NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



G915 cop

CARNEGIER~-8ELLON UNIVERSTITY

DEPARTMENT 0O F COMPUTEHR SCIENCE

REFERENTCE MANUARAL

Harold R. Van Zoeren

November 10,1969



~~-= Introduction ~==-

LCC 1is a langnage for conversational computing which operates
within the TSS monitor system on the 1IBM 360/67 computer at
Carnegie-Mellon University. In its fundamental design, LCC began
as an amalgamation of (1) the hasic elements and statements of the
algorithmic lanquage ALGOL 60 and (2) the input-output, control,
editing, and ¢€filing statements of the conversational language
J0SS, but extensive modifications have been made to exploit as
fully as possible the dynamic nature of conversational computing.
The resulting 1lanquage, with its underlying processing systenm,
gives you, the LCC wuwser, a very high degqree of power and
flexibility.

The working sentences of the LCC languaqe are statements, a
statement (abbreviated s) being a command which causes LCC to
perform an action (e.g., a modification of data, an input/output
operation, a modification of control). You may type an arbitrary
number of statemesnts, separated from one another by semicolons
{;), on a single line. Such a statement list is called a step, and
LCC will execute the statements within it from left to right.

Steps in LCC may be used in two different ways, either delayed
or immediate. Delayed steps are translated and saved by LCC, and
they may later be recalled and executed under programmer control.
A delayed step is distinquished by the presence of a preceding
decimal step number which indicates 1its relationship to other
steps. A step number must lie between 0001.0001 and 9999.9999, and
it is separated from the step text by either a colon (:) or a
comma {,). Both its integer portion, from which leading zeros nmay
be omitted, and its fractional portion, from which trailing zeros
may be omitted, nmust lie hetween 0001 and 9999, A step number
serves both as the editing desiqnator for a step and as a control
designator for the first statement in the step. In addition to the
step number, any statement in a delayed step may have one or more
labels associated with it as control designators, a lahel being an
identifier vhich 1immediately precedes the statement and is
separated from it by a colon (:). If a step has multiple step
numbers, all must precede its first statement or label, and only
the rightmost number will be used; if a statement has zultiple
labels, each will be significant. Some examples of delayed steps
are:

3.7, GO TO 3.5;
3125.0042: A « B+1; LB06: C = D#*F; LBL: F - G/3
27.85: 27.830, L: M: TYPF Y,Z; RETURN T
Delayed steps will be ordered according to their numbers, and

they may be inserteg, modified, or deleted freely while
conversing. They may be typed in any order, and a newly typed step



Introduction

will replace any previously saved step with the same number. For
execution purposes, steps are grouped into parts, with a part
being the orderel set of all steps whose numbers have the sanme
integer portion. When executed, a part will be treated as an ALGOL
block, i.e., variables which are declared and labels which are
used in it will have local meanings which are valid only when it
is active (i.e., it is being executed). All such local meanings
will be erased when execution of the part is conpleted.

An immediate step, which is distinquished by the absence of a
step number, 1is translated and executed when typed and is then
discarded. Immediate steps are used to perform one-time or “desk
calculator” calculations, to control the execution of the delayed
steps of a program, and to perform various editing and debugging
operations. An explicit transfer of control (GOTO) to an immediate
statement is not allowed, and consequently immediate statements
cannot be labelled.

Syntactically, any LCC statement may be used in either an
immediate or a delayed step. When executed, however, each
statement will be checked for validity in the currently existing
context, and at that time, some statements will be treated as
no-ops (e.g., an immediate “PAUSE’, a delayed ‘GO’), and some will
lead to errors (e.g., a global ‘GOT0’, a global ‘RETURN').

An LCC statement may be empty, in which case it contains no

non-hlank characters and it performs no action. The various
non-empty LCC statements are listed alphabetically by their
initial keywords or metavariables and described below. Following

the statement descriptions are descriptions of the subsidiary
metavariables {expressions, literal constants, etc.) used in the
language. The abbreviated syntax notation which has been used is
described in Appendix A, and the complete syntax for LCC is
summarized in Appendix B.

A
.



v

statement

ALTE

----~ LCC Statements ---—-

3= {one of the following ~- pp. 3-29)

Rgroup | ¢+ | e_1T =~e_2 , e 3 = e_U4, ... , e_(2%N-1) - o_{2+K)

.

The expressions e_I should evaluate to character strings. LCC
will search the text of the group for substrings which match the
given pattern strings e_1, e_3, ... » ©_{2¢«N-1). Each substring
which matches an e_{(2+J-1) will be replaced by the corresponding
e_(2+#J), and the group will be retranslated with its altered text.

LCC will perform the search as in the following pseudo-LCC
code:

FOR (each step in the group (ordered on step numbers)) DO
{ FOR I FROM 1 BY 2 TO 2%N-1 DO
{ START_OF_SEARCH_POINTER « 1;
AGAIN: IF (search finds substring e_I) THEN
f (replace substring by e_(I+1));
START_OF_SEARCH_POINTER « (position of
1st char after replaced substring);
GO TO AGAIN 1} 1}
IF (any replacements were made) THEN (retranslate) };

For the search LCC will treat both text and pattern strings as
sequences of either contiqguous letters and/or digits or individual
non-blank, non-alphanumeric characters, with blanks being ignored
except insofar as they separate alphanumeric sequences from one
another. As an example, the step

4.8: X«IF PQR THEN (TEMP+1) ELSE *“15.68 FF’ ;GO TC 4.41;
will be found to contain the substrings {among others)

*X=7, “(TEMP’, “+7, 157, “FF’, ‘GO TO”,
‘41; 7, and Y.’ (tuwice)

but it will not contain the substrings
‘87, ‘Q’, “.6’, ‘GDTO’, or °‘TO4’
Examples:
ALTER STEP 1.6 : X’ = “AX’ , ‘Y’ - ‘By”’

ALTER PARTS, ‘P + (Q’ -« R
ALTER 4,77 , A7 = 7



LCC Statenments
ARRAY }_‘_ident"'{-'- [ - e < 3 e)“ ol ][ '. ] -‘C'.

LCC will assign to each ident in a list the multidimensional
array structure specified by the bounds list which imnrediately
follows 1it. Fach 1item in a bounds list gives the limits on one
subscript of an array structure. The number of items is thus the
number of dimensions of the array. An item in a bounds 1list can bhe
either a pair of expressions specifying the lower and upper limits
on the subscript for that dimension or a single expression
specifying the upper limit on that subscript (the lower linmit vill
be implicitly 1).

Storage will not be allocated for an array until the array is
used, and even then it will only be allocated for a given row when
an element from that row is first accessed.

Exanples:
ARRAY LA{1:N, —3:8%K]
ARRAY JIM, JOE[10,15,20), DAVE[O:8][4)l(-6:-1]

BEGIN + s 4 .;. END

The keywords ‘REGIN’ and “END’ delimit a “block”, whose list
of arbitrary 1LCC statements will be treated as if it were in a
part, i.e., there may be local variables valid only within it. LCC
will perform a block entry, after which it will execute the
statements from the list in sequence. This “block statement® will
normally be terminated by “running off its end”. A RETURN
statement within it will first terminate the context of the block
statement and then return from the context in which the block was
embedded.

Examples:
T END

BEGIN STEP 4.8; PART 251; S =~
T 8 END

BEGIN NEW A,B; PART 6; PAR

-
[}
.
.
-
;1
=
[

CASE e OF { s_1 ; s_2

The expression e will be evaluated and rounded to an integer
Je If 1<J <N, LCC will give control to statement s_J, from
which control will normally pass to the successor of the CASE
statement., It is an error if J is out of the range 1 to N. v



. LCC Statements 5

Examples:
CASE J+1 OF { X «~ F(A,B) + C ;
X « SQRT{Y) + D
GO TO 6.2 ;
X <« STIN(Yt2) ;
GO TO 6.2 ;
X « 01}

CASE e OF [ s5_1 3 S5_2 5 aea ;3 S_N ; OTHERWISE s_(N+1) }

The expression e will be evaluated and rounded to an integer
J. If 1 £ 3 < N, action is as in the simple CASE statement without
an OTHERWISE. If J is out of the range 1 to N, control will be
given to statement s_(N+1).

Examples:
CASE I OF { X«5; OTHERWISE X « _,+5 }

COMBINE < STEPS > num_1 TO num_2 AS e

A single string will be constructed by concatenating, in step
number order, the text portions of all steps with numbers between
num_1 and num_2 inclusive. buring this concatenation process, a
semicolon (;) character will be appended to any step which does
not already terminate with one. LCC will then retranslate the new

string as step e. Steps num_1 to num_2 will not be deleted and
will be unaffected by the COMRINF statement (unless num_1 € e <
num_2). As in a group, it is an error if num_1 > num_2 {unless

nam_2 < 1).

Examples:
COMBYINE STEPS 6.7 TO 6.83 AS 6.7

COPY group AS e

If e evaluates to an integer, the set of steps from the
specified group will be copied and retranslated as a new group,
with the integer portion of each step number being replaced by the
value of e (which must not he zero). If e does not evaluate to an
integer, this statement is equivalent to the statement

COPY group AS e BY .01



1LCC Statements .

All steps in the original group must be in the same part. The
source text for the group will not be modified by the COPY, and
the original group will not be deleted.

Examples:
COPY PART 3 AS 43
CcoPY STEP 5.61 AS 12.074

COPY group AS e_1 BY e 2

LCC will copy, renumber, and retranslate the ordered set of
steps from the spacified qroup. The renumbering will start with
e_1 (or, if e_1 is an integer, with (e_1 + e_2)) and successive
step numbers will be incremented by e_2 (whose value must lie
between .0007 and .9999). The original group of steps will not be
deleted by a COPY statement (though it may be changed if some of
the new steps fall within the group). The source text for a copied
step will not be modified during the <COPY, and it is your
responsibility to make sure that the renumbered steps do not
contain spurious references to steps in the original group. To
insure this, you should use labels rather than step numbers to
refer from one statement in the group to another.

Examples:
COPY STEPS 14.371 TO 14.4305 AS 814.001 BY .002

DELETE FILE e

The expression e must evaluate to a string, which will be used
as a file name. LCC will delete that file from your file catalog,
and it will take back any storage which that file used.

Examples:
DELETE FILE *aAn‘

DELETE ALL
This statement is effectively equivalent to (but slightly
slower than) the step
FXIT ALL; DELETE STEPS; DELETE VALUES
Your working storage will be completely erased, and LCC will be

re-initialized, just as if you had logged off and then logged back
On.



. ILLCC Statements 7

DELETE | PARTS |
| STEPS |

LCC will erase from working storage both the source and object
codes for all steps (only values will remain).

DELETE VALUES

Lcc will erase from working storage the current
incarnation-value for each of your identifiers, giving every
identifier in your program the meaning “undefined”.

DELETE < STEPS > num_1 TO num_2

LCC will erase from working storage all steps whose numbers
lie Dbetween num_1 and num_2 inclusive. As in a group, it is an
error if num_1 > num_2 (unless num_2 < 1},

Examnples:
DELETE 1517.42 TO 151.536

DELETE < STEP > num

Equivalent to
NELET® STEPS num TO num

Examples:
DELETE STEP 4.231

DELETE PARTS num_? TO num_2

Equivalent to

DELETF STEPS (num_?1 + .0001) TO (num_2 + .9999)



LLCC Statements

DELETFE PART num

Equivalent to

DFLETE PARTS num TO num

DELETE

< STEPS > | + nup_1 < TO nam_2 > 4 .,.
PARTS ]

!
!

A DFLETE statement may include a group list. LCC will then
delete all steps in each of the specified groups.

Examples:
DELETE PARTS 4, 7 TO 10, 153, 438
DRLETE 3.71, 3.8t4, A4 TO (A4 + P - .9)

DELETE + varid 4 .,.

LCC will replace the current incarnation-value for each varid
in the 1list by “undefined”. Tf a varid referred to a string or
array (or any other item for wvhich storage was allocated), the
internal 1links to that storage will be cut, but the storage will
not be taken back until the block within which it was allocated
has been terminated.

Note that an array element can be deleted. This feature will
be necessary befare you can change the meaning of an array element
which is a procedure, a reference pointer, or an array name.

Examples:
DELETE A,R
DELETE CII,J,u4l

DISPLAY FILE < CATALOG >

LCC will type out a 1list of the names of all of your LCC
files. The names will be the full TSS names of your files, which
are gualified by your user number and the internal name LCCFILE.
Thus the file “SAVAL’ of user XYZ1Z213 will have the full name

XYZ12Z213.LCCFILE.SAVAL



LCC Statements 9

DISPLAY RETURN < STEPS >

LCC will type out a 1list of the currently active steps, thus
giving a map of the present control status. Step designators will
be typed one per line, and the list will be ordered so that the
innermost (most recent) step will be typed first. FPor steps inside
parts, LCC will type the step number; for immediate steps LCC will
type the characters “*##’; for a procedure call LCC will type the
procedure name. Thus LCC might type the lines

£k
17.3

FUNCT
k%

4.3
k%

in response to your “DISPLAY RETURN’ statement.
DISPLAY ALL
Equivalent to

DISPLAY PARTS; DISPLAY VALUES

DISPLAY |} PARTS |
| STEPS |

Equivalent to

DISPLAY STEPS 1.0007 TO 9999.9999

DISPLAY VALUES

LCC will type, in alphabetical order, the names and current
neanings of all of your defined identifiers (i.e., the meanings

atop each of your variable stacks). Appropriate formats will he
used for values (numeric, logic, and string) and references
(label, array, procedure, and pointer). Each displayed line will

also 1include a prefixed level number which indicates the level of
the block in which that identifier was declared, i.e., the
outermost block level in which the current meaning will hold. For
global variables, the level number of zero will be suppressed. An
example of the displayed output is:



10

ARRR
LAB
Ly
NAM
NV
PROC

W owd W N

DISPLAY < STEPS > num_]

LCC will type
numbers are hetween
is an error if num_
begin on a nevw line

L.CC Statements

ARRAY [1:5,3:10,-2:6]
IN 3.6

£L000000FF

>ABC

~1.234567,15

PROCEDURE

\STI

TO nunm_2

in order the source images for all steps whose
num_1 and num_2 inclusive. As in a group, it
1 > num_2 {unless num_2 < 1). Each step will
and will include both its number and its text.

Except for possible ainor differences in the format of the step

number, a displaye
typed it in.

Exanples:
DISP

DISPLAY < STEP > num

Equivalent to

DISPLAY 5T

BDISPLAY PARTS num_1 TO n

Equivalent to
DISPLAY ST

Examples:
DISP

DISPLAY PART nun

Equivalent to

DISPLAY PRA

d step will 1look exactly as it did when you

LAY 415.3 TO 415,7

EPS num TO num

um_?2

EPS (num_1 + .0001) TO (num_2 + .9999)

LAY PARTS 4 TO 6

RTS num TO num



LCC Statements 11

DISPLAY | < STEPS > | + num_1 < TO num_2 > +4 .,.
| PARTS i

A  DISPLAY statement may include a group list. LCC will then
display all the specified steps or parts, ordering the groups for
typing from left to right in the list.

Fxamples:
DISPLAY 3.4 TO 3.43, 3.8 TO 4.2, 4.513, 4.902

DISPLAY + varid A4 .,.

LCC will type out the current meaning for each varid in the
list. PBach displayed “meaning” will take up a single line, and it
will include exactly the same information that would be typed for
that variable by a *DISPLAY VALUES’ statement. If no meaning has
heen assigned to a listed varid, the varid will be displayed as
*undefined”,

Examples:
DISPLAY A, C, P, XI[1,11, X{(4,7,3]

EXIT

An FXIT statement is used to delete the context of the part or
step group which is currently active and give yon control in the
context of the part or step group which called it. A more precise
description of an EXIT is as follows:

EXIT recognizes only contexts involving explicitly numbered
steps and those involving the user (it regards you as the numbered

step 0.0). An EXIT statement will delete all execution contexts
down to and including that for the first non-zero numbered step on
the context stack. It will then delete all contexts down to but

not including the first numbered step. If that is a step 0.0, it
gives you control; if not it adds a new step 0.0 context, which
also gives you control. Thus an EXIT deletes all execution
contexts down to, but not including, the first numbered step below
the first non-zero numbered step, and it then gives you control.



LCC Statements "

EXIT ALL

LCC will perform successive EXITs until the global state is
reached {i.e., there are no remaining group contexts) and it will
then give control to you.

Examples:
IF RRROR6 THEN EXIT ALL

EXIT € TO > < PART > e

If part e is not currently active, LCC will type an error
pessage and give control back to you. Othervwise LCC will perforn
an EXIT. Tf the resulting context is that of part e, control will
be given to you. If not, LCC will perform another EXIT, etc.

Examples:
EXIT TO PART 3
EXIT 703

<| FOR ident <|FROM] e_1 >|> <|BY e_2 < TO e_3 >|> < WHILE e 4 > DO s
| |+ | ! ]TO e_3 < BY e_2 >|
| FROM e_1 |

The statement s will be executed repeatedly as long as the
expression e_# is true and as long as the value of the controlled
jdent is within the specified range. With each repetition, the
value of the explicit (ident) or implicit control variable will bhe
modified as specified by the controlling for-clause. The phrase
“FROM e_1’ may be omitted if e_1 = 1, *BY e_2’ may he omitted if
e 2 =1, *T0 e_3’ may be omitted if the loop is to be terminated
in some manner other than that of the controlled variable reaching
a final value (i.e., if e_3 is infinite), and ‘FOR ident’ may be
omitted if ident does not appear in e_4 or in s (in which case an
implicit controlled variable will be used).

operation of a corplete iteration statement is equivalent to
that of the LCC block

BEGIN NEW BYE - e_2, TOE « e_3; ident = e_1;
L: IF IF BYF 2 0 THEN ident £ TOE ELSFE ident =2 TOE
THEN IF e_4 THEN { s; ident < ident + BYE;
GO TO L } END

where the identifisrs L, BYE, and TOF do not occur within any of
the e_I or in s. Note that, unlike ALGOL 60, the increment and
terminal expressions e_.2 and e_3 are evaluated only once, when



GO

IF

LCC Statements 13

execution of the iteration statement begins, and subsequent
changes to any variables used in e_2 and e_3 will not affect the
control of the iteration.

Examples:
FOR I FROM 1 BY G TO H+#1 WHILE N # 3 DO ST
WHILE B < C DO PART 2
TO T DO PART 345
DO PART 6543
FOR J - K TO P BY -2 DO F(J,X)

LCC will return control to the context from which you vere
called, resuming execution from the point of the call. A GO has
meaning only after you have been called via a statement (PAUSE) or
action (pressing the ATTN or BREAK key) which expects you to
eventually return control to the caller.

GO < TO > | e
GOTO }

If e is a label, it must be that of a statement in a currently
active group. LCC will then EXIT to that group and transfer
executiorn control to the labelled statement. If e is not a label,
it must evaluate to a step number in a currently active group. If
the step number is in the range of the group currently being
executed, LCC will transfer control to the first statement in the
designated step. If the number is not in range, LCC will EXIT from
the current group context and repeat the above process.

Examples:
GO TO LABL3
GOTO 6.1
GO 1243.0001 + J

e THEN s

If the expression e evaluates as true, execution control is
transferred to s (from which control will normally pass to the
successor of the IF statement). If e evaluates as false, s is
skipped. If e has a 1logic or arithmetic value, it will be
considerad as true if it is non-zero or as false if it is Zero;
strings will be converted to their equivalent arithmetic values.



14

LCC Statements

Examples:
IF XY < 4 THEN PAUSE

IF e THEN s_1 ELSE s_2
If e evaluates as true, execution control will be transferred
to s_1, from which control will normally pass around s_2 to the
successor of the IF statement. If e evaluates as false, execution
control will pass around s_1 to s_2, from which control will pass
to the successor of the IF statement.
Examples:
IF ~P v O THEN Z -« S ELSE { T « T + 1; TYPET }
LINE < & >

LCC will upspace your paper {(at your terminal) by one line or,
if an expression e is supplied, by e lines.

Examples:
LINE
LINE 4-J

LOAD < FILE > e

LCC will open file e and, if the file was created by one or
more SAVE statements, load into working storage whatever was SAVEd
there, This is done by treating the information in the file as a
set of 1lines of input text, each of which will be read and
translated just as if it had been typed in by you.

LCC treats all files alike, regardless of whether they were
created by SAVE or WRITE statements. Thus a file may contain
immediate statements which were written (as strings) by a WRITE
statenment. These will be both translated and executed during a
LOAD of that file. Any immediate statement may be written and
LOADed, including another LOAD statement.

Examples:
LOAD FILE ‘0Q13*



N EW

NEW

NEW

LCC Statements 15
ARRAY + + ident 4 .,., {(Fe< :e>4 .} 10}J. 1 4.,.

rhis statement acts Jjust like an ARRAY statement except LCC
will construct a new incarnption—value for each ident before
assigning it its specified array structure,

Fxamples:
NEW ARRAY A3, Au#[10, 20, 5:30), ASIS)

} ident 4 .,.

This declaration statement causes a new incarnation-value (IV)
with ¢the meaning ™undefined”™ to be constructed at the current
nesting level for each ident in the list, In the usual case that
the 0ld IV is on a lower level, this new IV will be linked to the
old one, which it will temporarily supersede. In case the old IV
is on the current level (i.e., the ident is being redeclared in
this block), it will be replaced by the new one.

A declaration holds only within the scope of the block in
which it 1is executed. When that block is terminated, all IVs
declared in it will be erased, and the meanings which the
corresponding idents had before their declarations were executed
will be restored.

Examples:
NEW A,B

F ident - | e [
| pointer |
] procedure |
| structure |

This statement acts much 1like a simple NEW statement, but
instead of giving each newly constructed IV an undefined nmeaning,
LCC will assign it a specified initial “value”. Declarations and
assignments will be made from left to right in the NEW list, but a
“value” will bhe constructed before the ident to which it is to be
assigned is declared. Thus, for example, in the statement

NEW A - B + A

the o0ld value of the variable A will be added to B to obtain the
initial value of the new A.



LCC Statements

Examples:
NEW S - *55’, T «- U - V, ¥ « =X
NEW F « v(A,B) PART 9 (NEW P - 9Q+RV, S = 6}V
NEW A < ARRAY[3,0:S5), B, C « 26, D = ARRAY[X:Y]

NUMBER AS e_1 < BY e_2 >

LCC will automatically type out for you at the beginning of
each input 1line a step number followed by a colon (:}. Before
translation, the supplied number will be appended as a prefix to
whatever step text you type. The numbering sequence will normally
start at e_1, with successive step numbers being incremented by
e_ 2, but if any numbers in the sequence (including e_1) turn out
to be integers, they will be skipped. Thus it is guite acceptable
for the numbering to cross part boundaries. If e_2 is given, its
value mnust lie between .000% and .9999; if the “BY’ phrase is
missing, e_2 will be assumed to he .01.

LCC’s automatic numbering will continue until you turn it off;
this is done by inputting an empty step, i.e., by pressing the
RETURN key immediately after the step number.

Fxamples:
NUMBER AS 17.3 BY .002

NUMBER group AS e_1 BY e_2

LCC will renumber and retranslate the ordered set of steps
from the specified group. The renumbering will start with e_1 (or,
if e_1 is an linteger, with {e_1 + e_2)) and successive step
numbers will be incremented by e_2 (whose value must lie between
.0001 and .9999). The original group of steps will be deleted by a
NUMBFER statement (otherwise this statement acts exactly the same
as the corresponding COPY statement, which does not delete the
group). The source text for a step will not be modified by a
NUMBER statement, and it is your responsibility to make sure that
the renumbered steps do not contain spurious references to steps
in the original qgroup. To insure this, you should use labels
rather than step numbers to refer from one statement in the group
to another.

Examples:
NOMBER STEPS 7.7 TO 8.2 AS 25 BY .02



. LCC Statements 17

NUMBER group AS e

If e evaluates to an integer, the set of steps from the
specified group will be renumbered and retranslated as a new
group, with the integer portion of each step number being replaced
by the value of the expression e (which must not be zero). If e
does not evaluate to an integer, this statement is equivalent to
the statement

NUMBER group AS e BY .01
All steps in the original group must be in the same part. The
source text for the group will not be modified by this NUMBER
statement, but the original group will be deleted {otherwise this
statement is identical to the statement *“CQOPY group AS =2').
Examples:

NUMBER 8.07 AS 14.253
NUMBER STEPS 6.4 TO 6.5 A5 1016

NUMBER group BY e

Equivalent to
NUMBER group AS X BY e

where X 1s the truncated value of the first step number in the

Jqroup. This statement is used mainly to tidy up the fractional
step numbers for a part without changing its name (i.e., its part
nunber).
Examples:

NUMBER PART 803 BY (INC * ,0001)

NUMBER group

Equivalent to
NUMBER group BY .01

Examples:
NOMBER STEPS 43.001 TO 43.18



18

OFF

OFF

LCC Statements

LCC will perform an “EXTIT ALL’ and it will then log you off. 2
ressage will be written to indicate the elapsed time and the
processor time used during your conversational session. Your
antomatic relcad file will be erased by this OFF statement (see
Appendix G).

Examples:
IF DONE THEN OFF

SAVE

This statement acts Jjust like a simple OFF statement except
for its treatment of your automatic reload file, which will not be
erased and thus may be reloaded when you begirn your next
conversational session (see Appendix G).

PART num

A new block context will be set up for the sequence of steps
from nun+.0001 to num+.9999. Execution will then begin within that
context at the first step whose numher is = num+.0001 and it will
normally continue through successively higher numbered steps.
Control will be returned when the part “runs off its end” or when
it executes a RETURN statement, an EXIT statement, or a GOTO which
transfers out of its range.

A part may be called either as an operand in an expression (in
which case it should return a result) or as a statement. In the
latter case it should not return a result, but if it does, LCC
will type the value of the result at your terminal.

Examples:
PART 5
TO PART 17 DO PART ABACAD

PART num [ s 1 3 5.2 3 e+s ; S_N1}

A new block context will he set up for the sequence of steps
in part num. Execution control will then be transferred to
statement s_1, from which control will normally pass to s_2, s_3,
... in order up to s_N, from which control will pass to the lowest
nimbered step in part nunm, Thus the statement list within the



) LCC Statements 19

braces is treatel as if it were a step numbered num+.00009 in a
part context which is expanded to include that step.

Exanmples:
PART (J + 2) { NEW A->BI[C}; TYPE D + A; E-16 }

PABT 3 { NFW A = G-H ; NEW D = ¥ R / PART 2 v }

PAUSE

LCC will type a message giving the step number of the PANSE
statement, after which it will give control to you.

Examples:
IF X < 4 THEN PARUSE

PAUSE e

LCC will type out the string supplied by the expression e,
after which it will give control to you.

Examples:
PAUSE “HALF DONE’

PRINT < FILE > e

1.CC will print {(on the line printer in the ceomputer roonm) the
contents of file 2, which must have been generated by an LCC SAVE
or WRITE statement. File e will not be changed by being printed,
but if you PRINT a file during a conversational session, you will
not be allowed to delete it later on in that same session.

Examples:
PRINT FILE ‘PRNTFILS

RECOVER < e >

LCC will treat a RECOVER statement as a dummy statement unless
you give it from a user state which was entered because of an
error in a delayed step. In the latter case, your furnished
expression e, which will only be acceptable if the operation which
caused the error halt should have produced a result, will be used
as that result, and LCC will resume execution from the point of



LCC Statements ‘

the error as if the operation had been completed. As an example,
if your program halts with the error message

ERROR ORO1 AT 4.1 DIVISION 3Y ZERO
you may resume execution by typing the statement
RECOVER 3,20

Execution will +then continue just as if the divide operation had
been completed normally and had yielded the result 3,20.

In some cases it is possible to resume execution after errors
where no explicit result is involved. In those cases you may use a
simple RECOVER statement which furnishes no result expression. As
an example, if vyou attempt to call part 3 when part 3 is enmpty,
LCC will halt execution of your program with an error message such
as

ERROR PCO2 AT 5.2 PART 3 DOES NOT EXIST, YOU CANKNOT CALL
You could then resume execution by typing the lines

3.1: LOAD STUFF
RECOVER

Exanples:
RECODVER X + Y

RETURN

LCC will delete the current execution context and return
control to its caller, resuming execution from the point of the
call.

RETURYN e

This statement acts just like a simple RETURN statement except
the value of e is computed before the RETURN is performed, and
that value is the result of the call.

Examples:
NETURN I - Y ¢ 3



LCC Statements 21

RETURN pointer

This statement acts just like a simple RETURN statement except
the specifierd reference pointer is constructed before the RETURN
is performed and that pointer is the result of the call.

Examples:
RETURN o> VBL[I+1]

RETURN procedure

This statement acts like a simple RETURN statement except a
reference +to the given procedure is constructed before the RETURN
is performed and that reference is the result of the call. Thus if
a procedure PR, which is called via the statement

RED -~ PR(X,Y,7)
returns with the statement
RETTIRN v (A,H) PART 66 ¢

the effect (except for possible side effects) is to perform the
assignment

RED <« v (A,H) PART 66 ¥

Examples:
RETURN v STFEPS 4.8 TO AZ ©
RETURN v (B,C) { PART 7; PART 25 } v

SAVE save-obiect

LCC will ©put the save-object (a list of steps and/or values)
into the <currently open file. h step will be SAVEd in the sanme
form that would be used to DISPLAY it, which is, except for
possible minor differences in the format of the step number, the
same form that you used to type it in. The current meaning of a
variable will be SAVEd as an assignment statement which assigns
that meaning to the variable. Thus a SAVEd file can be reloaded
merely by executing it; this is done by means of a LOAD statement.
Note that no context information will be kept with a SAVEA
variable, and it will be up to you to recreate the proper context

into which to later load the file. Only variables whose meanings
are values (numeric, 1leogic, or string), pointers, or arrays will
be SAVEd. An array will be saved as a structure assignment

followed by assignment statements for each of its SAVE-able



22

SAVE

STEP

LCC Statements

elements.

A SAVE statement does not save nuperic values to their full
precision (about 17 4digits) but only to the precision of the
printing routines (10 digits). Thus a SAVEd and relLOADed progran
may not function exactly the same as if it had been run in a
single session. This will not usually be noticeable, but it will
show up if numbers such as PI and EE (which are initially accurate
to the last bit) are saved or if, for example, X = 1/3 is SAVEQ.
In the latter case we would normally get 3 * (1/3) to print as 1
(due to rounding in the output routines; 3 * (1/3) = 1 is FALSE,
however), but after saving and reloading X we would get 3 & X to
yield .9999999999.

Any number of SAVE statements can be executed to generate a
given file; each will append its lines at the end of those already
in the file.

Examples:
SAVE STEPS 35.6 TO 35.8
SAVE X, Y{I,1), ¥Il1,2), 2
save-object AS < FILE > e

Equivalent to
USE FILF e; SAVE save-obiect

Exanmples:
SAVE PARTS 45 TO 493 AS FILE “CAT”

S num_1 TO num_2

This “*step call” is an “execute” statement, which may be used
to perform steps from scme other portion of your program as if
they had been copied in-line in its place. As in a group, num_1
nust be < num_2 (unless num_2 < 1). LCC will set up a new group
context (non-block) for the sequence of steps from nun_1 to num_2.
Execution will then begin at step num_1, and it will continue
through successively higher numbered steps. This step call will
normally be terminated either by a RETURN statement without a
value or by “running off the end” of the step group. An FRXIT
statement will terminate the step call and return control to you
in the context of its calling group.

Examples:
STEPS 3.8 TO 1.93



STEP

TYPE

USE

LCC Statements 23

num
Equivalent to the statement
STEPS nun TO nun
+ type-obiject 4 .,.

For a type-obiject consisting of an expression e, LCC will type
the value of e, left-justified on a line. A numeric value will be
rounded to 10 significant decimal digits and typed as an integer
or a decimal number, with an exponent part heing appended if

necessary. A logic value will be typed as TRUFE or FALSF or as an
8-digit thexadecimal number (i.e., it will have the form of a
logic-literal?}. A string value will be typed as is without

surrounding quote marks.

LCC will ignore an empty type-object in this unformatted TYPE
statement.

A for-clause 1in a type-object merely specifies control over
another type-obiject, but the controlled objects will be typed just
as 1if the for-clause were outside the TYPE statement instead of
ingside., As an example, the type-object

{ for-clause e_2 , e_3 )

will, under control of the for-clause, type values for e_2, e_3,
e_2,e_3, ... , one per line.

Fxamples:
TYPE A + B, , C
TYPE P, (FOR I TO 19 DO I, CABITIJID)

< FILE > e

The expression e must evaluate to a string whose body will be
used as a file nane. LCC will open that file and use it in any
subsequent SAVE or WRITE statement which does not mention a file
explicitly. Only one such file can be open at any time, so file e
will be closed either by a logoff or by executing any filing
statement (including another USF) which explicitly mentions a
different file.

A file name must be an identifier (ident) of length < 8 which



24

LCC Statements

does not contain any lower case letters or underline (_)
characters.

Examples:
USE FILE “QWIC’

WRITFE + type-obiject 4 .,.

This statement is Just 1like a TYPE statement except the
type-objects will be written on the currently open file instead of
at your terminal. Any number of WRITE statements can bhe executed
to write a given file; each will append its lines at the end of
those already written.

Examples:
WRITE A, B=*C
WRITE (FOR I TO 10 DO (FOR J TO 10 DO FISHII,J1))

WRITE } type-object 4 .,. AS < FILE > e

Equivalent to

USE FILE e; WRITE + type-obiject 4 .,.

? F < string-literal > varid A .,.

For each varid in the list, the following process will be
performed: LCC will type either a standard identifying message or,
if "you preceded the varid by a string-literal, the string which
you supplied. It will thenm give control to you. You must type the
text for an expression and return control to LCC {(by pressing the
RETURN key). Your expression will then be evaluated and assigned
to varid.

Examples:
2A,B
? STYPE RANK’Y RNKI[3], RNKI4]

2 § F < string-literal > varid 4 .,.

This statement acts like the regular ? statement except LCC

will treat each of your typed expressions as the body of a string



LCC Statements 25

(i.e., it will surround each expression by quote marks). Thus the
value assigned to each varid will always be a string.

A slight variation is possible here in the use of single-quote
marks, which need not be doubled to appear in your requested
string body. Thus if you type

AB7C™D
in response to the statement
?3 ST

the effect will be exactly the same as if you had executed the
statement

ST « “AB’’C ‘D’

Examples:
?2% 5, T STRING * T

This “compound statement” will be treated as a single control
unit whose sub-statements will be executed sequentially from left
to right. A compound statement is not a block and it may not have
its own 1local variables; therefore its main use is within a
controlling 'statement such as am IF, CASE, or iteration.

Examples:
IF ~P v Q THEN Z -« S ELSE { T « T + 1; TYPE T }

The expression e must evaluate to a string, whose contents
will be treated as statement data to the LCC translator. When a !
statement is executed, the string which it supplies will be
processed just as if it were a step which was just typed in. If
the string turns out to be an immediate step, it will be executed
as the current statement. If not, it will be stored as usual for a
delayed step and control will pass to the successor of the !
statement. This statement is wuseful mainly in programs which
generate new program text during execution.

Examples:
! YA « B + C; A Translate this later”
! SoT
! "STEP B.44%; ¢ Same as the statement STEP B.u44



26

A <

var

var

LCC Statements

- character 4 .. >

No operation will be performed. The character sequence will bhe
treated merely as a comment, with all characters following the
first A in a step being completely ignored.

Examples:
a TAIS IS A COMMENT LINE.

- e

The variable designator var is first elaborated (cycling all
the way down its pointer chain if it begins one) to obtain the

solaborated address®” of a value (non-reference) entry. Then the
expression e is evaluated to yield a numeric, logic, or string
value. That value is assigned to the elaborated address of var,

with no conversions of any sort being performed.

Examples:
K« M A LFO
Pi{3) -« 2 4 (B= B + 1) + H(N)
I « J« K«

- 9v< ( + ident 4 .,. ) > | e ] ¢

var is treated as in an expression-assignment. A reference to
the given procedure will be constructed and assigned to (the
elaborated address of) var. The procedure body is either the
expression e or the statement list, and the listed idents are
formal identifiers in that body. When the procedure is called,
actual parameters nust be supplied to replace the formal
identifiers during execution of e or the list of statements s. For
a procedure vwith no paranmeters, the formal identifier list is
normally omitted. If so, parentheses cannot he used to surround a
procedure-body expression, because they would be treated as
parameter delimiters. To get around this syntactic ambiguity, LCC
allows an empty formal parameter list to precede a procedure-body
expression e (but not a statement list).

Oonce var has been made a procedure name, any mention of it in
an expression or assignment will cause the procedure to be
evaluated. Thus the meaning of the var cannot be changed unless it
is first redeclarel or DELETEd.



var

var

1LCC Statements 27

Examples:
PROC - 9(F,G) F + G * HY
G« v PART 81 { NEW Z = Z + 1; Q0«0 } ¥
clt,J] « v(X) PART 371v
Pl - 9 { PART 4; PART 68; I - I + 1 } v
Fev () IF X < 48.3 THEN T+1 ELSE T v

« ARRAY [ e <t e >4 .11 1. 1

LCC will assign to var the multidimensional array structure
specified by the given bounds list, The bounds list gives the
number of dimensions of the array structure and the limits on each
of its subscripts. An item in the bounds list can be either a pair
of expressions specifying the lower and wupper 1limits on the
subscript for that dimension or a single expression specifying the
upper limit on that subscript (the lower limit will be inmplicitly
1).

Storage will not be allocated for an array until that array is
used, and even then it will only be allocated for a given row when
an element from that row is first accessed. LCC keeps identifying
information for each element in an array, and therefore arrays
need not be homogeneous. Thus, for exanple, 1in a given row an
array could contain elements which were procedures, pointers,
numeric values, string values, and even arrays.

Note that if the var above is an identifier, this statement
form 1is exactly equivalent to an ARRAY statement. Thus the two
statements

A ~ ARRAYIO0:4,6)]
ARRAY A[0:4,6]

are equivalent,. However, if the var is subscripted, wvwe can with
this statement specify that an array element is to be itself an
array, an effect which is not possible with an ARRAY statement.

Examples:
LA -~ ARRAY[1:N, -3 : 8%K]
P[2,4] « ARRAY(5,10,241}

- pointer

var is treated as in an expression-assignment. The specified
referance pointer will be constructed and assigned to (the
elaborated address of) var.



28

var

LCC Statements

LCC cannot allow a variable to point to another which is
declared in an 1inner (higher) nesting level; therefore such an
assignment will lead to an error message and will be rejected. An
assignment which would create a-circular pointer chain, as in

A‘-:B:Ho-:’h

will also be redjected.

Examples:
ND « >AH1I1,J]
< (< K] e I 4 . > D>
| pointer !
| procedure |

The procedure referenced by var is performed, using the itens
in the ‘list as actual parameters. This is done by setting up a new
block context, declaring as NEW all formal idents listed in the
definition of var, assigning, in order, each actual parameter to
the corresponding formal ident, and then transferring control to
the body of var, Control will be returned when the procedure
executes a RETURN statement, when it “runs off its end” {(which
causes an 1implicit RETURN to be executed), when it executes an
EXIT statement, or when it executes a GOTO which transfers out of

its Dbody. A procedure may be called either as an operand in an
expression (in which <case it should return a result) or as a
statement. A procedure statement should not return a result, but

if it does, the value of the result will be typed out at your
terminal.

As amr exanple, suppose e have executed the procedure
assignment

R« 9 (a, B, C) PART 3 v ;
and we execute the step
R (Y¥-2 , v {(G6) G+ HH/ 3v, >2¥) ;5;

A new block context will be opened, LCC will perform the
statements

NEW A - X - 2 ;
KEW B« Vv (G 6 * H/ 3 v ;
NEW C = > W ;

and execution will begin 1in the new block context at the first
step in part 3. After normal termination of the part, the block
context will be closed and LCC will proceed with the successor to



LCC Statements 29

the procedure call, i.e., statement S.

Procedures need not have parameters; thus the actual parameter
list may be omitted. If more actual parameters than formals are
supplied, the leftmost actuals will be used, with the extra ones
being stacked for the duration of the procedure incarnation. If in
a subsequent nested procedure call too few actual parameters are
supplied, the extra actual parameters from outer procedure calls
will be wused, with those from the innermost calls being used
first.

Examples:
FTN
F(A,X-Y)
FN(P+1, 20, ¥ R +# PART 2 ¢ )



30

~=== LCC Metavariables ==--

binary-operator z:=  |=|t[*]/|#] =]+ [={<|S|=12]>|#]==]==]r|v]|E]0]
unary-operator 1e= 1 + 1 -1 41~
e 3:= rimary

1 binary-operator e

bop

{ unary-operator e

| e_

| IF e THEN e_1 ELSE

|

|
-2
e 2 |

2

An expression (e) in LCC is a combination of value entities
(primaries) with operator symbols vhich acts as a rule for the
computation of a value. Syntactically, an expression may be
deqenerate f(i.e., a single primary), it may be a prefixed
unary-operator acting on a value, it may be the combination of two
values with an infix binary-operator, or it may be conditional,
with a distributed operator (IF ... THEN ... ELSE ... ) which
selects one from a given pair of values.

The value of an LCC expression will normally be used as a
constituent in a statement. However, if an expression appears in
place of a statement (or if a syntactically correct LCC statement
turns out to have a value), its computed value will be typed back
to you. This gives LCC its “desk calculator” feature, whereby you
need nerely to type an expression to obtain its inmmediate
evaluation -- there is no need to write a “program” to do so.
Note, however, that if LCC, when scanning for a statement, finds
as its first item an IF, ?, or !, it will treat what follows as a
statement, not an expression. If that is not what you mean, you
may use parentheses arouand your expression, and LCC will then
treat it correctly.

A conditional (IF) expression acts much like an IF statement.

If the expression e evaluates as true, the value of the
conditional expression is e_1; if e evaluates as false, the value
is e_2. Thus, if the variable AVAL = 1, the value of the
expression

TF AVAL € 5 THEN 825 ELSE 839

is B825.

The unary-operators are “+’, S-#, %47, and ‘~'. A unary ‘+’ is
redundant, and +e = e no matter whether e is a number, a logic
value, or a string. A unary ‘-’ is a negation operator which
changes the sign of any non-zero value to which it is applied (a
zero 1s always positive). ‘47 is a truncation operator whose
result is the integer portion of the value to which it is applied.
Thus 2.8 = 2, #-3.1 = =3, and #3481 = 341, *~* and “#* are
arithmetic operators which can act only on numeric values; if they



LCC Metavariables 31

are applied to loagic values or to strings, those values will be
converted to numbers before the operations are performed. *~f is a
complement operator whose result is the bit-by-bit 1logical
corplement of the 32-hit value to which it is applied (i.e., each
hinary 1 becomes a zero and each binary 0 becomes a oune). Thus

~TRUE = FALSE (= 40), ~¢FED0 = (FFFFO12F
Note that multiple unary-operators may precede a primary; if so
the operations which they represent will he performed from right
to left. Thus

-(13.M
4~+~ FFFFFFFC = -3

$=3.1 = $(=-3.1) = -3 = -43.1
$4-3.1 = —4~3-3.1 = $4---3,1

Like the unary-operators, the binary-operators can act only on
values with the proper data attributes. If one is used with values
having 1improper attributes, appropriate conversions (with a bias
from string to logic wvalue to npumber) will be automatically
performed hefore the operator is executed.

The binary-operators “t%, &7, “/7, 37, “ef_ ‘42 apd “-' are
numeric operators; each acts on numeric values to produce a
numeric result, *t’ denotes exponentiation, with e_1 as the base
and e_ 2 as the exponent. The operators *+7, *~“, and ‘#*’ have the
conventional meanings of addition, subtraction, and
multiplication. ‘77 is the usual numeric (real) division, with a
real result; ‘%’ (inteqger divide) and ‘o~ {rodulus, or remainder
divide) cause a real division operation to he performed, but “#%*
gives only the integer portion of the real result as its value
(i.e., A + B = 4(A/B)) while ‘Yo’ gives only the remainder {i.e.,
A= B =2A-18+* (A3B)). Thus

3.2 £ 2 =1, 3.2 2 = 1,2
4.7 ¢ =3 = -1, 4.7 »

‘a’, ‘v, and AR are logic operators; each acts
bit-by-corresponding-bit on logic values to produce a logic value.
They have the conventional meanings of logical AND, OR, and

equivalence.

*a” is a string concatenation operator which causes the body
of string e_2 to be appended to that of e_1.

The operators “e«’ and ‘==’ yill shift a logic value or a
string left or right. e_2, which will be truncated to an integqger,
is the length of the shift, while €_1 is the value to be shifted.
Shifts will be by bits for logic values and by characters for
strings, A shift of a (fixed length) logic value will cause any
bits which are shifted out of the value to be lost; vacated
positions at the other end of the value will be filled in with
zeros. A string, however, does not have a fixed length., Characters
shifted “off the end” will be lost, but there will be no “vacated
positions® -- the string merely becomes shorter. Thus we will get



LCC Metavariables

the following results:

*ABCDEFG’ == |4 = *ABC”
“ABCDEFG" == 2 = *CDEFG”*
*ABCDEFG’ = 2 == | = 004

The relational operators *«*, ‘=7, ¥=*f_ 27, *>*f, and “#f can
act on any operands with matching attributes. The meanings of the
relations are ohvious for numeric operands. Each produces as its
vesult a Boolean value (TRUE or FALSE). For logic values, ‘= and
‘¥f# act Dbit-by-bhit to produce logic values which will be,
respectively, the 1logical eguivalence and exclusive OR of their
operands (i.e., L = % 1is the same as L = M, and L # M is the same
as ~(L=M)). If the other relations (<, £, 2, >) are applied to
logic values, those values will first be converted to numbers and
then the usual rules for relations on numbers will be Followed.
Relations on strings will be performed character-by-character fron
left to right, with the shorter string being extended, if
necessary, to the rtight with blanks. The normal 360 collating
sequence will be used in comparing characters. The Tesult of a
string velation will be a Boolean value (TRUE or FALSE),

The assignment operator “+’ in an expression takes as its left
operand a var, i.e., a reference entity which specifies a variable

name. Its right operand can be any expression. The value of an
exprassion e_1 + e_2 1is the value of e_2, and as a side effect
that wvalue 1is also assigned ¢to e_1. Note that a Y+’ in an

expression takes as its left operand only that entity immediately
to its left, while its right operand is the whole expression to
its right. Thus the statement

AI0] - A[1) - 8 ¢+ C <« D « E« F + 6
will be performed as if it had been written

A[0] - (Af{1] - B + (C « D * (E « F + G)))
Note also that a ‘<’ in an assignment statement is treated
differently from one in an expression in that it does not produce
a result and its right-hand side need not be an expression.

If the sequencing of operations in an expression is not

explicitly specified by the use of parentheses, the operations

will be ordered within it from left to right, but with the
following additional rules of precedence:



LCC Metavariables 33

First:
Second:
Third:
Fourth:
Fifth:
Sixth:
Seventh:
Fighth:
Ninth:
Tenth:
Eleventh:
Twelfth:

~ +{unary) ~{unary)

’ -

FARK R BB K
A N

= 2 > #*

+

-

(as explained above)
F «.. THEN ... ELSE ...

-t 3 < >

Thus the statement
I~ A-B ¢t 2/7C+ 4D

will be performed as if it had been written
X = ((A - ((B? 2) C)) + (4D))

If a conversion of a value to one of different attributes is
necessary, it will automatically be performed by LCC as follows:

number - logic value: LCC will truncate the number and strip
off 1its sign; the binary representation of the resulting
integer 1is truncated to 32 bits to form the logic value.
Thus

~25.7 becomes £19

number - string:

logic value -~ string: 1CC will ¢transform the internal
representation of the number or logic value into its
external form (that which would be typed by an output
statement), That external form will be the body of the
resulting string. Thus

-25.7 becones VN =25.77
LFF12 beconmes *£0000FF12*

logic value =< pumber: LCC will use the logic value as the
low-order 32 bits of the positive integer result. The
other bits of the result will be zeros, and thus its value
will be between 0 and 2#32 - 1. As an example

£L2F becomes u7

string - number:

string - 1logic value: LCC will translate and evaluate the
expression which is the body of the string. This must
Yield another value ({possibly again a string) which nay
need another conversion, etc. Thus if A = “B*, B = 3,



34

LCC Metavariables

B3 = 42,1, then

*A o B’ becomes 32.1
extractor ::= ] e~1 : < e_ 2 > |
| : e_2 |

rf an entity has a logic or string value, it may be followed
by an extractor, which will select a portion of that value for use
as a primary. An extractor must have one of the forms listed
above, where e_1 and e_2 are expressions which evaluate to
integers, and 1 < e_1 < e_2 <N (N is the onumber of bits or
characters in the original entity value). If e_1 is missing, it is
assumed to be 1; if e_2 is missing, its assumed value is N. Note
that an extractor can follow any operand or parenthesized
expression; it is not restricted to variables.

B logic value is a guantity whose 32 constituent bits are
numbered, starting with 1, from left to right. When a subfield is
extracted from a logic value LV, the result is a logic value
consisting of those bits of LV with indices from e_1 to e_2
inclusive, right justified in a field of =zeros. Thus if
LV = (FFOOFF00, then

LY [5:12] = £000000F0 (= (FO)

The constituent characters in a string are also numbered,
starting with 1, from left to right. When a substring is extracted
from a string SV, the result is a string consisting of those
characters of SV with indices from e_1 to e_2 inclusive. Thus if
SY = YPORCUPINE'’, then

SV [6: 1 = “PINE’

If an extractor follows a subscript, the character pair ‘][’
may be replaced by the single character el A value may not be
extracted from an extracted value, and thus it is an error to
follow one extractor with another.

Examples:
YELLOW(3:10]1 o RED
03, NN, TI:31 - RI[:18]
(A + B + C)(5:8]
p{x, T+13[35,1411(23:1]



LCC Metavariables 35

for-clause ::= <|FOR ident <|FROM[e>|> <|BY e <TO e>|> <WHILE e> DO
[ I= | | |TO e <BY e>}
| FROM e i

See the iteration (FOR) statement description on page 12 for
an explanation of the control exercised by a for-clause.

Exanples:
FOR I FROM 1 BY G TO H WHILE N # 3 DO S
TYPE P,(FOR I TO 10 DO(FOR J TO 5 DO C{I,J)),FII])

group ::2= { | PART | < num < TO num > > |
{ |} PARTS | |
] t STEP | |
] | STEPS | |
| num < TO num > |

A group is a specification of a step or a contiguous set of
steps. A single step is normally specified by the keyword ‘STEP’
followed by a num, but if the group scanner finds a num without a
preceding keyword, it will assume the presence of the word ‘STEP’.
A set of steps is specified as one of

STEP num TO num
STEPS num TO num

or merely as
num TO num

A part or set of parts is similarly specified as
PART num

or as one of

PART num TO num
PARTS num TO num

{the keywords *PART’ and “PARTS’ cannot be omitted).

In scanning for a group, as well as everywhere else in LCC,
the translator always considers the keyword ‘STEP’ equivalent to
YSTEPS’ and the keyword ‘PART’ equivalent to “PARTS’. Thus, for
example, you can write

DISPLAY PARTS 6
DFLETE STRP 4.7 TO 5.3
IF & < B THEN PARTS 6



16

digit :

letter

ident

L.CC Metavariables

Whenever the construction ‘num_1 TO num_2’ is used in LCC, you
must have num_1 € num_2, unless num_2 < 1, in which case LCC will
increment it by the integer portion of num_1. Thus, for example,

DISPLAY STEPS 3.6 TO .9

is equivalent to

DISPLAY STEPS 3.6 TO 3.9

Examples:
ALTFER STEP 1.6 ¢ X’ = “AX*" , ‘Y’ - “BY’
COPY PART 3 AS 43
“STEPS 4.5 TD 4.73”
NUMBER 7.7 TO B.2 AS 25 BY .02
:= 0| V)P 2138151671819
3= [A]BICIDIEJF{G|H|TI|S|KILININIO|PJOIRIS{TIU[VIW|X]Y|Z]
l[albic|dle| £)g|hti]FlkllIimIn|olplalic|s]t]lu]lvivix]y|z]
HEES letter < F+ | digit | A «.. >
| letter |
|+ o4 |
Identifiers (idents) are used to name entities in LCC. An

jdentifier consists of a sequence c¢f one or more letters, digits,
and/or wunderline{(_) <characters, the first of which must be a
letter. Some identifiers are keywords in LCC and are reserved for
that purpose; vyou cannot use them as names. Others, such as the
names of the standard functions (see Appendix B) and the other
built-in LCC functions and procedures (see Appendix TI) are
privileged identifiers 1in the sense that they are given meanings
when LCC is initialized. You may use a privileged identifier as a
variable name by declaring it, but if you do, its original meaning
will be superseded and may be lost.

Even though an identifier can be arbitrarily long, LCC will
retain only its first (leftmost) 8 characters, with all other
characters being ignored. Thus identifiers must be uniquely
distinguishable within their first eight characters.

Examples:
X
RED
ALGOL_60
RUMPELSTILTSKIN



LCC Metavariables 37

hex-digit 1= | digit ] A 1 B | C | D | E|F |

logic-literal 11= | FALSE |
| TRUE |
| <1 L | >+ hex-digit 4 ... |
I | R I

nuam

A logic-literal in LCC is written either as a hexadecimal
value or as one of the Boolean values “TRUE’ or ‘FALSE‘’. The 16
hexadecimal digits are specified by the decimal digits 0 through 9
and the letters A through P, with the “digits” 10 through 15 being
represented by the letters A through F respectively. A logic value

is represented in LCC as a 32 bit quantity; therefore a
logic-literal can contain up to 8 hex-digits, which nmust be
contiguous, i.e., imbedded blanks are not allowed. The optional

letters *L’ and ‘R’ in a hexadecimal literal indicate left and
right justification respectively. If neither letter is present, an
*R’ will he assumed. Thus

L(LFB1 = (FB100000

The Boolean values are equivalent to hexadecimal values as
follows:

FALSE = (0 (32 binary zeros)

TRUE = (FFFFFFFF (32 binary ones)
Note, however, that when tested in an IF clause, any non-zero
value will be considered to have the gquality “true”. Thus the
statement

TYPE TP 123 THEN M’ ELSE ‘P’
will print T/, even though (123 # TRUE.

Exanmples:

FALSE

L9AB7?

£LLFF
= } int + . 4 int |
| ident ]
] Ce ) |

A num 1is used to specify the number of a step or a part. It
will wusually be a decimal number, i.e., a number without an
exponent. However, it may also be an ident whose value is a step

number, or a parenthesized expression which evaluates to a step
number,



38

int

LCC Metavariables

A part or step cannot have a negative number; therefore LCC
will take the absolute value of each evaluated num before using
it.

Fxamples:

STEP 1420.35

PART (J + 2)

DELETE STEPS A TO B

= + digit 4 ave
number-literal ::= | | int <+ . A< int >> | < 5, < | ¢+ | > int >

I 4 int | | = |
| o < + | > int
' -

A decimal arithmetic constant in LCC is written as a
number-literal. A number-literal is a sequence of digits, possibly
including a decimal point, optionally followved by an exponent
part, An exponent part consists of the delimiter character ,
followed by an optionally signed decimal exponent. As a special
case, if the base value of a number is to be 1, the number-literal
can he written using only an exponent part. Thus

=15 = 1,-15

Blank spaces are not allowed within a number-literal; thus 3.7 ,~5
and 5, 14 are illegal.

Numeric values will be stored by LCC as long (double word)

float ing-point System/360 gquantities, This allows a precision of
about 17 decimal digits, though for output LCC will usually round
a number to 10 digits. The maximum absolute value of a number is

approximately 7.237,75; the minimum non-zero absolute value is
approximately ,-75.

Examples:
15
7.36
A
6.2,-5
138.
.5



1.CC Metavariables 39

operand ::= | BEGIN + s -4 .;. END |

] CASEe OF ( e 4 .,. < , OTHERRISE e > )} |

} PART num < { F s+ .;. } > |

I | STEP | num < TO num > |

! | STEPS | !

| ident |

| logic-literal |

| number-literal |

} string-literal |

] var < (€ F | e | 4 ey 2) > |

! | pointer | |

| | procedure | |

| 2 <% > < string-literal > < ident > |

|t e l

l{ +s 4 .;. ) |

| * group * |
Most of the operands are described individually below
(starting on page #6). For ident and logic-, number-, and
string-1literal, sae the descriptions of the individual
metavariables. For the part call and the var call, see the

descriptions of the corresponding statements.

An LCC operand may be characterized most simply as an entity
which returns a result; a statement is an entity which does not
return a result. In many cases, operands and statements look alike
(e.qg., a part or step call, a procedure call, a block) and the
distinction between them must be made by context or it may have to
be made dynamically during execution.

pointer ::= > varid

A pointer is used to indirectly reference an incarnation of a
variable. It is thus an object which acts as an alias for the
object to which it points. Vhenever a variable containing a
pointer 1is used in an expression or an assignment, the object to
which it eventually points will be accessed or modified, not the
original variable or the pointer. A pointer may point to another
pointer, and thus we may have pointer chains. A pointer chain must
end at a non-pointer (cycles will not be allowed) and it is that
final element to which any pointer in the chain refers. As an
example, after we execute the statements

A -« =0; B = 2C; C - 17

the wvalue of A + B + 1 will be 135. If we then execuyte the
assignmont statement

A « *FISH’



40

procedure ::= v < ( ¥+ ident A .,. ) > |

LCC ¥Metavariables

the value of C will be chanqged to the string “*FISH’,

Pointers may be assigned, RFTUBNed, or passed as actual
parameters. Their main uses are to construct list structures or to
refer to particular incarnation~values which might otherwise be
unavailable in inner blocks of a program. Moreover, if a procedure
is to store a result into a variable which is to be passed to it
as a parameter, that parameter must not be the variable name but
rather a pointer to it.

Examples:
T[0,6] = o2
NEW PTR = =0, Q = 5
RETOURN 3AR3{2,I,-4)
PR{5, =X, N)
primary z2:= | operand | < [ | extractor [ -2

] e | ] subscript-list < | 1l | extractor > |

be f

A primary begins with either an operand or an expression
enclosed in parentheses, and it may be optionally followed by a
suhscript-list and/or an extractor. A primary is a value entity
{numeric, 1logic, strinqg) as distinguished from a reference entity
{label, procedure, array name, pointer), though this distinction
cannot be checked by LCC until the primary is executed.

Examples:
X{COLOR, SIZE, WT-21}
GRELN
YELLOWIB3:10)
oI31IN){T:T1
(A +# B - C)I5, :10)
FN(A,B) IC]

e R
I V5 4 5+ |

The procedure hody is the expression e or the statement list,
and the listed idents are formal identifiers in that body. When
the procedure is called, actual parameters must be supplied to
replace the formal jdentifiers during execution of e or the
statement list, Por a procedure with no parameters, the formal
jdent ifier 1list may be onitted (see the description of the
procedure assignment statement on page 26).



LCC Metavariables 41

Examples:

PROC « 9{(F,G) P + G % Hv

G« v PART 81 { NEW Z -« Z + 1; NEW Q } v
RS | statement |

| ident : s |

Any statement in a delayed step may be preceded by one or more
label identifiers which name that statement and allow other
statements to branch or *GO’ to it. Labels are not usually
necessary, because step numbers can also be used as transfer
points for GOTO’s, but they are useful for naming statements
within a step or for naming statements in a part or group which is
to be renumbered.

Labels do not always work correctly in LCC, and at present
there are some situations which must be avoided. The known
incorrect cases (as of October 24, 1969) are listed below.

1. Labels in steps called via step calls (as in
STEPS 3.7 TO 3.8) do not work correctly and if used will
usually lead to errors later on in your conversation.

2. Labels in a (BEGIN-END) block statement or expression do
not work correctly and the errors they lead to will not
normally be caught by LCC.

3. If a step containing labelled statements is added to an
active part, the labels will not be declared during the
current activation of that part. In future activations,
however, they will operate correctly.

4. Labels in the statement list of a procedure or inside the
braces of a part c¢all do not work correctly and will
normally be ignored by LCC.

Examples:
3.7: A: B - 3
13.452, I « I + 1

s Lz M: J -3 + 1
F: Gz H: K - J + 1



LCC Metavariables

save-ohiject :zz:= | ALL

| PARTS

| STEPS

} VALUES

| <} PART | > F num < TO num > + .,.
| I PARTS |

| | STEP |

| | STEPS |

] + varid 4 .,.

. AN it AR M ey Sty ——

4 save-obiject, which may be either SaveEd, DELETE4, or
DISPLAYed, can be a set of contiquous steps (as in a group), a
1ist of sets of steps or parts, a list of the meanings associated
either with selected variables or with all the variables in your
program (VALUES), or a combination of all of your steps and all of
your values (ALL). As in a group, if the word ‘PART’ or ‘STEP’ is
missing before a num in a save-object, the word “STEP’ will be
assumed. Note that if a save-obiject begins with an identifier,
that identifier will bhe treated as the first such in a varid list
rather than the first num in a step list.

Examples:
pDISPLAY VALUES
DISPLAY X, Y, 2[4,J]
DELETE STEPS 4.6, 7.1 TO 10.6, 15.3, 4.8902
SAVFE PARTS 45 TO 493 AS FILE ‘CAT’

statement

See the descriptions of the individual statements, starting on

page 3.
string-character ::= | any-CMU-character—but-a-quote |
| I
P’ |
string-literal =::= “ <  strirg-character 4 ... > '

A string-literal 1in LCC is written as a sequence of zero or
more string-characters enclosed within left and right single-quote
characters. The legal string-characters are the 88 charactars on
the “CMU Type-Ball”



LCC Metavariables 43

Qv
o
[P
o~
B
LI T
A

plus the 26 lower case letters and the space (blank) character. In
order to avoid ambiguity, you must type in two successive left or
right single-quote characters to get one inside your string. Thus
if you execute the step

S « “ABfTYICDT; TYPE S
LCC will type back the value

AB’ fCD®
which is the body of S. An exception to this rule is the treatment
of a string body which is typed in response to a string read (?2$%)
request. Single-quotes need not be doubled to appear in such a
string.

The lower case letters cannot be typed out at your terminal by

a CMU type-ball, although they can be printed by the line printer
in the computer room (via a PRINT statement), A lower case letter
can be typed in from your terminal by preceding the corresponding

upper case letter by a vertical bar (]) which acts as an “escape
character®. Thus the string

“|AB]C| D] EPGH’
will be printed on the printer as
aBcdeFGH

Lower <case letters will be typed out on your terminal as their
upper case egquivalents. Thus the above string would be typed as

ABCDEFGH

Because of the use of the vertical bar as an escape character,
you must always type two successive vertical bars to get one into
your string. Thus if you type in

RN IR AN

LCC will type back the string body



LCC Metavariables

1+1-141~]

Other than for lower case letters, you will not need to use escape
characters with the regular CMU type-ball. Escape characters will,
however, be necessary if you use some other type ball or if you
use a teletype for your conversation with LCC, but these uses will
not be described here.

Examples:
‘BLUE’
“ABC’ a *DEF o §
1 YA « B ¢+ C; v TRANSLATE THIS LATER *

structure =::= ARRAY [ + e < : e > A .} [ | 1

A structure specifies the dimension and the subscript bhounds
which are to be assigned to a given var, thus making that var into
an array. See the var <« ARRAY . . . statement on page 27 for a
nore complete description.

Fxamples:
LA <« ARRAY[1:N, -3 : 8#K]
NEW A - ARRAY(3,0:5], B, C =« 26, D - ARPAYIX:Y]
AlB,C) - ARRAY [1:51[0:6]
subscript-list ::= Fed4 ] 101}

Any array designator (am array name or a reference to an
array) may be followed by a subscript-list, which will select an
element from the array. Each expression in the subscript-list will
be evaluated to a number, rounded to an integer, and used as an
index to obtain a constituent from the array, with the validity of
the indexing being determined dynamically. The selected
constituent element may again be an array, and the subscription
process may then be repeated. When multiple subscripts are used,
any character pair ‘*1[’ may be replaced by the equivalent single
character ‘,’.

Examples:
X [COLOR, SIZE, WP-21 + Y(3]
P(A,B+1) [1I1[J) - nI(1,21(3]) /7 K



H

LCC Metavariables 45

empty 3= (i.e., the null string of characters)

type-object ::= | e ]

var

varid

| empty I
! ( for-clause + type-ohject 4 .,. ) |

See the description of the TYPE statement (page 23).

Examples:
TYPE CI[3], , DEF + 1, “STR’
WRITE (FOR T TO 100 DO AII]l, BII]) AS ‘FILEG’
TYPE (FOoR T TO 10 DO (FOR J TO 10 b0 AlI,31))
::= | operand | < [ subscript-list 1 >
] (e |

A var begins with either an operand or an expression enclosed
in parentheses, and it may be optionally followed by a
subscript-list. A var must be a reference entity which specifies a

variable name, though LCC cannot check whether or not the var is a
reference until it is executed.

Fxamples:
P[3) - A + (B« B + 1) + H(N)
I « J « K « M
(A + B) IClID] -« 3
{(?p)(0) - 5
HIJI1(1,2)[3,81(5) - 6

(1]
"

ident < [ subscript-list 1 >

A varid is an identifier optionally followed by a
subscript-list, i.e., a varid is the designator of a variable.
Expressions in the subscript-list may be separated from one
another either by a comma or by the character pair *1[” (i.e., a

subscripted varid is also a wvarid, which may again be
subscripted).

Examples:
ND « 2AR{T,J]
AIR]IIC}
? AY1, B213, J+1], C, DIK1[9]



-=-=- LCC Operands ----

BEGIN + s 4 .;. END

The keywords ‘*BEGIN’ and “END” delimit a “block”, whose list
of arbitrary LCC statements will be treated as if it were in a
part, i.e., there may be local variables valid only within it. LCC
will perform a block entry, after which it will execute the
statements from the list in sequence. This “block expression® will
normally bhe terminated by a RETURN statement which supplies a
value. Such a RETURBN will terminate the block context, and the
returned value will bhe used as that of the operand. A RETURN
statement without a value will first terminate the context of the
block expression and then return from the context in which the
block is embedded.

Examples:
¥ « Y +# BEGIN NEW A; PART 6; BRETURN A END - 2

CASE e OF ( e_1 , e_.2 , «s. , 8_N))

The expression e is evaluated and rounded to an integer K. If
1 < K < N, the value of this CASE expression is the value of e_K.
It is an error if K is out of the range 1 to N.

CASE e OF (e 1, e.2 , cu. o ©_N , OTHERWISE e_(N+1) )

This statement operates 1like the ordinary CASE expression
above except if K is out of the range 1 < K £ N, the value is
e_{(HN+1).

Examples:
G «~ CASE I-J OF (A, B+1, C~D, OTHERWISE E/6) * H

STEPS num_171 TO num_2

As in a group, num_1 must be £ num_2 (unless num_2 < 1). LCC
will set up a new group context (non-block}) for the sequence of
steps from num_1 to num_2. Execution will then begin at step nunmn_1
and it will continue through successively higher numbered steps.
The context for this step group operand will normally be
terminated by a RETURN statement, whose result will be the value



LCC Operands 47

of the operand. It is an error for the group to return without a
value. An FXIT statement will terminate the step group context and
return control to you in the context of its calling group.

Note that there is a possible syntactic ambiquity when a step
group operand is used inside an iteration clause. An example is
the statement

FROM STEPS 3.5 TO 3.8 BY 2 DO PART 8
In anv such ambiguous cases, the keyword *T0’ will always be
associated with the step call rather than with the iteration

clause.

Examples:
M = X - STEPS 5.3 TO 5.46

STEP num

?

Equivalent to the operand
STEPS num TO num

Examples:
TEMP «~ STEP 1420.35 % Z

If LCC encounters a question mark as an operand, it will type
a message and give control to you. You must then type an
expression and return control {(by pressing the RETURN key). The
typed expression will be translated and evaluated, and its result
will be the value of the operand. Note that the typed expression
may involve your program variables, whose current meanings will be
used in its evaluation.

Exanmples:
Y - 2A ¢+ 2 + 2?2LENGTH’ LNG + ?%$“*READ STRING’

string-literal

This operand performs like a simple ? operand except LCC will

type out the user-supplied message string instead of the systen
message.



48

>

b

LCC Operands

Fxamples:
T -« ? “TINE'

< string-literal > varid

This operand is equivalent to one of the expressions

(varid « 2?)
(varid « ? string-literal)

varid nmust be an optionally subscripted variable identifier. You
will be asked for a value as for the simple ? operands described
above, That value will be assigred to varid before being used as
the value of the operand.

Examples:
X = 2Y - 3 = 2V*'3

< string-literal > < varid >

This operand is the same as an ordinary ? operand except LCC
will treat vyour typed response as the body of a string (i.e., it
will surround the characters which you typed with quote marks).
Thus the value of a 2% operand will always be a string. As an
example, if you respond with the character sequence

ALPHA + BETA
to LCC’s request for the operand ?$FQ in the statement
T « S o ?23PQ

the effect will be to perform, in order, the assignments

PQ - “ALPHR + BETA’;
T « S o YALPHA + BETA';

A slight variation is possible here in the use of single-quote
marks, which need not be doubled to appear in your requested
string body. Thus if you were to type

B «"T+

in response to the ahove request for 2§ PQ, the effect would he to
perform the assignment

PO -— \B\\*l"?.',l



LCC Operands 49

Fxamples:
G <« ?2% “INPUT N* EN o EM

The expression e must evaluate to a string, whose contents
will be treated as expression data to the LCC translator. When a !
operand is executed, the string which it supplies will be
translated and converted to a value. That value will then be used
as the value of the operand. Thus an operand !ST, where ST has a
string value, has the same effect as the expression

{ST + O)

which forces the value of ST to be converted from a string to a
number before the addition can be performed.

Examples:
XY < FF{1-SIN(Z), !'pP) » 3

LCC will treat the staterent seaquence from this *compound
expression” as a single control unit whose sub-statements will be
executed sequentially from left to riqght. A compound expression is
not a block and does not have its own local variables. It will
normally be terminated hy a RETUSRN statement, whose value will be
the value of this operand. A RETURN statement without a value will
first terminate the context of the compound expression and then
return from the context in which that expression is embedded.

Examples:
Y25 « T + { FOR K TO N DO F(K,L,N); RETURN K } / 2

» group ”*

The value of this operand is a string consisting of the text

of the specified group. That string will contain only the source
text for a step -- not its number. If the group includes more than
ona step, the strings for the individual steps will bpe

concatenated in step-number order to form the operand, with no
semicolons, blanks, or any other characters being inserted hetwecn
successive text strings.



50

Examples:

LCC Operands

G - “STEPS 4.5 TO 4.73* o “STEP 6.1”
t 14,3017

e o - ol e i . R . . o ek b ol i



Appendix A 51

--—- Explanation of Syntax Notatiopn =—-—--

Optional presence =-- These delimiters surround a construct
which may either be present or absent.

Alternatives - These deliniters surround a set of
alternatives, one and only one of which must be prasent.
The alternatives are usually listed vertically, but for a
few metavariables, such as "digit” and “letter”, vwhere
there are many alternatives, they will be 1listed
horizontally and separated from one another by | |
delimiters.

Grouping ~- These bracketing delimiters are used for grouping
only.

Repetition -- The immediately preceding syntax construct,
which will be surrounded by + A brackets, may be
optionally repeated a number of times, with the construct
between the dots (a comma, a semicolon, or either a comra
or the character pair *1(*) being used to separate the
individual constructs. Thus the notation

Repetition -- The immediately preceding construct may be
optionally repeated a number of times, with no separators
{or spaces) between the individual constructs.

(3]

This separator may be read ‘is definecd to be’. It is used in
the same sense as in Algol 60 syntax notation (BNF) for
defining LCC metavariables.



52

In

The

Appendix A

the syntax descriptions, lower-case words or phrases are
used to name metavariables. As used here, a metavariable
ijs a description-language variable which 1is used to
simplify the description of LCC. A metavariable is not
itself an LCC construct, hut it is defined {often
recursively) in terms of LCC elements. Whenever a

metavariable is used in the syntax description of LCC, it
must be replaced by a set of LCC characters satisfying its
definition in order to obtain a valid LCC construct. As an
example, the metavariable “digit” can be any of the atomic
characters 0 or 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9.

upper case words used in the syntax are primitive LCC
elements which must be used {and spelled) exactly as
written f{except for the eguivalent LCC words ‘PART’ and
‘PARTS’, which may be used interchangeably, and *STEP’ and
‘STEPS’, which may also be interchanged). These primitive
“keywords” are reserved identifiers in LCC, and they may
not be used to name variables. The current LCC keywords
are the following:

ALL NEW
ALTER NUMBER
ARRAY OF

AS OFY
BEGIN OTHERWISE
BY PART
CASE PARTS
COMBINE PAUSE
COPY PRINT
DELETE PUNCH
DISPLAY READ
DO RECOVER
ELSE : RETIRN
END SAVE
EXIT SHARE
FALSE STEP
FILE STEPS
FOR THEN
FORM TO
FROM TRUE
GO TYPE
GOTO USE

IF VALUES
IN WHILE
LINF WITH

LOAD WRITE



: Appendix B 53

---— LCC Syntax -—---

binary-operator ::=  |=|t|¢|/) 5| [+]-|<|SI=|2|>]|# en]e]A|v|Z]a]
digit z::= j o1 1Y 213 )4 15617181 9)
o $r= primary

! l
| unary-operator e |
| e binary-operator e ]
}] IF e THEN e ELSE e |

enppty ::= (i.e., the null string of characters)

extractor ::= { e <e > |

e !

[T T}

for-clause ::= <|FOR ident <|FROM| e >|> <|BY e < TO e >|> <HHILE e> DO

!
I 1Re { | {TO @ < BY e >]
| FROM e |
group HE R | ¥ PART | < num < TO num > > |

1 | PARTS | !

| | sTrp | |

| | STEPS | !

| num < TO num > ]

hex-digit 1= | digit | A | B | C | D | E | F |
ident 3= letter < & | digit | 4 ... >
| letter |
F_ 4
int 3= + digit +4 ...
letter ::= ! ICIDIEIF|GIR|X]IIKIL|M{N|O|PIQ|R|SIT|U|V|R|X|¥|Z]
lalblcldlelfiglh]ifilkilin{nfolpigicis|t|u]vivix]y]z|



54

logic—-literal it

num

-
"

—— e — —— iyl T — iy —— — |l —

pointer ::= > v

primary ::= | oper
| Ce

procedure L

s 11= | staten

| ident

Appendix B

= | FALSE |
| TRUR |
1l ¢ <] L | > + hex-digit 4 ... |
] R | !
F . 4 int |
]
l
] 1 int < + . 4 £ int > > < o<1 + ] > int >
] 1 +. 4 int 1] - |
| w <} + ] > int
| 1 -
BEGIN + s 4 .;. END |
CASE e OF ( + e 4 ., , OTHERWISE e > ) |
PART numn < { + s 4 <7 Y} > |
] STEP | num < TO num |
| STEPS | |
ident I
logic-literal !
number-literal |
string-literal |
var < { < F+ | e ] 4 «ve >3 > |
| pointer | ]
| procedure | |
2 < $§ > < string-literal > < ident > ]
! e ]
{ s+ .;. } |
* group * |
arid
and | < [ | extractor |
) i | subscript-list < | 1[ | extractor > |
I e I
v < { F+ ident 4 .,. ) | | v
| s 4 .;. |
ent |
: s |

1 >



save-ohjact =::=

statement T3

string-character

string-literal

structure

subscript-1list

type-ohject 1=

var 1:= ! operand
1 Ce)
varid HEE ident

ad
L1

ARRAY [ F e < 1 e > -4 .

]
!

Appendix B 5%

ALL

PARTS

STEPS

VALUES

< | PART | > + num < TO num > 4 .,.
| PARTS |

| STEP |

} STEPS |

 varid 4

{see list of statements starting on next page)

= ] any-CMU-character-but-a-quote |

A} !

p e I

* < + string-character 4 ... > *

empty ]
( for-clause + type-object - .,. ) |

| < [ subscript-list 1 >

< [ subscript-list 1 >



56 Appendix R

statement 2= one of the following syntactic forms

ALTER group | =] F e - e 4 .,.

< NEW > ARRAY + F ident 4 .,. [ Fe < ze>H4 .| ¥ |.1+4.,.

BEGIN F+ s A .;. END

OTHERWISE s > }

-4
.
A

~

CASE e OF { F s H .
COMBINE < STEPS > num TO num AS e
COPY group AS e < BY e >

DELETE | FILE e
| save-object |

DISPLAY | FILE < CATALOG > |
| RETUORN < STEPS > |
| save-obiject |

EXIT < | ALL ) >
| < TO > < PART > e |

for-clause s

G0 TO > | <e>
{ GOTO ]

IF e THEN s < ELSE s >
LINE < e >

L.OAD < FILE > e



Appendix B

NEY F ident < « | a I >4 .,.
! pointer |
| procedure |
] structure |

NUMBER | AS e |] < BY e >

| group < AS e > |

OFF < SAVFE >

PART num < § + s 4 .

-
v

PAUSE < e >
PRINT < FILE > e
RECOVER < e >

RETURN < | e | >

!
| pointer |
| procedure |

SAVE save-obiject < AS < FILE > e >

nue < TO num >

TYPE + type-obdect 4 .,.
USF < FILE >
WRITF |+ type-object 4 .,. < AS < FILE > e >

? < ¥ >+ < string-literal > varid -

L



Appendix B

a €< + character 4 .. >

var = | e ]
| pointer ]
| procedure |
| structure |
var < { < + | e | 4 e >

| pointer ]
! procedure |



1.

2.

Appendix C 59

-=-— Procedure for Logging On to the LCC System ----
-——- at a 2741 Terminal —-———=

Set the power switch (at right of keyboard) to ON.

Make sure the terminal mode switch (on left side of 2741) is
set to COM. Tt will be set to COM if and only if the keyboard
is locked, which you can easily test by trying to press the
RETURN key.

Push the TALK button on your Data-Phone.

Lift the phone receiver and dial the computer, which will
answer and then emit a continuous tone, When you hear the
tone {(a beep), press the DATA button and replace the
receiver. You are now connected with the TSS monitor systen,
which will, after a short delay, type back to you a message
similar to

ROOT TSS AT CMU TASKID=0031 09/237/69 17:31 8345 SDA=0053

5. Type your B-character user number and press the RETURN key. TSS

7.

will respond with a one or two line greeting message and, on
a new line, an initial underline character (_) followed by a
backspace, leaving the typing element positioned at the first
rosition on the line,

It this 1is to be your first session with LCC, type the
characters

SHARE YSER,LCC,USER
and press RETURN., TSS will respond with another
nnderline-backspace. This SHARE command needs to be typed
only once, and on subsequent tuns you should omit it.
Type the characters

DDEF LCC, VP,USER.LCC,OPTION=JOBLID

and press RETHRN. TSS vill again respond with an
underline-backspace.



RO

The

Appendix C

Type the characters
LCC

and press RETURN. After a short delay, LCC will respond with
a polite greeting such as :

LCC: GOOD AFTERNOON

Tt will then indent four spaces and give you control. You are
now communicating directly with the LCC processor, which will
analyze all succeeding lines which you type.

complete logon record for your first LCC run will thus be
similar to the following:

BOO1 TSS AT CMU TASKID=0031 09/23/69 17:31 8345 SDA=0053
XYZ17Z13

15:22 23SEP 69-TSS UP TILL 24:00

SHARE USER,LCC,USER

DDET LCC,VP,USER.1CC,OPTION=JOBLIB

LCcC

LCC: GOOD AFTERNOON

For subsequent runs, everything will look the same except for
the omission of the “SHARE’ line.



Appendix D 61

-=-==-  Typing LCC Text at a 2741 —-—-

The characters, including blanks, wvhich you type will be sent
to LCC line-by~line in the order you type then. However, if you
discover bhefore you finish typing a line that you have made an
error on that line, you may Dbackspace past the incorrect
characters, thus deleting them from the line being sent to LCC
(though not, obviously, from vyour typed page). You may then
complete the 1line by typing the correct characters or, 1if no
correction is needed, merely press the RETURYN key. Each time you
press BACKSPACE, you will delete one character from the line; thus
five BACKSPACEs would erase the last five characters (including
blanks) which you typed. After backspacing, you should manually
upspace the paper in your 2741 to avoid any confusion which would
be caused by strikeovers.

Tf your whole line is wrong, you may cancel it all by pressing
RETURN 1immediately after typing either the character ‘o’ or the
character ‘/'. LCC will completely ignore the line, and it will
merely unlock the keyboard for the next line -- it will not indent
the typing element after such a line cancellation. Note that a ‘o’
and a M/’ will act to cancel a line only when they are followed
immedliately by a RETURN. In all other cases they are sent along as
legitimate LCC characters.

#hen you «complete a line, you nmust terminate it by pressing
the RETURN key. This will cause the sequence of characters which
you typed to bhe sent to the LCC processor for syntactic analysis
and possible action. LCC will scan your line from left to right in
order to translate it into an internal interpretable code. If your
line 1is syntactically incorrect, an error message will be typed
back to you, indicating (by a “]’) the position in the line of the
item which had djust been scanned when the error was encountered
ani (by a number) the kind of error which was found (see Appendix

E). Tf your line is correct, LCC will determine whether it is a
complete step or whether you plan to supply an additional line to
continne it. You must indicate such continuation by typing a

hyphen or minus character (*-’) just before pressing RETURN. The
next line will then be concatenated with the current line such
that 1its first character will follow directly after the last
character before the hyphen, and the hyphen will be deleted.

Zach line will be analyzed as above until a step is found to
be complete. LCC will then determine whether the step is inmmediate
or delayed by checking its step number. If it has a number, the
step 1s delayed, and it will be saved internally so that it may be
called into execution at some later time. If it has no number, the
actions specified by the step will he performed immediately. When
all such actions have been completed, LCC will indent one or more
spaces, unlock the keyboard, and return control to you.



Appendix E

~-=-- FError Megsages -—--—-

Translator (syntax) errors =-- A vertical bar character (|)
will be typed under the position in your step text which
had just been scanned by the translator when it discovered
the error, and a message of the form

ERROR SXnn text

will be written. *nn® is a two digit number which
specifies the translator error which has been encountered,
and *text” is an abbreviated description of the error (see
Appeadix F for some expanded descriptions of the errors).
The error message will be left-justified on the line
containing the “|’ marker unless the marker occurs within
the first 10 characters on the line, in which case the
message will be typed to the right of the marker.

Execution errors -~- Execution error messages are of the form

ERROR mmmm text

where “mmmm” is a four character internal error designator
and “text” is a string which describes the error vhich has
been encountered. Examples are

FRROR UNO1 Vv[45,1] IS UNDEFINED

ERROR GO0O3 STEP 2.15 NOT IN AN ACTIVE CONTEXT
ERROR VEO3 SUBSCRIPT OUT OF RANGE

ERROR ORO! AT 61.4 DIVISION BY ZERO

A complete listing of all the errors caught by LCC, with
explanations of their causes and descriptions of any
possible recovery options, may be found in the reference
document “LCC Error Messages”.



10:
11:

16

22:

262
282

32+
34:
315:
36:
38:
39
40z
43:
a4z

96

97

993

Appendix F

--—— LCC Syntax (SY) Error Descriptions -~~—--

This should have been a statement, but it isn’t one.
This literal constant is malformed.
This must be an operand. It isn’t one.
This must be an operator or a delimiter. Tt isn’t one.
No *{’ to match this ‘1°.

An extracted value may not be subscripted.

In the current lanquage context, this is meaningless.
This should be a statement terminator (END, }, ;, ELSE, ¥9).
No *{’ to match this )’

No “BEGIN”’” to match this ‘END’.

No *IF’ to match this “THEN'.

No “THEN’ to match this *ELSFE~’.

Your ™ must meet its match here.

You need a step or part number here.

A controlled variable must be an identifier.

Your CASE statement needs a “{' here.

Your CASF expression needs a “(’ here.

The ‘*OTHERWISE’ must be last in a CASE list.

You can’t store into an extracted value,

You can’t have more than an expression here.

You need ‘AS’ here.

A parameter may only be delimited by *,* or W7,

This step is missing an “END’.

This step is missing a “}”’.

No *{’ to match this ‘}’.

You need to specify some subscript bounds here.

You can only request input to a variable, not an expression.
You need “FROM’ or “IN’ or a statement terminator here.
No *v’ to match this one.

You need a ')’ to end this formal parameter list.

Youn need a save-object or a group designator here.

You need a group designator here.

This must be an identifier.

This must be a ‘e’

You need a *:* or a V," to delimit this ALTER list.
This can’t follow an iterated output element.

This should be a step number, but it isn’t one.

63

Whoops -- the first phase of the translator has just had a
stack indexing error, which should be impossible. Please show

your listing to an LCC implementor.

The translator has just run into some sort of a semantic
error. It could be due to something simple, like an unmatched
YEND®, but if you can’t find a mistake, please ask an LCC

implementor for some help.

Congratulations: you have Jjust found an error in the LCC

syntax tables. Please tell an LCC implementor about it.



64

Appendix G

--=- Automatic fleload File —-=—-

There 1is a possibility that during a conversational session a
hardware or software failure will kill LCC and/or TSS and break
off your conversation. In that case LCC will lose all of its
temporary records of your interactions, which wvould normally
include all of your delayed steps and all “values” which had heen
assigned to your variables as well as all the stacked information
on the status of your program’s execution at the instant of the
system failure, The values and the execution information will be
irretrievably 1lost, but 1LCC 1includes a special feature to save
your delayed steps, thus lessening the catastrophic effects of the
system crash.

This feature is the ‘automatic reload file”’, a file on which
your delayed steps are auntomatically saved while your conversation
progresses. If there are no system failures during your session,
this file will be deleted when you log off (unless you explicitly
retain it with an “OFF SAVE’ statement), but if the system fails,
the file will not be deleted and thus will be available for
reloading when you next call LCC. FERach time you call LCC, a check
will be made to determine whether your automatic relecad file
exists. If it does not, nothing is done, but if it does, you will
be given control after the message

AUTOMATIC RELOAD? Y OR N

You +then have the option either to restore your delayed steps by
loading the file (by typing ‘Y’ and pressing the RETURN key or by
merely pressing RETURN) or to ignore the file and delete it (by
typing ‘N’ and pressing RETURN). Steps will be added to the reload
file in sets of 5 in the order you type them; thus you may lose
your last five typed steps after a crash, but no more. Remember
that no values or centext information will be automatically kept,
so you may have to perform a lot of initialization to resunme
execution from the point of the crash.



Nam

ABS
ARCC
ARCS
ARCT
COsS
COTA
ENTI
EXP
LN
LOG
S5GN
SIGN
SIN
SORT
TAN

Appendix H 65

--—- Sstandard Functions ----

The standard functions which are included in LCC as predefined
procedures are listed below. Each requires as an arqument (ARG)
one actual parameter which must evaluate to a number. The
arguments of the trigqonometric functions (and the results of the
inverse trigonometric functions) must be in radians.

e Function Definition
Absolute value | ARG |
0s Arccosine arccos (ARG)
IN Arcsine arcsin(ARG)
AN Arctangent arctan (ARG)
Cosine cos (ARG)
N Cotangent cotan{ARG)
ER largest inteqger < ARG
Exponential e t ARG
Natural logarithm 1n {(ARG)
Common logarithm log,(ARG)
Sign ITF ARG > O THEN 1 ELSE IF ARG < 0O
Sign (same as SGN) THEN -1 ELSE 0
Sine sin(ARG)
Square root ARG t (1/2)
Tangent tan (ARG)



66

Appendix I

~www Built-in LCC Functions and Procedures -—---

The special functions and procedures which are included in the
LCC system are described below. To use the name of a standard or
built-in function as a variable, you must declare it as “NEW’. The
function’s original meaning will then be lost for as long as your
declaration is in effect. If you declare one of these identifiers
on level zero, its original meaning will be lost for the duration
of your conversational session unless you reinitialize your LCC
environment by executing a ‘DELETE ALL’ statement.

COLLATE ( arg )

Arg must be an expression which evaluates to a string. The
value of the function COLLATE is an integer associated with the
leftmost character of the value of arg. A unique integer is
returned for each valid LCC character, and the integers will be
ordered according to the System/360 EBCDIC collating sequence for

the associated characters. The space or blank character conmes
first in the «collating sequence and thus has the spallest
associated 1integer. The other valid LCC characters are listed

below in order of ascending collating sequence (left to right and
top to bottom).

tAaviti=«3].<{(+] e(}Y<2FAcn>¥!
$ %) ; ~~/ € g ,8_D>2T 2740 0=\

ABCD

<o}
g ]

GHIJEKLMNOPOQRSTUVWIXYZ
012345467829
Examples: The following steps define a function ALPHA which
returns the value TRUE if the first character in its argument

string is alphabetic (lower or upper case); othervise it
returns FALSE.

ALTER 1.6, ‘LL’+~COLLATE(‘}{A’), ‘*OUL’~COLLATE(*Z”");

1.5z
1.6z ALPHA « v (X) ({(¥X « COLLATE(X)) 2 LL) A~ (X < OL) v;



Appendix I 67

EE

This parameterless function has as a constant value the base
of the natural logarithmes, i.e., 2.718281828 ... Its value is as
accurate as is possible in a System/360 double-word.

EXTERNAL ( arg )

This procedure allows you to temporarily add to your LCC
environment a non-1CC procedure or function which is to be called
from your LCC program. Tts argument must be a pointer to the name
of the procedure or function to be added (e.g., > NAM). The effect
of FXTERNAL is temporary and lasts only until you log off or
reinitialize with a “DELETE ALL’ statement.

The external procedure or function to be added must satisfy
the standard TSS (FORTRAN) linkage conventions and its name must
appear as an entcty point in one of your effective TSS job-library
stack members. The value which it returns (if any) must be a
double-word number placed in floating-point register zero. All
FORTRAN double-precision 1library functions which do not involve
arrays satisfy these conditions and are acceptable EXTERNAL
functions. Any other experimentation is at your own risk.

Examples: The following statements indicate to LCC that you wish
to use the FORTRAN procedures ‘DSIN’ and ‘DCOS~”.

EXTERNAL( =DSIN );
EXTERNAL{ =DCOS );

INTERNAL ( arg_1 , arg_2 )

This procedure should not be called by a normal user. Its name
is included here merely to forestall possible naming conflicts.

LENGTH ( arq )

Arg nmust be an expression which evaluates to a string. The
function LENGTH will have as its value the length {(in number of
characters) of that string.



68 Appendix T ' .

Exanples:
The value of LENGTH(“XYZ’) is 3.
The value of LENGTH(S o 1234), where S = ‘CMU’, is 7.

PI

This parameterless function has as a constant value the
mathematical constant pi, i.e., 3.141592653 ... Its value is as
accurate as is possible in a System/360 double-word.

SCANN ( arg_%t , arg_2 , arg_3 )

SCANN is a procedure which scans a string to obtain its first
atomic element. Its first argument (arg_1) must be an expression
which evaluates to a string, and arg_2 and arg_3 must be pointers
(i.e., >V and oW, where V and W are arbitrary variables). SCAKNN
will search the string supplied by arg_1 for its first (leftmost)
atonm. It will store that atom into the variable pointed to by
arg_2 (i.e., V), and it will store into W a string consisting of
everything from arg_1 which is to the right of its first aton.

For scanning purposes, an atom is one of the following:

1. A contiquous string of alphabetic and/or numeric
characters (e.g., “ABCD’, “345", “PuU2G*, “*64AB2"}.

2. A single non-alphanumeric character (e.g., ‘%', ‘.7, -7,
\(I \.')
r L4 -

Blanks which precede an atom will be ignored, and an atom will be
terminated by a blank, another atom, or the end of the string
which contains it.
Examples: The step

SCANN(™ AP +ARC*DEB’, =L, aR); SCANK(R, >»LL, 5RR)

will set L to “ABY, R to “ +ABC*DE’, LL to *+7, and RR to
“ABC«DE”’,

SPLITT ( arg_1 , arg_2 , arg_3 , arg_u4 )

SPLITT is a function which searches a string (of atonms) for a


file:///P42G'

Appendix T 69

specified substring. Its value will be TRUE if the substring can
be found or FALSE if it cannot. Tts first two arguments must be
expressions which evaluate to strings, and its last two arquments
must be pointers (i.e., »V and »W, wvhere V and W are arbitrary
variables). SPLITT will treat both strings as sequences of atons
{see the SCANNW procedure ahove) and, searching from left to riqght,
it #ill attempt to find a sequence of atoms in arg_2 which matches
the atomic sequence arqg_1, If such a sequence is found, SPLITT
will return the value TRUE and, as side effacts, it will store all
of arqg_2 to the left of the match into the variable pointed to by
arg_3 (i.e., V), and it will store everything to the right of the
match into W. If no matching subsequence is found, V and W will be
left unchanged.

Note that the matching done by SPLITT is atom~by-atom rather
than character-by-character. This means that the character string
arg_1 need not be contained exactly in arg_2 to obtain a match,
though it must be except for blanks which may surround atoms
(i.e., the strings “A+B7, ™ A +B’, ‘A + Bf are all equivalent
in this atomic sense). Effectively then, all extraneous blanks in
arqg_1 are deleted before the match is performed, and arg_2 cannot
be searched for segquences of blanks.

Fxampies: The operand

SPLITT(*AB”, ‘*ABC:AB«<AB+1’, 5L, =R)

has the value TRUE and it sets L to “*ABC:* and R to
*«AB+1’. The operand

SPLTITT(*3 . 4 “, “3.4 :p + B’, oLL, >RR)

has the value TRUE and it sets LL to “’ (the null string)
and RR to * :A + B”’.



70

a
A

.

15
7.
7. 36
.0
.00065
12
123456

A

6.
«62,+1
3.
.00003
6.
-635,~
12
. 12345

A

w
.0001

ol
1,416

A
A
A
A
A
.

Db >Db Db

bbb

Appendix J +

~=-=-=- Example LCC Conversation --—--

THIS IS THE RECORD OF AN ACTUAL CONVERSATION BETWEEN A USER
(AT A REMOTE 2741 TYPEWRITER) AND THE LCC SYSTEHM.

THE POLLOWING ARE NUMBERS (LITERAL NUMERIC CONSTANTS) IN LCC:

36
0065

34567890.
7890

WE CAN APPEND AN EXPONENT TO GET LARGER (OR SMALLER) NUMBERS:

2012

3

7214~5
721
35,-42

41

345. 2,465
2,+70

AN EXPONENT ALONE IS ALSO A NUMBER.

m

5

NUMBERS ARE OPERANDS WHICH CAN BE COMBINED INTO EXPRESSIONS,

USING THE UNARY PREFIX OPERATORS (WHICH ARE WRITTEN TO THE
LEFT OF AN OPERAND):

- NEGATE
+ (HAS NO EFFECT) ‘
i TRUNCATE {(STRIP QPF THE FRACTIONAL PART)
AND THE BINARY INFIX OPERATORS (WRITTEN BETWEEN TWO OPERANDS):
+ ADD
- SUBTRACT
* MULTIPLY
/ DIVIDE
* RAISE TO A POWER

IPF WE TYPE IN AN EXPRESSICON, LCC WILL EVALUATE IT AND TYPE BACK
THE BRESULT. THUS WE CAN USE LCC TO PERFORM “DESK CALCULATOR’
OPERATIONS.

LET’S TRY A FEW EXPRESSICONS TO SEE WHAT WILL HAPPEN.



IO |

Appendix J 71

242
4
348
24
-5
-5
2345-876
1469
1/3
+3333333333
2/7
.2857142857
215
32
2132
4294967296
2345.67894 a T GOOFED. TO CANCEL THIS LINE T’LL TYPE a AND RETURN
ERROR SX03 |
A T GOOFED AGAIN -- I HIT THE RETURN KEY PIRST INSTEAD OF THE ‘o
a KEY, SO LCC TRIED TO TRANSLATE THE LINE. ITS TRANSLATOR FOUND
a THAT I HAD A MISSING OPERAND, WHICH T ALREADY KNEW.
A I‘LL TRY IT AGAIN ON THIS LINE -- o
& LCC IGNORED THAT LINE AND MERELY UNLOCKED THE KEYBOARD TO LET ME
A TYPE ANOTHER ONF. [LCC WILL NEVER INDENT AFTER A CANCELLED
A LINE. ETTHER A ‘o’ OR A ‘/’ WILL CANCEL A LINE, BUT TO DO
a SO IT MUST BE TYPED IMMEDIATELY BEFORE A CARRIER RETURN.
A AN EMBEDDED ‘a’ OR “/’ HAS NO SUCH CANCELLATION PROPERTIES.
4 LCC WILL ALSO TGNORE BLANK LINES AND ANY LINES (SUCH AS THESE)
A WHICH BEGIN WITH A DELTA (A). THUS COMMENT LINES MAY BE
A TYPED WITHOOT ANY ANALYSIS FROM THE LCC SYSTEM.

NOTE THAT TF I FORGET THFE ‘A’ ON A COMMENT LINE, LCC WILL OBJECT.
ERROR SX0U |

4 IT SAYS “THAT’ ISN’T AN OPERATOR, WHICH IS CERTAINLY TRUE. AN

A ENGLYSH SENTENCE DOESN’T USUALLY TURN QUT TO BE A VALID

a LCC STATEMENT.

A IF YOU MAK®E AN ERROR AND NOTICE IT BEFORE YOU SEND THE LINE TO

A LCC (I.F., BEFORE ¥0U HIT THE RETURN KEY), YOU CAN CORRECT

A THE RRROR BY BACKSPACING TO THE LEFTMOST BAD CHARACTER AND

a RETYPING IT AND ALL THE CHARACTERS WHICH FOLLOWED IT. ANY

a CHARACTERS BACKSPACED OVER (NOT JUST THE LEFTMOST ONE) WILL

a BE DELETED FROM THE LINE. I‘YLL SHOW YOU AN EXAMPLE;

12.34,56 THE *,” SHOULP BE A “+’., I’LL BACKSPACE AND RETYPE IT.
+56 4 I UPSPACED MANUALLY TO AVOID STRIKEOVERS.

68.34
A STRIKEOVERS WON’T BOTHER LCC, BUT I WOULDN’T BE ABLE TO READ
A WHAT I TYPED.

A NOW LET’S TRY SOMZ MORE EXPRESSIONS.

$2345,.876
2345

+345
345



Appendix J

238 + 12.5 * 54.2 /7 6,3 ~ 2
232.1129167

a UNARY OPERATIONS ARE NORMALLY DONE BEFORE t’S, WHICH ARE DONE

a BEFORE # AND /, WHICH IN TURN ARE DONE BEFORE + AND -.
a HOWEVER, WE CAN CHANGE THIS TMPLICIT HIERARCHY OF OPERATIONS
A BY USING PARENTHESES.

12.78 * (92.5 7/ .341 - .00058) t (3 * .788)
7228636. 11

A THIS WAS DONE AS IF IT HAD BFEN WRITTEN

12.78 + ( ( ( 92.5 / .341) - ,00058) ¢+ (3 * .788) )
7228636, 11

A BESIDES THF UNARY AND BINARY OPERATORS WE CAN USE SOME OF THE
a STAKDARD MATHEMATICAL FUNCTIONS SUCH AS

A SQRT SQUARE ROOT

A SIN SINE (ARGUMENT IN RADIANS)

A cos COSTINE (ARGUMENT IN RADIANS)

A 1y LOGARITHM {BASE E)

A EXP EXPONENTIAL (EtARGUMENT)

A ARCTAN ARCTANGENT (ANGLE IN RADTANS)

A LET’S TRY A FEW OF THEMNM.

SQRT(3)
1.732050808 -
SQRT (234) *
15.29705854
SIN(5}
-.95892u42747
LN (2)
.6931471806
EXP{D)
2.718281828

A THUS FAR IN THIS CONVERSATION, ¥O VALUES HAVF BEEN RETATNED BY

a LCC, BUT IF WE WISH TO KEEP A COMPUTED NUMERIC VALUE, WE CAN

a STORE IT INTO A VARIABLE. VARIABLES ARE DESIGNATED BY

a IDENTIFIERS, WHICH YOU CAN CHOOSE FREELY (EXCEPT POR LCC

A KEYWORDS LIKE “TYPE” AND “IF’, WHICH HAVE SPECIAL MEANINGS).

A AN IDENTIFIER MUST BEGIN WITH A LETTER AND IT CAN CONTINUE

A WITH LETTERS, DIGITS, OR UNDERLTNE (_} CHARACTERS. IDENTIFIERS
A CAN BE AS LONG AS YOU LIKF, BUT LCC WILL IGNORE ANY CHARACTERS
A AFTER THE FIRST 8.

A I’LL PICK SOME IDENTIFIERS AND STORFE VALUES INTO THEM. NOTE THAT,
A UNLIKE ALGOL, LCC DOES NOT REQUIRE ME TO DECLARE AN IDENTIFIER
A BEFORE I USE IT.

A - 5; B4 ; LCC - 111868 ; FISH -« 0 ; NOVEMBER - 18 ; A_B_C « 35
A WE CAN CHECK THE VALUES WHICH WERE STORED BY TYPING THEM OUT.

TYPE A,B,LCC,FISH,NOVEMBER,A_B_C



- Appendix J 73

4

111868

0

18

35
A NOW WE CAN USE THESE VARIABLFES AS OPERANDS IN FURTHER CALCULATIONS
A+B

9
SQRT(B+FISH)

2

LCC / NOVEMBER - (LCC * A_B_C)
-3909165.111

A WE CAN CHANGE THE VALUE OF A VARIABLE WHENEVER WE WISH:

A - -742.8 ; B « B-1; PFISH«-3U4-B; TYPE A, B,FISH

~-742.8

3

31
a THE CONSTRUCTION A -5 IS A STATEMENT, IN PARTICULAR, AN
A ASSIGNMENT STATEMENT. THE “TYPE’ STATEMENT IS ANOTHER KIND OF
A STATEMENT WHICH CAUSES FACH OF A LIST OF EXPRESSION VALUES TO
A BE TYPED BACK TO US (ONE VALUE PER LINE). WE CAN PUT MORE THAN
A ONF STATEMENT ON A LINE BY SEPARATING THR SUCCESSIVE STATEMENTS
A BY SEMICOLONS (AS ABOVE). A SEMICOLON AFTER THE LAST STATEMENT
A ON A LINE IS OPTIONAL.
A WE CAN MAKE AN ASSIGNMENT INSTDE AN EXPRESSTON, OR WE CAN BOTH
A TYPE AND ASSIGN IF WE WISH.
T+ A/ (C«~B- 1) + 100; TYPE T,C

-271.4

-

TYPE P - LCC + 1
111869
TYPE CAT - DOG - 3;
ERROR UNOT1 NOG IS UNDEFINED
4 THAT DIDN’T WORK BECAUSE I FORGOT TO GIVE A VLAUE TO THE VARIABLE

A DOG. I‘LL DO SO AND TRY AGAIN. NOTE THE ERROR MESSAGE FROM
a LCC’S EXECUTOR, WHICH WAS UNABLE TO CONTINUE AFTER FINDING AN
a UNDEFINED VARIABLE.,
DOG = 5
TYPE CAT - DOG - 3

99997

Y+«J+R+L-H~N+0; A WE CAN ASSIGN A VALUE TO A WHOLE SET OF VARIABLES.
TYPE T+J+K+L+M+N; a THEY WILL ALL BE ZERO.

0
IJKLMNOPQRSTUVRXYZ « S5; TYPE IJKLMNOP; A LCC TGNORES THE REST.
5
A WE CAN TEST THE VALUES OF VARIABLES BY MEANS OF AN ‘TP’ STATEMENT.
a EXAMPLES ARE:
IF A < B THEN TYPE 3 ELSE TYPE 0
3

IF B*P # LCC THEN TYPE 9999



T4

9599

W W

LI ]

s 0
[ RN =~ VO S
48 a4 as S8 08

Appendix J

IF WE WANT TO PERFORM MORE THAN ONE ACTION DEPENDING ON A
CONDITTON, WE CAN COMBINE A SFT OF STATEMENTS INTO A SINGLE
COMPOUND STATEMENT VIA THFE STATEMENT BBACKETS € AND }.

THUS WE CAN TYPE:

=~ S~

IF AJR € P THEN { T = 3 ; W = 4 ; TYPE T+W };
IF T = P THEN IP A # B THEN TYPE 3 ELSE TYPE 4 ELSE TYPE 5

A HOTE THAT ANY STATEMENT (EVEN AN IF STATEMENT) CAN FOLLOW A
A “THEN’ (OR AN MELSE’).

A SO MUCH FOR THE BASIC ‘DESK CALCULATOR” FEATURES OF LCC. SUPPOSE
WE WISH TO WRITE A PROGRAM AND STORE IT INSIDE LCC. THUS FAR
IN THIS CONVERSATION, NONE OF OUR STATEMENTS HAVE BFEN KEPT
AFTER REING EXECHTED, THOUGH LCC HAS SAVED THE VALUES WHICH WE
ASSIGNED TO OUR VARIABLES. WE CAN SAVE STATEMENTS WHICH ARE
T0 BE CALLED OUT LATER FOR EXECUTION BY GIVING THEM “STEP
NUMBFRS’ WHICH BOTH IDENTIFY THEM FOR OUR FUTURE USE AND ALLOW
LCC TO ORDER THEM PROPERLY. AS AN EXAMPLE, LERT’S WRITE RA
STMPLE PROGRAM TO COMPUTE FACTORIALS.

PP D> DD

3.1: FACT = 13

THE STEP NUMBER, 3.1, CAN BE SEPARATED INTO TWO PORTIONS, THE
INTEGER PORTION, WHICH IS THE “PART NUMBER’, AND THE FRACTIONAL
PORTION. SINCE THE INTEGER PORTION IS 3, THIS STEP IS STORED
IN PART 3, AND THE FRACTION INDICATES ITS POSITION RELATIVE TO
OTHER STEPS IN PART 3. PART NUMBERS MUST BE BETWEEN 1 AND 9999,
AND THE STEP FRACTION MUST BE BETWEEN .0001 AND -9999. LEADING
7EROS IN THE PART NUMBER AND TRAILING ZEROS IN THE FRACTION MAY
BE OMITTED.

LET’S GO ON WITH CUR PROGRAM.

P> D>P

3,2000: TFACT « FACT % N; A WE’LL CTOMPUTE N{ AND PUT IT INTO FACT.
3.3: IF % = 1 THEN RETURN ;

3.40: N <« N- 13

3.5: GO TO 3.3; A WE CAN TRANSFER CONTROL TO A NUMBERED STEP.

A NOW LET’S SEE WHAT PART 3 LOOKS LIKE.
DISPLAY PART 3 ; & THIS WILL TYPE OUT THE STEPS IN PART 3.

FACT - 1;

FACT -« FACT * N; & WE’LL COMPUTFE N! AND PUT IT INTO FACT.
IF N = 1 THEN RETURWN

N«N-1;3;

GO TO 3.3; A WE CAN TRANSFER CONTROL TO A NUMBERED STEP.

A NOW I’LL GIVE A VALUE TO N AND CALIL PART 3. EXECUTION WILL BEGIN
A WITH STEP 3.1 AND PROCEED TO SUCCESSIVELY HTIGHER NUMBERED STEPS
A UNLESS WF EXPLICITLY TRANSFER CONTROL WITH A *GO TO’ STATEMENT.

Y



LS S Y

Appendix J 75

N - 5; PART 3

TYPE FACT
5
A HMMM... THAT’S NOT 5! -—— 1 GUESS I HAVE A BUG.
a4 OH, YES; STEP 3.5 SHOULD GO TO 3.2. TI’LL CHANGE IT BY RETYPING
A STEP 3.5. THAT WILL FRASE THE OLD STEP AND REPLACE IT BY MY
A NEW ONE.
3.5: GO TO 3.2 ;
A NOW TRY AGAIN.
N=% ; PART 3
TYPE FACT
120
4 THAT"S DETTER. LET’S FIX STEP 3.3 SO IT WILL RETURN THE VALUE
A DF WYACT.
ALTER STEP 3.3 : “RETURN’ - *RETURN FACT’
A THAT CHANGED THE TERXT OF STEP 3.3 BY SUBSTITUTING ONE STRING FOR
A ANOTHER. THE KEYWORD “STEP’ WAS OPTIONAL IN THYS ALTER
A STATEMENT, AND T COULD HAVE USED 1A *y’” IN PLACE OF THE “:°.
DISPLAY STEPS 3.3 TO 3.5: A LTT’S CHECK THE TAIL END OF OOR PART.
3.3: IF N = 1 THEN RETURN FACT :
3.4: N<«N-1;
3.5z GO TO 3.2 ;
A LOOKS 0.K. A FURTHER WORD ADOUT THAT DISPLAY STATEMENT ~- IR
A SPECIFYING A GROUP OF ONE OR MOPE STEPS OR PARTS, THE KFEYWORDS
a YSTEP’ AND “STEPS’ ARE FQUIVALENT EVERYWHERE IN LCC, AS ARE
a *PART’ AND “PARTS’. MOREOVER, IN MOST CASES, SUCH AS THTIS
A ONE, THE KEYWORD “*STEP’ MAY BE OMITTED. THUS I COQULD JUusT
A AS5 WELL HAVE SAID
A DESPLAY STEP 3.3 TO 3.5%
a OR DISPLAY 3.3 TO 3.5
4 NOW T’LL TRY PART 3 AGAIN.
N~6: PART 3
720
N+«10;PART 3
3628800

N+0; PART 3;

ATTN AT 3.2

-15

& THAT WENT INTO A LOOP, AND I HAD TO HIT THE “ATTN’ KEY TO GET
A OUT OF TT. T GUESS THE PROGRAM IS STILL BUGGY.

a IYLL THINK ABROUT IT. * * * * *

TYPE FACT,N ; & I WONDER WHAT MY VARIABLES ARE NOW?

A 0, T SEE ~— PART 3 WON’T WORK FOR ANY VALUES LESS THAN 1.
a I‘LL FIX IT BY ADDING ANOTHEF STATEMENT.

3.15: YF N < 0 THEN RETURN FACT ;

N - 0; PART 3: a TRY AGAIN.



Appendix J -

A THAT’S MUCH BRETTER. NOTE, HOWEVER, THAT I STILL HAVEN’T GOTTEN -

A OUT OF MY ORIGINAL LOOP (YOU CAN TFLL BY THE INDENTATION - T .
A SPACES INSTEAD OF 4). T CAN SAY “GO’, WHICH WILL GO ON FROM

A THF POINT WHERE I HIT “ATTN’, BUT THAT WON’T DO MUCH GOOD.

A 17L1 TRY IT ANYWAY TO SHOW YQU,.

GO

ATTN AT 3.2
a YOU SEE, I’M BACK IN THE LOOP AGAIN. TO GET QuT, I’LL FORCE AN
a END TO PART 3 BY GOING TO STEP 3.15.
60 TO 3.15

0
& FACT STILL HAS THE VALUE OF ZERO BECAUSE IT WAS ERRONEOQOUSLY
A MULTIPLIED BY THE ZERC VALUE OF N. NOTE ALSO THAT N HAS BEEN
A COUNTED DOWN AGAIN BY THE LOOP.
TYPE N
-5
A WF CAN HAVE PART 3 ASK US FOR A VALUR OF N BY USING A REQUEST
A STATEMENT.
3.05: 2%
PART 3
AT 3.05 N «5; a I'LL SET ¥ TO 5.
1290
A WE CAN INCLUDE DUR OWN MESSAGE IN THE REQUEST BY PUTTING A STRING f
A RETWEEN THE QUESTION MARK AND THE VARIABLE NAME (N). p
3.05: 2 MTYPE N FOR N!* N .
PART 3 .
TYPE N FOR N! 4
24
A WE CAN UST ANOTHER PART TO CALL PART 3 REPEATEDLY. WE‘LL USE
A PART 25. LET’S DSE A “NUMBER? STATEMENT TO GENERATE THE STEP
A RIITMNERS AUTOMATICALLY.

NUMBER AS 25 BY .1

25.1: PART 3
25.2: 2?2 ° TYPE 1 TO GO ON, O TO STOP ¢ FLAG;
25.3:IF FLAG = 1 THEN GO TO 25.17;

25.4¢:
s THE AUTOMATIC NUMBERRING IS TURNED OFF BY PRESSING THE RETURN KEY
A IMMEDIATRLY AFTER THE STEP NUMBER IS TYPED TOC US.

PART 25; A NOW CALL OUR PROGRAM.
TYPE N FOR N! 1
1

TYPE 1 TO GO ON, 0 TO STOP 1
TYPR N FOR N! 6
720 o
TYPE 1 TO GO ON, O TO STOP 1 :
TYPE N FOR N! O -
1 N
TYPE 1 TO GO ON, 0 TO STOP 1

TYPE N FOR M! 8
40320



- Appendix J 77

TYPE 1 TO GO ON, 0 TO STOP 1

TYPE N FOR N! 2.4

]

ATTN AT 3.4

a OH, OH -— T'M IN A LOOP AGAIN. 1I’LL PLANT A ‘PAUSE’ STATEMENT
A INSIDE IT TO SEE WHAT IS HAPPENING.
3.21: PAUSE ; A THIS WILL GIVE ME CONTROL AFTER STEP 3.2 IS DONE.
GO; & NOW I’LL GO ON WITH THE LOOP.
PAUSE AT 3.21
TYPF FACT,N; 4 I’LL TAKE A LOGK AT THF VARIADLES.
15604, 49567
-7.6
GO ; & IF I SAY GO, THE PROGRAM WILL GO THROUGH THE LOOP AGATN.
PAUSE AT 3.21
TYPE FACT,V
~134198. 6628
-B.6
A4 AS YOI CAN SRE, OUR PROGRAM DOESN’T WORK FOR NON-INTEGERS.
A LET’S FIX IT BY TRUNCATING N WHEN WE ENTER PART 3.
3.06, N - ¥u;
A NOW TO GET RID OF THE PAUSE STATFMENT. I’LL USE A “DELETE’
A STATEMENT, WHTCH WILY. FRASE IT.
DELETE STEP 3.21
G0; A LET'S GO ON.
ERROR GO10 STEP 3.21 CHANGED; GO CANNOT BE USED
A OH,OH —- I FORGOT THAT I CAN’T CONTINUE NORMALLY AFTER I DELETE
AN ACTIVE STEP. THERE ARE A NUXBER OF WAYS TO RECOVER FROM
THIS STITUATION, BUT THE SIMPLEST IS TO START OVER. TO DO
THAT WE HAVE TO GET OUT OF THE CURRENT PART CALLS, AND THE
FASIEST WAY IS TO EXECUTE AN ‘RXIT ALL’ STATEMENT, HAICH
WILL TAKE US BACK T0O THE ORIGINAL USER STATE. REMEMBER THAT
CURRENTLY WE ARE TN PART 3, WAICH WAS CALLED FROM PART 25,
WHICH WAS CALLED BY ME, SO OUR CONTROL NESTING DEPTH IS 2
(I COULD THUS USE TWO SIMPLE ‘EXIT’ STATEMENTS INSTFAD OF
THE YEXIT ALL”).

IF WE ARFN’T SURE WHAT OUR CURRENT CONTROL STATE IS, WE CAN
FIND OUT BY MEANS OF A ‘DISPLAY RETURN STEPS’ STATEMENT,
WHICH WILL LIST THE STEPS CURRENTLY BEING EXECUTED. LET’S
SEE WHAT OUR STATUS TS NOW.

L - I~ - O - T T S

DISPLAY RETURN STEDPS
ok

3.21

25.1

%

THE “+«+«’ INDICATES AW IMMEDIATE STEP, WHICH IMPLIES THAT WE,
RATHER THAN A SAVED PROGRAN STEP, ARE IN THE CONTROL CHAIN.
NOTE THAT WF ARE IN THE LTST TWICE; WE ARE IN CONTROL NOW
(TOP ENTRY) AND WE CALLED PART 25, WHICH WOULD NORMALLY
RETORN CONTROL TO US (ROTTOM ENTRY). THF “EXIT ALL’,
HOWFEVER, ISN'T NORMAL; TT ERASES THE CONTROL CHAIN SO THAT
CONTPOL REVERTS TO THF ORIGINAL GLOBAL STATE WHERE ONLY A
SINGLE “#+%’ WOULD RF DISPLAYED.

THE AMOURT OF INDENTATION WHICH IS DONF BEFORE LCC GIVES Up

= - - T - Y



78

Appendix J

.

A CONTROL TD LET US TYPE A STATEMENT DEPENDS ON THE NUMBER OF
A TIMES WE ARE THEN IN THE CONTROL CHATN, WHICH IS THE NUMBER
a OF “#4#%¢ ENTRIES IN THE “DISPLAY RETURN’ LIST. INITTALLY WE
A ARE ON USER LEVEL 1 (IN THE CHAIN ONCR)Y AND LCC WILL INDENT
A 4 SPACFES. FOR USER LEVEL 2, INDERTATION WILL BE 7, FOR LEVEL
A 1 IT WILL BE 10, FOR LEVEL 4 IT WRAPS AROQUND TO 1. THERE-

A AFTER, FOR HIGHER NESTING LEVELS THE INDENTATION WILL FOLLOW
A THE SEQUENCE

a ¥, 7, 10, 1, 4, 7, 10, 1, ...

a LET’S GO ON.

EXIT ALL

DISPLAY PART 3; & LET’S SEF WHAT PART 3 LOOKS LIKE.

3,05: ? ‘*TYPE N FOR N!f N

3.06: N = IN;

3.1: FACT <« 1;

3.15: IF N <€ 0 THEN RETURN FACT ;

3.2: FACT « FACT =* N; A WEFLL COMPUTE N!{ AND PUT IT INTO FACT.
3.3: IF ¥ = 1 THEN RETURN FACT ;

3.4z N«N-173

31.5%: GO TO 3.2 ;

PART 25 : A LOOKS FINE. NOW IT SHOULD WORK FOR ALL REAL VALUES OF N. .
TYPE N FOR W! 2.4 .
2 .r

TYPE 1 TO GO ON, 0 TO STOP 1 £
TYPE N FOR N! -—34.8 "
1

TYPE 1 TO GO ON, O TO STOP 0

a THAT’S ENOUGH OF THAT. WE CAN NOW SAVE PART 3 COR A FILE FOR USE

A DURING SOME FUTURE INTERACTION SESSION. I’1L1L PUT IT ON THE

A FTILE “‘FACT3’.

SAVE PART 3 AS FILE ‘FACT3'
A THAT CREATED A NEW FILE NAMED SPFACT3” AND STORED THE TEXT FROH

LY PART 3 ON IT. THE TRXT OF PART 3 WILL BE RESTORED IF WE LOAD
4 “PACT3’ (USING A ‘LOAD’ STATEMENT) DURING A FUTURE CONVERSATION
A WITH LCC.

OFF; A LET’S LOG OFF AND END THIS SESSION.
ON LCC FROM 163:35:48 TO 17:17:12
CPU TIME USED: 00:00:06:86



