NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

TWO CHARACTERIZATIONS OF THE
CONTEXT-SENSITIVE LANGUAGES

By

Michael J, Fischer

Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pennsylvania
September, 1969

This work was supported by the Advanced Research Projects Agency of the
Office of the Secretary of Defense (F44620-67-C-0058) and is monitored
by the Air Force Office of Scientific Research. This document has been
approved for public release and sale; its distribution is unlimited.

i’ ;:i‘\ -) A -l I

LI ¥
, Hl

WO CHARACTERIZATIONS OF THE CONTEXT-SENSITIVE LANGUAGES

Michael J. Fiacher
Carnegie~Meilon University

SUMMARY

An n-dimensional bug-automation is generalization of a finite state acceptor to n-dimensions,
With each bug B, we associate the language L(B) which is the set of top rows of the n-dimensional

rectangular arrays accepted by B.

One-dimensional bugs define trivially the regular sets.

Two-

dimensional bugs define precisely the context-sensitive languages, while bugs of dimension 3 or

greater define all the recursively enumerable sets.

We consider also finite state acceptors with n two-way non-writing lnput tapes. For each such
machine M, let domain (M) be the set of all sttings which are the first component of some n-tuple of

tapes accepted by M,

For any n 2 1, the domains of n-tape two-way finite state acceptors are precisely

the same as the languages definable by n-dimensfonal buge, so as a corollary, the domains of two-tape
two-way finite state acceptors are precisely the context-senaitive languages.

1. Introduction

A bug-automation is defined to be a non-
writing, finite state acceptor which operates
on an n-dimensional, rectangular array of sym-
bols called a scene. In a single step, the bug
may change state and move its read head cne
square in any direction in the scene. The move
depends only on the current state of the bug and
on the symbol under scan. We consider non-
deterministic bugs, so in general more than one
move is possible at any step of the computation.
A scene is accepted if, when the bug i{s started
in the upper left-hand corner in the designated
start state, there exists a sequence of moves
which ends by the bug falling off the acene in
an accepting state; otherwise it is rejected.

Blum and Hewitt have atudied two-dimensional
finite state acceptors as pattern recognition
devices.' Their models are similar to our bugs,
although their halting conventions differ, and
their machines can tell when they are at the
edge of the scene while ours cannct. We are not
concerned here with the recognizable scenes
but rather with the languages defined by their
projections, so for our purposes, these dif-
ferences In convention make no difference, and
our theorems are true of their model as well,

With each bug B, we associate a language
L(B) defined to be the set of all top rows of
scenes accepted by B. In the case of n> 2, by
"top row" we mean "the top row of the top plane
of the top solid...",

Letting n vary, we get a coarse classifica~
tion of languages. One-dimensional bugs trivially
define exactly the regular sets, and for n = 3,
n-dimensional bugs can define all the recursively
enumerable sets. Our main theorem is that the
languages definable by two-dimensional bugs are
precisely the context-sensitive languages.

There 1is a close relationship between n-
dimensional bugs and finite state acceptors with
n non-writing two-way tapes. Defipne the domain
of 8 relation R € I*? to be the set of all
atrings x &* such that there exist Y2202 ¥a€L

80 that <x,y5,...,yp> €R. We show for each n 2 1
that the domains of the relations defined by n-
tape, two-way finite state acceptors are the same
a8 the languages definable by n-dimensional bugs,
Hence, as a corollary, the domains of two-tape
two-way finlte state acceptors are precisely the
context-gsensitive languages.

2. Bug-Automats

Definition 2.1: An n-dimensional scene
over L is an n-dimensional rectangular array of

élements of ¥. The set of all n-dimensional
scefies over T is denoted by § ‘W,

Given a scene AEL (“), we let ij (A) be the

number of planes in the 1th coordinate. Thus,
for 2-dimensional scenes, £1(A) 1s the numbex of
rows and Ly(A) 1s the number of columas.

If 1 = 1k < Lt(A) for k=1,...,n, we let
Ails---sin denote the symbol in A with coordinates
i,.44s1,+ The sequence of indices 11""'in will
sometimes be abbreviated by 1.

Definition 2.2: A(non-deterministic)bug-
automation is a 6-tuple (n,K,%,8,qq,F), where n
ias the dimensionality of the bug; K is a finite
set of states; ¥ is a finite set of input symbols;

§: KX T -02(K % 5% 44 the control function,
where 8§ = {-1,0,+1] is the set of shifting oper-
ations; q,&X is the start state; and F € K is a
set of accepting states. .

-

An instantaneous description is a pair <q,L>,
= *
where q€K and 1€N" is a position vector.

Given a bug B and an input A€L (n) | ve say
that <q,1>, |~ <q",1"> 1f (1) 1 =i < &; (A) for
k=1,...,n; and (ii) <q',8> €6 {q,A -7) for some

¥ such that 1' = 1 +8, where "+' denotes usual
componentwise vector additien.

* n
N denotes the set of natural numbers, and N is
the set of all n-tuples of natural numbers.

-1a-

We let }£ be the reflexive, transitive
closure of the relation }n.

A scene A€TL (n) 44 accepted by a bug B =

(n,K,%,6,qy, F) in case there exists an instan-
taneous description <q,T> guch that

*
<qp,<l,1, ..., 12 b <q,T>

for some qEF and some position vector 1 denoting
a position not on the scene, i.e. for some k,

1 ck<n, i, =Cor i =4 (A) +1, The set

of all scenes in D'\ “accepted by B is denoted
by T(B}.

Definition 2.3: With each bug B = (n,K,E,

$,9,,F), we associate a language L(B)C E* by
tak?ng the top row of each scene in T(B).
Formally,

L(B) = [wEE* | there exists an AET(B)

such that 2(w) = LI(A) and v, =

AI,],...,],k for all k,1 < k < LICA)}.

*
A lapguage L €L is said to be n-bug-definable
1f there exists an alphabet £'a% and a bug B =
(n,K,z',a,qo,F) such that L = L(B).

We remark that a one-dimenasional bug may
be regarded as an ordinary two-way finite state
machine without endmarkere, and hence, by the
Shepardson construction’, we have the theorem:

Theorem 2.4: The one-bug-definable lan-
guages are precisely the regular sets.

We remark also that for our purposes, the
lack of end-markers and border symbols is of no
concern, for they do not change the class of
definable languages, even though they do affect
the class of scenes accepted.

Lemma 2.5: A language L & 2* is n-bug-
definable iff the language }—L-{ is n-bug-
definable, where F—and-{ are new symbols not in
E.

Proof: We prove the theorem for the case
of n=2 and leave to the reader the generaliza-
tion to larger n.

Suppose B = (2,K,L,6,q9,,F) is a bug de-
fining L. We conatruct a néw bug. B' with input
alphabet £' = EUM*, |-, 3, where *, |, and
are new symbols not in E. B' is defined to
follow the algorithm:

(1) Check to see if the input scene
is of the form of figure 1 with

the aj's and the bi,j's in E.

*‘}- is defihed inductively by <q,7 |:-<q',TE><
1f <q, B> = <q’, T or if <q,T> ﬁ><q",'f"> and
<q",i"> [— <q',T'> for some instantaneous des-
eription <q",1">. :

2=

(2) Check to see that the row of a's
i the same as the top row of b's,
i.e. that aj=b‘ I for j=1,...,m.

{3) and begin siwulating B.

%)

Move to bl,l
If, during the simulation, an as-
terisk is ever scanned and the sim-
ulated state of B {8 in F, then
accept Lf there 1s no symbol to the
right of the aymbol "".

Clearly, B' requires only a finite number of
atates to perform this algorithm, and L{B') =
FLe 4 - Frd.

Conversely, suppcse F—L~{ is definable by a
bug B. We construct a new bug B' which simulates
B on & "compressed" scene, that is, near the ed-
ges three symbols are encoded into one (see fig-
ure 2). Gilven an input A over the expanded al-
phabet, B' follows the instructions:

(1) Check to see 1f A 18 of the form
of figure 2, where the a,k's are
in T and the bi ‘s are 411 in £
except for b 'Jnd b .

1,1 1,m

Check to see that b =

Y 1,1

1,m

Check to see that aj
all j, 1 < § < m.

(2 I and

= .

= b for

@ 1,3

Move to b

) and begin simulating

1,1}
B within the subrectangle bordered
by asterisks. Treat the triples
a8 three separate symbols in the
simulation.

If an asterisk i3 ever scanned
and the simulated state of B is
final, then move to a1 and ac-

(3)

cept if there are no more symbols
to its right.

Clearly, the above algorithm requires only
finitely many states, and L(B') = L. {J

3. languages Definable by 2-dimensional Bugs

In this section, we consider 2-dimensional
bugs and show that the languages which they de-
fine are precisely the context-sensitive langue-
ges.

Theorem 3.1: Every context-sensitive
language is 2-bug-definable.

Proof: Let L be a context-sensitive
language generated by the context-sensitive

grammar G = (V_,V, ,P,8), and suppose wel”

We define a 2-dimensional bug B which tests (If
the scene given it represents a derivation {(when
read from bottom to top) of the context-sensitive
grammar ¢ (see example 3.2). B follows the
instructions:

(1) Check the input to see 1f it
is of the form of figure 3,
where the a, ,'s are in

1)
VUi #].

(2} For each i,1<i<n, let aitn TR R
be the contents of the 1~ row (exclu-
give of the asterisks). Check to see

that each oy is of the form B 1Y for
some B, €(V W) and v, € #7".
*
(3) Check that &, & .
(4) Check that Bn =8

(5) For each i,
Port = By

1 £ i< n, see that

(6) When all of the above conditions
have been verified, then accept
if there are no symbols to the
right of the "—4"

Clearly, B requires only finitely many
states to perform the above checks, Hence, B
accepts all and only those scenes which "encode"
a derivation of the grammar G, so L(B) = L.

By lemma 2.5, L itself is also 2-hug-definable. O

Example 3.2: Figure &4 gives the rgpiesen-
tation of a derivation of the string a 3poc using

the context-gsensitive graunmr G = (¥ Vg P '3,
where V. = {8,4,B,C], V. = {a,b,c], and P has the
productions:

S — aSBC

S — abC
CB — BC
bBE - bb
bC — be
cC = ce .,

*A context-sensitive grammar 18 a quadruple
G = (VN V..,P,5) where V is a finite set of non-
terminal symbols, V is a ite set of terminal
symbols, P=(V UVT)* v (VN x(V LJ%?+ is a set

of productions with the property that if <,p>€pP,
‘then £(x) < 2(B), and SEV is the start symbol.

Define O-E-T if g = 01a12 and T =9 60 are
strings in (V uv) and <o,B> €P . Let -?

be the reflexive, transitive closure of -?.

The language generated by G is L{G) =

{we\lr* | 8 %ﬂ w}.

See [2] for more details.

Before proving the converse to theorem 3.1,
we observe that it is not necessary for the bug
to be able to move diagonally; any diagonal move
can be replaced by a horizontal move followed by
a vertical move. Moreover, it is never necessary
to stay on the same square without moving. Hence,
ve have (generalizing to n-dimensions):

Lemma 3.3: Let B = (n,K,T,8,q,,F) be a
bug-automaton. Then there exists a gu
(n,K',E,5' »9g *,F'} such that T(B) = T(B) and

for each q€X' and a €%, <q',8>€8"(q,a) implies

that ¥ has exactly one non-zero cowponent.

We now state the most difficult theorem
of thias paper.

Theorem 3.4: Every 2-bug-definable language
1s context-sensitive.

Proof: Let B = (Z,K,E,é,qo,F) be a bug.
By lemma 3.3, we may assume that on every step
of the computation, B moves exactly one square
up, down, left, or right. We let §' = [<.1,0>,
<1,0>, <D -i>, "<0 ,1>} be the set of these four
shlft instruccions, so we are assuming that

t
b: K xE —28%5

Given a scene accepted by B, we associate
with it a set of scenes over an expanded alphabet
which "“describes”, in a sense to be made pre-
cise later, the possible accepting computations
of the bug on the original scene. This set will
be easy to recognize: it will be the set of all
scenes over a subset of the expanded alphabet
in which each square satisfies certain local
conditions.

We will then have that a string w is in L(B)
iff there exists a description scene whose top
row describes w. But since description scenes
are defined by local conditions, we can find a
non-deterministic linear bounded automaton (LBA)
which "guesses" the description scene a row at a
time, remembering only the previous row im order
to insure that the local conditions are satisfied,
The input w will be accepted 1f and onrly if the
LBA 1s able to complete the description scene
starting from w.

For clarity of exposition, we will call an
element of the description alphabet a tile. Let
C =K x §'" be the set of crossing transitions.

A member of C tells the state and the direction
from which a given square is entered or left.
If ¢ = <q,¥€C, let state (¢) = q and shift (c)

-
= 8,

]
Let D = 2 x ZC be the set of description
tiles. If d = <c1,cé>ED, let entry d) = ¢

1
and exit (d) = ¢

3¢ A description tile is a
guess of the behavior of the bug on the corres-
ponding square of the scene being described.

<q,8€ entry {d) means that the bug may enter the

square by performing shift 3 (from one of the
four surrounding squares) and then be in state

q; <q,8>€ exit (d) means that the bug may leave
the square by performing shift ¥ and entering
state q.

A symbol a€l admits a description d€D (f
there is & one-to-ome correspondence m between
the entry and exit sets of d such that for
every c€ entry (d), m(c) 1s a possible behavior
of the bug on input a, that 1s, m{c)€s(state(c),
a}. We may think of the function m as defining
a set of paths through the square which the bug
may take in the course of accepting a scene:
when the bug enters via transition c, it may
leave via m{c). Since m is a one-one corres-
pondence, the paths it defines do not merge.

Now, we wish to assemble tiles to form
all and only those descriptions of accepting
computations. The basic requirement is that
whenever two tiles are placed adjacent, the
exit set of one along the common edge must match
the entry set of the other and vice versa. This
insures that no paths disappear or spring up from
nowhere at the boundary. In other words, every
path entering or leaving a square connects to a
path of its neighbor. In addition, the tile
used in the upper left hand corner must be the
only tile to originate a path (by pretending the
bug enters it from the left in the start state),
and every tile used on an edge of the scene must
be such that any path which drops off the scene
doea s0 in an accepting state.

Any description scene with these properties
must describe an accepting computation, for the
only place a path can begin is in the upper left
hand corner; the only place a path can end is at
the edge of the scene in an accepting state and
finally, no paths can merge in between, elimin-
ating the possibility of a path ending in a loop.
Conversely, from an accepting path, we can
clearly find such a description scene.

For each
FeS' and C'sC, let Ka(C') = {a€K | <q,2>€C'}.

We now formalize these ideas.

H and V are the horizontal and vertical
adjacenty conditions, respectively. Let dl’dZED'

<d],dé>€H (d2 may be placed to the right of d1)
1ff (1) K<o’_1>(entry(d])) = K<o,_]>(exlt(d2))
and (i1} K<0’1>(exit(d1)) = K<O,]>(entry(d2)).

Similarly, <d ,di>e V (d, may be placed below
1 2
d]) 1f€f

(1) K<_]'Q>(entry(d])) = K<_I’a>(exit(d2))

and (11} L9 ,b(exit(d])) = K<l'b(entry(d2)).

For each af€L, D_ denotes the set of tiles
admitted by a, We deline dEDa iff dED and there

b

exists a bijection m: entry(d) - exit(d) such
thet for all ¢€ entry(d), m(c)€cs(state(c),a).

Now, let X¢D (2) and let n = £ (X) and
m e £2(X). X is satisfactory if for all {i,],
1s1sn&l < j§<m
(i) <xt'j,x1+l’f>€ V when 1 # n, and

<X >€ H when] # m;

i,j’xi,j+l
(11) K<_1 ’b(entty(xn j)) =@

& Ky gplentry(X, 9) = §

& g<]’0>(entry(xl,j)) =§
& Koo, 1penery Xy 1)) = /{ap) 1£ =1,
g L 1£1;
and (1i1) K<_] a>(ex1t(xl j)): F

& K<0’_]>(exit(xi’l))ﬁ F
& K<‘.a>(exit(xn,j))c F

&K

<0,l>(exit(x1,m))= F.

Claim !: 1f AE L @ is in T(B), then ihfre
exlsts a satisfactory description scene X€D 2

such that for each i,j,xi’jEDA .
i,]
Claim 2: If X&¢D (2 is a satisfactory

(2) has the property

, then AET (B).

description scene, and A€D
that for each i,j,xi,JEDAi .
»

To prove claim (1), observe that given
A€T(®), there exists a loop-free computation
which accepts A, that is, the bug never enters
the same square in the same state twice. Now,
for each 1,§, look at this loop-free accepting
computation and see what states and directions
square 1,j 1s entered and exited from., cCall
these transitions &ztiy and Cix;t' For i=]=l

E] 2
(the initial square), also put <q0,<0,1>> into

entry entry exi
- w = -’
&y e then let X, | = <c{"(¥, ci’m'>

The reader may verify that X defined in this
way satisfies claim (1).

To prove claim (2}, assume that X€D 2) is

a satisfactory description scene and that Aezfz)
has the property that for each i,j,X, €D .
i,] Ai 3
’

For each i,), choose a particular path-defining

bijection m j: entry (Xi j) — exit (Xi) such
that m j(c)Ea(state(c),A1 J) for all céentry
(xi,j)'

We use the functions m 8o chosen to define a

sequence of crossing transitions co,c],...and a

sequence of instantaneous descriptions <de&>,
<p],il>,...:

(a) ¢y = <qp,<0,1>>, py = 45, and 1=<1,1>.

(b) For each k > 0, if '{k_l

is the posi-
ticn of a square on X, then the se-

quences are defined at k, and € =

[(ck_]), P = Btate(ck), and

+ shift (ck).

Now, these sequences must terminate since

all the m 3 are bijections and X is satisfactory.
E]
The only way the sequence can terminate, however,

is to have some I; be off the scene, so again by

the condition that X be satisfactory, qkeF.
Finally, it can be verified that <qjxj> -

<qj+l’Tj+l> for each j, Ogj<k, so the sequence

of instantaneous descriptions is an accepting
computation of the bug, and hence ACT(B), prov-
ing claim (2).

From these claims, we see that a string w
is in L(B) if and only if there exists a satis-

factory description scene XED(Z)
perty that z’z(x) o 2(w) and X

with the pro-

‘.jeqwj for each)},

1 <3< £(w). But, as outlined before, we can
find an LBA M to test If such a description
scene X exists, and hence L(B) is the language

accepted by M. By the theorem of Kurocda,
0

L(B) is context-—sensitive.3

4. Two-Tape Two-Way Finite Automata

We use the results of the preceeding sec-
tion to settle some questions about two-tape
two-way finite automata.

Definition 4.1: A (non-deterministic)

n-tape two-way finite automaton M with end-
markers is a 6-tuple (n,K,E,a,qo,qf) where n is

the number of tapes; K is a finite set of states;
L is a finite set of input symbols:; 6: K x
CU{-dD" 220X 5N “yhere § = {-1,0,411
is the set of shifting operations; and 1 and 9
are the start and final states respectively.

An instantaneous description is a pair
(q,ﬁ, where q€K and TENn is a tape head

position vector. Given machine M and a tape

vector <a(l),...,a(n)>e (F—E*-J)n, define
<q, > | <q' 1>

114 < L(aq()) for every k, 1 <k <n, and

M @

(o)
P 2a;)

for aome BES n' <q',€b(q,a peve
n

-t
8.

—J' ——d
and {" = { +
*
As usual, define }— to be the reflexive,
transicive closure of

M accepts an n-tuple of tapes W=

n
< .,w&>€2r 1f, for each k, 1 <k < n, when

I
}—uk-r] is initially written on the k ™ tape of

M, then * -
<q,<1,1,...,15> s <q,, >

for some'f. Let T(M) denote the set of all n-
tuples of words accepted by M.

*
T(M) may be thought of as a relation on § .
n
*
For every relation REL , let domain (R) =

* *
{weZ | there exist Yys¥gs+++s¥ €L such that
<“,Y2s}‘3s~--,yn>€lt]-

Theorem 4.2: For every 2-dimensional bug
B, there exists a 2-tape two-way finite automaton
M such that L(B) = domain (T(M)).

Proof: Let B = (Z,K,z,a,qo,F) be a bug.
We construct a 2-tape two-way finite automaton
M which simulates B. B's input scene {s repre-
sented on M's second tape by simply stringing
out the rows, one after the next, in order,
separated by a new separator symbol # (see
figure 5} . Another copy of the top row of the
scene ia placed on M's first tape. M follows
the instructions:

(1) Check that the segments of the second
tape delimited by # are all equal in
length to the length of the first

tape.

(2) Check that the first tape is equal
to the first segment of the second
tape (i.e., that portion up to the
first ¥ .

{3) Begin simulating B, treating each

segment of the second tape as a
row of the scene, If B would
shift left or right, shift the
Second tape left or right accord-
ingly. If B would shift up or
down, shift to the corresponding
square in the preceeding or fol-
lowing segment of the second tape
respectively by measuring off

n + 1 gquares, using the
first tape as a counter,
where n is the length of
the first tape.
(4) If B would ever fall off
the represented scene in
an accepting state, then
accept.

Clearly, WET(M) iff ¥ ig the represente-
tion of some scene AET (B), so domain (T(M))=
L(B). DO

Theorem 4.3: For every 2-tape two-way fi-
nite automaton M, there exista a 2-dimensional
bug B such that domain (T(M)) = L(B).

Proof: Let M = (2,K,2,5,q0,q) be a 2-
tape two-way finite state acceptor.” We repre-
*
sent & pair of tapes u,v€ T - by a scene

whose top row is u and whose successive rows
are the rows of the array A, where Ai =

<u » 1 €1 < i(v) and1 € § < L(u5 (see

3"y
figure 6). We define a bug B which follows

the instructions:

sV

(1) Check that the input scene is a
representation of a pair of tapes.

(2) Simulate the action of M, inter-
preting the first member of each
pair as the symbol scanned on the
first tape, and the second member
as the symbol from the second
tape. Use horizontal shifts to
mimic shifts on the first tape
and vertical shifts to mimic
shifts on the second tape. Ac-
cept only if you discover that

M would.

Clearly, AET(B) 1ff A is the representa-
tion of a pair of tapes w€T (M}, so L(B) =
f-domain(T(M)~. By lemma 2.5, domain (T(M))
is also 2<bug-definable. [J

The above two theorems together with
theorems 3.1 and 3.4 establish a second char-
acterization of the context-sensitive languages.

Theorem 4.4: A language is the domain of
gome 2-tape two-way finite state acceptor if and
only if it i3 context-sensitive.

5. Higher Dimensicnal Bugs and Multitape

Two-Way Finite Automata.

We remark first that theorems 4.2 and 4.3
¢an be generalized to n-dimensions, for arbi-
trary n, to give the result:

Theorem 5.1: A language is n-bug-

definable if and only if it is the domain of
some n-tape two-way finite state acceptor.

-6~

We now show that for each n z 3, the entire
class of recursively enumerable sets is definable.

Theorem 5.2: For any n 2 3, a language is
recursively enumerable {ff it is n-bug-definable.

Proof: By theorem 5.1, the n-bug-
definable languages are the same as the domains
of n-tape finite state acceptors. With 3 tapes,
a finite state acceptor M can simulate a 2-
counter machine using its second and third tapes
as counters and its ‘first tape as the input to
the counter machine. Since a2 2-counter machige
can recognize any recursively enumerable set,
any recursively enumerable set can, therefore,
be the domain of some 3 (or more) tape finite
state acceptor.

Conversely, one can clearly enumerate the
domain of an n-tape finite state acceptor by
trying all possible n-tuples of tapes and all

possible computations involving those tapes. O

Acknowledgement

The author is indebted to J.D. Ullman for
bringing the problem to his attention and for
the theorems of section 4. The theorems of
section 5 were cbserved ip conversations with
W.C. Rounds and W.F. Ogden.

References

! Blum, M. and Hewitt, C., "Automata on a 2-

dimensional tape," IEEE Conference Record of
the 1967 Eighth Annual Symposium on Switchiog
and Automate Theory, 155-160.

Hopcroft, J.E. and Ullman, J.D., Formal
Languages and their Relation to Automata,
Addison-Wesley, Reading, Mass. (1969).

Kuroda, 8.Y,, "Classes of languages and linear-
bounded automata," Inf. and Control 7, no. 2,
207-223 (1964) .

Minaky, M.L., Computation: Finite and Infinite
Machines, Prentice-Hall, Englewood Cliffs, N.J.
(1967) .

Shepardson, J.C., "The reduction of two-way
automata to one-way automata," IBM Journal

of Research and Development 3, no. 2,
198-200 (1959).

LN]

L

Figure 1:

Proof of lemm

2.5, addition of endmarkers.

3 % | % | 0| 23 a2 m-1
» » * veu * * *
®1,1°P1,2°P1,37 | P (Pr,s | o0 | Promes ®m2P1m1Prm |t
©2,12,2%2,3% [B2, [P25 | ==+ | P23 { ®o,m2P 172’ |
<bn,l'l:'n,Z'bn,l‘) bn,k bn,S * n,m=3 <l-"n,m-2" n,m~1’ n,m> ¥
" * » vews * »]
? ? ? ? ? ? ?
Flgure 2: Proof of lema 2.5, removal of endmarkers,

* 321|222 --- ant * ?
* azy agg | .- az., * ?
N : ?
* anl 3| --- 3m * ?
* * * .o s 4 » 7
7 ? ? ? ? 7 ?

Figure 3: Form of scene for proof
of theorem 3.1.

.«lt*tttttt*t*
CACECNERENENS NSRS N W Sy
VULQOUOQLOLODO ™ - ™
QLOOLOOCOODOOO .
LO000D0OCOODS ™
LOD00DDODDOO™N ™
L0000 00000@0OLM
TMTMHMMOMOMOMY MY D
N MM MMOMMOMOU ™
MMOMTCMMOMODMOMMO T

1_1**_-******.-*

Representation of a derivation
of a context-sensitive grammar.

Figure 4

Scene: S C E N E
A CCEP
TEDT BYY
A B UG B
Tapes: FSCENE~

FFSCENE+*ACCEP#TEDBY *ABUGDB -

Figure 5: Representation of a 2-dimensional scene
by a palr of tapes.

Tapes:

Scene:

[HEIRBLED

[=is[efc]ofn]of+]

F

S

T

-

< b

{F, >

<dJ,F>

<R, >

S, >

<T, b=>

<H,H

<t=,8 >

<F,S >

<a4,S >

<R,S >

<5,8 >

aT,s>

{~{,S >

B>

{F,E >

<dLE D

R,E >

<S,E >

<T,E >

<,E>

<F.C>

<F,C >

<,Cc >

<R,C >

<,C >

{1.C >

<4,C>

<k-,0 >

<F,0 >

<4,0 >

<R,0 >

<5,0 >

T,0 >

<~{,0 >

<N

<F N >

<IN

<R,N >

SN D

<T,N >

<,N >

<{F,D >

<F,D >

<,b>

<R,D >

<S,D >

<T,0 >

<+4.D >

<=2

<F,={>

<d,->

<R,—{>

<6,

T,—H>

1S P D

Figure 6:

Representation of a pair of tapes
by a 2-dimensicnal scene.

Security Classification

DOCUMENT CONTROL DATA-R&D

(Securlly classilication of tiile, body of abstract and indexing annotation muat be sntered when the averall report 1a elnssified)

1. ORIGINATING ACTIVITY (Corporate suthor)

Carnegie-Mellon University
Department of Computer Scilence
Pittsburgh, Pennsylvania 15213

8. REFORT SECUMITY CLABBFICATION

UNCLASSIFIED

2b, aROUPr

3 REPORTY TITLE

TWO CHARACTERIZATIONS OF THE CONTEXT-SENSITIVE LANGUAGES

4. DESCRIPYTIVE NOTES (Type of report and inclusive dates)
Scientific Interim

®. AUTHORS) (FIssf name, =iddie inltisl, lnat nams)

Michael J. Fischer

8. REPORY DATYE

September 1969

Ta. TOTAL NO. OF PAGES ' 7h. NO. OF REFS

13 5

e, CONTRACY OR GRANT NO.

. ORIGINATOR'S REPORY NUMBE R(S)

F44620-67~C=-0058
b PROJECT NO.

9718
* 6154501R . S THER REFGRT NOWI (ATy eihet masbers ihal mey be sveigned
o 681304

0. DIBSTRIBUTION BSTATEMENT

its distribution is unlimited.

1. This document has been approved for public release and sale;

1. SUPPLEMENTARY NOTES

TECH, OTHER

12, SPONSORING MILITARY ACTIVITY

Ailr Force Office of Scientific Reseigﬁﬂh) ;
1400 Wilson Boulevard

Arlington, Virginia 22209

3. ABSTRACY

context-sensitive languages.

An n-dimensional bug-automation is generalization of a finite state
acceptor to n-dimensions, With each bug B, we associate the language L(B)
which is the set of top rows of n-dimensional rectangular arrays accepted by B,
One-dimensional bugs define trivially the regular sets. Two-dimensional bugs
define precisely the context-sensitive languages, while bugs of dimension 3 or
greater define all the recursively enumerable sets,

We consider also finite state acceptors with n two-way non-writing input
tapes. TFor each such machine M, let domain (M) be the set of all strings which
are the first component of some n-tuple of tapes accepted by M. For any
n > 1, the domains of n~tape two-way finite étate acceptors are precisely the
same as the languages definable by n~-dimensional bugs, so as a corollary, the

domains of two-tape two-way finite state acceptors are precisely the

DD \2V.1473

Bacurity Classilication

Becurlty Classilication

KEY wWORDSR

LINK A

LINK @&

LiNK ¢

ROLE

wT

AaoLeR

wy

aoLe LAl

Security Classification

