
NOTICE W A R N I N G CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

ALGORITHMS FOR CORRECTING CARRIES
IN A CARRYING ADDER,

WITH AN EXAMPLE FROM ARRAY SOFTWARE

By

Nicholas Zvegintzov

Carnegie-Melion University
Pittsburgh, Pennsylvania

June, 1969

This work, apart from the computing, was supported by the
Advanced Research Projects Agency of the Office of the Secretary
or Defense (F 44620-67-C-0058) and is monitored by the Air Force
Office of Scientific Research. This document has been approved
for public release and sale; its distribution is unlimited.

The computing was performed with the facilities of On-Line
Systems, Inc., who generously granted the author an educational
discount.

- i -

SUMMARY

A carrying adder is defined as a device that takes two

integer n-tuples, adds corresponding positions sequentially

from the right, mod some predefined radix, and transmits a 1

to be added in the next left position each time the mod opera

tion is non-trivial. One of the two principal storage methods

for arrays has the characteristic that the integer sum of two

represented array points corresponds to their carrying sum.

A fixed time algorithm is described for distinguishing true

carries from propagated carries, and compared with other

algorithms. A table lookup algorithm is described for detecting

carries in the array example and its efficiency is discussed.

- ii -

Key Words and Phrases:

adder, array, carry, carry correction, carrying adder, integer n-tuple,

jump call, storage map, timing, table lookup

CR Categories

4.40, 6.32

-1-

1. This paper concerns n-tuples, objects of the form

A « a[l] a[2] a[n]

or equivalently

A = <a[l], a[2], , a[n]>.

Context, spaces, or are used to separate the elements, and spaces or
f < f and '>f are used to delimit the n-tuple.

More specifically, it deals with integer n-tuples, each of whose

elements a[i] is in the range [0,z[i]) for some pre-chosen positive z[i],

i.e., each of whose elements is one of the integers mod z[i]. The z[i]fs

will also be written as the n-tuple

Z s z[l] z[2] z[n].

The set of n-tuples satisfying the above restriction for a given Z will be

known as the n-tuples mod Z and the set of n-tuples mod Z will be denoted
n

IZ # The number of distinct members of IZ is z = II z[i].
i=l

Given an n-tuple A ^ IZ, we define the operation A mod Z that takes

it into a member of IZ by:

A mod Z =

<a[l] mod z[l], a[2] mod z[2], . . a [n] mod z[n]>.

This paper focusses on the problem of adding and subtracting members

of IZ, where adding and subtracting are defined and written as follows:

-2-

A + + B =

<a[l] + b[l], a[2] + b[2] f

a[n] + b[n]> mod Z.

The operations A + + B and A — B are trivially performed by n adders

operating in parallel, the first adder adding mod z[1], the second mod z [2],

and so on. The paper, however, assumes a carrying adder which performs not

A + + B and A ~ B but A + * B and A - * B, defined as follows:

A + * B = D mod Z

where D is formed sequentially from right to left

(i.e., from n to 1) as follows:

d[n] = a[n] + b[n]

d[i] =fa[i] + b[i] if d[i+1] 6 [o,z[i+l])

otherwise.* ta[i] + b[i] if d|

a[i] + b[i] + 1,

Similarly

A - * B = D mod Z

where D is formed sequentially from right to left

(i.e., from n to 1) as follows:

d[n] = a[n] - b[n]

d[i] ofa[i] - b[i], if d[i+1] € [o,z[i+l])

otherwise .*

=Ta[i] - b[i], if <

la[i] - b[i] - 1,

These (disguised by formalism) are exactly the rules for adding and

subtracting two integers mod z where A and B are interpreted using posi

tional notation, with position i having radix z[i]. In the Arabic version

of positional notation,

-3-

Z = 10 10 10

and these are the rules for adding and subtracting two integers mod 10 n.

In a given performance of the operations + * and - * an instance in

position i of the case marked * in the definitions will be referred to as

a carry into position i. Note that a carry into position i during + * (- *)

is a 1 (-1) — as is consistent with adding (subtracting) positional numbers

whose elements a[i] and b[i] are restricted to the integers mod z[i].

One question answered in this paper is the following: given only a

carrying adder which performs + * and - *, and a carry indicator C set by

the carrying adder so that

jl, if a carry occurred into position i
c[i] =(

|0, otherwise

how can the sum A 4+ B or A — B be reconstructed?

This problem is almost exactly the opposite of that encountered by

the designer of hardware, who in general is faced with the problem of

synthesizing a carrying adder using a set of parallel non-carrying adders

(cf. Winograd, 1965), a demand which arose from the preeminence of arith

metic among the historical uses of computers. The problem of this paper

arises at the software level for a user (or program) which has to employ

the more sophisticated carrying adders to simulate the simpler parallel

addition. Section 2 of this paper gives a practical example of the problem,

found in the programming of jumps in arrays. Section 3 gives an unintuitive

algorithm that solves the problem in constant time and compares it with an

intuitive algorithm whose time rises unboundedly with the length of the

n-tuples. Section 4 applies the algorithm to the array programming example

and assesses the efficiency of the application.

-4-

2

2»1 A n array is a computational structure that associates a distinct

store with each of the z distinct members of IZ.

This is a direct characterization of an array—say, 'example'—defined

in ALGOL

array example [0:z[l]-l,0:z[2]-1, 0:z[n]-1]

or in FORTRAN
DIMENSION EXAMPLE (o/z[1]-1,o/z[2]-l, o/z[n] - l) .

It also characterizes with only slightly greater indirection an array whose

i fth element lies within some general limits [p[i], q[i]], since the integers

in this interval have a direct and obvious equivalence to the integers mod

(q[i] - p[i] + 1).

There are two kinds of Call that can be made on an array—an absolute

call and a jump call. In an absolute call the using program presents the

array with an n-tuple in IZ and receives in return the corresponding store

name. This is the kind of call implicit in the use of arrays in ALGOL and

FORTRAN. The jump call is not implemented in these source languages. An

array allowing jump calls must remember the n-tuple P associated with the

last store returned. In a jump call the using program again presents the

array with an n-tuple J from IZ, but in this case receives in return the

store associated with P + + J — (which becomes the n-tuple remembered).

It is argued more extensively elsewhere (Zvegintzov, 1969) that jump

calls ought to be implemented in any source language that incorporates

arrays. Briefly the reasons are:

-5-

(1) Absolute and jump calls form a pair that are jointly

implicit in the structural definition of an array—cor

responding exactly to the twin models of a vector in

linear algebra as a point and as an arrow.

(2) Jump calls are the natural way to conceptualize algorithms

which involve making or taking a path across an array.

(3) In an unbounded array, jump calls allow the specification

of an n-tuple having arbitrarily large elements without

fear of overflow.

(4) Jump calls can be used to remove common computation from

inside some kinds of loop (see Samelson and Bauer, I960).

The example promised in the last section is the programming of jumps

in an array using the weighted sum storage algorithm (Sattley, 1961). This

is one of the two algorithms used almost universally to store arrays. (The

other is the sorting tree algorithm—see, for instance, Fredkin, I960 and

Jodeit, 1968. For a different and unusual storage algorithm see Kuck, 1968.)

The weighted sum algorithm involves a function £ that gives an equiv

alence between the n-tuples mod Z and the integers mod z. A block of

storage of length z is set aside in core starting at (say) b, and the loca

tion corresponding to an n-tuple P is b + f n (p) •

The next subsection defines the function f . The relevance of this
n

function to the problem of the paper is that if

p e f (P) and q = f (Q) n n

then p + q mod z = £ (P + * Q) , i.e., the sum of the integer representations

Is equivalent to the carrying sum of the n-tuples.

-6-

2.2 The function f will be constructed recursively using the fact that

an n-tuple

<p[l], p[2], , p[n]>

may be regarded as a pair (2-tuple) consisting of its rightmost element

p[n] and the remaining (n-D-tuple, thus:

« p [1] , p[2], p[n-1]>, p[n]>.

First to be investigated, therefore, is a family of functions which

provide an equivalence between the pairs mod <x y> and the integers mod

xxy. The functions are defined by the functional f2(w) that takes as its

parameter the radix of the second element of the pair. For a given y and

a given pair

P = p[l] p[2]

define f2(y)(P) = yXp[l] + p[2].

Example Z = 2 3, z = 2x3 = 6

P f2(3)(P)
00 0X3 + 0 a 0
01 0X3 + 1 = 1
02 0x3 + 2 - 2
10 1x3 + 0 = 3
11 1x3 + 1 m 4
12 1x3 + 2 = 5

f2(w) has the following four properties L1-L4. (The proofs may be

skipped by all but the most suspicious.)

(LI) f2(w) is one-to-one

Proof: Let A = a[l] a[2], B . b[1] b[2], Z . x y.

Assume f2(y)(A) = f2(y)(B)

-7-

* yxa [l] + a[2] = yxb[1] + b[2]
=> yx(a [l] - b[1]) = b[2] - a[2]

=> a [l] - b [l] = 0 since |b[2] - a[2]|< y
=> a [l] = b [l] and a[2] . b[2]
a> A s B QED.

(L2) f2(v) is onto

Proof:

From number theory we have that for any integers s and y, y / 0,

there is a unique integer t

s = yxt + s mod y.

Let 62(y) be the function that maps the integers mod xxy by

g2(y)(s) a <t, s mod y>

using this relation. Since s € [0,xxy), t €C0,x) and G2(y)(s) 6 I<x fy>,

the domain of f2(y). Furthermore

f2(y)(G2(y)(s))
« f2(y)(<t, s mod y>)
=s yxt + s mod y
= s

i.e., G2(y) is the inverse of f2(y), and f2(y) is onto.

Having established the equivalence between I<fc y> and the

integers mod xxy via f2(y), for A £ K x y> and a € [0, xxy) write

A « a

if f2(y)(A) « a.

As defined in (L2), G2(y) applies only to integers mod xxy, but

-8-

it can obviously be extended to the domain of all integers* For

an arbitrary integer s, G2(y)(s) is a pair

<t, s mod y>

which fails to be a member of I<x y> only in that its first member

is (perhaps) not in [0,x). The relation between integers in [0 9xxy)

and those not in [Ofxxy) is that the operation fmod xxy 1 on the

integer corresponds to 'mod x' on the first element of the correspond

ing pair.

Formally:

(L3) G2(v)(s) mod <x y> • G2(y)(s mod xxy)

Proof:

Let s = xxyxt 1 + s mod xxy

and s mod xxy « yx f c + (8 mod xxy) mod y

= yxt + s mod y.

Then G2(y)(s) mod <x y>

= <xxt' + t, s mod y> mod <x y>
= <(x t' + t) mod x, s mod y mod y>
B <t, s mod y>
m G2(y)(s mod xxy). QED

The next result is the crucial one for the purpose of this paper:

adding (subtracting) the integer representations of pairs A and B mod xxy

is equivalent to a carrying add <subtract) of the pairs.

Formally:

-9-

(L4) If a W A and b w B, then

a + b mod xxy « A + * B.

Proof for + (- is similar):

a + b . f2(y)(A) + f2(y)(B)

= yx(a[1] + b[1]) + (a[2] + b[2]).

Then if 0 £ a[2] + b[2] < y,

G2(y)(a+b) = <a[l] + b[1], a[2] + b[2>,

else if y <: a[2] + b[2] < 2y,

a + b . yx(a[l] + b[1]) + y + (a[2] + b[2]) mod y,

and G2(y)(a+b)

= <a[l] + b[l] + 1, (a[2] + b[2]) mod y>.

In either case 62(y)(a+b mod xxy)

= G2(y)(a+b) mod <x y> (by L3)

= A + * B. QED

Given these properties of the functional f2, define for a fixed n

and Z = <z[1] z[2] z[n]>, and A e IZ:

fjU) = a[1]
f^A) = f2(z[i])(<f±_1(A), a [i » .

f n(P) is a function from IZ to the integers mod z. By recursive extension

of LI and L2 f is one-to-one and onto and we may write n '

a w A If a = f (A).
n

By recursive extension of L3 the operation 'mod z' on an integer corresponds

to 'mod z[l]' on the first element of the corresponding n-tuple. By recur

sive extention of L4:

(a + b) mod z w A + * B, if a w A and b w B,

-10-

(It is not surprising that integer addition of the £ values corresponds

to carrying add of the n-tuples; f^, calculated for Z = <10 10 •••• 10>

is, of course, the function that gives the integer value of an n-digit

positional (Arabic) number*)

For f 3(A) for Z = 4 3 2 and Z s 3 3 3 see tables I and II.

Example n = 3 , Z = 3 3 3

A 021 A 021 f 3(A) 7
+ + B 002 + * B 002 + f 3 (B) 2

= 020 = 100 = f 3 (A+*B) 9
carry 110

2.3 The remaining part of the paper will assume a carrying adder which

for inputs A and B returns:

(1) A + * B

(2) sets a carry indicator CARRY, an n-tuple mod <2 2 2>, so

that carry [i] = 1 if and only if a carry occurred into position i.

In the array case the information given by the carries is not wholly

useless* We will say an overflow occurred in position i if

a[i] +b[l] i [0,z[i]).

Information of an overflow in position i will be of use to most types of

array software: in a bounded array (AI/JOL or FORTRAN) it will generate

a run error 'subscript i out of bounds'; in an unbounded array (Zvegintzov,

1969) it will generate a move to a neighboring 'page*.

An overflow in position i > 1 will always generate a carry into

position i-1. An overflow in position 1 will result, as L3 shows, in

f n(A) + f n(B) £ [0,z>.

-n-

Unfortunately it is not the case that all carries into position i-1 are

caused by an overflow in position i. Define a carry into position i-1

as true if there is an overflow in position i. The other source of a

carry is:

a[i] + b[i] = z[i] - 1

or a[i] - b[i] = 0

and, in either case, a carry into position i.

This is termed a false carry*

In the example given above carry[l] is false and carry[2] is true.

Carry[3] = 0 is not a carry at all.

The next section gives an algorithm that uses the carrying adder and

the carry indicator to reconstruct, for a given use of the adder, an n-tuple

mod <2 2 2> TRUCAR with the property that trucar[i] » 1 if and only

if there was a true carry into position i during that use.

With TRUCAR the array can take the corrective actions mentioned above.

In addition TRUCAR has the property that it is the n-tuple to be used to

reverse the previous carries.

Formally:

(L5) (A ± * B) * * TRUCAR * A + + B #

Proof for + :

Assume C is the carry from A + * B = D, CC is the carry from D - *

TRUCAR# It is sufficient to show cc[i] = 1 if and only if c[i] is

a false carry.

-12-

Proof by induction on i:

Case Clearly true for i = n

(c[i] = cc[i] = 0).

Case Assume true for j g (i fn].

Case c[i+l] = 0

Then trucar [i+1] = cc[i+1] = 0

=> cc[i] = 0.

Case c[i+1] = 1

Then either trucar[i+1] = 1 or cc[i+1] = 1, depending if

c[i+1] is true or false*

Case d[i+l] = 0.

Then cc[i] = 1 , correct because c[i] is false.

Case d[i+1] > 0.
Then cc[i] = 0, correct because c[i] = 0 or is a true carry.

QED

-13-

3. This section describes an algorithm Q which finds TRUCAR and can hence

by L3 be used to correct carries, and an algorithm R which corrects

carries, and hence by L3 can be used to find TRUCAR. R is an intuitive

algorithm which takes an amount of processing which rises unboundedly

with the length n of the n-tuples processed. The interest of Q is that

it takes a constant time, given constant time boolean and shifting opera

tions in the source language, and a constant time carrying adder.

3.1 It will be remembered from the definition of false carries in 2.3

that if there is a carry into position i (c[i] s 1), it is false if

d[i+l] = 0 (if D m A + * B)

or d[i+l] = z[i+1]-l (if D = A - * B)

and in either case c[i+l] = 1.

TRUCAR can therefore be derived from C using an n-tuple and <2 2 2>

WARNING which has the property:

warning[i] =p, if d[i] = 0 (case of '+*')

or d[i] = z[i]-1 (in case f- *')

^else 0.

Given WARNING, TRUCAR can be constructed by noting that in each

position i

(1) if there was no carry originally, certainly there was no

true carry;

(2) if there was a carry, then it was a true carry only if either

there was no carry to the right or there was no warning to

the right.

This is algorithm Q.

-14-

The algorithm can either be implemented by table lookup or calculated

by boolean and shifting operations. The calculation takes constant time

in the sense that:

(1) in principle boolean and shift operations can be performed

in constant time regardless of length of word;

(2) in practice hardware offers constant time boolean and shift

operations on words of a length (32, for instance) which is

long in terms of the potential uses of the algorithm.

Algorithm Q now follows. (Given an n-tuple A, the notation A + is used

for the result of shifting A left by one position, setting the rightmost

bit arbitrarily.)

D := A + * B, carry to C;

form WARNING on D;
TRUCAR := C and not (C and WARNING)*.

In some applications it may be trivial to form WARNING because the

positions of zeroes and nines (i.e., instances of z[i]-1) will be obvious,

but this need not be so. It is not so for the array application given

above. There is nothing about the integer 18 (see table II) that shows

it corresponds to a 3-tuple mod <3 3 3> with zeroes in positions 2 and 3.

The next subsection, therefore, gives a constant time algorithm that finds

zeroes (nines) using only the carrying adder and its carry indicator.

3.2 Algorithm W*
Given an n-tuple D find WARNING, an n-tuple mod <2 2 2> such

that:

-15-

1, if d[i] = 0
warning[i] = , 1 < i £ n.

0, else

(warning[1] may be filled arbitrarily since it is not used by algorithm Q.)

The algorithm employs two predetermined n-tuples mod Z

SUBADD(O) =0101 ... 01(0)

SUBADD(I) B 1010 ... 10(1).

These two n-tuples have alternating 0's and 1 fs, and they are complimentary.

The last digit of each is the same as the first when n is odd.

This algorithm also may be implemented either by table lookup or by

boolean and shift operations. Algorithm W + follows. (Given an n-tuple A,

let A" be the result of shifting A to the right by one position, setting

the leftmost bit arbitrarily.)

for x := 0,1 do

begin DUMMY := D - * SUBADD(x),

carry to CARRY(x);

WARNING(x) :=

CARRY(x)" and not (SUBADD(x) and CARRY(x))

end;

WARNING := WARNING(0) or WARNING(1)#

To see why this algorithm works, consider for each position i the

pattern of subadd(x)[i], carry(x)[i] and their right neighbors.

Case SQ
i i+1

subadd(x)
carry(x)

0 1 warning [i+1] := 0
0

d[i+1] was diminshed by at least 1 (subadd(x)[i+1] = 1) and

caused no carry, hence d[i+1] ̂ 1.

-16-

Cage s1

subadd(x) 1
carry(x) 1

J i±L
warning[i+1] := 1

d[i+l] was diminished by not more than 1 (since subadd(x)[i+l] 8 0),

and this caused a carry, hence d[i+l] = 0.

Case DDQ

subadd(x)
carry(x)

i i+1
1 0
0 1

warning[i+1] := 0

d[i+l] was diminished by 1 (carry(x)[i+1]) and this caused no carry,

hence d[i+1] * 1 #

Case DDI

subadd(x)
carry(x)

i i+1
0 1
1 0

warning[i+1] := 1

d[i+l] was diminished by 1 (subadd(x)[i+1]) and this caused a carry,

hence d[i+1] = 0 .

Case DSO

subadd(x)
carry(x)

i i+1
1 0
0 0

warning [i+1] inde terminate

d[i+l] was diminished by 0 = subadd(x)[i+l] + carry(x)[i+1], hence

we have no information on d[i+1] #

Case DS1

subadd(x)
carry(x)

i i+1
0 1
1 1

warning[i+1] indeterminate

d[i+1] was diminished by 2 = subadd(x)[i+1] + carry(x)[i+1], hence

we have no information on d[i+1] #

-17-

Cases DSO and DS1 are left indeterminate by a given SUBADD(x). The

algorithm relies on the fact that these two cases will be solved by the

other SUBADD(1-x).

To see this, examine cases DSO and DS1 more closely:

Case DSO (continued)

subadd(x)
carry(x)

subadd(1-x)
carry(1-x)

1—i±] i+L

1 o

0 0

0 1

i / o 0

* 1

1

Note that case DSO in position i involves case SO in position i+1,

showing that d[i+2] ^ 1 . Then since subadd0-x)[i+2] = 0 ,

carry(1-x)[i+1] = 0 , and subadd(l-x)[i] will give either case SO

or case DDI, both determinate.

Case DS1 (continued)

subadd(x)
carry(x)

subadd(1-x)
carry(1-x)

i + l i + 2

0 1

1 1

1 0

i / o 1

0

0

Note that case DS1 in position i involves case SI in position i+1,

showing that d[i+2] = 0. Then since subadd(1-x)[i+2] = 1 ,

carry(1-x)[i+1] = 1 , and subadd(l-x)[i] involves either case SI or

DDO, both determinate.

-18-

The algorithm sets indeterminate cases to 0 and performs an 'or' on

WARNING(0) and WARNING(1) to derive the correct bit in each position.

Example n = 8, Z = 33333333

D 21001102
-*SUBADD(0) 01010101

• 12221001
CARRY(0) 11100000

WARNING(0) 00110000

D 21001102
-*SUBADD(1) 10101010

= 10200022
CARRY(1) 01000100

WARNING(1) 00100010
or WARNING(0) 00110000

. WARNING 00110010

The algorithm W + to find zeroes becomes the algorithm W" to find nines

by changing '-*' to '+ *'. In the explication following the algorithm

change:
to

'diminished* to 'increased'

•d[j] * 1' to 'd[j] £ z[j] 4 2'

•d[j] = 0' to 'd[j] = z[j] 4 1*.

This algorithm can also be implemented either with boolean and shift

instructions or with table lookup. However, it also uses the carrying

adder, and it is only constant time to the extent that a carrying add is.

We know from Winograd ,1965,that a constant time carrying add is theoretically

impossible. The only claim made, then, is that the algorithm takes constant

time in the context of a large fixed-time carrying adder whose capacity is

certain not to be exceeded. (Such is the situation in the array example,

where carrying adds are represented by integer adds on an integer adder of

far greater capacity than would ever be needed.)

-19-

3.3 R is a much more intuitive algorithm whose principle is: 'keep sub

tracting the carries until they go away'. It happens to be an effective

strategy.

In defining R assume for convenience that C is a signed carry indicator—

that is, after a use of the carrying adder,

c[i] = if there was a carry into position i then

if the operation was '+ *' then +1

else -1

else 0.

Then R is:

D := E := A + * B, signed carry to C;

while C ^ 00 0 do

E j B E . * C, signed carry to C.

The result is E = A + + B.

To prove this, note:

(1) initially E — C = A + + B, by definition of signed carry;

(2) this is preserved by each cycle through the while statement since

the carries are subtracted and any induced carries are recorded

again in C;

(3) at termination C = 00...0, hence

E — 00...0 = E = A + + B;

(4) the algorithm terminates since at each cycle through the while

statement at least the rightmost carry is eliminated.

19.5

EXAMPLE

n = 15, Z = 3 3 3

A
2 2 2 1 0 0 0 1 2 1 1 2 2 2 1

• • B
18 0 2 2 2 2 1 1 2 0 2 1 2 1

* D
12 0 10 0 0 0 1 0 2 2 1 1 2

CARRY
1 1 1 1 1 1 1 1 1 0 1 1 1 0 0

D CARRY
0 0 12 1 1 1 2 0 0 1 1 0 1 2

CARRY
0-1- 1-1- 1-1-1 0 0 0 0 0 0 0 0 D CARRY

m

0 2 0 0 2 2 2 2 0 0 1 1 0 1 2 CARRY
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

D -• CARRY
a
0 0 2 0 2 2 2 2 0 0 1 1 0 1 2

CARRY
0-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -• CARRY *
0 1 2 0 2 2 2 2 0 0 1 1 0 1 2

CARRY
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-20-

3*4 An exact measure of speed for these algorithms depends on their

exact implementation. Instead a crude measure will be used—cycles,

defined as the number of uses of the carrying adder.

Q obviously uses 2 cycles to find WARNING, hence 2 to find TRUCAR, and

3 to find A + + B, regardless of the length n of the n-tuples.

The expected number of cycles for R is related to clusters, where a

cluster is defined most simply to be a set of consecutive positions with

carries after the first correction E - * C. (In the previous example the

only cluster is underlined.) In general a cluster of length p requires

p/2 cycles to be reduced by this algorithm, and in general the clusters

can be reduced in parallel; therefore the key variable is the expected

maximum cluster length m. This is not a very tractable variable, but simula

tion studies with z[1] = z[2] = z[n] and A and B taken uniformly from

the n-tuples mod Z show

ra ~ 1n(n).

m also varies inversely with z[i], since it depends on the absolute probability

of a 0 or a 1 in a given position.

Simulation gives the following rough values for algorithm R, with

n-tuples A and B uniform on IZ:

(1) Z a 33 3

n m
10 2.3
11 2.5
12 2.6
15 2.9
20 3.3
30 3.8

-21-

(2) Z = 10 10 10

n m
30 1.9

In any actual use a simulation study of algorithm R should be made

since for low n or high z[i] R will probably be faster than Q. However,

the existence of Q sets an absolute ceiling on the task of calculating

TRUCAR.

In the next section a table lookup method will be given for detecting

carries in the array example and the above considerations will be used to

calculate the efficiency of this method over its obvious rival.

-22-

4. Recall from section 2 that the weighted sum algorithm for arrays converts

an n-tuple P into an integer f (P). In this section two algorithms S and
n

T are given for processing jumps.

Assume A is the n-tuple remembered, B is the jump call n-tuple, and

E := A + + B is the new n-tuple. S is the intuitive algorithm which stores

A and accepts B as n-tuples and recreates f^(E). T stores A and receives
B as a = f (A) and b = f (B) and uses either algorithm Q or R to find n n
e = f (E). n

S and T are now described and their efficiency compared.

4.1 Algorithm S

E := A + + B, e := M E) , form TRUCAR

i := 0
e := 0

,—> i := i+1
i > n ? (yes) > exit
e[i] := a[i] + b[i]
e[i] * z[i] ? > (yes) ^

1 e[i] : = d[i] - z[i]
trucar [i] := 0 trucar [i] := 1

1

e := e x r[i]
e := e + e[i]
go tOj

Counting one time unit for each instruction, and assuming equally

probable the two branches of the inner loop, S takes 8.5 units to go through

the outer loop, hence

time(S) 8.5 x n.

-23-

4.2 Algorithm TQ

e := f (A + + B) (where a = f (A), b = f (B)),
Li n n

form TRUCAR, using algorithm Q

W+

1:2.5 d := a + b mod z
2:4 form CARRY

^3:2.5 dummy := d - fn<SUBADD(0)) mod z
4:4 form CARRY(0)
5:4 form WARNING(0)
6:2.5 dummy := d - f (SUBADD(l)) mod z

n
7:4 form CARRY(1)
8:4 form WARNING(1)

^9:1 WARNING := WARNING(0) or WARNING(1)
10:4 form TRUCAR
11:1 t := f (TRUCAR) n
12:2.5 e := d - t mod z

The steps have been labeled f i : j f , where i is the step number and j

is the time required for the step, calculated as before.

Notes

steps 1,3,6,12:

'a := b + c mod z 1 is assigned time = 2.5 as the expansion of:

a = b + c
a £ z? (yes) »a := a - z

steps 2,4,7: Time = 4 assigned for forming

carrying indicator is justified in section 4.4, which describes

the algorithm to find carries,

steps 3,6: Assume f^(SUBADD(x)) pre-stored

step 11: by table lookup.

Thus time(TQ) s 36.

-24-

4.3 Algorithm TR

e := f (A + + B) (where a = f (A) and b = f (B)), n n n
form TRUCAR, using algorithm R

1:3.5 d := e := a + b mod z
p>2:4 form CARRY

3:1 CARRY = 00....0 ?
4:1 c := f (CARRY) n
5:2.5 e := e - c mod z
6:4 form CARRY
7:1 CARRY = 00....0?
8:1 c := f (CARRY) n
9:2.5 e := e + c mod z
10:1

11:1
*

TRUCAR := d - e mod z

(yes)

(yes)

Note

steps 4,8: by table lookup

The signed carry of algorithm R has been accomplished by an alternation

of sign in the carry correction. The while statement of R now takes 9 units.

Hence time(TR) = 7.5 + 9m, where m is the expected number of cycles for R.

Since time(TQ) = 36 and time(TR) = 7.5 + 9m, in this case TQ should be

used when

7.5 + 9m > 36
or m > 3.2.

Since TQ sets an absolute upper limit of 36 regardless of n, and

time(S) = (8.5)n, T may be used in preference to S when

(8.5)n > 36
or n > 5.

-25-

This must be balanced against the space requirements of T # These will be

examined in connection with the explanation of an algorithm to detect

carries in the array application, which now follows.

4.4 The algorithm requires a table of length z (sometimes less) whose

elements are n-1 bit binary words—one bit for each position i = 1,2,....,n-l

into which a carry could occur. The a'th word in the table, where a s . £ (A) f

is HH(A), a function defined below. The importance of the function HH is

that it enables non-carrying binary addition (written '©'), provided by the

source language or hardware, to be used as a check on the carrying addition

mod Z #

The algorithm is:

D := A + * B
C := HH(A) 0 HH(B) 0 HH(D)

and C is the carry indicator.

With table lookup the algorithm looks like:

d :=s a + b mod z
C := T(a) 0 T(b) © T(d)

where a = f (A), b = f (B), n n
and T(f (X)) = HH(X). n

For A € IZ, HH(A) is defined by:

HH(A)[i] = [f,(A) + f (A)] mod 2
1 n

using the recursively defined functions f^ of section 2.

We will say that a function (J> has property if, in the context of

a carrying add,

-26-

{1, if there was a carry into position i

0, else.

It remains to prove that the function

HH(A)[i] © HH(B)[i] © HH(A + * B)[i]

has property P̂ ^ for 1 ̂ i < n.

In proving this the following notation will be used. Given an n-tuple

mod Z

A a a[1] a[2] a[n]

let

Aj . a[l] a[2] a[j], 1 <; j £ n,

be the truncated 1-tuple A^, a member of the j-tuples mod Z^. Let
j

z. = n z[i].
J i=i

The algorithm uses the fact that in a carrying add there is no carry

into the rightmost position. For a given A and B in IZ, (A + * B) ^ , the

truncated carrying sum of A and B, differs from A^ + * B^, the carrying sum

of the truncated parts, if and only if there is a carry into position i of

A + * B; if so

(A + * B) i = A± + * B i + * 1

where ^ is the i-tuple with i-1 leading O's and a trailing 1.

Example n = 4, Z = 3 3 3 3

A 0212 A 2 02
+*B 0212 +*B 2 02

= 1201 = 11

Then (A + * B) 2 = 12 = A 2 + * B 2 + * 01.

-27-

Now (A + * B) i m fAA + * B),

A i + * B i « f i (A) + f i (B) m o d V a n d h « 1#

Hence:

(L6) has property P^«

where = [f^A) + f;,(B)]mod z : + f (A + * B).

Now assume either:

Case CO: z[1] is even—hence z^9z^909m9z^ = z are all even;

or

Case CI: z[1], z[2], #.. ,z[n] are all odd, hence z.j , Z £ , . . . ,z^ = z

are all odd.

One or other case must exist, since, from the software's point of
view the order of the elements in the n-tople is irrelevant, and any

z[i] even (if there is one) may be taken as z[1].

In either case (z + z^) mod 2 = 0 for 1 ̂ i ̂ n.

Now HH(A)[i] © HH(B)[i] © HH(A + * B)[i]
= [£.(A) + f (A) + f.(B) + f (B) l n l n

+ ff. (A + * B) + f (A + * B) mod 2 l n
= (HI + HN) mod 2

where HI = f.(A) + f.(B) + ff.(A + * B) i l l
and HN « f (A) + f (B) + f (A + * B) . n n n

It remains to prove (HI + HN) mod 2 has property P^.

Case f (A) + f (B) < z n n
=*f,(A) + f.(B) < z.. i l l
Then HN mod 2 = [2 x (f (A) + f (B))] mod 2 = 0 ,

n n
and (HI + HN) mod 2 = HI mod 2

-28-

{[^(A) + f t(B)] mod z ± + f t(A + * B)} mod 2

a S± mod 2

has property P^ by L6.

Case; z £ ff (A) + ff (B) < 2xz. n n n
In this case

HN mod 2 = [2 x (f (A) + f (B)) - z] mod 2
n n

= z mod 2.

There are two subcases: either it is also true that

z± <. f±(A) + f^B) < 2xz

or f ±(A) + f t(B) = z^l w

<z[1]-1, z[2]-1,...,z[i]-1>

and there is a carry into position i.

Case: z. <; f.(A) + f.(B) < 2xz 4 — — i l l i
Then HI mod 2

= {[^(A) + f±W\ mod z± + Z i + fj[(A + * B)} mod 2

= mod 2 © z^ mod 2,

and (HN + HI) mod 2 = S. mod 2 © (z + z,) mod 2
i i

= mod 2,

has property P^ by L6.

Case: f ±(A) + f^B) * z^l, f£(A + * B) 8 0.

Then HI mod 2 = (Zj-1+0) mod 2

and (HI + HN) mod 2 = (z + z^-l) mod 2 = 1 , which is

correct because in this case there is a carry into position i.

-29-

This concludes the proof that the function HH works as described.

Review of the proof will show that the algorithm works also for the case

A - * B. Tables of HH are given for Z B 4 3 2 and Z = 3 3 3 in tables I

and II.

Example (cf example of section 2.2, and table II)

n = 3, Z = 3 3 3

A 021 f 3(A) 7 HH(A)11
4*B 002 +f 3< B) 2 ©HH(B)00
=D 100 =f 3 (D) 9 =11

CARRY 110 ^1H(D)00
sCARRYl1

To construct a table of HH by hand for an arbitrary Z, first write down

the n-tuples P in order of f^Cp). Since 1 r ^ 1, this corresponds to:

(1) 00....0 is the O'th n-tuple

(2) if P is the p'th, p f = p + * 1 r is the (p+l) fth.

Then construct a table of H(P), where H(P)[i] = f^P) mod 2:

(1) 00 0 is H(<0 0 0>)

(2) given the p'th entry H(P), form the (p+l) fth, H(P f) by:

l(P)[i] i f p [i] = p , [i]
H C(P)[i] if p[i] = i

(P)[i] @ 1, else .

To construct HH(P), let HH(P) = H(P) when f n(P) is even, else

HH(P)[i] := H(P)[i] © 1. This corresponds to modifying

H(P)[i] = f ±(p) mod 2

by the parity of f n (p) *

-30-

It remains to calculate k, the time taken to form a carry indicator

by the above algorithm. First note that the length of the table can

be cut from

z = z[l] X z[2]x...xz[n]

t o jln case CO, 2x z[2] x z[3]x.•..xz[n] ̂

lin case CI, z[2] x z[3]x....xz[n] J

by the relation

T(a) = T(a mod 2)

which will be proved below.

Then given D := A + * B in the form fd : = a + b mod z 1, the algorithm

to find C the carry indicator, is:

1:1 C := HH(A) © HH(B)
2:2 j := d mod z
3:1 C := C © T(j).

(The timing of step 1 assumes, as is consistent with the use of the algorithm,

that HH(A) and HH(B) are known without table lookup.)

Thus k = 4.

The space requirements for the table are for a length of z/z[l] or

2xz/z[l] and a width of n-1 bits. This is large in itself but not relatively

large as software for handling an array or array page of length z and width

(say) 32 bits. It is in fact comparable with the space used by the rival

sort tree algorithm for storing arrays.

-31-

(L7) T(a mod S) - T(a)
Proof for case CO (CI is similar).

2 = 2xz[1] x z[2]x xz[n]« <2 0 0 0>,

and if a = s + kz, 0 < s <; 2,

then A = S + * <2k 0 0 0>, where S w s.

Let K = <2k 0 0 . . . 0>.

Note first that

HH(K) = 0 0 . . . 0

since HH(K)[i] = [f.(K) + f (K)] mod 2
I n

= [2xkxz[2] x z[3]x Xz[i] + 2 Xkxz[2] x z[3]x xz[n]] mod 2

= 0

Note second that + * K causes no carry (since k[i] = 0, 1 < i ^ n) .

Hence the carry indicator for A - * K

C m HH(A) ©HH(K) ©HH(A - * K) = 0 0 . . . 0 .

But T(a mod 2) = HH(A - * K)

= C © HH(K) © HH(A)

= 0 0 . . . 0 © 0 0 0 © HH(A)

= HH(A) = T(a). QED

-32-

5. Summarizing this paper: it has explained the relation of the weighted

sum array storage algorithm to carrying adders; it has investigated two

algorithms for correcting carries, one intuitive, one less obvious but

having the advantage of requiring fixed time; and it has described a table

lookup algorithm for detecting carries in the array example.

The disappointment of the study is that though these algorithms together

provide a complete system for processing jump calls they do not in practice

appear to be preferable to the most straightforward algorithm S. The practical

limit of the size of an array or array page in core (say 4K words) puts a

practical limit on the dimensionality of an array to be stored by the weighted

sum method (say 8). At n = 8 the carry correction algorithm R does not

appear to have a sufficient speed advantage to justify its tables and non-

intuitive software.

The strength of the study is that a rigorous examination of the algor

ithms puts the above judgment on a quantitative basis; and perhaps the

separate algorithms themselves will be of use to the reader.

-33-

References

1. Fredkin, Edward,"TRIE memory11, Comm. ACM. 3, Sept. I960, 490-499.

2. Jodeit, Jane G #, "Storage organization in programming systems,"
Comm. ACM. 11, Nov. 1968, 741-746.

3. Kuck, D. J#,"ILLIAC IV software and application programming," IEEE
Transac on Computers« C-17, Aug. 1968, 758-770.

4. Samelson, K., and Bauer, F. L #, "Sequential formula translation,"
Comm. ACM. 3, Feb. 1960, 76-83.

5. Sattley, Kirk, "Allocation of storage for arrays in ALGOL 60,"Comm.
ACM. 4, Jan. 1961, 60-65.

6. Winograd, Shmuel, "On the time required to perform addition," J. ACM.
12, April 1965, 277-285.

7. Zvegintzov, Nicholas, Algorithms for Unbounded Arrays, (in preparation)

- 34 -

TABLE I

AUXILIARY FUNCTIONS FOR n = 3, Z = 4 3 2

p F K P) F2(P) F3(P) H(P) HHCP)

000 0 0 0 00 00
001 0 0 1 00 11
010 0 1 2 01 01
011 0 1 3 01 10
020 0 2 4 00 00
021 0 2 5 00 11
100 1 3 6 11 11
101 1 3 7 11 00
110 1 4 8 10 10
111 1 4 9 10 01
120 1 5 10 11 11
121 1 5 11 11 00
200 2 6 12 00 00
201 2 6 13 00 11
210 2 7 14 01 01
211 2 7 15 01 10
220 2 8 16 00 00
221 2 8 17 00 11
300 3 9 18 11 11
301 3 9 19 11 00
310 3 10 20 10 10
311 3 10 21 10 01
320 3 11 22 11 11
321 3 11 23 11 00

-35-

TABLE II

AUXILIARY FUNCTIONS FOR n = 3, Z = 3 3 3

p F K P) F2(P) F3(P) H(P) HH(P)

000 0 0 0 00 00
001 0 0 1 00 11
002 0 0 2 00 00
010 0 1 3 01 10
011 0 1 * 01 01
012 0 1 5 01 10
020 0 2 6 00 00
021 0 2 7 00 11
022 0 2 8 00 00
100 1 3 9 11 00
101 1 3 10 11 11
102 1 3 11 11 00
110 1 H 12 10 10
111 1 13 10 01
112 1 U 10 10
120 1 5 15 11 00
121 1 5 16 11 11
122 1 5 17 11 00
200 2 6 18 00 00
201 2 6 19 00 11
202 2 6 20 00 00
210 2 7 21 01 10
211 2 7 22 01 01
212 2 7 23 01 10
220 2 8 24 00 00
221 2 8 25 00 11
222 2 8 26 00 00

Security Classification

DOCUMENT CONTROL DATA -R&D
(Security clm9»ltlemtton of lilt: body ol mftrmet mod Indmulng mnnolmtlon mumt bm mnfred wh.n th. ov.rmtt rmport f#

1 1 . O R I G I N A T I N G A C T I V I T Y (Corpormf muthor)

Carnegie-Mellon University
Department of Computer Science
Pittsburgh, Pennsylvania 15213

clmmmlilmdy
2 « . R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

UNCLASSIFIED
1 6 . G R O U P

ALGORITHMS FOR CORRECTING CARRIES IN A CARRYING ADDER, WITH AN EXAMPLE FROM ARRAY
SOFTWARE

| 4 * OESCRIPTIVE NOTES fT>po ol import mnd Inclumlvm dmfrn)

Scientific Interim I S . A U T N O R (S) (Flrmtnmmm, mlddim MUmt. Uat nmmm)

Nicholas Zvegintzov

| « . R E P O R T O A T B

June 1969
7 « . T O T A L N O . O F P A G E S

39

6 . PROJECT NO.

d.

F44620-67-C-0058

9718

6154501R
681304

ORIGIN A TOR'S REPORT NUMSJER(S)

S O . O T H E R R E P O R T N O (S > (Any oCfeor
Ihlm rmport)

thmi mmy bm mmmignmd

1 0 . D I S T R I B U T I O N S T A T E M E N T

1. This document has been approved for public
release and sale; its distribution is unlimited,

! It. S U P P L E M E N T A R Y N O T E S

TECH, OTHER

S P O N S O R I N G M I L I T A R Y A C T I V I T Y

Air Force Office of Scientific Research (SI
1400 Wilson Boulevard
Arlington, Virginia 22209

A carrying adder is defined as a device that takes two integer n-tuples, adds
corresponding positions sequentially from the right, mod some predefined radix, and
transmits a 1 to be added in the next left position each time the mod operation is
non-trivial. One of the two principal storage methods for arrays has the charac
teristic that the integer sum of two represented array points corresponds to their
carrying sum. A fixed time algorithm is described for distinguishing true carries
from propagated carries, and compared with other algorithms. A table lookup algo
rithm is described for detecting carries in the array example and its efficiency
is discussed.

Security Classification

1 4 .

KCY W O M O S

L I N K A L I N K a L I N K C

M O L E W T R O U E W T n o t e W T

Security Classification

