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ABSTRACT 

This paper is concerned with establishing the existence of a recursive 

sequence x which exhibits a "continuous" trade-off between the length 

of programs (information) which compute the finite initial segments of x 

and the computation resources (e.g. computation time) required by these 

programs for such computations. 



1 . INTRODUCTION 

In an attempt to measure the information content of finite and in

finite binary sequences, Kolmogorov [6], Chaitin [3,4] and Loveland [8] 

have formulated minimal-program complexity measures. The main result of 

this paper, which is presented in the following section, shows the 

existence of a recursive sequence x which exhibits a "continuous11 

trade-off between the length of programs (information) which compute the 

finite initial segments of x and the computation resources (e.g., com

putation time) required by these programs for such computations. In 

this section we present the basic definitions and properties of the com

plexity measures needed for the establishment of such results. 

If x is a binary sequence (finite or infinite) then we denote by 
th n x(n) the n member of x and by x the initial segment of x of length n, 

i.e. xn=x(l)••*x(n). If x is a binary string (finite sequence) then we 

denote by |x| the length of x, i.e. the number of symbols of x. We say 

that the string y extends the string x, which we denote by x < y, if and 

only if Vi^|x| .x(i)=y(i). 

For this paper we will use Loveland1s definition of minimal-program 

complexity. The minimal-program complexity of x11 is defined by, 

KA(xn;n) = min {|p| |p is a binary string and Vi^n.A(p,i) = x*}, 

where A is an algorithm. 

= 0 0 if no such p exists 

One may regard A as a digital computer and p as the encoding of a 

computer program which when run on A with input i produces x* as output. 

Thus p contains the information and procedure necessary for the computa-
i n tion of x and so, intuitively, K (x ;n) measures the information (other 

A 
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than n) required to compute x n. Loveland1s definition is a variant of 

Kolmogorovfs intended to insure that the only information provided by n 

to the program computing x11 is that n is the length of x11. Many of the 

basic properties of this minimal-program complexity measure are discussed 

in detail in [8,9]. 

By the same method that Kolmogorov used for his formulation of minimal-

program complexity measure one can show the existence of a "universal" 

algorithm A such that for any algorithm B there is a constant c such that 

VxVn.K^(xn;n) £ Kg(xn;n)-tc. We will fix such a universal algorithm A 
00 00 

and therefore delete the subscript. By 'Sn." and "Vn." we mean "there 

exist infinitely many n such that" and "for all but finitely many n" 

respectively. We define (following [9]) the complexity class named by f by 

C[f] = Cx|Vn.K(xn;n) £ f(n)} 

Since we designate complexity classes by the names of functions we will 

use X notation to specify the name of a function in terms of its values 
2 2 (e.g. [Xn.n ] is the name of the function f such that f(n)=n ). We will 

denote the greatest integer ̂ n by [n]. 

We now present some basic properties of this complexity measure which 

are relevant to the results in the following section. 

1. Every binary sequence x has a well defined complexity, indeed 

there is a constant c such that Vx.x€C[Xn.n+c ]. 
o u o 

2. A sequence x is recursive if and only if there exists a constant 

c such that x€C[Xn.c]. 

3. If x is a recursively enumerable sequence (i.e. the characteristic 

sequence of a recursively enumerable set) then there is a constant c such that 

x&[Xn.log2(n)+c]. gee [1] and [9]). 
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Kolmogorov first suggested considering the minimal-program complexity 

of sequences when the computation resources used by programs computing 

their initial segments are restricted, and Barzdin [1] first utilized this 

idea. In a similar manner, we employ this idea and obtain a related com

plexity measure which we will refer to as the bounded complexity measure. 

Let [Xp.<p>] be an effective bijection between the set X of all finite 

binary sequences and the set N of natural numbers. We will enumerate all 

0,1-valued partial recursive functions in the following manner: for every 
* th p€K and every n€N, cp (n)=A(p,n) (n) , i.e. cp .(n) is the n member of 

the string A(p,n). Let $ = {$^} be any Blum complexity measure for £cp̂ } 

(see [2]). Thus $ satisfies 1) cp̂ (n) is defined if and only if $^(n) ^ s 

defined, and 2) the predicate $^(n)£m is recursive. 

We define the bounded (with bound t) minimal-program complexity of 

x by, 

K^(xn;n) = min {|p| | p is a binary string and 

Vi^n(A(p,i)=xi and * < p >(i)*t(D)} 

Intuitively, K^(xn;n) measures the information (other than n) required 

to compute x11 within t(n) units of the computation resource $. We introduce 

the following complexity classes, 

Cs[f | t]=£x| V n . K ^ x V ^ f (n)) 

C^d[f ]={x| Vn.K*"(xn;n)^f (n) , for some total recursive t] 

We will fix a Blum complexity measure $ and therefore will delete the sub

script $. Corresponding to 1 and 2 above we have the following, 

1 ' There is a constant c and a total recursive function t such 
o o 

that Vx.x€C[Xn.n+c It ]. 
L o1 o J 
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li A sequence x is recursive if and only if there is a constant c 

such that x€C^^[Xn.c]. 

It will be useful to consider the following variant of the bounded 

complexity, 
^ t n 
Kx(x ;n) = min { Ipl I p is a binary string and $ (n)£t(n) $ <p> 

and Vi^n.A(p,i)=x1}. 

Clearly, (xn;n)^K^(xn;n). It is also the case that all the theorems 

in this paper which are stated for K^(xn;n) are also true for K^(xn;n). We 
* i * bdr 

denote the complexity classes for this measure by C^[f|t] and C^ [f ]• The 
* t n 

essential difference between these two measures is that for (x ;n) we 
restrict the computation resources used only for the computation of x n (there 

i ^ t n is another program which computes x in t(i) units). (x ;n) still insures, 

as does K^(xn;n), that n indicates only the length of the sequence to be 
computed. 
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2. INFORMATION COMPUTATION RESOURCE TRADE-OFF 

Motivation for investigating the trade-off between program length 

and computation resources is provided by the following result (see [5]), 

3 1. There exists a recursively enumerable sequence x such that for 

every constant c < 1, x j£ C^^[Xn.c*n]. 

Thus in view of 3 (see section 1) the information requirements for 

such a sequence increase drastically whenever an effective bound is placed 

on the computation resources for its computation. We mention that 

Barzdin [1] previously proved a similar result for the time of computation 

measure $: there is a recursively enumerable sequence x such that for 

every total recursive function t there is a constant cfc < 1 such that 

Vn.K*(xnJn) ^ c .n. The difference between Barzdin1s result and 3 1 is $ t 
mainly one of quantification: 

Vt3c < lVn.K^x^n) > e n and VtVc < lSn.K^x^n) > c*n. 

The following theorem and especially its corollary show that there 

is a sequence x which exhibits a "continuous" trade-off between information 

requirements and other computation resource requirements for the computation 

of its initial segments, i.e., as we decrease the amount of information 

provided in a program computing x11 we must increase the amount of computa

tion resource used in the computation by such a program. We say that a 

sequence of functions tf^l is recursive (primitive recursive) if and only if 

the function F(i,n) • f (n) is total recursive (primitive recursive). 
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Theorem 1: If 1*̂ } a n <* a r e r e c u r s i v e sequences of functions satis

fying (1) Vi. f̂  is unbounded non-decreasing, (2) Vn. f^(n) £ n, and 

(3) ViVn.f,^(n) ^ j.f^Cn), then there is a recursive sequence x and a 

recursive sequence of functions {s^} such that (1) Vi > 1. x j£ Ctfjt^] 

and (2) Vi. x 6 C[f±|s ]. 

Before we present the proof, we will discuss briefly the statement 

of Theorem 1. The number j (rather than ~) in condition (3) seems to be 

essential to the construction in the general case. However, we are able 

to give examples where the {f^} satisfy the weaker condition 

ViVn.fi+^(n) ^ j-f^n). The trade-off is more evident in the following 

corollary to the proof of Theorem 1, obtained by letting t ^ = s^ in 

Theorem 1. 

Corollary: If {f^} is a recursive sequence of functions satisfying 

(1) Vi. f̂  is unbounded non-decreasing, (2) Vn. f̂, (n) ̂  n, and 

(3) ViVn. f^+^(n) ̂  5'#^i^n^, then there is a recursive sequence x 

and a recursive sequence {t^} of functions such that (1) Vi > 1, x ^ CCf̂ I ^ 
and (2) Vi. x € C[£±|t x ] . 

The {f^} is a decreasing sequence of information bounds and the {t^} 

is clearly an increasing sequence of computation resource bounds. Simply 

stated, x is a sequence such that as we decrease the amount of information 

provided for the computation of x n we must increase the amount of computation 

resources permitted for the computation of x11. The Corollary becomes even 

more interesting in view of 2 1 which states that since x is recursive 

there is a constant c and a total recursive function t such that x € C[\n.c|t] 
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Proof: (of Theorem 1). We construct x in stages. At each stage n we 

define x(j) for j 6 (e^ ̂ > e
n3 where e^ is an appropriately defined 

recursive function of n. (We use (m,n] to denote the set [i| i 6 N and 

m < i ̂  np The construction at stage n will be carried out in n sub-

stages. At each substage m of stage n we define x(j) for j € (e - f e ] 
n,m-i n,m 

where e rt = e - and e = e . The construction at substage m of stage n,0 n-1 n,n n & ° 
n will insure that x satisfies (1) K^Cx 6* 1^) > f m( e

n) f° r m > 1, and 

(2) K S m(x e n;e ) ̂  f (e ) - n+c for some constant c and some total v ' n m n,m m m 
recursive function s^. We accomplish (1) by defining x e n , m to be the 

least string y (with respect to the lexicographical ordering) such that 

I yI == e and y extends x^'1*1"1 and such that Ktm(y;|y|) > f (e ) • 1 J 1 n,m J ' 1 m n 
The existence of such a y will follow from our choice of e . I t will 

n,m 
then follow that there is a program T T ^ which computes x(j) for 

j € (e, ., e, ] for every k ^ m. We accomplish (2) simply by making 

e - e < f (e ) - f (e .,). To do this we must use the fact that n n,m m n,m m n-i 
Vk.f^k) £ k and Vi £ nVk.f^k) £ j f ^ O O . Thus no matter how we later 

e n 

define x between e^ ̂  and e^ we can always compute x by specifying x 

between e, and e. for m ^ k ^ n in addition to the program rr* which 

computes x between e, 1 and e, for m ^ k ^ n by using the programs TT . 
K.—J- k ,m j 

for j ̂  n. Hence for some total recursive function s and some constant c , 
m m K ^ x ^ e ) * S (f (e, ) - f (e, -) -1) + 

k*! 9 m 
c m 

£ f (e ) -n + c m n,m m 

We remark that although T T* requires n binary strings to compute x6*1, the 
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above inequality is obtained since the length of each of these strings is 
* e n * known to Ttm and so we can compute x , using TTm, from the concatenation of 

these strings. 

We now present the formal details. Define £q=0 
n 

and e = min [klk * e + E 0 (f (k)+l) and n+1 u 1 n m=2 N m x ' ' 

* n (ji +i< fj( k> + i> < fJk-J=L<f
J<k>+i»-f

m<en»^ • 
Define e - = e - 2 0(f (e ) + 1 ) and n, I n m=z m n 

e = e . + f (e )+l . n,m n,m"" i m n 
We are guaranteed that such a k exists in the definition of e^^ since {f^} 

satisfies the three conditions in the hypothesis of the theorem. In fact it 

is crucial for this construction that {f^} satisfies all three conditions. 

We observe also that e -e < f (e ) - f (e n) 
n n,m m n,m m n-1 

Define K = {y 6 n |k^» (y6n;e ) * f (e)} . 
n,m ' n m n • Clearly, e , e are recursive functions. Since the predicate $. (n) £ m is n n,m i 

recursive, K is a recursive set function. We define, n,m 3 

xe n,m = m i n £ y| |yi e a n d x
em,n -1 < y and y £ K ) . 

J 1 1 J 1 n,m J J ^ n,mJ 

f_(en)-f1 Such a y exists since the cardinality of K is less than 2 m v n / and n,m 
e -e - = f (e )+l. It follows from our previous remarks that n,m n,m-i m n 
VnVm>1 .K^fx 6* 1^ )>f (e ) so that x 4. C[f I t ], for m > 1 . Also, we have x ' n m m m1 m J' ' 

s e n 

that VmVn.K m(x n; e ) £ f (e ) - n + c and by our construction, 
n m n,m m 

CO g j-ĵ  VmVn.K m(x ;n) £ f f N so x € C[f I s ]. Furthermore, {s.l is a recursive m(n) L m1 m J
 9 ^ J.J 

sequence of functions. 

We show now that under certain conditions we can choose the sequence 
x in Theorem 1 to be primitive recursive. We say that a Blum measure § is 
primitive recursively decidable if and only if the predicate 3L(n) ̂  m 
is primitive recursive. 
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Theorem 2 : If {f^} and Ct^} are primitive recursive sequences of functions 

satisfying (1) Vi.f^ is unbounded non-decreasing, (2) Vn.f^(n) £ n, 

(3 ) ViVn.f... (n) £ \ ' f.(n), and (4 ) [XiXn. min (klf.(k) > f.(n)}] is 

primitive recursive, and $ is a primitive recursively decidable Blum measure 

then there is a primitive recursive sequence x and a recursive sequence {s^} 

of functions such that (1 ) Vi>1 . x £ C^Cf±|t±] and (2) Vi. x € C^[f ±|s ±]. 

Proof: The construction is identical to that in Theorem 1 . Condition (4) 

insures that e and e are primitive recursive functions and $ being primi-n n,m 
tive recursively decidable insures that K is a primitive recursive set J n,m r 

function. 

We remark that the above "trade-off" theorems do not assert that a 

trade-off exists for all sequences, but only for some sequences. We have 

not established an absolute trade-off between information and computation 

resources, but have only demonstrated the existence of sequences which exhibit 

such a trade-off behavior. We conclude with some examples which demonstrate 

how widespread the trade-off pheonomenon is. Our discussion now will be 

quite informal. For these examples we will assume that our algorithm A is 

a processor for Markov algorithms (see [ 1 0 ] ) . Such an A is universal and 

we may thus restrict our programs to be Markov algorithms. Our first two 

examples show that the sequence of functions {t^} of the Corollary may be 

chosen so that t^+j is not much larger than t , when {f^} and $ are properly 

chosen. The proofs are not difficult but rather tedious so that only the 

statement of the example and a brief discussion will be given. 

Example 1 : Let $ be the length of tape measure for Markov algorithms, i.e. 

$ counts the total number of non-blank symbols on the tape at any given time 
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n 
during a computation. Let f^(n) = [ 2 ^ ] * Since we may reuse tape during 
computations, we can choose the t^} * n t* i e Corollary to be defined by 
t^(n)=(i+c)*n, for some constant c. 

Example 2 : Let $ be the time of computation measure for Markov algorithms, 

i.e. $ counts the total number of formulae applied during a computation. 

Let f^O1) = [ 2*" Examination of the construction procedure used in 

Theorem 1 shows that finding x e n , m requires at most i n ' ) # ti( e
n) 

applications. It can also be shown that the remaining time needed to 
® n C 

compute x n by a program of length £ f (e ) is less than e , for some 
m n,m n 

constant c. Thus we can choose the {t^} in the Corollary to be defined by 
(i+c) 

t.(n) = n , for some constant c. 

We now show that under certain circumstances we may choose the sequence 
x of the Corollary (more precisely, a variation of the Corollary) to be the 
sequence of all 1 fs. 

Example 3 : Let x be the sequence of all lfs. Let T T m n be the (encoding of 
the) following Markov algorithm: 

1 . < * - > 1 P 

2 . Or -><j1 

3 . pa -»0 
4 . l a - » X 0 

5 . OX - > X 0 

6 . IX - > > J 

7. 0X ->X3 

8 . 16X-»61p 

9 . p1->1p 

1 0 . p 0-5. Op 1 9 . Y i - » l y 

1 1 . pp ->pp 2 0 . y 0 -* 0y 
12 . p * - » a * 2 1 . 6 - » a * 

13. P I - * P 2 2 . -*a

q
 l r 6PY 

14. P * * w h e r e P = C-^,], 
15. 1* -> *1 q = 2 m , and 
16. 6 * -» 6 r = n-p.q 
17. 16 -» 6 note: r £ 2 m 

18. 6 —> • 
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n m ^ TT computes x by printing out n I's in 2 groups of foul "Ms. rr m,n z ra,n 
also computes x"̂ , given i, by computing x11 and then marking off i bits of 
n n n 
x . Now for some constant c , [ T R I ] £ |TT I £ [ T ^ H I + C • Let $ be the 

m U 2 W J 1 m^n1 L 2 m J m 

measure which counts the total number of applications of formulae which 

increase the number of (non-blank) symbols on the tape during a computation. 

ForT T^ ^ we count only the applications of formulae 1 , 2 1 , 2 2 . Clearly, 

(n) = 2 m + 2 . Letting t (n) = 2 * +2 and f.(n)=|fT | it follows that 

( 1 ) ViVn. ̂ ( x ^ n ) £ f±(n) and (2 ) ViVn. *K^(xn;n) > f £ + 1 (n), 

i.e. Vi. x € C[f 4| t ] and Vi. x 4 CCf ± + 11 t^]• This merely illuminates 

the simple idea that if we wish to print out n I's in fixed groups of 1 fs 

then as we decrease the number of 1 fs that we print out in a group, we must 

increase the number of groups that we print out. 

This is a slightly different statement than that in the Corollary. A 

crucial point in establishing this was that T T^ ^ computes x*, given i, 

for i £ n by first computing x11 and then taking i bits of x11. In order to 

establish this result for the complexity classes C^[f|t] we must for each 

i £ n compute x 1, given i, within C(i) steps rather than t(n) steps. It 

is not clear that there exist programs similar to TT which do this and 
m,n 

still allow one to prove that a trade-off exists. 
We remark finally that by a similar argument one can show, letting 

i n 

f^OO = 2 +c and t^n) = ["̂ J], for the $ as above and the sequence x of 

all lb that ( 1 ) Vi. x ^ ^ [ f j t ^ and (2 ) Vi. x <E *C,[*tl ]. 
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