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SUMMARY 

A carrying adder is defined as a device that takes two 

integer n-tuples, adds corresponding positions sequentially 

from the right, mod some predefined radix, and transmits a 1 

to be added in the next left position each time the mod opera

tion is non-trivial. One of the two principal storage methods 

for arrays has the characteristic that the integer sum of two 

represented array points corresponds to their carrying sum. 

A fixed time algorithm is described for distinguishing true 

carries from propagated carries, and compared with other 

algorithms. A table lookup algorithm is described for detecting 

carries in the array example and its efficiency is discussed. 
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1. This paper concerns n-tuples, objects of the form 

A « a[l] a[2] a[n] 

or equivalently 

A = <a[l], a[2], , a[n]>. 

Context, spaces, or are used to separate the elements, and spaces or 
f < f and '>f are used to delimit the n-tuple. 

More specifically, it deals with integer n-tuples, each of whose 

elements a[i] is in the range [0,z[i]) for some pre-chosen positive z[i], 

i.e., each of whose elements is one of the integers mod z[i]. The z[i]fs 

will also be written as the n-tuple 

Z s z[l] z[2] z[n]. 

The set of n-tuples satisfying the above restriction for a given Z will be 

known as the n-tuples mod Z and the set of n-tuples mod Z will be denoted 
n 

IZ # The number of distinct members of IZ is z = II z[i]. 
i=l 

Given an n-tuple A ^ IZ, we define the operation A mod Z that takes 

it into a member of IZ by: 

A mod Z = 

<a[l] mod z[l], a[2] mod z[2], . . a [ n ] mod z[n]>. 

This paper focusses on the problem of adding and subtracting members 

of IZ, where adding and subtracting are defined and written as follows: 
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A + + B = 

<a[l] + b[l], a[2] + b[2] f ..... 

a[n] + b[n]> mod Z. 

The operations A + + B and A — B are trivially performed by n adders 

operating in parallel, the first adder adding mod z[1], the second mod z [2], 

and so on. The paper, however, assumes a carrying adder which performs not 

A + + B and A ~ B but A + * B and A - * B, defined as follows: 

A + * B = D mod Z 

where D is formed sequentially from right to left 

(i.e., from n to 1) as follows: 

d[n] = a[n] + b[n] 

d[i] =fa[i] + b[i] if d[i+1] 6 [o,z[i+l]) 

otherwise.* ta[i] + b[i] if d| 

a[i] + b[i] + 1, 

Similarly 

A - * B = D mod Z 

where D is formed sequentially from right to left 

(i.e., from n to 1) as follows: 

d[n] = a[n] - b[n] 

d[i] ofa[i] - b[i], if d[i+1] € [o,z[i+l]) 

otherwise .* 

=Ta[i] - b[i], if < 

la[i] - b[i] - 1, 

These (disguised by formalism) are exactly the rules for adding and 

subtracting two integers mod z where A and B are interpreted using posi

tional notation, with position i having radix z[i]. In the Arabic version 

of positional notation, 
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Z = 10 10 10 

and these are the rules for adding and subtracting two integers mod 10 n. 

In a given performance of the operations + * and - * an instance in 

position i of the case marked * in the definitions will be referred to as 

a carry into position i. Note that a carry into position i during + * (- *) 

is a 1 (-1) — as is consistent with adding (subtracting) positional numbers 

whose elements a[i] and b[i] are restricted to the integers mod z[i]. 

One question answered in this paper is the following: given only a 

carrying adder which performs + * and - *, and a carry indicator C set by 

the carrying adder so that 

jl, if a carry occurred into position i 
c[i] =( 

|0, otherwise 

how can the sum A 4+ B or A — B be reconstructed? 

This problem is almost exactly the opposite of that encountered by 

the designer of hardware, who in general is faced with the problem of 

synthesizing a carrying adder using a set of parallel non-carrying adders 

(cf. Winograd, 1965), a demand which arose from the preeminence of arith

metic among the historical uses of computers. The problem of this paper 

arises at the software level for a user (or program) which has to employ 

the more sophisticated carrying adders to simulate the simpler parallel 

addition. Section 2 of this paper gives a practical example of the problem, 

found in the programming of jumps in arrays. Section 3 gives an unintuitive 

algorithm that solves the problem in constant time and compares it with an 

intuitive algorithm whose time rises unboundedly with the length of the 

n-tuples. Section 4 applies the algorithm to the array programming example 

and assesses the efficiency of the application. 
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2 

2»1 A n array is a computational structure that associates a distinct 

store with each of the z distinct members of IZ. 

This is a direct characterization of an array—say, 'example'—defined 

in ALGOL 

array example [0:z[l]-l,0:z[2]-1, 0:z[n]-1] 

or in FORTRAN 
DIMENSION EXAMPLE (o/z[1]-1,o/z[2]-l, o/z[n ] - l ) . 

It also characterizes with only slightly greater indirection an array whose 

i fth element lies within some general limits [p[i], q[i]], since the integers 

in this interval have a direct and obvious equivalence to the integers mod 

(q[i] - p[i] + 1). 

There are two kinds of Call that can be made on an array—an absolute  

call and a jump call. In an absolute call the using program presents the 

array with an n-tuple in IZ and receives in return the corresponding store 

name. This is the kind of call implicit in the use of arrays in ALGOL and 

FORTRAN. The jump call is not implemented in these source languages. An 

array allowing jump calls must remember the n-tuple P associated with the 

last store returned. In a jump call the using program again presents the 

array with an n-tuple J from IZ, but in this case receives in return the 

store associated with P + + J — (which becomes the n-tuple remembered). 

It is argued more extensively elsewhere (Zvegintzov, 1969) that jump 

calls ought to be implemented in any source language that incorporates 

arrays. Briefly the reasons are: 
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(1) Absolute and jump calls form a pair that are jointly 

implicit in the structural definition of an array—cor

responding exactly to the twin models of a vector in 

linear algebra as a point and as an arrow. 

(2) Jump calls are the natural way to conceptualize algorithms 

which involve making or taking a path across an array. 

(3) In an unbounded array, jump calls allow the specification 

of an n-tuple having arbitrarily large elements without 

fear of overflow. 

(4) Jump calls can be used to remove common computation from 

inside some kinds of loop (see Samelson and Bauer, I960). 

The example promised in the last section is the programming of jumps 

in an array using the weighted sum storage algorithm (Sattley, 1961). This 

is one of the two algorithms used almost universally to store arrays. (The 

other is the sorting tree algorithm—see, for instance, Fredkin, I960 and 

Jodeit, 1968. For a different and unusual storage algorithm see Kuck, 1968.) 

The weighted sum algorithm involves a function £ that gives an equiv

alence between the n-tuples mod Z and the integers mod z. A block of 

storage of length z is set aside in core starting at (say) b, and the loca

tion corresponding to an n-tuple P is b + f n ( p ) • 

The next subsection defines the function f . The relevance of this 
n 

function to the problem of the paper is that if 

p e f (P) and q = f (Q) n n 

then p + q mod z = £ (P + * Q ) , i.e., the sum of the integer representations 

Is equivalent to the carrying sum of the n-tuples. 
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2.2 The function f will be constructed recursively using the fact that 

an n-tuple 

<p[l], p[2], , p[n]> 

may be regarded as a pair (2-tuple) consisting of its rightmost element 

p[n] and the remaining (n-D-tuple, thus: 

« p [ 1 ] , p[2], p[n-1]>, p[n]>. 

First to be investigated, therefore, is a family of functions which 

provide an equivalence between the pairs mod <x y> and the integers mod 

xxy. The functions are defined by the functional f2(w) that takes as its 

parameter the radix of the second element of the pair. For a given y and 

a given pair 

P = p[l] p[2] 

define f2(y)(P) = yXp[l] + p[2]. 

Example Z = 2 3, z = 2x3 = 6 

P f2(3)(P) 
00 0X3 + 0 a 0 
01 0X3 + 1 = 1 
02 0x3 + 2 - 2 
10 1x3 + 0 = 3 
11 1x3 + 1 m 4 
12 1x3 + 2 = 5 

f2(w) has the following four properties L1-L4. (The proofs may be 

skipped by all but the most suspicious.) 

(LI) f2(w) is one-to-one 

Proof: Let A = a[l] a[2], B . b[1] b[2], Z . x y. 

Assume f2(y)(A) = f2(y)(B) 
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* yxa [ l ] + a[2] = yxb[1] + b[2] 
=> yx(a [ l ] - b[1]) = b[2] - a[2] 

=> a [ l ] - b [ l ] = 0 since |b[2] - a[2]|< y 
=> a [ l ] = b [ l ] and a[2] . b[2] 
a> A s B QED. 

(L2) f2(v) is onto 

Proof: 

From number theory we have that for any integers s and y, y / 0, 

there is a unique integer t 

s = yxt + s mod y. 

Let 62(y) be the function that maps the integers mod xxy by 

g2(y)(s) a <t, s mod y> 

using this relation. Since s € [0,xxy), t €C0,x) and G2(y)(s) 6 I<x fy>, 

the domain of f2(y). Furthermore 

f2(y)(G2(y)(s)) 
« f2(y)(<t, s mod y>) 
=s yxt + s mod y 
= s 

i.e., G2(y) is the inverse of f2(y), and f2(y) is onto. 

Having established the equivalence between I<fc y> and the 

integers mod xxy via f2(y), for A £ K x y> and a € [0, xxy) write 

A « a 

if f2(y)(A) « a. 

As defined in (L2), G2(y) applies only to integers mod xxy, but 
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it can obviously be extended to the domain of all integers* For 

an arbitrary integer s, G2(y)(s) is a pair 

<t, s mod y> 

which fails to be a member of I<x y> only in that its first member 

is (perhaps) not in [0,x). The relation between integers in [0 9xxy) 

and those not in [Ofxxy) is that the operation fmod xxy 1 on the 

integer corresponds to 'mod x' on the first element of the correspond

ing pair. 

Formally: 

(L3) G2(v)(s) mod <x y> • G2(y)(s mod xxy) 

Proof: 

Let s = xxyxt 1 + s mod xxy 

and s mod xxy « yx f c + ( 8 mod xxy) mod y 

= yxt + s mod y. 

Then G2(y)(s) mod <x y> 

= <xxt' + t, s mod y> mod <x y> 
= <(x t' + t) mod x, s mod y mod y> 
B <t, s mod y> 
m G2(y)(s mod xxy). QED 

The next result is the crucial one for the purpose of this paper: 

adding (subtracting) the integer representations of pairs A and B mod xxy 

is equivalent to a carrying add <subtract) of the pairs. 

Formally: 
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(L4) If a W A and b w B, then 

a + b mod xxy « A + * B. 

Proof for + (- is similar): 

a + b . f2(y)(A) + f2(y)(B) 

= yx(a[1] + b[1]) + (a[2] + b[2]). 

Then if 0 £ a[2] + b[2] < y, 

G2(y)(a+b) = <a[l] + b[1], a[2] + b[2>, 

else if y <: a[2] + b[2] < 2y, 

a + b . yx(a[l] + b[1]) + y + (a[2] + b[2]) mod y, 

and G2(y)(a+b) 

= <a[l] + b[l] + 1, (a[2] + b[2]) mod y>. 

In either case 62(y)(a+b mod xxy) 

= G2(y)(a+b) mod <x y> (by L3) 

= A + * B. QED 

Given these properties of the functional f2, define for a fixed n 

and Z = <z[1] z[2] z[n]>, and A e IZ: 

fjU) = a[1] 
f^A) = f2(z[i])(<f±_1(A), a [ i » . 

f n(P) is a function from IZ to the integers mod z. By recursive extension 

of LI and L2 f is one-to-one and onto and we may write n ' 

a w A If a = f (A). 
n 

By recursive extension of L3 the operation 'mod z' on an integer corresponds 

to 'mod z[l]' on the first element of the corresponding n-tuple. By recur

sive extention of L4: 

(a + b) mod z w A + * B, if a w A and b w B, 
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(It is not surprising that integer addition of the £ values corresponds 

to carrying add of the n-tuples; f^, calculated for Z = <10 10 •••• 10> 

is, of course, the function that gives the integer value of an n-digit 

positional (Arabic) number*) 

For f 3(A) for Z = 4 3 2 and Z s 3 3 3 see tables I and II. 

Example n = 3 , Z = 3 3 3 

A 021 A 021 f 3(A) 7 
+ + B 002 + * B 002 + f 3 (B) 2 

= 020 = 100 = f 3 (A+*B) 9 
carry 110 

2.3 The remaining part of the paper will assume a carrying adder which 

for inputs A and B returns: 

(1) A + * B 

(2) sets a carry indicator CARRY, an n-tuple mod <2 2 .... 2>, so 

that carry [i] = 1 if and only if a carry occurred into position i. 

In the array case the information given by the carries is not wholly 

useless* We will say an overflow occurred in position i if 

a[i] +b[l] i [0,z[i]). 

Information of an overflow in position i will be of use to most types of 

array software: in a bounded array (AI/JOL or FORTRAN) it will generate 

a run error 'subscript i out of bounds'; in an unbounded array (Zvegintzov, 

1969) it will generate a move to a neighboring 'page*. 

An overflow in position i > 1 will always generate a carry into 

position i-1. An overflow in position 1 will result, as L3 shows, in 

f n(A) + f n(B) £ [0,z>. 
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Unfortunately it is not the case that all carries into position i-1 are 

caused by an overflow in position i. Define a carry into position i-1 

as true if there is an overflow in position i. The other source of a 

carry is: 

a[i] + b[i] = z[i] - 1 

or a[i] - b[i] = 0 

and, in either case, a carry into position i. 

This is termed a false carry* 

In the example given above carry[l] is false and carry[2] is true. 

Carry[3] = 0 is not a carry at all. 

The next section gives an algorithm that uses the carrying adder and 

the carry indicator to reconstruct, for a given use of the adder, an n-tuple 

mod <2 2 .... 2> TRUCAR with the property that trucar[i] » 1 if and only 

if there was a true carry into position i during that use. 

With TRUCAR the array can take the corrective actions mentioned above. 

In addition TRUCAR has the property that it is the n-tuple to be used to 

reverse the previous carries. 

Formally: 

(L5) (A ± * B) * * TRUCAR * A + + B # 

Proof for + : 

Assume C is the carry from A + * B = D, CC is the carry from D - * 

TRUCAR# It is sufficient to show cc[i] = 1 if and only if c[i] is 

a false carry. 
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Proof by induction on i: 

Case Clearly true for i = n 

(c[i] = cc[i] = 0). 

Case Assume true for j g (i fn]. 

Case c[i+l] = 0 

Then trucar [i+1] = cc[i+1] = 0 

=> cc[i] = 0. 

Case c[i+1] = 1 

Then either trucar[i+1] = 1 or cc[i+1] = 1, depending if 

c[i+1] is true or false* 

Case d[i+l] = 0. 

Then cc[i] = 1 , correct because c[i] is false. 

Case d[i+1] > 0. 
Then cc[i] = 0, correct because c[i] = 0 or is a true carry. 

QED 
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3. This section describes an algorithm Q which finds TRUCAR and can hence 

by L3 be used to correct carries, and an algorithm R which corrects 

carries, and hence by L3 can be used to find TRUCAR. R is an intuitive 

algorithm which takes an amount of processing which rises unboundedly 

with the length n of the n-tuples processed. The interest of Q is that 

it takes a constant time, given constant time boolean and shifting opera

tions in the source language, and a constant time carrying adder. 

3.1 It will be remembered from the definition of false carries in 2.3 

that if there is a carry into position i (c[i] s 1), it is false if 

d[i+l] = 0 (if D m A + * B) 

or d[i+l] = z[i+1]-l (if D = A - * B) 

and in either case c[i+l] = 1. 

TRUCAR can therefore be derived from C using an n-tuple and <2 2 .... 2> 

WARNING which has the property: 

warning[i] =p, if d[i] = 0 (case of '+*') 

or d[i] = z[i]-1 (in case f- *') 

^else 0. 

Given WARNING, TRUCAR can be constructed by noting that in each 

position i 

(1) if there was no carry originally, certainly there was no 

true carry; 

(2) if there was a carry, then it was a true carry only if either 

there was no carry to the right or there was no warning to 

the right. 

This is algorithm Q. 
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The algorithm can either be implemented by table lookup or calculated 

by boolean and shifting operations. The calculation takes constant time 

in the sense that: 

(1) in principle boolean and shift operations can be performed 

in constant time regardless of length of word; 

(2) in practice hardware offers constant time boolean and shift 

operations on words of a length (32, for instance) which is 

long in terms of the potential uses of the algorithm. 

Algorithm Q now follows. (Given an n-tuple A, the notation A + is used 

for the result of shifting A left by one position, setting the rightmost 

bit arbitrarily.) 

D := A + * B, carry to C; 

form WARNING on D; 
TRUCAR := C and not (C and WARNING)*. 

In some applications it may be trivial to form WARNING because the 

positions of zeroes and nines (i.e., instances of z[i]-1) will be obvious, 

but this need not be so. It is not so for the array application given 

above. There is nothing about the integer 18 (see table II) that shows 

it corresponds to a 3-tuple mod <3 3 3> with zeroes in positions 2 and 3. 

The next subsection, therefore, gives a constant time algorithm that finds 

zeroes (nines) using only the carrying adder and its carry indicator. 

3.2 Algorithm W* 
Given an n-tuple D find WARNING, an n-tuple mod <2 2 .... 2> such 

that: 
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1, if d[i] = 0 
warning[i] = , 1 < i £ n. 

0, else 

(warning[1] may be filled arbitrarily since it is not used by algorithm Q.) 

The algorithm employs two predetermined n-tuples mod Z 

SUBADD(O) =0101 ... 01(0) 

SUBADD(I) B 1010 ... 10(1). 

These two n-tuples have alternating 0's and 1 fs, and they are complimentary. 

The last digit of each is the same as the first when n is odd. 

This algorithm also may be implemented either by table lookup or by 

boolean and shift operations. Algorithm W + follows. (Given an n-tuple A, 

let A" be the result of shifting A to the right by one position, setting 

the leftmost bit arbitrarily.) 

for x := 0,1 do 

begin DUMMY := D - * SUBADD(x), 

carry to CARRY(x); 

WARNING(x) := 

CARRY(x)" and not (SUBADD(x) and CARRY(x)) 

end; 

WARNING := WARNING(0) or WARNING(1)# 

To see why this algorithm works, consider for each position i the 

pattern of subadd(x)[i], carry(x)[i] and their right neighbors. 

Case SQ 
i i+1 

subadd(x) 
carry(x) 

0 1 warning [i+1] := 0 
0 

d[i+1] was diminshed by at least 1 (subadd(x)[i+1 ] = 1) and 

caused no carry, hence d[i+1] ̂  1. 
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Cage s1 

subadd(x) 1 
carry(x) 1 

J i±L 
warning[i+1] := 1 

d[i+l] was diminished by not more than 1 (since subadd(x)[i+l] 8 0), 

and this caused a carry, hence d[i+l] = 0. 

Case DDQ 

subadd(x) 
carry(x) 

i i+1 
1 0 
0 1 

warning[i+1] := 0 

d[i+l] was diminished by 1 (carry(x)[i+1]) and this caused no carry, 

hence d[i+1] * 1 # 

Case DDI 

subadd(x) 
carry(x) 

i i+1 
0 1 
1 0 

warning[i+1] := 1 

d[i+l] was diminished by 1 (subadd(x)[i+1]) and this caused a carry, 

hence d[i+1] = 0 . 

Case DSO 

subadd(x) 
carry(x) 

i i+1 
1 0 
0 0 

warning [ i+1 ] inde terminate 

d[i+l] was diminished by 0 = subadd(x)[i+l] + carry(x)[i+1], hence 

we have no information on d[i+1] # 

Case DS1 

subadd(x) 
carry(x) 

i i+1 
0 1 
1 1 

warning[i+1] indeterminate 

d[i+1] was diminished by 2 = subadd(x)[i+1 ] + carry(x)[i+1 ], hence 

we have no information on d[i+1] # 
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Cases DSO and DS1 are left indeterminate by a given SUBADD(x). The 

algorithm relies on the fact that these two cases will be solved by the 

other SUBADD(1-x). 

To see this, examine cases DSO and DS1 more closely: 

Case DSO (continued) 

subadd(x) 
carry(x) 

subadd(1-x) 
carry(1-x) 

1—i±] i+L 

1 o 

0 0 

0 1 

i / o 0 

* 1 

1 

Note that case DSO in position i involves case SO in position i+1, 

showing that d[i+2] ^ 1 . Then since subadd0-x)[i+2] = 0 , 

carry(1-x)[i+1] = 0 , and subadd(l-x)[i] will give either case SO 

or case DDI, both determinate. 

Case DS1 (continued) 

subadd(x) 
carry(x) 

subadd(1-x) 
carry(1-x) 

i + l i + 2 

0 1 

1 1 

1 0 

i / o 1 

0 

0 

Note that case DS1 in position i involves case SI in position i+1, 

showing that d[i+2] = 0. Then since subadd(1-x)[i+2] = 1 , 

carry(1-x)[i+1] = 1 , and subadd(l-x)[i] involves either case SI or 

DDO, both determinate. 
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The algorithm sets indeterminate cases to 0 and performs an 'or' on 

WARNING(0) and WARNING(1) to derive the correct bit in each position. 

Example n = 8, Z = 33333333 

D 21001102 
-*SUBADD(0) 01010101 

• 12221001 
CARRY(0) 11100000 

WARNING(0) 00110000 

D 21001102 
-*SUBADD(1) 10101010 

= 10200022 
CARRY(1) 01000100 

WARNING(1) 00100010 
or WARNING(0) 00110000 

. WARNING 00110010 

The algorithm W + to find zeroes becomes the algorithm W" to find nines 

by changing '-*' to '+ *'. In the explication following the algorithm 

change: 
to 

'diminished* to 'increased' 

•d[j] * 1' to 'd[j] £ z[j] 4 2' 

•d[j] = 0' to 'd[j] = z[j] 4 1*. 

This algorithm can also be implemented either with boolean and shift 

instructions or with table lookup. However, it also uses the carrying 

adder, and it is only constant time to the extent that a carrying add is. 

We know from Winograd ,1965,that a constant time carrying add is theoretically 

impossible. The only claim made, then, is that the algorithm takes constant 

time in the context of a large fixed-time carrying adder whose capacity is 

certain not to be exceeded. (Such is the situation in the array example, 

where carrying adds are represented by integer adds on an integer adder of 

far greater capacity than would ever be needed.) 
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3.3 R is a much more intuitive algorithm whose principle is: 'keep sub

tracting the carries until they go away'. It happens to be an effective 

strategy. 

In defining R assume for convenience that C is a signed carry indicator— 

that is, after a use of the carrying adder, 

c[i] = if there was a carry into position i then  

if the operation was '+ *' then +1 

else -1 

else 0. 

Then R is: 

D := E := A + * B, signed carry to C; 

while C ^ 00 0 do 

E j B E . * C, signed carry to C. 

The result is E = A + + B. 

To prove this, note: 

(1) initially E — C = A + + B, by definition of signed carry; 

(2) this is preserved by each cycle through the while statement since 

the carries are subtracted and any induced carries are recorded 

again in C; 

(3) at termination C = 00...0, hence 

E — 00...0 = E = A + + B; 

(4) the algorithm terminates since at each cycle through the while 

statement at least the rightmost carry is eliminated. 
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EXAMPLE 

n = 15, Z = 3 3 .... 3 

A 
2 2 2 1 0 0 0 1 2 1 1 2 2 2 1 

• • B 
18 0 2 2 2 2 1 1 2 0 2 1 2 1 

* D 
12 0 10 0 0 0 1 0 2 2 1 1 2 

CARRY 
1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 

D CARRY 
0 0 12 1 1 1 2 0 0 1 1 0 1 2 

CARRY 
0-1- 1-1- 1-1-1 0 0 0 0 0 0 0 0 D CARRY 

m 

0 2 0 0 2 2 2 2 0 0 1 1 0 1 2 CARRY 
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

D -• CARRY 
a 
0 0 2 0 2 2 2 2 0 0 1 1 0 1 2 

CARRY 
0-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -• CARRY * 
0 1 2 0 2 2 2 2 0 0 1 1 0 1 2 

CARRY 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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3*4 An exact measure of speed for these algorithms depends on their 

exact implementation. Instead a crude measure will be used—cycles, 

defined as the number of uses of the carrying adder. 

Q obviously uses 2 cycles to find WARNING, hence 2 to find TRUCAR, and 

3 to find A + + B, regardless of the length n of the n-tuples. 

The expected number of cycles for R is related to clusters, where a 

cluster is defined most simply to be a set of consecutive positions with 

carries after the first correction E - * C. (In the previous example the 

only cluster is underlined.) In general a cluster of length p requires 

p/2 cycles to be reduced by this algorithm, and in general the clusters 

can be reduced in parallel; therefore the key variable is the expected 

maximum cluster length m. This is not a very tractable variable, but simula

tion studies with z[1] = z[2] = z[n] and A and B taken uniformly from 

the n-tuples mod Z show 

ra ~ 1n(n). 

m also varies inversely with z[i], since it depends on the absolute probability 

of a 0 or a 1 in a given position. 

Simulation gives the following rough values for algorithm R, with 

n-tuples A and B uniform on IZ: 

(1) Z a 33 3 

n m 
10 2.3 
11 2.5 
12 2.6 
15 2.9 
20 3.3 
30 3.8 
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(2) Z = 10 10 .... 10 

n m 
30 1.9 

In any actual use a simulation study of algorithm R should be made 

since for low n or high z[i] R will probably be faster than Q. However, 

the existence of Q sets an absolute ceiling on the task of calculating 

TRUCAR. 

In the next section a table lookup method will be given for detecting 

carries in the array example and the above considerations will be used to 

calculate the efficiency of this method over its obvious rival. 
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4. Recall from section 2 that the weighted sum algorithm for arrays converts 

an n-tuple P into an integer f (P). In this section two algorithms S and 
n 

T are given for processing jumps. 

Assume A is the n-tuple remembered, B is the jump call n-tuple, and 

E := A + + B is the new n-tuple. S is the intuitive algorithm which stores 

A and accepts B as n-tuples and recreates f^(E). T stores A and receives 
B as a = f (A) and b = f (B) and uses either algorithm Q or R to find n n 
e = f (E). n 

S and T are now described and their efficiency compared. 

4.1 Algorithm S 

E := A + + B, e := M E ) , form TRUCAR 

i := 0 
e := 0 

,—> i := i+1 
i > n ? (yes) > exit 
e[i] := a[i] + b[i] 
e[i] * z[i] ? > (yes) ^ 

1 e[i] : = d[i] - z[i] 
trucar [i] := 0 trucar [i] := 1 

1 

e := e x r[i] 
e := e + e[i] 
go tOj 

Counting one time unit for each instruction, and assuming equally 

probable the two branches of the inner loop, S takes 8.5 units to go through 

the outer loop, hence 

time(S) 8.5 x n. 
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4.2 Algorithm TQ 

e := f (A + + B) (where a = f (A), b = f (B)), 
Li n n 

form TRUCAR, using algorithm Q 

W+ 

1:2.5 d := a + b mod z 
2:4 form CARRY 

^3:2.5 dummy := d - fn<SUBADD(0)) mod z 
4:4 form CARRY(0) 
5:4 form WARNING(0) 
6:2.5 dummy := d - f (SUBADD(l)) mod z 

n 
7:4 form CARRY(1) 
8:4 form WARNING(1) 

^9:1 WARNING := WARNING(0) or WARNING(1) 
10:4 form TRUCAR 
11:1 t := f (TRUCAR) n 
12:2.5 e := d - t mod z 

The steps have been labeled f i : j f , where i is the step number and j 

is the time required for the step, calculated as before. 

Notes 

steps 1,3,6,12: 

'a := b + c mod z 1 is assigned time = 2.5 as the expansion of: 

a = b + c 
a £ z? (yes) »a := a - z 

steps 2,4,7: Time = 4 assigned for forming 

carrying indicator is justified in section 4.4, which describes 

the algorithm to find carries, 

steps 3,6: Assume f^(SUBADD(x)) pre-stored 

step 11: by table lookup. 

Thus time(TQ) s 36. 



-24-

4.3 Algorithm TR 

e := f (A + + B) (where a = f (A) and b = f (B)), n n n 
form TRUCAR, using algorithm R 

1:3.5 d := e := a + b mod z 
p>2:4 form CARRY 

3:1 CARRY = 00....0 ? 
4:1 c := f (CARRY) n 
5:2.5 e := e - c mod z 
6:4 form CARRY 
7:1 CARRY = 00....0? 
8:1 c := f (CARRY) n 
9:2.5 e := e + c mod z 
10:1 

11:1 
* 

TRUCAR := d - e mod z 

(yes) 

(yes) 

Note 

steps 4,8: by table lookup 

The signed carry of algorithm R has been accomplished by an alternation 

of sign in the carry correction. The while statement of R now takes 9 units. 

Hence time(TR) = 7.5 + 9m, where m is the expected number of cycles for R. 

Since time(TQ) = 36 and time(TR) = 7.5 + 9m, in this case TQ should be 

used when 

7.5 + 9m > 36 
or m > 3.2. 

Since TQ sets an absolute upper limit of 36 regardless of n, and 

time(S) = (8.5)n, T may be used in preference to S when 

(8.5)n > 36 
or n > 5. 
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This must be balanced against the space requirements of T # These will be 

examined in connection with the explanation of an algorithm to detect 

carries in the array application, which now follows. 

4.4 The algorithm requires a table of length z (sometimes less) whose 

elements are n-1 bit binary words—one bit for each position i = 1,2,....,n-l 

into which a carry could occur. The a'th word in the table, where a s . £ (A) f 

is HH(A), a function defined below. The importance of the function HH is 

that it enables non-carrying binary addition (written '©'), provided by the 

source language or hardware, to be used as a check on the carrying addition 

mod Z # 

The algorithm is: 

D := A + * B 
C := HH(A) 0 HH(B) 0 HH(D) 

and C is the carry indicator. 

With table lookup the algorithm looks like: 

d :=s a + b mod z 
C := T(a) 0 T(b) © T(d) 

where a = f (A), b = f (B), n n 
and T(f (X)) = HH(X). n 

For A € IZ, HH(A) is defined by: 

HH(A)[i] = [f,(A) + f (A)] mod 2 
1 n 

using the recursively defined functions f^ of section 2. 

We will say that a function (J> has property if, in the context of 

a carrying add, 
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{1, if there was a carry into position i 

0, else. 

It remains to prove that the function 

HH(A)[i] © HH(B)[i] © HH(A + * B)[i] 

has property P̂ ^ for 1 ̂  i < n. 

In proving this the following notation will be used. Given an n-tuple 

mod Z 

A a a[1] a[2] a[n] 

let 

Aj . a[l] a[2] .... a[j], 1 <; j £ n, 

be the truncated 1-tuple A^, a member of the j-tuples mod Z^. Let 
j 

z. = n z[i]. 
J i=i 

The algorithm uses the fact that in a carrying add there is no carry 

into the rightmost position. For a given A and B in IZ, (A + * B ) ^ , the 

truncated carrying sum of A and B, differs from A^ + * B^, the carrying sum 

of the truncated parts, if and only if there is a carry into position i of 

A + * B; if so 

(A + * B ) i = A± + * B i + * 1 

where ^ is the i-tuple with i-1 leading O's and a trailing 1. 

Example n = 4, Z = 3 3 3 3 

A 0212 A 2 02 
+*B 0212 +*B 2 02 

= 1201 = 11 

Then (A + * B ) 2 = 12 = A 2 + * B 2 + * 01. 
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Now (A + * B ) i m fAA + * B), 

A i + * B i « f i ( A ) + f i ( B ) m o d V a n d h « 1# 

Hence: 

(L6) has property P^« 

where = [f^A) + f;,(B)]mod z : + f (A + * B). 

Now assume either: 

Case CO: z[1] is even—hence z^9z^909m9z^ = z are all even; 

or 

Case CI: z[1], z[2], #.. ,z[n] are all odd, hence z.j , Z £ , . . . ,z^ = z 

are all odd. 

One or other case must exist, since, from the software's point of 
view the order of the elements in the n-tople is irrelevant, and any 

z[i] even (if there is one) may be taken as z[1]. 

In either case (z + z^) mod 2 = 0 for 1 ̂  i ̂  n. 

Now HH(A)[i] © HH(B)[i] © HH(A + * B)[i] 
= [£.(A) + f (A) + f.(B) + f (B) l n l n 

+ ff. (A + * B) + f (A + * B) mod 2 l n 
= (HI + HN) mod 2 

where HI = f.(A) + f.(B) + ff.(A + * B) i l l 
and HN « f (A) + f (B) + f (A + * B) . n n n 

It remains to prove (HI + HN) mod 2 has property P^. 

Case f (A) + f (B) < z n n 
=*f,(A) + f.(B) < z.. i l l 
Then HN mod 2 = [2 x (f (A) + f (B))] mod 2 = 0 , 

n n 
and (HI + HN) mod 2 = HI mod 2 
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{[^(A) + f t(B)] mod z ± + f t(A + * B)} mod 2 

a S± mod 2 

has property P^ by L6. 

Case; z £ ff (A) + ff (B) < 2xz. n n n 
In this case 

HN mod 2 = [2 x (f (A) + f (B)) - z] mod 2 
n n 

= z mod 2. 

There are two subcases: either it is also true that 

z± <. f±(A) + f^B) < 2xz 

or f ±(A) + f t(B) = z^l w 

<z[1]-1, z[2]-1,...,z[i]-1> 

and there is a carry into position i. 

Case: z. <; f.(A) + f.(B) < 2xz 4 — — i l l i 
Then HI mod 2 

= {[^(A) + f±W\ mod z± + Z i + fj[(A + * B)} mod 2 

= mod 2 © z^ mod 2, 

and (HN + HI) mod 2 = S. mod 2 © (z + z,) mod 2 
i i 

= mod 2, 

has property P^ by L6. 

Case: f ±(A) + f^B) * z^l, f£(A + * B) 8 0. 

Then HI mod 2 = (Zj-1+0) mod 2 

and (HI + HN) mod 2 = (z + z^-l) mod 2 = 1 , which is 

correct because in this case there is a carry into position i. 
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This concludes the proof that the function HH works as described. 

Review of the proof will show that the algorithm works also for the case 

A - * B. Tables of HH are given for Z B 4 3 2 and Z = 3 3 3 in tables I 

and II. 

Example (cf example of section 2.2, and table II) 

n = 3, Z = 3 3 3 

A 021 f 3(A) 7 HH(A)11 
4*B 002 +f 3< B) 2 ©HH(B)00 
=D 100 =f 3 (D) 9 =11 

CARRY 110 ^1H(D)00 
sCARRYl1 

To construct a table of HH by hand for an arbitrary Z, first write down 

the n-tuples P in order of f^Cp). Since 1 r ^ 1, this corresponds to: 

(1) 00....0 is the O'th n-tuple 

(2) if P is the p'th, p f = p + * 1 r is the (p+l) fth. 

Then construct a table of H(P), where H(P)[i] = f^P) mod 2: 

(1) 00 0 is H(<0 0 0>) 

(2) given the p'th entry H(P), form the (p+l) fth, H(P f) by: 

l(P)[i] i f p [ i ] = p , [ i ] 
H C(P)[i] if p[i] = i 

(P)[i] @ 1, else . 

To construct HH(P), let HH(P) = H(P) when f n(P) is even, else 

HH(P)[i] := H(P)[i] © 1. This corresponds to modifying 

H(P)[i] = f ±(p) mod 2 

by the parity of f n ( p ) * 
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It remains to calculate k, the time taken to form a carry indicator 

by the above algorithm. First note that the length of the table can 

be cut from 

z = z[l] X z[2]x...xz[n] 

t o jln case CO, 2x z[2] x z[3]x.•..xz[n] ̂  

lin case CI, z[2] x z[3]x....xz[n] J 

by the relation 

T(a) = T(a mod 2) 

which will be proved below. 

Then given D := A + * B in the form fd : = a + b mod z 1, the algorithm 

to find C the carry indicator, is: 

1:1 C := HH(A) © HH(B) 
2:2 j := d mod z 
3:1 C := C © T(j). 

(The timing of step 1 assumes, as is consistent with the use of the algorithm, 

that HH(A) and HH(B) are known without table lookup.) 

Thus k = 4. 

The space requirements for the table are for a length of z/z[l] or 

2xz/z[l] and a width of n-1 bits. This is large in itself but not relatively 

large as software for handling an array or array page of length z and width 

(say) 32 bits. It is in fact comparable with the space used by the rival 

sort tree algorithm for storing arrays. 
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(L7) T(a mod S) - T(a) 
Proof for case CO (CI is similar). 

2 = 2xz[1] x z[2]x xz[n]« <2 0 0 . . . . 0>, 

and if a = s + kz, 0 < s <; 2, 

then A = S + * <2k 0 0 . . . . 0>, where S w s. 

Let K = <2k 0 0 . . . 0>. 

Note first that 

HH(K) = 0 0 . . . 0 

since HH(K)[i] = [f.(K) + f (K)] mod 2 
I n 

= [2xkxz[2] x z[3]x Xz[i] + 2 Xkxz[2] x z[3]x xz[n]] mod 2 

= 0 

Note second that + * K causes no carry (since k[i] = 0, 1 < i ^ n ) . 

Hence the carry indicator for A - * K 

C m HH(A) ©HH(K) ©HH(A - * K) = 0 0 . . . 0 . 

But T(a mod 2) = HH(A - * K) 

= C © HH(K) © HH(A) 

= 0 0 . . . 0 © 0 0 . . . . 0 © HH(A) 

= HH(A) = T(a). QED 



-32-

5. Summarizing this paper: it has explained the relation of the weighted 

sum array storage algorithm to carrying adders; it has investigated two 

algorithms for correcting carries, one intuitive, one less obvious but 

having the advantage of requiring fixed time; and it has described a table 

lookup algorithm for detecting carries in the array example. 

The disappointment of the study is that though these algorithms together 

provide a complete system for processing jump calls they do not in practice 

appear to be preferable to the most straightforward algorithm S. The practical 

limit of the size of an array or array page in core (say 4K words) puts a 

practical limit on the dimensionality of an array to be stored by the weighted 

sum method (say 8). At n = 8 the carry correction algorithm R does not 

appear to have a sufficient speed advantage to justify its tables and non-

intuitive software. 

The strength of the study is that a rigorous examination of the algor

ithms puts the above judgment on a quantitative basis; and perhaps the 

separate algorithms themselves will be of use to the reader. 
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TABLE I 

AUXILIARY FUNCTIONS FOR n = 3, Z = 4 3 2 

p F K P ) F2(P) F3(P) H(P) HHCP) 

000 0 0 0 00 00 
001 0 0 1 00 11 
010 0 1 2 01 01 
011 0 1 3 01 10 
020 0 2 4 00 00 
021 0 2 5 00 11 
100 1 3 6 11 11 
101 1 3 7 11 00 
110 1 4 8 10 10 
111 1 4 9 10 01 
120 1 5 10 11 11 
121 1 5 11 11 00 
200 2 6 12 00 00 
201 2 6 13 00 11 
210 2 7 14 01 01 
211 2 7 15 01 10 
220 2 8 16 00 00 
221 2 8 17 00 11 
300 3 9 18 11 11 
301 3 9 19 11 00 
310 3 10 20 10 10 
311 3 10 21 10 01 
320 3 11 22 11 11 
321 3 11 23 11 00 
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TABLE II 

AUXILIARY FUNCTIONS FOR n = 3, Z = 3 3 3 

p F K P ) F2(P) F3(P) H(P) HH(P) 

000 0 0 0 00 00 
001 0 0 1 00 11 
002 0 0 2 00 00 
010 0 1 3 01 10 
011 0 1 * 01 01 
012 0 1 5 01 10 
020 0 2 6 00 00 
021 0 2 7 00 11 
022 0 2 8 00 00 
100 1 3 9 11 00 
101 1 3 10 11 11 
102 1 3 11 11 00 
110 1 H 12 10 10 
111 1 13 10 01 
112 1 U 10 10 
120 1 5 15 11 00 
121 1 5 16 11 11 
122 1 5 17 11 00 
200 2 6 18 00 00 
201 2 6 19 00 11 
202 2 6 20 00 00 
210 2 7 21 01 10 
211 2 7 22 01 01 
212 2 7 23 01 10 
220 2 8 24 00 00 
221 2 8 25 00 11 
222 2 8 26 00 00 



Security Classification 

DOCUMENT CONTROL DATA -R&D 
(Security clm9»ltlemtton of lilt: body ol mftrmet mod Indmulng mnnolmtlon mumt bm mnfred wh.n th. ov.rmtt rmport f# 

1 1 . O R I G I N A T I N G A C T I V I T Y (Corpormf muthor) 

Carnegie-Mellon University 
Department of Computer Science 
Pittsburgh, Pennsylvania 15213 

clmmmlilmdy 
2 « . R E P O R T S E C U R I T Y C L A S S I F I C A T I O N 

UNCLASSIFIED 
1 6 . G R O U P 

ALGORITHMS FOR CORRECTING CARRIES IN A CARRYING ADDER, WITH AN EXAMPLE FROM ARRAY 
SOFTWARE 

| 4 * OESCRIPTIVE NOTES fT>po ol import mnd Inclumlvm dmfrn) 

Scientific Interim I S . A U T N O R ( S ) (Flrmtnmmm, mlddim MUmt. Uat nmmm) 

Nicholas Zvegintzov 

| « . R E P O R T O A T B 

June 1969 
7 « . T O T A L N O . O F P A G E S 

39 

6 . PROJECT NO. 

d. 

F44620-67-C-0058 

9718 

6154501R 
681304 

ORIGIN A TOR'S REPORT NUMSJER(S) 

S O . O T H E R R E P O R T N O ( S > (Any oCfeor 
Ihlm rmport) 

thmi mmy bm mmmignmd 

1 0 . D I S T R I B U T I O N S T A T E M E N T 

1. This document has been approved for public 
release and sale; its distribution is unlimited, 

! It. S U P P L E M E N T A R Y N O T E S 

TECH, OTHER 

S P O N S O R I N G M I L I T A R Y A C T I V I T Y 

Air Force Office of Scientific Research (SI 
1400 Wilson Boulevard 
Arlington, Virginia 22209 

A carrying adder is defined as a device that takes two integer n-tuples, adds 
corresponding positions sequentially from the right, mod some predefined radix, and 
transmits a 1 to be added in the next left position each time the mod operation is 
non-trivial. One of the two principal storage methods for arrays has the charac
teristic that the integer sum of two represented array points corresponds to their 
carrying sum. A fixed time algorithm is described for distinguishing true carries 
from propagated carries, and compared with other algorithms. A table lookup algo
rithm is described for detecting carries in the array example and its efficiency 
is discussed. 



Security Classification 

1 4 . 

KCY W O M O S 

L I N K A L I N K a L I N K C 

M O L E W T R O U E W T n o t e W T 

Security Classification 


