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TWO CHARACTERIZATIONS OF THE CONTEXT-SENSITIVE LANGUAGES 
Michael J. Fischer 

Carnegie-Mellon University 

SUMMARY 

An n-dimensional bug-automation is generalization of a finite state acceptor to n-dimensions. 
With each bug B, we associate the language L(BjJ which is the set of top rows of the n-dimensional 
rectangular arrays accepted by B. One-dimensional bugs define trivially the regular sets. Two-
dimensional bugs define precisely the context-sensitive languages, while bugs of dimension 3 or 
greater define all the recursively enumerable sets. 

We consider also finite state acceptors w|th n two-way non-writing input tapes. For each such 
machine M, let domain (M) be the set of all strings which are the first component of some n-tuple of 
tapes accepted by M. For any n ̂  1, the domains of n-tape two-way finite state acceptors are precisely 
the same as the languages definable by n-dimensional bugs, so as a corollary, the domains of two-tape 
two-way finite state acceptors are precisely the context-sensitive languages. 

1. Introduction 

A bug-automation is defined to be a non-
writing, finite state acceptor which operates 
on an n-dimensional, rectangular array of sym­
bols called a scene. In a single step, the bug 
may change state and move its read head one 
square in any direction in the scene. The move 
depends only on the current state of the bug and 
on the symbol under scan. We consider non-
deterministic bugs, so in general more than one 
move is possible at any step of the computation. 
A scene is accepted if, when the bug is started 
in the upper left-hand corner in the designated 
start state, there exists a sequence of moves 
which ends by the bug falling off the scene in 
an accepting state; otherwise it is rejected. 

Blum and Hewitt have studied two-dimensional 
finite state acceptors as pattern recognition 
devices.1 Their models are similar to our bugs, 
although their halting conventions differ, and 
their machines can tell when they are at the 
edge of the scene while ours cannot. We are not 
concerned here with the recognizable scenes 
but rather with the languages defined by their 
projections, so for our purposes, these dif­
ferences in convention make no difference, and 
our theorems are true of their model as well. 

With each bug B, we associate a language 
L(B) defined to be the set of all top rows of 
scenes accepted by B. In the case of n > 2, by 
"top row" we mean "the top row of the top plane 
of the top solid...". 

Letting n vary, we get a coarse classifica­
tion of languages. One-dimensional bugs trivially 
define exactly the regular sets, and for n ̂  3, 
n-dimensional bugs can define all the recursively 
enumerable sets. Our main theorem is that the 
languages definable by two-dimensional bugs are 
precisely the context-sensitive languages. 

There is a close relationship between n-
dimensional bugs and finite state acceptors with 
n non-writing two-way tapes. Define the domain 
of a relation R c E * n to be the set of all 
strings x €E* such that there exist y2»»..,yn€S 

so that <x,y2,...,yn> €R. We show for each n * ] 
that the domains of the relations defined by n-
tape, two-way finite state acceptors are the same 
as the languages definable by n-dimensional bugs. 
Hence, as a corollary, the domains of two-tape 
two-way finite state acceptors are precisely the 
context-sensitive languages. 

2. Bug-Automata 

Definition 2.1: An n-dimensional scene 
over £ is an n-dimensional rectangular array of 
elements of £. The set of all n-dimensional 
scenes over £ is denoted by £ ' n ) . 

Given a scene A££ ^ , we let it (A) be the 
number of planes in the i t h coordinate. Thus, 
for 2-dimensional scenes, ̂ (A) is the number of 
rows and fyik) is the number of columns. 

If 1 <: i k £ ^(A) for k«1,...,n, we let 
A< i denote the symbol in A with coordinates M> • • •>ln 
ij,...,in. The sequence of indices ij,...,iR will 
sometimes be abbreviated by T. 

Definition 2.2; A(non-deterministic)bug-
automation is a 6-tuple (n,K,£,6,qQ>F), where n 
is the dimensionality of the bug; K is a finite 
set of states; £ is a finite set of input symbols; 
6: K X £ -* 2< K x S n ) is the control function, 
where S = {-1,0,+l } is the set of shifting oper­
ations; q Q9C is the start state; and F £ K is a 
set of accepting states. 

An instantaneous description is a pair <q,i>, 
where q£K and i £ N n is a position vector.* 

Given a bug B and an input A££ , we say 
that <q,i>, |- <q , , t , > if (i) 1 £i k * l± (A) for 
k « l,...,n; and (ii) <q,,t> €6(q,A-£) for some 
t such that 7' = T + "s, where "+" denotes usual 
componentwise vector addition. 

* n N denotes the set of natural numbers, and N is 
the set of all n-tuples of natural numbers. 
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We let [*- be the reflexive, transitive 
closure of the relation (— • 

A scene A£E (Q) is accepted by a bug B =» 
(n,K,£,6,q0, F) in case there exists an instan­
taneous description <q,1> such that 

<q0,<l,l,...,l» £ <q,t> 

for some q£F and some position vector i denoting 
a position not on the scene, i.e. for some k, 
1 <: k £ n, lfc = 0 or = \ ^ + 1 ' T h e s e t 

of all scenes in E ^ accepted by B is denoted 
by T(B). 

Definition 2.3: With each bug B * (n,K,E» 
6,q Q,F), we associate a language L(B)C £ by 
taking the top row of each scene in T(B). 
Formally, 

L(B) = {w££* | there exists an A€T(B) 
such that £(w) a (A) and w^ = 
A for all k,l £ k £ jL(A)}. 

A language L £ £ is said to be n-bug-definable 
if there exists an alphabet E'^E and a bug B = 
(n,K,£',6,qQ,F) such that L = L(B). 

We remark that a one-dimensional bug may 
be regarded as an ordinary two-way finite state 
machine without endmarkers, and hence, by the 
Shepardson construction-*, we have the theorem: 

Theorem 2.4: The one-bug-definable lan­
guages are precisely the regular sets. 

We remark also that for our purposes, the 
lack of end-markers and border symbols is of no 
concern, for they do not change the class of 
definable languages, even though they do affect 
the class of scenes accepted. 

Lemma 2.5: A language L C D is n-bug-
definable iff the language (—L—| is n-bug-
def inable, where (—and-j are new symbols not in 
£. 

Proof: We prove the theorem for the case 
of n=2 and leave to the reader the generaliza­
tion to larger n. 

Suppose B o (2,K,E,6,q0>F) is a bug de­
fining L. We construct a new bug.B f with input 
alphabet £' = EU{*,[->-|)» w h e r e * » K a n d A 
are new symbols not in L B1 is defined to 
follow the algorithm: 

(1) Check to see if the input scene 
is of the form of figure 1 with 
the a 's and the b 'a in £. 

J i» J 

* }- is defined inductively by <qj> £ <q',T*> 
if <q,£> = <q ,,t ,> or if <q,t> p <q",T"> and 
<q",t"> [— <q , , r , > for some instantaneous des­
cription <q",V>. 

(2) Check to see that the row of a's 
is the same as the top row of b's, 
i.e. that a nb. for j=l,...,m. J ' > J 

(3) Move to b. . and begin simulating B. 
* $' 

(4) If, during the simulation, an as­
terisk is ever scanned and the sim­
ulated state of B is in F, then 
accept if there is no symbol to the 
right of the symbol " - ] " . 

Clearly, B' requires only a finite number of 
states to perform this algorithm, and L(B') » 
|~L<B)-| - J-L-]. 

Conversely, suppose }—L-̂  is definable by a 
bug B. We construct a new bug B' which simulates 
B on a "compressed" scene, that is, near the ed­
ges three symbols are encoded into one (see fig­
ure 2). Given an input A over the expanded al­
phabet, B' follows the instructions: 

(1) Check to see if A is of the form 
of figure 2, where the a/s are 
in E and the b^ 's are ill in E 
except for b. ,'and b, r 1,1 1 ,m 

(2) Check to see that b , = U and 
b. 1 , 1 

1 ,m ' 
(3) Check to see that a « b_ for 

J '»J all j, 1 < j < m. 

(4) Move to b^ ̂  and begin simulating 
B within the subrectangle bordered 
by asterisks. Treat the triples 
as three separate symbols in the 
simulation. 

(5) If an asterisk is ever scanned 
and the simulated state of B is 
final, then move to a , and ac-' m-1 
cept if there are no more symbols 
to its right. 

Clearly, the above algorithm requires only 
finitely many states, and L(B f) = L. • 

3. Languages Definable by 2-dimensional Bugs 

In this section, we consider 2-dimensional 
bugs and show that the languages which they de­
fine are precisely the context-sensitive langue-
ges. 

Theorem 3.1: Every context-sensitive 
language is 2-bug-definable. 

Proof: Let L be a context-sensitive 
language generated by the context-sensitive 
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grammar G = (V ,VT,P,S) , and suppose w£L. 
We define a 2-dimensional bug B which tests if 
the scene given it represents a derivation (when 
read from bottom to top) of the context-sensitive 
grammar G (see example 3.2). B follows the 
instructions: 

(1) Check the input to see if it 
is of the form of figure 3, 
where the a^ ^'s are in 

(2) For each i,l£i<:n, let a. = a. . .. .a. 
th ' , m 

be the contents of the i row (exclu­
sive of the asterisks). Check to see 
that each of ̂  is of the form P^-Y^ ^ o r 

some P ^ O y j V ^ and Y i € {#}*. 

(3) Check that^ €VT*. 

(4) Check that 0 = S. 

(5) For each i, 1 £ i < n, see that 

(6) When all of the above conditions 
have been verified, then accept 
if there are no symbols to the 
right of the "-|". 

Clearly, B requires only finitely many 
states to perform the above checks. Hence, B 
accepts all and only those scenes which "encode" 
a derivation of the grammar G, so L(B) = |—X-—j . 
By lemma 2.5, L itself is also 2-bug-definable. • 

Example 3.2: Figure 4 gives the represen­
tation of a derivation of the string a^b c using 
the context-sensitive grammar G = (V ,V fP,S), 
where V = {S,A,B,C}, V T « {a,b,c}, andTP has the 
productions: 

S -* aSBC 
S -> abC 

CB -» BC 
bB -> bb 
bC -> be 
cC -> cc . 

A context-sensitive grammar is a quadruple 
G = (VN,VT,P,S) where V N is a finite set of non­
terminal symbols, V_ is a finite set of terminal 
symbols, Pc(V NUV T)* iV N(V^UV (^ rx(V NU^ + is a set 
of productions with the property that if <r,£>€P, 
then Jfcfof) £ j£(0) , and S € V N is the start symbol. 
Define a = t if a = onot,, and t = o\ 3a 0 are G * + strings in (V N U V T) and €P . Let — = * 

be the reflexive, transitive closure of 
G 

The language generated by G is L(G) = 
{weVp* ] S s ^ w } . See [2] for more details. 

Before proving the converse to theorem 3.1, 
we observe that it is not necessary for the bug 
to be able to move diagonally; any diagonal move 
can be replaced by a horizontal move followed by 
a vertical move. Moreover, it is never necessary 
to stay on the same square without moving. Hence, 
we have (generalizing to n-dimensions): 

Lemma 3.3: Let B = (n,K,£,6,qp,F) be a 
bug-automaton. Then there exists a bug B* « 
(n.K'.E.a'.qQ'.F1) such that T(B) = T(B') and 
for each q€Kf and a €E , <q 1 ,s>€6'(q,a) implies 
that s* has exactly one non-zero component. 

We now state the most difficult theorem 
of this paper. 

Theorem 3.4: Every 2-bug-definable language 
is context-sensitive. 

Proof: Let B = (2,K,£,6,qQ,F) be a bug. 
By lemma 3.3, we may assume that on every step 
of the computation, B moves exactly one square 
up, down, left, or right. We let S 1 = {<-l ,Q>, 
<1,0>, <0,-l>, <0,1>} be the set of these four 
shift instructions, so we are assuming that 
6: K x £ ->2 K * S \ 

Given a scene accepted by B, we associate 
with it a set of scenes over an expanded alphabet 
which "describes", in a sense to be made pre­
cise later, the possible accepting computations 
of the bug on the original scene. This set will 
be easy to recognize: it will be the set of all 
scenes over a subset of the expanded alphabet 
in which each square satisfies certain local 
conditions. 

We will then have that a string w is in L(B) 
iff there exists a description scene whose top 
row describes w. But since description scenes 
are defined by local conditions, we can find a 
non-deterministic linear bounded automaton (LBA) 
which "guesses" the description scene a row at a 
time, remembering only the previous row in order 
to insure that the local conditions are satisfied. 
The input w will be accepted if and only if the 
LBA is able to complete the description scene 
starting from w. 

For clarity of exposition, we will call an 
element of the description alphabet a tile. Let 
C = K x S' be the set of crossing transitions. 
A member of C tells the state and the direction 
from which a given square is entered or left. 
If c = <q,s>6C, let state (c) = q and shift (c) 
= s. 

C C 
Let D = 2 X 2 be the set of description  

tiles. If d = <c1,C2>€D, let entry (d) = Cj 
and exit (d) = . A description tile is a 
guess of the behavior of the bug on the corres­
ponding square of the scene being described. 
<q,s>€ entry (d) means that the bug may enter the 
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square by performing shift "s (from one of the 
four surrounding squares) and then be in state 
q; <q,s>£ exit (d) means that the bug may leave 
the square by performing shift t and entering 
state q. 

A symbol a£E admits a description d£D if 
there is a one-to-one correspondence m between 
the entry and exit sets of d such that for 
every c£ entry (d), m(c) is a possible behavior 
of the bug on input a, that is, m(c)€6(state(c) 9 

a) . We may think of the function m as defining 
a set of paths through the square which the bug 
may take in the course of accepting a scene: 
when the bug enters via transition c, it may 
leave via m(c). Since m is a one-one corres­
pondence, the paths it defines do not merge. 

Now, we wish to assemble tiles to form 
all and only those descriptions of accepting 
computations. The basic requirement is that 
whenever two tiles are placed adjacent, the 
exit set of one along the common edge must match 
the entry set of the other and vice versa. This 
insures that no paths disappear or spring up from 
nowhere at the boundary. In other words, every 
path entering or leaving a square connects to a 
path of its neighbor. In addition, the tile 
used in the upper left hand corner must be the 
only tile to originate a path (by pretending the 
bug enters it from the left in the start state), 
and every tile used on an edge of the scene must 
be such that any path which drops off the scene 
does so in an accepting state. 

Any description scene with these properties 
must describe an accepting computation, for the 
only place a path can begin is in the upper left 
hand corner; the only place a path can end is at 
the edge of the scene in an accepting state and 
finally, no paths can merge in between, elimin­
ating the possibility of a path ending in a loop. 
Conversely, from an accepting path, we can 
clearly find such a description scene. 

We now formalize these ideas. For each 
s€S' and C'CC, let K^(Cf> = {q€K | <4,8>€C'}. 

H and V are the horizontal and vertical 
adjacenty conditions, respectively. Let d^,d^€D« 

iff (i) K < Q^ 1 >(entry(d 1)) = K < Q _1;>(exit(d2)) 

and (ii) K < 0^ >(exit(d 1)) = K < Q^(entry(d^) . 

Similarly, <d. ,d„>€ V (d0 may be placed below 
d } ) iff 1 2 2 

(i) _ (entry(dj)) = > c >(exit<d 2)) 

and (ii) K < 1^ Q >(exit(d 1)) = Q >(entry(d 2)) . 

For each a£E, D denotes the set of tiles 
admitted by a. We define d & iff d€D and there —————— a 
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exists a bijection m: entry(d) -> exit(d) such 
that for all c€ entry(d), m(c)€6(state(c),a). 

(2) 

Now, let X€D v ' and let n - I. (X) and 
m « J&2(X). X is satisfactory if for all i,j, 
1 £ i £ n & 1 £ j £ m : 

(i) <Xt jtX 1 + 1 j>€ V when i / n, and 

^ i , j' Xi t j+l > € H W h e n j * m ; 

K<-l,C^ ( e n t ry ( Xn,j» - * 
& K < 0 > - 1 > ( e n t r y ( X i > m ) ) m j 

& K < 1 > 0 > ( e n t r y ( X l > j ) ) . * 

& K < 0 > 1 >(entry(X 1 ])> = f{qQ} if 1.1, 
^ 0 if i# ; 

and (iii) c >(exit(X 1 ^)C F 

& K < 0 > - 1 > ( e x i t ( X i > 1 ) ) C F 

&K < ] t ( ] >(exit(X n > j))CF 

& K < 0 > 1 > ( e x i t ( X t > m ) ) C F . 

Claim 1 : If A£ Z <2> is in T(B), then there 
exists a satisfactory description scene X€ D 
such that for each i,j,X. 4 € D . 

(2) 
Claim 2: If X£D v*' is a satisfactory 

(2) 
description scene, and A^D N ' has the property 
that for each i,j,X. 4€D , thenA€T(B). 

i , j Ai,J 
To prove claim (1), observe that given 

A£T(B) » there exists a loop-free computation 
which accepts A, that is, the bug never enters 
the same square in the same state twice. Now, 
for each i,j, look at this loop-free accepting 
computation and see what states and directions 
square i,j is entered and exited from. Call 
these transitions g n t r y and cexit. F o r 1 = j = 1 

i,j i,j 
(the initial square), also put <qQ,<0,l» into 
C f n ? r y . We then let X 4 . < C ^ r y , C* x l t>. 1,1 i,j i,j i,m 

The reader may verify that X defined in this 
way satisfies claim (1). 

(2) 

To prove claim (2) , assume that X£D v ' is 
(2) 

a satisfactory description scene and that A£E 
has the property that for each i,j,X €DA 

For each i,j, choose a particular path-defining 
bijection m : entry (X .) exit (X ) such 

i»J 1»J i»j 
that m .(c)€6(state(c) ,A ) for all c€entry 
( xi,j>-



We use the functions m so chosen to define a i»J 
sequence of crossing transitions CQ,Cj,...and a 
sequence of instantaneous descriptions <p^f^>, 

(a) c Q « <q 0,<0,l», p Q = q Q, and iQ=<l,l>. 

(b) For each k > 0, if T f c 1 is the posi­
tion of a square on X, then the se­
quences are defined at k, and c^ « 

m ? * °k -1** Pk " 8 t a t e ( c
k > » a n d 

k-1 

V ^ - i + 8 h l f t <ck>-

Now, these sequences must terminate since 
all the m are bijections and X is satisfactory, i»J 
The only way the sequence can terminate, however, 
is to have some i^ be off the scene, so again by 
the condition that X be satisfactory, q^€F. 
Finally, it can be verified that h 

<qj + 1 /ij + 1> for each j, 0^j<k, so the sequence 
of instantaneous descriptions is an accepting 
computation of the bug, and hence A£T(B), prov­
ing claim (2). 

From these claims, we see that a string w 
is in L(B) if and only if there exists a satis-

(2) 
factory description scene XQD with the pro­
perty that jfc9(X) = £(w) and X. £D for each J, 

1 £ j £ X(w). But, as outlined before, we can 
find an LBA. M to test if such a description 
scene X exists, and hence L(B) is the language 
accepted by M. By the theorem of Kuroda, 

3 
L(B) is context-sensitive. • 

4. Two-Tape Two-Way Finite Automata 

We use the results of the preceedlng sec­
tion to settle some questions about two-tape 
two-way finite automata. 

Definition 4.1: A (non-deterministic) 
n-tape two-way finite automaton M with end-
markers is a 6-tuple (n,K,£,6,qQ,q^) where n is 
the number of tapes; K is a finite set of states; 
£ is a finite set of input symbols; 6: K x 
(£ U t|-,-U>n -> 2 ( R * s n ) , where S = {-1,0,4-1} 
is the set of shifting operations; and q^ and q^ 
are the start and final states respectively. 

An instantaneous description is a pair 
<q,i>, where q€K and i£N i s a tape head 

position vector. Given machine M and a tape 
vector <a°\...,a ( n )>€ <|-S*^) n, define 

<q,1> |-<q\*'> 

if 1 * i k £ J&(a^) for every k 9 1 *k £ n, and 

for some ?€S n , <q' ,"s>€6(q,a.°} , a ( 2 ) ,... ,a< n >) 
11 X2 n 

and T* « i* + t. 
i* 

As usual, define f- to be the reflexive, 
transitive closure of 

M accepts an n-tuple of tapes w = 

<w1,...,wn>€2 if, for each k, 1 £ k <; n, when 

is initially written on the k t h tape of 
M, then + ^ 

<q0,<l,l,...,l» |- <qf,i> 
for some "i. Let T(M) denote the set of all n-
tuples of words accepted by M. 

T(M) may be thought of as a relation on £ . 
* n 

For every relation R€£ , let domain (R) = 
{w££ | there exist y 2 ,y3,... ,y Q€ £ such that 
<w,y2,y3,...,yn>€R }• 

Theorem 4.2: For every 2-dimensional bug 
B, there exists a 2-tape two-way finite automaton 
M such that L(B) « domain (T(M))• 

Proof: Let B = (2,K,£,6,qQ,F) be a bug. 
We construct a 2-tape two-way finite automaton 
M which simulates B. B's input scene is repre­
sented on M's second tape by simply stringing 
out the rows, one after the next, in order, 
separated by a new separator symbol # (see 
figure 5). Another copy of the top row of the 
scene is placed on M's first tape. M follows 
the instructions: 

(1) Check that the segments of the second 
tape delimited by # are all equal in 
length to the length of the first 
tape. 

(2) Check that the first tape is equal 
to the first segment of the second 
tape (i.e., that portion up to the 
first #) . 

(3) Begin simulating B, treating each 
segment of the second tape as a 
row of the scene. If B would 
shift left or right, shift the 
second tape left or right accord­
ingly. If B would shift up or 
down, shift to the corresponding 
square in the preceeding or fol­
lowing segment of the second tape 
respectively by measuring off 
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n + 1 squares, using the 
first tape as a counter, 
where n is the length of 
the first tape. 

(4) If B would ever fall off 
the represented scene in 
an accepting state, then 
accept. 

Clearly, w6 T(M) iff w is the representa­
tion of some scene A£T (B) , so domain (T(M))e 
L(B). • 

Theorem 4.3: For every 2-tape two-way fi­
nite automaton M, there exists a 2-dimensional 
bug B such that domain (T(M)) = L(B). 

Proof: Let M = (2,K,S,6,qQ,qf) be a 2-
tape two-way finite state acceptor. We repre­
sent a pair of tapes u,v€ (—2 —| by a scene 
whose top row is u and whose successive rows 
are the rows of the array A, where A = 

i» J 
<Uj,v t>, 1 £ i <: Jfc(v) and 1 £ j £ X(u) (see 
figure 6). We define a bug B which follows 
the instructions: 

(1) Check that the input scene is a 
representation of a pair of tapes. 

(2) Simulate the action of M, inter­
preting the first member of each 
pair as the symbol scanned on the 
first tape, and the second member 
as the symbol from the second 
tape. Use horizontal shifts to 
mimic shifts on the first tape 
and vertical shifts to mimic 
shifts on the second tape. Ac­
cept only if you discover that 
M would. 

Clearly, A^T(B) iff A is the representa­
tion of a pair of tapes w£T(M), so L(B) «= 
|-domain(T(M))-| . By lemma 2.5, domain (T(M)) 
is also 2-bug-definable. • 

The above two theorems together with 
theorems 3.1 and 3.4 establish a second char­
acterization of the context-sensitive languages. 

Theorem 4.4: A language is the domain of 
some 2-tape two-way finite state acceptor if and 
only if it is context-sensitive. 

5. Higher Dimensional Bugs and Multitape  
Two-Way Finite Automata. 

We remark first that theorems 4.2 and 4.3 
can be generalized to n-dimensions, for arbi­
trary n, to give the result: 

Theorem 5.1: A language is n-bug-
deflnable if and only if it is the domain of 
some n-tape two-way finite state acceptor. 

We now show that for each n i 3, the entire 
class of recursively enumerable sets is definable. 

Theorem 5.2: For any n ̂  3, a language is 
recursively enumerable iff it is n-bug-definable. 

Proof: By theorem 5.1, the n-bug-
definable languages are the same as the domains 
of n-tape finite state acceptors. With 3 tapes, 
a finite state acceptor M can simulate a 2-
counter machine using its second and third tapes 
as counters and its 'first tape as the input to 
the counter machine. Since a 2-counter machine 
can recognize any recursively enumerable set, 
any recursively enumerable set can, therefore, 
be the domain of some 3 (or more) tape finite 
state acceptor. 

Conversely, one can clearly enumerate the 
domain of an n-tape finite state acceptor by 
trying all possible n-tuples of tapes and all 
possible computations involving those tapes. • 
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Figure 1: Proof of lama 2.5, addition of endmarkers. 
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Figure 2: Proof of lemma 2.5, removal of endmarkers. 
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Figure «»: Representation of a derivation 
of a context-sensitive granmar. 



Scene: C E N E 
A C C E P 
T E 0 B Y 
A B U G B 

Tapes: h S C E N E H| 

H S C E N E # A C C E P # t E D B Y # A B U G B H 

Figure 5: Representation of a 2~d(menstonal scene 
by a pair of tapes. 



Tapes: 

0 D 

Scene: 

F 1 R S T H 

< K h > <F,H> <I ,H> <R, H> < s , H> <T,r-> <H,r -> 

< K S > <F,S > <I,S > <R,S > <S,S > <T,S > <H,S > 

< K E > <F,E > <I,E > <R,E > <S,E > <T,E > <H,E > 

< K C > <F,C > <I,C > <R,C > <S,C > <T,C > <H,C > 

< K 0 > <F,0 > < l / 0 > <R,0 > <S,0 > <T,0 > <H,0 > 

< K N > <F,N > <I,N > <R,N > <S,N > <T,N > <H,N > 

< K D > <F,D > <I /D > <R,D > <S,D > <T,D > <H,D > 

< K H > <F,H> <I,H> <R,H> <S,-|> <T,H> < H , H > 

Figure 6: Representation of a pair of tapes 
by a 2-dImensional scene. 



SecuriU^lassWlcatlon 
D O C U M E N T C O N T R O L D A T A . R & D 

(Socurlty elmmmlilemilon ot till; body o f mbmirmei mnd India In j mnnolmtlon mum! bo onfrod whon tho o w a f f roporl Im cfaaafffarf) 

1. O R I O I N A T I N O A C T I V I T Y (Cotpotof OUlhof) 
Carnegie-Melion University 
Department of Computer Science 
Pittsburgh, Pennsylvania 15213 

2a. R E P O R T S E C U R I T Y C L A S S I F I C A T I O N 

UNCLASSIFIED 
1. O R I O I N A T I N O A C T I V I T Y (Cotpotof OUlhof) 

Carnegie-Melion University 
Department of Computer Science 
Pittsburgh, Pennsylvania 15213 

26. G R O U P 

S. R E P O R T T I T L E 

TWO CHARACTERIZATIONS OF THE CONTEXT-SENSITIVE LANGUAGES 

4. D E S C R I P T I V E N O T C l (Typo o f topott ond Ineluilw dmtoo) 
Scientific Interim 

0. A U T H O R ( l ) (Fttmtnmmm, mlddlm InMmU Immi nmmto) 

Michael J. Fischer 

6. R E P O R T O A T I 

September 1969 
7o. T O T A L N O . O P P A O I I 76. N O . O P R E P S 

13 5 
Sa. C O N T R A C T O R G R A N T N O . 

F44620-67-C-0058 
6. P R O J E C T N O . 

9718 

6154501R 
d, 681304 

• a . O R I G I N A T O R ' S R E P O R T N U M B E R ( S ) Sa. C O N T R A C T O R G R A N T N O . 

F44620-67-C-0058 
6. P R O J E C T N O . 

9718 

6154501R 
d, 681304 

• 6 . O T H E R R E P O R T N O W (Any othmt numbotm ihmt mmy 6o mooignod thl» ropori) 

10. D I S T R I B U T I O N I T A T I M C N T 

1. This document has been approved for public release and sale; 
its distribution is unlimited. 

I I . S U P P L E M E N T A R Y N O T E S 

TECH, OTHER 
12. S P O N S O R I N G M I L I T A R Y A C T I V I T Y 

Air Force Office of Scientific Research. ; 
1400 Wilson Boulevard I & R M A ; 
Arlington, Virginia 22209 

IS . A B S T R A C T 

An n-dimensional bug-automation is generalization of a finite state 
acceptor to n-dimensions. With each bug B, we associate the language L(B) 
which is the set of top rows of n-dimensional rectangular arrays accepted by B. 
One-dimensional bugs define trivially the regular sets. Two-dimensional bugs 
define precisely the context-sensitive languages, while bugs of dimension 3 or 
greater define all the recursively enumerable sets. 

We consider also finite state acceptors with n two-way non-writing input 
tapes. For each such machine M, let domain (M) be the set of all strings which 
are the first component of some n-tuple of tapes accepted by M. For any 
n > 1, the domains of n-tape two-way finite state acceptors are precisely the 
same as the languages definable by n-dimensional bugs, so as a corollary, the 
domains of two-tape two-way finite state acceptors are precisely the 
context-sensitive languages. 

DD , ^ 1 4 7 3 _ _ _ _ _ _ 
Security Classification 



Security Classif icat ion 
14. 

K I V W O U O I 
L I N K A L I N K e L I N K C 

14. 
K I V W O U O I 

N O L I W T * O L C W T R O L C W T 

4 

Security Classification 


