
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Constraining Pictures with Pictures

Allan Heydon, Mark W. Maimone, A m y Moormann,
J. D . Tygar, and Jeannette M. Wing

November 30, 1988
C M U - C S - 8 8 - 1 8 5 .

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213

A b s t r a c t

This paper presents a visual language called Miro for specifying and restricting operating system
security configurations. A Miro picture specifies exactly what rights users have on files. A Miro
constraint, also stated visually, restricts the set of Miro pictures which are considered legal. Such
constraints on pictures give an exact specification of security policies and a practical method for
alerting users to potential security holes. The language is easy to use and succinct.

This research was sponsored by IBM and the Maryland Procurement Office under Contract
No. MDA904-88-C-6005. Additional support for J. Wing was provided in part by the National
Science Foundation under grant CCR-8620027 and for J. D. Tygar under a Presidential Young
Investigator Award, Contract No, CCR-8858087. M. Maimone (under contract N00014-88-K-0641)
and A. Moormann are also supported by fellowships from the Office of Naval Research.

The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the US Government.

1 Introduction
Miro is a visual language for specifying security configurations. By "visual language," we mean
a language whose entities are graphical, such as boxes and arrows. By "specifying," we mean
stating independently of any implementation the required and/or desired properties of a system.
Finally, by "security," we mean security for operating systems: ensuring that files are protected
from unauthorized access and granting privileges to perhaps some users, but not others.

1.1 M o t i v a t i o n

Why visual specifications?
Pictures, diagrams, graphs, charts and the like are commonly used to aid one's understanding

of control information, data structures, computer organization, and overall system behavior. With
the advent of new display technology they have become more popular as a means of communicating
ideas in general. Visual concepts have even infected our terminology; for example, the basic unit
of security in Multics is a "ring."

Our work differs from other work in visual languages in three important ways: First, unlike
many languages based on diagrams where boxes and lines may fail to have a precise meaning,
or worse, have multiple interpretations, we are careful to provide a completely formal semantics
for our visual language. Second, in contrast to visual programming languages such as BLOX or
IconLisp [Gli86,CGLT86], we are interested in specifications, not executable programs. Third, we
do not use visualization just for the sake of drawing pretty pictures; instead, we address a domain,
security, that lends itself naturally to a two-dimensional representation.

Why security?
Computer security is a central problem in the practical use of operating systems. Security

has always been a concern of traditional operating systems, but with the proliferation of large,
distributed systems, the problem of guaranteeing security to users is even more critical. In order
to provide security in any one system, it is important to clearly specify the appropriate security
policy (those for a university would be different from those for a bank) and then to enforce that
policy. Here we address the first of these two issues by providing a way to express these policies
succinctly, precisely, and visually.

As opposed to previous approaches to specifying security which use simple, fixed policies
[NBF*80,Ben84], our emphasis is on providing the users at a site with the ability to tailor a security
policy to their needs and to support the use of that policy in a working file system. Moreover,
we are interested in helping users navigate through a specification as a means of understanding a
specific system's security configuration.

Security lends itself naturally to visualization because the domains of interest are best expressed
in terms of relations on sets, easily depicted as Venn diagrams, and the connections among objects
in these domains are best expressed as relations (e.g., access rights), easily depicted as edges in a
graph (where the nodes are Venn diagrams). The Miro picture and constraint languages extend
Harel's work on higraphs [Har88], an elegant formalism which shows relations on Venn diagrams.

1.2 M o d e l o f S e c u r i t y

The semantics of Miro are defined in terms of an underlying security model. The basis for this
model is the Lampsbn access matrix [Lam85], in which one axis is labeled with the names of users

University Libraries
Cimagie Mellon University

^tt§hyrgh ; Pennsylvania 15213

and a second axis is labeled with file names. 1 An entry in the matrix for a certain user and file
describes all the modes by which the user may access the file. An example of an access type is "the
user has the right to read the file." The range of modes of access may vary from one operating
system to another.

The access matrix provides the ability to represent all possible security situations. A major
challenge for a security specification scheme is to restrict the set of possible situations to only
those that are realizable and acceptable. Since the operating system can only support certain
configurations, some access matrices must be disallowed. (E.g., in Unix a situation where one group
of users has permission to read a file, and a second group of users has permission to write that
file cannot be realized [RT87]). Specific security policies may make some situations unacceptable
(e.g., in the military Bell-LaPadula security model [BL73,Dep85], users and files in the operating
system are assigned linear security levels (i.e., top secret, secret, not secret); it is only acceptable
for users to write to files at their security level or higher, and to read files at their level or lower.)
Another way to restrict the set of acceptable situations would be to establish guidelines for the
default protection of newly-created files and users. The specification of these default protections is
of tremendous practical importance; the failure of previous systems to address this issue fully has
been the source of numerous security problems in the past.

For us as specifiers the challenge is two-fold: first to be able to describe any access matrix in a
straightforward and simply understood way; and second to be able to describe the set of realizable
and acceptable access matrices. Section 2 gives a brief overview of the basic Miro picture language
which is rich enough to represent any static access matrix [TW87]. Its complete description and
formal semantics can be found in [MTW88]. Section 3 gives details of the Miro constraint language
which can restrict the set of Miro pictures to those that are realizable and acceptable. This con­
straint language is the most novel and significant contribution of this paper. Section 4 enumerates
the Miro software tools.

2 Miro Pictures and Types

2.1 M i r o P i c t u r e s

A Miro p i c t u r e is formed from a set of objects, each of which is either a b o x or an arrow,
each optionally labeled. Boxes represent individual processes and files or collections of processes
or files; arrows represent access rights. A box that represents a single process or file is a t o m i c .
Arrows can be p o s i t i v e or n e g a t i v e , representing the granting or denial of access rights. Well-
formedness conditions restrict the domain of syntactically legal pictures; one condition is that
arrows be attached at both ends.

Figure 1 shows a Miro security specification that reflects some aspects of the Unix file protection
scheme. The outermost left-hand box depicts a world, World, of users, three groups, Groupl,
Group2, and Group3, and two users, A l i c e and Bob. The containment and overlap relationships
between the world, groups, and users indicate that all users are in the world, and that some users
are members of more than one group. The right-hand box denotes the set of files in Alice's mail
directory. The arrows indicate that Alice, and no other user, has read access to her mail files. She

*In fact, we do not need to limit ourselves merely with the protection between users and files. We could easily
extend our access matrices, and the Miro domain, to include any number of unary and binary relations between
operating system objects; an example is process-to-process operations such as the right for one process to communicate
with another.

2

is granted read permission because the direct positive arrow from A l i c e overrides (i.e., is more
tightly nested than) the negative arrow from World.

World
Groupl

Group2
[Bob

Alice

Read

Read

/usr/Alice/mail

Figure 1: A Sample Miro Picture

The presence of negative arrows introduces some nontriviality to our semantics. For example,
in Figure 2, it is not clear whether Bob has read access to the file /usr /admin because one arrow
is more tightly nested at the tail and a second arrow is more tightly nested at the head. We call
such pictures ambiguous (a formal definition appears in [MTW88]). Informally, a picture is not
ambiguous if, for each pair (tz, /) , where u is an atomic user box and •/ is an atomic file box, there
is a single arrow (positive or negative) that is more tightly nested on both ends than all other
arrows and therefore governs whether u has access to / .

Figure 2: An Ambiguous Miró Picture

2-2 T y p e s

Each arrow or box object has a type. The type of an arrow is an element of a user-specified finite
set Any of access permissions (e.g., Any = {read, w r i t e , execu te }) . The type of a box is a name
plus a (possibly empty) set of attributes. Each box type must first be defined; individual boxes
are created as i n s t a n c e s of a type with specific values bound to the type's attributes.

A type definition takes the form:

3

type name
[subtype of parent]
[instances range]
[attribute-list]

where clauses enclosed in square brackets ([]'s) are optional.
The instances clause constrains the number of instances of this type, where range is either a

single integer or an integer range, with the default value being [O..00]. The attribute-list is a list of
zero or more tuples. Each attribute in the list provides additional information about each object
of the type. An attribute is either optional or mandatory (indicated by an 0 or M in the tuples of
Figure 3) , and may have a default value.

The box type definition provides a subtyping mechanism. Each type has at most one parent
(i.e., there is no multiple inheritance). The root of the type tree is defined to be type Object, which
has no attributes and is not a subtype of any other type. A subtype inherits all of the attributes
of its parent type, and can add additional attributes of its own. There are some restrictions on
the attributes which a subtype inherits: 1) if an attribute is mandatory in the parent, it must be
mandatory in the subtype, and 2) an attribute which is optional in the parent may be mandatory
in the subtype.

To create an i n s t a n c e of a particular type, the user must supply a name and values for all of
the mandatory attributes of that type, and may supply values for any of the optional attributes.

Figure 3 contains an example type definition and some instantiations. The two main types
are E n t i t y and Sysobj. There are three subtypes of E n t i t y (World, Group, and User) and two
subtypes of Sysobj (Dir and F i l e) . There can be only one World, indicated by the i n s t a n c e s
range of the World type. All Sysobjs have owner, created, and modif ied attributes. The first
two are mandatory, whereas the third is optional. F i l e s have an additional Boolean attribute
indicating whether or not they are devices; its default value is False.

D e f i n i t i o n s I n s t a n t i a t i o n s

type Entity type Sysobj Alice : User
< owner : string, M >

type World < created : date, M > /usr/alice : Directory
subtype of Entity < modified : date, 0 > < owner, Alice >
instances 1 < created, 01 /01/88 >

type File
type Group subtype of Sysobj
subtype of Entity < device : boolean = False, M >

type User type Dir
subtype of Entity subtype of Sysobj

type Mail
subtype of Dir

Figure 3: Some Sample Miro Type Definitions and Instantiations for Unix

Type information can be used to express two different kinds of restrictions on a Mirô picture.
First, there are restrictions on the number of instances of a type, such as "there must be exactly

4

one instance of type World." Such restrictions are expressed in the i n s t a n c e s clause of the type
definition. Second, there are restrictions on relations between types. The constraint language
outlined in the next section provides a means for restricting pictures based on the values of type
attributes.

In this paper we assume that all Miro pictures are well-formed, non-ambiguous, and type-
consistent.

3 Constraints

Miro is expressive enough to specify security configurations for any operating system. However, the
kinds of pictures users will draw will vary depending on the particular system they are specifying. In
particular, the system architecture will impose constraints on what should be considered a "legal"
(realizable and acceptable) picture for that system. For example, a picture that is legal for Multics
may be illegal for Unix.

Constraints themselves are specified by pictures drawn in a visual language similar to the Miro
picture language described in Section 2. We make the distinction, therefore, between Miro pictures
and Miro constraints. Each constraint specifies a "pattern," which is a template for many different
Miro pictures. If a particular Miro picture is an instance of the pattern, we say that picture matches
the pattern.

Constraints are typically statements in which the occurrence of some situation will imply that
some further condition should hold. Therefore, constraints are divided into two parts: the an­
tecedent (or trigger) and the consequent (or requirement). For example, we may wish to specify
the constraint that any time a user has write access to a file, he should also have read access to
it. In this case, the existence of write privilege is the "trigger" of the read privilege "requirement."
Both parts are expressed together in a single constraint. We describe shortly how these constraints
are depicted and give a description of their semantics.

Associated with each box in a Miro picture is information concerning its type (and thus its
attributes), which arrows are drawn to or from it, its corresponding entries in the access matrix,
and the boxes it contains and is contained in. We would like our constraint language to be able
to place restrictions on all this information. In particular, we want to express constraints on the
following aspects of a Miro picture:

• Which arrows may be drawn (e.g., "there can be at most 20 arrows leading to any box of
type top-secret"). Such constraints specify certain syntactic relations among boxes because
they depend solely on the syntax of the Miro picture, and not on its meaning.

• Entries in the associated access matrix (e.g., "if a user has write access to a file, he should
also have read access to it"). These constraints specify semantic relations among boxes
because they depend on the meaning of the Miro picture.

• Box containment relations (e.g., "every user in the Miro group should have a sub-directory
contained in his home directory called miro").

In general, a single constraint will involve a combination of these relations. For example, the
constraint,

For every user named u in the system, there should be a directory named u in the /usr
directory, and there should be a file called mail in that directory to which u has read
access,

is a combination of containment and semantic constraints; however, we can express this constraint
with a single constraint picture.

5

3 . 1 S y n t a x a n d S e m a n t i c s

Like Miro pictures, Miro constraints contain boxes and arrows, but with restrictions and extensions
to the picture syntax. We now present an informal version of the syntax and semantics in an
incremental fashion. The constraint language does have a formal semantics, which we have omitted
for the sake of brevity.

Keep in mind that the meaning of a constraint picture is exactly the set of Miro pictures
that legally match it. Therefore, at each step in the presentation we give examples of constraints
(constructed from the syntax as described up to that point) and Miro pictures, and explain why a
particular Miro picture does or does not match a particular constraint.

3 .1 .1 B o x P a t t e r n s

Each constraint provides a pattern against which a particular Miro picture is matched. At the
lowest level of the pattern are b o x p a t t e r n s against which individual boxes are matched. A box
pattern is a standard Miro box containing a box predicate taken from the box predicate language.
A particular box in a Miro picture m a t c h e s the box pattern if the values of its attributes make
the predicate true.

The box predicate is basically a Boolean expression (where "&," "|," and u!" denote "and,"
"or," and "not") of relations involving constants and attribute names associated with some box
type. We use C and C as relations on box types to denote subtype and strict subtype, respectively.
We use var iables to force attribute values of two or more boxes to match. A variable name is
distinguished from other identifiers by preceding it with a "$." Each variable $X in a constraint
must appear in at least one predicate containing the expression "attribute = $X." The semantics
of each variable name in a constraint is as follows: Pick any box pattern in which the variable
is compared to an attribute for equality and set the value of the variable to the value of the
attribute of the box matching the rest of that box pattern. Then, for each other use of the variable,
substitute the assigned value for the variable name; that substituted value must make each of the
box predicates in those boxes true.

The boxes shown in Figure 4 illustrate the basics of the box predicate language. The predicates
match: (a) all Users named jones , (b) all Groups other than those named miro or theory , and
(c) all F i l e s created in January 1988,

type - User &
name = MjonesM

type * Group &
! (name € {wmiroH

l

wtheoryM})
type - File &
1/1/88 <= created <= 1/31/88

(a) <b)
Figure 4: Three Box Patterns

(c)

For the remainder of the paper, we will adopt the shorthand that upper-case letters denote box
predicates matched only by the box instance in the Miro picture named with the same lower-case
letter (i.e., a matches A only, b matches B only, etc.).

3 .1 .2 A r r o w s

There are three kinds of constraint arrows, one for each type of relationship between boxes (syn­
tactic, semantic, or containment) we wish to constrain. We call the arrows associated with these

6

relationships syntax arrows, semantics arrows, and containment arrows, respectively. Both the
head and tail of a syntax or semantics arrow lie directly on the boundary of the boxes to which
they are connected, whereas the head of a containment arrow lies inside its connected box. Syn­
tax and semantics arrows are visually distinguished by drawing them with solid and dashed lines,
respectively. We also adopt the convention that syntax and semantics arrows are horizontal, while
containment arrows are vertical. Examples of these arrows are shown in Figure 5.

A S f
B

r
A s . — — —

f
B

f
A

^) J)) J

(a) Syntax Arrow (b) Semantics Arrow (c) Containment Arrow

Figure 5: Graphical Syntax for the Three Constraint Arrows Types

Syntax and semantics arrows are labeled, but containment arrows are not. The label in the
former two cases serves to further specify which type of relationship exists between a and b. Recall
that Any is the set of allowed access types. In general, the label specifies some non-empty set
5 C Any. If 5 is a singleton, we write it simply as s instead of { s } .

We now describe what it means for the boxes a and b to match the patterns A and B with
respect to each type of arrow.
(a) S y n t a x A r r o w : If there is a syntax arrow from A to B labeled 5 , then there must exist an

arrow in the Miro picture from a to b of some type s G S.
(b) S e m a n t i c s A r r o w : If there is a semantics arrow from A to B labeled 5 , then the access

matrix associated with the Miro picture must specify that a has some permission s on 6,
where s G S. Furthermore, since the access matrix is only defined on atomic boxes, any
box pattern having a semantics arrow incident on it can be matched only by an atomic box.
Therefore, in this example, both a and b would have to be atomic to match their respective
box patterns.

(c) C o n t a i n m e n t Arrow: If there is a containment arrow from A to B, then box a must be
directly contained in box b in the Miro picture.

Consider the Miro picture and six different constraints shown in Figure 6. Along with each
constraint is an indication of whether or not the Miro picture matches that constraint. We now
explain each of these results:
(a) and (b) : Constraint (a) is matched because d does have write access to g; constraint (b) is

not matched because there is not a write arrow connecting d to g in the picture.
(c) and (d) : Constraint (c) is matched because 6 is directly contained in a; constraint (d) is not

matched because d is contained in a, but not directly so.
(e) : Constraint (e) is matched because there is a read arrow from a to e in the picture. This con­

straint points out the "or" nature of the set label on syntax and semantics arrows: constraint
(e) would have been matched if there had been either a read or a write arrow (or both) from
a to e.

(f) : Constraint (f) is matched because d has read access to / .

7

Miro Picture

w
w

w

(a) Matched

(b) Not Matched

{r,w}

(e) Matched

Constraints

/
A

I j
B

J

(c) Matched

f
D

(d) Not Matched

(f) Matched
Figure 6: Simple Constraint Examples to Illustrate Constraint Arrows

3 .1 .3 C o n t a i n m e n t and Starred C o n t a i n m e n t

In Miro pictures, we already have a powerful visual representation for containment, and we allow
this representation in constraints as well. Drawing one box inside another is a shorthand for drawing
a containment arrow between two non-intersecting boxes. Figure 7a shows the equivalence of these
two representations. We will see later that containment arrows (the left-hand side of the equality)
provide more expressiveness than the box-inside-a-box representation (the right-hand side of the
equality).

The constraint syntax also provides a means for specifying that a box is contained in another
box at some level, as opposed to being contained directly. A containment arrow with a star at its
tip denotes this more general starred containment relation. Again, there is an equivalent graphical
representation for starred containment in which one starred box is drawn inside another (Figure 7b).

The semantics of a starred containment relation is straightforward. Boxes a and b will match
the constraint shown in Figure 7b if and only if a is contained in b (one or more levels deep). For
example, the Miro picture in Figure 6 would match constraint Figure 6d if the containment arrow
were starred.

8

/
B

i

f ~\
A

(a) Box Pattern A is Directly
Contained in Box Pattern B

c
B *

i
\

J

f ~\
A

(b) Box Pattern A is Contained
in Box Pattern B

Figure 7: Graphical Syntax for Direct Containment (a) and Containment (b)

3 .1 .4 N e g a t e d A r r o w s

Each of the three kinds of constraint arrows may be negated like Miro arrows, but the semantics
is different in each case. In general, a negated syntax arrow matches a negated arrow in the Miro
picture, whereas a negated semantics arrow or containment arrow matches the negation of the
relation that would be specified by the positive version of the arrow.

We now describe these semantics more formally by defining what it means for the boxes a and
b to match the patterns A and B with respect to each type of negated arrow.
(a) N e g a t e d S y n t a x Arrow: If there is a negated syntax arrow from A to B labeled 5 , then

there must exist a negative arrow in the Miro picture from a to b of some type s € S.
(b) N e g a t e d S e m a n t i c s A r r o w : If there is a negative semantics arrow from A to B labeled 5 ,

then the access matrix associated with the Miro picture must specify that a has negative
permission s on 6, for some s € S.

(c) N e g a t e d C o n t a i n m e n t A r r o w : If there is a negative containment arrow (or negative starred
containment arrow) from A to 5 , then box 6 must not be directly contained in (or contained
in at any level) box a in the Miro picture.

(a) Matched

(b) Not Matched

f
c r <

>
(c) Matched

/
A

N

k i
J

)

f
D

\

v J
(d) Matched

r
D

A

J

(e) Not Matched

{r,w}

(f) Matched

Figure 8: Constraints Using Negative Arrows

Figure 8 shows some simple constraints using negative arrows. As before, we indicate whether
the Miro picture of Figure 6 matches each constraint. Most of these examples are straightforward,

9

but constraint (f) deserves explanation. In the Miro picture, d has positive write access to g, but
negative read access. Constraint (f) is matched because we only require the existence of a single
access matrix entry which confirms either a negative read or a negative write relationship between
d and g.

3.1 .5 T h i c k a n d T h i n

Recall that constraints in their general form are composed of both a trigger and a requirement,
which must hold whenever the trigger is satisfied. We draw both parts of the constraint together
and use line thickness to distinguish the two parts; the objects that form the trigger are thick, and
the objects that form the requirement are thin (on a color display system, we might use two colors,
such as red and blue, instead of line thickness). The loose meaning of a picture with both thick
and thin objects is: "For each part of the Miro picture matching the thick part of the constraint,
some additional part of the Miro picture must match the thin part of the constraint." To specify
conditions that must always be true, the entire picture must be thin.

type = Dir &
group-owner ="miroH

type = User &
name * $A w

(a)

type - File &
owner = $A

typé € {Rie, Dir} &
group-owner ="miroM

(b)

Figure 9: Two Examples of Simple Constraints Using Two Colors

The semantics of thick and thin constraints is spelled out more rigorously in section 3.1.6 below.
For now, we present the simple examples of Figure 9 to introduce the meaning of such constraints.
Constraint (a) says, "For every User box u and every File box / which is owned by that same user,
u must have write access to Constraint (b) says, "For every Dir d owned by the group miro,
all F i l e s or Dirs directly contained in d should also be owned by the the group miro." Notice that
this constraint will force its way down all F i l e s and Dirs of any subtree rooted by a Dir owned by
the Miro group.

Constraint (b) illustrates a limitation of the shorthand representation for box containment —
if we had represented this constraint using that shorthand, we could represent both boxes, their
thickness, and we could implicitly represent the containment arrow, but we could not represent
the thickness of that arrow. Therefore, we need a rule defining which arrow thickness to assume in
order to make the box containment shorthand complete. The rule is: if both boxes are thick, the
arrow is thick; otherwise, the arrow is thin.

3 .1 .6 B u i l d i n g B i g g e r C o n s t r a i n t s

So far, we have only considered simple constraints composed of at most two boxes and a single
arrow, but in fact a group of many boxes and constraint arrows may work together to specify a
bigger constraint pattern. We expect most constraint pictures to be relatively small, consisting of

10

at most four or five boxes and three or four arrows. We require that no boxes overlap in these
bigger constraints though strict containment is still allowed.

Given a more complex constraint picture, it is necessary to define carefully what it means for
a Miro picture to match that constraint. We first convert all instances of box containment in the
constraint to the equivalent form using containment arrows and starred containment arrows. We
now present some useful definitions. A s u b - p i c t u r e of either a Miro picture or a Miro constraint
(picture) is a (possibly empty) subset of the boxes and arrows comprising the original picture. It
is important to note that a sub-picture need not be well-formed: it may have dangling arrows.

A sub-picture PM of a Miro picture P m a t c h e s a sub-picture Pc of a constraint if:
• there is a one-to-one mapping a from box patterns of Pc to boxes of PM such that for each

box pattern b oi Pc, the box a(b) satisfies the box predicate of b,
• there is a one-to-one mapping (3 from syntax arrows of Pc to arrows of PM such that for each

syntax arrow a (with label S) of Pc, the type of (3(a) is in 5 ,
• there is a one-to-one mapping 7 from semantics arrows of Pc to access matrix entries deter­

mined by P such that for each semantics arrow a (with label S) of Pc, the type of 7(a) is in
S, and

• there is a one-to-one mapping from direct containment arrows (or starred containment arrows)
of Pc to instances of direct containment (or containment) in PM

such that for each constraint arrow a in P c , if B denotes the set of box patterns in Pc incident on
a (note that B may be a pair, singleton, or empty), it is the case that the corresponding boxes in
PM are connected in the same way that a and B are. Informally, this definition says that a Miro
sub-picture matches a constraint sub-picture if each individual object matches, and if the relations
between Miro boxes are connected to the correct boxes according to the constraint.

We are now ready to define matching between entire Miro pictures and constraints. We first
split the constraint picture Pc into its thick (trigger) and thin (required) sub-pictures, which we
call P? and PR respectively. A Miro picture PM is legal with respect to the constraint picture
Pc if, for each sub-picture of PM that matches Pj», there is another sub-picture of PM that, when
combined with the first sub-picture, matches all of Pc- Furthermore, the one-to-one mappings
used in the latter matching must be extended functions of the one-to-one mappings in the former
matching.

name = MGroup2H

type - User r name - 7usr/Alice/mail"

Figure 10: A Sample Constraint Using More Than Two Boxes and One Relation

Consider the (probably undesirable) constraint of Figure 10 in reference to the Miro picture of
Figure 1 (pg. 3). This constraint says: "For every User directly contained in a box Group2, there
must exist a file / u s r / A l i c e / m a i l to which that User has read access." Since Bob does not have
such permission, the Miro picture in this case does not match the constraint.

11

3,1 .7 N u m e r i c C o n s t r a i n t s

A constraint picture can also have associated with it a numeric constraint that specifies some
range of non-negative integers. To determine whether a Miro picture is legal with respect to the
constraint, do the following: for each sub-picture that matches the trigger, count the number of
sub-pictures matching the entire constraint. This number should be within the range specified.
When there is no explicit range, the default is > 1.

type c Entity Any ^ type - Dir]

i

Figure 11: No Directory May Have More Than 10 Arrows Pointing At It

Figure 11 uses a numeric range to specify one of the conditions implicit in the design of the
Andrew file system 2 . In Andrew, an access list of at most ten entries is associated with each
directory. Figure 11 therefore states that any Dir may have at most ten arrows pointing at it.

3 .1 .8 N e g a t i v e - C o n s t r a i n t s

Sometimes, it is more natural to express a constraint by depicting what should not be allowed.
Negative constraints are used for this purpose. A negative constraint is simply a positive constraint
(as described above) with a large "X" through its frame. Informally, a Miro picture is legal with
respect to a negative constraint if and only if it is illegal with respect to the positive version of
the constraint. Since negated constraints with counts can be confusing, we only allow constraints
without a numeric constraint to be negated. Hence, a negative constraint is equivalent to its
positive version with the numeric constraint "= 0."

/ >>
type c Entity Any ^ type - File

Figure 12: No File May Have Any Arrows Pointing At It

Figure 12 depicts another aspect of the Andrew file system. Protections in Andrew are associ­
ated with directories — files inherit the protection of their parent directory. Therefore, we require
that no F i l e in a Miro picture for Andrew can have an arrow pointing to it.

3.2 Constraints for Unix
In this section we present some typical constraints for the Unix operating system. Before each
example, we describe the constraint being specified.

2Andrew is a distributed Unix-like operating system with a common file server [SHN*85].

12

1. Every arrow must connect an E n t i t y to a Sysobj .

type c Entity Any type c Sysobj

2. (a) Every User must be directly contained in at least one Group, and a User cannot be directly
contained in anything but a Group, (b) Every Group must be directly contained in at least one
World, and a Group cannot be contained in anything except a World.

f >
type = Group ! (type = Group)

i A
c

type = User

type = World (type = World)

*
à

type = Group

(a) (b)

3. Whenever a User has write access to a File, he should also have read access to that Fil«

type = User w type • File

4. Every user Dir (e.g., / u s r / d o e) should contain the three Dirs: b in , s r c , and man.

(type = Dir) & (name = Tusr/")
r

type = Dir

j

type = Dir &
name = "bin"

type = Dir &
name = "src"

type = Dir &
name = "man"

13

5. For each User named A, there should be a Dir named A in /usr/, and that Dir should contain
a File called Mail to which user A is the only User given read access. This constraint denies
all other Users read access on A's mail file because, when we match boxes of the Miro picture
against the trigger, every box matching the bottom User box pattern must be different from the
box matching the top User box pattern.

type « User &
name = $A

type - User r
-X-

(type = Dir) & (name = 7usr/")

(type = Dir) & (name = $A)

(type - File) &
(name = MMailM)

6. If a User A has a Dir named private in his home directory, then any File or Dir contained
in it should have the following two properties: A should have write access to it, and no other User
should have read access to it.

type = User &
name = $A

type = User

(type = Dir) & (name = $A)

(type = Dir) & (name » "private")

type c Sysobj

7. Below is a constraint a system administrator might wish to establish. It states that no user's
Dir (i.e., no Dir in the user's home directory subtree) should contain more than 20 entries.

(type - Dir) & (name = 7usrr)

X type = Dir

type c Sysobj

(<= 2°)
14

4 Implementation
Miro provides a way of specifying complex relations in a simple way. The hierarchical structure
provided by our box and arrow notation provides a straightforward representation of binary re­
lations between files and users, and the constraint mechanism provides the capability to delimit
acceptable and unacceptable Miro pictures.

We are designing a set of tools that will allow us to exploit Miro's capabilities. Our front-
end tools are operating system independent, and use an intermediate file format to represent Miro
pictures and constraints; the back-end tools use the intermediate file format to interface with actual
operating systems.

The front-end tools include the Miro graphical editor, which allows users to view and modify
Miro pictures and constraints. The editor runs under the X Window system and is built on top
of the Garnet system [Mye88], The editor provides simple syntactic checks, and compiles pictures
and constraints into our intermediate file format. It also provides the ability to "zoom" out and in
to allow the user to abstract away or focus in on details of a picture, and to "highlight" the sub-
pictures of interest. The Miro printing package takes the intermediate file format and produces a
PostScript file of the Miro picture. The Miro static semantics checker checks a picture for ambiguity
or violations of constraints, and reports any errors.

The back-end tools include the Miro file system checker, which probes the file system to check
whether a given file system's protection conforms with its Miro description. A different file system
checker is needed for each operating system on which Miro will be used. We are investigating the
feasibility of a Miro file system inspection tool which could alter a Miro picture to correspond to
the actual state of the file system. The file system inspection tool raises a number of interesting
questions in the area of automated production of attractive graphs. Of the tools mentioned, we
have prototypes of the graphical editor and the printing package.

In conclusion, the Miro system provides a convenient visual language for specifying security
properties. Our future work will concentrate on applying the Miro language to domains other than
security.

5 Acknowledgments

David Harel provided us with the inspiration for our basic visual language with his notation and
semantics for higraphs. Brad Myers urged us to develop a visual language for specifying constraints
and convinced us that such a means of specification was feasible. He has also been extremely helpful
in bootstrapping our editor on top of his Garnet system.

References

[Ben84] T. Benzel. Analysis of a kernel verification. In Proceedings of the 1984 Symposium on
Security and Privacy, pages 125-131, Oakland, CA, May 1984.

[BL73] D. E. Bell and L. J. LaPadula. Secure Computer Systems: Mathematical Foundations
(3 Volumes). Technical Report AD-770 768, AD-771 543, AD-780 528, The MITRE
Corporation, Bedford, MA, November 1973.

[CGLT86] G. Cattanio, A. Guercio, S. Levialdi, and G. Tortora. Iconlisp: an example of a vi­
sual programming language. In Proceedings of the 1986 IEEE Workshop on Visual
Languages, pages 22-25, 1986.

15

[Dep85] Department of Defense. Trusted Computer System Evaluation Criteria. Technical Re­
port CSC-STD-001-83, Computer Security Center, Department of Defense, Fort Meade,
MD, March 1985.

[Gli86] Ephraim P. Glinert. Towards "second generation" interactive, graphical program­
ming environments. In Proceedings of the 1986 IEEE Workshop on Visual Languages,
pages 61-70, 1986.

[Har88] David Harel. On visual formalisms. Communications of the ACM, 31(5):514-530, May
1988.

[Lam85] B. W. Lampson. Protection. ACM Operating Systems Review, 19(5):13-24, December
1985.

[MTW88] Mark W. Maimone, J. D. Tygar, and Jeannette M. Wing. Miro semantics for security.
In Proceedings of the 1988 IEEE Workshop on Visual Languages, pages 45-51, October

"1988.

[Mye88] Brad A. Myers. The Garnet User Interface Development Environment: A Proposal.
Technical Report CMU-CS-88-153, Carnegie Mellon University, Computer Science De­
partment, September 1988.

[NBF*80] P. G. Neumann, R. S. Boyer, R. J. Feiertag, K. N. Levitt, and L. Robinson. A Provably
Secure Operating System: The System, Its Applications, and Proofs, Second Edition.
Technical Report CSL-116, SRI, May 1980.

[RT87] M. Rabin and J. D. Tygar. An Integrated Toolkit for Operating System Security. Tech­
nical Report TR-05-87, Aiken Computation Laboratory, Harvard University, May 1987.

[SHN*85] M. Satyanarayan, J. Howard, D. Nichols, R. Sidebotham, A. Spector, and M. West. The
ITC distributed file system: principles and design. In Tenth Symposium on Operating
Systems, pages 35-50, 1985.

[TW87] J. D. Tygar and J. M. Wing. Visual specification of security constaints. In Proceedings
of the 1987 IEEE Workshop on Visual Languages, Linkoping, Sweden, August 1987.

16

