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1. INTRODUCTION 

Let Q be a region in R n and 9Q denote the boundary of Q. We consider 

quasi-linear elliptic boundary value problems of the form 

(1) L[u]sE (-1 j ^ D ^ C a (x)DPu) = f(x,u,...) , x e n , a (x) = a Q (x),|<*|, |p |<an 
|of|^m ° * e * 

jp l^m 

(2) L[u] = Xf(x,u,...) , x e Q, 

subject to the boundary conditions 

(3) D^u(x) = 0, x e Kl, 0^j<m-1, where we have freely used multi-index 

notation, cf. [1], [2], or [3], and f(x,u,...) denotes a function of x, u, 

and possibly all derivatives D°̂ u with |a|<nu 

This class of problems has been studied in [1], [2], and [3] under 

the restrictions that the coefficients a ̂ (x) are measurable and uniformly 

bounded in Q, that there exists a positive constant C such that 

(4) (L[w],w) L2 ( n ) a C I H I ^ C Q ) S C f E J s a n Jn | D < W ) | 2 d x ) for all 

m 2 oo w e W;Q' i*e, for all w in the closure of CQ(Q) with respect to 

| | • | l^m,2(Q) > a n d t^ L a t f depends on x and Dau with |a|̂ m-"I, but not D°\i 

with |a|=m. 

In this paper, we extend the results of [1] to problems in which the 

differential operator L satisfies a weaker "positive definite" hypothesis 

than (4) and f depends on x and D^u with |QT|^m. The price of this extension 

is a slightly stronger hypothesis on the smoothness of the coefficients 



2. MAIN RESULTS 

Throughout this paper the coefficients a ^ (x) are assumed (I) to be 
2 

bounded, measurable functions such that the domain of L,-^(L), in L (Q) 
2 

can be taken to be those C functions satisfying the boundary conditions 

(3) and (II) to be such that there exists a positive constant C such that 
2 

(5) (L[u],u)^2^^ ̂  C I I U I ( Q ) ^ o r u e«̂ 5*(L). We remark that for 

assumption (I), it suffices to assume that D^a^(x) e c°(Q) for all 
U L * K | . 

Let H denote the Hilbert space which is the completion of-^(L) with 

respect to the norm 

(6) |u| | H s (L[u],u)^/^^. It follows from Theorem 2, pg . 323 of [5] 

that H e L2(fi). 

Theorem 1. If L satisfies assumptions (I) and (II) and is such that any 
2 -1 

set which is bounded in H is precompact in L (Q), then L is defined as 
2 

a compact mapping from L (Q) to H. 

Proof, It follows from Theorem 3, pg. 222 of [5] that, under these hypothe 

L has a discrete spectrum and hence, from Theorem 2, pg. 461 of [5] that 
1 2 2 L is defined from L (Q) t o H c L (Q) and is compact, when viewed as a 

2 2 -1 
mapping from L (N) to L (Q) . To show that L is a compact mapping from 
2 " 2 -1 

L (Q) to H, let S be any bounded set in L (Q) . Since L (S) is precompact 
in L 2(Q), there exists a sequence { U

N}^ = 1
 C S S U C H T H A T C L" 1 u

n^n=l i S a 

2 -1 -1 
Cauchy sequence in L (Q) , i.e., lini | |L" u

n " l u 1CML 2(Q) = °" B U T > 

n, k-»*» 

since | | L - 1 U N - L ^ U J I * - ( L C L " 1 ^ - L " 1 ^ ] , I T 1 ^ - l~\\2(n) 
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n - L " 1 U K H L 2 ( n ) 
—> 0 as n,k -» CO, 

lim 
n>k-> CO' n 

= 0 and L" (S) is precompact in H. QED. 
H 

Combining Theorem 1 with the Leray-Schander Fixed Point Theorem, we have 

Theorem 2« Let L satisfy the hypotheses of Theorem 1 and f(x,u,...) be 
2 

such that the mapping F: u —* f(x,u,...) is defined from H to L (Q) and 
such that F is a bounded mapping, i.e., F maps bounded subsets of H into 

2 -1 
bounded subsets of L (Q). Then T = L F is a compact mapping from H to H 

and if T satisfies the Leray-Schander condition on S (H) = fx' e H | | |x| J = R} , 

i.e., no solutions of the equation \Tx = x, \ e (0,1], lie on the sphere 

S R(H), then T has a fixed point in BR(H) = [x e H | j |x|| < R}. 

We remark that if there exists a continuous, non-negative function 
g(r), for 0 ̂  r < CO, with | JF(u) | | l 2 ( q ) ^ g ( || u l l H ) f o r a 1 1 u e H > t h e n F 

2 
is a bounded mapping from H to L (Q). 

The fixed point of T given by Theorem 2 is called a generalized solution 

of (1), (3). It may be shown as in [1] that if the coefficients a (x), 

the function f(x,u,...), and the domain Q are sufficiently smooth, then the 

above generalized solution is a classical solution. 
2 

Corollary 1. If the mapping F: H -»L (Q) is uniformly bounded, i.e., there 

exists a positive constant K such that | jFCu)J f ^ 2 ^ K for all u e H, 

then T has a fixed point and (1), (3) has a generalized solution. 

The following two results for the eigenvalue problem (2), (3) are 

analogues of Theorem 3 of [1]. 

Theorem 3. Let the hypotheses of Theorem 2 hold. If F(0) ̂  0, then for 

any R > 0, there exists a \ > 0 such that for all 0 < \ <> \ , there exists 

mi mum 
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a nontrivial solution of u = \L F(u). 

Theorem 4. Let the hypotheses of Theorem 2 hold. Given \ Q > 0, either 

there exists u e H such that u = \^L"^Y(u) or for any R > 0 there exists 

u c S R ( H ) S U C H T H A T U = 7J^F(u) f o r s o m e X <' X 0
# 

The \ and u given by either Theorem 3 or Theorem 4 are respectively 

called a generalized eigenvalue and eigenfunction of (2), (3). 

By using the Sobolev Imbedding Theorem, cf. Theorem 1.4.1 of [2], 

we can give some general conditions under which the hypotheses of Theorem 2 

hold. 

Theorem 5. Let L satisfy assumption (I) and assume that there exists a 

positive constant C such that 

,2 
4 N ror a n u Q ^ K ^ J 

2 
(7) (L[u],u) L2 ( n ) * C 1 ^ 1 1 ^ , 2 ^ ) for all u e ^ ( L ) , for some 0 <; j < m. 

2 1 2 ' Then H C WJJ* (Q) and L" is a compact mapping from L (Q) to H, If f(x,u,...) 

depends on x and D^u with \a\ <: j and there exists a continuous, non-negative 

function h on H R + and a positive real number t such that 

(8) |f(x,u,...)| (..., ...) {1+ E E I 
|p|_J"2 2 i 

|D P u|^ ' + S |DPu| }, for all x e N where <{> = n(n-2j+2 , 

2 
F: u—>f(x,u,...) is a bounded mapping from H to L (Q). 

+ - 2 

then 

Theorem 6, Let L satisfy assumption (I) and assume that there exists a 

positive constant C such that 

(9) (L[w],w) o/ X ̂  C | |w| | = C max S JD^(x)| for all w e ^ L ) 

and some 0 <> j < m-1. Then, H c C^(N) and L"1 is a compact mapping from 
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2 L (Q) to H. If f(x,u,...) depends on x and D u with |cy| £ j and there 

exists a continuous, non-negative function h on XI such that 

(10) |f(x,u,...)| <;h(..., JD^u |,.*.) for all x € n , then F; u-*f(x,u, 
2 

is a bounded mapping from H to L (Q). 
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3. EXAMPLES 

As our first example, we consider the nonlinear two-point boundary 

value problem 

m -

(11) L[u] = S (-1)J DJ[p.(x) DJu(x)] = f(x,u(x),...,Dmu(x)), 0 < x < 1, 

subject to the boundary conditions 
(12) D^u(O) = Dju(1) = 0 , 0 < j < m-1. 

We assume that Pj(x) e C~*(0,1) , f(x,u,...,Dmu) is continuous with respect 

to x,u,...,Dmu , there exists a positive constant C such that 

-j m ' 2 2 

0 3 ) J0 J-0 P j ( X ) ( D J W ( X ) ) C | | w n w m ' 2 [ 0 , 1 ] for allw(x) e C2m(0,T) 
and satisfying the boundary conditions (12), and there exists a continuous, 
non-negative function h on R m such that 

(14) jf(x,u,...,Dmu)| £ h(u,...,Dm"1u) fl + |Dmuj} 

for all x e [0,1] and all u,Du,...,Dmu £ R. Then it follows from Theorem 5 
m 2 1 m that H = ¥ Q P [0,1] and L~ F is compact in H. If, in addition f(x,u,...,D u) 

is uniformly bounded, it follows from the Corollary of Theorem 2, that 

L - 1F has a fixed point and hence (11), (12) has a generalized solution. 

We remark that under these hypotheses this generalized solution is a classical 

solution. 

As our second example we consider the second order, nonlinear, two-point 

boundary value problem 

(15) L[u] s - D[p|(x)Du] + pQ(x)u(x) = f (x,u) , 0 < x < 1 subject to the 

boundary conditions 
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(16) u(0) = u(l) = 0. 

We assume that p ] (x) e (^(0,1), PQ(x) € C°(0,1), p,(x) ;> 0 for all 

x s (0,1), pQ(x) 0 for all x e (0,1), and A == ̂ Q < «. For example, 

taking p ] (x) = x a, 0 < <j < "I > and PQ(x) == 0, we obtain the singular 

differential operator considered in [4], 

Since u2(x) = ([* Du(x)d x) 2 = (f* _ 1 _ Du(x)dx)2 

>/pj(x) 

^ f1 7 \ f1 pOO (Du(x))2 dx ^ A f1 p(x)- )Du(x))2 dx, for all x e [0,1], 
1 o p r x ) 0 1 J 0 

we have u _n,- ̂  , u L, for all u Scd'(L) and hence H c C [0,1]. 
1 1 ^ L O J I J 1 lti 

Thus, by Theorem 6, if we assume that f(x,u) e c"([0,1] x R), then F: u—-f(x,u) 
2 

is a bounded mapping of H into L [0,1]. Moreover, it follows from the 
discussion on pg. 246 of [5] that every bounded subset of H is precompact 

2 -1 2 in L [0,1] and hence L is a compact mapping from L [0,1] to H. Thus, 

L F̂ is a compact mapping in H. If in addition f(x,u) is uniformly bounded, 

then it follows from the Corollary of Theorem 2 that L~^F has a fixed point 

and hence (15), (16) has a generalized solution. Moreover, under these 

hypotheses, this generalized solution is a classical solution. 
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