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ABSTRACT 

This note presents a new algorithm for computing the cyclic convolu

tion of two vectors over a commutative ring. The algorithm requires 

n(nj+l) •.. (n^+l)^^ multiplications for the convolution of two n-vectors, 

where n = n^...n^ is a factorization of n into factors which are pairwise 

relatively prime. 
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Let ̂ = ( X ( ),x r ...,x n p and ^y = < y 0
, y r • • •» yn-1* b e t W O 

n-vectors and let jgf'j^ be the convolution of jc^andj^ which is an 
k 

n-vector whose k-th component is (x* fy ) i , » E x y ., k=0, I,..., n-1. 
A V V K- i~0 K —1. 

Convolution occurs in many applications. Computationally, it is more 

convenient to use the cyclic convolutionjt*g, defined by 

n-1 n-1 n-1 n-1 
( E Xi yn-i' S xi y1-i>---> S x±y <-±>-~> E x^-l-P i-0 1 n 1 laO 1 1 i=0 1 J 1 i=0 1 n 1 1 

(addition of subscripts modulo n). For example, the finite Fourier 

transform can only be applied to a cyclic convolution (see Ref. [1]). 

Any convolution can be reduced to a cyclic convolution by adjoining 

a sufficient number of zeros to the vectors x and y. Computing 
AAA 

2 

directly requires n multiplications. Using the fast Fourier 

transform (see [1], [2], [3], [4]), can be computed with 

n[31og n + 1] complex multiplications. The Fourier transform (and 

a fortiori the fast Fourier transform) does not exist in rings that 

do not contain a "sufficient11 number of primitive roots of unity (see 

Nicholson [3]). The purpose of this note is to point out a method for 
2 

computing x*y using less than n multiplications that works over an 
AAV 

arbitrary commutative ring. In particular, a ring which occurs often 

in applications and in which Fourier transforms do not exist is the 

ring of integers modulo m for m composite. 

Let R be a commutative ring. A circulant or cyclic matrix over 

R is a matrix of the form: 
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x^ • • • 

X 1 X A. • . 
n-1 0 

••• 

X n-1 

V 2 

i.e., (A(^) 
ij Xj ^ (subtraction modulo n ) , i,j = 0,1,...n-1, 

where x = (xn,x1,...,x ,) is an n-vector. The convolution x*y is 

easily seen to be the first row of A ( J X } . A ( ^ (matrix multiplication). 

The product of two circulants is a circulant. Thus k(x^.A(^ is 

determined by its first row which is Jfc^ty) • 

LEMMA 1. The product ^ A ^ can be computed using n(n+l)/2 

multiplications. 

PROOF. For all i and j, there exists k such that j=k-i (mod n); thus 
n-1 

for ijfj, both x y. and x.y, appear in £ x.y, Applying the 

identity 
X i y j + X j y i " X i y i + X j y j " ( xi" xj><yi~ yj>» 

after computing the n products x±y±* • • • o n l y n(n-l)/2 

more multiplications are needed to compute x.A(y), giving a total of 

n(n+l)/2 multiplications. 

REMARK 1. The standard algorithm for computing ^ A ^ ) requires n(n-l) 

additions. It is easy to see that the method of lemma 1 requires j n(n-l) 

additions and subtractions. Thus a saving of n(n-l)/2 multiplications 
3 

has been achieved at the expense of extra n(n-l) additions/subtractions. 
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REMARK 2. By imposing restrictions on the ring R, one can obtain refine

ments of lemma 1. For example, if the characteristic of R is not divisible 

by 2, the product of two 2x2 circulants can be computed with 2 multiplica

tions (and 6 additions/subtractions) by 

xoyo + xiyi = ^ V ^ i ^ o 4 ^ + (xo~xi)(yo~yi)] 

V i + V o V ^ W ^ P - (xo"xi)(yo"yi)]-

DEFINITION. Let n = ^ . . . n ^ be a factorization of n. An (n^,...,n^) 

super-circulant matrix is defined inductively as follows: for k=l it is 

just an nXn circulant. An (n^,...,n^) super-circulant S is a block 

matrix whose blocks follow a circulant pattern : 

B 0 B V ~ Bn^-1 

\-l V " \-2 

B, B„ B 0 J 

such that each B^ is an (n^,...,n^ ̂ ) super-circulant. 

SUPER-CIRCULANT LEMMA (Nicholson and Zalcstein [5]). If n • ^ . . . n ^ 

with ni» nj relatively prime for i^j ((n^,n.) = 1), then there is a 

permutation matrix P such that for any nXn circulant matrix A, p'^AP 

is an (n^,...,n^) super-circulant. 

PROOF. The proof uses the idea of "coordinatizing11 the dimension n, in 

the spirit of the derivation of the fast Fourier transform. 
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For 0 ^ j ^ n-1, and for p - l,2,...,k, let j be the smallest 

positive integer congruent to j mod n^. Since the n p ? s a r e relatively 

prime, in pairs, it follows from the Chinese remainder theorem ([6], p. 97) 

that the map j -> (j^jg*• • • >j^) i s one-to-one. Thus it is easy to see 

that the map j -* + 32

ni + J3 ni n2 + ••• + Jk nl n2 # * # nk-l i s o n e " t o " o n e 

and, indeed, a permutation of the set {0,1,•..,n-l}. This permutation 

gives the desired permutation matrix P, as we will now prove. 

For m > 0, let be the mXm permutation matrix 

0 1 0 . 
0 0 1 . * 
• * 

1 0 

. 0 

. 0 

1 
0 

representing the cyclic permutation 

(0 1 2...(m-l)) on {0,1,... ,m-l}. 

Recall the definition of the Kronecker product of two matrices (Ref. 

[7]): If A is an m>flm matrix, the Kronecker or tensor product A(g)B 

is the mnXmn matrix 

a nB... 

aml B--' a B mm 
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The Kronecker product is associative. Also, it is easy to see that the 

Kronecker product of permutation matrices is a permutation matrix. 

Furthermore, the permutation represented by 0 ® Q ® • • • ® <L 
^1 n2 Ĥc 

can be described in "coordinatized" form as follows: it maps 

h + hni + ••• + j k n i \-i i n t o ^ i + 1 ^ + 0 2
+ 1 ) n i +--* + ^ k + 1 ) n l • • • \ - l , 

where 1jp +^ f means addition modulo n^. It is then straightforward to 

verify that 
-i.. _ . ( 2 ) P Q n P = Q ^ ® . . . ® 

Let AĴ x̂  be an nxn circulant. Then 

n-1 Z j 0 
X j O ^ , where Q n = I n, the nxn identity matrix. 

j=0 

Thus, applying (2), we get 

n-1 

j=o 
n-1 

(3) 
J-0 
n-1 
V j l j k (4) 

Line (3) follows from the matrix identity (A ® B) . (C (g) D) = (A.C) ® (B.D), 

while line (4) follows from the identity oJ: = I for all p. If C is 
P P i 

an n ^ ^ circulant for i = l,2,...k, then (g) ... ® is an 
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(n^,...,n^) super-circulant. Finally, a linear combination of (n^,..#n^) 

super-circulants is an (n^, . . . , 1 ^ ) super-circulant. Thus P * A £ K ) P 

is an (n^,...,n^) super-circulant and the lemma is proved. 
(A more conceptual proof appears in [5].) 

As a consequence of the super-circulant lemma we obtain the following-; 

SPEED-UP LEMMA. Suppose there is a function f: N N, where N is the  

set of positive integers such that for any commutative ring R, the pro

duct of two nXn circulants can be computed with f(n) multiplications. 

Then, if n = n^...n^, with the n± s relatively prime in pairs, the  

product of two nxn circulants can be computed with f (n^) .. .f (n^) 

multiplications. 

PROOF. By the super-circulant lemma it suffices to consider multiplica

tion of two (n^,...,n^) super-circulants. The proof is by induction on 

k. The assertion is trivially true for k=l. Assume that it is true for 

k and let si» S2 ^ e t W O ^ nl'*'* , nk , nk+l^ super-circulants. Let 

Rfc be the set of all (n^,...,]^) super-circulants over R*. It is 

easy to see that R^ is a commutative ring, under matrix addition and 

multiplication. Sĵ  and can be considered n ^ + 1 X n^ +^ circulants 

over R ^ Thus S^S 2 can be computed using f ( n ^ p multiplications 

in Rfc. Further, by the induction hypothesis each multiplication in R^ 

requires f(n^)...f(r^) scalar multiplications. Thus the total number 

of scalar multiplications required is f (n^ ... f (n^) f ( n ^ ^ ) . This proves 

the lemma. 
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By lemma 1, we can take f(n) • n(n+l)/2; thus we get the following: 

PROPOSITION. Let n * n^..!^ with (n^n^) » 1 for i^j. Then 

the product of two nxn circulants and thus the convolution of two n-vectors 
/ k 

can be computed using n(n^+l) •.. (n^+l)/2 scalar multiplications. 

REMARK. It is easy to see that the factorization minimizing the number 

of multiplications by our method is the complete factorization of n into 

prime-power factors. 
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