
NOTICE W A R N I N G CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

ON COMPUTATIONAL SPEED-UP

By

Albert R. Meyer
Carnegie-Mellon University

Patrick C. Fischer
University of British Columbia

May, 1968

This work was supported in part by the Advanced Research
Projects Agency of the Office of the Secretary of Defens
(SD-146) monitored by the Air Force Office of Scientific
Research, and in part by NSF grant GP-7701. Distributioi
of this document is unlimited.

ON COMPUTATIONAL SPEED-UP

ABSTRACT

Let J? be any effective mapping from total functions on the integers

to total functions. Composition and iterated composition are examples

of such mappings. The "operator speed-up11 theorem in this paper estab

lishes the existence of a computable function f such that for any pro

gram computing f(x) in Pj(x) steps for all x, there is another program

computing f(x) in p 0(x) steps and F(p 0) < p- almost everywhere. Thus,
Cm **** £m I

there is no best program for f. The notions of "program11 and "number

of steps" are treated axiomatically, so that the theorem is independent

of any particular model of a computing machine. An example of speed-up

for Turing machines is considered.

Key words: computable, computational complexity, Turing machines,

recursive functions, speed-up, effective operator,

recursion theorem, measure on computation, measure of

computation, complexity measure, axioms.

i

TABLE OF CONTENTS

Abstract
Introduction
Preliminaries
Operator Speed-Up...
Complexity Sequences
Appendix
Notes ...
References

2
4
9

ii

T. INTRODUCTION

The complexity of a computable function can be measured by consider

ing the time or space required to compute its values. Particular notions

of time and space arising from variants of Turing machines have been

investigated by R. W. Ritchie [1963], Hartmanis and Stearns [1965], and

Arbib and Blum [1965], among others. General properties of such complexity

measures have been characterized axiomatically by Rabin [I960] and Blum

[1967],

In this paper the speed-up and super speed-up theorems of Blum [1967]

are generalized to speed-up by arbitrary general recursive operators. The

significance of such theorems is that one cannot equate the complexity of

a computable function with the running time of its fastest program, for

the isimple reason that there are computable functions which in a very

strong sense have no fastest programs. However, the structure of our

proof suggests the possibility of defining the computational complexity

of a function in terms of a recursively enumerable sequence of partial

recursive functions.

Rogers 1 [1958] axioms for Godel numberings and Blum's axioms for

measures on computation are repeated in the next section. The operator

speed-up theorem and the lemmas from which it follows are stated in

Section 3. The proofs of the lemmas are given in the appendix. An

example of operator speed-up for the case of Turing machines and the

notion of complexity sequences are considered in Section 4.

-2-

2. PRELIMINARIES

Let IN be the non-negative integers, and) be the partial

recursive (recursive) functions of n variables. A Godel numbering is a

mapping from IhJ onto satisfying the universal Turing machine (or

normal form) and iteration (or S^) theorems: let cp̂ € be the image

of i f/N under the Godel numbering, then

(1) (Normal Form Theorem) as a function of i and x, cp^(x) is

partial recursive, that is, \ix[cp^(x)] £ and

(2) (Iteration Theorem) there is a function <j £ (R^ a n c* a

1-1 onto function T 6 (R0 such that cp. (T(x,y))= cp x(y)

for all i,x,y € N.

The function T is usually called a pairing function, and n<x,y> n

will be written instead of FLT(x,y)f,« Computation measuring functions

$^ for i £ N are characterized by two further axioms:

(3) cp^(x) converges (i.e., x £ domain (cpA)) <* $^(x) converges,

and

(4) the function
r
1 if S t(x) = m

M(i,x,m) =
0 otherwise

is in (R 3.

Axiom (4) trivially implies that Xix[$ i(x)] £ (P2, and that the

predicates [$i(x)=m] and [$ i(x) £ m] are recursive in all three arguments

i,x, and m. Intuitively, $ i(x) may be thought of as the number of steps
th

required by the i Turing machine (in a standard enumeration of Turing

machines) to halt for input x.

-3-

A mapping JF from functions of one variable to functions of one

variable will be called an operator. For any function cp, the value of

F̂(cp) at x will be written £(cp,x). If cp: IhJ -> IN, let cp(x) be an effective

encoding of cp restricted to the domain {0,1,...,x}! Let IhJ^ be the set

of total functions from INI into /M.

Definition 1. An operator T: Ih] -» /<v is continuous if there is a

function f of two arguments (f is called the associate of V) such that

for every cp € (hj^, x

F(cp,x) = f(m(z), x) - 1

where z is the least y such that f(cp(y),x) ̂ 0.

Definition 2. An operator F: IN -» [ft is general recursive if it is

continuous and has an associate in

Definition 3. An operator JF: (P̂ -> is effective providing there exists

A function A € IRJ such that J F ^) = 9^(1) F O R A 1 1 1 € W . An effective

operator is total providing that JF (cp^ is total whenever cp.̂ is total

(that is, F(fij c (RJ.
I I

We remark that the restriction to (R̂ of any general recursive

operator is equal to the restriction to (R^ of some total effective

operator (cf. Rogers [1967], ch. 11).

For any function g let g ^ be the identity function and g^ y + 1^ be

the composition of g and g^y\ Then 1(g) = \x[g^(x)] defines a general

recursive operator. Also, £(g) = \x[max y <. x {g(y),x+2}] is general

recursive, as is the operator H = I « G , Finally, extending the superscript
AAA AA\

-4-

notation to operators, define F(g) =X X[C H (g)](*)]• F is a general

recursive operator with the property that JF(g) is almost everywhere

greater than any function which is primitive recursive in g.

3. OPERATOR SPEED-UP

such that cp .=f and F(§.) < §. almost everywhere.

The intended interpretation of such speed-up theorems is that there

are computable functions f with the pathological property that, given any

program (with index i) for computing f, there is another program (with

index j) which computes f by an algorithm which is vastly quicker to

perform. For example, if we consider the operatordescribed at the end

of the previous section, then the running time of program i will be almost

everywhere greater than any function primitive recursive in the running

time of program j.

For any function r £ (J^j the operators mapping cp into Xx[r(x,cp(x))]

or \x[cp(cp(x))] are general recursive, so that Blum's speed-up and super

speed-up theorems follow as special cases of operator speed-up.

The proof of the theorem roughly follows Blum's outline for the

super speed-up theorem. Let P = £Pi}j[_o ^ e a sequence of functions such

that \ix[p^(x)] € (̂ 2* ^ e ^ u n c t ^ o n f * s computed at x by first computing

cpA(x) for p^(x) steps, 0 <. i £ x, and cancelling the least i ^ x (that

is, making f (x) ̂ cp^x)) such that cpi(x) converges in the alio ted time

and i has not been cancelled previously. If no such i exists, f(x) is

-5-

set to zero, so that f is total. By construction, if cpj converges in

<> steps infinitely often, then j will be cancelled. Hence, cp̂ -f

implies $^ > p^ almost everywhere.

Since every index gets cancelled at most once, all indices less than

any given u which ever get cancelled will have been cancelled during the

computations of f(0), f(1),.•.,f(v-1) for some v £ /A/. For x ^ v, it is

thus possible to compute f(x) by only computing cp^(x) for P^OO steps,

u <> i <> x. This procedure is more efficient since it eliminates the

computation of P^OO f ° r 0 <; i < u. The original procedure for f is

identical to this procedure with u = v = 0.

The preceding "u-v procedure" for computing f is uniform in the

parameters u,v In fact, it is uniform in an index X of the

sequence Pq,P^..., where p^ is, by definition, Xx[cp (<i,x>)]. The

index of the u-v-J? procedure is given by a function t f Ij^, Formally,

this is summarized by the following two lemmas:

Lemma 1. There is a function t £ s u c ^ that if cp̂ € and f = cpt^Q q £y.

then f € (R^9 £ is 0-1 valued, and cp^=f implies §^ > p^ almost everywhere

(where p± = Xx[cp^ (<i,x>)]).

Lemma 2. If cp 6 0\n, then for every u there exists a v £ such

that f = cp t^ u v ĵ j (where f and t are as in lemma 1).

To compute cp t^ u v j^(x), the functions P u>P u +-j > • • • *P X must be

computed at x. However, in order to tell which indices have been previously

cancelled it is necessary to recompute cp t^ u v jj)^^ ^ o r y < x * s o that in

general Pj(y) must be computed for u <> j <. y <> x. For values of x < v,

the u-v procedure reduces to the 0-0 procedure, so Pj(y) f ° r 0 ̂ j ^ y ^ v

-6-

must also be computed. Defining T = {(y,j) | u £ j £ y :£ x}, we

have (see Figure 1.):

Lemma 3. If Pj(y) converges for all (y, j) £ T x u U I y Q , then cpfc^u v ^(x)

converges.

Intuitively, the computation of cp t^ u y Jj)^x) consists of running

the cancelling procedure for a number of steps determined by the values

of p.(y) in the region T U T „. The number of steps required to j x,u v,0
o 2

compute the Pj(y) depends in turn on the index Ju Hence, $ t ^ u v jj)(x)

depends in a fixed way on $^ in the region T^ ^ (T v ^ may be ignored for

large x) . This should motivate:
Lemma 4. There is a function p £ (5{^ such that

cpp^uj^(x)= max{$^ (<j,y» | (y,j) € T
x > u } > a n d there is a function h E (ft2.

non-decreasing in its second argument, such that if cp. € f{^9 then

h (x ' ^ (u J) (x)) > $ t (u , v , j) (x)

for all u,v € W and almost all x.

At this point the proof of operator speed-up reduces to constructing

an appropriately pathological sequence P and an index X for the sequence

so that p. is almost everywhere vastly largely than both p. - and the

number of steps needed to compute p^ +^ using program j(. In particular,

the following lemma is sufficient:

-8-

Lemma 5. For any functions h £ S ^ a n c* total effective operator

F, there is a sequence of functions P = fp. 1? ^ with index X such that

cp- € IRI a n c* for all i £ /K/ the following inequalities hold almost everywhere:

5-1) P ± > g ,

5.2) P A > Xx[h(x,p 1 + 1(x))],

5.3) p^ > cpg^ +i j|) (with £ given as in Lemma 4) ,

Proof of the theorem: Given g £ (R ̂ and a total effective operator JF,

let P be the sequence with index X given by Lemma 5, with h £ f{ ^ chosen

as in Lemma 4. Let f = cpT̂ Q Q J^* a**d suppose cp̂ = f.

Since cp. 6 Lemma 1 implies that f £ (R ,̂ f is 0-1 valued and

$^ > p^ almost everywhere. Lemma 5.1 implies p^ > g almost everywhere,

so f satisfies the first clause of the theorem.

Lemma 2 (with u = i + 3) implies that f = cp t^ +g v ^ for some v £ fhi.

Let j = t(i 4- 3,v,J(), so that f = cp j; then

$ j < h (x ^ (i + 3 j) (x))

almost everywhere by Lemma 4. Lemma 5.3 and the fact that h is non-

decreasing imply that

h (x , cPp(i+3,J(/ X^ * h(x,p i + 2(x))

almost everywhere. Lemma 5.2 and the above inequalities finally imply that

almost everywhere.

Assume for the moment that JF is dominance-preserving,

-9-

Definition 4. An operator F is dominance-preserving if for all total

functions r,s £ domain (F), r ^ s almost everywhere implies F(r) ̂ F(s)
A** MA

almost everywhere.

The preceding inequality now implies

almost everywhere. Lemma 5.4 and Lemma 1 imply

I (P i + i > < P i < $ i

almost everywhere, and so almost everywhere

F($.) <

This proves the theorem for dominance-preserving total effective operators.

Moreover, if F'(r) ^ F(r) for all r f then F 1 speed-up trivially
M^A MA I 6A\

implies speed-up. The following lemma therefore completes the proof:

Lemma 6. For any general recursive operator JF there is a dominance-preserving

general recursive (and hence total effective) operator F f such that F f(r) ;> F (r)
™a aa*

for all r E R R

4.. COMPLEXITY SEQUENCES

The function f constructed to satisfy the speed-up theorem has no

. best program or fastest running time, but its complexity can be described

by a sequence of possible running times.

Definition 5. A sequence P = {p^I^Q o f functions € (P̂ is a complexity

sequence for a function f £ (P^ if and only if

(1) domain (p..) 3 domain (f) for all i £ fhj,

(2) if cp. = f, then for some i f$.(x) ̂ p.(x) for almost all
x £ domain (f).

-io

cs) for every i, there is a j such that cp j = f and $j(x) ^ Pi/ X^

for almost all x £ domain (f).

The major part of our proof of operator speed-up amounted to proving

that, given any recursively enumerable sequence P of recursive functions

satisfying certain simple conditions (viz., Lemma 5.2 and 5.3), one can

construct an f 6 (R^, with P as its complexity sequence. Thus, although

f can be sped up to an extreme degree, its complexity can still be

described in a highly constructive manner. Note that any f £ f^ has a

complexity sequence consisting of the elements of / cp̂ = f}» but this

sequence cannot be recursively enumerable. It is an interesting question

whether or not every function in (F̂ has some recursively enumerable com

plexity sequence.

Although the sequence P of Lemma 5 describes the complexity of f,

the behavior of P itself is somewhat obscured by the use of the recursion

theorem in proving Lemma 5 (cf. the appendix). Henceforth in this section,

let $^(x) be the number of steps required by the i***1 Turing machine** to

halt (and print an output) given input x. D. M. Ritchie [1968] has obtained

a refined example of speed-up for Turing machines and the operator F(f) = fof.

Definition 6, Let t(x) = 2 X . A function h £ fi^ is honest if and only if
(k)

for some i, h = cp£ and $ i(x) £ t v ' (max[h(x) ,x}) for some k € th* a n d a H

The purpose of the definition of honesty is to isolate a class of

functions whose size and complexity are approximately the same. For

example, $^ is always honest whenever it is total, whereas a difficult

-11-

to compute 0-1 valued function is highly dishonest.

Theorem (D. M. Ritchie). For any honest, strictly increasing function

g £ such that g(x) ̂ 2 X , and any unbounded, non-decreasing function

* € there is a 0-1 valued function f f ^ such that

(1) if cp̂ = f, then §^ > g almost everywhere,

(2) if cp̂ = f* then there is a cp. = f such that §. © $. <
(k)

almost everywhere (in fact $^ ^i a ^ m o s t everywhere for

any k €/W) ,
(r(x))

(3) there is a y = f such that $ i(x) < g (x) for almost all x.

To prove the theorem, the sequence P of Lemma 5 is obtained directly
(without appeal to the recursion theorem) using a construction discovered

4

jointly by the first author and D. M, Ritchie. The object is to construct

a sequence P of honest functions (honesty will yield part (3) of Lemma 5)

such that p^ is greater than g and is much greater than p^ +^ almost every

where. It is iiot hard to find a sequence Q of very rapidly increasing

honest functions such that q^ is much smaller than • Taking inverses

(q ' (x) ss the least z such that q(z) ̂ x) yields a sequence R of honest,

unbounded, non-decreasing functions such that r^ grows more rapidly than
r i + T S e t P i ~ ^ x f S ^ r i ^ X ^ (x)] . If the functions q̂^ are sufficiently

large, then the functions will grow more slowly than the given function

r. Moreover, j will grow slowly enough that p will not only be greater

than p j but also greater than p ^ for any fixed k g/K/. We refer the

reader to Ritchie [1968] for the complete proof.

Clearly, in order for f to satisfy (1) and (2) of the theorem, the
(k)

running time of any program for f must almost everywhere exceed g for

-12-

any fixed k. Part (3) of the theorem may therefore be interpreted to

mean that f is as simple to compute as it possibly could be while satisfying

(1) and (2). For example, if g is primitive recursive, the function f will

also be primitive recursive. It seems likely that this result can be

extended to a more general theorem relating the complexity of f to that

of g andj?, for arbitrary general recursive operators JF.

A-1

APPENDIX

PROOFS OF THE LEMMAS

The following definition provides a detailed procedure for computing

a partial function (u,v, JP,x) which equals cp t^ u v j ^ x) a s described in

Section 3. It is convenient to define simultaneously a function L(u,v,>?,x)

whose values are finite sets of cancelled indices."* As in Section 3, p.

is the function >x[cp (<i>x>)].
Jt

Definition A. For u,v,JP,x £ Jhl the values of ty(u,v,/,x) and L(u,v,,?,x)

are given according to the rules:

1. If x « 0 or v < u, then ty(u,v,^,x) = 0 and L(u,v,,f,x) = $ m

2. If x / 0 and v ;> u and v > x, then (u,v,J?,x) = ^(0,0,,f,x)

and L(u , v J,x) = L(0,0,J?,x).

3. If x / 0 and x ^ v ^ u, compute p^(x) for u <. i <. x and compute

L(u,v,J?,x-l). If any of these computations fail to converge,

then ^r(u,v,jP,x) and L(u,v,/,x) are undefined. Otherwise, let n

be the least number, if any, such that u <. n <. x, § n(x) ^ P n(x)>

and n j£ L(u,v,J?,x-l). If such an n exists, then (u,v, J?,x) = l-cpnC

and L(u,v,J?,x) = L(u,v,i,x-1) U {n}. If no such n exists, then

^r(u,v,^,x) = 0 and L(u,v,^,x) = L(u,v , J?,x-l).

Proofs of Lemmas 1 - 3 : i|r (0 , 0 , # , 0) and L (0 , 0 , A ! , 0) are defined by rule 1

in Definition A for all k] £ fj\]. Straightforward induction on x implies

that if p.(y) converges for (y,j) £ T , then i(r (0 , 0 , J?,x) and L (0 ,0 , J?,x) J X, u

are defined. (Note that cp R(x) * s evaluated only when $ n(x) ^ s bounded, so

that axiom 3 implies that cp n(x) converges in this case.) Using this result

another induction on x implies that for all u,v £ ffj9 if Pj(y) converges

f° r (y>j) € T U T n , then T|/(u,v, J?,x) and L(u,v, ̂ ,x) are defined. X , U V , u
The rules defining and L are clearly effective. (Note that the

existence of n in rule 3 is effectively decidable, given that P^(x) f ° r

u <, i <. x and L(u,v,J?,x- 1) converge, since the predicate [$^(x) ̂ m] is

recursive by axiom 4 .) Thus we conclude that g (f̂ . The iteration

theorem implies that (u,v, jj,x) = cp t^ u v j[)(x) ^ o r s o m e t € (R^ and a H

u,v,,?,x £ fh] .

In particular, if cp* € ^ - j * then p. (y) converges for all (y,j), so

that cp t^ u v (() € v\1 fo r all u,v Definition A guarantees that

^t(u v H) *"S v a l u e c ^ wherever it is defined. This proves Lemma 3 and

the first part of Lemma 1 .

Given £ such that cp̂ € (R -j > a number n is said to be cancelled at x

if n £ L (0 , 0 , A ! , X) - L (0 , 0 , J?,x-1). If n is cancelled at some x, then

^ t (0 0 j() ̂ ^n s ^ n c e r u l e ^ forces them to differ at x. Moreover, if

§ ^ p infinitely often, then rule 3 causes n to be cancelled eventually, n n J

Hence, cp̂ = cPt (0 0 £) * m P ^ e s > P^ almost everywhere, which proves
Lemma 1 #

For the above $, rules 1 and 2 imply that L (0 ,0 , J?,x) = L(u,v,P,x)

whenever v > x and v ^ u. If v is also large enough that, every number

n < u which gets cancelled does so at some number less than v, then induc

tion on x implies that L(u,v,!,x) = L (0 , 0,#,x) and cp t(u v ^ (x) = cp t(Q Q ^ (

for all x. This proves Lemma 2 . Q.E.D.

A-3

Proof of Lemma 4, The function \uj?x[max($ (<j,y>) | (y,j) € T }] is - j[x,u

in (P^ (since the measure function $ is partial recursive by axiom 4).

The iteration theorem implies that it equals cpp(u for some (3 € (R 2*

Define a function h 1 by:

f ^ ^ j f « m ^ m a x { § « j,y»|(y,j) € T U T },

1 0 otherwise.

Axiom 4 implies that the predicate used in defining h f is a recursive

predicate, so h f £ (P .̂ Moreover, h f is totally defined since axiom(k) and
(x)

Lemma 3 imply that § t £ u y ^ converges whenever the predicate is true.

Define a function h by the condition

h(x,m) = maxfh 1 (z^,... ,z<.) | 0 ^ z^,... ,z^ ^ x-fm}; so h £ 0{ a**d is non-

decreasing. Let u,v,>? be given such that cp̂ € iR-j; then also cp̂ ̂ ^ £ (R ^

a n d ^ (u ^ J) 6 (R r Let k = max{^ (<j,y>) | (y,j) € T
v > 0 } ;

then by definition 9 p (u j) (x > + k * ES5C«(j «J>y>) I (y , j) 6 I x u U I y Q } ,
/> (x) ' * and so h'(u,v,A,x, cpft , 0\M + k) = $ (Q\ + 1 . Therefore, for

x ^ max{u,v, jj,k], we have by definition that h(x,cp , {K(X)) > $, ON(X).

Q.E.D.

Proof of Lemma 5 . Let a € be the function such that F(cp.) = cp /. x ,

and let cr € 2 be t* i e f u n c t i ° n of axiom 2 . Define a function ^ of two

variables as follows:

Co if x < i or Can ^ i)[§ (<0,n>):> x] ,
^(>P,<i,*>) = / *

^g(x) + h(x,cp^ (<i+1,x>) + cp B (. + 1 J) (x) + c P a (a ^ i + i)) (x> otherwise,

Clearly, ^ £ (P2 # By the recursion theorem (cf. Rogers [1 9 6 7] , c h . 1 1) ,

there is an X € Ihf such that cp̂ (w) = tyC^w) for all w £ ̂ /. For this let

p. = Xx[cp (<i,x>)] = cp tt then the above definition becomes 1 Tj{ TavX,i;

http://ch.11

A-4

0 if x < i or (an <, i)[p^(n) does not converge in < x steps],
P i (x) 8 5 { (x)

1 g(x) + h(x, P i + 1(x)) j{) + £ (p i + r x) otherwise.

Assume for the moment that p^ £ For any i and sufficiently large

x, p^(x) will be defined by the second clause, and hence p^ satisfies the

lemma providing it is total. Since p Q itself is defined by the second
(x)

clause for large x, it must be that cp^^ ^ converges for large x, and

hence cp (<j,y>) converges for (y,j) € ^K -j. By definition, cp. (<j,y>) = 0

for y < j and by hypothesis cp^(<0,x>) converges for all x. In short,

for all i, and the lemma follows.

It remains to show that p^ is total. Suppose Pg(n) does not converge

for some n; then by the first clause of the definition p^ is total (in fact,

identically zero) for all i ̂ n. In particular, for every x and every

(y>j) € T x n , Pj(y) converges and this implies that cpg^n ^ is total. Also,

F(p) is total since F is a total operator, and similarly, Xx[h(x,p (x))] *A n MA n

is total. Therefore, both clauses in the definition of p^ ^ guarantee

convergence, so p^ ^ is total. Similarly, p^ 2 , pn 3 , # # # , p 0 m u s t ^ e total,

a contradiction. n

ihf

Proof of Lemma 6. Let F be a general recursive operator. For cp £ IN. >

x e//V, let Y(cp,x) « e N1^ | ̂ < Xz[rnax{cp(z),x}]}.

Define an operator ̂ F1 with domain IN^ as follows:

J?f(cp,x) = maxfF(ty,y) | y <;• x and ^ £ Y(cp,x)}.

The operator J ? f maps fN^ into Ihl^\ To show this, let be the

restriction of ^ g /A/^ to {0,l,...,n}, and let

A~5

T(cp,x) = {^n^ | n e W , f 6 Y(cp,x)} U {$}. Partially ordered under set

inclusion, T(cp,x) forms a tree with root 0 (the empty set), and with only

finitely many branches at each node. There is an obvious 1-1 correspondence

between infinite paths through T(cp,x) and elements of Y(cp>x). The continuity

of implies that for any function (path) and y £ fhj , the value of F(ty,y)
Tnl

is determined by tyL J for some n. The infinity lemma (also known as the

fan theorem) now implies that for any y g / V , the set {F^f,y) | e Y(cp,x)}

is finite and is determined by a finite subset of T(cp,x). It follows that

JP^cpjx) is defined for all cp € /K/'^, x € IhJ.

Moreover, the fact that F is a general recursive operator implies that F f is

also general recursive, as the reader can easily verify.
:ne aerimtion ot tf' that F' «> F on iN

Tj is dominance-preserving.

It is immediate from the definition of F f that F 1 ;> F on A/ and

Q.E.D,

- 1 3 -

Notes

1. For example, define ^p(O) = cp (0) , y (x+1) = < ^p(x), cp(x+l) >, and

cp(x) = < x, (p(x̂ >.

2. At this point we differ from the outline in Blum [1967] of the super

speed-up theorem. Blum asserts that the running time of the u-v

procedure depends on Pj(y) rather than the number of steps required

to compute Pj(y). This will be true only for certain sequences whose

members are the same size as their measure functions (cf. Lemma 5).

3. Any of the familiar formal definitions of Turing machines and length

of computation (number of steps) may be chosen.

4. This construction actually arose independently of the present context

(cf. Meyer and Ritchie [1968]).

5. For descriptive purposes we allow the values of L to be finite sets.

In a formal definition by recursion, the values of L would be.canonical

indices of the finite sets (cf. Rogers [1967]).

6. if y > 0
if y = 0'

-14-

References

1. Arbib, M. A. and Blum, M. Machine dependence of degrees of difficulty.
Proc. AMS, Jj>, 3 (June, 1965), 442-447.

2. Blum, M. A machine-independent theory of the complexity of recursive
functions. J. ACM, J4, 2 (April, 1967), pp. 322-336.

3. Hartmanis, J. and Stearns, R, E # On the computational complexity of
algorithms. Trans. AMS, 117, 5 (May, 1965), 285-306.

4. Meyer, A. R. and Ritchie, D. M. Primitive recursive hierarchies.
to appear (1968).

5. Rabin, M. 0. Degree of difficulty of computing a function and a partial
ordering of recursive sets. Tech. Rep. No. 2y Hebrew University,
Jerusalem (April, I960). ~

6 . Ritchie, D. M. Program structure and computational complexity, thesis%

Harvard Univ. (1968).

7. Ritchie, R. W. Classes of predictably computable functions. Trans.
AMS. 106, 1, (June, 1963), 139-173.

8. Rogers, H., Jr. Godel numberings of partial recursive functions.
J. Symbolic Logic, 23, 3 (Sept. 1958), pp. 331-341.

9. Rogers, H., Jr. Theory of recursive functions and effective computability,
McGraw-Hill, N.Y., c.1967.

DOCUMENT CONTROL DATA - R & D
(Security classification of title, body of abstract and indexing annotation must be mntered when the overall report Is classified)

1. O R 1 G i N A T I N G A C T I V I T Y (Corporate author)
Carnegie-Mellon University-
Department of Computer Science
Pittsburgh, Pennsylvania 15213

2a. R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

UMCL
1. O R 1 G i N A T I N G A C T I V I T Y (Corporate author)
Carnegie-Mellon University-
Department of Computer Science
Pittsburgh, Pennsylvania 15213

26. G R O U P

3. R E P O R T T I T L E >

ON COMPUTATIONAL SPEED-UP

4. D E S C R I P T I V E N O T E S (Type of report and Inclusive dates)

5. A U T H O R (S) (First name, middle Initial, taat name) —— __ . , _ _ ...

Albert R. Meyer and Patrick C. Fischer
6. R E P O R T D A T E

May 1968
7a. T O T A L N O . O F P A G E S 76. N O . O F R E F S

21 9
88. C O N T R A C T O R G R A N T N O .

SD-146 ARPA
6. P R O J E C T N O .

9 7 1 8

615450IR
* 6 8 : n o 4

9a. O R I G I N A T O R ' S R E P O R T N U M B E R (S) 88. C O N T R A C T O R G R A N T N O .

SD-146 ARPA
6. P R O J E C T N O .

9 7 1 8

615450IR
* 6 8 : n o 4

96. O T H E R R E P O R T N O (S) (Any other number* that may be maalcned thia report) *

10'. D I S T R I B U T I O N S T A T E M E N T """"" ' ~ ~ ~ " 1 — '

—Distribution of this document is unlimited.
11. S U P P L E M E N T A R Y N O T E S

A

13. A B S T R A C T 1

12. S P O N S O R I N G M I L I T A R Y A C T I V I T Y

Lr Force Office of Scientific Researr.
1400 Wilson Boulevard
Arlington, Virginia 22209

Let.F be any effective mapping from total functions on"the integer

to total functions. Composition and iterated composition are examples

of such mappings. The "operator speed-up" theorem in this paper estab

lishes the existence of a computable function f such that for any pro

gram computing f(x) in p^(x) steps for all x, there is another program

computing f(x) in p 2 (x) steps a n d J P (p 2) < P 1 almost everywhere. Thus,

there is no best program for f. The notions of "program" and "number

of steps" are treated axiomatically, so that the theorem is independent

of any particular model of a computing machine. An example of speed-up

for Turing machines is considered.

D D , F
N r 6 8 1 4 7 3

S e c u r i t y C l a s s i f i c a t i o n

S e c u r i t y C l a s s i f i c a t i o n

