
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

INFORMATION DISTRIBUTION ASPECTS OF
DESIGN METHODOLOGY

by

D. L. Parnas

Computer Science Department
Carnegie-Melion University
Pittsburgh, Pennsylvania

February, 1971

This work was supported by the Advanced Research Projects Agency
of the Office of the Secretary of Defense (F44610-70-C-0107) and
is monitored by the Air Force Office of Scientific Research.
This document has been approved for public release and sale; its
distribution is unlimited.

ii

ACKNOWLEDGEMENT

I am grateful to A. Perlis, H. Wactlar, and G. Bell for their

suggestions after an early reading of this paper. I am deeply grateful

to NV Philips-Electrologica, Apeldoorn, the Netherlands, for having pro

vided me with the opportunity to study the problems of systems develop

ment in practice and by means of a direct involvement rather than a

remote study. Although the problems discussed in this paper are apparently

shared by everyone in the industry, the steps taken at Philips to improve

the situation have provided me with valuable insight. Thanks are due to

countless personnel, both at Philips and at several other institutions,

who have been patient during my probing.

iii

INFORMATION DISTRIBUTION ASPECTS OF DESIGN METHODOLOGY

D. L. Parnas
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, Pennsylvania

ABSTRACT

The role of documentation in the design and implementation of complex

systems is explored, resulting in suggestions in sharp contrast with cur

rent practice. The concept of system structure is studied by examining

the meaning of the phrase "connections between modules11. It is shown that

several system design goals (each suggesting a partial time ordering of

the decisions) may be inconsistent. Some properties of programmers are

discussed. System documentation, which makes all information accessible

to anyone working on the project, is discussed. The thesis that such

information "broadcasting11 is harmful, that it is helpful if most system

information is hidden from most programmers, is supported by use of the

above mentioned considerations as well as by examples. An information

hiding technique of documentation is exhibited in the appendix.

IFIP CLASSIFICATION: 3

Language of Oral Presentation; English

Statement of Originality: In the opinion of the author the paper contains

a number of conclusions which have not been discussed or published else

where. No paper similar in scope to this paper is being presented for

publication elsewhere.

INFORMATION DISTRIBUTION ASPECTS OF DESIGN METHODOLOGY

D. L. Parnas
Department of Computer Science

Carnegie-MelIon University
Pittsburgh, Pennsylvania

INTRODUCTION

Papers on design methodology assume (1) that the methods used in

system design affect strongly the quality of the final product; and (2)

by selecting an appropriate methodology we can avoid many of the problems

previously encountered in constructing large systems.

Under the heading "Design Methodology" a number of separate topics

can be distinguished:

1. The order in which design decisions are made [1, 2, 3, 6]

2. The characteristics of the final product (e.g., what con

stitutes "good structure" for a system) [4, 5, 6* 7]

3. Methods of detecting errors in design decisions shortly

after they are made [1, 2, 3, 5, 8, 9]

4. Specification techniques [12, 13]

5. Tools for system designers [1, 2, 3, 10, 11]

This paper emphasizes another topic named "information distribution*"

Design and development are a series of decisions. Each decision results

in information about the system which can be used in making later decisions.

We want eventually to discuss the distribution of that information among

those working on the system and to deal with its organization in documenta

tion. To prepare for this discussion we deal first with (1) the concept

of system structure, (2) constraints on the order of decisions, and (3) some

observed characteristics of good programmers.

-2-

STRUCTURE DEFINED

The word "structure11 is used to refer to a partial description of

a system. A structure description shows the system divided into a set

of modules, gives some characteristics of each module, and specifies

some connections between the modules. Any given systesm admits many such

descriptions. Since structure descriptions are not unique, our usage of

'Wdule" does not allow a precise definition parallel to that of "sub

routine" in software or "card" in hardware. The definitions of those

words delineate a class of objects, but not the definition of "module."

Nevertheless, "module" is useful in the same manner that "unit" is in

military or economic discussions. We shall continue to use "module"

without a precise definition. It refers to portions of a system indicated

in a description of that system. Its precise definition is not only

system dependent but also dependent upon the particular description under

discussion.

The term "connection" is usually accepted more readily. Many assume

that the "connections" are control transfer points, passed parameters,

and shared data for software, wires or other physical connections for hard

ware. Such a definition of "connection" is a highly dangerous oversimplifi

cation which results in misleading structure descriptions. The connections

between modules are the assumptions which the modules rcnake about each

other. In most systems we find that these connections are much more ex

tensive than the calling sequences and control block formats usually shown

in system structure descriptions.

-3-

The meaning of the above remark can be exhibited by considering two

situations in which the structure of a system is terribly important:

(1) making of changes in a system, and (2) proving system correctness,

(I feel no need to argue the necessity of proving programs correct, or

to support the necessity of making changes. I wish to use those hypo

thetical situations to exhibit the meaning of "connection.")

Correctness proofs can become so complex that their own correctness

is in question [e.g., 14, 15]. We would like to simplify the proofs by

using the structure of the program, proving the correctness of each

module separately. For each module we will have a set of hypotheses to

prove and a description of the module. In our hypotheses we can distinguish

the things we expect a module to accomplish from the things which we assume

other modules will guarantee. Those statements are the connections between

the module being examined and the rest of the system. The proof process

will be facilitated only if the amount of information in the hypotheses

is significantly less than the amount of information in the full descrip

tion of the connected modules. In the extreme case, where one module's

correctness is predicated upon the complete description of another module,

the proof of the first module's correctness will be as complex as if the

two were considered a single module.

We now consider making a change in the completed system. We ask,

"What changes can be made to one module without involving change to other

modules?" We may make only those changes which do not violate the assump

tions made by other modules about the module being changed. In other

words, a single module may be changed only as long as the "connections"

-4-

still "fit." Here, too, we have a strong argument for making the connec

tions contain as little information as possible.

FACTORS INFLUENCING THE ORDER OF DECISION MAKING

Progress in a design is marked by decisions which eliminate some

possibilities for system structure. The fact that those possibilities

have been eliminated can be part of the rationale for subsequent decisions.

If the information is used, the order of decision making (in time) affects

the structure of the resulting product. Examples of interest can be found

in [4]. We can identify three considerations, each suggesting a partial

ordering on the decisions.

1. Obtaining 'good1 external characteristics.

All systems have characteristics which are not pleasing to the users.

Usually they were not determined by explicit deliberations; they were the

unnoticed implications of decisions about other aspects of system structure.

To consistently avoid such errors we can make the decisions about external

characteristics, first. We use the resulting information to make the later

decisions. The internal decisions would be either derived from or checked

against the complete specifications of the external factors. This is the

basis of the "top down" or "outside in" approach discussed in [1, 2, 3, 4] .

2. Reducing the time interval between initiation and completion of the projec

Competitive pressures may require the use of large groups to produce

a system in a sharply limited period of time. Additional men speed up a

project significantly only after the project has been divided into sub-

projects in such a way that separate groups can work with little interaction

-5-

(i.e., spending significantly less time in inter-group decisions than

in intra-group decisions). This consideration affects the order of

decisions in that it encourages very early splitting of the system into

modules which are then designed completely independently. The desire to

make the split early and f,get on with it" encourages a splitting along

familiar lines and in agreement with existing personnel classifications.

Time pressures encourage groups to make the split before the externals

are defined. Consequently we find some adverse effect on the useability

of the product. Haste also makes poor internal structure more likely.

3 # Obtaining an easily changed system.

Systems are changed after construction either because their original

characteristics proved insufficient or because another application was

found. We have already noted that the difficulties in changing systems

are related to the assumptions which each of the modules makes about its

environment. Since each decision is usually made on the assumption that

the previous decisions will hold, the most difficult decisions to change

are usually the earliest. The last piece of code inserted may be changed

easily, but a piece of code inserted several months earlier may have

"wormed11 itself into the program and become difficult to extract. These

considerations suggest that the early decisions should be those which are

the least likely to change; i.e., those based on "universal11 truths or

reasoning which takes into account little about a particular environment.

The remaining facts must be used eventually, but the possibility of change

suggests using the most general information first.

-6-

Since such external characteristics as job control language and file

commands are very frequently changed, the "outside-in" approach may make

the system harder to change. Further, those decisions which should be

made early on this basis are not usually those which allow the project

to be quickly subdivided into independent assignments. As a rule, decisions

which do not use all the available information about a system (i.e., the

general decisions) take more time.

In summary, each of the three considerations suggests a partial

ordering of the decisions. Those orderings are usually inconsistent in

that it will be impossible to satisfy them simultaneously.

DOCUMENTATION SYSTEMS

For any complex system there must be documentation about the system

for use by the human beings who must complete it. Programs and wiring

diagrams do completely define the algorithm which they will execute, but

this form of documentation is not usually appropriate for people. Conse

quently there are always papers which attempt to answer the questions most

likely to be asked. There is usually no attempt to make the documentation

complete (i.e., equivalent to the code) for software, thus certain questions

must be answered by reference to the code.

When a system is strongly connected, this documentation must be read

by persons not closely involved with the module being documented. Because

each working group develops a unique module organization and a corresponding

set of concepts and terms, the documents which they write are difficult for

outsiders to read.

-7-

The natural response is to require all documentation to be written

with a standard organization and vocabulary [16]. A standard is made

company-wide to allow anyone in the organization to find some piece of

information without needing to learn the concepts and vocabulary peculiar

to one system or module.

Such approaches raise several questions:

1. Is it really desirable to have all information equally

accessible to all in the company (or project)?

2. What is the effect of documentation standards on the

resulting system?

3. What is the result of a non-standard system being described

using a standard document organization?

Documentation standards tend to force system structure into a standard

mold. A standard for document organization and vocabulary makes some

assumptions about the structure of the system to be described. If those

assumptions are violated, the document organization fits poorly and the

vocabulary must be stretched or misused. Consider the following example.

In most operating systems there exists a module which handles all job

control statements from the time they are read in until the job is completed.

As a result, most documentation systems can insist that there be a section

describing such a module. Now consider an organization such as that of

the T.H.E. system in which there is no such module because most of the

processing is handled in modules which are also used for other purposes.

If we adhere to the documentation standard we will duplicate information

and describe one module in the documentation of another.

-8-

If there are to be standard documentation organizations, they must

be designed to make the minimum number of assumptions about the system

being documented. If so, they will be of little help in making the

document readable to people who do not understand the structure of the

system,

ON SOME PROPERTIES OF GOOD PROGRAMMERS

The following observation is essential to the remainder of this

paper:
l!A good programmer makes use of the usable information given him.11

The good programmer will try to use his machine well. He is actually

programming for a "virtual machine" defined by the hardware and his knowledge

of the other software on the machine. His training and his nature lead

him to make full use of that extended machine.

Sometimes the uses are obvious. The programmer makes use of a sub

routine from some other module, or a table of constants already present

for some other piece of code. Sometimes these uses are so marginal as to

be laughable, e.g., the use of a 3HLnstruction subroutine or the borrowing

of a single constant. In the terms of our previous discussions, such ex

treme cases increase the connectivity of the structure without appreciably

improving its performance.

Sometimes the uses are less obvious. For example, a programmer may

make use of his knowledge that a list is searched in a certain order to

eliminate a check or an extra queue. In the area of application programming

we may find a programmer who introduces an erroneous value for n knowing

-9-

that because of an error in the sine routine the erroneous value will

cause his program to converge more rapidly.

Such uses of information have been so costly that we observe a strange

reaction. The industry has started to encourage bad programming. Derogatory

names such as "kludge^11 "hacker11 and "bit twiddler" are used for the sort

of fellow who writes terribly clever programs which cause trouble later on.

They are subtly but effectively discouraged by being assigned to work on

small independent projects such as application routines (the Siberia of

the software world) or hardware diagnostic routines (the coal mines). In

both situations the programmer has little opportunity to make use of in

formation about other modules.

Those that remain (the non-bit-twiddlers) are usually poor programmers.

While a few refrain from using information because they know it will

cause trouble, most refrain because they are not clever enough to notice

that the information can be used. Such people also miss opportunities

to use facts which should be used. Poor programs result. Since even a

poor programmer sometimes has a "flash of brilliance" (e.g., noticing that

two bytes in a control block can be simultaneously set with one instruction

because they are adjacent and in the same word) we still have no control

of the structure.

We have found that a programmer can disastrously increase the connec

tivity of the system structure by using information he possesses about

other modules. We wish to have the structure of the system determined by

the designers explicitly before programming begins, rather than inadvertently

-10-

by a programmer1s use of information. Consequently, ve discourage the

bit twiddlers and pay a price in poor programming without obtaining

complete control of the structure.

THE USE OF DESIGNER CONTROLLED INFORMATION DISTRIBUTION

We can avoid many of the problems discussed here by rejecting the

notion that design information should be accessible to everyone. Instead

we should allow the designers, those who specify the structure, to control

the distribution of design information as it is developed.

Our concerns about the inconsistent decision orderings were based

on the assumption that information would be used shortly after the cor

responding decision. The restrictions placed by the three considerations

are considerably relaxed if we have the possibility of hiding some decisions

from each group. For example, we have noted a conflict between the desire

to produce an external specification early and the desire to produce a

system for which the external interface is easily changed. We can avoid

that conflict by designing the external interface, using it as a check

on the remaining work, but hiding the details that we think likely to

change from those who should not use them.

If we want the structure to be determined by the designers, they

must be able to control it by controlling the distribution of the informa

tion. We should not expect a programmer to decide not to use a piece of

information, rather he should not possess information that he should not

use. The decision is part of the design, not the programming.

-11-

Reflection will show that such a policy expects a great deal from

the designers. We currently release all the information about a module;

to do so is considerably easier than (1) deciding which information should

be released and (2) finding a way of expressing precisely the information

needed by other modules. Preliminary experience has shown that making

appropriate definitions is quite difficult. Acquiring skill in making

those definitions is vital because we will be able to successfully build

systems while restricting programmers1 information only if we learn to

provide them with precisely the information they need.

EXAMPLES

I believe it worthwhile to give some concrete examples of information

which is now widely disseminated within a project and should instead be

sharply restricted.

1. Control Block Formats

Every system contains small amounts of information in pre-formatted

areas of storage called control blocks. These are used for passing informa

tion between modules and are considered to be the interfaces. For this

reason formats are usually specified early in the project and distributed

to all who are working on the project. The formats are changed many times

during the project. Few programmers on any project need to know such

formats. They need a means for referring to a specific item, but not more.

They need not even know which information is grouped into one control block.

-12-

2. Memory Maps

It Is common to begin a description of an operating system by

(1) describing the main modules and (2) showing how the core storage is

divided among those main modules. Soon there is a complete map of the

memory showing how that resource is allocated. Reasonably sophisticated

designers show the borders of allocated areas as symbolic rather than ab

solute addresses, but the order of memory assignment is specified. Only

a small portion of this information derives from hardware decisions.

There is no legitimate way to use the map information. It would be

frightening if someone developed code that would not work if the map were

changed. Such maps are almost invariably changed because something which

was fixed becomes variable or vice versa. The information is only needed

at assembly time. We could survive if it were input to the assembler and

not known by anyone else.

When there is a virtual memory or other mechanism for swapping built

into the system, the distinction between resident and non-resident items

should not be broadcast. If there are several kinds of core storage,

tihe allocation of modules and data among those storage types should not

beTknown to those who are writing the modules. If partial preloading of

certain programs is envisaged, the decision as to which modules will be

preloaded should be hidden. Each of these decisions is worthy of attention,

but few should know the result.

3. Calling Sequences

Calling sequences are the secret hobby of every system programmer.

We begin to look at new hardware by inventing a calling sequence. Throughout

-13-

the design and implementation, the calling sequence is simplified, general

ized, made more efficient, etc. Each time we face a decision. Either

modules all over the system are altered or the new sequence is added to

a growing set of calling sequences. In the latter case generating a call

to a routine requires determining which sequence it uses.

Most routines can be written, and written well, without knowledge

of the calling sequence ijE the programmer is provided with a programming

tool which allows him to postpone decisions about register allocation for

parameters, return addresses, and results. Such features can be provided

in an assembler with macro facilities.

4. JCL Formats

One characteristic which should be easy to change is the syntax of

the so called Job Control Language, the means by which the user describes

his job's gross characteristics to the operating system. The design of

a JCL implies assumptions about the way that the system will be used which

may later prove to be false or too restrictive. There exist systems in

which JCL format information has been used so much that reasonable changes

are beyond the scope of the usual organization. Often changes require

user provision of duplicate information and/or the maintenance of duplicate

tables. (See, for example, [17].)

Most of the people working on an operating system need very little

knowledge about the JCL. The only people who need to know the format

are those who are writing the syntax analyzer for the language.

-14-

5. Location of i/o Device Addresses

It is widely recognized that device addresses should not be built

into code but stored in tables associated with each job. However, it is

usual that all programmers are given knowledge sufficient to allow them

to find and use the table. For example, many modules will send messages

to a user at his teletype. If later one wishes to intersect those messages

and reinterpret or suppress them for a special class of users, the job is

horrendous. Most programs did not need that information. Access to a

module which would send messages for them is sufficient.

6. Character Codes

Some hardware information should not be released. I have seen one

compiler in which the association made by the hardware between card

characters and integers was so widely used that a second version of the

compiler (for a new machine) contained a module which translated from

the new character code to the old one and back again*

The efficiency gained by using the character code information

(̂ •g-> b y using arithmetic tests to determine if a given character is

a delimiter) is often not worth the price paid. Where it is worthwhile,

the knowledge can be closely restricted if: the designers pay attention

to the problem. Certainly the decision to use or not to use the informa

tion should not be left up to an individual programmer.

-15-

CONCLUSION

The inescapable conclusion is that manufacturers who wish to produce

software in which the structure is under the control of the designers,

must develop a documentation system which enables designer control of

the distribution of information. Further, they must find and/or train

designers who are able to define or specify modules in a way which provides

exactly the information that they want the programmers to use. Until we

can completely staff a project with men who have the intellectual capacity

and training to make that decision for themselves, some must make the

decision for others. An assembler which allows the insertion of some

hidden information at ftassembly time" will aid in maintaining efficiency.

I consider the internal restriction of information within development

groups to be of far more importance than its restriction from users or

competitors. Much of the information in a system document would only harm

a competitor if he had it. (He might use it!)

It is worth repeating that the decision about which information to

restrict is a design decision, not a management one. The management

responsibility ends with providing the appropriate information distribu

tion mechanism. The use of that mechanism remains a design function

because it determines the structure of the product.

-16-

APPENDIX

A MODULE DOCUMENTED ON THE BASIS OF "KNEED TO KNOW"

INTRODUCTION

Assume the system under construction to be a translator for string

manipulation algorithms based upon Markov Algorithms. Such a package

must contain a representation of the variable length string known as the

register which constitutes the only memory in a hypothetical Markov

Algorithm machine. Assume further that the decision has been made that

the knowledge of this representation be confined to a single module in

spite of the fact that almost all actions done by the system will involve

changes in the register. The purpose of this decision is to make the

representation easy to change.

The statements which follow provide all the documentation of such a

module which should be available to its users. They are intended to provide

all the information necessary to use the module, i.e., to manipulate the

register, yet no information about the representation of the register in

the machine. The method used is to define five procedures, to specify

their initial values if they are functions, to specify the type of their

parameters where they have parameters. Further, a statement is made as

to the effect of a call on the procedures on the values of the other func

tions in the package. This is done by indicating the new value of any

changed functions as a function of their old values and the values of

parameters to the called procedure. A value before the change is shown

enclosed in single quotes (e.g., 'length1). Values after the change are

-17-

shown unquoted. The actions which take place in the event of errors

are specified to be procedure calls. It is assumed that should such a

call occur, (1) no values will have been changed, and (2) upon a return

from the procedure called, the attempt to perform the routine specified

will be repeated completely.

-18-

DEFINITIONS

INTEGER PROCEDURE: LENGTH
possible values: an integer 0 ^ length ^ 1000
effect: no effect on values of other functions
parameters: none
initial value: 0
INTEGER PROCEDURE: GETCHA (I)
possible values: an integer 0 ^ GETCHA ^ 255
parameters: I must be an integer
effect: no changes to other functions in modules

if I £ 0 V I > LENGTH then a procedure call to a user written
routine RGERR is performed. (program cannot be assembled
without such a routine)

initial value: undefined
PROCEDURE: INSAFT(I, J)
possible values: none
parameters: I must be an integer

J must be an integer
effect:

if I < 0 V I > 'LENGTH1 V J < 0 V J > 255 then a subroutine call to
a user written routine INSAER is performed. (routine required)
else LENGTH « 'LENGTH1 +1 if LENGTH ^ 1000 a subroutine call to
user written function LENGER is performed.
GETCHA(K) «

if k £ I, 1GETCHA(I) 1

if k = 1+1, J
if k > 1+1, 1GETCHA(K-l) 1

PROCEDURE: DELETE (I, J)
possible values-: none
parameters: I, J must be integers
effect:

if I ^ 0 V J < 1 V I+J > 'LENGTH' +1 then a procedure call to a
user written routine DELERR is performed.
else

LENGTH = 1 LENGTH' - J.
GETCHA(K) = if k < I then 1 GETCHA(K)'

if k ^ I then 1 GETCHA(K+J) '
PROCEDURE: ALTER(I, J)
possible values: none
parameters: I, J must be integers
effect:

if I < 0 V I > 'LENGTH' V J < 0 V J > 255 then a subroutine call
to a user written routine ALTERERR is performed.
GETCHA(K) = if K / I then 'GETCHA(K)'

if K = I then J

-19-

DISCUSSION

It is possible to verify the completeness of these definitions by

showing that a value is defined for each function for every possible

sequence of calls. The possibility of infinite looping through repeated

calls of error routines exists, but this would be an error in usage not

in definition.

One can demonstrate that a minimum of information is given out by

the definitions by showing first its sufficiency for use (i.e., complete

ness) and by showing that the widest conceivable variety of implementations

can fit the definitions.

The usual form of documentation would be (1) much more wordy, (2) more

revealing of internal aspects. In fact, because natural language is used

the completeness can only be assured by exhibiting the internal structure.

The mnemonic names used here carry no essential information. They

could be replaced by f x l f , ^ 2 ' , etc. at no theoretical cost, but at the

practical cost of being obscure.

The definitions are obscure now to a reader unfamiliar with the reg

ister of a Markov machine. This can be alleviated by a supplement sug

gesting ways to use the functions (e.g., a teaching supplement) having no

official status.

-20-

References

1. Parnas, D. L. and Darringer, J. A., "SODAS and A Methodology for System
Design; Proc.AFIPS 1967 Fall Joint Computer Conference, pp. 449-474.

2. Zurcher, F. W., Randell, B., "Multilevel Modeling - A Methodology for
Computer System Design}1 Proc. 1968 IFIP Conference.

3. Parnas, David L. , lfMore on Simulation Languages and Design Methodology
for Computer Systems," Proc. SJCC 1969, pp. 739-743.

4. Dijkstra, E. W., "Notes on Structured Programming^1 publication of the
Technical University of Eindhoven, The Netherlands.

5. Dijkstra, E. W., "Complexity Controlled by Hierarchical Ordering of
Function and Variability" in Software Engineering3 proceedings of a
meeting at Garmisch, Germany, October 7-11, 1968.

6. Gill, Stanley, "Thoughts on the Sequence of Writing Software" in
Software Engineering, proceedings of a meeting at Garmisch, Germany,
October 7-11, 1968".

7. Dijkstra, E. W., "Structured Programming" in Software Engineering
Techniques3 proceedings of a meeting held in Rome, October 27-31, 1969.

8. Dijkstra, E. W., "A Constructive Approach to the Problem of Program
Correctness," BIT 8, vol. 3, 1968.

9. Naur, P., "Proof of Algorithms by General Snapshots," BIT 6, 1966.

10. Wulf, jet aL, "BLISS Users Manual," publication of the Carnegie-Mellon
University, Pittsburgh, Pa., USA.

11. Waite, V. M., "The Mobile Programming System: STAGE 2," CACM 13,7
(July, 1970), pp. 411-421.

12. Parnas, David L., "On the Use of Transition Diagrams in the Design
of A User Interface for an Interactive Computer System^" Proc. 1969
National ACM Conference, pp. 379-386.

13. Hartman, P. H., Owens, D.H., "How to Write Software Specifications/1

Proc. 1967 FJCC, pp. 779-790.

14. Balzer, Robert M., "Studies Concerning Minimal Time Solutions to the
Firing Squad Synchronization Problem" PH.D. thesis, Carnegie Institute
of Technology, 1966.

15. London, R., "Certification of Treesort 3," CACM Qune, 197$.

16. Selig, F., "Documentation Standards," in Software Engineering, pro
ceedings of a meeting at Garmisch, Germany, October 7-11, 1968.

17. Braden, et aL, "An Implementation of MVTj1 publication of the
University of California at Los Angeles.

Security C l a s s i f i c a t i

DOCUMENT CONTROL DATA - R & D .
Security classification of title, body of abstract and indexing annotation must be entered when the overall report Is classify

O R I G I N A T I N G A C T I V I T Y (Corporate author)

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

\i- R E P O R T T I T L L

2a. R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

UNCLASSIFIED
26. G R O U P

Information Distribution Aspects of Design Methodology

| 4 D E S C R I P T I V E N O T E S (Type of report and inclusive dates)

Scientific Interim
5 A U T H O R (S) (First name, middle initial, last name)'

D. L. Parnas

16 R E P O R T D A T E

February 1971
I « « • C O N T R A C T O R G R A N T N O .

F44620-70-C-0107
b. P R O J E C T N O .

A0827-5

61101D
» M . D I S T R I B U T I O N S T A T E M E N T

7a. T O T A L N O . O F P A G E S

24
7b. NO. O F R E F S

17
9 a . O R I G I N A T O R ' S R E P O R T N U M B E R (S)

This document has been approved for public release and sale-
its distribution is unlimited.

I I S U P P L E M E N T A R Y N O T E S

TECH, OTHER

[1 3 . A B S T R A C T "~~

1 2 . S P O N S O R I N G M I L I T A R Y A C T I V I T Y ~ ~ "

Air Force Office of Scientific Research
1400 Wilson Boulevard (SRMA)
Arlington, Virginia 22209

The role of documentation in the design and implementation of complex systems
is explored, resulting in suggestions in sharp contrast with current practice. The
concept of system structure is studied by examining the meaning of the phrase
"connections between modules.11 It is shown that several system design goals (each
suggesting a partial time ordering of the deci-sions) may be inconsistent. Some
properties of programmers are discussed. System documentation, which makes all
information accessible to anyone working on the project, is discussed. The thesis
that such information "broadcasting11 is harmful, that it is helpful if most system
information is hidden from most programmers, is supported by use of the above
mentioned considerations as well as by examples. An information hiding technique of
documentation is given in the appendix.

DD FORM
1 N O V F.* 1473

Security C l a s s i f i c a t i o n

Security Classif ication

