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REMARKS ON ALGEBRAIC DECOMPOSITION OF AUTOMATA

by

A, R..Meyer and C. Thompson

ABSTRACT

A version of the Krohn-Rhodes decomposition theorem for finite automata
is proved in which capabilities as well as semigroups are preserved. Another

elementary proof of the usual Krohn-Rhodes theorem is also presented,’

1, INTRODUCTION

The constructive half of Krohn and Rhodes! decomposition theorem for
finite automata states that any finite automaton can be simulated by a
éascade of reset and permutation automata, Moreover, the groups of tﬁe.
permutation automata in thé cascade need only be simple groups wﬁich divide
the semigroup of the original automaton. Assorted proofs of this theorem
appear in-[1, 2, 3, 4, 5, 7] and we include our own elementary pro;f in
Section 5.

Our object in this paper is to supply the few egtra steps necessary
to prove a corrected version of a_slightly stronger decomposition theorem
stated by Hartmanis énd Stearns [4]. This theorem appears in Section 3.
In Section 4 we exhibit a counter-example to the theorem as originally
stated by Hartmanis and Stearns, and briefly consider cascades of ™half-

reset" automata,



2. PRELIMINARIES

Our notation follows Ginzburg [3]. In particular, function arguments
apféar on the left (so that xf 1s the Qalue of function f at argument x).
Composition of functions is designated by concatenation, with the leftmost
function understood to apply first (so that xfg = (xf)g). Fow a function f
and set S, the restriction of f to 8 is £}S. The cardinality of S is lil.
Ve usé.W:” to mean impropex inclusion, For a set § and family 3; of fuﬁc-r
tions with domains including S, S% is [éf]s €S, £ €% }. As usual, "sI "
means {s}&’, and "S£" means S{f}. |

' . : , A
A semiautomaton (or state machine) A consists of a finite set Q (of

states), a finite sct }"_.A (of inputs), and a set of (transition) functions
from QA into QA indexed by EA. The function from QA into QA indexed by
) EJEA is gA. When the context is unambiguous, we shall frequently omit
superscripts and identify ¢ with gA.

Let A and B be semiautomata., B is a subautomaton of A iff ZB C:EA,

QB C:QA and UB = gAfQB for each g G‘ZB. A subautomaton B of A is ﬁon—

B
trivial if 5§ = EA and [QAI > |QB| > 1, B is an image of A if there are
functions 72 QA-—-aQB and E: EB —>EA such that T is onto and ﬂqB = (gg)Aﬂ

for each ¢ ¢ EB. The function T} is then called a homomorphism from A

(on)to B. A covers B, in symbols A = B", iff B is an image of a subautomaton

of A, 'Covering is transitive, A and B are equivalent iff A = B and B = A,

A partition 11 of QA is an admissible partition of A iff for every

Xecmwmandog € ZA, there is a Y € m such that X5 < Y. The quotient semi-

automaton A/n (defined for admissible 1) has state set 1ty inputs EA, and

transitions given by: XUA/n = Y where Y is the (necessarily unique)

element of 71 such that Xo ¢ Y, The semiautomaton Afn 1s an image of A,



B
Given a (connecting) function 3 QA ¥ EA - %, the cascade product

(AOB)w is the semiautomaton with state set QA X QB, inputs 2A, and transi-
tions given by: (p,q)o = (pc,q((p,c)w)) for (p,q) € Q* x Q° and ¢ ¢ 5h.
We uénally'suppress mention of the connecting function andrsimply write
"AOB", Cascade product is associative in the sense that given (AOB)Oé,
thére is an equivalent sem;automaton Ao(BoC), A cascade product of a
sequence of three or more semiautomata is any parenthesization of the
sequenée into a cascade product of pairs of semlautomata.

If B =z D, then for every comnecting function ¢ there is a connecting
'functiqn w' such that (AOB)w, = (AOD)w. Similarly, if A = C, there is an
A' equivalent to A such that A'OB » COB,

A is a permutation semiautomaton iff every ¢ e;EA is a permutation of

QA. A is a reset iff every g € ZA is a constant or identity function on

QA; constant functions are also called resets. A is an identity semlautomaton

iff évery c € SA 1s the identity on QA.

We assume the reader is familiar with the elementary facts about
groups and semigroups., Let S and T be semigroups. S is a subgroup of T
iff 5 is a subsemigroup of T, and S is (abstractly isomorpnic'to) a group,
§ divides T, in symbols “S|Thg iff S is a homomorphic image of a subsemi-
group of T, Division is transitive. "T — S" means § is a homomnrphic
dmage of T, and "S=T" means S and T are isomorphic. Most of the semi--
groups in this paper are transformation semigroups, but we use " " and "="
to mean homomorphism and isomorphism of abstract semigroups (though it will
usually be clear when an abstract homomorphism ié,actually a transformation

homomorphism). When T is a group, "S¢T" means S is a normal subgroup.
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The semigroup of a semlautomaton A is the transformation semigroup
generated by {UA[U € ZA} under composition. The monoid GA 1s the semi-
_gfoup of A ﬁith Aé’the identity on QA, added if it is not already in fhe
semigroup. If A > B, then GB]GA. The converse is not true, A is an
identity semlautomaton iff IGAI = 1, A is a permutation semiautomaton Liff
GA‘is a group. Corresponding statements with the semigroup of A in place

of GA éfe not true,
3., THE DECOMPOSITION THEOREM

The following version of Krohn and Rhodes decomposition theorem is

proved in [2, 3, 4, 7].

Theorem 1. TFor any semiautomaton A, there is a cascade product of semi-
automata Aj,A,,...,A vhich covers A such that for all i (1 < i < n)
12727 n
_either
4, . % Ay A
(1) 6 " is a simple group , and ¢ ~|G,

or (2) Ai is a two~state reset,

Moreover, if GA is a group, those Ai which are resets will actually be

identity semiattomata,

The components Ai of the cascade covering A aré no more complicated
than A, insofar as semigroups refiect the complexity of semiautomata. On
the other hand, Theorem 1 does néﬁ prohibit the Ai from being‘larger'than
A, and in fact the usual decomposition techniqués applied to a five state
machine whose semigroup consists of resets and the alternating group of |
degree five yields an Ai ﬁith sixty states. The following theorem eliminates

this flaw,

* : A
We remind the reader that Ai 1s a permutation semiautomaton 1ff G L is a group.



Definition., Let A be a semiautomaton, The comgletion‘of A is the semi-

- A N
automaton A such that QE =Q , EI = GA, and for g € GA, gx gf

Theorem 2, Theorem 1 is true when (1) is replaced by

A,

(1Y) ¢ *isa simple group , and A » Ai'

Clearly GA = GA, and since A = B implies GBIGA, we observe that
Theorem 2 implies Theorem 1,

We take Theorem 1 as our starting point, and prove Theorem 2 from the

following lemmas,

Lemma 1, Yet C be a semiautomaton such that Gc is a group and N«GC. Let

T = {qN[q € QC}. m 1s an admissible partition and GC/N —aGC/n.

- Proof: The elements of 1t are the orbits of QC under the group of trans-
C

formations N, and so 17 is clearly a partition of Q . Moreover, 1 is

admissible: Ng = gN for all g ¢ GC since N is normal, and so for all

q¥ € m it follows that (qN)g = q(Ng) = q(gN) = (qg)N € m. Observe that

the elements of GC/TT are simply the elements of GC acting on yw. Hence,
C_ Cfm , i : , X

G —»G and N-is trivially included in the kernel of the homomorphism;

therefore, GC/N —9Gc/ﬁ. Q.E.D,

Lemma 2, Let A be a semiautomaton such that H is a simple group and H[GA.

there is a semiautomaton B such that A > B and GB = H,

Proof: It is easy to show (cf, Ginzburg [3], section 1.16) that if a
group divides a semigroup, then the group is actually a homomorphic image
of a subgroup of the semigroup, Let K be a subgroup of GA of minimum

size such that K -»H, and let N4K be the kernel of the homomorphism, Let
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C be the subautomaton of A such that QC = QAK and EC = K. Then_GC =K
(as the reader may verify)* and by Lemma 1, 11 = {qN]q € QC} is an admis-
sible partition of C. Finéily, let B = C/m.

Clearly, A = B, |

Lemma 1 also implies that GC/N —aGB. But GC/N = K/N = H,and H is.
simple, so that if IGBl # 1, it must be'thatrGBl= H as required.

On the other hand, suppose IGBI = 1, Then every element of K = Gc
acts as an identity on mr, viz., (gqN)k = gN for every k € K and qN € 1.
For q € QC, let Kq = {k € K]qk=q}. Since q € qN = qNk for q ¢ QC it
‘follows that K iIntersects every coset of N in K, and so the restriction
to Kq of the canonical homomorphism from K‘pnto K/N is also onto, There-
fore, Kq ~X/N = H (obviously Kq is a group), and since K is of minimum
size, K = Kq for all q ¢ QC. But this implies K = {AC}, which is absurd,

since H is a non~trivial image of K. Q.E.D.

Lemma 3, If A and B are semiautomata such that GA = GB, then therxe is

cascade product of copiles of B and an identity semiautomaton which covers A,

Proof: For c&nvenience assume QB = {1,2,...,n}. The cascade covering A

will consist of an identity machine with state set Q® and n copies of B,

all acting in parallei.r for 9 € QA, 4y € QB, 1<i<n, and g € GB, the
transifions in the cascade are dgfined by (qo,ql,.f.,qn)g gf'(qo,q1g,.;.,qng).
_ The states qi'e QB uniquely determine a function £: QB ~>QB by the condi-
tion £(i} = 9> 1 <1i<n, If it happens that f ¢ GB, the state qof € QA

is also uniquely determined by the isomorphism between GB and GA.

The states of the cascade which determine functions f ¢ GB obvicusly

form a subautomaton of the cascade, and the mapping of <q0,q1,...,q&> to

* ‘
This is not quiEe immediate,'sénce one must argue that the identity of K
restricted to Q  is actually A,



iy

qu defines a homomorphism from this subautomaton onto A (and hence onto

A), as is casily verified, ‘, ~ Q.E.D.

Lemma 3 emphasizes the difficulty in interpreting the Krohn-Rhodes

theorem as a "prime" decomposition theorem for machines (as opposed to

semigroups). We mightrtentatively define A to be prime if (1) GA is simple,
and (2) & > B implies either B > A or @b # ¢t There
will then be prime machines for the same simple group wh;ch are 1ncomparab1e
under covering, Lemma 3 then leads to the unsatisfactory situation that
one prime dlvides (is covered by) a power (cascade product of coPies) of
another prime, | A

The proof of Theorem 2 is now straightforward, Each Ai such that G 1

is a simple group can be covered according to Lemma 3 by a cascade of

A,
- copies of B and an identity semiautomaton, for any B such that GB =G T,

Since GAiIGA, Lemma 2 implies that such an automaton B can be found for
vhich & z B (and hence A > B). The identity semiautomata ﬁhich are intro-
duced can trivially be replaced by cascades of two-state identity éemiautomata,
and the proof is complete.

Hartmanis.and Stearns' notion "A has the capability of BM is equivalént
to "A > B", Theorem 2 above is thus a restatement of Theorem 7. 10 of
Hartmanis and Stearns [4],except that thelr Theorem 7.10 makes the add1tional

assertion that A 2 Ai even when Ai is a reset, This is false, as we show

In the next section,.
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4, HALF-RESETS

Let RD be the semiautomaton whose state set and Input set equals
{0,1}, and whose transitions are given by ordinary multiplication. Any
semiautomaton covered by R0 will be called a half-reset. Except for

permutation semiautomata, every semiautomaton has the capability of RO‘

Definition, Let A be a semiautomaton, p,q € QA, Then q is accessible

from p 1£ff q = pg for some g € GA. A is partially ordered_(p.o) 1£ff acces-

sibility is a partial order on QA.

R0 is trivially p.o., and it is easy to show that if A is P.C. and'
A 2 B, then B is pP.0. Likewise, if A and B are p.o., so is ACB, Con-
versely, if A i1s p.o. (and not already a half-reset), then A has a non-
trivial subautomaton which is a halfereset, We let the reader convince
himself that A can then be covered by a p.o, semiautomaton with one fewer
state followed by a half-reset (cf., Method I of Section 5). 1In shoft,

we have

Theorem 4., A semiautomaton is covered by a cascade of half-resets if and

only if it is‘partially ordered,

The regular events associated with p.c. semiautomata are obviously

kd

‘ *
finite unions of events of the form "F eessF " such that F, is a

F*
1917292 n 1
finite set of input symbols and o4 £ F, (1 <1 <n)., These events form a
Boolean algebra, and can also be characterized by an inductive definition
resembling that of the star-free events [6]. One can also define partially

ordered semigroups in the obvious way, and conclude that A is p.o. 1ff

GA is p.o.
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Conslder a semiautomaton A with state set [],2,3]_and inputé X and y
such that 1x=2, 2y=1 and the remaining transitions lead to 3. No non-
trivial groﬁps divide GA, so in fhe decomposition of A satisfying Theorem
2,'oﬂiy two-state resets appear. By Theorem'4, not all of these two-state
resets can be ﬁélf-resets (because states 1 and 2 are mutually-accessible,
viz., A is not p.o,). But the only two-state resets covered by A are

half-resets (as can be verified by exhaustion), and so A cannot have the

capabllity of all the components in its decbmposition.
5. PROOF OF THEOREM 1

There are at least three elementary proofs of Theorem 1 in the literatures:

Ginzburg's [3] corrected version of Zeiger's proof using set systems or

. covers, Arbib’'s [2] version of Krohn-Rhodes' proof, and the elegant proof
of Zeiger [7]. DMNevertheless, none of these proofs are very Simple,* and

so we feel another proof may still be of interest, Readers familiar with
the other proofs will note that our method I is essentially dual to that

of Zeiger [7], and our Method III is almost ﬁhe_same as that of Arbibl[Z].
The following lemma appears in [2, 3, 4] and we shall not repeat the

proof,

*The proof of Zeiger [7] is given in only two and a half pages, and separ-
ates non-permutation semiautomata into only two cases, Unfortunately,
Zeiger's remark that his method applies to permutation-reset semiautomata
is false, as can be seen by applying it to any permutation-reset semi-
automaton, Moreover, a semiautomaton with state set £1,2,31, reset in-
puts to each state, and an additional input leaving states 1 and 2 fixed
and sending state 2 to state 3 is a counter-example to Zeiger's assertion
that his second method reduces the number of non-permutation, non-~reset
elements. This counter-example invalidates the proof that his method
terminates, When these errors are corrected, Zeiger's proof turns out
to be no simpler than ours.
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Lemma 4. Let A be a permutation semlautomaton, A can be covered by a
ctascade of two-state identity semlautomata and permutation semiautomata
whose monoilds are the factor groups in a composition series for GA (and
hence areISimple groups dividing GA).

We fefer to permutation semiautomata and two state resets as basic,

Theorem 1 follows jmmediately from Lemma 4 and

Theorem 5. TFor any semiautomaton A, there is a‘cascade product of basic
semigutomata A]’Az""’An which covers A such that for all i (1 < i < n),
Tif GAi is a group, then GAi[GA.
A naturai way to prove Theorem 5 is to show that any semiautomaton
can be covered by a product of two "smaller"_semiautomata, and then usge
induction. (A disadvantage of the proof using set systems [3,4] is that

it does not conform to this description.) The proper interpretation of

"smallex" is necessarily a little devious,

Definition. For any transformation monoid S, N(S) is the submonoid gettm
* .
erated by the nonconstant (i.e., non-reset) elements of S, For any semi-

automaton A, the measure of A is the triple of positive integers

df, A A .Y
p@) =77 (NG, |Q7, [e*]).
Measures will be well-ordered lexicographically in the usual mannér:

-Definition. If x = (x1,x2,x3) and y = (y],yz,yB) are triples of intégers,
then x > y 1ff Xy > Yqs oOT, X.=Y and x, > yz, or, XY and X,=y, and

X3 > ¥3.

* .
By convention, N(S) = the identity when $ acts on a singleton.


file:///rtiich

-1]-

Lemma 5. For any semiautomaton A, which is not basic, there are semiautomata

B and C such that

(1) BoC = 4,
(2 N(GB)[GA, and either j(B) < |, (A) or B is basic,

(3) N(Gc) [GA and ,(C) < p(A).

Proof of Theorem 5: Let A be a semiautomaton, If A is basic (and in

particular 1f p(a) = (1,1,1) is minimum), then Theorem 5 is true trivially.
froceeding by (transfinite) induction, sﬁppose Theorem 5 is true for éll
semlautomata with measures smaller thén w{&). Theorem 5 is then true by

_ hyppthesis for the semiautométa B and C produced by Lemma 5, Let Bi’ 1<4i<n,
be the basic semiautomata in the cascade covering of B, and likewise for

Ci’ 1<1i<m Since BOC = A, a caséade of the Bi (or semiautomata equiva-
_ B

" lent to the Bi) followed by the Ci covers A, Suppose G i is a group; then
B . .

G i]GB. But if a group G divides a transformation monoid S, then it must

: B
be that G|N(S). Hence, G iIN(GB), by Lemma 5 N(GB)IGA, and,by transitivity

B
A .
G iIG » The same reasoning applies to the Ci’ and it follows that Theorem 5

is true for A, - Q.E.D.

Proof of Lemma 5: We describe three decomposition methods, one of which

will yield appropriate B and C for  any semiautomaton A which is not basic,

Definition., For any semiautomaton A, let N(A) be the subautomaton of A

- obtained by eliminating all reset inputs from EA.
Method X. N(A) has a non-trivial subautomaton.

Let QC equal the states of the non~trivial subautomaton of N(A), and

, 5 ‘ '
let @ = (QA - QC) U {d} for d £ QA. Transitions in BOC are given by:
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{
(o,c¢) 1€ bfd and bo £ Q°,
(d,b0) 1f bfd and b € QC,
(bye)o = < A C
(ryc) if o is a reset tor €Q - Q,
‘(b;OU) otherwise

Since QC is the state set of a subaptomaton of N(A), it is closed
under non-reset inputs, Hence the fourth claﬁse only applies when b=d
and cU ¢ QC, so the transitions of BOC are well defined,

When bfd map (b,c) to b, and when b=d map (b,c) to ¢, This mapping
defines a homomorphism from BOC onto A (as is immediately verified by
checking the four types of transitions in BOC), so part (1) of the lemma
is satisfied.

Note that the singletons in QA - QC together with QC form an admissible
partition 17 of A, and that A/y is isomorphic to B. We conclude that G _sGP
and that N(GB)|GA. Moreover, |Q3| = IQA - QCI + 1< |QA| since the sub-
dutomaton on QC is non-tr;vial. This guarantees that part (2) is satisfied,

The only non-identity, non-reset transitions in GC arise from the
fourth clause in the definition of transitions of BOC. It follows that
N(Gc) = {ngC]g c N(GA)}. Hence N(GA) —aN(GC), and since IQC| < |QAf, part

(3) is satisfied,
A c 1 s
Method IXI. G contains a non-identity permutation.

Let P be the subgroup of GA generated by the permutations, and T the
subsemigroup generated by GA - P, Note that T#ﬂ (otherwise GA is a group
and A is basic), and that T is trivially a (two-sided) ideal. ILet QB = P,

C
and Q = QA. Transitions in BOC are given by:



13-

(po,q) if g € P

(P’q)(}' = -1
(p,qpop ) ifo eT

Since GA is the disjoint union of P and T, the transitions of BOC
are well defined. Mapping (p,q) to qp defines a homomorphism from BOC
onto A,

Clearly ¢® = P, so N(GB)lc;A and B is basic, Likewise G° = T ¥ {AC}, so
N(GC)]GA and N(Gc) does not contain the non-identity permutation in N(GA}.

Therefore, y(C) < p(A).

Method III. GA = V U T where V is a subsemigroup such that |N(V)| < fN(GA)|,

and T is a proper left ideal of G - {A}.

Let: QB = V and QC &= QA. Iransitions in BOC are given by:

(vo,q) if o € V-T,
(v,9)o =
(Ayqvo) if g €T,

Note that A £ T (and hence A € V) since T is proper, and so the transi-
tions in BOC are well defined, Mapping (v,q) to qv defines a homomorphism
from BOC onto_A. |

Clearly o U {A}, so GCIGA. Moreover, QC = QA and IGC[ < ]GAl
since.I is proper. Hence, ,(C) < p(4).

Note that N(GB) is a submonoid (generated by V-T) of V acfing on'itself
. by right multiplication,and so N(GB)IV. Moreover, any r ¢ V which is a
reset (on QA) is certainly a reset when V acts on itself. Thérefore, N(GB)
is isomorphic to a submonoid of N(V), and we actually have N(GB)IN(V). In
particualr, IN(GB)I < |N(V)|. By hypothesis, [Ny} < [N(GA)l, so

- pdB) < pa).
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Let A be a semiautomaton such that neither method I nor method II
applies to A and A is not baslc, We claim that method IIT applies to A,
.which completes the proof of Lemma 5.

To verify the claim, let S = GA - {A}. S is a subsemigroup because
GA contains no non-~ldentity permutations., There is a non—reset-element
8 € 5 (otherwise A is a reset and method I applies); 1f GAs U {resets} = S,.
then N(A) has a non-trivial subautomaton on the_statcs in the range of s,
and method I applies. Therefore cts U {resets} # 8, and in particular S.
has proper left ideals (e.g., GAs).

Let T be a maximal left ideal of S, and let V = GAx U {A} for any
x € S5-T. Then (V - {A}) UT is a left ideal of S properly contajning T,
whicﬁ imﬁlies (Vv ~ {A}) UT=Sand VUT-= GA. If x;s, we have observed
that V U {resets] # GA,‘and so [N(V)| < IN(GA)I. Alternatively, 1f T
contains every non-reset s ¢ 5, then x is a reset, hence GAx contains
énly resets and IN(V)[ = 1< |N(GA)]. ' Q.E.D.

- There are usually many ways to decoméose a semiautomatén into two
semiautomata with smaller measures, and it is far from clear which
cholces ultimately yield the most satisfactory decomposition intoé basic
semiautomata.' It may even be desirable at times to cover a semiautomaton

with semiautomata which have larger measures (but which presumably are

"smaller" in some more general sense),
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