NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

# A NOTE ON STAR-FREE EVENTS 

By

Albert R. Meyer

Carnegie-Mellon University
Pittsburgh, Pennsylvania February, 1968

This work was supported by the Advanced Research Projects Agency of the Office of the Secretary of Defense (SD-146) and is monitored by the Air Force Office of Scientific Research. Distribution of this document is unlimited.

## ABSTRACT

A short proof of the equivalence of star-free and group-free regular events is possible if one is willing to appeal to the Krohn-Rhodes machine decomposition theorem.

## 1. INTRODUCTION

The star-free events are the family of regular events expressible in the extended language of regular expressions (using intersection and complementation, as well as union and concatenation of events) without the use of the Kleene star (closure) operator. The equivalence of the star-free and group-free events was first proved by Schützenberger [1966]. Papert and McNaughton [1966] show that the star-free events are precisely the events definable in McNaughton's L-language, and are thereby able to establish the above equivalence without extensive use of the properties of finite semigroups. However, if one is willing to appeal to the machine decomposition theorem of Krohn and Rhodes, the equivalence of star-free, group-free, and also noncounting regular events can be proved more simply. We present such a proof in this note.

## 2. PRELIMINARIES

We assume the reader is already familiar with regular events and finite automata. Our notation follows Yoeli [1965] and Ginzburg [1968]. In particular, if $f$ and $g$ are functions from a set $S$ into itself, arguments are written on the left (so that $s f=f(s)$ ), and the composition $f \circ g$ means that $f$ is applied first (so that $s(f \circ g)=(s f) g)$.

A semiautomaton is a triple $A=\left\langle Q^{A}, \Sigma^{A}, M^{A}\right\rangle$ with $Q^{A}$ a finite set (of states), $\Sigma^{A}$ a finite set (of inputs), and $M^{A}$ a set of functions $M_{\sigma}^{A}: Q^{A} \rightarrow Q^{A}$ indexed by $\sigma \in \Sigma^{A}$. The mapping $M_{\sigma}^{A}$ is abbreviated " $\sigma$ " ${ }^{A}$. The element $q \sigma^{A} \in Q^{A}$ is the next state of $q \in Q^{A}$ under input $\sigma \in \Sigma^{A}$. For $x \in\left(\Sigma^{A}\right) *$ the mapping $x^{A}: Q^{A} \rightarrow Q^{A}$ is defined inductively: $\Lambda^{A}$ is the
identity map on $Q^{A}$ where $\Lambda$ is the null word in $\left(\Sigma^{A}\right) *$, and if $x=y o$ for $y \in\left(\Sigma^{A) *}\right.$ and $\sigma \in \Sigma^{A}$, then $x^{A}$ is $y^{A} \circ \sigma^{A}$. Hence, $(x y)^{A}=x^{A} \circ y^{A}$ for all $x, y \in\left(\Sigma^{A}\right) *$. For $\left.x \in \Gamma^{A}\right)^{*}$ and integers $k \geq 0, x^{k}$ is the concatenation of $x$ with itself $k$ times; $x^{0}=\Lambda$ by convention. Clearly, $\left(x^{k}\right)^{A}=\left(x^{A}\right)^{k}=$ the composition of $x^{A}$ with itself $k$ times. The (necessarily finite) set of distinct mappings $x^{A}$ for $x \in\left(\Sigma^{A}\right.$ ) * form a semigroup $G^{A}$ under composition. $G^{A}$ is called the semigroup of $A$.

Let $A$ and $B$ be semiautomata. $B$ is a subsemiautomaton of $A$ providing $\Sigma^{B} \subset \Sigma^{A}, Q^{B} \subset Q^{A}$ and the mapping $\sigma^{B}$ is the restriction of $\sigma^{A}$ to $Q^{B}$ for each $\sigma \in \Sigma^{B}$. $B$ is a homomorphic image of A providing that $\Sigma^{A}=\Sigma^{B}$ and there is an onto mapping $\eta: Q^{A} \rightarrow Q^{B}$ such that $\eta^{\circ} \sigma^{B}=\sigma^{A} \circ \eta$ for each $\sigma \in \Sigma^{A}$. The mapping $\eta$ is called a homomorphism of $A$ onto $B$. A covers $B$, in symbols " $A \geq B$ " if and only if $B$ is a homomorphic image of a subsemiautomaton of $A$.

An automaton is a quintuple $\hat{A}=\left\langle Q^{A}, \Sigma^{A}, s^{A}, F^{A}, M^{A}\right\rangle$ where $A=\left\langle Q^{A}, \Sigma^{A}, M^{A}\right\rangle$ is a semiautomaton, called the semiautomaton of $\hat{A}, s^{A}$ is an element of $Q^{A}$ called the start state, and $F^{A}$ is a subset of $Q^{A}$ called the final states. The event accepted by $\hat{A}$ is $\left\{x \in\left(\Sigma^{A}\right) * \mid s^{A} x^{A} \in F^{A}\right\}$. This definition of automaton is merely a notational variant of the usual finite state acceptor (cf. Rabin and Scott [1959]), and the events accepted by such automata are precisely the regular events.

## 3. STAR-FREE AND NONCOUNTING EVENTS

The star-free events are defined inductively as follows:
Definition 1. Let $\Sigma$ be a finite set (of inputs). The singleton $\{\sigma\}$ is a star-free event over $\Sigma$. If $U, V \subset \Sigma^{*}$ are star-free events over $\Sigma$,
then $U \cup V, \bar{U}$ (the complement of $U$ relative to $\Sigma^{*}$ ), and $U V$ (the concatenation of $U$ and $V$ ) are star-free events over $\Sigma$. An event is star-free over $\Sigma$ only by implication from the preceding clauses.

By DeMorgan's law, $U \cap V=\overline{\bar{U} U V}$ and so star-free events are also closed under intersection. Since the regular events over $\Sigma$ include the singletons and are closed under union, relative complementation, and concatenation, it follows that every star-free event is regular.

Definition 2. (Papert-McNaughton) A regular event $U \subset \Sigma^{*}$ is a noncounting regular event over $\Sigma$ if and only if there is an integer $k_{U} \geq 0$ such that for all $x, y, z \in \Sigma^{*}$

$$
x y^{k^{U_{z}}} \in U \Leftrightarrow x^{k_{U}^{+1}} z \in U
$$

Intuitively, an automaton accepting a noncounting event $U$ need never count (even modulo any integer greater than one) the number of consecutive occurrences of any word $y$ once $k_{U}$ consecutive $y$ 's have occurred in an input word.

Lemma 1. (Paper-McNaughton) Every star-free event is a noncounting regular event.

Proof. The singleton $\{\sigma\}$ is trivially a noncounting regular event for every $\sigma \in \Sigma$ (choose $k_{\{\sigma\}}=2$ ), so it is sufficient to show that if $U$ and $V$ are noncounting regular events over $\Sigma$, then so are $U U V, \bar{U}$, and UV.

$$
\begin{aligned}
& \text { Let } k=\max \left\{k_{U}, k_{V}\right\} \text {. Then for any } x, y, z \in \Sigma^{*}, x y{ }^{k} z \in U U V
\end{aligned}
$$

$x^{k} V^{+1}\left(y^{k-k} V_{z}\right) \in V \Leftrightarrow x y^{k+1} z \in U \cup V$. Thus, $U U V$ is a noncounting regular event with $k_{U U V}=\max \left\{k_{U}, k_{V}\right\}$.

Similarly, $x y^{k_{U}} z_{z \in U} \Leftrightarrow x^{k_{U}}{ }_{z} \notin U \Leftrightarrow x y^{k_{U}+1} z \notin U \Leftrightarrow x y^{k_{U}+1} z \in \mathbb{U}$, so that $\bar{U}$ is a noncounting regular event with $k_{\bar{U}}=k_{U}$.

Finally, let $k=2 \cdot \max \left\{k_{U}, k_{V}\right\}+1$ and suppose $x y k{ }_{z} \in U V$. Then $\mathrm{Xy}^{k} \mathrm{z}=\mathrm{uv}$ for some $u \in U, v \in V$, and it must be the case that either $u=x y^{k / 2} w$ for some $w \in \Sigma^{*}$, or that $v=w^{\prime} y^{k / 2} z$ for some $w^{\prime} \in \Sigma^{* *}$. In the first case, $u=x y^{k / 2}{ }_{w}=x y^{k_{U}}\left(y^{k / 2-k_{U}} w\right) \in U$ implies that $x_{x}{ }^{k_{U}+1}\left(y^{k / 2-k_{U}} w^{\prime}\right)=x y^{k / 2+1} w \in U$ since $U$ is noncounting. In the second case, $v=w^{\prime} y^{k / 2} z \in V$ similarly implies that $w^{\prime} y^{k / 2+1} z \in V$. Hence, in either case $x y^{k+1} z \in U V$. Conversely, if $x y^{k+1} z \in U V$ the argument can clearly be reversed to show that $x y^{k} z \in U V$. Thus, UV is a noncounting regular event with $k_{U V}=2 \cdot \max \left\{k_{U}, k_{V}\right\}+1$. Q.E.D.

If $U$ is a noncounting regular event over $\Sigma$ and $\sigma \in \Sigma$, then $\sigma{ }^{k_{U}} \in U$ implies that $U$ contains all words in $\sigma^{*}$ of length at least $k_{U}$. Therefore, either $\bar{U} \cap \sigma^{*}$ or $U \cap \sigma^{*}$ is a finite event. The regular event ( $\sigma \sigma$ )* is neither finite nor has finite complement, which proves:

Corollary 1. The noncounting (and hence the star-free) regular events are a proper subfamily of the regular events.
4. GROUP-FREE EVENTS

Associated with any event $U \subset \Sigma^{*}$ is a congruence relation, $\equiv(\bmod U)$, on $\Sigma^{*}$ defined for $w, y \in \Sigma^{*}$ by:

$$
w \equiv y(\bmod U) \Leftrightarrow\left(\forall x, z \in \Sigma^{*}\right)[x w z \in U \Leftrightarrow x y z \in U] .
$$

Noncounting regular events are thus those regular events $U$ such that $y^{k_{U}} \equiv y^{k^{+1}}(\bmod U)$ for all $y \in \Sigma^{*}$.

The relation between this congruence and automata is an inmediate consequence of the familiar theorems of Nerode and Myhill (cf. Rabin and Scott [1959]): if $U$ is a regular event, then there is an automaton $\hat{A}$ accepting $U$ (viz., the reduced automaton accepting $U$ ) such that $x \equiv y(\bmod U) \Leftrightarrow x^{A}=y^{A}$.

Definition 3. A subgroup of a semigroup $S$ is a subsemigroup of $S$ whose elements form an abstract group under multiplication in $S$. A semigroup is group-free if and only if all its subgroups are isomorphic to the trivial group with one element. A semiautomaton is group-free if and only if the semigroup of the semiautomaton is group-free. A regular set $U$ is group-free if and only if there is an automaton $\hat{A}$ accepting $U$ such that the semiautomaton $A$ of $\hat{A}$ is group-free.

Lemma 2. Let $S$ be a semigroup. If there is an integer $k \geq 0$ such that $s^{k}=s^{k+1}$ for all $s \in S$, then $S$ is group-free.

Proof. Let $G$ be a subgroup of $S$, and let $g$ be an element of $G$. Then $g^{k}=g^{k+1}$ implies $e=g^{k}\left(g^{-1}\right)^{k}=g^{k+1}\left(g^{-1}\right)^{k}=g$ where $g^{-1}$ is the inverse of $g$ in $G$ and $e$ is the identity of $G$. Hence, $G=\{e\}$ is the trivial group.
Q.E.D.

Corollary 2. Every noncounting regular event is a group.free regular event.

Proof. If $U$ is a noncounting regular event, then $y^{k_{U}} \equiv y^{k_{U}^{+1}}(\bmod U)$
implies that $\left(y^{k} U\right)^{A}=\left(y^{k} U^{+1}\right)^{A}$ in the reduced automaton $\hat{A}$ accepting $U$. Hence, $\left(y^{A}\right)^{k_{U}}=\left(y^{A}\right)^{k_{U}+1}$ for every element $y^{A} \in G^{A}$, and $G^{A}$ is group-free
by lemma 2.

## 5. DECOMPOSITION INTO RESETS

The machine decomposition theorem of Krohn and Rhodes supplies the key step in the proof that group-free events are star-free.

Definition 4. Let $A$ and $B$ be semiautomata and $\omega: Q^{A} \times \Sigma^{A} \rightarrow \Sigma^{B}$. The cascade product $A \mathbb{O} B$ of $A$ and $B$ with mapping $\omega$ is the semiautomaton $C$ with $Q^{C}=Q^{A} \times Q^{B}, \Sigma^{C}=\Sigma^{A}$ and $\sigma^{C}$ for $\sigma \in \Sigma^{C}$ defined for all $s^{A} \in Q^{A}$, $s^{B} \in Q^{B}$ by:

$$
\left\langle s^{A}, s^{B}\right\rangle \sigma^{C}=\left\langle s_{\sigma}^{A}, s^{B}\left(\left\langle s^{A}, \sigma\right\rangle \omega\right)^{B}\right\rangle .
$$

A cascade product of three or more automata is defined by association to the left, e.g., a cascade product of semiautomata $A, B$, and $C$ is any semiautomaton ( $A \stackrel{\circ}{\omega_{1}} B$ ) $\stackrel{\circ}{\omega}_{2} C$ for any mappings $\omega_{1}$ and $\omega_{2}$ with appropriate domain and range.

Definition 5. A semiautomaton $R$ is a reset providing $Q^{R}=\{1,2\}$, and $\Sigma^{R}$ is the union of three mutually exclusive sets $\Sigma_{1}^{R}, \Sigma_{2}^{R}, \Sigma_{I}^{R}$ such that: $\sigma \in \Sigma_{1}^{R} \Rightarrow$ range $\left(\sigma^{R}\right)=\{1\} ; \sigma \in \Sigma_{2}^{R} \Rightarrow$ range $\left(\sigma^{R}\right)=\{2\}$; and $\sigma \in \Sigma_{I}^{R} \Rightarrow$ $\sigma^{R}=$ the identity on $Q^{R}$.

The following weak form of the decomposition theorem is sufficient for our purposes (for a constructive proof of the general theorem see Ginzburg [1968]):

Theorem. (Krohn-Rhodes) Every semiautomaton A is covered by a cascade product of semiautomata $A_{1}, A_{2}, \ldots, A_{n}$ such that for $1 \leq i \leq n, A_{i}$
is a reset or else $G^{A_{i}}$ is a non-trivial homomorphic image of a subgroup of $G^{A}$.

Since the trivial group has only itself as a homomorphic image, the following lemma is immediate:

Lemma 3. Every group-free semiautomaton is covered by a cascade product of resets.

Corollary 3. Every group-free regular event is accepted by an automaton whose semiautomaton is a cascade product of resets.

Proof. Let $\hat{A}$, with group-free semiautomaton $A$, be an automaton accepting a group-free regular event $U$. By lemma 3 and the definition of covering, $A$ is the image under a homomorphism $\eta$ of a subsemiautomaton of a cascade product $C$ of resets. There is no loss of generality in assuming that $\Sigma^{A}=\Sigma^{C}$, since the subsemiautomaton of $C$ obtained by restricting $\Sigma^{C}$ to $\Sigma^{A}$ is also a cascade product of resets which covers A. Choose any $s^{C} \in Q^{C}$ such that $s^{C} \eta=s^{A}$ (the start state of $\hat{A}$ ) and define $F^{C}=\left\{q \in Q^{C} \mid q \eta \in F^{A}\right\}$. Then for any $x \in\left(\Sigma^{A}\right) *, x \in U \Leftrightarrow$ $s^{A} x^{A} \in F^{A} \Leftrightarrow s^{C} \eta x^{A} \in F^{A} \Leftrightarrow s^{C} x^{C} \eta \in F^{A} \Leftrightarrow s^{C} X^{C} \in F^{C}$. Hence, the automaton $\subset$ with semiautomaton $C$, start state $s^{C}$, and final states $F^{C}$ is the required automaton accepting $U$. Q.E.D.
6. THE MAIN THEOREM.

The behavior of cascades of resets can be described in terms of star-free events using

Definition 6. For a semiautomaton $A$ and states $p, q \in Q^{A}$, the set $A_{p q}$ of $p$-q-inputs is $\left\{x \in\left(\Sigma^{A}\right)^{*} \mid p x^{A}=q\right\}$.

Lemma 4. Let $C=B \stackrel{\circ}{\mathscr{\circ}} \mathrm{R}$ with B a semiautomaton, R a reset, and $\omega: Q^{B} \times \Sigma^{B} \rightarrow \Sigma^{R}$. If $B_{p q}$ is a star-free event (over $\Sigma^{B}$ ) for all $p, q \in Q^{B}$, then $C_{a b}$ is a star-free event (over $\Sigma^{C}=\Sigma^{B}$ ) for alla, $b \in Q^{C}$.

Proof. Write " $\Sigma$ " for the (equal) sets $\Sigma^{B}$ and $\Sigma{ }^{C}$. By the definition of cascade product, the first component of $\langle p, 1\rangle y^{C}$ is simply py ${ }^{B}$ for any $p \in Q^{B}, y \in \Sigma^{*}$. Since $R$ is a reset, in order for the second component of $\langle\mathrm{p}, 1\rangle \mathrm{y}^{\mathrm{C}}$ to be 2 , R must receive an input $\langle\mathrm{r}, \sigma\rangle \omega \in \Sigma_{2}^{\mathrm{R}}$ for some $r \in Q^{B}, \sigma \in \Sigma$.

Suppose $x \in C_{<p, 1 \times q, 2>}$. Then $p x^{B}=q$ and so $x \in B_{p q}$, but also $x$ must equal $y \sigma z$ for some $y, z \in \Sigma^{*}, \sigma \in \Sigma$ such that: $p y^{B}=r$ for some $r \in Q^{B}$ and $\langle r, \sigma\rangle \omega \in \Sigma_{2}^{R}$. Choose the shortest $z$ such that $x=y \sigma z$ for $y$ and $\sigma$ satisfying the preceding conditions. Then no prefix of $z$ causes $R$ to receive an input $\left\langle s, \delta>\omega \in \Sigma_{1}^{R}\right.$ (where $s \in Q^{B}, \delta \in \Sigma$ ), i.e.,


Conversely, if $\mathrm{py}^{\mathrm{B}}=\mathrm{r}$ for $\langle\mathrm{r}, \sigma\rangle \omega \in \Sigma_{2}^{\mathrm{R}}$ and $\mathrm{z} \notin \mathrm{B}_{\mathrm{r}_{\sigma}{ }^{\mathrm{B}}, \mathrm{s}} \delta \Sigma^{*}$ for any $<s, \delta>\omega \in \Sigma_{1}^{R}$, then $y \sigma z \in C_{<p, 1>q, D}$ providing $y \sigma z \in B_{p q}$. Altogether, one has:

$$
C_{<p, 1 \times q, p>}=B_{p q} \cap\left[U B_{p r} \sigma\left(\overline{\left(U B_{r \sigma B}, s \delta \Sigma^{*}\right.}\right)\right]
$$

the lefthand union being over all $r \in Q^{B}, \sigma \in \Sigma$, such that $\left\langle r, \sigma>\omega \in \Sigma_{2}^{R}\right.$, and the righthand union being over all $s \in Q^{B}, \delta \in \Sigma$ such that $<s, \delta>\omega \in \Sigma_{1}^{R}$.

The unions in the expression for $C_{<p, 1 \times q, \downarrow}$ are finite, and $\Sigma^{*}$ is a star-free event $\left(\Sigma^{*}=\bar{\phi}\right.$ and $\left.\phi=\{\sigma\} \cap \overline{\{\sigma\}}\right)$, so that $C_{<p, 1 \times q, 2>}$ is a star-free event. The set of $x \in C_{<p, 1>}\langle q, 1>$ is precisely the set of
$x \in \Sigma^{*}$ such that $p x^{B}=q$ and $x \notin C_{<p, 1>q, 2>}$ i.e., $C_{<p, 1>q, 1>}=$ $\mathrm{B}_{\mathrm{Pq}} \cap \overline{\mathrm{C}}_{<\mathrm{p}, 1 \times \mathrm{q}, 2>}$, and so $\mathrm{C}_{<\mathrm{p}, 1 \times \mathrm{q}, 1>}$ is also a star-free event.

Since the argument is symmetric in states 1 and 2 of $Q^{R}, C_{a b}$ is a star-free event for $a l l a, b \in Q^{C}$.
Q.E.D.

Lemma 5. If $C$ is a cascade product of resets, then $C_{a b}$ is a star-free event for $a l l a, b \in Q^{C}$.

Proof. Let $R$ be a reset and $B$ a semiautomaton such that $Q^{B}=\{p\}$ and $\Sigma^{B}=\Sigma^{R}$. For $\sigma \in \Sigma^{B}$, define $\omega: Q^{B} \times \Sigma^{B} \rightarrow \Sigma^{R}$ by the condition $\langle p, \sigma>\omega=\sigma$. In this trivial case of cascade product, $R_{i j}=(B \& R)_{\langle p, i \times p, j}$ for all i, $j \in Q^{R}$. Since $B_{p p}=\left(\Sigma^{B}\right)^{*}$ is star-free, lemma 4 implies that $R_{i j}$ is star-free.

The rest of the proof follows immediately by lemma 4 and induction on the number of resets in $C$.
Q.E.D.

Corollary 4. Every event accepted by an automaton $\hat{A}$, whose semiautomaton A is a cascade product of resets, is a star-free event.

Proof. Let $a \in Q^{A}$ be the start state of $\hat{A}$, and $F^{A}$ the final states. The event accepted by $\hat{A}$ is $\underset{b \in F^{A}}{ } A_{a b}$ which is a star-free event since the union is finite and $A_{a b}$ is star-free by lemma 5 . Q.E.D.

This completes the proof of the following

Theorem. (Schützenberger, Papert-McNaughton) The following are equivalent for events $U \subset \Sigma^{*}$ :

1) $U$ is a star-free event.
2) $U$ is a noncounting regular event.
3) $U$ is a group-free event.
4) $U$ is accepted by a cascade product of rescts.
-10-

## References

1. Ginzburg, A., Algebraic Theory of Automata, to appear (1968).
2. Papert, S. and R. McNaughton, "On topological events", Theory of Automata, University of Michigan Engineering Summer Conferences (1966).
3. Rabin, M. O. and D. Scott, "Finite automata and their decision problems", IBM J. Res. and Dev., 3,2 (April, 1959), 114-125.
4. Schützenberger, M. P., "On a family of sets related to McNaughton's L-language", Automata Theory, Caianiello, E. R. (ed.), Academic Press, N. Y. (1966), $3 \overline{20-324}$.
5. Yoeli, M., "Generalized Cascade Decompositions of Automata", JACM, 12, 3 (July, 1965), 411-423.

SCOPE USER MANUAL

## By

Alan H. Bond

1968<br>Carnegie-Mellon University<br>Pittsburgh, Pennsylvania February 6, 1968

This work was supported by the Advanced Research Projects Agency of the Office of the Secretary of Defense (SD-146) and is monitored by the Air Force Office of Scientific Research.

## CONTENTS

## 1. PREFACE

2. INTRODUCTION AND SUMMARY
3. OFF LINE: USE, TERMS AND CONCEPTS
4. THE SCOPE MONITOR
A. GENERAL LAYOUT AND THE OPTION STATE
B. MANAGEMENT STATE
C. PROGRAM STATE
D. DEBUG STATE
E. TEXT HANDLING
F. USER MANUAL
G. DRAWING STATE
H. USER PROGRAM INTERACTION STATE
5. TEXT EDITING STATE
6. PROGRAMMING FOR GRAPHICS
7. WRITING INTERACTIVE PROGRAMS
A. B ROUTINES
B. USER INTERRUPTS
C. MULTISCOPE INTERACTION
D. OVERALL CONTROL STRUCTURE
8. THE B ROUTINES
9. SUBPROQRAM LIBRARY
10. USER SUBSYSTEMS
11. GRASP
12. HOW THE SCOPE MONITOR WORKS

## FIGURES

1. LOG IN
2. MANAGEMENT PAGE
3. DIRECTORY
4. PROGRAM PAGE
5. DEBIJG PAGE
6. TEXT HANDLING PAGE
7. DRAWING MODE
8. COUF TO SWITCH IN AND OUT THE H MODULE $\qquad$
9. LAYOUT OF H-MODULE
10. INTERFACE ROUTINE

THIS MANUAL DESERIBES HOW TO USE THE SCOPES. IT IS CONCERNED MAINLY WITH SOFTWARE, AS THE HARDWARE IS TREATED DEFINITIVELY IN THE CARNEGIE TECH. DOCUMENT: IA VISUAL DISPLAY SYSTEM SUITABLE FOR TIMESHARED USE, BY QUATSE, JESSE T., LATEST VERSION DECEMBER 1966, OBTAINED FROM THE COMPUTATION CENTER DOCUMENTATION STAFF, IN ORDER TO USE THE SCOPES, IT IS SUFFICIENT TO READ THE QUATSE DOCUMENT AND THE SCOPE USERS MANUAL. THE QUATSE MANUAL SHOULD GE READ FIRST. A BRIEF DESCRIPTION OF HARDWARE CONCEPTS AND TERMS IS GIVEN IN SECTION 3 OF THIS MANUAL.

THE SCOPES ARE SITUATED IN ROOM PHIBA, COMPUTATION CENTER, TELEPHONE EXTENSION 27. THEY ARE ON WHEN TELETYPES ARE ON. USUALLY $10: 00$ AM TO MIDNIGHT AND HAVE NORMAL TELETYPE TURN-ROUND TIME, EXCEPT THAT PROGRAMS SUBMITTED FROM SCOPES RUN AT THE BEGINNING OF THE WAIT TIME, I,E, IMMEDIATELY, TO ALLOW THE USER TO BE PRESENT AT RUN TIME AND TO INTERACT WITH HIS PROGRAM, AT PRESENT ONLY 3 MINUTE PROGRAMS CAN BE RUN, AND ONLY PROGRAMS SUBMITTED FROM SCOPES CAN INTERACT WITH THE SCOPES.

ONLY ALLOWED USERS CAN USE THE SCOPES. IN ORDER TO BECOME AN ALLOWED USER, ONE SHOULD CONTACT A. H. BOND, C, C. EXTENSION 66. THE MAIN USES OF THE SCOPES ARE EXPECTED TO'BE FOR: (A) PROGRAMS NEEDING ON-LINE DYNAMICAL: GRAPHICAL DISPLAYI AND (B) INTERACTIVE PROGRAMS, THAT IS, PROGRAMS WHICH COMMUNICATE WITHI THE HUMAN WHILE RUNNING, AND CAN BE SUIDED AND INFLUENCED BY THE HUMAN. THE VERY GENERAL DISPLAY EQUIPMENT ALLOWS A GREAT VARIETY OF METHODS OF MAN-PROGRAM INTERACTION.

THE SYSTEM IS STILL UNDER DEVELOPMENT AND ATTEMPTS TO USE SOME FEATURES WILL YIELD THE ERROR MESSAGE SSORRY, NOT YET IMPLEMENTED', HOWEVER, THE SCOPE USERS MANUAL WILL BE KEPT STRICTLY UP TO DATE WITH CURRENT IMPLEMENTATION. THE DAYE OF REWRITING IS SHOWN ON THE FRONT COVER. BETWEEN REWRITINGS, ANY CORRECTIONS TO TIAE MANUAL ARE KEPT ON AN AND FILE, AND CAN BE OBTAINED BY EXECUTING USER CR38AB14; FILE 81/P: GET TO SI RUN,AND;TAPEI ALLOW 5 PAGES AND 2 MINUTES.
FURTHER COPIES OF THE FULL MANUAL CAN BE OBTAINEO GY EXECUTING USER CR38AB14; FILE 82/P: GET TO \$: RUN,AND.TAPE,

ALLOW 60 PAGES AND 6 MINUTES.
OR FROM A $H$ BOND.

2. INTRODUCTION AND SUMMARY

THE SCOPES CAN BE USED OFF-LINE, THAT IS, WITHOUT USING THE CENTRAL PROCESSOR OF THE G-21, IN FACT, ONLY USINQ ONE BK MODULE OF MEMORY, OFF-LINE, ONE CAN ENTER CHARACTERS OVTO THE SCOPE FACE FROM THE KEYBOARDS AND ENTER VECTORS (LINES). JNE CAN ALSO ALTER EXISTING DISPLAY BY DELETION AND INSERTION OF ELEMENTS, AND ONE CAN TRANSLATE (MOVE) PARTS OF THE DISPLAY TO OTHER PARTS OF THE SCREEN, THE REST DF THE G-21 CAN OPERATE NORMALLY. THE OFF-LINE CAPABILITIES ARE THE SUBJECT OF J. QUATSE'S MANUAL. THEY CAN ALSO BE USED WITH THE SCOPE MONITOR LOADED. THE SCOPE MONITOR IS AUXILIARY TO THE MAIN G-21 MONITOR AND WORKS ON AN INTERRUPT BASIS. NORMAL USER PROGRAMS CAN BE PROCESSED BY THE G-21 AND WHEN SOME SCOPE COMPUTATION IS NEEDED. THE USER PROGRAM IS INTERRUPTED FOR A FEW MILLISECONDS.

IN THIS WAY THE SCOPE MONITOR CAN SNATEH BRIEF SPELLS OF COMPUTATION TO CARRY OUT MANAGERIAL FUNCTIONS AS DESIRED BY THE USER. THIS IS DONE BY PRESSING THE APPROPRIATE INTERRUPT BUTTONS. THE MEANINGS CIJRRENTLY ASSOCIATED WITH THE BUTTONS ARE SHOWN BY AN EXPLANATORY DISPLAY. THE FACILITIES PROVIDED BY THE SCOPE YONITOR ARE DESCRIBED IN DETAIL IN SECTION 4. THEY INCLUDE STORAGE OF DISPLAY MATERIAL ON TSCOPE FILES', SURMISSION OF PROGRAMS TYPED ON THE SCOPES, THE PERUSAL AND EDITING OF TEXT, AUXILIARY DRAWING OPERATIONS LIKE LIOHT-PEN TRACKING. THERE ARE DEBUGGING FACILITIES WITH A DYNAMIC CORE DISPLAY AND ON-LINE PATEHING AND TRANSFER FACILITIES.

IN ADDITION TO INTERRUPTS PRODUCED BY THE INTERRUPT BUTTONS, THE SCOPE MONITOR RECEIVES INTERRUPTS ONCE EVERY SECOND, TRIGGERED BY THE G-20 REAL-TIME CLOCK. RELYING ONLY ON THESE CLOCK PULSES TO PROCESS REQUESTS WOULD LEAD TO TOO LONG A RESPONSE TIME. THE CLOCK PULSE ENABLES THE SCOPE MONITOR TO PROVIDE CONTINUOUS MODE OPERATIONS SUCH AS THE DYNAMIC CORE DUMP. THE ROTATION MODE AVD THE CURVE DRAWING MODE.

INTERACTIVE PROGRAMS CAN BE WRITTEN IN AVY PROGRAMMING LANGUGGE. THEY CAN COMMUNICATE WITHTHE SCOPES BY USIVG THE TB ROUTINES' PROVIDED BY THE SCOPE MONITOR CTHESE ARE LIKE I ROUTINES IN THE MAIN MONITOR). USING THESE, A PROGRAM CAV SET UP A GENERAL GRAPHICAL DISPLAY AND CAN EXAMINE A GRAPHICAL DISPLAY ENTERED BY A HUMAN, THE HUMAN AND PROGRAM ARE TREATED MORE OR LESS EQUIVALENTLY BY THE SCOPFS, AND THE SCOPES PROVIDE A GEVERAL, PAPID AVD TRANSPARENT INTERFACE BETWEEN THEM TO PERMIT MAV-MACHINE COOPERATION ON A PROBLEM.

INTERACTION WITH THE PROGRAM CAN CONSIST OF EACH READIVG DISPLAY MATERIAL SET UP BY THE OTHERI AND, IN ADOITION, THERE ARE 8 'STATE SWITCHESI AND 2 'ANALOG KNOBS' CGIVING A QUASI-CONTINUOUS VARIABLE), WHICH CAN BE SET BY THE HUMAN AND READ BY THE PROGRAM USING B ROUTINES. ALSO THE USER CAN DEFINE HIS JWN INTERRUPTS AND THE SCOPE MONITOR WILL PASS CONTROL TO THE DEFINED POINTS IN HIS PROGRAM, WHEN HE PRESSES THE APPROPRIATE BUTTON.

THE B ROUTINES ARE DESCRIBED IN SECTION 7. THERE IS A 'B-PROCEDURE' IN ALGOL AND FORML,WHICH CALLS THE B ROUTINES, AND ALSO MANY USEFUL SUBPROGRAMS IN THESE LANQUAGES AND IN SPITE: THESE ARE KFPT DN AND FILES AND ARE DESCRIBED IN SECTION 8 . SIMILAR SUBPROGRAMS CAN BE WRITTEN IN ANY LANGUAGE AVAILABLE ON THE G-21.

INTERACTIDN WITH USER PROGRAMS CAN ONLY OCCUR DURING THE SHORT RUN TIME DF THE PROGRAM, BUT WE ARE TRYIVG TO MAKE IT EASY FOR ANY USER TO WRITE A ISUBSYSTEMI, WHICH WOJLD BE ESSENTIALLY PART OF THE SCOPE MONITOR AND OPERATE ON AV INTERRUPT BASIS. MODULES OF CODE ARE KEPT ON SCOPE FILES AND SWAPPED IN BY THE SCOPE MONITOR AS NEFDED AND AS SPACE ALLOWS, IT IS ONLY OOSSIBLE TO WRITE SUCH MODULES IN ASSEMBLY LANGUAGE AND THETG SIZE IS RESTRICTED TO < 3 ; HOWEVER, A SUBSYSTEM CAV CONSIST OF AN ARBITRARY NUMAER OF LINKED REENTRANT MOOULES SUBSYSTEMS ARE DISCUSSED IN SECTION 9.

G-21 SYSTEMS AUXILIARY TO THE SCOPE MONITOR ARE DESCRIBED IN SECTION 101 FOR EXAMPLE, A USER SYSTEM IS NEEDED TO MOVE MATERIAL BETWEEN AND FILES AND SCOPE FILES. IN SECTION 11. WE OUTLINE THE INTERNAL WORK ING OF THE SCOPE MONITOR PROQRAM.
3. OFF LINE USE, TERMS AND CONCEPTS

THERE ARE 3 SCOPES, NUMGERED 1 , 2 , 3 FROM THE LEFT OF THE ROOM. THE SCOPE FACE IS 10 INCHES AY 10 INCHES AND HAS $1024 \times 1024$ RASTER POINTS. THE 32 BUTTONS ALONGSIDE THE FACE ARE THE STATE SWITCHES AND CONSTITUTE THE STATE WORD. THE LOWER 2 ROWS ARE COLORED GREEN AND ARE FOR USE BY A USER PROGRAM. WHEN A SWITCH IS ON IT IS LIT AND THE VALUE OF THE SWITCH IS 1. ON THE LEFT OF THE SCREEN ARE 2 'ANALOG KNOBS' KNOB 1 ABOVE KNOB 2. THESE CAV $3 E$ USSD BY A USER PRDGRAM: THEIR VALUE VARIES FROM Q TO 63 AND THE FULL RANGE IS OBTAINED IN HALF A TURN.

ON THE DESK, THERE ARE TWO KEYBOARDS, USED EQUIVALENTLY,AND A CONTROL PANEL CONSISTING OF:
(I) 20 INTERRUPT BUTTONS NUMBERED $0-19$
(II) A CURSOR CONTROL CONSISTING OF 4 BUTTONS TO INDICATE WHICH DIRECTION TO MOVE THE CURSOR ON THE SCREEN. THE CENTRAL BUTTON IN THE CONFIGURATION MAKES THE CURSOR MOVE FASTER, AND THE SLEW BAR MAKES IT MOVE EVEN FASTER.

## (III) THE MARK BAR

TO ENTER DISPLAY MATERIAL ON THE SCREEN ONE FIRST NOTES FROM THE GTH ROW OF STATE SWITCHES THAT THERE ARE A IPAGES FOR USE. THIS MEANS THAT ONE CAN HAVE 4 DIFFERENT INDEPENDENT DISPLAYS AVAILABLE, WHICH CAN BE MADE VISIRLE BY USING THE APPRDPRIATE STATE SWITCH AND SUPERIMPOSED AS DESIRED. HOWEVER, ONE SHOULD ONLY enter material into one page at a time.

BEFORE ONE CAN ENTER MATERIAL, ONE MUST USE THE SCOOE MONITOR, DESCRIBED LATER. TO RESERVE SOME MEYORY SPACEFORTHE MATERIAL AND TO DEFINE THAT SPACE TO CORRESPOVD TO THE REQUIRED PAGE NUMBER. ALSO ONE MUST ENABLE THE PAGE ONE IS USING ANO TURN THE PAGE STATE SWITCH ON. THIS ALLOWS DISPLAY MATERIAL TO BE ENTERED MANIALLY. WHEN A PAGE IS ENABLED, IT HAS A CURSOR VISIBLE AND THIS DEFINES THE PLACE ON THE SCREEN WHERE ATTENTION IS FOCUSED. CHARACTERS MAY NOW BE ENTERED FROM TLE KEYBOARD IF OVE SETS THE STATE SWITCHES TO ENTER AND CHARACTER.

TRANSLATIONS, ETC., AS DESCRIBED IN J.O.M. MOST OPERATIONS ARE DONE BY SETTING TME STATE SWITCHES TO THE APPROPRIATE VALUES, POSITIONING THE CURSOR AND PRESSING THE MARK BAR. ONE CAN INPUT DOUBLE SIZE CHARACTERS BY SETTING A STATE SWITCH AND ONE CAN GET SUBSCRIPT SIZE CHARAETERS BY PRESSING -. ONE GETS BACK TO NORMAL SIZE BY PRESSING, MARGINS ARE ENTERED BY POSITIONING THE CURSOR AND SETTING THE MARGIN STATE SWITCHES AND PRESSIVG MARK, MARGINS AND ALL OTHER CONTROL SYMBOLS CAN NOT ONLY BE YADE VISIBLE BY A STATE SWITCH, THEY CAN ALSO BE MANIPULATED IN EXACTLY THE SAME WAY AS NORMAL SYMBOLS.

TO CLEAR A PAGE OF ALL MATERIAL, IT MUST BE VISIBLE AVD ENABLED, AND ONE THEN SETS THE CLEAR STATE SNITCH. THE SPACE RESERVED FOR THE PAGE IS STILL THERE AND IT IS STILL ENABLED AFTER THE CLEAR OPERATION.

ONE SHOULD ONLY HAVE ONE PAGE ENABLED AT ANY ONE TIME, AS THERE IS ONLY ONE GURSOR POSITION.

MARQINS CONTROL ONLY TEXT ENTERED AFTER THEY AND ONE CAN HAVE SEVERAL MARGINS ON ONE PAGE. IN THE ABSENCE OF MARGINS THE END OF THE SCREEN IS AN EFFECTIVE MARGIN WHEN ONE DOES A RETURN CHARACTER IF DISPLAY MOVES OFF THE SCREEN IV ANY OIRECTION IT 'WRAPS ROUND' AND APPEARS ON THE OTHER EDGE OF THE SCREEN: SIMILARLY FOR THE CURSOR POSITION.

THE LIGHT PEN CAN BE USED TO POSITION THE CURSOR AT AN EXISTING DISPLAY ELEMENT. ONE POINTS THE LIGHT PEN AT THE ELEMENT AND THE CURSOR WILL AUTOMATICALLY MOVE THERE. IT MAY BE VECESSARY TO INCREASE THE BRIGHTNESS TO GET IT TO WORK.

THE SCREEN FAEE CAN BE PHOTOGRAPHED IN GOLOR OR BLACK AND WHITE WITH AN ORDINARY CAMERA. THE ENGINEERING GQOUP HAS A POLAROID CAMERA FOR THIS PURPOSE, ALSO THERE IS A SPECIAL HARD COPY DEVICE, UNDER DEVELOPMENT BY THE ENGINEERING GROUP, WHICH TAKES AN ACTUAL SIZE NEGATIVE IMAGE OF THE SCREEN DIRECTLY ONTO PHOTOSENSITIVE PAPER, SO THAT THE LINES AND CHARACTERS ARE BLACK ON WHITE. ENQUIRIES ABOUT THIS EQUIPMENT SHOULD RE DIRECTED TO BEAU BRINKER,C.C. EXTENSION 75. OPINIONS AND IDEAS ON THE HARDWARE SHOULD BE SENT TO THE ENGINEERING GROUP. THERE IS VOW AVATLABLE A RAND TABLET, WHICH GAN BE ATTACHED TO EITHER SCOPE 1 OR SCOPE 2. IT CAN BE USED AS A POINTING DEVICE LIKE THE IOHT PEN, BUT IN ADDITION IT ACTS LIKE THE MARK BAR. FURTHER, IT WILL ENTER LINES CONTINUOUSLY INTO THE PAGE GIVING CURSOR TZACKING AND CURVE DRAWING INSTRUCTIDNS ON ITS USE ARE TO BE FOUND IN A FOLDER WITH THE EQUIPMENT. ENQUIRIES ABOUT IT SHOULD BE SENT TO DICK SHOUP.
4. THE SCOPE MONITOR
A. GENERAL LAYOUT AND OPTION STATE

THE SCOPE MONITOR PROVIDES A RANGE OF FACILITIES WHICH ARE LINKED TO THE INTERRUPT BUTTONS. THE MEANING OF THE BUTTONS IS REDEFINED AS ONE USES VARIOUS ISTATES: OF THE SCOPE MONITOR, WHEN ONE FIRST APPROACHES A SCOPE, AFTER THE SCOP MONITOR HAS BEEN LOADED, IT HAS ITHIS SPACE RESERVED FOR SYSTEM MESSAGES' ON THE BOTTOM OF THE SCREEN. IN THIS STATE, EVERY INTEZRUPT BUTTON LEADS TO THE LOG-IN STATE (FIG. 1) AND THE USER MUST EVTER HIS FULL G-? 1 USAGE NUMBER AT THE POSITION OF THE CURSOR. THE CURSOR IS SET GY THE SCOPE MONITOR AND THE STATE SWITCHES ARE SET TO ENTER, CHARACTER, PAGE 1 (IF THIS DOESNTT HAPPEN, SET THEM BY HAND). AFTER TYPING THE USAGE NUMBER, PRESS RETURN. THE RETURN CHARACTER IS USED BY THE SCOPE MONITOR AS A COMPARE INTERRUPT, AND TELLS IT TO READ IN THE CHARACTER JUST TYPED BY THE USER. IF THE NUMBER WAS MISTYPED, OR DOES NOT RELONG TO AN ALLOWED USER, THE MESSAGE 'SORRY NOT ACCEPTABLE' WILL APPEAR. OTHERWISE, IT WILL GO TO OPTION STATE AND DISPLAY THE MEANINGS OF THE INTERRUPT 日UTTONS IN THIS STATE. THE OPTION STATE IS THE TOP-LEVEL OF A HIERARCHY OF STATES and WITH IT ONE SELECTS ANOTHER STATE.

NOTE THE WORD ISTATE' IS USED TO DESCRIRE THE CONDITION OF THE SCOPE MONITOR AND THE DEFINITION OF INTERRUPTS IN THAT CONDITION. EACH HAS AN ASSOCIATED SYSTEM PPAGE AND SO SOMETIMES THE WORD IPAGE, REFERS TO A 'STATE', OCCASIONALLY, THE CONDITION OF THE SCOPF MONITOR IS DESCRIBED AS A MMODE', ESPECIALLY IF IT IS DOING AN OPERATION CONTINUOUSLY. THE USE OF THESE WORDS SHOULD BE DISTINGUISHED FROM THEIR USE IN OFF-LINE USE, THERE IS SOFTWARE STATE, PAGE AND MODE DISTINCT FROM HARDWARE STATE, PAGE AND MODE. IT IS HOPED THAT NO CONFUSION WILL ARISE. THUS THE MEANINGS OF THE BUTTONS IN THE OPTIGN STATE ARE ALL 'CHANGE STATE TO --m--STATE'. THE VARIOUS STATES ARE DESCRIRED BELOW. IN EVERY STATE, INTERRUPT 0 ALWAYS MEANS GO BACK TO OPTION STATE, INTERRUPTS 17, 18 , AND 19 ARE CURRENTLY USED FQR SYSTEM MAINTENANCE AND SHOULD NOT $3 E$ USED.

THE DISPLAYS USED BY THE SCOPE MONITOR CAVNOT BE ALTERED BY THE USER AS THEY ARE IN ALTERNATE MODE, EVEN THOUGH PAGE 1 IS USED BY THE SCOPE MONITOR, IT CAN ALSO BE USED BY THE USER AS A NORMAL PAGE.

WHEN TYPING IN MORE THAN ONE VALUE TO THE SCOPE MONITOR, DO A RETURN AFTER EACH VALUE AND THE SCOPE MONITOR WILL REPOSITION THE CURSOR.

LOO - IN
ENTER YOUR USAGE NUMBER HERE

THIS SPACE RESERVED FOR SYSTEM MESSAGES

FIGURE 1

IN EACH STATE, THE MEANING OF THE INTERRUPTS ARE DISPLAYED BY A SYSTEM PAGE, THIS DOES NOT INTERFERE WITH THE USER DISPLAY AND CAN BE TURNED ON OR OFF (MADE VISIBLE OR INVISIBLE) IN ANY STATE BY USING INTERRUPT 1. ON PRESSING AN INTERRUPT BUTTON, ITS NUMBER IS DISPLAYED IN THE BOTTOM RIGHT HAND CORNER OF THE SCREEN, DURIVG THE PROCESSING OF AN INTERRURT THE NUMBER IS MADE TO FLASH. THE USER SHOULD NOT PRESS ANOTHER INTERRUPT BUTTOV UNTIL THE NUMBER HAS STOPPED FLASHING. USUALLY THE OPERATION IS VERY QUICK. AND THE USER DOESN'T SEE ANY FLASHING, HOWEVER, OPERATIONS REQUIRINQ THE SCOPE FILES INVOLVE THE USE OF THE DISC AND ONE MAY HAVE TO WAIT FOR THE DISC TO BECOME AVAILABLE FOR A SECOND OR TWO, THE NUMBER WILL ALSO FLASH WHILE TYPING IN VALUES OF PARAMETERS TO THE SCOPE MONITOR. IN THIS CASE, ONE CAN CONTINUE TO ENTER PARAMETERS. LOQ OUT

PRESSING INTERRUPT 8, ON THE OPTION PAGE, LOGS THE CURRENT USER OUT AND THE MESSAGE ILOGGED OUT' IS DISPLAYED.

## B. MANAGEMENT STATE

THE MEANING OF THE INTERRUPTS IN THIS STATE ARE SHONN BY TME SYSTEM DISPLAY, REPRODUCED IN FIGURE 2.
 1 TO 20 WHICH ARE ARBITRARY IN SIZE. HE CAM SAVE DIGPLAY MAEEIAL ON THESE FILES PERMANENTLY BY USING INTERRUPT 2, WE CAN MOVE THE CONTENTS OF A PREVIOUSLY STORED FILE TO A PAGE OISPLA貽A OY USING INTERRUPT 3. WHEN USING 3. SPACE DOES NOT HAVE TO GE RESERVED 50 R THE PAGE. IT IS DONE AUTOMATICALLY, INDEED ANY MATERIAL ON PMAT PAGE BEFORE IS CLEARED. ONE CAN GET A DIRECTORY OF THE GEOOF FILES BY PRESSING INTERRUPT 5. THE DISPLAY IS LIKE FIGURE 3. IT SWOWS THE BASE (RECORD NUMBER) AND LENGTH OF THE RECORD ON THE DISC. THIS IS NOT OF MUCH USE TO THE NORMAL USER EXCEPT TO SEE THAT A FILE IS PRESENT OR HAS CHANGED IN LENGTH.

INTERRUPTS 4, 6 - 9 HANDLE THE RESERVED SPACE FOR THE PAGES. INTERRUPT 6, RESERVES SOME SPACE FOR A GIVEN PAGE. THE UNIT USED IS THE BLOCK, WHICH IS 160. WORDS, THERE ARE 30 BLOCKS AVAILABLE FOR USE BY 3 SCOPES, A PAGE PACKED SOLID WITM DISPLAY PROBABLY NEEDS 4 BLOCKS OF SPACE,

INTERRUPT 7 ENABLES A PAGE, AND 8 DISENABLES A PAGE,

INTERRUPT 9 DELETES A PAGE: I.E.. IT REMOVES THE SPACE RESERVED FOR THAT PAGE AND MAKES IT AVAILABLE FOR OTHER USE. USING 8 MERELY DISENABLES A PAGE AND KEEPS THE SPACE RESERVED.
MANAGEMENT PAGE

PRESS INTERRUPT NUMBER

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
FIGURE 2
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## DIRECTORY FOR LCO2

| FILE | BASE | LENGTH |
| :--- | :--- | :--- |
|  |  |  |
| 00. | 000 | 000 |
| 01. | 576 | 002 |
| 02. | 535 | 002 |
| 03. | 570 | 004 |
| 04. | 533 | 002 |
| 05. | 530 | 003 |
| 06. | 525 | 003 |
| 07. | 000 | 000 |
| 08. | 000 | 000 |
| 09. | 000 | 000 |
| 10. | 000 | 000 |
| 11. | 000 | 000 |
| 12. | 000 | 000 |
| 13. | 000 | 000 |
| 14. | 000 | 000 |
| 15. | 000 | 000 |
| 16. | 000 | 000 |
| 17. | 000 | 000 |
| 18. | 000 | 000 |
| 19. | 000 | 000 |
| 20. | 000 | 000 |

THIS SPACE RESERVED FOR SYSTEM MESSAGES

FIGURE 3

INTERRUPT 4 WILL APPEND ONE PAGE TO ANOTHER SO THAT THE SECOND UNCHANGED

BELOW IS GIVEN THE SERUENCE OF ACTIONS REQUIAEO TO LOQ IN WNO SET UP THE SCOPE FOR ENTERING CHARACTERS AND LINES ON THE SEREEN.

1. IF NO ONE IS LOGGED IN YET, THERE WILL JUST BE THE ONE line message on the bottom of the screen, or else the message 'LOGGED OUT'. in THIS CASE, PRESS INTERRUPT O. THIS GIVES THE LOGIN PAGE TYPE IN YOUR USER NUMQER AND DRESS RETURV. THIS WILL GIVE THE OPTION PAGE.
2. IF SOMEONE IS LOGGED IN ALREADY. PRESS INTERRUPT O - THIS gives the option page.
3. IN THE OPTION STATE, PRESS INTERRUPT 2. THIS GIVES THE MANAGEMENT PAGF.
4. IN THE MANAGEMENT STATE, PRESS INTERRUPT 6. THIS DUTS THE CURSOR AFTER GET' AND DISPLAYS THE NUMBER 6 BLINKIVG IN THE BOTTOM RIGHT HAND CORNER. TYPE THE FIGURE 2 FROM THE KEYBOARD AVO PRESS RETURN. THIS RESETS THE CURSOR TO AFTER IPAGE', TYPE 2 AND RETURN, YOU NOW HAVE RESERVED 2 BLOCKS OF SPACE ON YOUR PAGE?.
5. PRESS INTERRUPT 7. THE CURSOR WILL APPEAR AFTER 'PAGE' ON LINE 7 OF THE MANAGEMENT PAGE. TYPE ? AND RETURV. PAGE 2 IS NOW ENABLED, AND WILL ALLOW DISPLAY MATERIAL TO BE ENTERED FROM THE CONSOLE.
6. PRESS INTERTUPT 1. THIS MAKES THE MANAGEMENT PAGE DISPLAY INVISIELE.
7. PRESS THE STATE SWITCH FOR PAGE 2. YOU SHOULD SEE A CURSOR: USE THE CURSOR CONTROL TO POSITION THE CURSOR. TO TYPE IN CHARACTERS, PRESS STATE SWITCHES ENTFR AND CHARACTER AND THEN TYDE FROM THE KEYBOARD, TO DRAW LINES, PRESS STATE SWITCHES ENTER AVD VECTOR AND USE THE CURSOR CONTROL AND THE MARK BAR.
C. THE PROGQAM STATE


#### Abstract

SEE FIGURE 4. THIS STATE ORGANIZES THE INITIATION OF USER PROGRAMS AND USER SYSTEMS FROM THE SCOPE MONITOR. WHEN A PROGRAM IS ACTUALLY INTERACTING WITH THE SCOPES, THE SCOPE MONITOR SHOULD BE PUT IN USER PROGRAM INTERACTION STATE OBTAINABLE FROM THE OPTION STATE, HOWEVER, ALL: ORGANIZATION PRIOR TO AND AFTER THE RUN IS DONE WITH THE PROGRAM STATE.


TC SUBMIT A PROGRAM, ONE SHOULD GET SOME BLOCKS FOR A GAGE AND ENABLE IT. THEN TYPE THE PROGRAM ONTO THAT PAGE, VOTE THAT THERE ARE NO TAB SETTINGS ON THE SCOPES: EVERYTHING MUST BE SPACED BY HAND. ONE CAN KEEP PROGRAMS ON SCOPE FILES ALSO AND PUT THEM ON THE PAGE THAT WAY. ONE WOULD USUALLY SET UP THE PROGRAM WITH THE PROGRAM PAGE SYSTEM DISPLAY TURNED OFF. THEN OME SHOULD TURN OFF THE PAGE AND TURN ON THE SYSTEM DISPLAY AGAIN USING INTERRUPT 1. THE SUBMISSION OF A PROGRAM TAKES PLACE IN TWO STAGES, FIRST IT MUST 日E MOVED TO THE INPUT FILE'. THIS IS NOT TO BE CONFUSEO WITH A SCOPE FILE, IT IS A PSEUDO TELETYPE BUFFER. SECOND, THE INPUT FILE MUST BE SUBMITTED' TO RUN ON THE G-21. TO MOVE IT TO THE INPUT FILE ONE SHOULD USE INTERRUPT 2. THIS CONVERTS THE PROGRAM TO (UPPER CASE) G-21 CHARACTERS AND PUTS IN A BLANK JOB CARD AT THE TOP. INTERRUPT 3 MOVES A PAGE WITHOUT CONVERSION AND.IS RARELY USED.

USING INTERRUPT 4, ONE CAN NOW SUBMIT THE INPUT FILE, THE VALUES OF TIME, PAGES AND SYSTEM REOUESTED ARE TYPED IV AND PUT INTO THE JOB CARD: AND THE JOB IS PLACED IN THE G-21 QUEUE TO 3E RUN.

WHEN IT RUNS, ANY TELETYPE OUTPUT IS PUT IN ThE IOUTPUT FILE' ONE CAN LOOK AT THE INPUT FILE OR THE OUTPUT FILE BY USING INTERRUPTS 5 AND 6. THESE MOVE THEM TO A DESIGNATED PAGE: SPACE DOES NOT HAVE TD BE RESERVED FOR THE PAGE IN THIS OPERATIJN.

INTERRUPTS 7 AND 8 ARE NOT YET IMPLEMENTED BUT WILL PERMIT A PERUSAL OF THE INPUT OR OUTPUT FILE. THESE FILES ARE VERY MUCH LARGER THAN CAN BE FITTED ONTO A PAGE, AND INTERRUPTS 5 AND 6 JUST LOOK AT THE FIRST FEW BLOCKS. AT THE MOMENT, ONE CAN ONLY GOOK AT THE REST OF ONE'S DUTPUT BY GETTING THE LINE PRINTER OUTOUT. THE SCOPES 1, 2, AND 3 ARE EQUIVALENT TO TELETYPES VUMBER 5, 6, AND 7 RESPECTIVELY, AND LINE PRINTER OUTPUT IS NJMBERED WITH THESE REMOTE NUMAERS. AESO THE JOB CARD HAS THE WORDS SCDPES AND COURIER. WHFN THE COURIER SERVICE IS IN OPEPATION: OUTPUT IS PLACED ON THE TABLE IN PORTER HALL RASEMENT NEAR THE SCOPES ROOM. OTHERWISE. ASK FOR IT AT THE I/O COUNTER.

WHILE A PROQRAM IS INTERACTING WITH THE SCOPES. THE SCOPE MONITOR CAN STILL BE USED IN ANY STATE, THE INTERRUPTS DEFINED BY THE USER WILL ONLY BE PASSED TO THE USER PROGRAM WHEN THE SCOPE MONITOR IS IN THE USER PROGRAM INTERACTION STATE.

PROGRAM PAGE

$\qquad$
$\qquad$
$\qquad$
FIGURE 4.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

THE INPUT FILF IS MOVED TO ANOTHER INACCESSIBLE INPUT FILE ON SUBMISSION, AND THIS LATTER INPUT FILE CANNOT BE LOOKED AT OR ALTERED. HENCE, IF YOU HAVE MADE A MISTAKE IV YOUR PROGRAM AVD have already submitted it, you cannot recall ITI IT will be run. IF YOU RESUBMIT, PROBABLY BOTH WILL RUN.

SCOPE PROGRAMS ONLY HAVE THE SAME PRIORITY AS NDRMAL TELETYÖE PROGRAMS, AND THEY CAN ONLY RUN FOR 3 MINUTES; HOWEVER,THE WAITING IN HANDLED DIFFERENTLY, YO MAKE IT EASIER OOR THE USER TO BE PRESENT WHILE HIS PROGRAM IS RUNNING. ON SUBMISSION OF THE PROGRAM IT GOES TO THE TOP OF THE QUEUE (SM PRIORITY) ANO WILL PROBABLY RUN WITHIN 10 MINUTES OF SUBMISSION. THE SCOPE MONITOR COMPUTES, AT THIS TIME, THE ALLOWED TIME OF NEXT SUBMISSIOV, ALLOWED TIME = [REAL TIME - (TIME OF SUBMISSION OF CURRENTLY RUNNING PROGRAM)] + REAL TIME.

A SUBSEQUENT ATTEMPT TO SUBMIT A PROGRAM WIEL YIELD THE ERROR MESSAGE ISORRY NOT ACCEPTABLE', IF THE TIME THEN IS BEFORE THE ALLOWED TIME. WHEN A PROGRAM IS QUFUED THERE IS VO INDICATION THAT IT IS QUEUED. WHEN IT FINISHES, THE SCOPE MONITOR DISPLAYS THE MESSAQE IOUTPUT READY, AND THE USER CAN FIND TELETYPE OUTPUT IN the output file.

INTERRUPTS $9-12$ ARE NOT YET DEBUGGED AND ARE FOR NRITING IUSER SCOPE MONITOR SUBSYSTEMS' OR USER MODULES'. MODULES ARE DISCUSSED IN SECTION 8 .
D.
the debug state

SEE FIGURE 5. THIS DISPLAYS A DYNAMIC CORE DUMP OF AVY REGION OF CORE OF THE G-21. THE RFGION DISPLAY IS SELECTED NY TURNING THE ANALOG KNOBS AND SETTING THE STATE SWITCHES. XNOB I IS THE LAST TWO OCTAL DIGITS: KNOB ? THE MIDDLE TWO: AND THE BOTTOM ROW OF STATE SWITCHES IS THE TOP 4 BITS OF THE ADDRESS. WHILE THE OUMP IS BEING DISPLAYED, IT IS TYING UP THE G-21. AND THE USER PROGRAM IN LOWER CORE IS NOT BEING PROCESSED: HOWEVER, INTERRUPTS CAN BE PROCESSED. THUS THIS FACILITY SHOULD BE USED SENSIBLY AVD CERTAINLY NOT LEFT DISPLAYING FOR A LONG TIME.

THE INTERRUPTS ALLOW ONE TO PATCH THE CORE. THIS IS DONF GY PUTTING A NUMBER INTD THE INPUT BOX. THE DEBUG STATE IS EVTERED IN CORRECT MODE, AND THE CURSOR IS ENABLED, ONE MOVES THE CURSOR TO THE INPUT BOX AND CORRECTS THE CONTENTS OF IT: THEN ONE SHOULD GET OUT OF CORRECT MODE.

INTERRUPT 1 CLEARS THE CONTENTS OF THE INPUT BOX TO ZERO.

INTERRUPT 2 STORES THE CONTENTS OF THE INPUT QOX IN THE LOCATION OF THE OCTAL DUMP WHICH IS UNDERLINED.

INTERRUPT 3 PUTS THE GONTENTS OF THE UNDERLINED LOCATION INTO THE INPUT BOX.

INTERRUPT 4 SWAPS THE CONTENTS OF THE INPUT BOX WITH THOSE OF THE UNDERLINET LOCATION.

INTERRUPT 5 ALLLOWS ONE TO TRANSFER TO ANY LOCATIOV: OVE PLACED THE LOCATIDN IN THE INPUT BOX AND THEN PRESSES INTERTUPT 5. THIS DOES A TRM WITH CONTROL OFF: HOWEVER, NOTE THAT CE AVD PE APE SET FOR THE SCOPE MONITOR, SO THAT
(1) THE USER HAD BETTER RESET THEM

TO HIS OWN VALUES.
(11) HE MUST KEEP CONTROL OFF.

ALSO NOTE THAT
(111) HE MUST RETURN THROUGH HIS MARK.

IF (I) (II) OR (III) ARE VIOLATED, YOU WILL PROBABLY DESTROY THE ENTIRE WORLD.

THE USER CAN LOOK AT ANY REGION OF CORES HOWEVER. HE CANNOT ALTER OR TRANSFER TO AN ADDRESS IF IT IS NOT IV USER CORE, I.E., IN 170 TO /73000, IF HE TRIES TO DO SO. THERE WILL GE NO RESPONSE FROM THE SCOPE MONITOR.

## DEBUG PAGE

O. OPTION PAGE

1. CLEAR INPUT
2. STORE TNPUT
3. LOAD INPUT FROM MEMORY
4. SWAP INPUT
5. TRM

00000000000

| 005344 | 00000000467 | 00000073626 | 00000001453 | 04050005632 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 005350 | 01550000100 | 01730005632 | 00050000100 | 05550006732 |
| 005354 | 01730006732 | 01770007546 | 00000000000 | 00050000004 |
| 005360 | 00170005353 | 00050000002 | 01770076666 | 01770005300 |
| 005364 | 0000000000 | 01770003106 | 01770003106 | 00170004312 |

THIS SPACE RESERVED FOR SYSTEM MESSAGES

TEXT HANDLING MODE
PRESS INTERRUPT NUMBER
2. SELECT PAGE
3. SELECT FILE
4. FORWARD TEN LINES
5. BACKWARD TEN LINES
6. GET TO \$
7. DUMP
8. NAME CURSOR POINT TO BE

STRUCTURE POINT
9. UNNAME STRUCTURE POINT
10. GET TO POINT
11. DISPLAY DIRECTORY OF STRUCTURE POINTS
12. READ BLOCKS AT BLOCK FILE TO BLOCK PAGE
13. WRITE BLDCKS AT BLOCK FILE TO BLOCK PAGE
E. TEXT HANDLING STATE

SEE FIGURE $\dot{G}^{\prime}$ THIS STATE IS NOT YET DEBUGGED. IT DOES THE MOVEMENT AND SCROLLING ('ROLL ROUND') OF TEXT. IT IS DISTINCT FROM THE TEXT EDITING SYSTEM WHICH IS BEING DEVELOPED BY MIKE COLFMAN AND IS CONCERNED WITH TEXT MANIPULATION ON THE PAGE TO AUSMENT THE FACILITIES PROVIDED BY THE HARDWARE.

TO PERUSE SOME TEXT, IT MUST BE ON A SCOPE FILE, IT CAN BE MOVED ONTO A SCOPE FILE FROM AN AND FILE BY USING AN AUXILIARY SYSTEM (Q,V.). AUXILIARY SYSTEMS WILL MOVE TEXT FROM AN ANO FILE IN G-20 CHARACTERS AND CONVERT AND MOVE TO A SCOPE FILE ANO WILL MOVE IT BACK AND CONVERT IT BACK. OR WE CAV MOVE IT IN SCOPE CHARACTERS UNCONVERTED BETWEEN AND FILE AND SCODE FILE AVO ALWAYS KEEP IT IN SCOPE CHARACTERS, UNTIL IT IS NECESSARY TO DPINT IT OUT. IT IS SUGGESTED THAT DOCUMENTATION USE THE LEAD SYSTEM. (SEE SEPARATE WRITE-UPI: IN WHICH ONE INSERTS TYPESETTING COMMANDS INTO THE TEXT, SO IT IS PRINTED OUT IN A PRESCRIBED OORMAT. THE LEAD COMMANDS COULO BE KERT IN ALL THE TIME AS PART OF THE TEXT. IT IS HOPED EVENTUALLY TO BE ABLE TO OUTPUT ON THE LINE PRINTER OF THE 360 WHICH HAS UPPER AND LOWER CASE CHARACTERS. THE G-20, OF COURSE, HAS ONLY 64 CHARACTERS, INCLUDING ONLY UPOER CASE LETTERS, HAVING GOT THE DOCUMENT INTO A SCOPE FILE, ONE SELECTS. THAT FILE USING INTERRUPT 3 AND SELECTS A PAGE TO WORK ON JSIVIG INTERRUPT 2 . THIS WILL AUTOMATICALLY GET 5 日LOCKS (AS MUCH AS CAV REASONABLY 3E SEEN UN ONE PAGES FOR THAT PAGE AND ENABLEIT: THERE IS A SPECIALLY RESERVED FILE USED FOR A SCRATCH AREA AVC ONE SAN NOW ROLL THROUGH THE TEXT USING INTERRIIPTS 4 AND 5 . THIS SUCCESSIVELY BRINGS IN TEXT FROM THE SELECTED FILE ONTO THE BOTTOM OF THE SELECTED PAGE AND MOVES THE TOP OF THE PAGE INTO THE SCRATCH AREA. ONE CAN USE THE HARDWARE FEATURES TO ALTER THE TEXT, AND ALSO THE SOFTWARE TEXT EDITING FEATUKES PROVIDED BY THE TEXTEOITIVG MODE . FINALLY, TO PUT THE EDITED TEXT ONTO A FILE (WHICH CUN BE THE SAME ONE) ONE EXECUTES GET TO \$, WHICH PUUTS EVERYTHING IN THE SCRATCH AREA, SELECTS AFILE, AND EXECUTES DUMP. ONE MAY NOT BE ABLE TO BACK UP THE TEXT ONTO THE SAME FILE AS IT MAY HAVE ALTERED IN LENGTH: HENCE THE BUMP PROCEDURE SHOULD ALWAYS BE FOLLONED, IN ORDER TO WORK MORE EASILY, ESPECIALLY WITH LONG FILES. IVTERRUPTS 8 TO 11 PROVIDE THE FACILITY OF IMPOSING STRUZTURE ON JTHERWISE AMORPHOUS TEXT. THE TEXT IS TREATFD AS A VERY LONG STRING DF CHARACTERS AND CONTROL CHARACTERS. THE USER CAN VAYE ANY POINT IN THE TEXT, BY A 6 CHARACTER NAME OF HIS OWN CHOIOE, GY GETTING THE TEXT ONTO THE SCREEN, PLACING THE CURSOR AT THE POINT AND USI VG INTERRUPT 8. ONE CAN MOVE THE POINT REFERENCED BY A GIVEV NAME BY SIMPLY USING A AGAIN. DNE CAN REMOVE THE NAME ALTOGFTHER GY USIVG 9, AND ONE CAN DISPLAY A DIRECTORY OF NAMED POINTS CURREVTLY USED BY PRESSING INTERRUPT 11. ONE CAN THEN GO IMMEDIATELY TO ANY NAMED POINT AND WORK FROM THERE WITH 4 AND 5 . AS THE TEXT MOVES BACKWARD AND FORWARD, THE SOOPE MONITOR KEEPS TRACK OF THE LOCATIOVS OF THE

NAMED POINTS: IT ACTUALLY PUTS A SCOPE NO-OP COMMAND (NO OPERATION COMMAND) AT THE NAMED POINT. THE USE OF LINE NUMBERS IS CUMBERSOME TO PROGRAM, WASTEFUL OF STORAGE SPACE, BUT, MORE IMPORTANT, VERY MISLEADING IF BACKWARD AND FORWARD MOTION AND ARBITRARY INSERTION AND DELETION ARE ALLOWED. HOWEVER, SOME STRUCTURE IS NESDED, AND THIS HAS BEEN MADE AS FREE AS POSSIBLE.
F. USER MANUAL

IT IS HOPED THAT THIS USER MANUAL WILL BE DISPLAYABLE FROM
THE SCOPE MONITORI HOWEVER, THIS IS NOT YET IMPLEMENTED.
G. DRAWING STATE

SEE FIGURE 7. THIS STATE IS INTENDED TO PROVIDE EXTRA FACILITIES FOR CONSTRUCTING DISPLAY MATERIAL. NONE OF IT IS DEBUGGED.

INTERRUPT 2 SELECTS A PAGE FOR ATTENTION.

INTERRUPT 3 PITS ONE IN A ROTATION MODE. IN THIS MODE, AS OVE TURNS ANALOG KNOB i, THE VECTORS ON THE CURREVTLY SELEGTED PAGE ARE ROTATED ABOUT THE POSITION OF THE CURSOR.

INTERRUPT 4 PUTS ONE IN TRACKING MODE. THIS PUTS A TRACKING FIGÜRE ON THE SELECTED PAGE. ONE CAN THEN USE THE LIGHT PEN TO MOVE THE CURSOR AROUND.

INTERRUPT 5 PUTS ONE IN CURVE DRAWING MODE, IN THIS CASE, AS ONE MOVES THE CURSOR WITH THE LIGHT PEN. A CURVE IS DRAN permanently into the page.

## DRAWING MODE

| PRESS INTERRUPT NUMBER |  |
| :---: | :---: |
| 2 | SELECT PAGE |
| 3 | ROTATI ONAL MODE |
| 4 | TRACKING MODE |
| 5 | CURVE DRAWING MODE |

## H. USER PROGRAM INTERACTION STATE

IN THIS STATE, THE MEANING OF THE INTERRUSTS ARE AS DEFINED by THE USER PROGRAM. THE USER PROGRAM DEFINES THEM bY CALLING BZ5, AND GIVING THE INTERRUPT ENTRY POINT IN THE PROGRAM. THIS IS EXPLAINED IN SECTION 6. ONE CAN ONLY GET INTO USER MODE WHILE THE PROGRAM IS ACTUALLY RUNNING.

## I. TEXT EDITINA STATE

THIS IS A SUBSYSTEM BEING DEVELOPED BY MIKE COLEMAN,
J. ERROR MESSAGES

ERROR MESSAGES FROM THE SCOPE MONITOR ARE FEW AND UNHELPFU:. IT IS USUALLY POSSIBLE TO RECOVER AND JUST CARRY ON FROM THE OPTION STATE AFTER AN ERROR.

1. SORRY ROUTINE NOT YET IMPLEMENTED.
2. SORRY NOT ACCEPTABLE. INDICATES AN ARGUMEVT IS NOT ACCEPTABLE, USUALLY OUT OF BOUNDS, ATTEMPTS TO USE A PAGE WITH NUMBER NOT IN [1, 4!, ATTEMPTS TO READ IN A SCOPE FILE WITH NOTHING ON IT: ATTEMPTS TO ALTER CORE LOCATIONS NOT IN USER COPE WILL EVOKE THIS MESSAGE. THE STACK IS CLEARED.
3. UNSPECIFIED INTERRUPT. IF ONE PRESSES BUTTONS NOT DEFINED BY THE SYSTEM DISPLAY.
4. MULTIPLE INTERRUPT ERROR WILL OCCUR IF MORE THAN ONE INTERRUPT IS REQUESTED; FOR EXAMPLE, IF ONE IS PEQUESTED BEFORE A PREVIOUS ONE HAS BEEN PROCESSED.. ALL INTERRUPT REOJESTS ARE REMOVED, AND YOU MUST RFREQUEST.
5. PANIC. THIS INDICATES THAT YOU HAVE RUN OUT OF SPACE, EITHER CORE SPACE, DISC OR STACK SPACE. IT INITIALIZES THE STACK AND REMOVES CONTINUOUS MODE OPERATIONS. YOU SHOULD BE ABLE TO RECOVEK, IF IT IS CORE SPACE. DELETING UNWANTED CORE BLJCKS WILL HELP.
6. ADDROP <ADDRESS>. THIS SHOULDNTT EVER HADPEN. IF IT DOES, WRITE DOWN THE VALUE OF THE ADDRESS AND SEND IT TO A. H. BOND, YOU MAY WELL GE ABLE TO RECOVER FROM THIS ERROR CONDITION.
7. USER ERROR. THIS INDICATES AN ERROR HAS OCCURRED IN THE CALLING OF A B ROUTINE BY THE USER PROGRAM. YOU CAN REMOVE THE ERROR MESSAGE DISPLAY BY GUING BACK TO OPTION STATE MOMENTARILY. AN ERRDR CONDITION IS INDICATED TO THE PROGRAM AVD AN ERRJR NUMBER IS PASSED TO IT. A LIST IS GIVEN AT THE END OF GHAPTER 7.
8. SOMETIMES; AS A RESULT OF A SERIES OF PARTIALLY RECOVERABLE ERRORS, THE SCOPE MONITOR GRADUALLY DEGENERATES AVD EXHIBITS ANOMALOUS BEHAVIOR. LIKE SETTING RANOOM PATTERVS ON THE STATE LIGHTS, ETC. IN THIS CASE, IT IS TIME TO RELOAD. ALSO, IF

YOU DO NOT RECOVER CORRECTLY FROM ANY OF THE ERROR CONDITIOVS, YOU CAN RELOAD, YOU RELOAD BY PHONING THE MACHINE ROOM (EXT, 60) AVD ASKING FOR. A RELOAD OF THE SCOPE MONITOR AT THE NEXT CONVENIENT TIME. HARDWARE ERRORS OR FAULTS SHOULD BE REPORTED TO THE RESIDENT PHILCO CUSTOM ENGINEERS, C. C. EXT. 59. WHO ARE IN OHARGE OF hardware maintenance.
5. PROGRAMMING FOR GRAPHICS.

A TYPICAL OUTPUT DEVICE,LIKE A DISC OR DRINTER,NITH AN AUTONOMOUS CONTROL UNIT. WORKS AS FOLLOWS: THE OUTPUT MATERIAL IS PLACED IN A BUFFER WHICH IS PART TF THE ADDRESSABLE CORE, IT MAY HAVE TO BE A SPECIAL AREA OR CAN BE ANY LOCATION. THIS MATERIAL IS IN BIT PATTERNS CORRESPONDING TO OPERATIONS PERFORMED BY THE OUTPUT DEVICE, THE OBVIOUS CASE IS THE CHARACTER. THERE MAYBE OTHERS WHICH CONTROL THE OPERATION OF THE DEVICE LIKE NEW LINE ETC. THE TRANSFER IS THEN INITIATED BY THE CQ WHICH CARRIES ON WITH OTHER TASKS WHILE THE $1 / 0$ CONTROL UNIT PERFORMS THE $1 / 0$ TRANSFER, THE CP AND THE I/O CONTROL UNIT COMMUNICATE EITHER BY MUTUALLY ALTERABLE SENSE SWITCHES OR BY INTERRUPT. THE I/O UNIT WILL SET AN INTERRUPT BIT WHEN READY TO START AND WHEN TRANSMISSION IS COMPLETE TYPICALLY. A CP CAV COMMUNICATE WITH SEVEKAL DEVICES EACH HAVING ITS OWN CHARACTER SET, SO THAT THE INTERNALLY STORED VALUES DO NOT HAVE ANY INTRINSIC EXTERNAL REPRESENTATION, SUCH REPRESENTATIONS ARE PROPERTIES OF THE $1 / 0$ DEVICE, INPUT FROM A TYPEWRITER USUALLY TRANSFERS A SINGLE CHARACTER OR LINE OF CHARACTERS TO A BUFFER AND INTERRUPTS THE CP WHICH READS FROM THE BUFFER TO A PACKING AREA. SCOPES ARE SOMEWHAT MORE GENERAL. THE I/O MATERIAL IS PLACED IN A BUFFER FOR THE SCOPE CONTROLLER TO DISPLAY, MOST OF THIS MATFRIAL HAS TO GE INTERPRETED AS COMMANDS TO THE SCOPE. MOST SCOPES ARE RANDOM SCAN TUAES, MEANING THAT THE BEAM CAN MOVE EQUALLY EAS!LY TO ANYWHERE ON THE TUBE FACE AND FURTHER IMPLYING THAT ONLY THOSE POINTS EXPLICITLY MENTIONED WILL BE SCANNED. THIS IS IN CONTRAST TO A TELEVISION WHERE EVERY POINT ON THE FACE SCANNED IN TURN. OUR SCODES ONLY HAVE TWO LEVELS OF BRIGHTNESS, BUT SOME HAVE FIVE OR MORE, TELEVISION HAS A LARGE RANGE OF BRIGHTNESS AVAILABLE, THJS THF I/ O MATERIAL CONSISTS OF A SERIES OF COMMANDS TO THE BEAM TJ MOVE TO A CERTAIN POINT, DRAW A LINE TO ANOTHER POINT, VOW MOVE SOMEWHERE ELSE, NOW DISPLAY A CERT AIN CHARACTER AND SO ON. THERE MAY BE SPECIAL BITS FOR BLANKING CERTAIN ELEMENT S, ALTERING THE SIZE ETC. ALSO THE SCOPES OUTPUT FUNCTION IS A REGENERATIVE DRO CESS AND WE HAVE TO INSTRUCT THE BEAM TO DO THE SAME SCAN SEVERAL TIMES A SECOND TO GIVE A CONTINUOUS DISPLAY. THJS A TYPICAL BLOCK USUALLY OF WORDS OF GRAPHIC
I/O MATERIAL IS SOMETHING LIKE THIS:
A1 START SCANNING HERE
MOVE TO XO,YO
DRAW LINE TO $X_{1}, Y_{1}$
DRAW LINE TO X2,Y2
MOVE TO $\times 3 . Y 3$
DRAW CHARACTER NO 32
LOOP BACK TO A1
OUR SCOPES HAVE A VERY NICE WAY OF SCANNING, THE DISPLAY MATERIAL IS SETUP AS RE LOCATABLE BLOCKS WITH TRANSFER COMMANDS WHICH MUST CONNECT UP TO GIVE A LOOP AROUND WHICH THE SCOPE SCANNER DPERATES. THE DISPLAY MATERIAL MUST BE IN ONE SP ECIAL REGION OF ADDQESSABLE

G-20 CORE VIT. 1160000 TO /177777, THE ADURESSES USE D GY TAE SCOPE SCANNER ARE RELATIVETO 116000 AND THEREFORE RANGE FROM 0 TO $/ 17$ 777. FACH DF THE THREE SCOPES CAN HAVE 4 PAGES AVD INDEED EACH PICTURE IN THE CORE IS A SEPARATE MODULE OF DISPLAY MatERIAL. THE LAYOUT IS SOMETHING LIKE THIS:

A1 DELIMIT A2 PAGE 1 SCOPE 1
DISPLAY MATERIAL
store command
DELIMIT A2 PAGE 2 SCOPE 1 AND 3
DISPLAY MATERIAL
STORE COMMAND
AB CYCLE TO A1
THE SCANNER ENTERS A MODULE, REMEMBERS THE FIRST AORD, UNTIL IT HITS A STORE COM MAND, THEN JUMPS TO THE ADORESS METTIONEO IN THE FIRST WORD. FACH DISPLAY MODUL E CAN BE DISPLAYED ON ONE DF PAGES 1 THROUGH 4 ON ANY COMBINATION OF SCOPES 1, 2, AND 3. THEDISPLAY MATERIAL CAN BE CHANGED BY A PROGRAM FREELY ALTHOUGH ONE S HOULD ALWAYS PRESENT A WELL-FDRMED DISPLAY TO THE SCANVFR. IVPUT OR CORRECTION OF DISPLAY MATERIAL FROM THE HUMAN AT THE SCOE CAN BE ACHIEVED USING THE KEYBDA RD OR RAND TABLET. THE INPUT OF RITS INTO THE ADDRESSBLE MEMORY IS DONE BY THE SCANNFR AS IT SCAVS ROUND, ONE OF THE ADVANTAGES OF THE MODULAR LAYOUT IS THAT NEW MATERIAL IS SIMPLY APPENDED TO THE END OF THE APPROPRIATE MODULE AND THE STO RE COMYAND MOVED DOWN. THE SCANNEZ WILL KEEO ADDING NEW MATERIAL AS REQUESTED U NTIL IT HITS AGAINST THE NEXT DELIMIT AT WHICH TIME IT WILL GENERATE A MEMORY F ULL INTERRUTT, VOTIFYING THE SCOPE MONITDR, AND WILL REFUSE TO ENTER AVY MORE. I NPUT ACTUALLY WILL BE PLACED IN ANY DISPLAY MOOULE DESİNATED AS ENABLED FOR THA T SCOPE AND THAT INPUT DEVICE. THE IESIGVATION IS by means of certain bits in t he delimit word. TMERE IS ove bit to ENABLE THE MODULE FOR ALL ENTRY, VECTORS AND CHARAGTERS FROM ANY OF THE SCOPES DESIGNATED, AND TWO OTHER BITS OORTHE KEYGOA RDS FOR THE PARTICULAR SCOPE. THE FULL DELIMIT COMMAVD IS


THE PAGE FIELD IS 2 BITS,SO CAN BE $0=4,1,2,3$, A INDICATES ALTERNATE MODE-USUALL Y OILY USEN AY SCOPE MONITOR. E IS THE GENERAL ENABLE BIT. KEY IS 2 BITS ONE F OR EAOH KEYROAPD. FOUR CONSOLES ARE PROVIDED FOR GUT ONLY 3 INSTALIED, IF SEVER AL MODULES ARE FNABLED FOR THE SAME DEVICE, THE IVPUT MATEYIAL WILL BE ENTERED IN ALL OF THEM. THE NORMAL USER NEVER SEES JR HAS TO bother with the delimit, store or cycle comyands, these are MANAGED FOR HIM BY THE B ROUTINES. IT IS ARZANGED AS A SET JF STRINGS, EITHER CHARACTER STRINGS OR VECTOR STRIVGS WITH A HEADER COMMAND AT THE FRDNT TO INDICATE THE STARTING POIVT JN THE SCRFEV. THUS A DISPLAY OF LINES AND CHARACTERS IS LIKE THIS

HEADER YO $\times 0$
VECTOR INCREMENT Y $Y_{1} \quad X_{1}$

```
VECTOR INCREMENT Y2 X2
HEADER Y3 X3
CHARACTERS C1 C2 C3
CHARACTERS C4 C5 C6
STORE
```

THE ACTUAL FORM OF THESE WORDS IS AS FOLLOWS


LEA DER


TY, SK ARE SIGN BITS, B IS THE BLANKING BIT, IF SET THE VECTOR INCREMENT IS INV ISIBLE. T IS THE TAG BIT, IF SET THEN WILL BLINK OR INTENSIFY IF BLINK OR INTER SIFY SWITCHES ARE SET.


T IS TAG BITS IS SIZE BIT, IF SET CHARACTER IS DOUBLE SIZE. CHARACTERS ARE SCOPE CHARACTER SET AS GIVEN IN THE HARDWARE MANUAL. IN A ALGOL-20 A WAY TO SET UP THESE WORDS IS SOMETHING LIKE

$$
\begin{aligned}
& \text { HEADER * 8L3 + YO * eR } 4000 \text { + Xt: } \\
& \text { VECTINC * 8L120 + Sc * } 2 \uparrow 23 \text { + SX*2+22 } \\
& \text { +T } T 2+21+B+2+20 \\
& \text { * DELX*2910 + DELI } \\
& \text { CHARS * 8L2 + (C1 * 4 * T1*2+51) } \\
& \begin{array}{l}
+2+20 \\
+(\mathrm{C} 2 * 4+T 2 * 2+52) * 2+10
\end{array} \\
& \text { * (C3*4 +T3*2*53) }
\end{aligned}
$$

SUCH MATERIAL SHOULD BE PACKED INTO AN ALGOL LOGIC ARRAY IN NORMAL CORE AND. THEN GT CALLED TO MOVE IT TO A DESIGNATED PAGE IN THE DISPLAY AREA, OTHER SCOPE OPERA TINS AVAILABLE ARE


RIGHT
MARGIN

WHICH SET MARGINS FOR MATERIAL APPEARING AFTER THEM IN THE MODULE.

| 1 | 50 | $C$ |  |
| :--- | :--- | :--- | :--- | :--- |
| 24 |  | 210 |  |

COMPAR

THIS SETS A CDMPARE TRAP IN A CERTAIN CHARACTER KEYROARD ENDIVG AFTER THIS WORD IN THIS MODULE. IF THIS CHARACTER IS TYPED IN, IT IS ENTERED. IN STHE MODULE AND AND INTERRURT IS GENERATED BY THE SCANNER. THIS IS PROCESSED BY THE SCOPE MONITO R AND CAN $3 E$ PASSED TO A USER PROGIAM ENTRY POINT IF DESIRED.


6．WRITING INTERACTIVE PROQRAMS．
A．THE B ROUTINES

ALL INTERACTION BETWEEN PROGRAM AND THE SCOTES IS ACCOMPLISHED BY USING THE R ROUTINES．THE B ROUTINES ARE ASCESSED THROUGH A SPECIAL INTERFACING ROUTINE．THESE MECHANISMS NEED NFVER BOTHER THE AVERAGE USER，IF HE SIMPLY USES THE CUPIES DF THE A ROUTINES IN THE SCOPE SUBPROGRAM LIBRARY（SECTION7）．THUS IN ALGOL－20 OR FORMULA ALGOL ONE SIMPLY WRITES：

B（BNUM，ARG1：ARGR，ARG3，ARG4，ARG5IS AND IN SPTTE

B BNUM，ARG1，ARG2，．．．．．BNUM IS THE NUMBER OF THE 3 ROUTIVE REQUIRED．NOT ALL ARGUMENTS ARE USED FOR ALL B ROUTINES，YOST JF THEM HAVE TO DO WITH PASSING INFQRMATION FROM THE PROGRAM TO THE SCOPES，BUT A FEW GO THE OTHER WAY：E．G．，B8，WHICH READS THE ANALOG KNOBS．IN THE DESCRIPTION OF THE B ROUTINES，ARGI，ETC． ARE DENOTED GY RSZ ETC．IT IS TO BE NOTED THAT THE VALUES OF THE ARGUMENTS ARE CHANGED BY A CALL ON A B ROUTINE，AND THIS CAN LEAD TO HAVOC：E．G．．CALLING B8 WITH TEROS FOR ARGUMENTS A AVD 5 WILL CAUSE THE ALGOL CONSTANT O TO BE REPLACED BY AVJTHER VALUE，TO AVOID THIS ONE CAN USE A GLDAAL BOOLEAN VARIABLE OUT，IF OUT IS FALSE，THEN NO OUTPUT OF VALUES WILL OCCUR，AND NO OVERWRITING WILL OCCUR．IF OUT IS TRUE，OUTPUT WILL OCCUR，AND，IN THIS CASE， ONE CAN PUT SOME DUMMY ARGUMENTS IN THE PARAMETER LIST．IF TUE LOCATION OF SOME DATA IN AN ARRAY OR SCALAR IDEVTIFIER IS VEEDED， ONE MUST USE LIGRARY INTEGER PROCEDURE LOC IN ALGOL OR FORML， WHICH FINDS THE ADDRESS WHERE THE ACTUAL VALUES ARE STORED．THUS LOC（A［1］）IS THE ADDRESS CONTAINING THE VALUE OF AP1］．LOC IS IN THE SCOPE LIBRARY FOR ALGOL OR FORML．IF YOU NEED THE LOCATION OF A PROCEDURE ENTRY POINT OR LABEL，YOU USE THE LIBRARY INTEGER PROCEDURES PROCLOC OR LABELLOC RESDECTIVELY IN ALGOL－2O．ALL THE ARGUMENTS TO B ARE INTEGERS．IF AN ERROR OCCURS OV CALLING B DUE TO INCORRECT ARGUMENTS，B WILL PRINT AN ERROR MESSAGE AND SET BNUM $=-1$ ．THE REASONS FOR ERRORS ARE DESCRIAED IN DETAIL IN THE DESCRIPTION OF THE B ROUTINES IN SECTION 6 ．TRE DETAILS OF TUE INTERFACE ARE GIVEN IN SECTION 10．IN ADDITION，AND ON A HIGHER LEVEL THAN THE B ROUTINES，THERE ARE SEVERAL USETUL SUBPROGTAMS IN ALGOL，FORML AND SPITE IN THE LIBRARY FOR DOING HIGHER LFVEL TASKS．FOR EXAMPLE，PROCEDURE NUM（X，Y，N）WILL TAKE A REAL VARIABLE N ANT DISPLAY IT AT X，Y IN－50． 32 （OR $=8.3$ ）FORMAT．THE FULL I／FACILITIES OF ALGOL－20 CAN RE USEDIV READING FROMAND ＇PRINTINGI TO THE DISPLAY PAGE，THIS IS SIMPLY ACHIEVED JSING THE SCOPE LIBRARY PROCEDURES READ．PAGE AND PRINT．DN．PAGE，NHICH ARE EXACTLY ANALOGOUS TO RFAD（ $\langle W\rangle)$ AND PRINT（ $\langle W\rangle)$ ．E．G．PEAD．PAGE READS A CARD FROM THE SCOPE FACE INTO A BUFFER，WHIUH CAVTHEN SE READ IN THE USUAL WAY WITH A READ STATEMENT．AT ORESENT，A PROGRAM

CAN ONLY INTERACT WITH THE SCOPES IF IT HAS BEEV SUBMITTED FROM A SCOPE AND IF THE JOBCARD USER IS LOGGED IN ON THAT SCOPE. AT THE TERMINATION OF A USER PRDGRAM CONTROL GOES TO 10 AND THENCE BACK TO SCOPE MONITOR TO ALLOW IT TO UNSET ALL THE SNITCHES SET BY THE PROGRAM, HENCE THE USER SHOULD NOT PATCH 10.
before interaction can occur the program must announce itself BY CALLINGR-1.

TO DISPLAY TEXT, ONE'S PROGRAM WILL NORYALLY SET IT UP IN G-20 CHARAOTERS, SO ONE HAS TO CONVERT TO SCJPE CHARASTERS AVD MOVE IT TO THE SCOPE DISPLAY REGION.

B D AND B 1 WILL CONVERT TEXT RETWEEN G-20 CHARACTER SET AVD SCOPE CHARACTER SET.

B 2 CONVERTS TEXT AND MOVES IT TO DISPLAY REGIDN IN OVE OPERATION.

日 3 MOVES A REGION ALREADY IN SCOPE FORYAT TO THE DISPLAY REGION.

TO DISPLAY VEGTORS, ONE MUST SET THEM UD IN A LOGIC ARRAY AND USE B 3, ONE CAN EASILY SET UP A DESIRED LOGIC ARRAY USIN
PROCEDURES HEADER, VECTOR, LINE, CURVE, ETC. B15, B16, 817,818

ONE MUST RESERVE SPACE IN THE DISPLAY AREA BY CALLING BI5: THE PAGE DOES NOT NEED TO BE ENABLED FOR THE PROGRAM TO ENTER DISPLAY MATERIAL BUT NEEDS TO RE ENABLED FOR THE HÜMAV JSER TO ENTER DISPLAY MATERIAL.

B16, B17, 818 ENAGLE, DISENABLE AND DELETE A PAGE RESPECTIVELY.

B29 APPENDS ONE PAGE TO ANOTHER

B2O DISENABLES ALL PAGES.

BC AND $\quad 3$ ACTUALLY $\triangle P P E N D$ NEW DISPLAY MATERIAL TO TWE EXISTING PAGE.

B28 CLEARS A PAGE. B4 AND B5 PERFORM RECIPROCAL OPERATIONS TO B2 AND B3 IN COPYING DISPLAY MATERIAL FROM A GIVEN PAGE INTO A GIVEN ARRAY IN THE USER PRDGRAM.

B4 CONVERTS ALL TEXT TO G-21 CHARACTER SET AND IGNORES ALL. VECTORS, THE ARRAY COULD THEN BE PRINTED OUT IN A FORMAT.

B5 COPIES WITHOUT CONVERSION. A PROGRAMCAN ONLY DEDUCE INFORMATION AROUT THE DISPLAY BY COPYING IT INTO AN ARRAY AND SEARCHING THE AREA FOR FEATURES LIKE KEYWORDS.

B6, B7, B8, B19, 311 PROVIDE COMMUNICATION WITH THE CURSOR, ANALOG KNOBS AND USER STATE SWITCHES.

BG READS THE CURSOR.

87 SETS THE CURSOR.

BE READS THE ANALOG KNOES AND STATE

SWITCHES.

BIO READS THE STATE SWITCHES ONLY.

B11 SETS THE STATE SWITCHES.
B. USER INTERRUPTS
(I) B12,B13,822,824 ARE FOR COMPARE INTERRUJTS. B13 DEFINES THE USER ENTRY POINT TO BE ENTERED WHEN A COMPARE IVTERRUPT OCCURS ON ANY CHARACTER. THIS OCCURS IN ANY STATE OF THE SCOPE MONITOR. EXCEPT DURING TYPING INTO THE SCOPF MONITOR, WHI CH USES A COMPARE CHARACTER. B1? SETS COMPARE INTERRUPT ON A SPECIFIED CHARACTER FOR a specified page. b2? resets the compare routine to the standard SCOPE MONITUR ROUTINE. BZ1 REMOVES COMPARE OV A SPECIFIED CHARACTER ON A SPECIFIED PAGE. B24 SFTS AN ENABLEO GURSOR AND INTERRUPT ROUTINE DN A SPECIFIED CHARACTER.
(II) B14, B23 ARE FOR THE MEMORY FULL INTERRJPT, 日 14 SETS THE USER ENTRY POINT WHICH IS ENTERED ON MEMORY EULL. Q23 RESETS MEMORY FULL ROUTINE TO THE STANDARD SCOPE MONITOZ ROUTINE.
(II1) B25 DEFINES THE USER ENTRY POINT FOR THE INTERRUJT BUTTONS 1-15. AFTER B25 HAS BEEN EXECUTED AND PROVIDED THE SCOOE MONITOR IS IN USER MODE, THE INTERRUPT BUTTONS WILL CAUSE AN INTERRLIPT IN THE USER PROGRAM AND FOR CONTROL TO BE PASSED TO THE SPECIFIED PROCEDURE OR ENTRY POINT.

INTERRUPTING USER PROGRAMS

ALGOL PROGRAMS

IN ALGOL-20 THE ENTRY POINT OF A PROCEDURE OR THE LOTATION JF
A LABEL CAN BE USET AS THE USER INTERRUPT ENTRY POIAT, THE CODE FOLLOWING WILL NORMALLY MAKE DECISIONS AROUT THE COMPUTATION AVD CAN BE CALLED THE USER INTERRUPT SERVICE ROUTINE (UISR). A STMPLE WAY TO DEFINE THE IVTERRUPTS AND ENTRY POINT IS:
WH LBL T3;

WH GLA 0 T1;
$A L \quad V 5+A C C$;
AL B(25.V5,ETG):
THE INTERRUPT ENTRY POINT WOULD THEN OCCUR AT THE GOTTJM OF THE PROGRAM AND RE
WH T1 ENT ;
AL ETC
THIS CAN BE DONE SEPARATELY FOR INTERRUPTS FRJM THE BUTTJNS AVO FROM COMPARE CHARACTERS. THE ENTRY POINT IS TRANSFERED TO WITH A TRE INSTRUCTION SO THAT CONTROL WILL BE ON IN TAE UISR UVEESS THE first instruction after the entry point is

WH EXR 0 177776, CE:
IF YOU WISH TO RETURN TO THE INTERRUPTED COMPUTATION, YOU HAVE TO POP THE MAIN MONITOR INTERRUPT STACK. THIS CAN BE DONE BY RETURNING THROUGH YOUR MARK( A PROCEDURE END IN ALGOL), SINCE THE SCOPE MONITOR PUTS ITS OWN INTERRUPT ENTRY MARK IN THE USER INTERRUPT ENTRY POINY. IF CONTROL HAS WANDERED AROUND BEFORE THE DECISION TO RETURN TO THE INTERRUPTED COMPUTATION HAS BEEN MADE: YOU MAY EFFECT THE RETURN $8 Y$ RETURNING TO THE SCOPE MONITOQ; HOWEVER, THE SWITCHES WILL BE UNSET BY THE CLOCK INTERRUPTS WHILE IN THE UISR, SO WE PROVIDE A B ROUTINE (327) TO SET UP TME SWITCHES CORRECTLY AND RETURN CONTROL TO THE MAIV MONITOR, IF YOU WISH TO PASS CONTROL TO ANOTHER POINT IN THE PROGRAM, A GO TO STATEMENT WILL EFFECT ALL THE STACK PUSHING REQUIRED SO THAT THE. VARIABLES ARE CORRECTLY REDEFINED.

PRINTING HAS TO BE CAREFULLY CONTROLLED IN ALGOL DROGRAMS WHICH ALLOW INTERRUPTS. IF AN INTERRUPT OCCURS DURING PRIVTING AND THE UISR PRINTS, THEN IT IS MORE OR LESS IMPOSSIALE TO ZETURN TO THE ORIGINAL LINE OF COMPUTATION. ONE CAN SAVE THE INTERRURT PRINT LINE AND PRINT LINE POINTER BY

LOGIC ARRAY A!-2:120]; TEMP-1251: BUFFERSET(IORINT', A(O))! AND RESTORE IT LATER. HOWEVER, IF THE NAME AND PRINT STATEMENTS IN OPERATION HAVE BEEN CHANGED, ONE CANNOT RECOVER THEM, IF THE UISR PASSES CONTROL TO ANOTHER PART OF THE PROGRAM AVD NEVER NISHES TO CONTINUE AT THE INTERRUPTED POINT, THEN THE PRINTING WILL WORK OUT ALL RIGHT. SOME SAFE RULES ARE (1) DON'T PRINT OUT IN THE UISR, (2) TURN OFF THE CONTROL SWITCH DURING PRINTING: BUT, AS DISCUSSED, THESE ARE NOT RIGID RULES.

## EXAMPLE OF INTERRUPT DEFINITION IN ALGOL

## I. USING A LABEL

BEGIN INTEGER ENPT,CSW,IN,SN,CC;


11. USING A PROCEDURE

```
BEGIN
LIBRARY PROCEDURE PROCLOC:
PROCEDURE UISR:
<ACTIONS\: BO TD NEWACTION:
END GOES BACK TO INTERRUPTED ACTION:
B(25,PROCLOC(UISR),LOC(CSW),LOC(IN).LOC(SN),LDC(CO)):
<CONTINDUS ACTIONS>;
END:
```

FORMULA ALGOL PROGRAMS

FORMULA ALGOL COMPILES CODE WHICH IS HEAVILY DEPENDENT ON RUN-TIME ROUTINES. IF ANY RUN-TIME ROUTINE IS INTERRUPTED BY THE SCOPE MONITOR WHICH THEN CALLS THE UISR WHICH IN TURN CALLS THE INTERRUPTED RUN-TIME ROUTINE,THEN GLOBAL PARAMETERS(LIKE RETURN MARKS, INDEX REGISTERS AND TEMPS) ARE SOON FORGOTTEN. THEREFORE THE ONLY CODE WHICH CAN BE USED WITHOUT TRASTIC SAFEGUARDS IN THE UISR IN FORMULA ALGOL IS CODE WHICH DOES NOT CALL ON ZUN-TIME ROUTINES. HOWEVER IF THE UISR AND THE CODF FOLLOWING TAE CALL ON B 25 ARE COMPLETELY INDEPENDENT AND DO NOT CALL ON THE SAME ROUTINES THEN ONE HAS MORE FREEDOM. OPERATIONS WHICH DO NOT USE THE RUN TIME ROUTINES INCLUDE STORING AND ACCESSING OF SIMPLE VARIARLESIBUT NOT ARRAY ELEMENTSI, AND THE OPERATIONS +,n,*,/,n,n, $\operatorname{mif}$ IHEN ELSE, SIGN,ARS,ENTIER, AND GO TO(LOCAL BACKWARD TRANSFERS ONLY). HOWEVER, WITH INTIMATE KNOWLEDGE OF FORMULA ALGOL AND A LISTING JF ITS RUN-TIME ROUTINES, THE EXPERIENCED USER CAN BUILD HIS UISR SO THAT IT CAN CALL ON ANYTHING, THIS WOULD PRORARLY EE DONE GY WRITING SMALL MACHINE CODE ROUTINES, CALLABLE ONLY WITH CONTROL OFF, WHICH WOULD SAVE AND RESTORE THE CONTENTS OF A LIST OF MACHINE LOCATIONS. THE UISR WOULD PRORABLY LOOK LIXE THIS:

EXAMPLE OF INTERRUPT DEFINITION IN FORMULA ALGUL
SN CDLC 0
PROCEDURE INTERACT; BEGIN INTEGER LOCISRI


GO AROUND:
SN CMPL $0 \quad$ UISR ENTRY POINT
 SN CMPL 3770011001 TRM SAVE SAVE VARIABLES

CODE PREFERABLY WITH CONTROL OFF
SN CMPL 3770011002 TRM RESTORE RESTORE VARIABLES
SN CMPL 6370011000 TRE 3 UISR GO 日ACK TO MONITOR
AROUNDI IF B(25:LOCISR,ETC) THEN PRINT(.CANT-.INTERACT): END IS TO INTERACT;
THE ABOVE CODF AND PARAGRAPH ON THE INTERRUPTIOV OF FORMULA ALGOL PROGRAMS IS BY RUDY KRUTAR WHO SHOULD BE CONSULTED ON ALL RELATED MATTERS, IN FORML, THE PRINT ROIJTINES ARE RECURSIVE AND THEIR VARIABLES ARE IN THE GENERAL COMMUNAL RECURSION STACK, THUS, IT SEEMS THAT ONE CAN ONLY PRINT IF THE UISR DOES NOT PRINT, AND IF IT ALWAYS RETURNS TO THE INTERRUPTED COMPUTATION. ONE SHOULD NOT INTERRUPT DURING CALLS ON MAIN MONITOR ROUTINES, IF ONE IS GOING TO USE THEM IV THE UISR, AND THEN TRY TO RETURN TO THE INTERRUPTED COMPUTATION.
C. INTERACTION WITH MORE THAN ONE SCOPE

TO INTEGACT WITH A DIFFERENT SCOPE FROM THE OVF SUAMITTED FROM. A PROGRAM SIMPLY USES THE R ROUTINES AS USJAL, BUT IN ADDITION SETS THE SCOPE NUMBER BY USING ALGOL PRJCEDURE SETSCOPENUM(N), IT DOES NOT NEED TO BE SET BEFORE EVERY CALL OF A BROUTINE, JUST ONCE.
THUS, TO READ THE STATF SWITCHES ON SCOPE 2, ONE PERFORMS NSAVE-SCOPENUM; SETSCOPENUM(2): ZERO-O: OUT-TRUE, B(10,ZERD, STSW, DUM, DUM, DUM); OUT-FALSE: SETSCOPENUM (VSAVE):

NOTE WE SAVED THE NUMBER OF THE SUBMISSION SCOPE BY USING ROUTINE SCOPENUM. SETSCOPENUM AND SCOPENUM MERELY SET AND READ INDEX REGISTER 51.

ONE CAN THUS DO ALL THE USUAL INTERACTIONS WITH ANY OTHER SCOPE. HOWEVER, THE B ROUTIVE CALLS WILL ALL BIVE ERROR EXITS UNLESS PERMISSION TO INTERACT HAS BEEN GIVEN GY THE USER AT THE SCOPE TO BE INTERACTED WITH, BY USING IVTERRUJT 13 IN THE PROGRAM STATE. USER INTERRUPTS FDR ANOTHER SCDPE ARE DEFINED BY USI MG BŻ̃. UPON ANY USER INTERRUPT, THE SCOPE NUMBER IS PASSED TO THE USER PROGRAM.

FINALLY, ONE TAN DISPLAY A GIVEN PAGE ON MORE THAN OVE SCOPE,
BY USING R26. THIS TAKES PARAMETER R52.WHICH IS THE BIT PATTERN AT THE END OF THE DELIMIT CONSISTING OF 4 3ITS FOR SCOPES 3.2,1 ANO 4 RESPECTIVELY, SN CORRESPONOING TO SOODE N. THUS IF A PROGRAM WANTED TO DISPLAY A PAGE ON THE SURMISSIDN SCOPE AND ANOTHER SCOPE N, IT WOULD DO SOMETHING LIKF THIS N1-SCOPENUM: BITPAT+2TN1~2TNS B(26,PAGE,RITPAT, $0,0,0):$

OF COURSF, IF PERMISSION HAS NOT BEEN GIVEV, IT WILL NOT DISPLAY.
D. OVERALL CONTROL STRUCTURE.

MIGHT BE LIKE THIS.

7. DESCRIPTION OF THE B ROUTINES.

B-1 ANNOUNCE AN ONLINE USER
PARAMETERS: USAGE NUMGER FROM LOG-IN
OUTPUT: R5: : SCOPE NUMBER
ERROR IF: (I) NOT SUBMITTED
FROM A SCOPE
OR (II) NOT LOGGED IN
PERMITS A PROGRAM TO INTERACT WITH SCJPE MONITOR, USER SHOULD NOT PATCH 10 , DO NOT CALL $B(-1)$ IWICE IN THE SAYE RUN
BO CONVERTS G? 1 CHARACTER STRINGS PACKED
4 PER WORD INTO SCOPE STRINGS PACKED
IN DISPLAY FORMAT
PARAMETERSI R52+LOCATION OF FIRST WORD OF G21 TEXT.
R53 LOCATION TO RECEIVE FIZST WORD OF THE CONVERTED IEXT 3HOCK. THIS ADDRESS MIJST BE IV USFR CORE. R54-NUMBER OF CHARACTERS TO CONVERT.
OUTPUT: NONE
ERROR IF: R53 OUT OF BOUNDS.

B1 CONVERTS SCOPE CHARACTER STRINGS
PACKED IN UISPLAY FORMAT INTO G21
CHARACTERS PACKED 4 PER WORD.
PARAMETERS: RS2+BASE OF SCOPE STRING. R53-LOCATION TO RECEIVE FIZST

WORD OF THE G2I STRING. THIS ADDRESS MUST BE IV
USER CORE.
R54-LENGTH OF SCOPE STRING
IN WORDS.
OUTPUT: NONE
ERROR IF: Rड3 OUT OF BOUNDS.
B2 CONVERT TEXT AND APPEND TO PAGE
$N$ AT POSITIDN $(X, Y)$.
PARAMETERS: R52-RASE OF R21 TEXT
PACKED FOR 4 DER WORD.
R53-LENGTH OF TEXT IN WORDS.
R54-X
R55 m
RSG.PAGE NUMAER.
OUTPUT: NONE
ERROR IF: (I) PAGE ALREADY FULL
(II) STRING TOD LONG.

DISPlAYS TEXT ON SCOPE fACE. ONE MUST HAVE REJUESTED AVAI-ABLE SPACE FOR THE PAGE IN QUESTIOV IN AOVANCF OF CALLING B?.

B3 APPEND A LOGIC BLDCK OF
(ALREADY CONVERTED) DISPLAY
MATERIAL TO PAGE N.
PARAMETERS: R52~BASE OF BLOCK
TO BE MOVED.
R53 PPAGE NUMRER.
OUTPUT: NONE.
ERROR IF: (I) NO STORE IN PAGE.
A DELIMIT.
MOVES A BLOCK OF SCOPE COMMANDS INTO THE H-MDDULE AND APPENDS IT TO AN EXISTING PAGE, CURREVTLY IT OVLY TESTS FOR DELIMITS AND CYCLESI OTHER ILLEGAL COVSTRUCTIONS ARE NOT TESTED FORI THUS, THE DISPLAY SHOJLD BE WELL FORMED AND SHOULD INCLUDE A STORE.

B4 MOVE PAGE N TO USER CORE, CONVERTING
ALL SCOPE CHARACTERS.
$\begin{aligned} & \text { PARAMETERS: } \text { R52-PAGE NUMAER, } \\ & \text { R53-LOCATION IN USER CORE TO } \\ & \text { RECEIVE CONVERTED TEXT. }\end{aligned}$
OUTPUT: NONE.
(II) PAGE HAS NO BLOCKS.

TEXT IS ENTERED INTO USER MEMORY. VOTE THAT ONLY G2I CHARACTERS ARE CONVERTED AND ALL ELSE IS IGNORED IN THE CONVERSION PROCESS. NON-G21 CHARACTEES ARE CONVERTED TO BLANKS AND VECTORS ARE SKIPPED.

B5 MOVE A PAGE TO USER CORE WITHOUT CONVERSION.
PARAMETERSI R52*PAGE NUMBER.
RS3~LOCATION IN USER CORE
TO WHICH THE BLOCK
WILL BE MOVED.

| OUTPUT: | NONE. |
| :--- | :--- |
| ERROR IF: | (I) RS OUT OF BOUNDS, |
| OR | (II) PAGE HAS NO BLOCKS. |

EVERYTHING
FOLLOWING THE DELIMIT IS MOVED TO USER CORE. BE PREPARED TO ACCEPT THE FULL PAGE.

B6 READ THE CURSOR.

| PARAMETERS: | NONE |
| :--- | :--- |
| OUTPUT: | R52*X |
|  | R53-Y |

THE POSITION OF THE CURSOR IS OBTAINED FROM THE POSITION WORD IN THE H-MODULE.

87 SET THE CURSOR.
PARAMETERS: R52+X


B14 SET MEMORY FULL ROUTINE.
PARAMETERS: R56~ADDRESS OR USER
ROUTINE.
$\begin{array}{ll}\text { OUTPUT: } & \text { NONE. } \\ \text { ERRDR IF: } & \text { R56 DUT OF BOUNDS. }\end{array}$
SETS USER ROUTINE TO BE EXECUTED WHEN A MEMORY FULL INTERRUPT IS GENERATED, NOTE THAT THIS ROUTIVE MAY BE EXECUTED AT ANY TIME.
B15 GET $N$ RLOCKS FOR PAGE $M$.
PARAMETERS: R52-PAGE NUMBER
R53 N NUMBER OF BLOCKS
OUTPUT: NONE.
ERROR IF: ILLEGAL PAGE NUMBER.
same task as on management page.
B16 ENABLE PAGE $N$.
PARAMETERS: R52-PAGE NUMAER.
OUTPUT: NONE.
ERROR IF: ILLEGAL PAGE NUMBER.
B17 DISENABLE PAQE N
PARAMETERS: R52aPAGE NUMBER.
OUTPUT: NONE.
ERROR IF: ILLEGAL PAGE NUMBER.
B18 DELETE PAGE N.
PARAMETERS: RS2HPAGE NUMRER
OUTPÜT: NONE.
ERROR IF: ILLEGAL PAGE NUMBER. SAME AS TASK IN OPTION STATE. PAGE IS RETURNED TO AVAILABLE SPACE AND INFORMATION IS LOST.

B19 APPEND PAGE $N$ TO PAGE M.
PARAMETERS: R52ムPAGE NUMBER N.

OUTPUT: NONE.
ERROR IF: ILLEGAL PAGE NUMBFR.
SAME TASK AS IN OPTION STATE.
B2O DISENABLE ALL INPUT FROM THIS
SCOPE.
PARAMETERS: NONE.
OUTPUT: NONE
DUTPUT: NONE $\quad$ ASEABLES ALL PAGES FOR THE GIVEN SCOPE.
B21 REMOVE COMPARE ON CHARACTER ON PAGE N. PARAMETERS: R54नCHARACTERTO CDIPARE ON. R55~PAGE NUMBER.
OUTPUT: NONE.

ERROR IF: ILLEGAL PAGE NUMRFR.
SEARCHES THE PAGE FOR AN OCCURENCE OF A COMPARE COMMAVD ON THE SPECIFIFD CHARACTER AND IF FOUND, CONVERTS IT TO A STORE COMMAND.

B22 RESET COMPARE ROUTINE,
PARAMFTERS: NONE.
OUTPUT: NONE.
RESETS THE STANDARD MONITOR
ROUTINE FOR THF COMPARE ROUTINE.
BP3 RESET MEMORY FULL ROUTINE.
PARAMETERS: NONE.
OUTPUT: NONE.
RESETS THE STANDARD MONITOR ROUTINE FOR THE MEYORY FULL ROUTINE.

B24 SET ENABLED CURSOR AND INTERRURT
ON CHARACTER.
PARAMETERS:
$R 52+x$
R534 Y
RS4-CHARACTER FOR COMPARE,
R55 $P$ PAGE NUMRER.
R56~COMPARE ROUTINE.
OUTPUT: NONE.
ERROR IF:
(I) ILLEGAL PAGE NUMBER
(II) NO ROOM LEFT ON PAGE,
(III) DELIMIT FOLLOWS STORE,
(IV) R56 OUT OF BOUNOS.

OR (IV) R56 OUT OF BOUNDS.
THIS ROUTINE DIRECTLY CALLS B7, B12, 313, AND 316. IT ENABLFS THE PAGE, POSITIONS THE CURSOR AT (X, Y), SETS a COMPARE ON THE SPECIFIED CHARACTED AND SETS THE COMPAPE ROUTINE, TO OBTAIN THE CHARACTER NHICH CAJSED THE INTERRUPT:B13 SHOULD PE ALSO CALLED,PASSING THE IDENTIFIER IN WHICH THIS INFORMATION SHOULD BE PUT. ALSO TO OATAIN THE SCOPENUMBER, AND TO USE A CONTHOL SNITCH,B25 SHOULD RE CALLED AS WELL.

B25 DEFINE USER INTERRUPTS.
PARAMETERS: R52-USER ENTRY POINT.
RS3 USER CONTROL SWITCH,
R54+INTERRUPT NUMBER.
R55-SCOPE NUMBER.
R56-COMPARE CHARACTER.
OUTPUT: NONE.
ERROR IF: USER ENTRY POINT DOES
NOT LIE IN USER CORE.
IN USER MODE, CONTROL IS PASSED TO THE USER ENTZY POINT, AND THE INTERRUPT NUMBER, THE SCOPE NUMBER OF THE SCOOE WHICH INTERRUPTED, AND THE COMPARE CHARAOTER, IF THIS APPLIFS, $\triangle R E$ PLACED IN THE LOCATIONS SET ASIDE FOR THEM IN THE USER PROGRAM. THESE LOCATIONS ARE DECLARED IN RSA,

R55. R56 WHEN USING B25. THE USER CONTROL SWITCH ALLOWS THE USER PROGRAM TO DECLARE ITSELF INTERRUPTABLE AS DESIRED. IF IT IS NOT EQUAL TO ZERO WHEN THE INTERRUPT OCCURS, THE SCOPE MONITOR DOES NOT PASS CONTROL JUT KFEPS LOOKING ONCE A SECOND UNTIL THE VALUE OF THE SWITCH IS ZERO. A SECOND INTERRUPT DURING THIS TIME NILL GIVE MULTIPLE INTERRUPT ERRDR AND BE IGNORED, BUT THE FIRST ONE WILL STILL BE PROCESSED CORRECTLY.
B26 SET CRT FIELD ON PAGE N.
PARAMETERS: R52-N
R53-BITS FOR
CRT FIELD.
QUTPUT: NONE.
THIS ROUTINE ALLOWS THE USER PROGRAM TO DISPLAY ON MORE THAN ONE SCOPE. THE TZ2 TABLE IN THE SCOPE MOVITOR HAS BIT PATTERNS FOR EACH SCOPE INDICATING THAT THE TUMAN HAS ALLOWED INTERACTION WITH PROGRAMS FROM OTHER SCOPFS. THE NORMAL ENTRIES ARE \$1, \$2, AND $\$ 3$, RESPECTIVELY, JF SCOPE 2 ALLOWED INTERACTION WITH PROGRAM =ROM SCOPE 1. ITS ENTRY WOULD BE CHANGED TO $\$ 1$ * $\$ 2$. THE USER PROGRAM INDICATES ITS DESIRE TO DISPLAY IN BOTH SCOPES JSING B26 AND PASSING THE LIST PATTERN $\$ 1$-\$2. THE USER PROGRAM CAN ONLY DISPIAY ON THOSE SCOPES FOR WHICH PERMISSIDN HAS BEEN GIVEN; SINCE THE BIT PATTERN IS EXTRACTED WITH THE ENTRY IN THE T22 TABLE. THE EXTRACTED PATTERN BECOMES THE CRT FIELD OF THE DELIMIT OF SURSEQUENTLY PRODUCED DISPLAY PAGES.

B27 RETURN TO INTERRUPTED COMPUTATION.
PARAMETERSI NONE.
OUTPUT: NONE.
USE IN THE USER INTERRUPT SERVICE ROUTIVE YO CONTINUE THE INTERRUPTED COMPUTATION. IF YOU WISH TO CHANGE TO A DIFFERENT INE OF COMPUTATION, USE A GO TO STATEMENT.

828 CLEAR A PAGE. PARAMETERS: R52+PAGE NUMBER. OUTPUT: NONE. ERROR IF: ILLEGAL PAGE NUMBER. INSERTS A STORE COMMAND AFTER THE DELIMIT ON PAGE N. NOTE THAT ATTEMPTING TO CLEAR A PAGE OF ZERO LENGTH NILL TERO A DELIMIT AND PERHAPS DESTROY INFORMATISN.

THE FOLLOWING ARE NOT YET IMPLEMENTED

B29 MOVE PAGE N TO FILE M. PARAMETERS: R52-N R53-M

OUTPUT: NONE.
B3O MOVE LOGIC RLOCK BASE N LENGTH
L TOFILE M.
PARAMETERS: R52~N
R 53 -
R54-M
OUTPUT: NONE
B31 MOVE FILE M TD PAGF N.
PARAMETERS: R52. -M
$\mathrm{R} 53+\mathrm{N}$
OUTPUT: ......... NONE.
B32 MOVE FILE M TO LOCATION N.
PARAMETERS: RS2. M
$R 53+N$
OUTPUT: NONE.
B33 READ IN A 3-DIGIT INTEGER
AT [ $X, Y$ ].
ERROR IF: ILLEGAL PAGE NUMBER.
PARAMETERS: R52+X
R53-Y
B34 READ IN A STRING OF CHARACTERS
AT $[X, Y)$.
PARAMETERS: R52↔X
R53-Y
B4O GETS SCOPE MAN NUMRER.
GIVEN G-PO MAN NUMBER.
PARAMETERS: R52-G-20 MAN NUMBER.
OUTPUTS: RS3-SCOPE MAN NUMBER.
B41 GET SCOPE MONITOR SYMBOL N.
PARAMETERS: R52~N
OUTPIITS: R53+VALUE OF SCOPE
MONITOR SYMROL.
$N=1$ U35. FETCH A MODULE
2 TBO, PAGE ADDRESS TABLE
3 U29, RELEASE A MODIJLE
4 U5, PUSH THE STACK
5 U6, PDP THE STACK
6 U17, EXIT
7 T15, CONVERSION TABLES FROM
G-2D $\rightarrow$ SCOPE CHARACTERS
8 T31, SCOPE MONITOR TIME USEO TOIAY
9 Y6, TRACE
10 Y105, TRACE BREAKPOINTS
11 Y72, TRACE TARLFS
12 T74, ISR RETURN POINT

TO OBTAIN THE ADDRESS OF A PAGE

AL DUM-2; DUT+TRUE: $B(41, D U M, T 80, D U M, D U M, D U M):$

OUT-FALSE; ADDR+T80-1+SCOPENUM+3*PAGE;

ERROR NUMBERS.

THE SCOPE MONITOR PASSES AN INTEGER IN THE ACCUYULATOR WHICH IS THE LOCATION IN THE SCOPE MONITOR WHERE THE ERROR WAS DETECTED. THE FOLLOWING TABLE RELATES THESE INTEGERS TO THEIR MEANINGS. ERROR NO BROUTINE MEANING

8. SUEPROQRAM LIBRARY.

WE HAVE ONLY JUST STARTED TO SET UP THIS IIBRARY. LISTINGS CAN BE OBTAINED FROM THE RESPECTIVE AND FILES. JSER CRZBAB14: ALGOL SUBPROGRAMS FILE 32/P: FORMUIIA ALGOL SUBPROGRAMS FILE 31/P; SPITE SUBPROGRAMS FILE 33/P:

PROCEDURES IN ALGOL AND FORML THE SCOPE ALGOL LIGRARY CAN NOW BE USEG AS AN OUTER BLOCK TO ANY ALGOL PROGRAM, YOU NEED AN EXTRA END, OF COURSE. THESE PROCEDURES WERE WRITTEN BY RUDY KRUTAR, JIM KING, ALAN BOND AND DAVE VAVRA. THE LIBRARY IS CURRENTLY BFIVG MAINTAINED AND EXTENDED BY RUSSELL MOORF,TO WHOM SUGGESTIONS AND QUERIES SHOULD BE DIRECTED.

1. INTEGER PROCEDURE LOC(N) B INTEGER NI GIVES THE ADDRESS WHERE THE VALUE OF AN IDENTIFIER IS STORED, FOR $\triangle R R A Y S$, LOC (AIII) WILL GIVE THE IST WORD OF THE ARRAY.
2. LOGIC PROCEDURE DECML (NUMBER): INTEGER NUMBERI GETS TME DECIMAL G-2D CHARACTERS FOR THE VALUE OF NUMBER AND PACKS THEM IN DECML.
3. BOOLEAN PROCEDURE B B ANUM, 852, B53, H54, 855, B56) VALUE BNUM: INTEGER BNUM. B52, B53, B54, B55, 8561 CALLS BAROUTI VE NUMBER BNUM, ON ERROR EXIT, B IS TRUE, NORMAL EXIT FALSE, HENCE, IF B( ) THEN GO TO EXIT: WILL CALL THE B ROUTINE.
4. AN ALTERNATIVE VERSION OF B, WHICH HAS GLOBAL 3ODLEAN VARIABLES OUT $\triangle N D$ PR. IF OUT IS TRUE PARAMETERS $\triangle R E$ OUTPUT. IF $P R$ IS TRUE, THE VALUES OF PARAMETERS AND NATURE OF EXIT ARE PRINTED.
5. PROCEDURE BA(BNUM, ETC) IS A PROCEDURE RATHER THAN A FUNCTION AND CALLS ON B.
G. LOGIC PTROGEDURE HEADER $(X, Y):$ VALUE X,Y: INTEGER X.Y:
COMPUTES A HEADER INSTRUCTIDN AT X,Y. NOTE THAT X,Y MUSTLIE IN (0, 1023).
6. LOGIC PROCEDURE VECTOR (X,Y,SG): VALUE X,Y, SGI INTEGER $X, Y$ LOGIC SG: COMPUTES A VECTOR STRING ELEMENT WITH तX $\equiv X$, DY $=$ $Y$. $S G=0$ USUALLY, $S G=$ ? FLAGS THE VECTOR SO THAT IT WILL BLINK
7. LOGIC PROCEDURE CHARAC (C, SG, I); INTEGER C SG,II PRODUCES A SCOPE CHARACTER $I$ IN A WORD IN POSITION $1=1,2, \quad O R 3$. SG is the tag field, so $S G=2$ GIVES blinking and IVtensification. C IS THE SCOPE CHARACTER NUMBER AS GIVEN IN THE OUATSE MAVUAL.
8. LOGIC PROCEDURE CHARSTR (C1, C?, C3, SG1, SS2: SG3)B
9. PROCEDURE CHARACTER $(X, Y$, $C)$ I INTEGER $X$, Y: LOQIC: PUTS A CHARACTER ON THE SCREEN AT POINT $X$, Y. C IS A SCOPE CHARACTER-STRING WORD AS OBTAINED BY USING CHARAC OR CHARSTR. IT CAN ALSO bE OBTAINFD BY

C+BL2 + RRN * 4; WHFRE N IS THE SCOPE CHARACTER NUMBER FROM THE QUATSE MANUAL. CHARACTER HAS DNE CHARACTER PER WOPD AND A SEPARATE HEADER FOR EACH CHARACTER, AND IS, THEREFORF, WASTEFUL OF SPACE, G-20 CHARACTERS ARE BEST PUT ON THE SCREEN USING 32.
11. . PROCEDURE NUM (X, Y, N): VALUE N: INTEGER $X$, Y: REAL $\mathrm{N}_{3}$ TAKES A REAL NUMBER N, FINDS DECIMAL CHARACTER FORM, AND PUTS IT ON THE SCREEN AT X:Y IN - $50.3 Z$ FORMAT.
12. PROCEDURE LINE (X1, Y1, X2, Y2): INTEGER X1, Y1, X2, Y2: PUTS A LINE FROM (X1, Y1) TO (X?, Y2), WITH A SEPARATE HEADER.
13. PROCEDURE GENERATE (X,Y, T, DT, MORN): VALUE DT, NORMB REAL $X, Y$, T, DT, NORM: GENERATES A CURVE WITH PARAMETER T WHOSE $X$, Y ARE GIVEN BY EXPRESSION INVOLVING T WHEV AGTUALLY CALLIVG GENERATE. THUS

GENERATE(A * SIN(T), B * COS(T),T;DT,NORM): WILL PLOT AN ELLIPSE.

IT DOES IT GY LINE SEGMENTS, AND IT CA_CUIATES THESEFOR INTERVALS IN T OF DT. IT ASSUMES A SQUARF SCREEN WHOSE LINEAR SIZE IS NORM IN REIATION TO THE VALUES OF $X$, $y$.
14. CURVE (X, Y, T, DT, TA, TR): INTEGER X, Y: REAL T, DT, TA. TB: PLOTS FROM TA TO TB.

## 15．INTEGER PROCEDURE SCALEX（X）I REAL X：

INTEGER PROCEDURE SCALEY（Y）：REAL YJ THESE ALLOW EASY SCALING．GLOBAL VARIARLES XA，XB，YA，YB，SXA，SXB，SYA，SYB INDICATE THAT THE PART OF THE SCREEN USED WILL BE FROM SXA TO SXB AND SYA TO SYB，WHERE THESE LIE IN［O．1023］，AND THAT THIS WILL CORRESPOND TO VALUES $X A$ ，$X B$ ，YA，AY IN THE REST OF THE COMPUTATION．THUS

CHARACTER（SCALEX（X），SCALEY（Y），C）I PUTS A CHARACTER ON THE SCREEN AT POINT $X$ ，Y IN THE USERS SCALE．

THERE ARE AN EQUIVALENT SET OF PROCEDURES TAKING REAL ARGUMENTS FOR POSITION AND USING SCALE X AND SCALE Y，THESE ARE DESIGNATED BY AN ADDED 1 ON THE NAME．THUS，CHAQACTERI，NUMI， LINEI，CURVE1，ETC：

16．READ．PAGE（N，RBUFF）：READS THE CONTENTS OF PGGE NIMAX LENGTH 1 BLOCK）INTO THE READ BUFFER RBUFF PACKED 1 CHARACTER PER WORD SO IT IS LIKE A NORMAL CARD READ，YOU MAY THEN READ FROM RBUFF USING AL THE NORMAL FORMATTING POWER OF ALGOL．

17．PRINT，OTN PAGE（N，WBUFF，$X, Y$ I）PUTS YHE CONTENTS OF PRIVT BUFFER WBUFF AFTER NORMAL ALGOL PRINTING（WHICH CAN 日E WITH OR WITHOUT 〈E〉 OR 〈W〉）ONTO PAGE N AT X，Y．THUS TनE FULL GENERALITY OF ALGOL I／O IS AVAILABLE FOR COMMUNICATION WITH THE SCOPES．

1．8．SETSCOPENUM（N）INTEGER N S SETS SCOSE NUMBERTON，SO THAT FURTHER CALLS OF B ROUTINES APPLY TO THIS SCOPE．THEY OF COURSE GIVE AN ERROR IF PERMISSION HAS NOT BEEN GIVEN MA VUALLY AT THE SCOPE．

19．INTEGER PROCEDURE SCOPENUM；GIVES THE SCOPE NUMRER CURRENTLY SELECTED．IT SHOULD NOT RE CO\＃FUSED WITH THE SCODE NUMBER PASSED UPON INTERRUPT．
20.

BUTTIN（ENPT，CNTRLSW，INTNUM，SCOPNUY，PAGEIN，PAGEOUT）； INTEGER ARGUMENTS．DEFINES BUTTON INTERRUPTS，DISPLAYS I IVTERRUPTS NOW DEFINED＇ON PIAGEOUT AND CONTINUES COMPUTING．ON INTERRUPT，IT PASSES CONTROL TD ENPT，WHICH CAN RE A CLOSED PROCEDURE OR A LABEL．IT PUTS＇INTERRUPT NUMBER ．$I^{\prime}$ ON PAGEOUT UPON IVTERRUPT． CNTRLSW＝0 INHIRITS INTERRUPTS．INTNUM IS THE NUMBER OF THE BUTTON INTERRUPTING AND SOOPNUM IS THE NIJMBER OF THE SCOPE INTERZUPTING．
21. COMIN(ENPT, CNTRLSW, SCOPNUM, CHAR,PAGEIN, PAGEOUT, CH): SETS COMPARE INTERRUPT ON CHARACTER CHAR ON PAGE PAGEIN, SIMILAR TO BUTTIN: ON INTERRUPT, THE GHARACTER WHICH CAUSED THE INTERRUPT WILL BE FOUND IN IDENTIFIER WHOSE LOCATION IS CH.

NOTE THAT CONTIGUOUS DECLARATION OF SCALARS IN FORML QIVES ALLOCATIONS IN SUCCESSIVE WORDS, WHEREAS IN ALGOL IT GIVES CONTIGUOUS LOCATIONS BUT IN THE REVERSE ORDER TO THE ORDER OF DECLARATION.

THIJS, LOGIC D1, D2, D3: DUMPS (3, D3): PRINTS THE COVTENTS OF D3, D2 AND D1.

MACROS AND ROUTINES IN SPITE

1. MĀCRO BC $\times \times 1, \times \times 2, \times \times 3, \times \times 4, \times \times 5, \times \times 6$ : CALLS INTRRFACE ROUTINE 10. EXPECTS ALL ARGUMENTS TO BE CONSTANTS, I.E., FIXED AS ASSEMBLY TIME.
2. MACRO BV $X X 1, X \times 2, X \times 3, X \times 4, X \times 5, X \times 6$. EXPECTS $X \times 1$ TO ЗE CONSTANT AND XXZ ... XXG TO BE VARIABLES, l.E., उE LOCATIONS WHICH CONTAIN THE DESIRED AFGUMENTS.
3. IO THE INTERFACE ROUTINE.
4. THERE IS A VARIANT ON B WHICH PUTS A MESSAGE ON THE G-20 TYPEWRITER ASKING FOR THE H-MODULE TO BE SWITCHED, IF IT ISNIT.
5. SOME MACROS TO EASILY GENERATE SCOP E DISPLAY MATERIAL HEADR, VEC, CWD, STOR.
6. USER SUBSYSTEMS.

AN INTERACTIVE PROGRAM ON THE G-20 IS INEFFICIENT IN ITS USE OF COMPUTER TIME IN THAT IT OFTEN IS IN A LOOP WAITING FOR THE HUMAN TO TELL IT WHAT TO DO NEXT. ALSO THE PROGRAM MUST WAIT IN THE QUEUE PEFQRE IT GAN BE INITIATED. THE PAUSE SYSTEM IS USEFUG FOR GETTING SHORT EURSTS OF USER PROGRAM.

IN IMPLEMENTING A TIME SHARING SWAPPINQ SYSTEM FOR THE SCOPE MONITOR, IT WAS FOUND EASY TO ALLOW ANY USER TO WRITE SUBPROGRAMS OF RELOCATABLE REENTRANT ASSEMELY CODE WHICH ARE ORGANIZED BY THE SCOPE MONITOR, SWAPPED IN AN OUT AS REQUIRED AND AS SPACE PERMITS, RELOCATED IN CORE AND LINKED TOGETHER DYNAMICALLY IN A SIMPLE WAY, THERE IS ALSO AN AUXILIARY MACRO SYSTEM WHICH ALLOWS THE CONVERSION OF ORDINARY ASSEMBLY CODE INTO THE REQUIRED REENTRANT RELOCATABLE MODULAR FORM. IT TURNS OUT THAT ANY MODULE OF ANY. USER CAN CALL ANY MODULE OF ANY OTHER IN AS VIOLENTLY A RECURSIVE WAY AS REQUIRED, AND THAT ONLY ONE COPY OF ANY MODULE IS IN CORE EVEN IF CALLED BY SUBSYSTEMS FROM ALL THREE SCOPES AT ONCE,

TO CONVERT CODE TO MODULAR FORM, ONE USES THE MACROS AND ROUTINES ON USER CR3BAB14, FILE 34. THEN ONE BREAKS THE CODE AS FOLLOWS:

FILE 34 PACKAGE NON RELOCATABLE (GLOBAL) SYMBOL DECLARATIONS BEGIN
RELOCATABLE (LOCAL) SYMBOL DECLARATIONS
ENTRY POINT DECLARATIONS
(REENTRANT) CDDE

OR NONFEENTRANT

EXTERNAL IDENTIFICATIONS TO
ENTRY POINTS OF OTHER MODULES E4
E.G. ES IS ENTRY POINT 1 OF

MODULE 5 OF USER AB14
END
STORE

USER CR38AB14: FILE 34/P: INSERT S
L日L T903
BEGIN
LBL E20:
ENPT 1, E1
E1 ENT
PUSH 51
CLA 0 1:
$\begin{array}{ll}\text { STL } & 2,50 \\ \text { TRM } & \text { E3 }\end{array}$ EXIT
ENT

| TRM | E4 |  |  |
| :--- | :--- | :--- | :--- |
| TRA | $1 \cdot$ |  |  |
| ISMOD | 1, | 5, | AB14 |
| ISMOD | 2, | 7, | IDOO3: |

END
STORE 6. IAB14:

STORES THE GENERATED MODULE, E.G.,
AS MODULE 6 OF USER AB14

THE PUSH MACRO DECLARES STACK VARIABLES, E.G... PUSH 5
DECLARES 5 VARIARLES AND PUSHES THE STACK, ONE THEN USES THESE
VARIABLES WITH THE POINTER IN REGISTER 50.
THUS CLA 2.50 CLEAR AND ADD SECOND
STI 3.50 PUT IN THIRD STACK
VARIABLE.
PUSH MUST IMMEDIATELY FOLLOW THE ACTUAL ENTRY POINT (TO ALLOW THE MARK TO BE STACKED). A REENTRANT ROUTINE DOES NOT EXIT TमROUGH ITS MARK GUT THROUGH THE STACKED MARK USING POP V. WHERE N IS THE NUMBER OF STACK VARIABLES IN THE ROUTINE, TO EXIT BACK TO THE SCOPE MONITOR USE EXIT. THE STACKING, INCLUDING STACKING THE MARK INTO 1 , 50 (WHICH SHOULD THEREFORE NOT BE USED BUT ALWAYS ALLOWED FOR) AND PUSHING, POPPING, ERROR RECOVERY IS ALL DONE BY THE SCOPE MONITOR.

STACKED VARIABLES HAVE TO BE USED TO KEEP THE VALUES OF VARIABLES NEEDED DURING RECURSIVE CALLS OR ANY TIME THE CDOE MAY HAVE TO WAIT. TO SWAP IN ANOTHER MODULE ONE HAS TO WAIT FOR THE DISC, SO STACKED VARIABLES HAVE TO BE USED FO? ANY VAL JES, SET BEFORE ANY TRM, WHICH ARE REFERRED TO AGAIN AFTER THE RETURN

THROUGH THE MARK, THIS IS BECAUSE ANOTHER USER MAY ENTER THE SAME CODE DURING THE WAIT: ONE CAN HAVE MODULES OF REGULAR CODE BUT IT CANNOT CALL ITSELF RECURSIVELY, AND CANNOT BE SHARED BY ANY OTHER SYSTEM. NOTE THAT EACH USER HAS HIS OWN NAMES FOR ALL HIS IDENTIFIERS. HAVING CREATED THE SUBSYSTEM. IT CAN BE LOADED FROM THE PROGRAM STATE, MODULES WILL NORMALLY BE MARKED AS DISPENSIBLE AFTER USE, AND ARE LIKELY TO BE SWAPPED OUT IF THE SPACE IS NEEDED FOR SOMETHING ELSEI HOWEVER, THE USER CAN MARK ANY MODULE AS 'RETAINED' WITH AN IATERRUPT ON THE PROGRAM PAGE. HE CAN IRELEASEI ALSO. LOADING A MODULE AUTOMATICALLY RETAINS IT, OR ONE CAN SIMPLY ASK TO TRANSEER TO A MODIJLE WHICH WILL LOAD IT IF NECESSARY, EXECUTE IT AND RELINQUISH IT.

THE ADVANTAGE OF SUBSYSTEMS IS, OF COURSE, THEIR EFFICIFNCY -- THEY CAN BE USED ON AN INTERRUPT BASIS WITHOUT SUBMITTING A G-20 PROGRAM. A SUBSYSTEM CAN USE B ROUTINES TO SET UP DISPLAYS, ETC. IN PRINCIPLE: ASSEMBLY CODE AND EVEN OCTAL CODE GENERATED BY A COMPILER CAN BE CONVERTED TO SUBSYSTEM FORM, SPACE PERMITTING. IN ORDER TO HAVE A. DATA AREA TO WORK ON, IT IS SUGGESTED THAT SOME MODULES BE RESERVED AS DATA AREAS WITH THE ENTRY POINTS GOING TO DATA ACCESSING FUNCTIONS, SUCH MODULES COULD THEN BE LOADED AND RETAINED IN CORE AND THE CODE MODULES BE PURE PROCEDURES WHICH COULD SWAP IN AND OUT AND MANIPULATE THIS DATA. THEY ARE NOT ACTUALLY SWAPPED OUT, JUST RELEASED TO AVAILABLE SPACE, AND, WHEN NEXT NEEDED, A NEW COPY SWAPPED IN.

FOR PASSING PARAMETERS INDEPENDENTLY OF PARTICULAR DATA AREAS, REGISTERS 52-58 CAN BE USED. THESE ARE SAVED DURING WAITING FOR THE DISC TO SWAP IN THE NEXT MODULE.

THE TEXT EDITOR IS A SEPARATE SUBSYSTEM DEVELOPED BY MIKE COLEMAN, AND THEN ADAPTED TO WORK WITH THE SCOPE MONITOR.

TO DEBUG A SUBSYSTEM, ONE SHOULD FIRST GET IT WORKING AS COMPLETELY. AS POSSIBLE BY RUNS IN LOWER CORE WITH LINEPRINTER OUTPUT. THEN DNE CAN RUN IT IN THE H-MODULE BY RUNNING A WAITING PROGRAM IN LOWER CORE, SO THAT YOU CAN ONLY CLOBGER YOURSELF. THE WAITING PROGRAM IS BEST WRITTEN IN UPDATE AND CAN THEN GIVE A DUMP OF THE H-MODULE AND RELDAD A FRESH COPY OF THE SCOPE MONITOR AT THE TERMINATIDN OF THE RUN. IN THIS WAY, ONE CAN DEGUG A SYSTEM IN 3 MINUTE BURSTS WITHOUT ENDANGERING INNOCENT USERS AND WITHOUT BOTHERING THE OPERATORS TO DO DUMPS. WHEN THE USER SUBSYSTEM IS SUPPOSEDLY DEGUGGED IT CAN BE RUN ANY TIME WITH NORMAL USER PROGRAMS IN LOWER OORE, BUT IT MUST FIRST PASS AN ACCEPTANCETEST. THE ACCEPTANCE TEST PROQRAM CAN BE OBTAINED FROM A. H. GOND.

## 10. GRASP

TGRASP: IS A GRAPHICAL SYSTEM,AKIN TO SKETCHPAD', DEVELOPED BY GENE THOMAS ON THE G-21, AND DESCRIBED BY HIM AT THE ACM CONFERENCE 1967. IT WORKS WITH OUR SCOPES AND IS WRITTEN IN ALGOL. 20, SO IT SHOULD. BE EASILY TRANSFERABLE TO THE 360. IT IS CURRENTLY REING MAINTAINED AND EXTENDED BY RON GUSHYAGER.

GRASP (GRAPHIC SERVICE PROQRAM) IS A GENERAL GRAPHIC MODEL BUILDING SYSTEM. IT IS USED IN TWO WAYS:

1. IT PROCESSES AN INPUT STREAM OF GARDS IN A SIMPLE LANGUAGE, WHOSE FORMAT IS SIMILAR TO A SEQUENCE OF ALGOL PROCEDURE CALLS. THIS ALLOWS THE USER TO DEFINE AND NAME GRAPHICAL ELEMENTS LIKE POINTS,LINES, ETC., BUILD NAMED CONFIGURATIONS FROM THESE ELEMENTS AND DUPLICATE INSTANCES OF THESE CONFIGURATIONS AT DIFFERENT LOCATIONS AND ORIENTATIONS IN THE [3] MODEL SOACE. THE STRUCTURE OF THE MODEL IS NESTED, SO ONE HAS CONFIGURATIONS AT VARIOÜS LEVELS. ONE CAN INPUT CARDS FROM THE NDRMAL INPUT STREAM OR FROM THE SCOPE FACE AND ONE CAN OUTPUT A [2] DISPLAY DERIVED FROM THE MODEL,ON THE LINE~PRINTER OR THE SCODE FACE. THE [2] DISPLAY IS COMPLETELY SPECIFIED BY THE USER AS TO ITS SCALE, REGION OF INTERSET WITHIN THE MODEL, VIEWPOINT IN THE MODEL SPACE AND ORTHOGRAPHIC OR STEREDGRAPHIC PROJECTION. THE MODEL EAN ALSO BE CHANGED IN VARIOUS SIMPLE WAYS - PARTS OF IT CAN BE ROTATEO, MOVED OR DELETED, AND THE MODEL CAN BE SAVED OV AN AUXILIARY AVD FILE.
2. THE USER CAN USE PART OF THE GRASP SYSTEM AS AN OUTER BLOCK TO AN ALOOL PROGRAM, WHICH CONTAINS PROCEDURE CALLS TO GRASP PROCEDURES. SIMILAR TO THE LANGUAGE. BUT EMAEDDED IN ANY ALGOL CONSTRUCTIONS. THIS PROGRAM WOULD CONSTITUTE AN TAPPLICATION PROGRAM: AND, IN THE GRASP LANGUAGE, ONE CAN INSTRUCT THE APPLICATION PROGRAM TO BE CALLED FROM ITS AND FILE AND AOPLIED TO THE MODEL.

GRASP DOES NOT HAVE CONSTRAINT SATISFACTION FEATURES BUILT IN. THERE IS QUITE A GOOD AND COMPREHENSIVE USER MANUAL AVAILABLE.
11. HOW THE SCOPE MONITOR WORKS,

## A, RELATIONSHIP OF THE SCOPES TO THE G~21 AND THE MAIN MONITOR

THIS SECTION CAN BE SKIPPED.

THE G-21 HAS SEVERAL BK MEMORY MODULES ON A BUSS, ANO, IN ADDITION, THE H-MODULE, WHICH CAN BE SWITCHED IN AS REQUIRED TO REPLACE THE G-MODULE, THE CORE LOCATIONS OF THE H-MODULE ARE 1160.000 TO 1177:777, AND A PROGRAM WILL COMYUNICATE WITH THIS CORE WHEN THE H-MODULE IS SWITCHED INI OTHERWISE, IT WILL COMMUNICATE WITH THE G-MODULE. SWITCHING IS DONE BY SETTIVG \$13 IN THE CE REGISTER. IT CAN ONLY BE SWITCHED IF THE OPERATOR HAS SET THE MODULE SWITCHES. TO SEE IF IT IS SWITCHABLE WE MUST READ TME STATUS REGISTER SR (REGISTER 5) AND LOOK AT SA. THE NORMAL PE IMAGE PROTECTS THE H-MODULE, AND SO WE CAN RESET THAT TO 170 OR 113 ACCORDING TO WHETHER THE CORE IS INVERTED OR NOT. THE CORE IS INVERTED IF THE (ABC) BUTTON HAS BEEN SET BY THE OPERATOR, AND THIS CAN BE READ BY LOOKING AT \$1 OF SR, IF \$1 IS SET, THE USE 170 . THE MAIN MONITOR IS CONTINUALLY SERVICING INTERRUPTS FROM TELETYPES. ETC., AND WHEN IT DOES SO IT STACKS THE ACCUMULATOR AND THE NC REGISTER ONLY THE MAIN MONITOR. INTERRUPT STACK IS 4 DEEP AND CIRCULAR, WHEN IT RESTORES CONTROL TO THE PROQRAM, IT RESTORES THE ACCUMULATDR AND TRANSFERS TO (NC) AND IT RESETS PE AND. CE TO A STANDARD PATTERN, NOT TO THE PATTERNS IN OPERATION WHEN THE INTERRUPT OCCURRED, IT RESETS THEM FROM THE PE AND CE IMAGES, WHICH ARE $(169+1)$ AND $(133+5)$, RESPECTIVELY, HENCE, WE MUST EITHER TURN CONTROL OFF OR RESET THESE EVERY TIME AFTER CONTROL HAS BEEN ON. THE SCDPE INTERRUPT BUTTONS SET $\$ 13$ IN IR ANO THE MAIV YONITOR SENDS CONTROL TO THE SCOPE MONITOR, THE SCOPE INTERRUPT BUTTONS, AT THE SAME TIME, SET THE INTERRUPT WORDS IN THE H-MODULE, AND THE

FIGURE 8 SHOWS CODE TO SWITCH IN AND OUT THE H-MODULE, THE CLOCK INTERRUPT TO THE SCOPE MONITOR CAN BE EASILY PATCHED AND FOR SPECIAL EFFECT. THE SCOPE MONITOR CANNOT USE AVY OF THE USUAL FACILITIES OF THE MAIN MONITOR, LIKE I ROUTINES. AS THESE MAY BE IN USE BY THE LOWER CORE PROGRAM. COMMUNICATIOV WITH THE DISC IS EFFECTED BY USING THE TELETYPE DISC ROUTINE, AND THE SCOPE MONITOR ONLY ENTERS THEM IF THEY ARE FREE AND WAITS OTHERWISE. THE SCOPE FILES ARE IN A SPECIALLY RESERVED PORTION OF DISC, CONSTITUUTING RA TYPE 25. THE BLOGKS ARE OF LENGTH 160\%. HALF THE USUAL BLOCK LENGTH. DISC SPACE IS HANDLED IN GLOBS ON AN AVAILABLE SPACELIST BY THE SCOPE MONITOR.


TO RESTORE NORMAL USER SETTINGS

| LDR | $169+1, P E ;$ |
| :--- | :--- |
| LDR | $135+5$, CE; |

FIGURE 8.
B. THE H-MODULE

THE LAYOUT OF THE H-MODULE IS SHOWN IN FIGURE 91 THE ACTUAL PATH OF THE SCANNER IS AS SHOWN IN THE SMALL FIGURE. IN ORDER NOT TO UPSET THE SCANNER, IT IS DIVERTED MOMENTARILY TO A SMALL! LOOP, LOCATIONS O AND 1 OF THE H MODULE, ON ANY REARRANQEMEVT OF THE DISPLAY AREA.

THE SYSTEM MESSAQES SIT IN THE H-MODULE AND ARE MADE: VISIBLE ON A GIVEN SCOPE BY SETTING THE LOWER BITS OF THE DELIMIT. SYSTEM MESSAGES DISPLAY IN ALTERNATE MODE AND ON ALL PAGES, C. PROCESSING OF INTERRUPTS, WAITING, REENTRANT CODE

THE SCOPE MONITOR IS LAID OUT AS AN INTERRUPT CLASSIFICATION PART AND THEN TABLES OF ENTRY POINTS FOR THE MEANINGS OF INTERRUPTS IN EACH STATE. TO EXECUTE A TASK THE APPROPRIATE ENTRY POINT IS ENTERED IN THE PART OF THE CODE WHICH IS REENTRANT, WHEN THE CONTROL REACHES A POINT WHERE IT HAS TO WAIT FOR THE DISC OR FOR THE HUMAN TO TYPE IN SOMETHING ON THE SCOPE, IT MERELY SETS UP A REQUEST AND RETURNS TO THE ISR, LEAVING ALL THE LOCAL VARIABLES AND MARKS, FOR THE ROUTINES SO FAR PASSED THROUGH, IN THE STACK (THERE IS ONE STACK FOR EACH SCOPE). WHEN THE OPERATION IS COMPLETE, IT CARRIES ON WHERE IT LEFT OFF.

1160000 USED BY SCANNET


150 INTERRUPT ENTRY POINT
151 TRA ISR
252 CLOBBER WORD JRO1
154 USER ENTRY POINT
155 TRA USER INTERFACE
160 SYMBOL TABLE AND SYSTEM VARIABLES IN FIXED LOCATIONS
180-1700 TABLES AND ALL DATA USED GY THE SCOPE MONITOR
1700-3100 SYSTEM DISPLAY PAGES
3100-4400 ISR
4400-10000 ROUTINES FOR CARRYING OUT OPERATIOVS
170000-177777 DISPLAY AREA
177776 DELIMIT TO PROTECT
177777 C,YCLE TO DISPLAY PAGES

THE COMPLETION OF AN OPERATION IS EITHER TRIGGERED BY AN INTERRUPT LIKE THE COMPARE INTERRUPT ON THE RETURV CHARACTER, OR, IN THE CASE OF DISO TRANSFERS, THE SCOPE MONITOR KEEPS LOOKING TO SEE IF IT CAN COMPUETE THE OPERATION, IN THIS CASE TO ENTER THE MAIN MONITOR DISC ROUTINES.

THIS TIME SHARING, INTERRUPT PROCESSING, MECHAVISM WAS DESIGNED AND IMPLEMENTED BY JERRY RIGHTNOUR.
D. INTERACTION WITA THE USER PROGRAM

THE B ROUTINES ARE JUST A PART OF THE SCOPE MONITOR WHICH IS EXECUTED BY THE NEW PROGRAM. FIGURE 10 IS THE INTERFACE ROUTINE. ONE CALLS A B ROUTINE BY PUTTING THE NUMBER OF THE G ROUTINE IN THE ACCUMULATOR AND THE SUCCESSIVE ARGUMENTS IN REGISTERS 52-56 AND DOING A TRM TO IO, THIS BLOCK OF CODE IS INCLUDED IV THE B PROCEDURE IN ALGOL:

USER INTERRUPTS ARE HANDLED DIFFERENTLY FROM INTERNAL INTERRUPTS. THEY ARE CLASSIFIED IN THE ISR, BUT CONTRDL IS NOT TRANSFERRED TO THE USER PROGRAM UNTIL AFTER ALL THE SWITCHES AND MAIN MONITOR REGISTERS HAVE BEEN RESTORED JJST BEFORE CONTROL WOULD BE TRANSFERRED BACK TO MAIN MONITOR. AT THIS POINT, THE SCOPE MONITOR EXECUTES ANY USER INTERRUPTS BY TRANSFERZING WITH CONTROL ON TO THE USER ENTRY POINT IN LOWER CORE, ACTUALLY,IT STORES ITS OWN MARK IN THE USER ENTRY POINT AND DOES A TRE TO ENTRY POINT +1 , THUS IF THE FIRST INSTRUCTION TURNS CONTROL OFF, ONE CAN MAINTAIN CONTROL OFF IN AN INTERACTIVE: PROGRAM.

| 10 | ENT |  | USER INTERFACF ROUTIVE |
| :---: | :---: | :---: | :---: |
|  | EXR | 0 177775,CE: | CONTROL OFF |
|  | STI | L20: | SAVE PARAMETER |
|  | ERA | 0 , SR: | READ STATUS REGISTER |
|  | IEZ | $0 . \$ 43$ | IS THE MM-12 SWITCHABLE |
|  | TRA | L23 | NO EXIT |
|  | LDR | 0 120302,CE; | SWITCH TO THE MM-12 |
|  | CAL | 11601523 | GET THE CLOBRER WORO |
|  | 100 | L10: | IS IT INTACT |
|  | TRA | L2: | NO ExIT |
|  | LDR | 0 , PE; | RESET MEMJRY PROTECT |
|  | CLA | L20: | REFETCH THE PARAMETER |
|  | TRM | 11601543 | ENTER THE SCOPE MOVITOR |
| 10 | LDR | 169+1,PE; | RESTORE MEMORY PROTECT |
|  | LDR | $133+5 . C E:$ | RESTORE CE REQISTER |
|  | TRE | 1 103 | EXIT |
| L2 | CLS | 0 1: | SET EXIT SWITCH TO ERROR SONDITION |
|  | TRA | L0: | EXIT |
| 110 | ALF | 1JR01: | CLOBBER WORD |
| L20 | LWD | ; | TEMP |
|  | LBL | b; |  |

FIGURE 10.

## E. THE TRANSIENT VERSION

IN THE TRANSIENT VERSION UNDER DEVELOPEMENT, ONLY THE ISR AND TABLES WILL BE RESIDENT, OCCUPYING ABOUT 1500~ WORDS. THE OTHER ROUTINES AND THE SYSTEM MESSAGES ARE SWAPPED IN AS REQUIRED AND ALL MODULES, WHETHER THEY BE SYSTEM CODE, USER CODE, SYSTEM MESSAGES OR USER DISPLAYS;ARE TREATED EQUIVALENTLY IN THE SAME AVAILABLE SPACE, THE SCHEDULING IS SUCH THAT MODULES ARE KEPT IV CORE AS LONG AS POSSIBLE,TO MINIMISE UNNECESSARY SWAPPING. THUS, A USE OF SEVERAL RELATED FACILITIES SHOULD INVOLVE NO SWAPPING. IN THIS WAY, FOR LIGHT USE THE TRANSIENT VERSION SHOULD ZUN AS FAST AS THE RESIDENT VERSION, AND FOR HEAVY USE, EITHER CODE OR DISPLAY AREA, THE TRANSIENT VERSION WILL BE AALE TO CARRY OUT OPERATIONS IMPOSSIBLE FOR THE RESIDENT VERSION GUT WITH LESS EFFICIENCY AND SLOWER RESPONSE.

## BCPL Syntax in Backus Normal Form

```
<cap> ::= A|B||...Z
<small> ::= a|bl...z
<cigit> ::= 0|I|...9
<cctd> ::= ol\underline{1}...I
<nl> ::= <cap>|<small>|<digit>
<n2> ::= <nl>|<n2><nl>
<name> ::= <small>|<cap><n2>
<string> ::= _...._
<strinoconstañt> ::= "..."|
<ol> ::= <octd>|<ol><octd>
<octn> ::= $8<ol>
<decn> ::= <digit>|<decn><digit>
<number> ::= <decn>|<octn>
<2-op>::= <- |-> | + | = | | | | #-1!
```



```
<S-op> ::= Ishift rshift
```



```
<7-op> ::= &
<8-op> ::= I
<9-op> ::= eqv|negv
<wrimary-E> ::= <string>|<string-constant>|<number> |true|false||EL|
                        valof<block> |<primary-E> |<E-list> ||<primary-E'> <<E>I|
                <name> |<string>|<stringconstant>|<number>
<2-E> ::= <primary-E>|<2-op><2-E>
<3-E>::= <2-E> < <2-E>< 3-op><3-E>
<4-E> ::= <3-E> < < -E><4-Op><4-E>
<5-E> ::= <4-E> <4-E>< 5-Op>< 5-E>
<6-E> ::= < S-E> < <5-E><6-Op><6-E>
<7-E> ::= <6-E> |<6-E><7-Op><7-E>
<B-E> ::= <7-E> |<7-E><8-OK><8-E>
<9-F> ::= <8-E>- <8-E><9-Op><9-E>
<E> ::= <9-E>| <9-E>_*<E>><E>
<Ell> ::= <E>|<Ell>,<E>
<E-list> ::= <null>T<Ell>
<nll: ::= <name>|<nll>_<name>
<Dl> ::= <nll>三<Ell>
<D2> ::= <name>(<namelist>)be<klock>
<D3> ::= <name>(<namelist>) =<E>
<D4> ::= <name> #vec<constant>
<manifestl> ::= <name> \<constant>
<manifest2> ::= <manifestl>|<manifestl>><manifest2>
<manifest> ::= <null>|<manifest2>
<globall> ::= <name>i<constant>
<global2> ::= <qloball>|<globall>}\mp@subsup{i}{i<global2>}{
```

```
<qlobal> :: = <null>|<global2>
\(<D 5>:=<D 1>|<D 2>|<D 3>|<D 4>|<m a n i f e s t>|<g l o\) bal \(>\)
<D> : : = <D5>|<D5>also<D>
<Cl> : : = <R1l>: \(=\) <Fll>
\(<C 2>::=<F>(<\bar{F}-1 i s t>)\)
<C3> : : = goto<E>
<C3> :: = hreak
<C4> :: = return
<C5> :: = finish
<Ch> : : = resultis<E>
<C7> :: = switchon<E>into<block>
<C8> : : = <block>
\(<C 9>::=<C 1>|<C 2>|<C 3>|<C 4>|<C 5>|<C 6>|<C 7>|<C 8>\)
\(<C l O\) : : : \(=\) if \(<E>\) then \(<C>\)
<Cll> : : \(=\) test \(<\) E>then<C>else<C>
<Cl2> :: \(=\) unless<E>do<C>
<Cl3> :: = while<E>do<C>
\(<\) Cl4> : : \(=\) until \(<\mathrm{E}>\) do<c \(>\)
```



```
<Cl6> :: \(=\) C9>repeat
<Cl7> :: : <C9> repeatwhile<E>
<Cl8> :: : <C9>repeatuntil<E>
\(<C 19\rangle::=<C 9>|<C 1 O\rangle|<C 11\rangle|<C l 2>|<C 13>|<C l 4>|<C 15>|\)
    \(<\mathrm{Cl}\) 分|<Cl7>|<C18>
<il> : : = <nane>:
<L2> :: = Case<constant>:
<L3> :: = default:
<L> : : = <LI>|<L2>|<L3>
<C> : : = <Cl9>|<L><C>
<Clist> : : = <null>|i<C><Clist>
<Dlist> :: = <null>|i<D><Dlist>
<body> :: = <D><Dlist><Clist>|<C><Clist>
```



