. 

Two side interests are served by this 
project. First, the task to be automated --
the analysis of protocols -- requires an 
artificial intelligence program, since the 
functions involved include extraction of meaning, 
inference from data, and induction of new sets 
of rules. Second, since understanding the con­
tent of freely produced natural language is cen­
tral to protocol analysis, the results may be of 
interest to those concerned with semantics. 

We currently have running an initial 
system for automatic protocol analysis, called 
Protocol Analysis System I (PAS-I), designed 
to handle protocols for the task of crypt­
arithmetic. A complete description of the 
program with examination of its behavior in 
some detail is the subject of a companion paper 
to be presented to a psychological audience 
(25). The present paper examines protocol 
analysis as a task for artificial intelligence 
-- the essential problems, the task represen­
tations, and the methods. It draws extensively 
on our early experience with PAS-I, but goes 
beyond it at several points. 

II. Methodological Preliminaries 

Automating protocol analysis is a long-
term effort involving many difficulties. This 
puts a premium on adopting a sensible strategy 
for carrying out the project. We describe here 
some of our cardinal tenets. 

First, the system is primarily for our 
own use. We ourselves are involved in study­
ing cognitive processes and analyzing protocols. 
We expect others to use automatic protocol 
analysis techniques when they are developed; 
but adaptation to the needs of others is a 
postponable task. 

Second, initial attempts at a difficult 
task should focus on a specific variant. Gen­
erality can come later. Thus, we have picked 
a specific problem solving situation, crypt­
arithmetic, and ignored all others, such as 
chess, logic, concept identification, etc. The 
selection of cryptarithmetic is based on the 
relatively sophisticated and successful develop­
ment of a particular style of protocol analysis 
for this task in prior work. Success with 
cryptarithmetic could lead to rapid scientific 
gains in terms of questions already posed in 
this area that cannot be explored without 
extensive analysis of many protocols. Conse­
quently, this specialization may provide an 
early justification of the work, even without 
solving any of the problems of generalization 
that clearly lie just beyond. 

Third, developing complex programs is an 
experimental activity. The touted procedure 
of careful planning, followed by complete 
specifications prior to coding, is exactly the 



wrong way to proceed. Every component of the 
system will be redesigned and recoded not once 
but many times. The important step is to get 
a version of the program written and running, to 
obtain feedback for the next iteration. Thus, 
the current set of design decisions in PAS-I do 
not represent conceptual commitments on how the 
task should be done, but simply our current 
selection of mechanisms to try. This system 
uses SN0B0L4 for the linguistic front end and 
LISP for the analytical back end clearly a 
temporary expedient. 

Fourth, complex software systems should 
be designed and built by very few people (here 
two), a principle much quoted in computer 
science. For artificial intelligence systems 
of moderate size, we think this principle is 
actually feasible. It does appear essential for 
experimental programming. 

Fifth, one should aim at full automatiza­
tion and not at some optimal man-machine 
symbiotic system, even though the latter is the 
desired goal. Selection of a man-machine system 
as the top-level goal invariably puts strong 
emphases on the division of labor between man 
and machine and on the hardware and software 
for communication. Both of these aspects seem 
secondary in importance, especially in a long-
term development. Moreover, posing the design 
problem as the optimal division of labor encour­
ages attitudes like "the man should do what 
requires creativity and intelligence; the 
machine should do what requires drudgery and 
repetitive calculation." These distort the 
design and are ultimately self-limiting in terms 
of preconceived notions of the powers and limi­
tations of both computers and men. We prefer to 
devote our efforts to automating the central 
intellectual functions involved in protocol 
analysis. Adaptation to an appropriate man-
machine system is then a secondary effort. 

III. Framing the Problem 

Protocol analysis, as it currently stands, 
is an informal art, where each investigator uses 
materials in ways that suit his needs. The work 
in cryptarithmetic (13, 17) constitutes a 
refined form of protocol analysis, involving a 
definite series of data analytical steps and 
considerable detail of the verbal utterances. 
We follow the general scheme of this analysis, 
though it constitutes a substantial narrowing 
of the task. 

The experimental situation is fixed. The 
subject is given a problem by means of instruc­
tions as shown in Figure 1. A tape recording 
is made of his utterances throughout the 
session. Note is taken of each act of writing 
and its time, so coordination-is possible with 
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the speech. This audio tape constitutes the 
primary data to be analyzed. Figure 2 gives 
a transcription of the tape for the initial 
part of a session analyzed previously (13) 
(called S3's session). 

The final output of an analysis is a 
description of the subject as an information 
processing system. It consists of two struc­
tures. The first structure is the problem  
space, which specifies the kinds of knowledge 
the subject can have about the task -- what he 
can come to know. This can be done in a 
grammar-like way by giving a language. Any 
expression in this language represents a 
possible state of knowledge of the subject, 
hence a possible point in the problem space. 
Included in the notion of a problem space are 
the means to obtain new information from old: 
a finite set of operators which take a state 
of knowledge as input and produce a new state 
of knowledge as output. These operators are 
incremental, adding or modifying only a small 
part of the total knowledge state. Figure 3 
shows a simplified version of the problem 
space for S3, using BNF.* 

At the top of Figure 3 are the entities 
about which something can be known. Below this 
are seven expressions, e.g., (EQ D 5) says the 
subject knows that D is 5. The knowledge state 
is the conjunction of a number of such expres­
sions. At the bottom are the four operators 
by which the subject can produce new knowledge. 

The second structure is a production  
system (similar to Post or Floyd productions), 
consisting of an ordered set of productions. 
Each production consists of a condition part 
and an action part, conventionally written as: 

condition -> action . 

The condition part consists of tests that can 
be applied to states of knowledge, as given by 
the problem space. The action part consists of 
a sequence of one or more operators. A produc­
tion system can be applied to a state of know­
ledge by executing the action of the first 
production (in an ordered list) whose condition 
is true of the knowledge state.** A production 

The notation in Figures 3-6 has been changed 
from the original paper (13) to conform with 
that used in PAS-I. 
If the action is a sequence of N operators 
then a corresponding trajectory through N 
nodes of problem space is generated by a 
single production. Without loss of gener­
ality actions could be limited to a single 
operator. 
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system forms a complete process if it is 
iteratively applied to each new knowledge state 
that is generated by its actions. Figure 4 
gives a simplified illustrative fragment of the 
production system for S3. Production Pi, for 
instance, has a condition that is satisfied by 
expressions such as (EQ R 7) or (AEQ L 1). If 
the condition is satisfied, then two operators 
are applied. The first, FC, selects a column to 
work on; the second, PC, processes that column 
to obtain new knowledge. The production system 
requires some additional operators, not in the 
problem space of Figure 3. These operators (FC 
and FL) obtain the operands for the main problem 
space operators, rather than obtaining new know­
ledge about the task. 

Besides these two static structures, which 
constitute the model of the subject, the analy­
sis also provides two dynamic representations of 
the subject 1s behavior. The first, called the 
Problem Behavior Graph (PBG), describes the 
trajectory of the subject through the problem 
space. Each node of the graph represents a 
particular state of knowledge and each branch 
represents the operator that was applied at that 
state. Since the subject may return to the same 
state of knowledge at different times, the graph 
is conventionally drawn with a distinct node for 
each distinct visit to a knowledge state. Thus, 
conventionally time runs across the page from 
left to right and then down. Figure 5 shows a 
simplified problem behavior graph for the initial 
part of the session of S3. The knowledge states 
are represented by the nodes (square boxes) and 
the application of the operators by the branches. 
Comparison with Figure 2 will show that some 
actions are not represented explicitly, e.g., 
writing results (at lines 8, 9, 12, and 13) and 
obtaining a letter to work on (lines 14-19). 
S3 processes column 2 twice (lines 22 and 25) 
and this is shown as a back-up in the PBG. 

The second dynamic representation is the 
trace of the behavior of the production system, 
which shows the sequence of knowledge states that 
the production system generates in attempting to 
model the subject's behavior. Figure 6 shows 
the initial part of the trace from the illustra­
tive production system of Figure 5. Both the 
production and the operator being evoked are 
given at the left. The next line below gives 
the output, which can be an intermediate result 
(such as the column found by FC) and a new 
addition to the knowledge state. The trace does 
not carry through the back-up of Figure 5, since 
additional productions are required beyond the 
fragment in Figure 4 to recognize the need for 
repeating and to accomplish it. 

These two representations, the trace and 
the PBG, provide the primary means of assessing 
the adequacy of the model of the subject, as 
given by the problem space and the production 

system. Various measures can be taken on them 
to summarize the degree of correspondence and 
to pinpoint the aspects that are especially 
well accounted for or that create important 
difficulties. 

As stated, these constructs may seem 
arbitrarily imposed. In fact, they derive from 
a particular theory of human problem solving. 
This theory has been expounded at length in 
Newell and Simon (17) " and there is no need 
to redescribe it here. We will take these four 
structures, illustrated in Figures 3-6, as the 
required outputs of a protocol analysis. 

The boundary conditions of the task of 
protocol analysis are now fixed, with the audio 
t;ape on one end and the four structures that 
make up the psychological model at the other 
end. Within this domain, however, are many 
subtasks: description, prediction, induction, 
evaluation, etc. Each offers its own challenge 
as an effort in artificial intelligence, though 
all are ultimately intertwined. 

The diversity of subtasks within protocol 
analysis is compounded by the necessity of 
several intermediate representations between 
the tape and the psychological models. Current 
knowledge is simply not organized for direct 
transformation between the two. In fact, to 
proceed further in delineating protocol analy­
sis we must propose a concrete set of these 
intermediate representations. Figure 7 shows 
our current set. This is a critical step, for 
it fixes much of the analysis. These represen­
tations are determined primarily by the form of 
current knowledge. Either we conform to the 
representations in which a given source (e.g., 
linguistic knowledge) is expressed or we cannot 
use the knowledge. Conceivably knowledge could 
be reworked into some new representation, but 
this is quite difficult. Thus, we settle for 
conventional representations and a conventional 
decomposition of the task. 

The first intermediate representations 
a r e linguistic ones, involving phonemes, words, 
phrases, and sentences. The two types of 
linguistic representations currently employed 
are shown in Figure 7. The lexical represen­
tation consists of the stream of words uttered 
by the subject, including word fragments, 
prosodic features, timing information, and para-
linguistic features. It is the typical output 

The theory is an outgrowth of work over more 
than a decade (18). For earlier versions of 
the theory as it will be used here, see (12, 
13, 16). Also a brief summary is included in 
the companion paper (25). 
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produced by a human transcriptionist from the 
audio tape (see Figure 2 ) . The second lin­
guistic representation is the topic represen­
tation. This is a segmentation of the lexical 
representation into units called topic segments, 
each concerned with a single task topic. In 
Figure 2 each numbered line is a topic segment. 
Other linguistic representations are possible 
(e.g., one into sentences based on a grammat­
ical analysis). We also indicate in Figure 7 
that linguistic rules are a necessary source 
of knowledge in order to work with any of the 
linguistic representations of behavior. These 
rules are based primarily on conventional 
linguistic knowledge (as contained in grammars 
and lexicons), but also have a component that 
is idiosyncratic to the subject as well as one 
related to conversational rules. 

The next representations are called 
semantic ones. They hold the task-related 
meaning to be extracted from the linguistic 
representations. They consist of a set of 
semantic elements, each of which makes an 
assertion about the experimental situation at 
some time. The elements fall into two classes. 
The first, called problem-space elements, 
asserts the occurrence of some basic item in 
the problem space, either knowledge the subject 
has (called a knowledge element) or the occur­
rence of an operator (called an operator ele­
ment ) . The second class, called indicator  
elements, asserts relations between various 
elements of the problem space, e.g., that a 
given knowledge is an input to a given occur­
rence of an operator. Table 1 gives brief 
descriptions of the semantic elements currently 
in use. For brevity, we will drop the word 
element, when the context is clear, and simply 
refer to knowledge and operators. 

The semantic elements can be arranged as 
functional units or groups. The operator group 
consists of an operator along with the knowledge 
it uses (its input) and the new knowledge it 
produces (its output). The protogroup is a 
conjecture of an operator group, formed at an 
early stage in the analysis. 

The next representations are the ones of 
psychological significance: the PBG (problem 
behavior graph) and the trace of the protocol 
system. In terms of the semantic elements just 
defined, the nodes of the PBG are operator 
groups. Besides the two behavioral represen­
tations (the PBG and the trace) there are two 
structural representations: the problem space 
and the production system. It can be seen from 
Figure 7 that the problem space is necessary to 
define the elements at the semantic level. 

Finally, there are various representations 
which we have called assessment representations. 
These are of little interest here, being 

primarily the results of measurement and statis­
tical algorithms executed on the appropriate 
basic structures (PBG, trace, problem space and 
production system).'*' 

The various subtasks encompassed by proto­
col analysis can be defined in terms of the 
representations in Figure 7. They arise from 
the many ways one can obtain information expres­
sed in a particular representation, when given 
the information in other representations. 
Figure 8 lists seven broad categories of the 
subtasks, which run the gamut of recognizable 
scientific activity. Additional variations can 
be defined easily. 

In the form in which they arise in proto­
col analysis these subtasks are all specific 
enough not to have been dealt with directly in 
the artificial intelligence literature. The 
work that seems most related are those usually 
classified as inductive programs. The work on 
Dendral (5) is by far the closest, since it too 
deals with problems of inference in an actual 
scientific context (the structure of organic 
molecules). The inductive problems usually 
dealt with (8, 10, 11, 22) are taken in the main 
from formal puzzles. They seem somewhat remote, 
though their general lessons about creating 
spaces of hypotheses are quite relevant. Work 
by Amarel (1, 2, 3) on inducing functions from 
input-output tables is also relevant to one 
class of induction problems that arises here. 
More generally, Amarel has attempted to outline 
a class of theory formation problems which would 
cover a number of the types described here. 
Work on language, not only linguistic theory and 
computational linguistics, but also work on 
semantics and on programs to understand lin­
guistics, is also relevant. 

These subtasks do not each require an 
independent approach and an independent program, 
as they are defined with respect to the same 
representations and sources of knowledge. 
Neither can they be developed all at once. We 
have started with the problem of behavior 
description. PAS-I finds the PBG from the"topic 
representation, given the linguistic rules and 
the problem space. As will be seen, this task 
is not merely "descriptive," but involves 
inferring meaning from a sequence of words. It 
also involves inferring the current knowledge 
state of a human, given that some past knowledge 
may have been discarded. 

PAS-I constitutes our current state of 
technical accomplishment, and we will comment on 
it in some detail. However, the purpose of the 

However, representing the total evidence a 
protocol offers for a given problem space is 
an unsolved representational problem. 



- 5 -

paper is to describe the larger task of protocol 
analysis; PAS-I simply tackles one component 
task. Thus, we will discuss the problem of 
describing behavior starting with the pure lexi­
cal representation (i.e., before segmentation 
into topics). We will also discuss the descrip­
tion of behavior beyond the PBG to the trace of 
the production system. 

The remaining behavior description problem 
is the recognition of speech — going from the 
audio tape to a lexical representation. 
Although we will not discuss the problem here, 
it must be included within the scope of protocol 
analysis. The evidence from current work in 
speech recognition implies that the recognition 
process makes use of linguistic, semantic, and 
task information. Thus, significant feedback 
exists from the levels of analysis we do deal 
with (Figure 7) to the input data associated 
with these levels. 

Of the other tasks in Figure 8 we will 
discuss here only induction. Current manual 
analyses of protocols have not moved much beyond 
descriptions of behavior and induction of the 
various static structures. Indeed, making 
protocol analysis easier to do appears to be a 
precondition to tackling these other tasks. 

IV. Description of Behavior: PAS-I 

PAS-I takes as input a linguistic repre­
sentation in terms of topic segments, i.e., 
groups of words dealing with a single task focus, 
and delivers as output the PBG. Both the prob­
lem space and the linguistic rules are taken as 
given (the production system is not involved). 
The problem space is that used by most adults 
with a Western, moderately technical education, 
the so-called augmented problem space (17). 

Figure 9 shows the overall flow diagram 
for PAS-I. The first stage consists of a trans­
formation from a linguistic representation (the 
topic segments) into a set of semantic elements. 
In the second stage these elements are processed 
and refined to produce tentative groupings of 
elements. The third stage involves processing 
these groupings, refining them further by means 
of inferential techniques to produce groups 
consisting of one operator element and its 
associated input and output knowledge elements. 
In the final stage these groups of elements are 
incorporated into the PBG. Feedback exists 
between the last two stages. The inference 
processes (determining unknowns and finding 
origins of knowledge) make strong use of the 
knowledge state of the subject. Consequently, 
the PBG must be recomputed with every change of 
knowledge, so it can provide an accurate esti­
mate of current knowledge. As a result, pro­
cessing does not proceed in a pipeline fashion 

in which each representation is computed com­
pletely on the basis of lower level information.* 

The feedback loop emphasizes a general 
principle: that information at any level can be 
brought to bear to determine a particular item. 
Thus, the separate intermediate representations 
do not have validity independent of the total 
analysis. Extensive use of feedback indicates 
a breadth-first, parallel scheme of computation. 
But matters will not remain even this simple 
and subsequent versions will use data not yet 
processed to help analyze the data currently 
being processed. 

The Linguistic Processor 

Figure 10 illustrates the operation of the 
initial stage, the Linguistic Processor, in 

%more detail. A single topic segment is handled 
at a time. It is processed by a grammar to 
yiffld a set of semantic elements. This grammar 
is philosophically a key-word grammar that 
responds directly to cues for the occurrence 
of the various elements. 

Each example of Figure 10 shows the topic 
segment, its analysis in terms of linguistic 
classes, and the final semantic elements pro­
duced. Figure 11 gives (in a modified BNF 
notation**) the fragment of the grammar needed 
to process the examples of Figure 10. These 
represent only a small part of the rules used 
by the Linguistic Processor (see the companion 
paper for the complete grammar and a detailed 
description of its use). Notice that often 
more than one element can be produced from a 
single segment. The segments usually reflect 
a single topic, yielding one problem space 
element, plus possibly some related indicator 
elements. But, as example (f) shows, the 
grammar does not depend absolutely on there 
being only one topic per segment and can gener­
ate two independent elements. The ability of 
the grammar to do this is relatively weak, and 
the assumption that the sequence of words 
reflects a single topic is strongly built- in. 

Currently, the first two stages do not 
depend on feedback and can be produced on 
separate passes. Later versions of PAS, 
however, will incorporate feedback to all 
stages. 

** . 
Here a vertical bar (|) indicates disjunction, 
and the absence of a blank indicates con­
catenation, e.g., <a> := B C D | EF defines 
the class a, consisting of all expressions 
containing B, C, and D, in that order, or 
containing EF. Thus BCD, EF, BCAD, BRCLD, 
and QBSSCRDA are all members of class a. 
The null string is represented by < >. 
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An important feature of the Linguistic 
Processor is its avoidance of a standard gram­
matical analysis. No irrevocable commitment 
is implied thereby, though we are disposed to 
explore such a strategy thoroughly. Language 
is highly overdetermined; the meaning of a 
sentence can be inferred from many partial 
aspects: syntactic, semantic, paralinguistic, 
and contextual. An extremely strong semantic 
component is available in the problem solving 
theory for cryptarithmetic, as represented in 
the problem space. Thus, it seems appropriate 
to see how far semantic analysis can carry us. 
Actually, grammars are not available for the 
sort of fragmented and ungrammatica1 speech 
with which we have to deal, though the depar­
tures from full grammatical!ty do not seem 
insuperable. 

To show the limits of the present analysis, 
Figure 12 lists several examples of some of the 
more complicated types of fragmented and 
ungrammatica1 utterances the Linguistic Proc­
essor accepts as input. Those segments for 
which the linguistic analysis is clearly 
inadequate and where no improvement in the key­
word type grammar appears likely to suffice 
(outside of including the segment itself as a 
special case) are marked with asterisks. In 
the unmarked examples, however, enough task 
information was extracted to enable the rest 
of the system to provide an adequate analysis. 

The grammar is given; i.e., it is not 
determined by the analysis. It is, however, 
based on several kinds of knowledge. Basic 
grammar and dictionary knowledge in some way 
enters throughout. There is considerable 
special usage due to the task definition, e.g., 
the use of letters and digits and the relevance 
of terms such as "writing11 and "column at the 
left." Though these words retain their normal 
English usage, they are in the grammar only 
because of the particular task and its physi­
cal arrangement. Beyond the task definition 
is the problem space. Certain arithmetic 
concepts, such as "even" and "odd" would not be 
included for a subject who did not use the 
augmented problem space. Thus, it appears that 
the linguistic rules are not independent of the 
other structures posited in Figure 7, Finally, 
the subject sometimes chooses uncommon ways of 
saying things. In a limited grammar, it may be 
necessary to consider the uncommon ways as 
idiosyncratic to a subject. 

The Semantic Processor 

The second stage of PAS-I is the Semantic 
Processor. Here a stream of linguistically 
derived semantic elements is arranged into 
initial approximations of operator groups, each 
containing an operator element and the sur­
rounding knowledge and indicator elements. We 

call them protogroups, to emphasize the sub­
stantial inferential gap between these initial 
groupings and the final operator groups that are 
input to the PBG. 

Actually forming the protogroups is the 
last step in a three-step process illustrated 
in Figure 13. The first of these steps does 
temporal integration. The second normalizes, 
mapping a wide variety of occurrences of know­
ledge, and indicator elements such as (IF), 
(BECAUSE), (THEREFORE), (THEN), (OR), etc., 
into a single element such as (BECAUSEOF ...) 
or (COND...). The third does the actual group­
ing. During the course of these three steps 
all the indicators are assimilated one way or 
another. Some indicate the relationship of 
input or output. Others (e.g., (), the empty 
clement) indicate a break in the verbal stream, 
so %that a single operator group cannot span 
this. Thus, some groups are formed only with 
knowledge elements, as in the third protogroup 
in Figure 13. 

One effect of the first step of the group­
ing process is to combine information that 
existed in adjacent topic segments. This can be 
seen in Figure 13, at the left, where the occur­
rence of (DIGIT 2) is combined with the prior 
occurrence of (EQ G 1) to give (MEQ G 1 2 ) , 
i.e., "G must equal 1 or 2." Other forms of 
recombination also occur, e.g., (NEG) and 
(EQ G *D) in the same segment become (NEQ G * D ) , 
i.e., "G is not equal to some unknown digit." 

The source of the rules used by the 
Semantic Processor is the limited task environ­
ment in which the subject is working. G cannot 
be 1 and 2, so it must be 1 or 2. Digits tend 
to be mentioned only in connection with letters; 
more strongly, if a letter is in the immediate 
neighborhood, the probability that it is asso­
ciated with the digit is quite high. The source 
of the final grouping (step 3 ) , is the basic 
assumption that everything can be described in 
terms of operators and their inputs and outputs 
and that mention of inputs and outputs occurs 
in the immediate neighborhood of the operator. 

The Group Processor 

After grouping has taken place, the next 
stage, the Group Processor, attempts to obtain a 
complete picture of what the subject knows at 
each moment and what operators he applies. This 
stage consists of two main parts, the first (the 
Determine Unknowns Mechanism) attempting to fill 
in unknowns in existing operators and knowledge 
elements, the second (the Origin Mechanism) 
attempting to infer operators and knowledge that 
were not verbalized by the subject during the 
experimental session. 

The first part is the analog of anaphoric 
reference in the system. Many of the elements 
created by the Linguistic Processor have 
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variables in them (denoted *L, *D, *C, etc.). 
Examples occurred in Figure 10 (c and d ) . 
During this step an attempt is made to match 
incomplete elements (elements with variables) 
against the possibilities defined by the current 
context. One possibility is that an element 
identical to the candidate already exists in the 
knowledge state. Then, the value is simply 
filled itt| as shown in Figure 14 (a). The know­
ledge state is defined at this level by acces­
sing the PBG, which is kept updated. 

A second possibility is that the candidate 
is concerned with the processing of a column. 
The various columns are considered and an 
estimate made of how well the candidate fits 
the column; if the fit is close enough then the 
value of the variable is determined by matching 
to the appropriate element generated from the 
column. Figure 14 (b) illustrates this process 
for operator element (PLUS A *L) and knowledge 
element (EQ T * D ) . The unknown for the operator 
element is found by direct comparison with the 
letters in the columns. However, the unknown 
for the knowledge element is found by proc­
essing the columns containing T (in this case 
only column 1) In a one-step attempt to find 
its value. No attempt is made to determine the 
values of unknowns directly in terms of prior 
linguistic representations. It is more profit­
able to work in terms of the good semantic 
representation at hand, the PBG. 

The second part of the Group Processor, 
the Origin Mechanism, attempts to posit opera­
tors and knowledge that did not occur in the 
linguistic representations. The basic genera­
tor of these inferences is the principle that 
each operator has inputs and outputs and that 
all knowledge was produced earlier as the out­
put of some operator. Also involved is a 
continuity principle that knowledge once pro­
duced is available in the knowledge state 
thereafter.'' These two principles permit us to 
infer, for any knowledge, the existence of an 
operator that produced it, and for any operator 

the existence of knowledge for inputs and out­
puts that are compatible with it,* 

Table 2 gives a list of knowledge elements 
and the operators which can generate them. To 
infer an operator given its output we test each 
operator (defined as a possible candidate by 
the table) to see if it could generate the 
output when subject to the constraints of the 
current problem situation. Of the operators 
which pass this test, the one whose inferred 
inputs are most consistent with the current 
knowledge state is chosen as the most likely 
generator of the output. The process now con­
tinues recursively, as operators for generating 
the inferred inputs are themselves inferred. 

Figure 15 shows how this works. At the top 
of the figure we have the knowledge state that 
i*s assumed, and below it the operator group 
under consideration. The top of the tree is the 
knowledge element whose origin is to be deter­
mined; it is part of the operator group. The 
tree itself is composed of operator groups 
which overlap such that the output of one opera­
tor may also be one of the inputs to another 
operator. For example, at the first level the 
leftmost group consists of operator (PC 6 ) , 
inputs (EQ C6 0) (EQ D 5) (EQ G 2 ) , and output 
(EQ R 7) (i.e., operator PC on column 6 with 
D=5, G=2 and carry=0 produced R=7). Each group 
at the first level represents a different 
hypothesis that could have produced (EQ R 7). 
At the lower levels the groups represent 
hypothesis that could have produced the inputs 
to the higher level groups. The tree is 
generated in a breadth-first fashion, and at 
each level the decision about which path to 
take is based on a measure of the agreement 
between the inputs for each path and the current 
context. In Figure 15 the encircled branches 
show the path chosen to represent the origin of 
(EQ R 7). These branches indicate that a PC 
on column 1 with Ci=0 and D=5 produced C2=l, an 
AV produced L/=3, and a PC on column 2 with C2=-l 
and LF=3 produced R=7. 

This continuity principle can be modified to 
take into account separate memories, so that 
the principle applies only to Short-Term 
Memory, subject to a limited capacity, and 
that parts of the knowledge state stored in 
other memories (Long-Term Memory or External 
Memory) must be retrieved by recall opera­
tors. But these complications are not 
considered here. 

* The subject could possibly make an error in 
applying an operator. However, the concept 
of problem space implies that it is used only 
if the operators can be applied with reason­
able reliability. Thus, in general, errors 
in operator function are rare events and 
cannot be predicted. 
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The PBG Generator 

The final stage of PAS-I generates the PBG. 
It is evoked whenever an operator group has been 
produced by the Group Processor. Due to the 
operation of the latter, a chain of groups, each 
with completed input and output elements and 
operators, may be produced at one time. 

The PBG Generator works as follows. It 
takes a single operator group, consisting of 
one operator and its associated input and output 
elements and incorporates it into the existing 
PBG. In the simplest case the group is merely 
tacked on to the growing end of the PBG. However, 
if there exists a direct inconsistency between 
one of the output elements of the group and any 
currently active output element in the PBG, a 
restructuring of the PBG must occur. A know-
Ledge element (and its node) is considered 
currently active if it belongs to a node lying 
along the lower (growing) edge of the PBG tree. 
Thus the conjunction of all currently active 
output elements constitutes the current knowledge 
state. PBG growth consists simply of adding a 
new node to the last currently active node in 
the tree. PBG restructuring consists of aban­
doning nodes (or groups of nodes) by redefining 
the location of the last currently active node. 
Thus restructuring is equivalent to returning 
to a prior point in the problem space, i.e., 
a prior knowledge state. 

The rationale for restructuring is the 
following. As the subject traverses the problem 
space he may discover contradictions in his 
solution, or perceive that certain information 
is irrelevant. He will then abandon all infor­
mation which initiated the contradiction or was 
found irrelevant, thus returning to some pre­
vious knowledge state. This abandonment or 
backing-up procedure is what makes the PBG tree 
structured. 

An example of PBG growth is given in 
Figure 16.* In this artificial example*" the 

* The PBG in Figure 16 is essentially a dual 
representation of the one in Figure 4. Figure 
4 has nodes for knowledge states and branches 
for operators; Figure 16 has nodes for opera­
tor groups and branches for the resulting 
stcites of knowledge. The two representations 
carry the same information. Though both 
figures deal ostensibly with the same seg­
ment of behavior (Figure 2 ) , they are both 
artificial examples for purposes of illus­
tration. 

The companion paper (25) contains examples 
from actual protocols. 

input under consideration is the set of operator 
groups shown at the top of the figure. The 
first five groups are, in fact, the ones which 
the example of Figure 15 produces. Figure 16 
shows the PBG at two stages: after the growth 
of 7 and 9 groups. The output of group 8 con­
flicts with that of node 5, leading to the 
abandonment of nodes 4, 5, 6 and 7. Note that 
value assignments (in this case node 4) which 
lead to conflicts are eliminated as well as the 
conflicting information itself. 

We have traced through the operation of 
PAS-I, primarily by example. It generates a 
description of the behavior of the subject, 
given the input linguistic representation and 
also the structural models of the linguistic 
rules and the problem space. The space of 

* possible descriptions is sufficiently rich that 
a genuine inferential procedure is required to 
find one adequate description. We have not, 
at this stage of development, attended to 
whether there exist alternative descriptions 
within the space and, if so, how to choose a 
preferred one. 

V. Description of Behavior;  
Obtaining Topic Segments 

PAS-I takes the topic segment as input, 
though the lexical representation (the sequence 
of words) would appear more natural. The reason 
for not extending the analysis back another 
stage is that the appropriate lexical represen­
tation is missing. 

The fundamental basis for topic segmen­
tation is twofold: the nature of English, where 
elementary expressions usually involve a single 
topic; and (more fundamentally) the serial 
nature of human information processing at this 
level of cognitive behavior. The subject 
attends to one thing at a time; consequently 
he will have a single topic to comment upon if 
he follows the instructions of Figure 1. (Some 
confusion between adjacent topics may occur, but 
this does not alter the basic situation.) 

The segmentation can be made on the basis 
of three sources of knowledge: task structure, 
syntactic structure, and prosodic structure 
(i.e., pauses, breaks, stress, intonation). 
These provide substantial redundancy, so the 
problem does not appear difficult. From the 
task, there should be reference to no more than 
one variable type (i.e., letter or carry) and 
one value type (digit, even-odd, etc.). A topic 
can contain one of each, of course, since it 
often expresses a relation between a variable 
and a value (e.g., D is 5), Certain things 
are lost by this, e.g., disjunctive notions, 
such as "R could be 7 or 9,11 but in PAS-I 
later mechanisms compensate for this. From 
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syntax, a topic should have a single verb and 
not extend over sentence boundaries. From the 
prosodic information, boundaries between topics 
are generally indicated by breaks, pauses, and 
downward intonations. Using just these three 
principles, without refinements, the entire 
protocol of S3 could probably be segmented into 
topics 15)o correctly. 

Much of this information is contained 
already in the punctuation, as it comes from 
the human transcriptionist. Thus, given the 
punctuation, topic segmentation appears almost 
too easy. On the other hand, without punctua­
tion we have the lexical representation as a 
sequence of words, and the task of topic segmen­
tation appears to become quite difficult. In 
this form the task is artificially hard, since 
the transcriptionist had available not only the 
sequence of words, but also prosodic information 
as well as meaning. Thus, it is not reasonable 
to attempt the task mechanically until a lexical 
representation is available that incorporates 
prosodic information as well as lexical items.* 

VI. Description of Behavior: 
Trace of the Production System 

PAS-I stops with the PBG, not because of 
the difficulty of proceeding further, but simply 
as the current state of development. The next 
behavior description task is to produce the 
trace of a production system (recall Figure 5) 
given the PBG, the problem space, and a production 
system. 

This task seems easier than the one done 
by PAS-I. The production system, being a com­
plete program can be run by a suitable inter­
preter (as illustrated in Figure 6) to produce a 
trace of the changing knowledge state. The task 
seems to be simply one of simulation, but in 
actuality it is more complex. 

First, the trace must be identified with 
the behavior given by the PBG. Both the produc­
tion system and the PBG (i.e., the given data) 
are imperfect. Consequently, the task of crea­
ting the trace requires matching it at every 
stage to the PBG and dealing with exceptions. 

Another artificial problem is disambiguating 
sentences such as "Suppose I make this a 6" 
versus "Suppose I make this A 6," or in 
general distinguishing between "a" and "A", 
"be" and "B", "Gee" and "G", "are" and "R", 
etc. In these cases the auditory represen­
tations contain additional clues to recog­
nition that are lost if one simply considers 
the sequence of lexical items. Therefore, 
we do not attempt such disambiguation yet. 

Further, the trace may contain several steps for 
each one in the PBG. For example, the produc­
tion system may predict the occurrence of opera­
tors that simply were not picked up in the PBG 
from the verbal behavior. Thus, a failure to 
match at a given step is not conclusive, since 
convergence may occur if additional steps are 
taken. 

Second, the production system may embody a 
more detailed model of the information proc­
essing than is used for the problem space. This 
means that the trace could contain operators 
that never occur in the PBG. For instance, in 
the manual analysis of S3 the problem space was 
given in terms of four operators (PC, AV, GN and 
TD, as shown in Figure 3 ) . The production 
system added to this additional operators whose 
function was attention direction or recall (e.g., 

* FC, find column and FA, find antecedent expres­
sion). These operations are often not explicit 
in the verbal behavior and only become evident 
when a complete model of the process is 
attempted. 

Third, the production system may be incom­
pletely specified. This often arises because 
the operators themselves are incompletely 
specified. For example, the problem space 
defines PC by giving only the types of input 
information it can use and produce (knowledge 
elements associated with a specific column). 
It does not define the fine structure of the 
operator. A production system may add to this 
definition a program that works whenever actual 
digits are available (e.g., producing T=0 in 
column 1, D+D=T, if D=5 is given). But PC may 
remain undefined in other cases (e.g., in 
column 2, L+L=R, where carry =1, but nothing is 
known about L ) . 

A scheme to handle these three problems has 
the following components: 

An interpreter of production systems 
that generates the next line of trace. 
This line may have symbolic indica­
tors in it for outputs that could not 
be computed due to lack of speci­
ficity. 

A match routine that compares a line 
of trace with a knowledge state of 
the PBG: 

If the two are identical where 
definite data is given, and 
the PBG data passes all tests 
associated with any incom­
plete operators in the trace 
then advance to the next node 
of the PBG and let the inter­
preter advance to the next 
trace line. 
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If the PBG data is not identi­
cal to the trace, and yet is 
not inconsistent with it, 
advance the trace only. 

If the PBG data and the trace 
are inconsistent, fail. 

A back-up mechanism that permits the 
decisions of the match routine to be 
tentative, so that alternative 
matchings of trace to data can be 
tried. 

Below are examples of identity, consistency, and 
inconsistency, assuming that D=5 and C2=l have 
already been established as elements in the 
trace and PBG. 

Trace 

(PC 
(PC 

1)(EQ T 0) 
1)(EQ T 0) 

(PC 2) 
(PC 2) 

PBG 

(EQ T 0) 
(EQ T 6) 
(ODD R) 
(EQ G 1) 

Comparison 

identica1 
inconsistent 
consistent 
inconsistent 

Note that (ODD R) passes the tests associated 
with the incomplete operator PC, but (EQ G 1) 
does not. 

This scheme does not contain any general 
mechanism for putting a simulation back on the 
track after error. But it is responsive to 
fitting the partial results of the production 
to the existing data in the PBG. As a side 
effect it produces a sequence of stipulated 
outputs of the incomplete operators. The use­
fulness of this sequence will be discussed in 
the next section. 

Implementing the above scheme is not a 
task of the magnitude of that accomplished by 
PAS-I. It would produce, however, a sophis­
ticated simulator, capable of working jointly 
with an imcompletely specified production system 
and with the PBG data that the system has to 
match. 

VII. Induction of Rules 

The description of behavior faces certain 
issues of inductive inference: what a given 
lexical sequence means and what knowledge a 
person possesses at a given moment. Inducing 
the various rule structures from the behavior 
faces different issues. Since we do not yet 
have operational programs for these inductive 
tasks, we are limited to framing specific prob­
lems. We will discuss briefly the induction of 
operators, the induction of productions and the 
induction of the problem space. We will not 
discuss the induction of linguistic rules. 

Induction of operators 

The problem space defines the general 
characteristics of an operator — essentially 
its range and domain -- but does not define 
the action input/output relation. For example, 
from the problem space of Figure 3 we know that 
PC processes columns, using information about 
the letters and carries associated with a column 
and producing new information about associated 
letters and carries. But we have not defined 
the output it will produce from a specific set 
of inputs. 

Given the successful formation of a PBG, a 
series of exemplars is obtained of the action of 
an operator. A portion of such data for the 
session of Figure 2 is shown in Table 3 (the 
full table has 76 entries). The task is then 
the following. Find a process that will work 
for all inputs of the form shown and will pro­
duce the outputs shown when given the corres­
ponding inputs. The data need not be consistent. 
Thus, it is permissible to designate exceptions 
or to partition the input-output table as 
deriving from several distinct processes. 

As in many induction tasks, trivial solu­
tions are possible. Since the input-output 
table is finite, the table itself could be taken 
as memorized. This is equivalent to saying the 
subject does not calculate the result, he simply 
knows it. For example, in item 1 of Table 3 
(D=5 and carry = 0 in column 1) he simply knows 
that 5+5=0 with 1 to carry. Likewise, in item 2 
(carry--! and L+L=R in column 2) he simply knows 
that R is odd. 

This solution is unsatisfactory, since we 
believe the subject must process information to 
arrive at certain results. Item 1, which appears 
to involve just the addition table, might plaus­
ibly be memorized; item 2 would seem to require 
processing. 

Thus, additional conditions must be placed 
on the induction task. One possibility is to 
consider the operator itself as a miniature 
production system with its own special set of 
operators. Then memorization can be equated 
with having a production (i.e., a condition-
action rule) that yields a result directly in 
terms of the inputs. For example, letting 
(operand d) indicate that the number d is labeled 
an operand and, similarly, (sum d) that d is 
labeled a sum, i.e., a result, then the following 
productions would be admitted: 

(operand 1) (operand 1) — > (sum-2) 
(operand 1) (operand 2) — > (sum 3) 

... ... ... 
(operand 9) (operand 9) --> (carry 1) (sum 8), 
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These productions represent the basic addition 
table. However, no production like the follow­
ing would be admitted: 

(operand 1)(operand X)(operand X) — > (sum odd). 

This task of induction is non-trivial 
(1,2,3). For instance, in prior analyses of S3 
(by hand) two different programs for the column 
processing operator have been induced (13; 17, 
Ch. 6 ) , neither of which is entirely adequate to 
represent the data of Table 3, Yet the task has 
a closed character that makes it amenable to the 
inductive techniques used elsewhere in artificial 
intelligence. Furthermore, if one considers the 
corresponding tables, not for PC, but (say) for 
the operator that generates all values of a 
variable defined by a given set of relations, 
(e.g., generate R for R odd and R>5), the task 
appears easier. For instance, one table for 
the generate operator (13) showed that the 
values generated were always correct (i.e., 
satisfied the given relations) and almost always 
went from low values to high. These two speci­
fications essentially defined the process. 

Induction of the production system 

The information given is the PBG, the set 
of nodes giving the knowledge state at each 
point in time and the operator that advanced 
(or modified) that knowledge state. The desired 
result is an ordered set of productions which, 
when applied at each node, lead to the evocation 
of the operator that in fact occurs at that node. 

The basic space of productions is comprised 
of those that can be formed in some production 
language. Its conditions are in terms of know­
ledge elements; its actions are in terms of 
operators with inputs specified by some operand 
identification procedure associated with match­
ing the condition. Although we have not 
designed a production language for our automatic 
system, a formal version of this type of lan­
guage can be found in (17, Ch. 2 ) . 

As before, we could make a large input-
output table, with one entry for each node of 
the PBG. The input would be the total knowledge 
state at the node; the output would be the opera­
tor at the node (not the operator's output). 
Then a trivial solution is the production system 
that has a separate production for each node, 
namely, the one with condition equal to the 
knowledge state and action equal to the operator. 

This, however, is a useful trivial solu­
tion. It permits posing the problem of induction 
of the production system as the problem of con­
structing a set of common subroutines. That is, 
the problem is how to rewrite the set of N pro­
ductions (N, the total number of nodes) as a set 

of K (much less than N) parameterized produc­
tions. A natural way to proceed is by incre­
mentally attempting to reduce the number of 
productions. Two productions with the same 
actions are compared on their conditions (i.e., 
the knowledge states), looking for the common 
elements. Additional clues exist, e.g., that 
an evoked production probably uses the infor­
mation that was just added to the knowledge 
state. The problem of the induction of a pro* 
duction system has already been investigated 
relative to machine learning of heuristic (23, 
24) and some of these techniques appear appli­
cable . 

An alternative approach (the one that 
scientists appear to use) is to hypothesize a 
general form for a production and then see how 
many situations it fits. This raises an impor­
tant point about induction problems: the prob­
lem is never posed in an unstructured way. 
There is always a space of possibilities that i 
evoked on the basis of past experience and know 
ledge (and whose selection constitutes in some 
sense the real inductive leap). Thus, after 
only a few analyses (such as the manual ones 
already accomplished), much is known about the 
general character of production systems in 
cryptarithmetic. For instance, almost every 
subject has a production that is concerned with 
making use of new information, i.e., a produc-
ion of the form: 

(EQ letter digit) — > (FC letter),(PC column) 

like PI of Figure 4. Similarly, all subjects 
have a production for backing down the tree, 
going from the contradiction of one fact to the 
contradiction of the antecedent fact. Knowing 
such productions exist reduces the task of 
induction considerably, since specific searches 
can be made for nodes where these .productions a 
evoked. Currently, such productions exist as 
particularized variants for each experiment 
studied, but generalized forms do not seem 
difficult to obtain. Even without a general­
ized form, strong clues exist concerning which 
nodes would be candidates for the evocation of 
such productions, hence which subset of nodes 
should be collected for attempting, as a sub-
task, the induction of (say) a "use new infor­
mation" production. 

The induction of the production system 
takes on a form distinct from the induction of 
operators (which is the more general form of 
inducing a function from its input-output 
table). The reason is that productions were 
chosen to express models of human subjects 
because of their factorability into a series of 
independent pieces. Thus, the form of the 
process (as a set of productions) is already 
fixed and does not have to be induced from the 
data. 
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Induction of the problem space 

We assume that the subject is operating in 
some problem space. The question is to deter­
mine its nature: what kinds of knowledge can 
the subject have and what sorts of operators 
does he apply to obtain it. 

The major issue (as with all induction 
problems) is what is known of the space of all 
problem spaces. We know, by definition, that 
they consist of a set of knowledge and operator 
elements. Further, we know these both relate to 
the task of cryptarithmetic, and we have good 
linguistic grounds for positing how it will be 
talked about. For example, the subject will 
refer to "N", rather than to "the-stick-like 
character with two verticals and one diagonal.,f 

If such linguistic assumptions are violated, 
we have a more difficult task of induction. 

It appears to be the case in cryptarithme-
tic that examples of operator and knowledge 
elements occur in relatively isolated and simple 
linguistic contexts. Thus evidence can be 
gleaned for the induction where there is little 
language complexity or simultaneous occurrence 
of conceptual elements to complicate matters. 
Table 4 shows some of the topic segments from 
the protocol of S3 that appear suitable for this 
task. 

This suggests an inductive program built 
around an elementary grammar and a dictionary 
composed of verbs, relation terms, and task terms 
(i.e., letters, names, words, numbers, positions, 
etc.). Working with open language requires a 
large dictionary with definitions relevant to 
the task, in this case cryptarithmetic. Then 
we can expect such a program to identify from a 
subject 1s protocol the collection of knowledge 
and operator elements he is using to define his 
problem space. 

Creating a list of problem space elements 
is a useful first step. For the problem space 
affects the entire protocol analysis sketched 
in Figure 9. It directly influences the opera­
tion and organization of the Linguistic 
Processor, the Semantic Processor, and the Group 
Processor. If a quite new problem space were 
obtained by the above procedure, how would the 
analysis of Figure 9 be carried out? Operational 
success in inducing the problem space lies not 
just in recognizing the elements, but in knowing 
how to use them — i.e., how to integrate them 
into the analysis. This part of the question is 
clearly premature, for we have only begun to 
develop operational notions of how the problem 
space effects our analysis, and are in no 
position to rise above this to programs that 
create protocol analysis schemes. 

VIII. Conclusion 

We have attempted to lay out the task of 
protocol analysis as a field for work in arti­
ficial intelligence. Our base is rather 
narrow: protocol analysis in cryptarithmetic 
according to a particular style (17). Our 
reasons for this narrow base were set out in 
some methodological preliminaries. But even on 
this narrow base a wide range of intellectual 
scientific activities emerges: description of 
behavior, recognition of speech, induction of 
rules and structure, fitting of parametric 
models, generalization of models, prediction 
of behavior, and assessment of validity. We 
attempted to give substance to these tasks, 
starting with the description of behavior, for 
which we have a running system, PAS-I. We 
followed this with discussions of the tasks 
that, on the basis of current work, seem some­
what understood: extension of the behavioral 
description down toward the lexical level; 
extension up toward the production system trace; 
and induction of rules. The other tasks appear 
currently to be more remote. 

The task of protocol analysis is a real 
one in experimental psychology, existing 
independently of any interest in it as a task 
in artificial intelligence. Unlike many tasks 
that currently hold central fascination in 
artificial intelligence, protocol analysis 
exhibits a lack of formality and an inherently 
inductive character that seems to characterize 
much other scientific (and real world) activity. 
Even Dendral (5), which is the closest attempt 
so far to deal with a complex scientific intel­
lectual activity in artificial intelligence, 
rests heavily on the formality and tidiness of 
its empirical domain (chemical structures and 
numerical measures of their spectra). Protocol 
analysis is nowhere near so tidy. However, it 
too rests on certain simplicities -- e.g., the 
simplicity of the cryptarithmetic task itself. 
Thus, it is simply one step further along the 
road toward the full spectrum of scientific 
activity. 

PAS-I currently does but a single task, 
however strongly one might feel that this task 
is intellectually significant. One purpose in 
emphasizing the spectrum of tasks encompassed 
by protocol analysis (recall Figure 8) is to 
note that serious, professional, long-term 
intellectual activity is not a single monolithic 
endeavor. Rather, it is a collection of inter­
related tasks, tied together by common repre­
sentations, common sources of knowledge and 
common memory of methods, heuristics, solutions, 
and difficulties. Soon we must come to grips 
with such intellectual conglomerates. 
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The expression at the side is a simple arithmetic sum in disguise. Each 
_ letter represents a digit, that is, 0, 1, 2, 9. Each letter is a 

D O N A L D D - 3 distinct digit. You are given that D represents the digit 5; thus, no 
, „ „ N L T „ other letter may be 5. + G E R A L D J 

~ T What digits should be assigned to the letters such that when the letters 
R O R F R T 

are replaced by their corresponding digits the above expression is a 
true arithmetic sum? % 

Please talk all the time while you work, saying whatever is on your 
mind at each moment, however fragmentary, trivial, apparently irrelevant, 
impolitic, or indiscreet. Whenever you fall silent for more than a 
moment the experimenter will ask you to "please talk.11 

FIGURE 1. Instructions for Cryptarithmetic Task 

1. Each letter has one and only one numerical value --
2. Exp: One numerical value. 
3. There are ten different letters 
4. and each of them has one numerical value. 
5. Therefore, I can, looking at the two D fs — 
6. each D is 5, 
7. therefore, T is zero. 
8. So I think I'll start by writing that problem here. 
9. I'll write 5, 5 is zero. 
10. Now, do I have any other T's? 
11. No. 
12. But I have another D. 
13. That means I have a 5 over the other side. 
14. Now I have 2 A's 
15. and 2 L's 
16. that are each --
17. somewhere --
18. and this R --
19. 3 R's — 
20. 2 L's equal an R --
21. Of course I'm carrying a 1. 
22. Which will mean that R has to be an odd number. 
23. Because the 2 L's 
24. any two numbers added together has to be an even number 
25. and 1 will be an odd number. 

FIGURE 2. Initial Phrases of Transcription of S3 Problem Session 
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Knowledge Elements 

I A|B|D|E|G|L|N|0|R|T 
d := 0|l|2|3|4|5|6|7|8|9 
c := C1|C2|C3|C4|C5|C6|C7 

col :== 1|2|3|4|5|6|7 
v := l\c 

Iset : = I \l Iset 

eq := EQjAEQ 
rel := EQ|AEQ|GR|SM|ODD|EVEN|PEQ 

(EQ I d) 
(AEQ I d) 
(GR V d) 

(SM V d) 

(ODD 
(EVEN V) 
(PEQ V df) 

Operator Elements 

(PC col v) 

(AV v) 
(GN U ) 
(TD I d) 

FIGURE 3. Elements 

Letters in the display 
Digits assignable to letters 
Carries into a column 
Columns (from right to left) 
Variables: letters or carries 
Sets of letters 
Equality relations 
Relations 
I is inferred equal to d 
I is assumed equal to d 
v is greater than d 
V is smaller than d 
V is odd „ 
V is even 
V is possibly equal to d 

Process col for information about V 
(v is optional) 
Assign a value to V 
Generate the possible values of V 
Test if d is legal for I 

from the Problem Space for S3 

PI: {eq v d) — > (FC v ) , (PC col) 
P2: (GET v) — > (FC v), (PC col v) 
P9: (GET Iset) --> (FL Iset), (GET I) 
Pll: (EQ Id) — > (TD 1 d ) 

Additional operators 

(FC V) Find a column containing variable V 
(FL Iset) Find a letter in set Iset 

Additional knowledge elements 

Itrs := (D T L R A E N B 0 G) A set of letters 
(GET Itrs) The goal is to find the values of the 

letters in Itrs 
(GET V) The goal is to find the value of V 

FIGURE 4. Simplified Productions from the Production System for S3 
(Knowledge in the right side of a production, e.g., (GET I) 
is simply copied into the knowledge state.) 
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22 

(AEQ D 5) 
(PC 1) (EQ T 0) 

(EQ C2 1)1 
(PC 2) 

(ODD R) 

23 25 

(PC 2) 
(ODD R) (ODD R) 

FIGURE 5. PBG for Initial Part of S3 Problem Session 

PHRASE PRD OPR RESULT KNOWLEDGE STATE 

(AEQ D 5)(GET LTRS) 
PI (FC D) 

5 1 (AEQ D 5)(GET LTRS) 
6 (PC 1) 
7 (EQ T 0)(EQ C2 1)(AEQ D 5)(GET LTRS) 

Pll (TD T 0) 
+ (EQ T 0)(EQ C2 1)(AEQ D 5)(GET LTRS) 

10 PI (FC T) 
11 - (EQ T 0)(EQ C2 1)(AEQ D 5)(GET LTRS) 
14 P9 (FL LTRS) 
18 R (EQ T 0)(EQ C2 1)(AEQ D 5)(GET LTRS) 

(GET R)(EQ T 0)(EQ C2 1)(AEQ D 5)(GET LTRS) 

P2 (FC R) 2 (GET R)(EQ T 0)(EQ C2 1)(AEQ D 5) (GET LTRS) 
20 (PC 2 R) 
22 (ODD R)(GET R)(EQ T 0)(EQ C2 1)(AEQ D 5)(GET LTRS) 

FIGURE 6. Trace of Production System for S3 
(Order of evocation of productions cannot be 
derived from the partial set of productions 
shown in Figure 4.) 
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S T R U C T U R E 

P R O D U C T I O N 
S Y S T E M 

P R O B L E M 
S P A C E 

L I N G U I S T I C 

R U L E S 

B E H A V I O R 

P S Y C H O L O G I C A L 

T R A C E 

PBG 

N o d e 

A 

S E M A N T I C 

G R O U P 
Protogroup 
Operator Group 

I 
E L E M E N T 

Knowledge 
Operator 
Indicator 

L I N G U I S T I C 

T O P I C 

Segment 

I 
LEXICAL 

W o r d 
Prosodic Feature 
Paral inguistic Into. 

K 

T A P E 
Audio 

Figure 7. Representat ions for Protocol Analysis 
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Description of behavior; Find the representation of behavior at some 
level, given the representation of behavior*at some lower level. 

Recognition of speech: Find the lexical representation of behavior given 
the audio representation (special case of description). 

Induction of rules; Find a static structure (linguistic rules, problem 
space, production system), given a representation of behavior. 

Fitting of models; Find a static structure, given a representation of 
behavior and a class of structures described in a parametric or systematic way. 

Generalization of models: Modify a static structure that is adequate for 
some set of behaviors to encompass a newly given behavior in some 
representation. 

Prediction of behavior; Find the behavior in some representation, given 
some static structures along with the defining conditions for an experi­
mental situation. 

Assessment of validity; Find the validity, expressed in some representation, 
of a given static structure or behavior in some representation. 

FIGURE 8. Varieties of Subtasks in Protocol Analysis 



Topic 
Segments 

[two D's] 
feach D is 5] 
[therefore, T is zeroj 

L I N G U I S T I C 

P R O C E S S O R 

Semant ic 
E lements 

(NUM D 2) 
(EQ D 5) 

(THEREFORE)(EQ T 0) 

S E M A N T I C P R O C E S S O R 

S t e p l 

T e m p o r a l 
Integrat ion 

Step 2 

N o r m a l ­
ization 

Step 3 

Extract 
Next 
Protogroup 

Protogroup 
Op: (PC 1) 
Kn: (BECAUSEOF (EQ D 5)(EQ T 0)) 

P B G 

G E N E R A T O R 

C1 = 0 V — ^ T = 0 
D = 5 

P B G 
Informat ion 

Group 

Op: (PC 1) 
In: ((EQ C1 0)(EQ D 5)) 
Out: (EQ T 0) 

Extract next 
E lement 

Determine 
Unknowns 
M e c h a n i s m 

Origin 

M e c h a n i s m 

KM-

G R O U P P R O C E S S O R 

Figure 9. F low D i a g r a m of PAS- I 
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(a), (b). 

Segment: [EACH D IS 5] 

Analysis: 

Elements: 

<lctter> <equal> <digit> 

<optdigit> 

<eq> I 
(EQ D 5) 

[SOMEWHERE — ] 

< > 

(?) 

<c). (d). 

Segment: [THEN THIS WILL BE 7,] [BECAUSE I KNOW I 'M NOT CARRYING 1] 

Analysis: 

Elements: (THEN) 

<equals> y 

<eq> 

(EQ *L 7) 

<then> <pronoun> <equal> <digit> <because> 

(BECAUSE) 

<neg> <carry> <digit> 

\ / 
<carryecp> 

<eq> 

(NEG) (EQ *C 1) 

(e). (f). 

Segment: [2 L 1S EQUAL AN R — ] [WE 'LL HAVE 1 + 1 THAT «S 3 OR R — ] 

<two> <letter> / <equal> <letter> <digit> <ad> <digit> <digit> <prep> <ietter> 

Analysis: 

<letdig> 

<sum> 

^ / i / I V 

<optletdig> <letdig> 

<letdigs> 

<eqc> 

Elements: (EQC (PLUS L L) R) 

<letdig> 

<letdigs> 

<ltr> 

<sum> 

(PLUS 1 1) 

<eq> 

(EQ R 3) 

FIGURE 10. Examples of Linguistic Processor Operation 
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<cq> := <carrycq> | <lcttcr> <cqual> <optdigit> | <pronoun> <cqvials> <digit> | <digitXprcp><iU 
<sum> := <lctdigsXad> <letdigs> | <twoXletdig>'S 
<eqc> := <sum> <oqual> <optlctdig> 
<carrycq> : = <carry> <digit> 
<ltr> := <pronoun> <letter> | <lctuer> <pronoun> | <letter> j <pronoun> 
<optletdig> := <digit> | <letter> | < > 
<optdigit> := <digit> | < > 
<letdigs> := <letdig> | <pronoun> 
<letdig> := <letter> | <digit> 
<equals> := <equal> | »S 
<equal> := IS | BE | EQUAL 
<letter> := D | L | R 
<digit> := 1 | 3 | 5 | 7 
<carry> := CARRYING 
<because> := BECAUSE 
<then> := THEN 
<prep> := OR 
<pronoun> := THIS 
<neg> := NOT 
<ad> := + 
<two> := 2 

FIGURE 11. A Subset of the Grammar Used by the Linguistic Processor 

5. Therefore, I can, looking at the two D»s — 
*16. that are each 
*17. somewhere 
24. any two numbers added together has to be an even number 
25. and 1 will be an odd number. 
38. if I have to carry 1 from the E + 0. 

*50. it's not possible that there could be another letter in front 
of this R is it? 

69. and it's the L 1s that will have to be 3»s, 
*72. Now, it doesn't matter anywhere what the L's are equal to — 
*79. that is, itself plus another number equal to itself. 
118. Then again, that's assuming that N is less than 3, 

*161. in order to have the 0 = the 0. 
202. And also am using R as 9 instead of a 7 

*230. and it doesn't seem as though I'm going to be able to carry more 
than 1 in any case. 

*282. Of course, it all has to satisfy the fact that I have 10 letters 
for 10 numbers. 

"286. I'm only two numbers short, aren't I? 

FIGURE 12. Types of Complex Utterances Analysed by the Linguistic Processor 
(The examples are taken from the protocol of S3; those marked 
with asterisks cannot be handled by the current system.) 



Initial 
Semantic Elements 

(NUM D 2) 
(EQ D 5) 
(THEREFORE) (DIGIT 0) 
(LETTER R) 
(UNLESS) 
(PLUS D G) 
(EQ G 1) 
(DIGIT 2) 
(BECAUSE)(EQ D 5 ) 

(?) 

(IF) (EQ *L 7) 
(AND) (EQ D 5) 
(THEN) (NEG) (EQ G *D) 
(CIN 1 (PLUS D G)) 

STEP 1 

(NUM D 2) 
(EQ D 5) 
(THEREFORE) (EQ *L 0) 
(LETTER R) 
(PLUS D G) 
(MEQ G 1 2) 
(BECAUSE) (EQ D 5) 
( ) 
(IF) (EQ *L 7) 
(AND) (EQ D 5) 
(THEN) (NEQ G *D) 
(EQ C6 1) 

STEP 2 

(NUM D 2) 
(BECAUSEOF (EQ D 5) (EQ *L 0) 
(LETTER R) STEP 3 
(PLUS D G) ^ > 
(BECAUSEOF (EQ D 5) (MEQ G 1 2)) 
( ) 
(COND ((EQ *L 7) (EQ D 5))(NEQ G *D)) 
(EQ C6 1) 

Protogroups 

1st protogroup 

(NUM D 2) 
(BECAUSEOF (EQ D 5) 

(EQ *L 0)) 
(LETTER R) 

2nd protogroup 

(PLUS D G) 
(BECAUSEOF (EQ D 5) 

(MEQ G 1 2)) 

3rd protogroup 

(COND ((EQ *L 7)(EQ D 5)) 
(NEQ G *D)) 

(EQ C6 1) 

FIGURE 13. Examples of Semantic Processor Operation 
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(a) Knowledge State: (EQ D 5) (GREATER R 7)(EQ CI 0) 

Determine 
Unknowns 

(EQ *L 5) > (EQ D 5) 

(EQ *C 0) > (EQ CI 0) 

(GREATER R *D) = = = £ > (GREATER R 7) 

(b) Knowledge State: (EQ D 5)(EQ CI 0) 

c6 c5 c4 c3 c2 cl 
D O N A L D 

Display: + G E R A L D 

R O B E R T 

Determine 
Unknowns 

(PLUS A * L ) = = = £ > (PLUS A A) 

(EQ T *D) {> (EQ T 0) 

FIGURE 14. Examples of Inferences by Determine 
Unknowns Mechanism 



Knowledge Sta te : (EQ D 5) (EQ C1 0) (EQ C 7 0) (EQ G 4) (EQ C 6 0) 

Operator G r o u p : Operator (PC 4) E lements (EQ R 7) (EQ L 3) 

(EQ C6 0) (EQ D 5) (EQ G 2) (EQ C6 1) (EQ D 5) (EQ G 1) / (EQ C 2 1) (EQ L 3) 

(RECALL C6) ( R E C A L L D) (AV G) (AV C6) ( R E C A L L D) (AV G) 

(AV R) 

(EQ C2 1) (EQ L 8) 

4> 

(PC 1) (AV C2) (AV L) 

(EQ C1 0) (EQ D 5) 

( R E C A L L C1) (RECALL D) 

F igure 15. Operat ion of the Origin M e c h a n i s m 
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Initial or Given 

Knowledge State: (EQ D 5) (EQ C1 0) (EQ C 7 0) (EQ G 4) (EQ C 6 0) 

Operator Groups: 

Operator 

(1) . ( R E C A L L D) 
(2) . ( R E C A L L C1) 
(3) . (PC 1) 
(4) . (AV L) 
(5) . (PC 2) 
(6) . ( R E C A L L G) 
(7) . ( R E C A L L C6) 
(8) . ( P C 6) 
(9) . (AV L) 

Inputs 

( 
( 

(EQ D 5) (EQ C1 0) 

( 

(EQ C 2 1) (EQ L3) 

( 

( 

(EQ D 5) (EQ C 6 0) (EQ G 4) 

( ) 

Outputs 

(EQ D 5) 
(EQ C1 0) 
(EQ C 2 1) 
(EQ L 3) 
(EQ R 7) 
(EQ G 4) 
(EQ C 6 0) 
(EQ R 9) 
(EQ L 2) 

P r o b l e m Behavior 

G r a p h 1-7. 

1 2 3 4 5 6 7 

- o 
C 1 - 0 L - 3 

1-9. 

1 2 3 4 5 6 7 8 

G - 4 
9 

- 2 
C 6 - 0 

Figure 16. Example of P B G Generat ion 
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S E M A N T I C E L E M E N T S 

KNOWLEDGE MEANING OPERATORS MEANING 

(LETTER I) 

(DIGIT d) 

(PLS u) 

(IN v d ) 

(EVEN V) 

(ODD ^) 

(EQ y d) 

(PEQ v d) 

(GREATER y d) 

(SMALLER y d) 

(CIN d col) 

(COUT col) 

(MEQ v d2 d2)* 

(NEQ v d ) * 

(AEQ i> d ) * 

(COND e e ) * 
J. Ct 

An occurrence of 
the letter I 

An occurrence of 
the digit d 

u is added to 
something 

y is in column d 

V ±s even 

V is odd 

V equals d 

One possible value 
for y is d 

y is greater than d 

y is smaller than d 

The carry into column 
col 

carry 
is d 

The carry out of 
column col is d 

U must equal either d^ or dg 

y is not equal to d 

y is assumed to have 
the value d 

If g is true then 
is true 

(FC y) Find a column 
containing y 

(NUM I d ) the number of 

Vs is d 

(PLUS Uj Ug) u^is added to 

(EQC (PLUS Uj plus u,, equals 

(COUNT I) Count the number of Vs 

(RECALL v) Recall the value 

of V 

(PC d ) * Process column d 

(GN I)* Generate possible 

values for I 

(IG c)* Ignore the carry a 

(AV Assign some value 
to V 

(FA e)* Find the antecedent 
of element e 

(FN £ ) * Find the negative of the 
antecedent of e 

(TD v d)* Test if v can be 
equal to d 

(TE e) Test if e can 
be true 

INDICATORS 

(OR) 

(IF) 

(AND) 

(YES) 

(NEG) 

(QUES) 

(THEN) 

(BECAUSE) 

(UNLESS) 

(ASSUME) 

(DIFFICULT) 

(THEREFORE) 

(CORRECTION) 

(INSTEADOF) 

These elements are generated by the Semantic Processor rather than the Linguistic Processor. 

TABLE 1. Examples of Semantic Elements Used in PAS-I 
(I represents an arbitrary letter, d a digit, 
c a carry, V a letter or carry, w a letter, 
carry, or digit, e a knowledge element, and 
col an element such as (PLUS A A) which 
indicates a column.) 
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KNOWLEDGE ELEMENTS OPERATORS 

EQ PC, GN, IG, FA, TD, TE, AV 

PEQ PC, GN, FA 

MEQ PC, GN, FA 

NEQ FN, TD, TE, PC 

AEQ FA, AV 

EVEN PC, FA, TD, TE 

ODD PC, FA, TD, TE 

GREATER FC, FA, TE 

SMALLER PC, FA, TE 

TABLE 2. Knowledge Elements and Operators 
for Generating Them 

Inputs Operator Outputs 

1. (EQ CI 0)(EQ D 5) (PC 1) (EQ T 0)(EQ C2 1) 

CM (EQ C2 1) (PC 2) (ODD R) 
3. (EQ D 5)(ODD R) (PC 6) (EVEN G) 
4. (EQ C2 1)( EQ L 1) (PC 2) (EQ R 3) 
5. (EQ D 5) (PC 6) (GREATER R 5) 
6. ( ) (PC 5) (PEQ E 9)(EQ C6 1) 

c6 c5 c4 c3 c2 cl 

D 0 N A L D 

Task: + G E R A L D 

R 0 B E R T 

TABLE 3. Input/Output examples for PC of S3 
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TOPIC SEGMENTS SEMANTIC ELEMENTS 

Knowledge 

6. [EACH D IS 5 . ] EQ 
12. [BUT I HAVE ANOTHER D . ] IN 
21. [OF COURSE I 1 M CARRYING UH 1 . ] EQ-
22. [WHICH WILL MEAN THAT R HAS TO BE AN ODD NUMBER . ] ODD 
35. [G HAS TO BE AN EVEN NUMBER . ] EVEN 
96. [R COULD BE 9 ALSO . ] PEQ 

118. [THEN AGAIN , THAT »S ASSUMING THAT N IS LESS THAN 3 , ] SMALLER 
135. [BUT A CAN N'T EQUAL 5 . ] NEQ 
201. [AND ALSO AM USING R AS 9 INSTEAD OF 7 . ] AEQ 
213. [AND R HAS TO BE GREATER THAN 5 . ] GREATER 

Operators 

10. [NOW , DO I HAVE ANY OTHER T 'S ? ] FC 
15. [AND 2 L 'S ] PC 

130. [A + A - ] PC 
151. [SUPPOSE 0 WERE 1 ] AV 
200. 
201. 

[OF COURSE NOW MY E CAN N'T BE A 9 , ] 
[SINCE I iVE USED THE 9 FOR R . ] TD 

TABLE 4. Topic Segments for Induction of Problem Space 


