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Abstract 

This paper describes a temporal logic for the simulation, specification and verification of digital circuits. 

This language is a general purpose programming language with temporal formulas as its Boolean 

expressions. The temporal operators include both future-time operators and past-time operators. These 

past-time formulas can be used for simulation and the future-time formulas can be used for verification. 

In this paper, we will deal with hardware on an abstract level. For example, a logic gate is an abstraction 

of a concrete circuit regardless whether it is TTL or CMOS. Our temporal language is sufficiently powerful 

that it can be used to describe the abstract devices for many synchronous circuits. These software 

devices can be used to simulate the entire synchronous circuits quite easily. We can also efficiently verify 

some properties of the circuits using the temporal language. 
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1. Introduction 
Formal methods have already played an important role in hardware design and verification [3,4,7]. Ben 

Moszkowski's ITL language [7] is an outstanding example of the use of temporal logic in hardware design. 

It permits direct reasoning about signals, devices and circuit behavior. The intervals of time provide a 

unifying means for presenting various features. His logic is good for describing the initial and final states 

of a subinterval as well as the intervening stable behavior. However, it is not suitable for describing the 

precise changes that some logic circuits make. Furthermore, the time sequences in ITL are all future-time 

sequences, never past-time sequences. Thus, ITL can not be used to simulate logic circuits, and it is not 

suitable for automatic verification of Integrated Circuits without additional effort [5]. 

In this paper, a new temporal language is introduced which can be used for both simulation and 

automatic verification of logical circuits. This language is a general purpose programming language with 

temporal formulas as its Boolean expressions. Past-time temporal formulas such as %A% +A, MA and 

Since(A,B) can be used for simulation, and future-time temporal formulas such as OA, OA, UA and 

Until(AB) can be used for verification. 

A device is assumed to have the following two characteristics: 
1. There is a certain logical relationship between input and output. 

2. There is certain propagation delay time from a time the input gets some signals to another 
time the output gives out some expected signals. 

A logical circuit consists of several logical devices and their connections. In this paper, logical devices 

will be modeled by software descriptions which we call abstract devices. These abstract devices act just 

like their hardware counterparts, so that we can use these abstract devices as blocks to simulate many 

digital circuits for design. By verifying these abstract devices, we can verify many properties of actual 

digital circuits. 
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Figure 1-1: A Logical Circuit 

To construct abstract devices a temporal language is introduced which adds time parameters into the 

1 



normal temporal language. Simplicity and readability are still retained in the language. The temporal 

language introduces symbols for phrases such as next time, sometime, always, until, last time, 

previous times, once, since, and so on. We can use the temporal language to write down an easily 

understandable description of various devices. The temporal operators can be followed by a time 

parameter which specifies an exact duration of the operator. These time parameters permit a more 

precise and accurate description of the circuit to be made. 

Since this temporal language integrates an algorithmic language with a temporal logic, it can be used 

for both simulation and verification without having to change the form of the description. We only need to 

take a different time frame of reference to satisfy the different goals. We sometimes we use an real time 

frame of reference (introduced in Section 3) for simulation of logical circuits; in another times we use the 

clock time frame of reference (i.e. the resting times discussed in Section 6). Our compiler implements 

both time frames very easily. 

2 



2. A Quantized Temporal Language For Hardware Design 
Some temporal languages are designed for computing[8,9], while others are specially designed for 

verification [1,7]. Our Quantized Temporal Language has been designed as both a general purpose 

programming language (for simulation) and as a temporal logic (for verification). 

A formula needs a truth value when it is in a guard Gf in a case statement, so we begin by describing 

the formulas of our language which can be either true or false. Let expr and exprl be two arithmetic 

expressions. Then expr = exprl is an atomic formula which is true if the two expressions have the same 

value. Similarly, expr<expr1 is also an atomic formula that is true if expr is less than exprl. The 

expression x is expr is a special atomic formula that always is true and stores the value of expr in the 

variable x. Now(t) is an atomic formula that is true if the present time is t. 

We define the set of truth formulas as follows: 
• an atomic formula is a formula. 

• If A and B are formulas then - iA A&B, AvB are formulas. 

• If A and B are formulas then OA, 0[n]A, OA 0[n]A, QA, Q[n]A, Until(A,B), Unti![<n](AB), 
c7nft7[>n](AS) are formulas for n > 0. (The meanings of these temporal formulas are 
explained at the end of this section) 

• If A and B are formulas then « A • [ n ] A • A • M A MA, M[n]A, Since(A,B), Since[<n]{A,B), 
Since[>n](A,B) are formulas for n > 1 . (The meanings of these temporal formulas are 
explained at the end of this section) 

Now, we can describe the statements of our language, p := expr is an assignment statement that 

assigns the value of expr to the variable p. return(expr) is an assignment statement which sets the value 

of a function call. 

We define statements as follows: 
• An assignment statement is a statement. 

• If A are statements, and G is a formula, then 

{A;B\ is a statement; 
while (G) A is a statement. 
for (<expression 1>; exp ress ion 2>; exp ress ion 3>) A is a statement. 

• If Gp G^,..., Gn are formulas, and Ap A& Aw An+1 are statements, then the following 
expression is a statement: 

Case{ 

G2<A2\ 

otherwise -: An+1 

) 
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The case statement acts like the following statements in C : 

i f ( G r ) 
else if (G2) A2\ 

else if (G„) An\ 
else An+1; 

We allow some of the y*,to be empty. Thus, if G1vG2v...vGn is true, we permit to have the statement: 

Case( 
Gi ; 

G2-\A2\ 

Gn'-An'> 
) 

As a comparison, we use the form G -: A in this language like the form G -»>4 in Logic. The premises in 

statements of PROLOG appear at the back of the statements, so we have to use the symbol <- in the 

statement A <- G and we have the form A :- G in PROLOG. We save the symbol" : " for defining type. For 

example, for every integer variable a we must indicate in programs that var a : integer. The order of 

testing formulas in a program is from left to right. 

In case statements, if a guard Gt is A&B, we can write A,B instead. The priorities of operations are as 

follows: 

Operator Priority 
A 5 
v 4 

3 
-: 2 
; 1 

We assume that there is a time frame of reference. The time sequence is /q=0, ^ - 1 , f 2=2,.... For clarity 

we use the time sequence Iq,^, f2,.... instead of a state sequence s 0 , s v s, in this paper. For a 

temporal variable p there are values p[0], p[1], p[2],... respectively at different times ^ = 0 , ^ = 1 , f 2 =2 

So, we have to use an array to actually implement the temporal variable p. If we talk about a temporal 

variable p at a time tv then p has the value p[f,], and the notation O p represents f{tM] and %p represents 

p[f/_j]. A variable X is not a temporal variable, and it can maintain its value at different times. For the 

variable X there are not notations O X and %X. 
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If a formula A is true at time th we write ty-A For a sequence x-tQ,^,..., we define the truths of 

formulas inductively as follows: 

t^Now(t) iff t= tr 

t^A&B iff ty-A first, and then fJ=B. 

tt\=AvB iff fJ=A otherwise fJ=R 

ty=OA iff f / V 7 | = A (next time) 

y - O M A iff f ^ J - A 

t,\=0A iff ty=A otherwise f / + r |=0A (sometime) 

t^0[O\A iff fl-A 

fJ=0[n]A iff f,|=A otherwise //+j|=0[/7-7]A 

f,|=CL4 iff tj^A first, and then f / + r | »aA (always) 

fJ=O[0]A iff f / l-A 

f,j=a[n]A iff 4-A first, and then /;J=a[n-7]A 

t^Until(AB) iff ^=0, otherwise f ,M&Otf /m7(AS). (A until S) 

f,]=C//m7[>0](AB) iff tji=Until(AB). 

tl=Until[>n+1]{AB) iff r,j=Q[n]>4 first, and then tj+n+1\=Until(A,B). 

t^UntillzOHAB) iff fl-a 

fJ=£//m7[<A7+7](AS) iff f,j=S, otherwise f/|=A&OC/nrz7[<n](A,S). 

f;|=#>4 iff tj^-A where 0</. (last time) 

^ • [ / 7 ] A iff / / . n M where 1<n</. 

^ = • 4 iff f/_ r|=A otherwise / / . / != • A (once A) 

iff t y l - A 

^=•[/7+7]/* iff f / . t |=A otherwise ?;_y|=4[n]>4 where 1<n</. 

ty=WA iff true. (the previous times) 

iff th1\=A first, and then th1\=MA where 0</. (the previous times) 

t^M[1]A iff f M | - A 

fy=B[/7+7]A iff th1\=A first, and then f/.r|=B[/7]A where 1<n</. 

ty=Since(A,B) iff false. (A since S a n d not now) 

tji=Since{A,E) iff ?/_/l=A first, and then f M |=Sv 9Since{A9B) where 0</. (A since S and not now) 
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tf\=Since[> 1]{A,E) iff tji=Since(A,B). 

tl=Since\£n+1\(A,B) iff t^M[n]A first, and then thr$=Since(A,B) where 1<n</. 

t^Since[<\]{A,B) iff f M | « A & f t 

tf\=Since[£n+1](A,B) iff f / „ 7 M first, and then tj^Bv+SincefehftA^ where 1 </?</. 

We define the following abbreviations: 
• [m,n ]A s • [ m ] A & Q[n]A 
StaW*[0,n](x) m • [n -1 ] (x = Ox) where n>0 and x is a temporal variable. 
£faWe[m,0](x) a H[m](x * Ox) where m>0 and x i s a temporal variable. 
SraWe[m,/7](x) • Stable[mtQ](x)&Stable[0,n]{x) where x i s a temporal variable. 

SteWe[n7,n](x) means that the values of x maintain stable in previous m times and after n+1 times 

including the current time. 
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3 . Abstract Devices 
In the operation of an electronic circuit, a small amount of time is needed for the electronic devices 

within the circuit to change logic levels. This effect leads to the gate characteristic called propagation 

delay. Propagation delay tells the amount of time it will take before the output of a gate switches logic 

levels after the input logic levels are set. For an inverter gate, it is the delay from a point on the input 

waveform to the same point on the output waveform. This point may typically be chosen half-way 

between a logical low level and a logical high level. Two delay times are specified. One, tplh, is the 

propagation delay time when the output changes from a low state to a high state. The maximum value of 

the f p j h rating of a 7400 NAND gate is specified to be 22 nanoseconds (22 ns). While the other, f p N , is the 

propagation delay time when the output changes from a high state to a low state. The maximum value of 

the f p h l rating of a 7400 NAND gate is specified to be 15ns. Generally, the maximum propagation delay 

value is specified, because it indicates the worst-case switching speed, and all 7400 NAND devices will 

work in 22ns or faster. 

The propagation delay time of a simple gate is used as a unit time. For example, the gates NOT, AND 

and OR could be considered as gates that have 1 delay time approximately. For usual application , We 

don't need to make a distinction among them in delay time. The propagation delay of more complicated 

blocks will be a multiple of this unit t ime. This gives us our time frame of reference, with times 0, 1, 2 , . . . . 

which is called a real time frame of reference. We use OA to indicate that the formula A will be held at 

the next time (1 unit time later), and use %A to indicate that the formula A held at the last time (1 unit time 

before). Now, we introduce the following abstract devices which correspond to the appropriate logical 

circuits. 

NOT GATE 
NOT(input,output) a 
Cose( | 

AND GATE 
AND(input1,input2,output) = 
Cose( 

•(inputl m 1 Jnput2 = 1) -: output := 1 ; 
%(input1 = 0 v input2= 0) -: output := 0; 
otherwise -: output := unknown 

%(input= 1) -: output := 0; 
%(input= 0) -: output := 1 ; 
otherwise -: output unknown 
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AND(input1 ,input2,input3,output) m 
Case( 

9{input1 = 1 Jnput2 « 1 Jnput3 = 1 ) -: output := 1 
%\input1 « 0 v /77pirf2 » 0 v input3 * 0) -: output 
otherwise -: output ;= unknown 

) 

OR GATE 
OR(input1 ,input2,output) m 
Case{ 

%(input1 « 1 v /npitf2 - 1 ) -: otrfpirf 1 ; 
%(input1 • 0Jnput2 « 0) -: ot/flxrf := 0; 
otherwise -: oufptrf > unknown 

) 

OR(input1 ,input2,input3,output) m 
Case( 

%(input1 » 1 v input2** 1 v /npirt3 = 1) -: oi/fcuf 
%\input1 » 0Jnput2 « 0Jnput3- 0) -: oitfpi/f := 0 
otherwise -: oa/puf := unknown 

) 

XOR GATE 
XOR(input1,input2,output) m 
Case( 

%(input1 « 0Jnput2 - 0) -: oufcuf := 0; 
%\input1 « 0Jnput2 « 1 ) -: Qt/flot/f := 1 
%\input1 • 1 ,/npuf2 » 0) -: oi/fai/f := 1 
%\input1 = 1 ,/npu?2 = 1 ) -: oi/ljDi/f := 0 
otherwise -: oi/fpuf ;» unknown 

) 

XNOR GATE 
XNOR(input1,input2,output) m 
Case( 

%(input1 = 0Jnput2 = 0) -: oulpuf := 1 
+(input1 « Q,input2 = 1) -: ouflDi/f := 0 
%(input1 = 1 f/npLtf2 = 0) -: oufcirf := 0 
9(input1 « 1 ,/npu/2 - 1) -: oi//puf := 1 
otherwise -: oirfpuf := unknown 

) 

NAND GATE 
NAND(input1 ,input2,output) s 

%(input1 = 1 ,//7pirf2 = 1) -: ouflDitf := 0; 
%\input1 « 0 v /npirt2 = 0) -: oi//puf := 1 ; 
otherwise -: oufpttf > unknown 

) 



NAND(input1 ,input2,input3,output) = 
Case( 

%(input1 = 1 Jnput2 = 1 Jnput3 = 1) -: output := 0; 
%{input1 = 0 v input2 = 0 v input3 = 0) -: output := 1; 
otherwise -: oi/fpi/f := unknown 

NOR GATE 
NOR(input1,input2,output) m 
Case( 

%{input1 = 1 v input2= 1) -: oitfpirf 0; 
%{input1 = 0Jnput2 = 0) -: oufcitf := 1; 
otherwise -: output > unknown 

) 

NOR(input1 ,input2,input3,ouput) a 

%(input1 m 1 v //?paf2- 1 v /npuK? = 1) -: oulpttf := 0; f NOR 
%{input1 = 0Jnput2 - 0Jnput3 = 0) -: oitfpi/f := 1; Î TTT 
otherwise -: ou/pirf unknown 

) 1 , 1 

RS FLIP-FLOP 
RSi (input 1,input2,output2,output1) » 

%(input1 - 0) -: outputl := 1 ; 
%{input1 « 1 ) ,«(X/s outputZ) -: outputl :=abs(X)\ 
otherwise -: outputl > unknown 

) 

RS2(input1 Jnput2,output1 ,output2) = 

The adsfo) is defined as follows: 

x = unknown -; return(unknown)] 
otherwise -: return{ |x-11) 

) 

It is a special definition of function. This function takes value from the return(expr). 

Case( 
•(input2 = 0) -: oufcH7i2 := 1; 
•(input2 = 1 ) , » (X /s oufcuM) -: oirfpu(2 ;= a t e ^ ; 
otherwise -: output2 := unknown 
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4 . Simulations of Sequential Circuits 
In a digital circuit, points connected by a wire always have the exact same voltage. Therefore, we can 

represent all of these points by a single point. Of course, no two representative points can be connected 

by a wire. These points sometimes have different voltages at different times. For instance, A point p,-gets 

voltages pylO], p/[1], P/[2],..., which comprise an array, corresponding to times 0 , 1 , 2 , . . . respectively. So 

any point Pj in a circuit can be considered to be a temporal variable with an implicit parameter t This time 

parameter must be considered when calculating the values of pr As an example, we now analyse a D 

Flip-flop constructed by six NAND chips (See Figure 4-1). 

1. If the input requirement is the following: 
a. For the point p^ the input signal is 

CONDITIONO(p0) s p0 is 0 if the time is smaller than 10, otherwise p0 is 1. 
b. For the point pv the input signal is 

CONDITIONI (py) s p1 is 1 at any time. 

The detailed input requirement will be discussed in Section 6. The 1a indicates that there is a positive-

edge signal of clock pulse to be added at the point p^ The 1b indicates that there is an input signal to be 

added at the point p 7 . Both CONDITIONO(Po) and CONDITION1(p 7) could be treated as two additional 

abstract devices. 

output 

input 

Figure 4-1 : A D Flip-flop 
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the D Flip-flop is equivalent to the following program which consists of six abstract devices, NAND, with 

their connections and the input conditions. 

CONDITION0(p 0). { a procedure for calculating p0} 
CONDITION1 (p7). { a procedure for calculating p1} 
NAND(p r,p4,p2). { a procedure for calculating p2} 
NANDlppPpP^. { a procedure for calculating p3} 
NANDipQiPpPpPj. { a procedure for calculating p4} 
NAND(p0,P3,p^. { a procedure for calculating p 5 } 
NAND(p4,p7 >p6). { a procedure for calculating p6} 
NANDtp^p^p^. { a procedure for calculating p7} 

The above eight formulas express eight abstract devices, and they show all connections among them. 

So the eight abstract devices and their connections, which we call an abstract circuit, can be read into a 

computer for simulation and verification of the D Flip-flop. 

We calculate the values of every point at every time from 0 to 20. We get a list as follows. The blank 

means a value unknown. If t ime t is less 0, the values of every point is the unknown. 

At time 0 the p0 is 0 (i.e. p^O] is 0) and the p1 is 1 (i.e. p t [0] is 1) according to the condition of input. At 

time 1 the p 0 i s still 0 (i.e. p j l ] is 0) and the p1 is still 1 (i.e. p7[1] is 1). At the same time 1, the p 4 i s 1 (i.e. 

PJ1] is 1) getting from NANDfp^p^p^p^), and p 5 i s 1 (i.e. p ^ l ] is 1) getting from NAND(p0,p3,p5) 

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Po 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 

Pi 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

P 2 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P 3 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

P 4 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Ps 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

Pe 0 0 0 0 0 0 0 0 

P 7 
1 1 1 1 1 1 1 1 1 
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2. If the input requirement is the following: 
a. For the point p^ the input signal is 

CONDITIONOfPfl) m pQ is 0 if the time is smaller than 10, otherwise p0 is 1. 
b. For the point pv the input signal is 

CONDITION1 (p 7) s p1 is 0 at any time. 

The chips (abstract devices) in a D Flip-flop are shown as follows: 

CONDITION0(p 0) . { a procedure for calculating p0} 
CONDITIONI (pj). { a procedure for calculating p1} 
NAND(p r ,p 4 ,p^). { a procedure for calculating p2} 
N A N D ^ p ^ p ^ . { a procedure for calculating p3} 
NAND^p^p^p^p^. { a procedure for calculating p4} 
NAND(p0,p3,pJ. { a procedure for calculating p 5 } 
NAND (p 4 ,p 7 ,p 6 ) . { a procedure for calculating p6} 
NAND (p 5 ,p 6 ,p^. { a procedure for calculating p 7 } 

We calculate the values of every point at every time from 0 to 20. We get a list as follows: 

time 0 1 2 

CO 4 5 6 7 
00 (O

 

10 11 12 13 14 15 16 17 18 19 20 

Po 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 

Pi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pa 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

P 3 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 

P4 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

Ps 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Pe 1 1 1 1 1 1 1 1 1 

P 7 
0 0 0 0 0 0 0 0 

From above two lists, we get a result that the value of the input p1 at t=0 transfers to the output p 7 at 

t=20 after the control p0 goes up from 0 to 1 . Let p1 be input, p 7 b e output, and p0 be clock. We can check 

that the circuit has the following property : 

Until(clock= 0, Until(clock= 1, outputs input)). 
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5. Simulations of Synchronous Circuits 
The operation of the circuits in many digital systems is controlled or synchronized with a timing signal. 

This signal is known as the clock. In this paper, the clock signal is assumed to be a square wave. The 

amount of time during which the waveform is at the high voltage level is marked tt and is called the top 

width of the square wave. The amount of time during which the waveform is at the low voltage level is 

marked tb and is called the bottom width. The Tt and Tb are sufficient width for simulation of the circuits. 

For example, the Tt and Tb can take the largest delay time of the circuit. 

The device which generates the square wave signal is a CLOCK. We use CLOCK{n,tptb,outpuf) to 

represent (to calculate) the clock in Figure 5-1 and use CLOCK(-n,tptb,output) to represent the clock in 

Figure 5-2. 

'voltage 

t 

Figure 5-2: The Waveform of CLOCK(n ttptb,ouput) 

Voltage 

t 

Figure 5-2: The Waveform of CLOCK(-n,tptb,output) 

In this section, we will simulate a Decade Counter circuit that consists of four D Flip-flop chips and 

some gates. To begin with, we need to make a abstract device for the D Flip-flop, i.e. to write a temporal 

logic program to simulate it. It is possible to intuitively describe the input and output properties of the D 

Flip-flop mentioned in the preceding section, but it is difficult to translate this description into a formal 

language. In figure 4 - 1 , suppose that the p0 is cp (input clock pulses), the p1 is input the p7 is outputl 

and the p6 is output2. The D Flip-flop is of positive-edge triggering. We know the following properties of D 

Flip-flops : 
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(1) After Positive-edge triggering. 

If the cp has been at level 1 for 3 or more time units before which it was at level 0 for 3 time units, and if 

the input had been at some value X for 2 units before the positive-edge transition and maintained the 

same value for 2 units from the transition, then the outputl gets the value X. This property can be 

expressed by the following statement in our temporal language : 

Since[>3](cp = 1, B [3](cp - 0) & Stable[2t 1](inputj & (Xis input)) -: outputl := X 
or 

A[X\ -: outputl := X 
where A[X\ • Since[23](cp - 1 , M[3](cp - 0) & Stable[2% 1](input) & (X is input)). 

(2) Output signal maintains stability after Negative-edge time. 

If cp switches from level 1 to level 0 and maintains this level after the positive-edge triggering 

phenomenon A[X\t then the outputl will also keep the value X. This property can be expressed by the 

following statement: 

Since(cp = 0, A[X[) -: outputl := X 
or 

Since(cp m 0, Since[Z3](cp- 1 , M[3](cp- 0) & Stable[2,1](input) & (Xis input))) -: outputl := X 

(3) Output signal maintains stability at the time of Positive-edge triggering. 

The output is stable if the cp has been at level 0 for three time units (See Figure 4-1). If cp switches 

from level 0 to level 1 , it will influence output l after 2 time units. In other words, the level of cp at the last 

time doesn't influence the current value of the output. Hence, if one unit time ago the cp had been at 

level 0 for three units, then the current value of the output is the same as at last t ime. This property can 

be expressed for outputl by the following statement: 

• ( • [ 3 ] ( c p = 0) & (X is outputl)) -: outputl := X ; 

Therefore, we use the following abstract device instead of D Flip-flop with an output outputl: 

Case( 
• ( • [ 3 ] ( c p = 0) & (X is outputl)) -: outputl := X; 
Since[>3](cp = 1 , M[3](cp - 0) & Stable[2,1](input) & (X is input)) -: outputl := X ; 
Since(cp - 0, Since[>3](cp * 1 , «[3](cp - 0) & Stable[2,1](input) & (X is input))) -: outputl := X; 
otherwise -: outputl unknown 

) 

We use the abstract devices Dl(input,cp,output2,output1) and D2(input,cp,output1 ,output2) to express 

the whole D Flip-flop with two outputs. 
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D Flip-flop 

D\{input,cp,ouput2,output1) a 
Case( 

• ( • [ 3 ] ( c p = 0) & (X is outputl)) -: OLtfpi/ff := X; 
Since[>3](cp = 1, B[3 ] (cp= 0) & Stable[2,1](input) & (X /s /npt//)) -: oufpitff := X ; 
Since(cp- 0, Smce[>3](cp = 1, • [3 ] ( cp = 0) & Stable[2,1](input) & (X /s /nptrt))) -: oirtpLtfJ := X ; 
otherwise-: outputl := unknown 

) 

D2(input,cp,output1 ,output2) s 
Case( 

• ( • [ 3 ] ( c p = 0) & (X / s output2)) -: ot/?pu£ := X ; 
Since[>3]{cp » 1, a[3](cp = 0) & Stable[2,1](inputj &(Xis input}) -: output2 := absfX,); 
Since(cp= 0, S//zce[>3](cp = 1, •[3](cp=0)&£fa6te[2,1]{input) & (X /s /npuf))) output2 := absfXj; 
otherwise -: outputl := unknown 

) 

The Decade Counter circuit in Figure 5-3 will be analysed with an initial state a ^ O , a 7 =0, a^=0 and 

The elk receives a square wave .from a CLOCK(10,22,22,c//c) at time t=0. The Decade Counter is 

equivalent to the following abstract circuit which consists of seventeen abstract devices: eight devices 

which represent the four D Flip-flops, six AND gates, one OR gate, one CLOCK and one device for the 

initial state. We calculate the values of every point at every time from 0 to the end of the clock. 

Figure 5-3: A Decade Counter 
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At the initial t ime, we let a0, av a2 a3 be 0, and that b0, bv b2 b3 be 1. After the initial t ime, we use the 

following program to calculate the values of every point a^ b0, av bv a2t b2, a3, b^ irt, in2, in3, pv p^ 

p3, p4 in the circuit and the output in the decimal system. 

D-[(b0,clk,b0,a0). 
Q2(b0,clk,a0,bd. 
D1(//77,c//c,6 t,a t). 
D2(/nt,c//c,a r ,6 r). 
D1(/n2,c//c,d2,a2). 
D2(in29clkta^b^ 
D^inSfilKbya^. 
DZiinSfilKa^b^. 
AHDibpaQtbpinl). 
AND(a r , a 0 , p y ) . 
AND(p1tb2,in2). 
AND(a3,a0,p2). 
A№{pva2,p$. 
ORiPfP&pJ. 
AND(p4,b3,in3). 
Convers\on{a0,apa2ta3tcount). 
CLOCK(10,22,22,c//c). 

where Convers ionfa^a^a^a^coun/ ) is the following statement: 

count is a0+a1*2+af2
2

+a<f2
3 

After calculating, we get the simulation data on the above circuit. In Section 7 we will check whether 

the circuit satisfies the requirements of a Decade Counter. 
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6. Implicit Types and Programs 
Objects of a given type have a representation that respects the expected properties of the data type. 

The representation is chosen to make it easy to perform expected operations on data objects. 

Conventional types are usually explicit. For example, var a: integer, it means the a is an integer. It is 

enough to arrange a single integer storage location for a. But for a temporal variable p , if the p is an 

integer, it is not enough to arrange only one location, otherwise the formula p=1&0(p=6) could not be 

checked. Thus, if we say that a temporal variable p is an integer, the compiler must implicitly allocate an 

array of integers for p. For temporal variables p w e will use the following type of declarations: 

time frame var t = 0 .. 440; 

temporal var p : integer 

The above declaration indicates that p is a temporal variable which has 441 integer values 

corresponding to the times t = 0,...,440. It is assumed that any temporal variable p takes the value 

unknown at the time t < 0 or t > 440 (when t is out of the frame of reference). The time frame variable t is 

a special type that can be used in a for statement as follows : 

for (f=0, t< 10, f++) A 

This for statement executes the statement A at every time from 0 to 9. 

All QTL programs have the following general form: 

PROGRAM name 
definitions 

{ 
instructions 

}. 

In the following program, temporal variables usually only take 0 or 1 as Boolean values. Hence we let 

the unknown be - 1 . We give a complete program for the simulation of a Decade Counter mentioned in 

Section 5 as follows: 

PROGRAM decade {input, output)', 
time frame var t = 0 .. 440; 
var Xt Y: integer; 
var unknown = -1 : integer; 
temporal var a^ av a^ a3: integer; 
temporal var b ^ bv b3: integer; 
temporal var pv p^ p3: integer; 
temporal var in1, in2, in3, cp, elk, count: integer; 

FUNCTION abs(var x: integer) : integer, 
Case( 

x = unknown -: return(unknown); 
otherwise -: return( |x-11) 
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); 
PROCEDURE AND(temporal var inputl,input2,output : integer); 

Case( 
• ( / n p u t t » 1 Jnput2 m 1 ) -: ouput := 1 ; 
• ( / п р и » = 0 v input2 = 0) -: output := 0; 
otherwise -: output > unknown 

); 
PROCEDURE AND(temporal var inputl Jnput2Jnput3,output : integer); 

Case( 
• ( / npu f 7 m 1,/при/2 - 1 ,/npirf3 • 1 ) -: ouput := 1 ; 
• ( / п р и » ш 0 v /при/2 « 0 v inputs ш 0) -: ouipuf := 0; 
otherwise -: oufpirf := unknown 

); . 

PROCEDURE OR(temporal var inputl Jnput2touput : integer); 
Case( 

• ( / npu f f ш 1 v /при/2 • 1) -: ou/puf 1 ; 
%(input1 m 0Jnput2 » 0) -: ou/puf 0; 
otherwise -: ou/puf unknown 

); 
PROCEDURE D1 (temporal var input,cp,ouput2,ouput 1 : integer); 

Case( 
• ( • [ 3 ] ( c p = 0) & ( X / s ouputl)) ou/pu» :« X ; 
Swce[>3](cp - 1 , Щ3](ср - 0) & Stable[2,1](input) & (X /s /при/)) -: ouputl := X ; 
Since(cp « 0,&лс*[>3](ср- 1, Щ 3 ] ( с р « 0) & Stable[2,1](input) & (X /s /при/))) -: ouputl := X ; 
otherwise -: ouputl :• unknown 

); 
PROCEDURE D2(temporal var input,cpfouput1 toutput2 : integer) ; 

Case( 
• ( • [ 3 ] ( c p = 0) & (X /s ouputZ)) -: ои /рий := X ; 
5шсв[>3](ср- 1 , Щ 3 ] ( с р - 0) & Stable[2,1](input) & (X /s /при/)) -: ouput2 := absfX;; 
Since(cp m 0 ,5жк[23 ] ( ср - 1, ЩЗ](ср»0)&ЛаМе[2, f](/npu/) & (X is input))) -: ou/pu/2 := abs(X); 
otherwise -: ouputl := unknown 

); 
PROCEDURE Conversion(temporal var input0,input1tinput2tinput3touput : integer); 

{ 
ouput is inputO + 2 • inputl + 2 • 2 • input2 + 2 • 2 • 2 • input3 

}; 
PROCEDURE CLOCK(var n,tf,fb : /nfeger ; temporal var output : integer); 

{ 

var time = 0 : integer ; 
while (notNow(time)) time++; 
Case( 

time I (tt+bb) > n -: ouput := 0; 
time I (tt+bb) < n - : 
Case( 

time % (tt+tb) <tt-: ouput := 0; Г The % is a remainder operation */ 
«me % (tfrfb) > ff -: output := 1 ; 
otherwise -: output := unknown 

) 

) 

}; 

for (M) , f<10, f++) Л set some expected initial values 7 
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a 0 : = 0 ; 
a1 := 0; 
a2 := 0; 
a 3 := 0; 

ft, : - i ; 
& 2

 : = 1 ; 
* > 3 > 1 ; 
CLOCK(100,20,20,C//() 

}; 
/or (/=0, f<10, 

{ 
in1 := unknown; 
in2 := unknown; 
in3 := unknown; 
p1 := unknown; 
p2 := unknown; 
p3:- unknown 

}; 
/or (f=10, f<440, 

{ 
CLOCK(100,20,20,c//c); 

D2(f>0,c//c,a0,£>0); 
D1(/n7,c//c,/7 r,aJ); 
D2(/'nr,c/fc,a r,/b r); 
Dl(/n2,c//c,62,a 2); 
D2(in2,clk,a2,b2); 
D'\(in3,clk,b3,a3); 
D2(/n3,c//c,a3,i>3); 
AND(t», ,a 0 ,6 3 , /n/) ; 
AND(a r ,a0,p,) ; 
AND(p r ,&2 , /n2); 
AND(a 3 , a 0 , p 2 ) ; 
A N D ( p , , a * p ^ ; 
OR(p 2 , p 3 , p 4 ) ; 
AND(p 4 , f t 3 , /n3); 

}; 
/or (f=0, f<440, /++) 

{ 
Conversion(a 0 ,a,,a 2 ,a 3 ,coun/) 

/* generate the other initial values 7 

r calculus the output 7 
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7. Verification of Synchronous Circuits 
If we are dealing with a circuit with a clock, we are usually only interested in events that occur near a 

clock transition. Therefore, it is often useful to establish a new clock frame of reference. Suppose that 

we have a clock with a real time frame of reference t 0 , tj.tg,.... The time at which the clock changes from 

0 to 1 is called a positive edge time, and the previous time is called a negative-resting time. The time at 

which the clock changes from 1 to 0 is called a negative edge time , and the previous time is called a 

positive-resting time. Let all negative-resting times be t'o.t '^t^,..., and let all positive-resting times be 

r 0 >t" 1 ft"2 All resting times are t o ^ t ' . , , r ^ V V - o n t h e clock.(See Figure 7-1) 

positive edge negative edge 

5 § 5 5 5 ST 
Figure 7 - 1 : A Sequence of Resting Times 

We introduce a temporal variable clockjevel. The clockjevel becomes 1 at times t " 0 , t " 1 f t H

2,..., and 0 

at times t ' 0 , Vv t ' 2 , . . . i.e. the clockjevelis 1 at positive-resting times, and 0 at negative-resting times. 

Given this sequence of all resting times, we introduce a new time frame T^Tp T2 where T0 is t ' 0 > T1 

is t " 0 , and so on. If the clock is sufficiently slow, the circuit will be in a stable state before and at any 

resting times. The properties of the circuit should only be discussed at these times. Now, we can give 

meaning to formulas at a certain resting time 7} as follows 

Tt\=Now(t) iff t-Tt 

Tj\=A&B iff Tj |- A first, and then 7} |= B. 

Tj |= AvB iff Tj |= A, otherwise 7} |= B. 

Ti\=OA iff TM I - A. 

7}|= 0[n]A iff Ti+n\=A. 

T^OA iff Tj |= A, otherwise Tl+11= OA 

Tj\=0[0]A iff 7,1- A. 

T;\=0[n]A iff Tj |= A, otherwise 7 / + r |= 0[n-1]A. 
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QA iff 7}l= A first, and then Tj+11= Q A 

7 ) 1 - Q[0]A iff T,\- A 

T,\- Q[n]A iff A first, and then Tl+11» U[n-1]A. 

T,\= Until(A,B) iff T,\- B, otherwise 7,-1= A&OUntil(A,B). 

Until[>0\{A,B) iff T¡\= Until(A,B). 

Ti\= Until[>n+1](A,B) iff Q[n]A first, and then Ti+n+11= Until(A,B) 

T,\- Until[<0](A,B) iff B. 

T,\- Until[<n+1]{A,B) iff T,\- B, otherwise 7(-1= A&OUntil[<n](A,B). 

For the Decade Counter, let clockjevelbe the elk. If the Decade Counter is correct, it must satisfy the 

following property: 

count m 0 & O[20]( 
(c//c= 0, count < 9, Ocount = (counf+1)) v 
(c//c= 0, count** 9, Ocount = 0) v 
(c//c = 1, Ocount = cot/r?/) 

) 

This can be checked by adding the following code fragment to the program. If the program sets V = 1 

then the Decade Counter circuit has the above property, otherwise it doesn't. 

Case{COunt = 0 , • [20 ] ( 
(clk= 0, count < 9, Ocount = (counf+1)) v 
(clk= 0, count = 9, Ocount • 0) v 
(c//c = 1, Ocount = coan/) 

) - : 
otherwise-: Y\=0 

) 
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8. Related Work and Discussion 
In the technique described in [4] for the automatic verification of asynchronous circuits, using normal 

Temporal Logic can generate a huge number of states that can cause the system to run out of memory. 

In this case, it may be preferable to try to use this Temporal Language since it doesn't need a large 

memory. Suppose that the amount of delay times of all devices in an asynchronous circuit is m. In order 

to model the asynchronous circuit, we can make a abstract device for generating signal to simulate a 

random signal (an asynchronous signal) that occurs in the circuit. This treatment is very realistic. The 

abstract device will have different delay times. Generally, these delay times are smaller than the m. Thus, 

an asynchronous circuit becomes several synchronous circuits, which have different delay times. A 

program using this Temporal Language checks these synchronous circuits one by one independently, so 

it saves memory and is especially suitable for the design and verification of VLSI. If there is something 

wrong in an asynchronous circuit, this method can generally find it out after checking few synchronous 

circuits. 
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