
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

TWO CHARACTERIZATIONS OF THE
CONTEXT-SENSITIVE LANGUAGES

By

Michael J. Fischer

Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pennsylvania

September, 1969

This work was supported by the Advanced Research Projects Agency of the
Office of the Secretary of Defense (F44620-67-C-0058) and is monitored
by the Air Force Office of Scientific Research. This document has been
approved for public release and sale; its distribution is unlimited.

TWO CHARACTERIZATIONS OF THE CONTEXT-SENSITIVE LANGUAGES
Michael J. Fischer

Carnegie-Mellon University

SUMMARY

An n-dimensional bug-automation is generalization of a finite state acceptor to n-dimensions.
With each bug B, we associate the language L(BjJ which is the set of top rows of the n-dimensional
rectangular arrays accepted by B. One-dimensional bugs define trivially the regular sets. Two-
dimensional bugs define precisely the context-sensitive languages, while bugs of dimension 3 or
greater define all the recursively enumerable sets.

We consider also finite state acceptors w|th n two-way non-writing input tapes. For each such
machine M, let domain (M) be the set of all strings which are the first component of some n-tuple of
tapes accepted by M. For any n ̂ 1, the domains of n-tape two-way finite state acceptors are precisely
the same as the languages definable by n-dimensional bugs, so as a corollary, the domains of two-tape
two-way finite state acceptors are precisely the context-sensitive languages.

1. Introduction

A bug-automation is defined to be a non-
writing, finite state acceptor which operates
on an n-dimensional, rectangular array of sym­
bols called a scene. In a single step, the bug
may change state and move its read head one
square in any direction in the scene. The move
depends only on the current state of the bug and
on the symbol under scan. We consider non-
deterministic bugs, so in general more than one
move is possible at any step of the computation.
A scene is accepted if, when the bug is started
in the upper left-hand corner in the designated
start state, there exists a sequence of moves
which ends by the bug falling off the scene in
an accepting state; otherwise it is rejected.

Blum and Hewitt have studied two-dimensional
finite state acceptors as pattern recognition
devices.1 Their models are similar to our bugs,
although their halting conventions differ, and
their machines can tell when they are at the
edge of the scene while ours cannot. We are not
concerned here with the recognizable scenes
but rather with the languages defined by their
projections, so for our purposes, these dif­
ferences in convention make no difference, and
our theorems are true of their model as well.

With each bug B, we associate a language
L(B) defined to be the set of all top rows of
scenes accepted by B. In the case of n > 2, by
"top row" we mean "the top row of the top plane
of the top solid...".

Letting n vary, we get a coarse classifica­
tion of languages. One-dimensional bugs trivially
define exactly the regular sets, and for n ̂ 3,
n-dimensional bugs can define all the recursively
enumerable sets. Our main theorem is that the
languages definable by two-dimensional bugs are
precisely the context-sensitive languages.

There is a close relationship between n-
dimensional bugs and finite state acceptors with
n non-writing two-way tapes. Define the domain
of a relation R c E * n to be the set of all
strings x €E* such that there exist y2»»..,yn€S

so that <x,y2,...,yn> €R. We show for each n *]
that the domains of the relations defined by n-
tape, two-way finite state acceptors are the same
as the languages definable by n-dimensional bugs.
Hence, as a corollary, the domains of two-tape
two-way finite state acceptors are precisely the
context-sensitive languages.

2. Bug-Automata

Definition 2.1: An n-dimensional scene
over £ is an n-dimensional rectangular array of
elements of £. The set of all n-dimensional
scenes over £ is denoted by £ ' n) .

Given a scene A££ ^ , we let it (A) be the
number of planes in the i t h coordinate. Thus,
for 2-dimensional scenes, ̂ (A) is the number of
rows and fyik) is the number of columns.

If 1 <: i k £ ^(A) for k«1,...,n, we let
A< i denote the symbol in A with coordinates M> • • •>ln
ij,...,in. The sequence of indices ij,...,iR will
sometimes be abbreviated by T.

Definition 2.2; A(non-deterministic)bug-
automation is a 6-tuple (n,K,£,6,qQ>F), where n
is the dimensionality of the bug; K is a finite
set of states; £ is a finite set of input symbols;
6: K X £ -* 2< K x S n) is the control function,
where S = {-1,0,+l } is the set of shifting oper­
ations; q Q9C is the start state; and F £ K is a
set of accepting states.

An instantaneous description is a pair <q,i>,
where q£K and i £ N n is a position vector.*

Given a bug B and an input A££ , we say
that <q,i>, |- <q , , t , > if (i) 1 £i k * l± (A) for
k « l,...,n; and (ii) <q,,t> €6(q,A-£) for some
t such that 7' = T + "s, where "+" denotes usual
componentwise vector addition.

* n N denotes the set of natural numbers, and N is
the set of all n-tuples of natural numbers.

-1-

We let [*- be the reflexive, transitive
closure of the relation (— •

A scene A£E (Q) is accepted by a bug B =»
(n,K,£,6,q0, F) in case there exists an instan­
taneous description <q,1> such that

<q0,<l,l,...,l» £ <q,t>

for some q£F and some position vector i denoting
a position not on the scene, i.e. for some k,
1 <: k £ n, lfc = 0 or = \ ^ + 1 ' T h e s e t

of all scenes in E ^ accepted by B is denoted
by T(B).

Definition 2.3: With each bug B * (n,K,E»
6,q Q,F), we associate a language L(B)C £ by
taking the top row of each scene in T(B).
Formally,

L(B) = {w££* | there exists an A€T(B)
such that £(w) a (A) and w^ =
A for all k,l £ k £ jL(A)}.

A language L £ £ is said to be n-bug-definable
if there exists an alphabet E'^E and a bug B =
(n,K,£',6,qQ,F) such that L = L(B).

We remark that a one-dimensional bug may
be regarded as an ordinary two-way finite state
machine without endmarkers, and hence, by the
Shepardson construction-*, we have the theorem:

Theorem 2.4: The one-bug-definable lan­
guages are precisely the regular sets.

We remark also that for our purposes, the
lack of end-markers and border symbols is of no
concern, for they do not change the class of
definable languages, even though they do affect
the class of scenes accepted.

Lemma 2.5: A language L C D is n-bug-
definable iff the language (—L—| is n-bug-
def inable, where (—and-j are new symbols not in
£.

Proof: We prove the theorem for the case
of n=2 and leave to the reader the generaliza­
tion to larger n.

Suppose B o (2,K,E,6,q0>F) is a bug de­
fining L. We construct a new bug.B f with input
alphabet £' = EU{*,[->-|)» w h e r e * » K a n d A
are new symbols not in L B1 is defined to
follow the algorithm:

(1) Check to see if the input scene
is of the form of figure 1 with
the a 's and the b 'a in £.

J i» J

* }- is defined inductively by <qj> £ <q',T*>
if <q,£> = <q ,,t ,> or if <q,t> p <q",T"> and
<q",t"> [— <q , , r , > for some instantaneous des­
cription <q",V>.

(2) Check to see that the row of a's
is the same as the top row of b's,
i.e. that a nb. for j=l,...,m. J ' > J

(3) Move to b. . and begin simulating B.
* $'

(4) If, during the simulation, an as­
terisk is ever scanned and the sim­
ulated state of B is in F, then
accept if there is no symbol to the
right of the symbol " -] " .

Clearly, B' requires only a finite number of
states to perform this algorithm, and L(B') »
|~L<B)-| - J-L-].

Conversely, suppose }—L-̂ is definable by a
bug B. We construct a new bug B' which simulates
B on a "compressed" scene, that is, near the ed­
ges three symbols are encoded into one (see fig­
ure 2). Given an input A over the expanded al­
phabet, B' follows the instructions:

(1) Check to see if A is of the form
of figure 2, where the a/s are
in E and the b^ 's are ill in E
except for b. ,'and b, r 1,1 1 ,m

(2) Check to see that b , = U and
b. 1 , 1

1 ,m '
(3) Check to see that a « b_ for

J '»J all j, 1 < j < m.

(4) Move to b^ ̂ and begin simulating
B within the subrectangle bordered
by asterisks. Treat the triples
as three separate symbols in the
simulation.

(5) If an asterisk is ever scanned
and the simulated state of B is
final, then move to a , and ac-' m-1
cept if there are no more symbols
to its right.

Clearly, the above algorithm requires only
finitely many states, and L(B f) = L. •

3. Languages Definable by 2-dimensional Bugs

In this section, we consider 2-dimensional
bugs and show that the languages which they de­
fine are precisely the context-sensitive langue-
ges.

Theorem 3.1: Every context-sensitive
language is 2-bug-definable.

Proof: Let L be a context-sensitive
language generated by the context-sensitive

-2-

grammar G = (V ,VT,P,S) , and suppose w£L.
We define a 2-dimensional bug B which tests if
the scene given it represents a derivation (when
read from bottom to top) of the context-sensitive
grammar G (see example 3.2). B follows the
instructions:

(1) Check the input to see if it
is of the form of figure 3,
where the a^ ^'s are in

(2) For each i,l£i<:n, let a. = a.a.
th ' , m

be the contents of the i row (exclu­
sive of the asterisks). Check to see
that each of ̂ is of the form P^-Y^ ^ o r

some P ^ O y j V ^ and Y i € {#}*.

(3) Check that^ €VT*.

(4) Check that 0 = S.

(5) For each i, 1 £ i < n, see that

(6) When all of the above conditions
have been verified, then accept
if there are no symbols to the
right of the "-|".

Clearly, B requires only finitely many
states to perform the above checks. Hence, B
accepts all and only those scenes which "encode"
a derivation of the grammar G, so L(B) = |—X-—j .
By lemma 2.5, L itself is also 2-bug-definable. •

Example 3.2: Figure 4 gives the represen­
tation of a derivation of the string a^b c using
the context-sensitive grammar G = (V ,V fP,S),
where V = {S,A,B,C}, V T « {a,b,c}, andTP has the
productions:

S -* aSBC
S -> abC

CB -» BC
bB -> bb
bC -> be
cC -> cc .

A context-sensitive grammar is a quadruple
G = (VN,VT,P,S) where V N is a finite set of non­
terminal symbols, V_ is a finite set of terminal
symbols, Pc(V NUV T)* iV N(V^UV (^ rx(V NU^ + is a set
of productions with the property that if <r,£>€P,
then Jfcfof) £ j£(0) , and S € V N is the start symbol.
Define a = t if a = onot,, and t = o\ 3a 0 are G * + strings in (V N U V T) and €P . Let — = *

be the reflexive, transitive closure of
G

The language generated by G is L(G) =
{weVp*] S s ^ w } . See [2] for more details.

Before proving the converse to theorem 3.1,
we observe that it is not necessary for the bug
to be able to move diagonally; any diagonal move
can be replaced by a horizontal move followed by
a vertical move. Moreover, it is never necessary
to stay on the same square without moving. Hence,
we have (generalizing to n-dimensions):

Lemma 3.3: Let B = (n,K,£,6,qp,F) be a
bug-automaton. Then there exists a bug B* «
(n.K'.E.a'.qQ'.F1) such that T(B) = T(B') and
for each q€Kf and a €E , <q 1 ,s>€6'(q,a) implies
that s* has exactly one non-zero component.

We now state the most difficult theorem
of this paper.

Theorem 3.4: Every 2-bug-definable language
is context-sensitive.

Proof: Let B = (2,K,£,6,qQ,F) be a bug.
By lemma 3.3, we may assume that on every step
of the computation, B moves exactly one square
up, down, left, or right. We let S 1 = {<-l ,Q>,
<1,0>, <0,-l>, <0,1>} be the set of these four
shift instructions, so we are assuming that
6: K x £ ->2 K * S \

Given a scene accepted by B, we associate
with it a set of scenes over an expanded alphabet
which "describes", in a sense to be made pre­
cise later, the possible accepting computations
of the bug on the original scene. This set will
be easy to recognize: it will be the set of all
scenes over a subset of the expanded alphabet
in which each square satisfies certain local
conditions.

We will then have that a string w is in L(B)
iff there exists a description scene whose top
row describes w. But since description scenes
are defined by local conditions, we can find a
non-deterministic linear bounded automaton (LBA)
which "guesses" the description scene a row at a
time, remembering only the previous row in order
to insure that the local conditions are satisfied.
The input w will be accepted if and only if the
LBA is able to complete the description scene
starting from w.

For clarity of exposition, we will call an
element of the description alphabet a tile. Let
C = K x S' be the set of crossing transitions.
A member of C tells the state and the direction
from which a given square is entered or left.
If c = <q,s>6C, let state (c) = q and shift (c)
= s.

C C
Let D = 2 X 2 be the set of description

tiles. If d = <c1,C2>€D, let entry (d) = Cj
and exit (d) = . A description tile is a
guess of the behavior of the bug on the corres­
ponding square of the scene being described.
<q,s>€ entry (d) means that the bug may enter the

-3-

square by performing shift "s (from one of the
four surrounding squares) and then be in state
q; <q,s>£ exit (d) means that the bug may leave
the square by performing shift t and entering
state q.

A symbol a£E admits a description d£D if
there is a one-to-one correspondence m between
the entry and exit sets of d such that for
every c£ entry (d), m(c) is a possible behavior
of the bug on input a, that is, m(c)€6(state(c) 9

a) . We may think of the function m as defining
a set of paths through the square which the bug
may take in the course of accepting a scene:
when the bug enters via transition c, it may
leave via m(c). Since m is a one-one corres­
pondence, the paths it defines do not merge.

Now, we wish to assemble tiles to form
all and only those descriptions of accepting
computations. The basic requirement is that
whenever two tiles are placed adjacent, the
exit set of one along the common edge must match
the entry set of the other and vice versa. This
insures that no paths disappear or spring up from
nowhere at the boundary. In other words, every
path entering or leaving a square connects to a
path of its neighbor. In addition, the tile
used in the upper left hand corner must be the
only tile to originate a path (by pretending the
bug enters it from the left in the start state),
and every tile used on an edge of the scene must
be such that any path which drops off the scene
does so in an accepting state.

Any description scene with these properties
must describe an accepting computation, for the
only place a path can begin is in the upper left
hand corner; the only place a path can end is at
the edge of the scene in an accepting state and
finally, no paths can merge in between, elimin­
ating the possibility of a path ending in a loop.
Conversely, from an accepting path, we can
clearly find such a description scene.

We now formalize these ideas. For each
s€S' and C'CC, let K^(Cf> = {q€K | <4,8>€C'}.

H and V are the horizontal and vertical
adjacenty conditions, respectively. Let d^,d^€D«

iff (i) K < Q^ 1 >(entry(d 1)) = K < Q _1;>(exit(d2))

and (ii) K < 0^ >(exit(d 1)) = K < Q^(entry(d^) .

Similarly, <d. ,d„>€ V (d0 may be placed below
d }) iff 1 2 2

(i) _ (entry(dj)) = > c >(exit<d 2))

and (ii) K < 1^ Q >(exit(d 1)) = Q >(entry(d 2)) .

For each a£E, D denotes the set of tiles
admitted by a. We define d & iff d€D and there —————— a

-4-

exists a bijection m: entry(d) -> exit(d) such
that for all c€ entry(d), m(c)€6(state(c),a).

(2)

Now, let X€D v ' and let n - I. (X) and
m « J&2(X). X is satisfactory if for all i,j,
1 £ i £ n & 1 £ j £ m :

(i) <Xt jtX 1 + 1 j>€ V when i / n, and

^ i , j' Xi t j+l > € H W h e n j * m ;

K<-l,C^ (e n t ry (Xn,j» - *
& K < 0 > - 1 > (e n t r y (X i > m)) m j

& K < 1 > 0 > (e n t r y (X l > j)) . *

& K < 0 > 1 >(entry(X 1])> = f{qQ} if 1.1,
^ 0 if i# ;

and (iii) c >(exit(X 1 ^)C F

& K < 0 > - 1 > (e x i t (X i > 1)) C F

&K <] t (] >(exit(X n > j))CF

& K < 0 > 1 > (e x i t (X t > m)) C F .

Claim 1 : If A£ Z <2> is in T(B), then there
exists a satisfactory description scene X€ D
such that for each i,j,X. 4 € D .

(2)
Claim 2: If X£D v*' is a satisfactory

(2)
description scene, and A^D N ' has the property
that for each i,j,X. 4€D , thenA€T(B).

i , j Ai,J
To prove claim (1), observe that given

A£T(B) » there exists a loop-free computation
which accepts A, that is, the bug never enters
the same square in the same state twice. Now,
for each i,j, look at this loop-free accepting
computation and see what states and directions
square i,j is entered and exited from. Call
these transitions g n t r y and cexit. F o r 1 = j = 1

i,j i,j
(the initial square), also put <qQ,<0,l» into
C f n ? r y . We then let X 4 . < C ^ r y , C* x l t>. 1,1 i,j i,j i,m

The reader may verify that X defined in this
way satisfies claim (1).

(2)

To prove claim (2) , assume that X£D v ' is
(2)

a satisfactory description scene and that A£E
has the property that for each i,j,X €DA

For each i,j, choose a particular path-defining
bijection m : entry (X .) exit (X) such

i»J 1»J i»j
that m .(c)€6(state(c) ,A) for all c€entry
(xi,j>-

We use the functions m so chosen to define a i»J
sequence of crossing transitions CQ,Cj,...and a
sequence of instantaneous descriptions <p^f^>,

(a) c Q « <q 0,<0,l», p Q = q Q, and iQ=<l,l>.

(b) For each k > 0, if T f c 1 is the posi­
tion of a square on X, then the se­
quences are defined at k, and c^ «

m ? * °k -1** Pk " 8 t a t e (c
k > » a n d

k-1

V ^ - i + 8 h l f t <ck>-

Now, these sequences must terminate since
all the m are bijections and X is satisfactory, i»J
The only way the sequence can terminate, however,
is to have some i^ be off the scene, so again by
the condition that X be satisfactory, q^€F.
Finally, it can be verified that h

<qj + 1 /ij + 1> for each j, 0^j<k, so the sequence
of instantaneous descriptions is an accepting
computation of the bug, and hence A£T(B), prov­
ing claim (2).

From these claims, we see that a string w
is in L(B) if and only if there exists a satis-

(2)
factory description scene XQD with the pro­
perty that jfc9(X) = £(w) and X. £D for each J,

1 £ j £ X(w). But, as outlined before, we can
find an LBA. M to test if such a description
scene X exists, and hence L(B) is the language
accepted by M. By the theorem of Kuroda,

3
L(B) is context-sensitive. •

4. Two-Tape Two-Way Finite Automata

We use the results of the preceedlng sec­
tion to settle some questions about two-tape
two-way finite automata.

Definition 4.1: A (non-deterministic)
n-tape two-way finite automaton M with end-
markers is a 6-tuple (n,K,£,6,qQ,q^) where n is
the number of tapes; K is a finite set of states;
£ is a finite set of input symbols; 6: K x
(£ U t|-,-U>n -> 2 (R * s n) , where S = {-1,0,4-1}
is the set of shifting operations; and q^ and q^
are the start and final states respectively.

An instantaneous description is a pair
<q,i>, where q€K and i£N i s a tape head

position vector. Given machine M and a tape
vector <a°\...,a (n)>€ <|-S*^) n, define

<q,1> |-<q*'>

if 1 * i k £ J&(a^) for every k 9 1 *k £ n, and

for some ?€S n , <q' ,"s>€6(q,a.°} , a (2) ,... ,a< n >)
11 X2 n

and T* « i* + t.
i*

As usual, define f- to be the reflexive,
transitive closure of

M accepts an n-tuple of tapes w =

<w1,...,wn>€2 if, for each k, 1 £ k <; n, when

is initially written on the k t h tape of
M, then + ^

<q0,<l,l,...,l» |- <qf,i>
for some "i. Let T(M) denote the set of all n-
tuples of words accepted by M.

T(M) may be thought of as a relation on £ .
* n

For every relation R€£ , let domain (R) =
{w££ | there exist y 2 ,y3,... ,y Q€ £ such that
<w,y2,y3,...,yn>€R }•

Theorem 4.2: For every 2-dimensional bug
B, there exists a 2-tape two-way finite automaton
M such that L(B) « domain (T(M))•

Proof: Let B = (2,K,£,6,qQ,F) be a bug.
We construct a 2-tape two-way finite automaton
M which simulates B. B's input scene is repre­
sented on M's second tape by simply stringing
out the rows, one after the next, in order,
separated by a new separator symbol # (see
figure 5). Another copy of the top row of the
scene is placed on M's first tape. M follows
the instructions:

(1) Check that the segments of the second
tape delimited by # are all equal in
length to the length of the first
tape.

(2) Check that the first tape is equal
to the first segment of the second
tape (i.e., that portion up to the
first #) .

(3) Begin simulating B, treating each
segment of the second tape as a
row of the scene. If B would
shift left or right, shift the
second tape left or right accord­
ingly. If B would shift up or
down, shift to the corresponding
square in the preceeding or fol­
lowing segment of the second tape
respectively by measuring off

-5-

n + 1 squares, using the
first tape as a counter,
where n is the length of
the first tape.

(4) If B would ever fall off
the represented scene in
an accepting state, then
accept.

Clearly, w6 T(M) iff w is the representa­
tion of some scene A£T (B) , so domain (T(M))e
L(B). •

Theorem 4.3: For every 2-tape two-way fi­
nite automaton M, there exists a 2-dimensional
bug B such that domain (T(M)) = L(B).

Proof: Let M = (2,K,S,6,qQ,qf) be a 2-
tape two-way finite state acceptor. We repre­
sent a pair of tapes u,v€ (—2 —| by a scene
whose top row is u and whose successive rows
are the rows of the array A, where A =

i» J
<Uj,v t>, 1 £ i <: Jfc(v) and 1 £ j £ X(u) (see
figure 6). We define a bug B which follows
the instructions:

(1) Check that the input scene is a
representation of a pair of tapes.

(2) Simulate the action of M, inter­
preting the first member of each
pair as the symbol scanned on the
first tape, and the second member
as the symbol from the second
tape. Use horizontal shifts to
mimic shifts on the first tape
and vertical shifts to mimic
shifts on the second tape. Ac­
cept only if you discover that
M would.

Clearly, A^T(B) iff A is the representa­
tion of a pair of tapes w£T(M), so L(B) «=
|-domain(T(M))-| . By lemma 2.5, domain (T(M))
is also 2-bug-definable. •

The above two theorems together with
theorems 3.1 and 3.4 establish a second char­
acterization of the context-sensitive languages.

Theorem 4.4: A language is the domain of
some 2-tape two-way finite state acceptor if and
only if it is context-sensitive.

5. Higher Dimensional Bugs and Multitape
Two-Way Finite Automata.

We remark first that theorems 4.2 and 4.3
can be generalized to n-dimensions, for arbi­
trary n, to give the result:

Theorem 5.1: A language is n-bug-
deflnable if and only if it is the domain of
some n-tape two-way finite state acceptor.

We now show that for each n i 3, the entire
class of recursively enumerable sets is definable.

Theorem 5.2: For any n ̂ 3, a language is
recursively enumerable iff it is n-bug-definable.

Proof: By theorem 5.1, the n-bug-
definable languages are the same as the domains
of n-tape finite state acceptors. With 3 tapes,
a finite state acceptor M can simulate a 2-
counter machine using its second and third tapes
as counters and its 'first tape as the input to
the counter machine. Since a 2-counter machine
can recognize any recursively enumerable set,
any recursively enumerable set can, therefore,
be the domain of some 3 (or more) tape finite
state acceptor.

Conversely, one can clearly enumerate the
domain of an n-tape finite state acceptor by
trying all possible n-tuples of tapes and all
possible computations involving those tapes. •

Acknow1edgeme nt

The author is indebted to J.D. Ullman for
bringing the problem to his attention and for
the theorems of section 4. The theorems of
section 5 were observed in conversations with
W.C. Rounds and W.F, Ogden.

References

1 Blum, M. and Hewitt, C , "Automata on a 2-
dimen8ional tape," IEEE Conference Record of
the 1967 Eighth Annual Symposium on Switching
and Automata Theory, 155-160.

2
Hopcroft, J.E. and Ullman, J.D., Formal
Languages and their Relation to Automata,
Addison-Wesley, Reading, Mass. (1969).

3
Kuroda, S.Y., "Classes of languages and linear-
bounded automata," Inf. and Control 7, no. 2,
207-223 (1964).

4
Minsky, M.L., Computation: Finite and Infinite
Machines, Prentice-Hall, Englewood Cliffs, N,J.
(1967).

^ Shepardson, J.C., "The reduction of two-Way
automata to one-way automata," IBM Journal
of Research and Development 3, no. 2,
198-200 (1959).

-6-

3 1 a 2 a 3 • • • V l a
in

H ?

* * * * • • • * * ?

* • • •
b l , m - l

* ?

* • • •
b 2,m-l b 9 m Z,m

* ?

•
•
•

•
•
•

•
•
•

•
•
•

- •
•
•

•
•
•

•
•
•

?

*
b n , l b n,2 b n,3

• » • b
n,m-l

b * ?

* * * * • • • * * * ?

? ? ? ? ? ? ? ? ?

Figure 1: Proof of lama 2.5, addition of endmarkers.

a 2 a 3 a 5 • • •
am-3 V 2 a m-l ?

* * * * • • • * * * ?

*
< b l , l ' b l / 2 ' b l , 3 >

• • •
b l ,m-3 < b l * r 2 ' b l , m - l ' b l , m >

* ?

* < b 2 , l ' b 2 / 2 ' b 2 / 3 > • • • b2,m-3 ?

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

?

* <b ,b ,b x >
n, 1 n, 2 n, 3 b n,5 • • •

bn,m-3 <b „,b , ,b > * ?

* * * * • • • * * * ?

? ? ? ? 7 ? ? __ ? ?

Figure 2: Proof of lemma 2.5, removal of endmarkers.

311 a12 • • •
a lm H ?

* a21 a22 • • •
a2m ?

* a31 a32 • • •
a3m * ?

• • • • •
• • • • • ?
• • • • •

*
a n l an2 nm * ?

* * * • • • * * ?

? ? ? ? ? ? ?

Figure 3: Form of scene for proof
of theorem 3.1.

a a a b b b c c c
• a a a b cr

b c c C *
* a a a b b b c C C *
* a a a b b b C C C *
* a a a b b B C C C *
* a a a b B B C C C *
* a a a b B C B C C *
* a a a b B C C B c *
* a a a b C B C B c
* a a S B C B C # #
* a S B C # # # # # *
* S # # # # # # # # *
* * * * * * * * * * *

Figure «»: Representation of a derivation
of a context-sensitive granmar.

Scene: C E N E
A C C E P
T E 0 B Y
A B U G B

Tapes: h S C E N E H|

H S C E N E # A C C E P # t E D B Y # A B U G B H

Figure 5: Representation of a 2~d(menstonal scene
by a pair of tapes.

Tapes:

0 D

Scene:

F 1 R S T H

< K h > <F,H> <I ,H> <R, H> < s , H> <T,r-> <H,r ->

< K S > <F,S > <I,S > <R,S > <S,S > <T,S > <H,S >

< K E > <F,E > <I,E > <R,E > <S,E > <T,E > <H,E >

< K C > <F,C > <I,C > <R,C > <S,C > <T,C > <H,C >

< K 0 > <F,0 > < l / 0 > <R,0 > <S,0 > <T,0 > <H,0 >

< K N > <F,N > <I,N > <R,N > <S,N > <T,N > <H,N >

< K D > <F,D > <I /D > <R,D > <S,D > <T,D > <H,D >

< K H > <F,H> <I,H> <R,H> <S,-|> <T,H> < H , H >

Figure 6: Representation of a pair of tapes
by a 2-dImensional scene.

SecuriU^lassWlcatlon
D O C U M E N T C O N T R O L D A T A . R & D

(Socurlty elmmmlilemilon ot till; body o f mbmirmei mnd India In j mnnolmtlon mum! bo onfrod whon tho o w a f f roporl Im cfaaafffarf)

1. O R I O I N A T I N O A C T I V I T Y (Cotpotof OUlhof)
Carnegie-Melion University
Department of Computer Science
Pittsburgh, Pennsylvania 15213

2a. R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

UNCLASSIFIED
1. O R I O I N A T I N O A C T I V I T Y (Cotpotof OUlhof)

Carnegie-Melion University
Department of Computer Science
Pittsburgh, Pennsylvania 15213

26. G R O U P

S. R E P O R T T I T L E

TWO CHARACTERIZATIONS OF THE CONTEXT-SENSITIVE LANGUAGES

4. D E S C R I P T I V E N O T C l (Typo o f topott ond Ineluilw dmtoo)
Scientific Interim

0. A U T H O R (l) (Fttmtnmmm, mlddlm InMmU Immi nmmto)

Michael J. Fischer

6. R E P O R T O A T I

September 1969
7o. T O T A L N O . O P P A O I I 76. N O . O P R E P S

13 5
Sa. C O N T R A C T O R G R A N T N O .

F44620-67-C-0058
6. P R O J E C T N O .

9718

6154501R
d, 681304

• a . O R I G I N A T O R ' S R E P O R T N U M B E R (S) Sa. C O N T R A C T O R G R A N T N O .

F44620-67-C-0058
6. P R O J E C T N O .

9718

6154501R
d, 681304

• 6 . O T H E R R E P O R T N O W (Any othmt numbotm ihmt mmy 6o mooignod thl» ropori)

10. D I S T R I B U T I O N I T A T I M C N T

1. This document has been approved for public release and sale;
its distribution is unlimited.

I I . S U P P L E M E N T A R Y N O T E S

TECH, OTHER
12. S P O N S O R I N G M I L I T A R Y A C T I V I T Y

Air Force Office of Scientific Research. ;
1400 Wilson Boulevard I & R M A ;
Arlington, Virginia 22209

IS . A B S T R A C T

An n-dimensional bug-automation is generalization of a finite state
acceptor to n-dimensions. With each bug B, we associate the language L(B)
which is the set of top rows of n-dimensional rectangular arrays accepted by B.
One-dimensional bugs define trivially the regular sets. Two-dimensional bugs
define precisely the context-sensitive languages, while bugs of dimension 3 or
greater define all the recursively enumerable sets.

We consider also finite state acceptors with n two-way non-writing input
tapes. For each such machine M, let domain (M) be the set of all strings which
are the first component of some n-tuple of tapes accepted by M. For any
n > 1, the domains of n-tape two-way finite state acceptors are precisely the
same as the languages definable by n-dimensional bugs, so as a corollary, the
domains of two-tape two-way finite state acceptors are precisely the
context-sensitive languages.

DD , ^ 1 4 7 3 _ _ _ _ _ _
Security Classification

Security Classif icat ion
14.

K I V W O U O I
L I N K A L I N K e L I N K C

14.
K I V W O U O I

N O L I W T * O L C W T R O L C W T

4

Security Classification

