
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

The AvaIon/C++ Programming Language (Version 0)

Jeannette M. Wing, Maurice Herlihy, Stewart Clamen,
David Detlefs, Karen Kietzke, Richard Lerner, Su-Tuen Ling

CMU-CS-88-209 2

Please send direct comments, corrections, and questions to wing@csxmu.edu; send bug reports to
avalon@cs.cmu.edu. This document should be informally referred to as "The Avalon Report" since it is more than a
language manual.

This research was sponsored in part by the Defense Advanced Research Projects Agency (DOD), ARPA Order No.
4976 (Amendment 20), under contract F33615-87-C-1499 monitored by the Avionics Laboratory, Air Force Wright
Aeronautical Laboratories, Wright-Patterson AFB. Additional suppport for J. Wing was provided in part by the
National Science Foundation under grant CCR-8620027.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or
the U.S. Government.

mailto:wing@csxmu.edu
mailto:avalon@cs.cmu.edu

T h e A v a l o n / C + + P r o g r a m m i n g L a n g u a g e (V e r s i o n 0)

Jeannette Wing
Maurice Herlihy
Stewart Clamen
David Detlefs
Karen Kietzke

Richard Lerner
Su-Yuen Ling

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213-3890

21 December 1988

Abstract

Avalon/C++ is a language for implementing reliable distributed programs. People who wish to read or write
Avalon/C-H- programs should read this document, though not necessarily all of it. It contains a quick overview of
the terminology of our intended application domain, a tutorial-by-example introduction to the language, a reference
manual for the Avalon extensions to C++, a library of built-in classes, and a list of practical programming
guidelines. The appendices include the language's grammar and the UNIX man pages for acc, the Avalon/C++
preprocessor.

Please send direct comments, corrections, and questions to wing@cs.cmu.edu: send bug reports to
avalon@cs.cmu.edu. This document should be informally referred to as "The Avalon Report" since it is more than
a language manual.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 4976
(Amendment 20), under contract F33615-87-C-1499 monitored by the Avionics Laboratory, Air Force Wright
Aeronautical Laboratories, Wright-Patterson AFB. Additional support for J. Wing was provided in part by the
National Science Foundation under grant CCR-8620027. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of
the Defense Advanced Research Projects Agency or the US Government.

University Librsnri
Carnegie Mellon u?v:u£.

Pittsburgh, Per.n:y!v*M ^ - 1 1

mailto:wing@cs.cmu.edu
mailto:avalon@cs.cmu.edu

i

T a b l e of Content s
1. Overview 1

1.1. Terminology 1
1.2. Avalon/C++ Specifics 1
1.3. A Roadmap to this Document 2

2. A Tutorial Introduction 3
2.1. Array of Atomic Integers 3

2.1.1. Using Jack and Jill 3
2.1.2. The Jill Server Declaration 5
2.1.3. The Jill Server Definition 7

2.1.3.1. Jill's Data Member 7
2.1.3.2. Jill's Operations 8

2.1.4. The Jack Application 9
2.2. FIFO Queue 12

2.2.1. The Queue Representation 13
2.2.2. The Queue Operations 14
2.2.3. Commit and Abort 15
2.2.4. Enq and Deq Synchronization Revisited 16

2.3. Atomic Counters 16
2.3.1. Counter Representation 17
2.3.2. Counter Operations 17
233. Counter's Commit and Abort 21

3. Reference Manual 25
3.1. Lexical Considerations 25
3.2. Servers 25

3.2.1. Defining Servers 25
3.2.2. Using Servers 26

3.3. Base Classes 26
3.3.1. Class Recoverable 27
3 3 . 2 . Class Atomic 27
3 .33 . Class Subatomic 28

3.4. Control Structures 29
3.4.1. Start 29
3.4.2. Costart 30
3.4.3. Leave 30
3.4.4. Return 31
3.4.5. Break and Continue 31
3.4.6. Except Clauses 31
3.4.7. Pinning 31
3.4.8. When 32

3.5. Transmission of Data 32

4. Library 35
4.1. Non-atomic Avalon/C++ Types and Type Generators 35

4.1.1. Bools 35
4.1.2. Transaction Identifiers 35
4.1.3. x_string: Transmissible Strings
4.1.4. Variants v.

4.2. Atomic Types
4.2,1. Atomic Strings \x

4.3. Catalog Server 39

5. Guidelines for Programmers
5.1. Choosing Identifiers
5.2. Using and Implementing Avalon Types

5.2.1. Using a Recoverable Type
5.2.2. Using an Atomic Type
5.2 J . Implementing Recoverable Types
5.2.4. Implementing an Atomic Type

5.3. Constructing an Avalon Program
5 3 . 1 . Server Programs
5 3 . 2 . Client Programs
5 3 3 . Example Templates

5.4. For Experts Only
5.4.1. Undo and Destructors
5.4.2. User-Defined Transmission Functions
5.4.3. Processes
5.4.4. Pragmas

Appendix I. Grammar
1.1. Expressions
1.2. Declarations
1 3 . Statements
1.4. External Definitions
1.5. Preprocessor

Appendix II. UNIX Man Pages for ACC
Index

iii

List of Figures
Figure 2-1: Declaration of Jill Server 6
Figure 2-2: The atomic_int Class 7
Figure 2-3: Definition of the JiU Server 8
Figure 2-4: First Part of the Jack Application 10
Figure 2-5: Beginning of the jill_transaction Function 11
Figure 2-6: End of the ji!l_transaction Function 12
Figure 2-7: Queue Representation 13
Figure 2-8: Queue Operations 14
Figure 2-9: Queue's Commit and Abort 15
Figure 2-10: Atomic Counter Derived from Class Atomic 17
Figure 2-11: Auxiliary Structures for Counter 18
Figure 2-12: Atomic Counter Derived from Class Subatomic 19
Figure 2-13: Counter's Inc and Dec Operations 19
Figure 2-14: Counter's Inc and Dec Auxiliary Operations 20
Figure 2-15: Counter's Is_zero Operation 21
Figure 2-16: Counter's Is_zero_work Operation 22
Figure 2-17: Counter's Commit and Abort 23
Figure 3-1: Transmissible and Non-Transmissible Types 33
Figure 5-1: User-defined Transmission Functions *i

1

1 . Overview

1.1. Terminology
A distributed system consists of multiple computers (called nodes) that communicate through a network.
Distributed systems are typically subject to several kinds of failures: nodes may crash, perhaps destroying local disk
storage, and communications may fail, via lost messages or network partitions. A widely-accepted technique for
preserving consistency in the presence of failures and concurrency is to organize computations as sequential
processes called transactions. Transactions are atomic, that is, serializable, transaction-consistent, and persistent.
Serializability means that transactions appear to execute in a serial order. Transaction-consistency ("all-or-
nothing") means that a transaction either succeeds completely and commits, or aborts and has no effect. Persistence
means that the effects of a committed transaction survive failures.

An Avalon/C-H- program consists of a set of servers, each of which encapsulates a set of objects and exports a set of
operations and a set of constructors. A server resides at a single physical node, but each node may be home to
multiple servers. An application program may explicidy create a server at a specified node by calling one of its
constructors. Rather than sharing data direcdy, servers communicate by calling one another's operations. An
operation call is a remote procedure call with call-by-value transmission of arguments and results. Objects may be
stable or volatile, stable objects survive crashes, while volatile objects do not. Avalon/C-H- includes a variety of
primitives for creating transactions in sequence or in parallel, and for aborting and committing transactions. Each
transaction is identified with a process, and is the execution of a sequence of operations.

Transactions in Avalon/C+f may be nested. A subtransaction's commit is dependent on that of its parent; aborting a
parent will cause a committed child's effects to be rolled back. A transaction's effects become permanent only
when it commits at the top level. We use standard tree terminology when discussing nested transactions: a
transaction T has a unique parent, a (possibly empty) set of siblings, and sets of ancestors and descendants. A
transaction is considered its own ancestor or descendant. If transaction B is an ancestor of A, then A is committed
with respect to B if every transaction that is both an ancestor of A and a proper descendant of B has committed. If B
is not an ancestor of A, then A is committed with respect to B if A is committed with respect to the least common
ancestor of A and B in the transaction tree.

Avalon/C-H- provides transaction semantics via atomic objects. All objects accessed by transactions must be atomic
to ensure their serializability, transaction-consistency, and persistence. Avalon/C-H- provides a collection of built-in
atomic types, and users may define their own atomic types by inheriting from the built-in ones.

Sometimes it may be too expensive to guarantee atomicity at all levels of a system. Instead it is often useful to
implement atomic objects from non-atomic components, called recoverable objects in Avalon; they satisfy certain
weak consistency properties in the presence of crashes. Users who define their own atomic types from non-atomic
components are responsible for ensuring that their types are indeed atomic.

1.2. Avalon/C++ Specifics
Avalon/C-H- is a superset of C++ [14], itself an extension of C [7]. C++ is designed to combine advantages of C,
such as concise syntax, efficient object code, and portability, with important features of object-oriented
programming, such as abstract data types, inheritance, and generic functions. We assume the reader has some
knowledge of C++- and freely use its terminology; see [14] for more information on C++.

Avalon's run-time environment relies on the Camelot system [13, 12] to handle operating-system level details of

2

transaction management, inter-node communication, commit protocols, and automatic crash recovery. We benefited
extensively from the Camelot Library [1], which provides a clean interface between the Avalon and Camelot
implementors. Some of Avalon's design was influenced by Camelot, in particular those aspects that Camelot
implementors worked hard to make efficient; however, the reader is not expected to know Camelot nor use it
directly.

Much of Avalon's design has been inspired by Argus [11] and we owe the descriptions of some of Avalon's control
structures to the Argus Reference Manual [10]. For other papers on Avalon/C++, please see [2, 5, 6 ,16] .

1.3. A Road map to this Document
The rest of this document is divided as follows:

Chapter 2 A tutorial introduction to the language. Detailed walkthroughs of three simple examples.

Chapter 3 A reference manual for the Avalon extensions to C++. Note that it is only about nine pages
long.

Chapter 4 A library of Avalon built-in classes and the catalog server.

Chapter 5 A list of practical guidelines for novice and expert programmers.

Appendix I The full grammar for Avalon/C++.

Appendix II The Unix man pages for running acc, the Avalon/C++ preprocessor.

A Note on Specifications
In writing the descriptions of the meanings of operations, in particular a class's member functions, we use the
following clauses:

• modifies: A list of objects whose values may possibly change as a result of executing the operation.

• requires: A pre-condition on any invocation state of the operation. The caller is responsible for
ensuring it holds; the implementor may assume it holds at the point of invocation.

• when: A condition on the state of the system that must hold before the operation proceeds. This
condition is often necessary to give since the state of the system may change between the point of
invocation and the actual point of execution of an operation.

• ensures: A post-condition on the returning state. The implementor must ensure that it holds; the caller
may assume it holds upon return.

In C++, a pointer to the object for which a member function is invoked is a hidden argument to the function. As
C++ does, we refer to this implicit argument as this in our specifications.

The absence of a requires (when) clause is the same as the predicate being TRUE. The absence of a modifies
clause indicates that no changes are made to the values of any object. This specification style and notational
conventions are borrowed from Larch [4],

3

2 . A Tutorial Introduction
An Avalon/C++ system consists of a set of programs, each of which is an application or a sewer. Applications
invoke operations on servers, which may, in turn, invoke operations on other servers.

An Avalon server is very much like a C++ class. Just like a class, a server encapsulates some data, and defines the
operations that can be used to manipulate that data. A client invokes an operation on a server object using the same
syntax it would use to invoke an operation on a class object. There are two main differences between classes and
servers. First, a server supports concurrency: more than one client may invoke operations on a server at the same
time. These concurrent operations execute as concurrent threads (or lightweight processes) within the server. The
server must be implemented so that this concurrency makes sense. Second, a server's data (if the server is
implemented correctly) is persistent, i.e., it will survive crashes in a consistent state.

This chapter describes at length three examples, illustrating all the basic features of Avalon/C++. The first example
shows how to create, commit, and abort transactions; to invoke operations on servers; and to define and use a simple
atomic type derived from the built-in Avalon class atomic. The second and third examples illustrate the use of
two other built-in classes, trans_id and subatomic, to show another way Avalon users can define atomic
types, and to show what makes Avalon especially different from other (fault-tolerant) distributed programming
languages. We hope the reader will see that programming in Avalon/C++ is not much different from ordinary C+f
programming.

2 . 1 . Array of Atomic Integers
In this section, we walk through the use and implementation of a simple Avalon server, called " J i l l , " and client,
called " J a c k , " (so named for historical reasons). The Jill server encapsulates an array of atomic integers. From the
client's viewpoint, each of these integers is atomic; they arc recovered after a crash to the state observed by the last
committed transaction, and they ensure the serializability of the transactions that access them. Since each of the
elements of the array is atomic, the array as a whole is also atomic. The elements of the Jill array are initially given
the value -1 to represent an uninitialized state, after which the Jill server permits only non-negative values to be
written in the array.

An atomic array of integers might be useful as a representation for a conference room reservation system. The
elements of the array could represent blocks of time, and writing a value into an element could represent reserving
the conference room at that time for the person represented by that value. Or, the array could be used to represent a
set of bank accounts, indexed by account numbers. Applications that wished to transfer money from one account to
another could do so within a transaction, so that no partial transfers would ever happen. These examples are only
meant to be suggestive; in both cases, other representations might be more convenient and/or efficient. Still, they
show that even a very simple server such as Jill is not too far removed from real-world applications.

2.1.1. Using Jack and Jill
Before we show any Avalon code, let us first see how a user might interact with Jack and Jill. We begin by
assuming that the Jill server has been started. To start up Jack on a Unix system (after making sure that the directory
containing the av_jack executable is on your search path), type:

% avjack
The Jack application starts a transaction and responds with:

Typ* ? for a list of commands.
Jack[l]

Jack[l] is the prompt. The " 1 " indicates the current transaction nesting level. If we type " ? " , we get the

4

following list of commands:
Command* are:

r Raad array alamant.
w Write array alamant.
b Bagin nested transaction.
c Commit innermost transaction.
a Abort innermost transaction.
A Abort top level transaction.
q Abort top laval transaction and quit program.

Jack(l]
Let's say we want to read what is stored at location 7 of the array:

JacJc[l] r
Location to raad: 7
Location 7 is uninitialised.
Jack[l]

As we can see, we have not yet given location 7 a value. Let 's do so:
Jack[l] w
Location to writa: 7
Value to writa: 7
Writa succeeded.
Jack[l] r
Location to raad: 7
Value at location 7 is 7.
Jack[l]

Now we can begin a subtransaction, using the " b " command. In this transaction, we first read the value in location

7, and then give it a new value:
Jack[l] b
Jack[2] r
Location to raad: 7
Value at location 7 is 7.
Jack[2] w
Location to writa: 7
Value to writa: 27
Write succeeded.
Jack [2] r
Location to read: 7
Value at location 7 is 27.
Jack[2]

Note that the prompt has changed to indicate the transaction nesting level. Let 's continue with another nested

transaction:
Jack[2] b
Jack[3] r
Location to read: 7
Value at location 7 is 27.
Jack[3] w
Location to write: 7
Value to write: 37
Write succeeded.
Jack[3] r
Location to read: 7
Value at location 7 is 37.
Jack[3]

If we commit this subtransaction, then we return to its parent, with its effects visible:

Jack[3] c
Transaction committed.
Jack[2] r
Location to read: 7
Value at location 7 is 37.
Jack[2]

Now, however, if we abort the second-level transaction, we return to the top-level transaction, but none of the

effects of the aborted transaction (or its children) are visible.

5

Jack[2] a
Transaction abortad as par request.
Jack[l] r
Location to read: 7
Value at location 7 is 7.
Jack[l]

Now, suppose we start up another instance of av_jack (in another window, perhaps). In this Jack, we start a
transaction, and write into location 10. Then we attempt to read the value we have written into location 7.

% avjack
Type ? for a list of commands.
Jack[l] w
Location to write: 10
Value to write: 10
Write succeeded.
Jack[l] r
Location to read: 7

The other Jack ("Jack B ") does not immediately return an answer. This is because the first Jack ("Jack A ")
obtained a write lock on location 7. This lock excludes all other transactions from observing the value written there.
This is needed to ensure serializability: Jack A 's transaction may either commit or abort. If it commits, then Jack
B 's query should return 7; if it aborts, then Jack B should inform the user that location 7 is still uninitialized. Thus,
Jack B cannot return anything until Jack A 's top-level transaction terminates. Let's commit Jack A 's transaction:

Jackfl] c
Transaction committed.
(Transaction was top level.) Value at location 7 is 7.
Jack[l] Jack[l]

Committing Jack A ' s transaction allowed Jack B 's transaction to proceed with the completion of the read operation.
Now let Jack A start a new transaction. If we attempt to write a new value into location 7 in this transaction, we are
also suspended, for similar reasons:

Jack[l] w
Location to write: 7
Value to write: 70

Jack A cannot write into location 7, because Jack B ' s transaction has already observed a value there. Jack A must
wait for Jack B ' s transaction to terminate before it can invalidate this observation. Let 's terminate Jack B's
transaction with an abort:

Jack[l] a
Transaction aborted as per request.

Write succeeded. (Transaction was top level.)
Jack[l] r Jack[l]
Location to read: 7
Value at location 7 is 70.
Jack[l]

Note that in this particular situation, even if Jack B had committed, Jack A still reads a 70 at location 7 since Jack
A ' s write would still be serialized after Jack B ' s read. This scenario has shown how the Jack application can
manipulate the atomic integers contained in a Jill server. In doing so, it has demonstrated some of the properties of
transactions, nested transactions, and atomic objects.

The next two sections describe the declaration and definition of the Jill server, all the way down to the level of the
Avalon built-in atomic_int type; then the following section describes the Jack application program.

2.1.2. The Jill Server Declaration
A C+f class has a declaration and a definition. A class declaration is generally put in an include file, so that all files
that need to use the class can have access to the necessary information. The class definition (the bodies of the class
operations) is put in one or more files, each of which includes the declaration. An Avalon server should be written

6

avj i l l .h :
#include <avalon.h>

// Error return codas from operation procedures.
const int INDEX__OUT_OF_BOUNDS = 1; // Attempt to access a location out of bounds,
const int ILLEGAL_VALUE » 2; // Attempt to Insert a negative number.

// System Constants.
const int ARRAYJ9XZE » 1000; // Number of cells in the array.

server jill {
stable atomic_int data[ARRAY_SIZE];

public:
int read(int index);
void write(int index, int value);
jill (xjstring cmdline, x_string host) : (cmdline, host);
void main () ;

>;

Figure 2-1 : Declaration of Jill Server

using the same conventions. Thus, we will first examine Figure 2-1 , the include file that declares the Jill server.

The first line of this file includes the file avalon. h . All Avalon programs must include this file before all others.
The next three statements in the file declare and initialize constants used in the program. We follow the C++
recommendation against using preprocessor macros whenever possible. The first two constants,
INDEX_Otrr_OF_BOUNDS and ILLEGAL_VALUE, are used as error codes. The third, ARRAY_SIZE, determines
the size of the array.

Next, we come to the declaration of the Jill server. This is textually identical to a C++ class declaration, with the
keyword server substituted for class. A Jill server contains one data member, data, and four operations,
which are the only means of accessing the server's data. A server differs slightly from a class in that all data
members of a server must be private. Here, data is also declared to be stable, which asserts that it is persistent,
i.e., will survive crashes. Avalon guarantees persistence of the built-in atomic data type, atamic_int; in general,
the programmer must correctly implement any user-defined type of stable variables to ensure their persistence.
Though the Jill server does not, a server could also have data members that are volatile, that is, not stable. Volatile
data are often useful for efficiency, but care should be taken to ensure that all important data is stable. For example,
a server might represent a database as set of records, and maintain a volatile index that allows operations to look up
records based on different fields of the record. The index would speed up the server during normal operation, but
could always be reconstructed after a crash.

The four operations of the Jill server come in two categories: user operations and sewer operations. Read,
write, and the constructor, jill, are user operations, the ones that clients can invoke. R e a d returns the integer
stored at the given index, and write writes the given value at the given index. The intent of these should be fairly
clear, we will go over their implementations shortly. The constructor is a special user operation invoked to initialize
the Jill server. A server will not accept any calls to other user operations until it has received a constructor call, and
it will not accept any constructor calls once it has started accepting calls to other user operations. The remaining
operation, main, is invoked automatically by the server. For implementation reasons, every server must have a
main operation, even if it has no body. (The definition of main serves as a marker, so the Avalon preprocessor can
decide where to put the C++ main procedure for the server.) If the main operation does have a body, it is executed
in the background, concurrently with user operations. Another kind of server operation (not shown here), invoked

7

automatically by the system, is an optional recover operation. If defined, it is executed whenever the
started after any crash. A typical recover operation might reinitialize volatile data.

2.1.3. The Jill Server Definition

2.1.3.1. Jill's Data Member

Jill 's data member, data, is a stable array of ARRAY_SXZE atom±c__±nt's. An atomic^int is an atomic
integer, an integer specially implemented so that it ensures the serializability of transactions that access it, and is
recovered after a crash with the value observed by the last committed transaction that accessed it. These properties
are quite easy to achieve in Avalon. Figure 2-2 shows the declaration and definition of the atomi c_int class.

a t o m i c j n t h :

// Declare* the atomic integer class.

#include <avalon.h>

class atomlc__int: public atomic {
int val;

public:
int operator-(int rhs);
operator int();

>;

atomic_int.av:

// Defines the atomic integer class.

#include <avalon.h>

int atomic_JLnt: : operators < int rhs) {
write_lock() ;
pinning () return val = rhs;

>

atomic_int::operator int() {
read__lock () ;
return val;

>

Figure 2-2: The a tomic jn t Class

The file atomicjLnt. h declares the atomic_int class. This is derived from the class atomic, which
provides operations that are used to make integers appear atomic. In particular, class atomic has two operations,
read_lock and write_lock, which can be used in implementing operations of derived classes.

The class atomic_int has one data member, an integer called val, which holds the value of the atomic integer.
We show two operations of atomic_int's, both of which are C++ overloaded operators. One is the assignment
operator, and the other is the coercion operator that converts an atomic_int into an int. The assignment
operator is the only way to change the value of an atomic_int, and the coercion to int is the only way of using
that value in a program. Thus, these operators mediate all access to the atomic integer.

In the file atomic_int. av, we see that the implementations of these operations are quite simple. Taking them in
reverse order, we see that the operator int () simply calls read_lock and returns the current value. The
assignment operator gets a write lock on the atomic_int, and then, within a pinning block, it sets the value to

g

a new value, and returns the new value. The pinning block informs the Camelot system that the change must be
logged permanently (i.e., to stable storage) so that in the event of crash recovery, the value of an atomic integer is
consistent. Modifications to any atomic object should always be made from within a pinning block. The use of read
and write locks guarantees that if a transaction observes the value of an atomic integer, then no other transaction
may change it until the observer terminates. (Note that data type induction is needed to really make tliis guarantee;
we can prove that this is true only if these two operators are the only ways of accessing atomic_int's.)

2.1.3.2. JilPs Operations
Now that we understand atomic integers, we can consider the implementation of the operations of the Jill server.
Figure 2-3 shows the contents of the file av_ jill. av, which contains the definitions.

avJilLav:
// The body of the wav_jill" server.

fincludt Mav_jill.h"

int jill::raad(int indax) {
// Zf indax is out of bounds, return an error code.
if (index < 0 | | index >« AKRAY_SZZE) undo (HTOEX_OUT_OFJBOUNDS) leave;
return data[index];

>

void jill::write(int index, int value) {
// If index is out of bounds, return an error code.
if (index < 0 | | index >- ARXUVY_SZZE) undo (INDEX_OUT_OF_BOUNDS) leave;

// Zf value is negative, return an error code,
if (value < 0) undo (ILLEGAL_VALUE) leave;

data[index] « value;
}

jill::jill(x_string cmdline, x_string host) {
for (int i * 0; i < ARBAY__SIZE; i++) datati] » -1;

}

void jill::main() {}
Figure 2-3: Definition of the Jill Server

Read takes an index, and returns the value at that index. Read assumes that it is being invoked by a client that is
executing within a transaction. If the index is not within the array bounds, read executes the statement:

undo (INDEX__OUT_OF_BOUNDS) leave;
This aborts the client's transaction. The abort code INDEX_OUT_OF_BOUNDS can be used in an except clause,
as we will see when we examine the Jack application. If the index passes this test, then we simply return the value
in the data array at the index. Actually this is a little more subtle than that: the elements of d a t a arc
atomiClint's, and read returns an int. Thus, the C+f automatic coercion mechanisms call the coercion
operator on the indexed element before returning it. The coercion operator gets a read lock on the element before
returning its value. Write is very similar. It checks that the index is within the proper range, and that the value to
be written is not negative; if so, it assigns the new value to the element. Again, the overloaded assignment operator
of atamic_int takes care of getting the write lock on the atomic integer and logging its new value. The
important lesson to learn from the Jill server is how the right implementation of atomic_int made it possible to
treat atamic_int's almost as if they were regular int's within the bodies of the server's operations.

9

The constructor, jill, sets all the elements of data to -1 , as we specified in the description of Jill. Since all
servers implicitly inherit from the server_root class, the colon syntax tells the server_root constructor where to
find the server executable (first argument) and what machine to start it on (second argument). Finally, the server
operation main has no body but, as we have explained, every server must have a main operation.

2 . 1 A . The Jack Application
This section shows the code for the Avalon application, " J ack , " which uses a Jill server. Most Avalon applications
look very similar to Jack so in subsequent examples, we will omit the application-side code. When Jack starts, it
enters a transaction. It then executes user commands until the user enters the command to exit the program. The
user may read or write array elements, start nested transactions, and commit or abort transactions. Figure 2-4 shows
the first part of the code in av_ jack. av.

Like all Avalon programs, av_jack.av starts by including avalon.h. It also includes stream.h and
ctype.h from the C++ library, and av_jill.h to get the declaration of the Jill server. After the includes,
av_jack.av declares two more constants used as abort codes within this file and declares the two functions
defined in this file so that they can be used before they are defined. The next statement declares a global variable of
the Jill server type. The client program can invoke operations on this server object just as if it were a class object.

The main procedure prints out an initial message and locates the jill server. If it cannot find it, it calls the jill
constructor with the names of the executable (" a v j i l l ") and local host as arguments. It then repeatedly calls
jill_transaction until the value of quit_f lag indicates that the user wants to exit the program. Finally,
the print_help procedure prints out a help message.

Now we consider the heart of the Jack application, the jill_transaction function. jill_transaction
begins (Figure 2-5) by s t a r t i n g a transaction. It then enters a command loop, in which it remains until the
user decides to quit the program, or terminate (commit or abort) the current top-level transaction. It prints out a
prompt (which contains the current transaction nesting level, which it is given as an input.) Next, it gets an input
command, and enters a switch statement that processes that input. The V and 'w ' commands should be fairly
self-explanatory. Note that the read and write operations are invoked on the object denoted by the jill_srv
variable exacdy as if it were a normal class object. The V command uses the leave statement to commit and exit
the current transaction. The ' a ' command aborts the innermost transaction, using the undo leave statement. We
pass an abort code that indicates that the user aborted the transaction. The ' A ' command aborts the current top-level
transaction. This is implemented by first aborting the innermost transaction, using a special abort code. We will see
in a moment how this code is processed. The 'q ' command exits the program. To do this, we set the quit_f lag,
and exit jill_transaction. We use the special undo return statement to indicate that we not only want
to return from the current procedure, but also to abort any transactions started by that procedure. The *b' command
starts a nested transaction by making a recursive call to jill_transaction (with level incremented by one.)
An input of '?* causes the help message to be printed, and if the input command is none of these, a message to that
effect is printed.

The rest of jill_transaction is shown in Figure 2-6. The first statement in this figure is just after the body of
the loop that waited for the quit_f lag to be set (by a nested transaction.) If we reach here, we do the same thing
we did when the user entered a 'q ' : undo return. The next scope we leave is that of the transaction. This
transaction block has an except clause appended to it. An except clause allows access to the abort codes
provided in undo leave statements. If a transaction with an except clause aborts, the abort code, if there is one,
is assigned to the variable named after the except. The rest of the except statement is exactly like a switch on
this value. In jill_transaction, the first two cases handle user-requested aborts. In either case, we print out

10

av_jack.av:
#include <avalon.h>
#include <stream.h>
#include <ctype.h>
#include "avjill.h"

// Abort codes.
const int USER_JU5QUESTED_ABORT = 100;
const int TGPJLEVEL_ABORT = 101;

// Forward declarations.
void jlll_transaction(lnt, int*);
void print_help () ;

// Global server variable.
jill *jill_srv;

void main() {
int quit_flag = 0;

cout « "Looking for jill...\n";
jill_srv - (jill*) &locata_server ("jill");
if (jill_srv — NULL) {
cout « "Couldn't find jill. Starting a new jill...\n";
jill_srv m new jill ("avjill", "localhost");

}else cout « "Found jill\n";

cout « "Type ? for a list of commands.\n";
while (quit_flag < 2) {

quit_flag • 0;
jill_tranaaction(1, &quit_flag);
cout « "(Transaction was top level.)\n";

>

exit(0);
}

// prlnt__help — Prints the commands.

void print__help () {
cout « "\n\

Commands are: \n\
r Read array element.\n\
w Write array element.\n\
b Begin nested transaction.\n\
c Commit Innermost transaction.\n\
a Abort innermost transaction.\n\
A Abort top level transaction.\n\
q Abort top level transaction and quit program.\n\n";

>

Figure 2-4: First Part of the Jack Application

a message and return. If a top-level abort has been requested, then we set the q u i t _ f l a g to exit all enclosing
j i l l _ t r a n s a c t i o n calls. The third and fourth cases handle transactions that were aborted by server operations
because of improper inputs. They both print an appropriate message and return from j i l l _ t r a n s a c t i o n .
Finally, if the transaction aborted but the code is none of the above, then the abort must have been caused by the
underlying system. We can find out why by calling the routine a v a l o n _ a b o 2 r t _ c o d e _ t o _ s t r i n g , which
takes an integer argument (Section 3.4.6). All arms of the e x c e p t statement return from j i l l _ t r a n s a c t i o n ,
so if we exit the transaction and reach the last line of the procedure, the transaction must have committed. We print
a message to that effect.

// Interactively construct and perform a transaction utilizing tha jill
// server. Can ba callad recursively to construct nested transaction*.

void jill_transaction(int level, int* quit_flag_ptr) {
start transaction {
char cmd;

whila (! *quit_f lagjptr) {
int indax « 0;
int value = 0;

cout « "Jack[" « level « "] ";
while (is space (cmd =» getchar()));

switch (cmd) {
case ' r' : // Read an array element
cout « "Location to read: ";
cin » indax;
value = j i 1 l__s rv. read (index) ;
if (value = -1)
cout « "Location " « index « " is uninitialized.\n";

else
cout « "Value at location " « index « " is " « value « " . \n

break;

:ase ,w': // Write an array element
cout « "Location to write: ";
cin » index;
cout « "Value to write: ";
cin » value;
jill_srv.write(index, value);
cout « "Write succeeded.\n";
break;

;ase ' c' : // Commit this transaction
leave;

case ' a' : // Abort this transaction
undo (USER__REQUE S TED_ABORT) leave;

case 'A' : // Abort top-level transaction
undo (TOP_LEVEL_ABORT) leave;

case 'q' : // Abort to top level transaction and quit.
*quit_flag_ptr = 2;
undo return;

case 'b': // Begin a subtransaction
jill_transaction (level+1, quit_f lag_ptr) ;
continue;

case : // Print short help message
print_help();

breaks-

default :
cout « "Unknown command. Type ? for a list of commands.\n";

>

} // ...continued...
Figure 2-5: Beginning of the jill_transaction Function

12

// ...rest of transaction...
// Quit_flag from nastad transaction is non-zero, so we must undo return.
undo return;

} except (trans__status) {
case TOP_LEVEL_ABORT:
*quit_flag_ptr = 1;

case USER__REQUESTED__ABORT:
cout « "Transaction aborted as per request.\n";
return;

case ZMDEXjOOTjOF^BOUNDS:
cout « "Transaction aborted: Array index out of bounds.\n";
return;

case ILLEGAL__VALUE:
cout « "Transaction aborted: Attempt to write a negative value.\n";
return;

default:
cout « avalon_abort_code_to_string(trans__status) « "\n";
return;

>

// Otherwise, we committed.
cout « "Transaction committed.\n";

>

Figure 2-6: End of the jill_transaction Function

2 . 2 . FIFO Queue
Let us consider how one would implement an atomic first-in-first-out (FIFO) queue. The easiest way to define such
a queue is to inherit from atomic. A limitation of this approach is that enq and deq operations would both be
classified as writers, permitting litde concurrency. Instead, we show how a highly concurrent atomic FIFO queue
can be implemented by inheriting from subatomic. Our implementation is interesting for two reasons. First, it
supports more concurrency than commutativity-based concurrency control schemes such as two-phase locking. For
example, it permits concurrent enq operations, even though enq's do not commute. Second, it supports more
concurrency than any locking-based protocol, because it takes advantage of state information. For example, it
permits concurrent enq and deq operations while the queue is non-empty.

In order to permit such concurrency it is necessary to provide:
1. A way to compare whether one transaction has committed with respect to another. In particular,

suppose A and B are concurrent transactions:
• If it is known that A has committed with respect to transaction B, then B should be allowed to

observe the effects of A ' s operations. Thus, B need not wait and may proceed.

• If it is not known that A has committed with respect to B, then B must not do anything that
depends on A 's effects, since A may still commit or abort. B should also not invalidate any
results that A may have observed, since B may commit before A. Thus, B might have to wait till
A completes.

2. Exclusive access to an object per operation. That is. while transactions may go on concurrendy, we
need to prevent individual operations from interfering with each other.

Fortunately, Avalon provides the first capability with the class t r a n s_id. which gives us a way to test transaction-
commit order, and the second with the class subatomic, which gives us a way to provide mutual exclusion per
object.

In Avalon when a transaction commits, the run-time system assigns it a timestamp generated by a logical clock [8].
Atomic objects are expected to ensure that all transactions are serializable in the order of their commit timestamps, a
property called hybrid atomicity [15]. This property is automatically ensured by two-phase locking protocols [3],

13

such as that used for the a tomic jn t ' s in Jill's array. However, additional concurrency can be achieved by taking the
timestamp ordering explicitly into account. The trans_id class provides operations that permit run-time testing
of transaction-commit order, and thus of serialization order. In particular, trans_id provides a partial-ordering
function <: for transactions with trans_id's t l and t2, if t l < t2 evaluates to true, then if both transactions commit, t l
is serialized before t2. Note that < induces a partial order on trans_id's; as transactions commit they become
comparable. Section 4.1.2 describes this type in more detail.

Class subatomic provides operations that give transactions exclusive access to objects. Each subatomic object
has a short-term lock, similar to a monitor lock, used to ensure that concurrent operations do not interfere. Avalon's
special control construct, the when statement, is used as a kind of conditional critical region:

when (<TEST>) {
<...BODT. ..>

}

The calling process atomically acquires the object's short-term lock, blocks until the condition becomes true
(releasing the lock if it is not), and then executes the body. The lock is released after the body is executed. Any
changes made to the object while the lock is held will not be backed up to stable storage until sometime after the
lock is released. A transaction's changes are guaranteed to be backed up before it commits.

2.2.1. The Queue Representation
Figure 2-7 shows that information about enq invocations is recorded in a struct. The item component is the
enqueued item, the enqr component is a trans_id generated by the enqueuing transaction, and the last component
defines a constructor operation for initializing the struct. Information about deq invocations is recorded similarly in
decree ' s .

struct enq_rec {
int item; // Item enqueued.
trans__id anqr; // Who enqueued it.
enq_rec(int i. trana__idfi t) { it am = i; anqr = t; }

> ;

struct deq_rec {
int item; // Item dequeued.
trans__id enqr; // Who enqueued it.
trans_id deqr; // Who dequeued it.
deq_rec(int itmr trans_id& en, trans_id& da);
{ item = itm; enqr = en; deqr = da; }

>;

class atomlc__int__queue : public subatomic {
deq_stack deqd; // Stack of deq records.
enqjheap enqd; // Heap of enq records.

public:
atomic_int__quaue() <}; // Create empty queue,
void enq(int item); // Enqueue an item,
int deq(); // Dequeue an item,
void commit (trans__id&) ;
void abort(trans_id&);
~atomlc__int__queue () ;

>;

Figure 2-7: Queue Representation

The queue is represented as follows: The deqd component is a stack of decree ' s used to undo aborted deq

14

operations. The enqd component is a partially ordered heap of enq_rec's, ordered by their enc^_tid fields. A
partially ordered heap provides operations to enqueue an enq_rec, to test whether there exists a unique oldest
enqjrec, to dequeue it if it exists, and to keep and discard all enq_rec's committed with respect to a particular
transaction identifier.

Our implementation satisfies the following representation invariant: First, assuming all enqueued items are distinct,
an item is either "enqueued' or "dequeued," but not both: if an enq_rec containing [item, enqr] is in the
enqd component, then there is no deq_rec containing [item, enqr, deqr] in the deqd component, and
vice-versa. Second, the stack order of two items mirrors both their enqueuing order and their dequeuing order: if
dl is below d 2 in the deqd stack, then dl->enqr < d2->enqr and dl->deqr < d2->deqr. Finally, any
dequeued item must previously have been enqueued: for all decree ' s d, d->enqr < d->deqr.

2.2.2, The Queue Operations
Enq and deq operations (Figure 2-8) may proceed under the following conditions: A transaction A may dequeue
an item if (1) the most recent dequeuing transaction is committed with respect to A, and (2) there exists a unique
oldest element in the queue whose enqueuing transaction is committed with respect to A. The first condition ensures
that A will not have dequeued the wrong item if the earlier dequeuer aborts, and the second condition ensures that
there is something element for A to dequeue. Similarly, A may enqueue an item if the last item dequeued was
enqueued by a transaction B committed with respect to A. This condition ensures that A will not be serialized before
B, violating the FIFO ordering.

void atoraic_int_queue: :enq(int ltam) {
trana_id tid = trans_id();
whan (daqd.ia_ampty<) || (deqd. top () ->anqr < tid))

enqd.Insert(item, tid);
>

int atomlc__int__queue: :deq() {
trana_id tid = trana_id<);
when ((deqd.is_empty() || deqd. top ()->deqr < tid)

£& enqd.mln_exists () &£ (enqd.get_min() ->enqr < tid)) {
enq_rec* min__er = enqd.delete_min () ;
deq_rec dr (*min__er, tid);
deqd.push (dr);
return mln__er->item;

}
>

Figure 2-8: Queue Operations

Both enq and deq first obtain a new, unique trans_id for the calling transaction. The constructor creates and
commits a " d u m m y " subtransaction, returning the subtransaction s trans_id to the calling transaction (i.e.. parent).
Since this constructor call returns a unique trans_id, a parent transaction can thus generate multiple t r ans jc l s
ordered in the serialization order of their creation events. We exploit this property here by using this trans_id to tag
the current enq (deq) operation.

As for the atomic_int example, the modifications done by enq and deq must be wrapped in a pinning construct
to ensure persistence (that is, changes are made to stable storage).

We use the when statement to guard against simultaneous access to the queue object itself. Enq checks whether the
item most recendy dequeued was enqueued by a transaction committed with respect to die caller. If so, the new

15

trans_id and the new item are inserted in enqd. Otherwise, the transaction releases the short-term lock and tries
again later. Deq tests whether the most recent dequeuing transaction has committed with respect to the caller, and
whether enqd has a unique oldest item. If the transaction that enqueued this item has committed with respect to the
caller, it removes the item from enqd and records it in deqd. Otherwise, the caller releases the short-term lock,
suspends execution, and tries again later.

2.2.3. Commit and Abort
Avalon lets programmers define type-specific commit and abort operations for atomic data types inheriting from
class subatomic. They each take a trans_id as an argument. The Avalon run-time system automatically calls
an object's abort operation whenever a transaction that may have modified the object aborts. Whenever a
top-level transaction commits, the system calls the commit operation on all subatomic (and atomic) objects that the
transaction (or any of its descendants) may have modified. We make no guarantee about the arrival times of commit
operations, i.e., when the run-time system is informed of a transaction's commit. In particular, if T l commits before
T2, the run-time might execute T2 's commit before T l ' s . In addition, the order in which commit (abort) operations
for a given transaction are applied to multiple objects is left unspecified.

Figure 2-9 gives the code for the queue's commit and abort operations. When a top-level transaction commits, it
discards decree ' s no longer needed for recovery. The representation invariant ensures that all deqjrec's
below the top are also superfluous (they have all committed with respect to the top), and can be discarded. Abort
has more work to do. It undoes every operation executed by a transaction committed with respect to the aborting
transaction. It interprets deqd as an undo log, popping records for aborted operations, and inserting the items back
in enqd. Abort then flushes all items enqueued by the aborted transaction and its descendants.

void atomic_int_queue: : commit (trana__id& commit tar) {
whan (TRUE)

if (!daqd.is__empty() && descendant(deqd.top()->deqr, committer)) {
deqd.clear() ;

>

>

void atomic__int__queue: : abort (trans_idfi aborter) {
when (TRUE) {

while (!deqd. is_empty () && descendant (deqd. top () ->deqr, aborter)) (
deq_rec* d = deqd. pop () ;
enqd. insert (d->item, d->enqr) ;

>

enqd.discard(aborter);
}

>

Figure 2-9: Queue's Commit and Abort

Notice that commit and abort for the queue example use the descendant operation of trans_id's rather
than the < operation. For example, when we are aborting, we want to remove all items enqueued by transactions
that we know are aborting, i.e., the aborting transaction (abort's argument) and all of its descendants. If we were
to use <, an item enqueued by a separate top-level transaction that committed before the aborting transaction would
be incorrectly deleted.

16

2.2.4. Enq and Deq Synchronization Revisited
Let us look more carefully at the synchronization conditions on enq and deq. Consider why enq must wait for the
enqueuer of the last dequeued item to commit. If it does not wait, then it is possible that a dequeuer may get the
wrong head of the queue as a result of the commit of some concurrent enqueue. For example, suppose a transaction
A starts two subtransactions A l and A2. A l enqueues 5 and commits. A2 does a dequeue (A2 can proceed because
A l has committed with respect to A2), gets a 5, but does not yet commit. Now suppose another top-level
transaction B starts and tries to enqueue 7. (B and A2 are both concurrent.) If B does not wait then it proceeds to
put 7 at the head of the queue (A2 has temporarily claimed the 5). If B commits before A (the parent transaction of
A l and A2), then B is serialized before A, implying that A2 should get a 7, not a 5. In short, the FIFO behavior of
the queue is violated because B did not wait for A to commit.

The condition on enq is sufficient as well. In particular, an enqueuing transaction does not need to wait for the
dequeuer of the last dequeued item to commit because in some circumstances it can proceed even if the dequeuer
has not finished. For example, suppose transactions A, B, and C are top-level transactions. A enqueues 5 and
commits. B dequeues 5, but remains active. If C wants to enqueue, it should be allowed to proceed even though B
(die dequeuer of the last dequeued item) has not completed. Here, if B commits, it does not matter whether B
commits before or after C; B will correctly see 5 as the head of the queue and C will correctly place 7 as the new
head. If B aborts, then C will correctly place 7 after 5, which remains at the head of the queue. Thus, C can proceed
without waiting for B to complete because there is no way C can be serialized before A and it does not matter in
which order B and C are serialized.

It is easier to see why a dequeueing transaction, B, must wait for the dequeuer, A, of the last dequeued item to be
committed with respect B. If B proceeds to dequeue without waiting for A to complete, then it will have dequeued
the wrong item if A aborts.

2.3. Atomic Counters
As our final example, suppose we wish to implement an atomic counter with operations to increment (inc),
decrement (dec), and test for zero (is_zero). This counter could be used to represent a joint checking account:
One party might be depositing money at one branch, another party may be withdrawing money from somewhere
else, and a third party, perhaps an auditor, may be searching for depleted accounts. This is not quite realistic since
one could not find out the exact balance of the account (there is no read operation), but adding that function would
complicate our example.

By deriving from class atomic, we can easily implement the atomic counter as shown in Figure 2-10. (Recall that
class atomic provides read_lock and write_lock operations.) The counter is represented by a
nonnegative_int, a class supporting all the usual arithmetic operations on integers, with the property that a
non-negative integer can have a value only greater than or equal to zero. (The overloaded subtraction operation is a
" m o n u s " operation.) Again, one can see that building a new atomic class from class atomic is fairly
straightforward: Before performing its real work, an accessing operation ("reader") should first obtain a rend lock:
a modifying operation ("wri ters") should first obtain a write lock and then pin the object.

This implementation, however, does not realize the greatest possible concurrency. From the abstract viewpoint of
our atomic counter, incrementing and decrementing transactions can go on concurrendy (inc and dec are "b l ind"
writes since they do not return any results); moreover, under certain conditions, it should be possible to return a
result to is_zero even before all incrementing and decrementing transactions have completed. The
implementation in Figure 2-10 does not support this degree of concurrency since it is based on standard two-phase
read/write locking.

17

class atomlc__counter: public atomic {
nonnegative_int count;

public:
atomlc__counter() {pinning() count =s 0;} // initialize counter
void inc <);
void dec();
bool is_zero();

>

void atomic__counter: : inc () {
write_lock() ;
pinning () count +* 1;

}

void atomic__counter:: dec() {
write_lock();
pinning () count -= 1; // will return max of count-1 and 0

}

bool is_zero(); {
read__lock() ;
return (count = 0);

>

Figure 2-10: Atomic Counter Derived from Class Atomic

Thus, as for the queue example, we will use trans_id's and subatomic objects as an alternative way to build atomic
objects.

2.3.1. Counter Representation
Let us walk through the representation of the atomic counter by beginning with some auxiliary structures shown in
Figure 2-11. A counter_range will keep track of the range of possible values of the counter in order to permit
is_zero to return possibly before transactions have completed. We will record in a log information about each
transaction's sequence (op_seq) of inc and dec operations. Each log_entry consists of a transaction's
trans_id and the sequence of its operations. Assume we have defined elsewhere (recoy_sorted_alist . h)
types for a recoverable sorted association list (recov_sorted_alist), parameterized over the tag type (e.g.,
trans_id) and value type (e.g., pointer to log_entry's) of the pairs to be inserted in the list, an equality function (e.g.,
on trans_id's) used for list insertion, lookup, and removal, and a comparison function (e.g., < on transjid's) used for
ordering the elements in the list. Its iterative version, (recov_sorted_alist_ittr), similar to that used in the
C++ Manual (p. 183 of [14]), provides a method for looping over all elements in the list, guaranteeing that elements
are yielded in sorted order. Our (recoverable sorted association) list will be sorted by transjid 's partial order < so
that we can iterate over transactions in commit-time order.

Finally, we represent the counter by a non-negative integer (count) and a transaction log (log_t) (Figure 2 - 1 2) .

The value of the non-negative integer will be determined by operations of only top-level committing transactions

2.3.2. Counter Operations
Implementations of the inc and dec operations are shown in Figure 2-13. They use the internal auxiliary functions
shown in Figure 2-14. Inc and dec attempt to record themselves in the log. Add_op_to_log first calls the
trans_id constructor with the value CURRENT to obtain the trans J d of the calling transaction (compare this to a
different call with no argument in the enq operation of Figure 2-8). If the addition of the operation would not

18

#include <nonnegative_int.h>

struct counter_range {
nonnegative_int lo;
nonnegative_int hi;
counter__range (counter_range&, op_seq*);
counter_range(counter_range£ cr) { lo = cr.lo, hi • cr.hi; }
counter_range (int 1, int h) { lo » 1; hi = h; }
counter_range(int i) { lo • hi • i;)
counter__range () { init (); }
void init() { lo * 1; hi - 0; }
bool unsat() { return (lo && !hi); }

counter__range£ operator-** (int i) { lo = lo + i; hi = hi + i;
return *this; }

counter_rangefi operators (countarjrange* cr)
{ lo a cr.lo; hi =• cr.hi; return *this; }

> ;

struct op__seq : public recoverable {
bool to_inc;
op_seq* ops;

op_seq(bool b);
~op__seq() (delete ops; }
op__seq£ operatox« (op__seq*) ;

In

struct log__entry :public recoverable {
trans_id common_id;
count er__range query__range;
op_aeq* ops;

log_entry(trana_id£);
log__entry (trans__idfi, bool);
log__entry (trans__id&, counter_rangefi

~log__entry ()

bool operator< (log__entry& la)
bool operator>(log_entry& le)
log__entry& operators* (log__entry£ le)

{ delete ops; }

{ return (common__id < le. coramon_id) ; }
{ return (coonon^id > le. common_id) ; }

// Load recoverable list from library
#include "recov_sorted_alist.h"
recov_sorted_alistdaclare(trans_id, Plog_entry, tid_eq, tidbit) ;
recov__sorted_alistlttrdacl (trana_id, Plog_entry, tid_eq, tid_lt) ;

typedef recov_sorted_aliat (trans_id, Plog_entry, tid_*q, tidbit) log_t;
typedef recov_sorted_alist_ittr (trans_id, Plog_entry, tid_eq, tid_lt) logittr;

Figure 2-11: Auxiliary Structures for Counter

19

class atomic_counter : public subatomic {
nonnegative_int count;
log_t log;
// internal functions
counter_range* is_zero_work(trans__id&) ;
boo 1 is__zero_in_range (count er__range&);
bool is_zero__value (counter_range&) ;
void add_op_to__log (bool) ;
bool add_op__to_log_w©rk(trans_idfi, bool, log_entry*&) ;

public:
void inc();
void dac();
bool is_zero();
atomic_counter() (count =» 0; }
void commit(trans_id& t);
void abort(trans_id& t);

> ;

Figure 2-12: Atomic Counter Derived from Class Subatomic

// Add increment operation to log

void atomic_counter: : inc () { add_op_to_log (TRUE) ; }

// Add decrement operation to log
void atomic_counter: :dec() { add_op_to_log(FALSE) ; }

Figure 2-13: Counter's Inc and Dec Operations

change the possible view of the counter as seen by other active transactions, the operation proceeds. Otherwise, the
operation is forced to wait until all interfering transactions terminate (by either committing or aborting).

An example of a blocked case is as follows: Assume a transaction tests for the zero state of the counter and receives
a positive (i.e., TRUE) result. Until that transaction commits (or aborts) no other transaction can increment the
counter, since that would change its state from zero to non-zero. Other transactions are free to decrement the
counter, however, as this does not alter the visible state of the counter.

The add_op_to_log routine uses a when construct to ensure exclusive access to the log during the operation
insertion. Prior to that, however, it verifies that the insertion of the operation record is possible by calling
add_op_to_log_work, which examines the counter from views by all active transactions whose entries are
present in the log. The add_op_to_log_work returns FALSE if the operation cannot be added at this time,
causing the when construct to pause and be reactivated at a later time when the situation changes. When the
condition in the when statement succeeds, add_op_to_log adds the operation to an existing log record (indexed
by the current trans_id) if possible, creating a new record otherwise.

Much of the work for the is_zero predicate (Figure 2-15) is done by the auxiliary function i s _ z e r o _ " ' o r k
(Figure 2-16), which constructs a range of possible values for the counter, given the committed value and the log.
Is_zero first obtains the trans_id of the calling transaction. Then is_zero_work iterates over all log entries,
constructing the range of counter values. For each log entry, the logged operations are added together to determine
what the net effect of committing the transaction represented by the trans_id would be. Then, the net value is added
to the high bound or subtracted from the low bound, as appropriate. Operations of uncommitted transactions enlarge
the range of possible values. If the low end of the range is bounded below by a positive integer, is_zero returns
- 1 . If the range starts and ends at zero, then it returns 1. In all other cases (the range starts at zero and ends at a
non-zero integer), it returns 0.

20

// Add (inc/dec) operation to log, by adding it to operation sequence (op_seq) of existing
// log record, or by making a new one. Log entries are keyed by current trans_ids.
void atomic_counter: : add_op_to_log (bool b) {

trans_id current_id «• trans^id (CURRENT) ;
logmentry* entry = NULL;
bool new__entry__needed = FALSE;

when (ad^_©p_to_log_work(current_id, b, entry)) {
if (entry — NULL) {

entry » new log_entry(current_id,b);
log. insert (current__id, entry);

> <

if (entry->ops) *(entry->ops) « new op__seq(b);
else pinning (entry) entry->ops =• new op_seq(b);

}

>

>

inline bool atom!encounter: :is_zero_in_range(counter__range range)
{ return ((int) range.lo <= 0); }

inline bool atomiencounter: : is_zero__value (counter_range& range)
(return ((int) range.hi = 0) ; }

bool atomicjcountar: :add_op_to_log_work(trans_idfi id, bool to_inc, log_entry*fi this_entry) {
log—entry** entry;
1og_ent ry* * found__entry;
loglttr next_entry(log);

f ound_entry =• log. lookup (id);
if (foundjentry asm NULL) {

this_entry = NULL;
} i
this_entry • * foundjentry;

}

for (entry = next —entry(); entry; entry * next_entry()) {
if ((*entry)->common_id ™ id) { // We've already seen this guy, so ignore it
) else if (((*entry)->common_id < id) ||

(descendant (id, (*entry) ->common_id))) {
// committed wrt to me, so not a problem

} else { // uncommitted, the tough one. Must ensure there is no active transaction
// whose termination state (commit or abort) could change the visible state
// (zero or nonzero) of the counter,
counter_range old_ranga = (*entry) ->query__range;
if (?old_range.unset()) {

counter__range range ((*entry) ->query_range,
(foundjentry) ? (*found_entry)->ops : NULL);

counter_range new_range =«
counterjemnge(range.lo - ((to_inc) ? 0 : 1),

range.hi + ((to_inc) ? 1 : 0)) ;
if ((ia_zero_yalue(old_range) != is_zero_value(new__range)) ||

(ia_zero_in__range (old_range) != is_zero_in_range(new_range)))
{
return FALSE; // bad news

>

>

}

>

return TRUE;
>

Figure 2-14: Counter's Inc and Dec Auxiliary Operations

21

// Public is_zero() predicate
bool atomic__counter: : is_zero () {

counter_range* result;
trans__id current_id = trans_id(CURRENT) ;

when (result = is_zero_work(current_JLd)) {
log_entry** entry = log.lookup(current__id);
if T*ntry) {
pinning(*entry) (*entry) ->query___range = *result;

} else
log. insert (current__id, new log_entry (current_id, *result));

if (is_zero_in_j:ange (* result))
return TRUE;

else
return FALSE;

>

}

Figure 2-15: Counter's Is_zero Operation

The predicate is^zero uses the result (-1, 1, or 0) of is_zero_work to determine whether it can return
immediately (cases -1 or 1) or not. If it cannot, it exits the when block (thereby releasing the short-term lock), waits
for more transactions to commit (or abort), and tries again later. This process repeats indefinitely, until one of the
two cases for returning from is_zero holds.

2.3.3. Counter's Commit and Abort
The commit and abort operations (Figure 2-17) must clean up the log. The commit operation additionally
updates the value of the counter by going through the log, finding all the entries for transactions committed with
respect to it, applying these in serialization order, and then applying its own operations. Log entries for transactions
relatively committed to the committing transaction can be discarded. Notice that we need to use the < operation
because we cannot assume anything about the order in which commit operations are executed. Suppose A and B are
transactions and the committed value before either transaction commits is 2. Suppose A does 1 inc and then 5
dec's; B does 3 inc's. If A commits, followed by B, the counter's committed value after A ' s commit operation
is executed should be 0 (a dec has no effect on the counter if its value is 0 already); then after B commits, the
counter's value changes to 3. However, if we were to execute B 's commit operation before A 's , then B would
update the counter to 5, and A would change it to a final value of 1, which is wrong. By using <, the commit
operator makes sure it installs all changes of transactions that have committed with respect to the committing
transaction, not just its descendants.

On the other hand, the a b o r t operation throws away only transactions that are d e s c e n d a n t s of the aborting
transaction; it would be incorrect to throw away transactions that are not descendants but have relatively committed
with respect to the aborter.

22

// Returns the range of possible counter values as seen by the trans__id.
// Committed transactions operate directly on counter value.
// while (as yet) uncommitted ones increase range.
counter__range* atomlcjcounter: : is_zero_work(trans_idfi id) {

log_entry** entry;
op_aeq* op;
logittr next_entry(log);
// Begin with conmitted value, and a sequence of op__seqs of uncommitted operation!
nonnegative_int commi tted_yalue (count) ;
struct op_seq_seq {op_seq* ops; op_seq^_seq* next;};
op_seqj§eq* uncommitted_op_seqs m new op_seq_seq;
op__seq__seq* last_uos » uncommitted_op__seqs;

for (entry « next_entry (); entry; entry =• next_entry ()) {
if ((id — (*entry) ->common__id) ||

(descendant(id, (*entry)->common_id)) ||
(id > (*entry)->common_id)) (

// Install relatively-committed operations
for (op =• (*entry) ->ops; op; op =* op->ops)

committedjvalue +« ((op->to_inc) ? 1 : -1);
} else { // Cache uncommitted operation until all committed one are "in"
if (laat_uos !=» uncommi 11 ed_op__s eqs) { // not first one

las t__uos->next = new op_seqjseq;
la*t_uos » last__uos->next;

>
1ast_uos->ops » (*entry)->ops;

>

}

// Delete uncommi tted__op_seqs altogether if we haven''t seen any as yet
if (uncommi11ed__op__seqs->ops ~ NULL) {

delete uncommitted_op_seqs;
uncommi tted_op_jseqa m NULL;

>

// Now. we can go through all (if any) uncommitted op_jseqs. Build range of
// possible values from other operations "adding" it to range as appropriate,
count er__range * range = new count er__range (commit ted_value) ;
last_uos m uncommit t ed__op_seqs;
while (last_uos) {

counter_range possible__range (*range, last_uos->ops);
range->hi » max (range->hi, possible_range.hi);
range->lo = min(range->lo, poasible_range.lo);
op__seq_seq* temp = last_uos; last_uoa = last_uos->next; delete temp;

>

// There are only two ways to produce a "result". If the range does not
// include zero, then we can safely return FALSE. If the range includes a
// single value, then we can determine with certainty whether it is zero.
// If neither condition is attained, we pause (releasing the short-term lock
// for another transaction), and then try the loop again.
{ int result;
if (i«_zero_in_range (* range))

if (is_zero__value (* range)) result = 1;
else result = 0;

else
result * -1;

if (result != 0)
return range;

else
return NULL;

}

>

Figure 2-16: Counter's Is_zero_work Operation

// Install (and remove) all descendants from log. They are all committed,
// by definition, since aborted ones have been previously deleted by the loc*
// (See abort routine below.)

void atomic_counter:: commit (trans__id& t) {
log_entry** entry;
op_seg* op;

when(TRUE)
pinning() {

logittr next_entry(log);
for (entry * next_entry (); entry; entry =* next_entry ()) {

if (((*entry)->common_id — t) || ((*entry)->comm©n_id < t)) {
for (op » (*entry)->ops; op; op = op->ops)
count -Ms ((op->to_inc) ? 1 : -1);

log. remove((*entry) ->common__id) ;
delete *entry;

>

>

// Remove all descendants from log

void atomic_counter::abort(trans_id£ t) {
log_entry** entry;

when(TRUE)
pinning() {

logittr next_entry(log);
for (entry ss next__entry () ; entry; entry = next_entry ()) {

if (((*entry) ->oommon__id = t) || descendant ((*entry) ->common__id, t)
log. remove((*entry) ->common__id) ;
delete *entry;

>

}
}

Figure 2-17: Counter's Commit and Abort

24

25

3 . Reference Manual

3.1. Lexical Considerations
Avalon nonterminals are in roman face. C++ nonterminals are in italics, as in Section 14 of the C++ Reference
Manual in [14]. Keywords are in bold typeface. C++ extended BNF is used. E.g., symbol % means an optional
symbol. A C++ nonterminal followed by " : . . . " denotes an extension to that nonterminal.

The extended set of keywords is as follows:

costart pinning stable transaction when
except process start undo whenswitch
leave server toplevel variant

3.2. Servers
aggr:...

server
decl-specifier:...

server-specifier

server-specifier:
class-specifier

sc-specifier:...
stable

An Avalon server object is an instance of a server definition. A server definition, like a C++ class definition,
encapsulates a set of objects, and exports to clients a set of operations that manipulate the objects and a set of
operations that create and destroy instances of servers. A client invokes an operation on a server by calling a
member function of a server object. Creating a new instance of a server causes a new server process to be started.
When a server object is deleted, the server is killed.

3.2.1. Defining Servers
A server definition contains the following parts:

• Data declarations: Data declared to be stable in the server are restored following a failure. To be
restored properly, stable data must be derived from one of Avalon's three base classes (Section 3.3):
recoverable, atomic or subatomic. All data must be implemented to control concurrent
access.

• A mandatory main. The main member function is executed as a background process when the server
is started. This function can be used to provide code which needs to be run independently of the
server's other operations. A printer server, for example, could use main for the code to run the printer
Main must exist, even if empty, because Avalon uses the existence of a main implementation m
determine that the current compilation is for a server, rather than just for a client.

• An optional recover operation, which is executed whenever the server is restarted after a failure.

• Exported (and possibly internal) operations: The exported operations provide the clients the only means
of accessing the server's data. Communication between clients and servers is through (hidden) remote
procedure call with call-by-value transmission of data.

• A nonempty set of constructors: A server's constructor defines the parameters that a client must use
when creating a new server and provides code to execute when the server is started. In contrast to
constuctors for classes, a server's constructor must also specify to the run-time system the parameters

26

needed to start the server process; these parameters are specified in the declaration in a way similar to
passing parameters to the constructor of a class's parent (see example below). When a client calls a
server's constructor, the specified parameters are passed to the routines that start the server. 1

• An optional destructor.

Example
Below is a simple server declaration:

••rv«r simple {
stable atomic__int val;

public:
simple(x_string p, x_string n) (p,n);
int get();
void set(int i);
•old recover();
void main();

>;

// Protected atomic integer

// Constructor
// An exported operation
// Another exported operation
// Called upon server recovery
// Background process

The parameters to the right of the colon in the constructor are passed to the run-time routines that start the server.
The first parameter is the name of an executable file; if the full path name is not given, the user's path is used. The
second parameter is the name of a node on which to start the server; If the value "localhost" or NULL is given, local
machine is used; otherwise an x_string argument such as "wing.avalon.cs.cmu.edu" can be given to start the server
on some remote machine.

3.2.2. Using Servers
For an Avalon program to make use of a server it must first obtain a reference to an instance of the appropriate
server. As shown below the client may either create a new server object, starting a new server process:

(1) printserver* p =» *(new printserver(...)); // Start a new printserver
(2) printserver p (...); // Start a temporary server

or it may, with the Avalon library locate_server function (see end of Section 4.3), obtain a reference to an
existing server object representing a running server process:

(3) printserver* p =» (printserver*) locate_server(,..); // Locate an existing printserver

Deleting a server object kills the associated server process. A declaration local to some block (as in (2) above) of a
server object starts the server upon entering the block and kills it upon exit. Thus, (1) is recommended for ordinary
starting of servers.

Once a server instance is found, operations are invoked on the object as for any C++ object:
p.spool ("myflie.txt"); // Invoke an operation

Since server objects are really just C++ objects with special operations, they can be manipulated in the same manner
as other C+f objects. In particular, server objects and references to servers can be passed as parameters to and
returned as values from functions.

3.3. Base Classes
There are three base Avalon classes: recoverable, atomic, and subatomic. Users define their own
recoverable types by deriving from recoverable. They define their own atomic types by deriving from atomic
or subatomic, and are responsible for ensuring that the types they define are indeed atomic. If a type is not

Unlike normal C++ usage, the startup parameters must be in the declaration seen by the client, rather than with the constructor definition.
This information is useful only to the client, so it must appear in a place visible to the client, such as the server declaration.

http://wing.avalon.cs.cmu.edu

27

atomic then transactions that use objects of that type are not guaranteed to be atomic. We expect most users to
derive from class atomic, and more experienced (and demanding) users to derive from subatomic, especially if
more control over the object's synchronization and recovery is desired. We refer the reader to Chapter 5, in
particular Section 5.2, for correct usage of base classes, and [16] for a more formal description of their interfaces.

3-3.1. Class Recoverable
Class Definition

class recoverable {
public:
virtual void pin(int size);
virtual void unpin(int size);

};

Operations

void pin(int size)
ensures Subsequent changes to the object will not be recorded to stable storage until a later matching

unpin operation. Multiple pins (and their matching unpins) by the same transaction to the
same object have no effect. If the object is already pinned by a transaction different from the
calling transaction, a run-time error is signaled.

void unpin(int size)
modifies The value of the object in stable storage.
requires The calling transaction is currendy pinning the object.
ensures If there is exacdy one outstanding pin operation, the modifications to the object are logged to

stable storage.

The pin and unpin operations, which should be called in pairs, are used to notify the run-time system that a
modification to an object is to be made. In most cases, the integer argument to pin and unpin should be the size of
the object being pinned. After a crash, a recoverable object will be restored to a previous state in which it was not
pinned. The pin and unpin operations are usually not called explicitiy by programmers; instead, Avalon/C-H-
provides a special control structure, the pinning block (Section 3.4.7), both for syntactic convenience and as a
safety measure.

3.3.2. Class Atomic
A t o m i c is a subclass of r e c o v e r a b l e , specialized to provide two-phase read/write locking and automatic
recovery. Objects derived from class a t o m i c should be thought of as containing long-term locks, used to ensure
serializability. Each transaction obtains read (write) locks on all objects it accesses (modifies); locks are held until
the transaction commits or aborts.
Class Definition

c l a s s atomic: p u b l i c recoverable {
p u b l i c :

// p i n and u n p i n are inherited from r e c o v e r a b l e .

v i r t u a l v o i d read_lock();
v i r t u a l v o i d write_lock();

}

28

Operations

void read J o c k ()
when No transaction other than the calling transaction has a write lock on the object.
ensures If the calling transaction already has a read lock on the object, there is no effect; otherwise, it

obtains a read lock on the object. Many transactions may simultaneously hold read locks on
the same object.

void write J o c k ()
when No transaction other than the calling transaction has a read or write lock on the object,
ensures If the calling transaction already has a write lock on the object, there is no effect; otherwise it

obtains a write lock on the object, preventing other transactions from gaining any kind of
lock on it.

Read_lock and write_lock suspend the calling transaction until the requested lock can be granted (i.e., when
the when condition holds); this may involve waiting for other transactions to complete and release their locks.

The run-time system guarantees that for nested transactions, the following rules are obeyed in obtaining read and
write locks:

• A child can get a read lock if all transactions holding write locks are ancestors.

• A child can get a write lock if all transactions holding read or write locks are ancestors.

• When a child commits, locks are inherited by parents.

• When a child aborts, locks are discarded.
The run-time system guarantees transaction-consistency of atomic objects, by performing special abort processing
t h a t 4 4 u n d o e s " the effects of aborted transactions, including those aborted by crashes. Thus, implementors of atomic
types derived from atomic need not provide explicit commit or abort operations. Finally, persistence is
" inheri ted" from class recoverable; its pin and unpin operations should be used in the same way as
described in Section 3.3.1.

3.3.3. Class Subatomic
Like atomic, subatomic provides the means for objects of its derived classes to ensure atomicity. While
atomic provides a quick and convenient way to define new atomic objects, subatomic provides primitives to
give programmers more detailed control over their objects' synchronization and recovery mechanisms. This control
can be used to exploit type-specific properties of objects to permit higher levels of concurrency and more efficient
recovery. A subatomic object must synchronize concurrent accesses at two levels: short-term synchronization to
ensure that concurrently invoked operations are executed in mutual exclusion, and long-term synchronization to
ensure that the effects of transactions are serializable. For short-term synchronization, each object derived from
class subatomic should be thought of as containing a short-term lock, much like a monitor lock.

Class Definition

class subatomic: public recoverable {
protected:
void seize();
void releaseO;
void pause();

public:
// pin and unpin are public, by inheritance from recoverable.

virtual void commit(trans_id& rid);
virtual void abort(trans_tid& rid);

}

29

Operat ions

void seize()
when No transaction holds the short-term lock on the object,
ensures The calling transaction obtains the short-term lock on the object.

void release()
requires The calling transaction holds the short-term lock,
ensures The calling transaction relinquishes the short-term lock.

void pause()
requires The calling transaction holds the short-term lock.
ensures The calling transaction releases the lock, waits for some duration, and reacquires the lock

before returning.

The above operations ensure that only one transaction may hold the short-term lock at a time, thus allowing type
implementors to ensure that transactions have mutually exclusive access to subatomic objects. These operations are
protected members of the subatomic class: They are not provided to clients of derived classes, since it would not
be useful for clients to call them. Like pin and unpin, the above operations are usually not called explicitly;
instead, Avalon/C++ provides special control structures, the when and whenswitch statements (Section 3.4.8),
which automatically seize, release, and pause on the short-term lock.

Since commit and abort are C++ virtual operations, classes derived from subatomic are allowed (and indeed,
expected) to reimplement these operations. They each take a reference to a transaction identifier as an argument.
(See the Avalon class trans_id of Section 4.1.2.) The typical effects of these operations are specified as follows:

void commit(trans _jd& tid)
requires The transaction tid has committed.
ensures Non-idempotent undo information stored for transactions that have committed with respect

to tid is discarded.

void abort(trans_id& tid)
requires The transaction tid has aborted.
ensures The effects of every transaction that has committed with respect to tid are undone.

Commit operations are called for only transactions that commit at the top-level. Whenever a top-level transaction
commits (aborts), the Avalon run-time system calls the commit (abort) operation of all subatomic objects
accessed by that transaction or its descendants. Abort operations are also called when nested transactions abort.
When commit or abort is called by the system, the most specific implementation for the object will be called.
Thus, subatomic allows type-specific commit and abort processing, which is useful and often necessary in
implementing user-defined atomic types efficiently. Notice that users need not call commit and abort explicitly;
the system automatically calls them when appropriate.

3.4. Control Structures

3.4.1. Start
statement:...

start trans-body
trans-body:

trans-tag statement except-clause t

trans-tag:
toplevel
transaction

Sequential transactions are created by means of a start statement. The toplevel qualifier causes the body of

30

the start statement to execute as a new top-level (root) transaction. The transaction qualifier causes the
body to execute as a subtransaction of the current transaction, if there is one; otherwise, it too begins a new top-level
transaction. When the body terminates, the transaction either commits or aborts. Normal completion of the body
results in a commit of the transaction. Control flow statements (return, leave, break, and continue) that
transfer control outside the scope of the transaction normally commit it, unless they state otherwise via an undo
qualifier (Sections 3.4.4, 3.4.3, 3.4.5). The undo leave statement can be used to pass an abort code that can be
used as a switch value in an except clause (Section 3.4.6). Goto statements that transfer control outside a
transaction are currently not supported. Future versions of Avalon will prohibit such transfers at compile-time;
presently, the result of such a statement is undefined.

3.4.2. Costart
statement:...

costart { coarms }

coarms:
coarm c o a r m s o p t

coarm:
trans-body

Concurrent transactions and processes are created by means of the costart statement. The process executing the
costart is suspended; it resumes after the costart is finished. Execution of the costart consists of
executing all the coarms concurrendy. No guarantee is made about order of execution, or of initialization. Each
coarm runs as a separate (lightweight) process. The toplevel or transaction qualifier indicates whether the
coarm is a top-level transaction or subtransaction.

A coarm may terminate without terminating the entire costart either by normal completion of its body, or by
executing a leave statement (Section 3.4.3). A coarm may also terminate by transferring control outside the
costart statement. If an outside transfer occurs, the following steps take place:

1. All containing statements are terminated to the outermost level of the coarm, at which point the coarm
becomes the controlling coarm.

2. Every other active coarm is terminated (and aborts if declared as a transaction). The controlling coarm
is suspended until all other coarms terminate.

3. The controlling coarm commits or aborts.

4. The entire costart terminates. Control flow continues outside the costart statement.

3.4.3. Leave
statement:...

leave;
undo (expression)^ leave ;

Executing a leave statement terminates the (innermost) transaction that the leave occurs in. By itself. l e » ^ e
commits the transaction, but with the undo qualifier, it aborts it. An unqualified leave statement must occur
textually within the scope of a transaction, or a compile-time error results. An undo leave statement need not
occur within the textual scope of a transaction, but it it must occur within the dynamic scope of one, or a run-time
error will occur. The optional integer expression in an undo leave statement can be used to pass a value that can
be used in the except clause of the aborted transaction (see section 3.4.6.) The value of the expression must be
greater than zero, but less than or equal to the constant AVALON_SYS_USER_ABORT_MAX2, or a run-time error

2Currently equal to (2 1 5) - 1 .

31

will result. If the expression can be evaluated at compile-time, this restriction will be enforced then.

3.4.4. Return
statement: ...

undo^ return expression^

The return statement terminates execution of the containing operation. If no undo qualifier is present, then all
containing transactions (if any) terminated by this statement are committed. If the undo qualifier is present, then all
terminated transactions are aborted. When a return statement in a coarm causes control to leave the costart
statement, active sibling coarms are aborted. The undo qualifier can only be used within the lexical scope of a
transaction, or a compile-time error will result.

3.4.5. Break and Continue
statement:...

undo^ break;
undo o p t continue ;

Terminating a cycle of a loop (while, do, for), or a switch statement may also terminate one or more
transactions within the loop or switch. If no undo qualifier is present, then all these terminated transactions (if any)
are committed. If the undo qualifier is present, then all of the terminated transactions are aborted. When a break
or continue in a coarm causes control to leave the costart statement, active sibling coarms are aborted. The
undo qualifier can only be used within the lexical scope of a transaction, or a compile-time error will result.

3.4.6. Except Clauses
except-clause:

except (identifier)^ statement

An except clause, which may be appended to a transaction body, is used to handle different cases of an aborting
transaction. After a transaction aborts, it allows some case-specific action to be taken. The statement in the clause
is expected to be one or more case statements. If the transaction was aborted as a result of an undo (expression)
leave statement, then the value of the integer expression (called the abort code) is used to determine which of the
cases in statement are executed, just as in a switch statement. The Avalon run-time system may abort the
transaction for a variety of other reasons; in this case, the abort code will be an integer greater then
AVALON_SYS_USER_ABORT_MAX. If the optional identifier is present, then an integer variable of that name will
be defined to have the value of the abort code within the scope of the except clause. The routine
avalon_abort_code_to_string may be used to translate system abort codes to strings describing the reason
for the abort:

char* avalon_abort_code_to_string(int ac)
ensures The returned string describes the reason for an underlying system-induced abort according to

the integer abort code ac.

3.4.7. Pinning
statement:...

pinning (expression^) statement

The pinning statement indicates that statement may modify expression. Expression must evaluate to be the
address of a recoverable object (Section 3.3.1); if it is not provided, this will be used. All modifications to
recoverable objects should be done within pinning statements. If a recoverable object is not "p inned" in

32

memory while it is being modified, it may cease to be recoverable. If the object to be pinned is of variable size, then
explicit calls to pin and unpin are necessary; the pinning statement cannot be used.

3.4.8. When
statement:...

when (expression) statement
when switch (expression) statement

The when statement provides short-term synchronization for operations on this, which must be a subatomic
object (Section 3.3.3). After a short-term lock on this is obtained, expression is evaluated; if true, statement is
executed. If expression evaluates to false, execution pauses, temporarily relinquishing the lock, until it becomes
true. The short-term lock is released after statement is executed.

The when statement can also be used to provide operation consistency of implementations of operations of
subatomic objects. The operations done in a when statement are done atomically: either they all happen or none of
them happen. If the implementation of a subatomic operation does all of its work in a when statement, operation
consistency is guaranteed. When's can be nested, but the use of more than one (non-nested) when statements in the
implementation of an operation (e.g., two when's in sequence) is strongly discouraged and will void this guarantee.

As its name suggests, the whenswitch statement is a combination of the when and switch statements.
Expression and statement are handled just as they would be in a switch statement, with one difference: the
default action is to pause execution until the value of expression equals the value of one of the cases. Since the
default action is provided, it is illegal to include a default in statement.

3.5. Transmission of Data
Clients and servers communicate through remote procedure call. The arguments and return values of server member
functions are passed by value. Hence, references and pointers to objects are not transmissible. Objects of any other
C++ or Avalon fundamental type are transmissible. An array, struct, or variant (Section 4.1.4) is transmissible if
and only if all its component types are transmissible. Unions cannot be transmitted, since their actual type is not
known at compile time. The chart in Figure 3-1 summarizes which types are transmissible and which are not.
Future releases of Avalon/C++ are likely to reduce the restrictions on transmissible types, and allow pointer
indirection in structures to be transmitted (by copying) between server and client.

In most cases, users can rely on the Avalon/C++ compiler to determine automatically how to transmit a value as an
argument to a server function. In the cases where the compiler fails to recognize a type as transmissible, or when the
automatically generated transmission functions are inefficient, the user can define his or her own transmission
functions as part of the class definition. Section 5.4.2 explains how this can be accomplished, and should be read on
a need-to-know basis only.

33

Types Transmissible Non-Transmissible

C++ Fundamental
int, short int. long int, unsigned int,
char, float, double, enum pointers, references

Avalon/C++ Fundamental bool, trans J d , x_string (character strings)

C++ Derived(!)
servers, arrays, variants,
classes (-), structs (-)

unions, functions,
classes (+), structs (+)

Avalon/C++ Derived recoverable, atomic, subatomic

Italics indicates that transmission of that type is not yet supported by the current implementation.
(!) Provided component types and inherited supertypes, if any, are transmissible.
(+) With union or bitfield component types.
(-) With no union or bitfield component types.

Figure 3-1: Transmissible and Non-Transmissible Types

34

35

4 . Library

4 . 1 . N o n - a t o m i c A v a l o n / C + + T y p e s a n d T y p e G e n e r a t o r s

4.1.1. Boois
Avalon defines a boolean type, bool, with exacdy two values, TRUE and FALSE, and the usual C++ operations on
booleans: !, &&, II, = , !=, and =.

4.1.2. Transaction Identifiers
The Avalon run-time system guarantees that the serialization order of transactions is the order in which they
commit The trans_id class defines operations on Avalon transaction identifiers to permit run-time testing of the
transaction serialization order. There is a transJd sewer at each site which keeps track of all the transjki 's at that
site and handles sending trans_id's to other sites that need them.

Class Definition
class trans_id {
public:

trans_id(int = UNIQUE);
~trans_id();
trans_id& operator=(trans_id& t);
bool operator==(trans__id& t);
bool operator<(trans_id& t);
bool operator>(trans_id& t);
bool doneO;
friend bool both(trans_Jd& 11, trans_id& t2);
friend bool descendant(trans_id& t l , trans_id& t2);

};

Operations
trans_id(), t ransJd(UNIQUE)

ensures A dummy subtransaction is created and committed and the subtransaction's identifier is
returned to the calling transaction. Note that UNIQUE is the default argument to the trans J d
constructor.

t ransJd(CURRENT)
ensures Returns the trans_id of an operation's calling transaction.

~trans__id()
ensures The trans_id is deleted.

trans_id& operator=(trans_id& t)
modifies this
ensures this becomes identical to t.

bool operator=(trans_id& t)
ensures t l == t evaluates to TRUE if t l and t are equivalent: FALSE, otherwise. Note that trans _i<l \s

created by different operations within the same transaction are not equivalent.

bool operator<(trans_id& t)
ensures If t l < t evaluates to TRUE, then if both t l and t commit to the top level, t l serializes before

t. If the expression evaluates to FALSE, either t l serializes after t, or tl and t are
incomparable.

36

bool operator>(trans_id& t)
ensures If t l > t evaluates to TRUE, then if both t l and t commit to the top level, t l serializes after t.

If the expression evaluates to FALSE, either t l serializes before t, or t l and t are
incomparable.

bool done()
ensures Returns TRUE if this is committed to the top level; FALSE, otherwise.

bool both(trans_id& t l , trans_id& t2)
ensures Returns TRUE if t l and t2 are committed to their least common ancestor; FALSE, otherwise.

bool descendant(trans_id& t l , trans_id& t2)
ensures Returns TRUE if t l is a descendant of t2; FALSE, otherwise.

4.1.3. x_string: Transmissible Strings
Strings are normally declared in C++ in two subtly different ways: (1) as a fixed array of chars, whose size is
known at compile time, and (2) as a char pointer, terminated by a 'O, whose size is dynamic; its space is allocated at
run-time. Whereas strings as arrays of characters can be trivially transmitted (Section 3.5), strings as char pointers
cannot because pointers are not transmissible. The built-in Avalon/C++ class, x_string, provides for
transmission of dynamically allocated strings.
Class Definition

class x_string {
public:
operator char*();
x_string(char* c);

};

Operations

operator char*()
ensures Coerces an x_string into a character array.

x_string (char* c)
ensures Returns an x_string constructed from c.

Example
aarvar namaList {
public:
add_mambar (x__string mambar^nama) ;
x_string pick_random__maxnbar <) ;

>;

maln() {
na!Mll.ft nl;
chflur* nana * naw char;
nl. add_mawbar (" Stewart") ;
nama • nl. picJc_random_mambar () ;

>

The constructor from char* to x_string will be automatically called in the case of calls
nameList: : add_member. The coercion operator will traasform the result value of
name Li st: : pick_random_member into a char*.

4.1.4. Variants
aggr:...

variant
decUspecifier:...

37

variant-specifier

variant-specifier:
class-specifier

Avalon/C++ provides an aggregate data type generator, the variant, which is declared similarly to a structure or
class. An object of variant type can contain a value from a set of types. A variant differs from a standard C++
structure in that it can be only one of its possible subtypes at any given time; it differs from the standard C++ union
type in that it is transmissible, i.e., can be sent as an argument to or returned as a result from a server member
function.

A variant is a tagged, discriminated union and is made up of two parts, a tag and a value. The tag field specifies
which of the possible subtypes is stored in the value field, while the value field contains some instance of that
specified type.
Operations
A variant declaration of the form:

variant VT {T, V, ; . . .; T n V n ; } ;

automatically defines the following operations:

VT operators (VT v)
modifies this
ensures Copies v into this. The operational effect is that this's tag field changes to be v 's , and

this's value field is assigned v 's , using the the assignment operator defined on v ' s type.

bool operator= (VT v)
ensures v l = v returns TRUE if v l and v have the same tag, and their values are equal; FALSE,

otherwise. Two void instances of the same variant type are equal.

bool is_void ()
ensures Returns TRUE if this has no value, and is of the special null-valued void type; FALSE,

otherwise. The void type represents the state of a variant instance prior to its first
assignment.

and the following operations for each type T t and tag

void set_V.(T. val)
modifies this
ensures Sets the tag of this to V. and its value to val.

Tj value_Vj()

ensures Returns the value of this if its tag is V.; returns a run-time error otherwise,

bool is_V.()
ensures Returns TRUE if the tag of this is V{; FALSE, otherwise.

Restrictions
Variants are a special type of class, and can only be declared and defined at the top level, i.e., variants cannot be
nested within declarations or definitions of other types, including variants. Variants cannot have member functions
Example

•num PF {FAIL, PASS};
variant grada {

char 1attar;
short parcantaga;
PF paM_fail;

};

In the above example, grade: : set_letter (char c) would be defined to set the tag of the variant instance to
char, and its value to c, bool grade: : is_letter () returns TRUE if the tag of the variant instance is char,

38

and FALSE otherwise, and c h a r g r a d e : : v a l u e _ l e t t e r () returns the c h a r value of the instance if it
contains a c h a r , and produces a run-time error otherwise. Similar functions for p e r c e n t a g e and p a s s _ f a i l
are provided as well.

4.2. A t o m i c Types
Each C++ fundamental type, t , has a derived Avalon atomic type counterpart, a t o m i c _ t , where t currently can
be i n t , c h a r , or f l o a t . There is also an Avalon atomic type for booleans, a t o m i c j b o o l , and for
(dynamically-sized) strings, a t o m i c _ s t r i n g (Section 4.2.1). Each Avalon atomic type has the same sets of
values and operations as its non-atomic counterpart. No atomic type is transmissible.

4.2.1. Atomic Strings
The a t o m i c _ _ s t r i n g class is intended to be used in a manner similar to a c h a r * , as used to represent C++
strings. They should be used as components of atomic and subatomic objects to ensure their recoverability. An
a t o m i c _ _ s t r i n g can be of arbitrary, varying length.
Class Definition

c l a s s atomic_string {
p u b l i c :
atomicjstringO;
a tomic_str ing(const char* str);
atomicj3tring(atomic_string& astr);
v o i d o p e r a t o r = (c o n s t char* str);
v o i d o p e r a t o r = (c o n s t atomic_string& astr);
o p e r a t o r char*();

f r i e n d bool o p e r a t o r = = (c o n s t atomicistring& astr, c o n s t char* str);
f r i e n d bool o p e r a t o r = (c o n s t char* str, c o n s t atomic_string& astr);
f r i e n d ostream& o p e r a t o r « (o s t r e a m & s, atomic_string& astr);

};

Operations

atomic_string()

ensures Creates and returns a new, empty atomic_string.

a tomic_str ing (const char* str)

a tomic_str ing (const atomic_string& astr)
ensures Creates and returns a new atomic_string, initialized with the value of str (astr).

v o i d o p e r a t o r = (c o n s t char* str)

v o i d o p e r a t o r ^ c o n s t atomic_string& astr)
modifies t h i s
ensures Assigns str (astr) to an atomic_string, adjusting the amount of storage for the string if

necessary.

o p e r a t o r char*()
ensures Coerces an atomic__string into a "s tandard" C string, char*, allowing atomic_strings to He

used in standard C routines.

bool o p e r a t o r = (c o n s t atomic__string& astr, c o n s t char* str)

bool o p e r a t o r = (c o n s t char* str, c o n s t atomic_string& astr)
ensures Returns TRUE if astr and str contain the same characters in the same order; FALSE,

otherwise. Equality is case-sensitive.

39

ostream& operator«(ostream& s, atomic_string& astr)
modifies s
ensures astr is written to the output stream s.

Restrictions
The char* returned by the coercion operator must only be used as a const char*, i.e., the contents of the string
should not be changed. The returned char* is only valid until the next operation on an atomic_string. Thus,
multiple coercions may return different char* addresses.
Example

f«zv«r foo {
•tabla atomic__atring a__«tr;

>;

a_«tr - "Hallo";
if (a_»tr — "Hallo") ...
ulatrcmp (a__atr, "hallo");

a_str is defined to be an atomic__str±ng. When the server is started, a_str is created uninitialized. The first
statement assigns the value "Hello" to a_str. The second statement uses the equality operator. The last
statement shows a use of an atomic_string where a char* is expected; this use is only acceptable if the called
routine does not attempt to modify the contents of the char* generated by the coercion. See 5.2 for other usage
guidelines.

4.3. Catalog Server
The catalog server [9] is part of the Avalon run-time system It maintains a mapping of server attributes to unique
server names, and services lookup requests. The current implementation of Avalon has exactly one catalog server
since it is expected to be used relatively infrequendy; hence, we do not expect it to be a bottleneck. If experience
shows otherwise, however, we may decide to run one catalog server per node in future versions of Avalon.

When a server starts, it must check in its attributes. The required attributes (type name (TYPE), unique name
(UNIQUE_NAME), and node (NODE)), are automatically registered when the server starts. If more attributes are
desired, the server programmer can add them in the constructor code. For example, a printer server might add the
identity of the printer it is servicing. When a client wants to locate a server, the locate_server function (see
end of this section) calls the catalog operation name with a list of attributes and returns an object representing the
described server. To avoid boot-strapping problems, Avalon ensures that all clients have a reference to the catalog
server, which has a fixed unique name, catalogs.

40

Class Definition

server catalog {
public:
cataloglpath p, node n, size s) : (p,n,s);
~catalog();
int checkjn(a t t r j i s t alist);
void iemove(int id);
void set_attributes(int id, a t t r j i s t new_alist);
void set_attribute(int id, x_string attribute, xjstring new_value);
void iemove_attribute(int id, x_string attribute);
a t t r j i s t get_attributes(int id);
x_string get_attribute(int id, x_string attribute);
int find(attrjist alist);
x_string name(attr j is t alist);
void main();

};

Operations

catalog(node n, path p , size s) : (n,p,s)
ensures Starts and initializes the catalog server on node n, using an executable file p, and reserving s

(Camelot) chunks of recoverable storage (where 5 is a reasonable value for s).

~catalog()
ensures Kills the catalog server.

int check_in(attrjist alist)
modifies catalog server
ensures Creates a new entry in the catalog server with the attributes specified in alist and returns a

unique id to be later used to look at and modify the attributes of the new entry.

void remove(int id)
modifies catalog server
ensures Deletes the entry of the server identified as id.

v o i d set_attributes(int id, a t t r j i s t new_alist)
modifies Attributes of id
ensures Replaces the attributed list of the server entry id with the new list alist.

v o i d set_attribute(int id, x_string attribute, x_string new_value)
modifies attribute's value
ensures Replaces the value of attribute with new^yalue for the server id in the catalog server.

v o i d remove_attribute(int id, xjstring attribute)
modifies Attributes of id.
ensures The set of attributes for id no longer contains attribute.

at t r j is t get_attributes(int id)
ensures Returns a list of attributes for the server id.

x_string get_attribute(int id, x_string attribute)
ensures Returns the value associated with attribute for the server id.

int find(attrjist alist)
ensures Returns the unique id of a server whose attributes match alist.

x_string name(attr j ist alist)
ensures Returns the value of the unique name attribute of a server whose attributes match alist.

void main()
ensures No effect.

41

Locating a Server

In order to locate an existing, ninning server, one uses one of the following functions:

server_root& get_server (char* unique_server_name)
ensures Returns a reference to a server object for the named server, for those cases where the unique

name is fixed or otherwise known. For example, the single catalog server is known as
"ca t a logs . "

server_root& locate_server (char* typename, a t t r j is t a t t r l=NULL)
requires Each instance of a type of server supplies identifying attributes when it is started.
ensures Returns a reference to a server of type type with attribute values that match those in attrl, if

such a server exists; returns NULL otherwise. For multiple instances of a particular type of
server, a specific instance may be selected by listing its unique attributes in attrl.

Note that since locate_server is a generic function, the resulting reference must be coerced to the appropriate type
when received.

Example
attrJLiat aliat; // a naw attributa liat
aliat.puah ("prlntar", "iron"); // CMO printara ara namad aftar gama and minarala
printaarvarfi pa = (printaarvari) locata__oarvar ("print aarvar" , aliat);
if (£pa !* NULL) // chack for NULL ratum value
pa.apool (filanama);

This code obtains a reference to the printserver server object for the printer " i ron . " If such a server exists, it
invokes the server's spool operation.

42

43

5- Guidelines for Programmers

5.1. Choosing Identifiers
In most ways, Avalon hides the complexity of its underlying mechanisms. When choosing identifiers, however, it
must be remembered that Avalon is a preprocessor that generates code for the underlying system, Camelot, which in
turn is built on top of Mach. Fortunately between Mach, Camelot, Avalon, C++, and C, some valid identifiers
remain.

Here are some guidelines:

1. Do not begin your identifiers with '^avalon". Except for names documented in this report, all
identifiers inserted into the generated code by Avalon/C+f begin with this string.

2. Do not end your identifiers with ' *_t " . A l l Camelot types end with * *_t
3. Do not end your struct names with " ^ s t r u c t " . Again, Camelot uses these.

4. Beware of uppercase identifiers. There are many constants (#def ine, enums, etc.) and macros
which use uppercase identifiers.

5.2. Using and Implementing Avalon Types
This section gives some guidelines for correct usage of the two Avalon built-in classes, recoverable and
atomic. (Rules for subatomic are forthcoming.) The rules outlined here do not represent the only correct
usage, but rather, a usage which is * 'guaranteed' ' to provide correct results. These rules, of course, do not address
standard programming practices such as ''Do not free memory twice."

There are three kinds of programmers:

Client programmers:
These people write programs which invoke operations on servers. Their job is to ensure that the
operations are called correcdy. There is only one rule for client programmers to obey: All server
operation invocations must be made within a transaction.

Type users/Server programmers:
These people define servers, and use built-in or user-defined types. Their job is to declare,
construct, and invoke operations properly on instances of these types.

Type implementors:These people define new types, Avalon types, derived from built-in or other user-defined types.
Their job is to define and implement the member functions of the type such that, provided it is
used correcdy, it will exhibit a desired behavior. Note that, when creating a new Avalon type
that uses another Avalon type, the programmer is both a type implementor (of the new type) and
a type user (of the used type).

In the next four sections, we give rules for users of recoverable types, users of atomic types, implementors of
recoverable types, and finally, implementors of atomic types.

5.2.1. Using a Recoverable Type
Allocation: All Avalon types are allocated from recoverable memory (a special heap). This is accomplished
through an appropriate constructor provided by either the type implementor or generated by Avalon. Care must still
be taken, however, not to force allocation of an Avalon type from other than recoverable memory (such as the
stack). Thus:

1. Do not declare variables or functions of an Avalon type. Instead, use references or pointers to Avalon
types.

44

2. Do not new an a m y of Avalon objects (e.g.. new myatomic[10]) 3 .

3. Do not coerce a non-Avalon type to an Avalon type either explicitly, e.g.,
str •* (atomic_string)"string";

or implicitly, e.g.,
atomic_string::atomic_string (char* istr) {...} // constructor taking a char* argumant
void afunction (atomic_string& s) (...) // function axpacting an Avalon typa
afunction ("string"); // BAD coda!

The trouble here is that C++ interprets a constructor of one argument as a coercion from the
argument's type to the class type. In the example, C++ converts the c h a r * " s t r i n g " to an
a t o m i c _ s t r i n g reference by creating a temporary variable on the stack of type
a t o m i c _ s t r i n g .

Use: All usage of an Avalon type should be through member functions provided by the type.

5.2.2. Using an Atomic Type
Constructing Atomic Objects: When constructing an atomic object it is important that the creating transaction has
exclusive access to the location which will hold the new object. Thus:

class myatostlc : public atomic {
atomic_int* i;

void nawint (int);
>;
void myatomic::nawint (int n) {

(*this).writa_lock();
pinning () i » naw atomic__int (n) ;

}

Before creating the new a t a m i c _ i n t , the function obtains exclusive access to the variable (i) which will hold the
address of the object.

Destroying Atomic Objects: Similarly, when destroying an atomic object, the transaction must have exclusive
access to all pointers to the object.

class myatomic : public atomic {
atomic_int* i;

void dalataint();
>;
void myatomic::dalataint() {

(*this).writa_lock();
dalata i;
pinning () i « 0;

>

5.2.3. Implementing Recoverable Types
Constructors and Destructors: Storage for all Avalon types must be allocated from recoverable memory. A v a l o n

takes care of storage allocation and deallocation for types with constructors which do not make assignments to
t h i s . See the section Assignment to This for special rules concerning the proper use of such assignments.

Any initializations made to the object within a constructor must be within a p i n n i n g block or p i n and u n p i n
statements (see the section below on Modifications).

3This restriction should be temporary.

45

Contents: Avalon types may be constructed from only the following types:

1. In-line basetypes such as int, char, bool, e t c ,

2. In-line Avalon types,

3. Pointers to Avalon types.

4. In-line arrays and streets of the preceding types.

All fields must be either p r i v a t e or p r o t e c t e d .

Modifications: All modifications must be (dynamically) within a p i n n i n g block or a p i n / u n p i n pair. There
must be a matching u n p i n called for each p i n and u n p i n may not be called without a prior call to a matching
p i n .

Coercions: Care should be taken against providing the user with a pointer directly into recoverable memory. All
changes to a recoverable object should occur within only the object's member functions. For example, an
a t o m i c _ _ s t r i n g may have an o p e r a t o r c h a r * function. This function should m a l l o c volatile memory to
hold the string rather than return a pointer to the array in recoverable memory. Otherwise, the user could modify it
outside a p i n n i n g block with undefined results. Ideally, C++ would let you define an o p e r a t o r c o n s t
c h a r * , but it does not.

Overriding Member Functions: If the type overrides the default p i n and u n p i n operations, the new
implementations must ensure that, if p i n n i n g , or p i n and u n p i n are properly called, all changes will be made
within calls to r e c o v e r a b l e : : p i n and r e c o v e r a b l e : : u n p i n .

Assignment to This (long section): C+4- allows the programmer to manage the allocation of objects through special
code in its constructors, particularly assignments to the variable this. Using assignments to this, the
programmer can, for example, implement variable-sized objects, and objects which are allocated from a programmer
maintained memory free store. When using an assignment to this, however, care must be taken not to interfere
with Avalon's managing of the recoverable heap.

In what follows, we will describe the requirements for
• A simple constructor which expliciUy allocates its memory,

• Variable-sized objects, and

• Objects which may be either allocated by the constructor or pre-allocated (such as when the object is an
in-line part of a struct).

A simple constructor or destructor could look like this:
naytype: : uytype () {

Int mysize =* sizeof (znytype) ;
this - (mytype*) REC_MALLOC (mysize);
pinning() {

// Initialize the fields of your type.
}

>

raytype::~mytype<) {
pinning() <

// Cleanup the fields of your type.
}

REC_FREE(this);
thi* • 0;

>

46

In the constructor:
• All execution paths must make an assignment to t h i s .

• To allocate memory for the object you must use REC__MALLOC rather than new or malloc. If you
have reason to allocate another recoverable object, you may (and should) use new. For example:

this • (mytypa*) n«w atomic_int;

• You must compute the size correcdy (use sizeof (your_type) so you include any space needed by
the type's ancestors.)

• No member functions (e.g. pin and unpin) may be called before the assignment to this.

In the destructor:
• REC_FREE (rather than delete or free) must be used to deallocate the memory.

• After deallocation, this must be assigned the value 0 so that the ancestor's destructors will not be
called.

• No member functions may be called after the deallocation of this.

The most common use of an assignment to this is to implement variable-sized objects 4 . However, any
recoverable type for which sizeof (yourtype) may return an incorrect value must either call the functions pin
and unpin with the correct size rather than use the pinning statement, or override these functions so that they
use the correct size, allowing pinning to work properly (as shown here).

void mytypa.:pin(int ignora__siza) {
int size • (*this). ob jact_siza;
racovarabla::pin(siza);

}

void mytypa::unpin(int ignora_siza) <
int siza « (*this).objact_siza;
racovarabla::unpin(siza);

>

These functions ignore the incorrect size which the pinning statement uses when it calls pin and unpin and
instead, uses the real size of the object. This particular example assumes that the constructor stores the allocated
size in the field ob ject_size.

It is important to remember that, with C+f, many uses of a type force the allocation of the object's memory prior to
calling its constructor. These uses include: (1) construction of a derived type, (2) allocation of an array of objects of
this type, and (3) in-line use of the type in a struct If a type which handles its own allocation (assignment to this)
is to be used in these situations, the constructor must be written such that:

1. Memory is allocated only if this is 0 upon entering.

2. If this is not 0, an assignment to this is still executed. The statement this = this; will
suffice.

3. If memory is allocated, the function (*this) .on_heap is called after the assignment to this.
This tells the destructor that the memory was allocated and needs to be deallocated.

For example:
mytypa::mytypa() {

if (this — 0) {
int myaiza » sizaof (mytypa) + <whateverelse> ;
this - (mytypa*) REC_MALLOC (mysiza);
(•this) .onJhaapO ;

4Thc last field of a struct is declared as an array of size 1. When you construct an instance of the type, however, you REC_MALLOC as
much memory as needed for an array of the desired length (plus the initial fixed size portion of the struct and its ancestors). See [14] for
examples.

47

>

else this = this;
pinning() {

// Initialize the fields of your type.
}

}

The destructor would then deallocate the memory only if the constructor allocated it:
mytype: : mytype () {

pinning() {
// Cleanup the fields of your type.

}

if ((*this).get_heap_bit<) — T R U E) {
R E C j n U S B (this);
this = 0;

}
}

The functions o n j i e a p and g e t _ h e a p _ b i t are protected member functions exported by class r e c o v e r a b l e .
(Since these are used only in the rare instances in which programmers wish to pre-allocate objects, they are not
described with the other exported functions.) The function on__heap simply sets a bit in the object which is
checked by the function g e t _ h e a p j b i t (returning TRUE if it was set and FALSE otherwise).

5.2.4. Implementing an Atomic Type
Types derived from class a t o m i c should follow the requirements oudined above. In addition, if the type is
expected to exhibit atomic behavior (serializability, transaction-consistency, and persistence), the guidelines in this
section should be followed.

Contents: Pointer fields in the type should point only to types which are atomic (derived from a t o m i c or
s u b a t o m i c) , or recoverable provided that concurrent access to a recoverable object is protected by an appropriate
lock on the containing atomic object.

Modifications:

1. r e a d _ _ l o c k on the object should be called by a member function prior to accessing any data in the
object. w r i t e _ l o c k should be called prior to any modification to the data. Pointers to non-atomic
(recoverable) objects should be treated the same as in-line non-atomic objects in that appropriate locks
should be obtained on the enclosing atomic object prior to invoking member functions on the object.
No locking is required when accessing atomic components (in-line or pointers) since the objects'
member functions should acquire the necessary locks.

2. If it is intended that a non-in-line subcomponent of an object be protected through locks on the
containing object, the subcomponent should be derived from r e c o v e r a b l e rather than a t o m i c
(i.e., the object is persistent but relies on the caller for concurrency control).

Coercions: An atomic object should not be coerced to a non-atomic type.

Overriding Member Functions: If the type overrides the default read_lock and write_lock opera lions, the
new implementations must ensure that, if the type user properly calls read_ lock or w r i t e _ l o c k . the
appropriate calls to a t o m i c : : readMLock and a t o m i c : : w r i t e l o c k are made.

48

5.3. Constructing an Avalon Program

5.3-1- Server Programs
A server program should be broken into files as follows:

<server>.h declares the server and includes any type definitions required by the server.

<server>.av provides the implementation for each of the server's member functions and any support
functions not declared or included in <server>.h.

<other>.{av,o} provides the implementation for any functions declared in <server>.h other than the server's
member functions.

A server program should be linked with the following libraries in order:

-lmisc -lava -lgen -lcamlib -1switches -ltermcap \
-lthreads -lcam -lmach -lm -lnode

5.3.2- Client Programs
A client program includes the <server>.h file for each server it uses. Avalon ensures that implementations for the
server's member functions are included. It is the responsibility of the programmer, however, to include the
implementations of any other functions declared in <server>.h and any files it includes. In general, a client program
must be linked with all of the .o files for each server it uses except for <server>.o. The libraries needed by the
server should also be linked with the client program.

5.3-3. Example Templates
— my serve r.h —
#include <avalon.h>
#include <mytype.h>
server myserver {
mytype znt;

public:
myserver (...);
ms_opl (...);
ms_op2 (...);

};

// always first file included.
// defines types used by the server.

— myserver.av —-
#include <myserver.h>

int private_utility <) {...}
myserver: :myserver (...) {.
myserver: :ms_opl (...) { . . .
myserver::ms_op2 (...) (...)

— myclientav —
#include <myserver.h>

private_utility();

— myrype.av —
#include <mytype.h>
mytype::mytype(...) (...)
mytype::mt_opl(...) (...)
mytype::mt_op2(...) (...)
— server.make —
acc -o myserver myserver.o mytype.o \

-lmisc -lava -lgen -lcamlib \
-lswitches -ltermcap -lthreads \
-lcam -lmach -lm -lnode

—— client, make —
acc -o myclient myclient.o mytype.o \

-lmisc -lava -lgen -lcamlib \
-lswitches -ltermcap -lthreads \
-lcam -lmach -lm -lnode

The file myserver.av provides only the implementations of the server's member functions and the
implementation of private_utility which is not defined in myserver. h and thus, will not be needed by the

49

client. The object file generated for myserver. av is linked in with the server program but not the client program.

The file xnytype.av provides implementations of the other functions defined in myserver.h through the
#include <mytype. h> . Since the client includes this file, it also needs to be linked with mytype. o.

Finally, both the client and the server need to be linked with the standard set of libraries needed by Avalon. For
complete examples, look at the servers, clients and makefiles in /afs/cs/project/avalon/src/avalon/bin/validate. See
also the acc man pages (Appendix II) for appropriate flags with which to call acc.

5.4. For Experts Only

5.4.1. Undo and Destructors
When a transaction is aborted using an undo leave (return, break, continue) statement, control may
be transferred directly to the textual end of the transaction using the C long jmp mechanism. This transfer of
control will exit one or more blocks in which automatic variables may have been initialized by a constructor. These
variables may be instances of a class that has a destructor, and, if so, this destructor would normally be called on
these variables before the block was exited. When a transaction is aborted, however, these variables will not have
destructors called for them. (Note that this is a problem shared with any use of the set jmp/long jmp mechanism
in C-w-.) Normally, the constructor and destructor of a class only modify the object they are invoked on. In this
case, this may not be a serious problem; the only result of not calling the destructor is that space on the free store is
gradually lost. However, some classes are written so that the constructor and destructor modify some external data
structures, and rely on the assumption that both the constructor and the destructor will be called for each object to
maintain the integrity of those data structures. These kinds of classes would interact badly with undo statements
that exit multiple blocks, and should probably be avoided. Future versions of Avalon/C-H- may attempt to handle
this interaction more gracefully.

5.4.2. User-Defined Transmission Functions
Before any class instance can be actually transmitted to another process, it must be translated into a special, built-in
class called __ava_message. The _ava_message abstract representation is that of a queue. Objects are removed
from the queue in the same order in which they were inserted.
Class Definition

class _ava_message {
_ava__message();
_ava_message& operator«C_ava__message& msg);
_ava_message& operator«(_ava_msgfield& msg);
_ava_message& operator»(_ava_message& msg);

};

Operations
_ava_message()

ensures Creates and returns a new instance of an _ava_message.

_ava_message& operator«(_ava_message& msg)

_ava_message& operator«(_ava_msgfield& msg)
ensures Appends msg to the end of an _ava_message.

_ava_message& operator»(_ava__message& msg)
ensures Extracts built-in base types from the message instance. Higher-order types are extracted

using the class's jrecompose function (see below) with the message instance as an argument.

50

To add user-defined transmission to a user-defined class, you must define two class member functions in order to be
able to transmit a class instance:

o p e r a t o r _ava_message()
ensures Coerces a class instance into an _ava_message. It will typically need to call the transmission

functions on other types. For each class, _ava_message instances are constructed by calling
the class's coercion operator. For each built-in fundamental type (int, chars, floats), a special
class, jtvajnsgfieldy with overloaded constructors, is provided. Since enumerations are
represented in C++ as integer constants, they should be treated as if they were of type int for
the purpose of transmission.

v o i d _recompose(_ava_message& msg)
modifies * t h i s (Obscure, but true.)

ensures Constructs a new instance of the class and overwrites the old one with the new.

Figure 5-1 gives a sample of transmission functions for a simple class.

5-4.3. Processes
Support for processes has not yet been implemented and will not be soon.

A coarm of a costart statement can also be a regular process with no transaction semantics:

coarm:.. .
process statement

We make no guarantees as to giving any meaningful semantics to processes that run concurrently with transaction
coarms, or processes that run within transactions.

5.4.4. Pragmas
Support for pragmas lias not yet been implemented and will not be soon.

pragma:
QpragmaQ pragma-list

pragma-list:
prag
p rag , pragma-list

prag:
identifier
identifer = value

A pragma is used to convey information to the compiler. Use of pragmas is an appropriate escape mechanism to

Camelot features.

For example, Camelot provides two different kinds of logging, new-value/old-value and new-value only and
mechanisms to support various commit protocols. Different combinations are useful depending on die exp<'ctf<l
length of a transaction. Thus, we allow the user to specify via a pragma whether a newly started transaction will
" sho r t " or " l o n g . " The standard default is " m e d i u m " and the following combinations are defined for each value:

Short new-value only logging
blocking protocol, e.g., two-phase commit

Medium new-value/old-value logging
blocking protocol, e.g., two-phase commit

Long new-value/old-value logging
non-blocking commit protocol

51

struct address {
int numbar;
char straat[40];
char appt[8];
char city[20];
char stata[3];
int zipcoda;

class parsonnal {
char nana[40];
int ss__numbar;
float salary;
•nun {WEEKLY. HOURLY. MONTHLY} payroll_typa;
addrass homa_addrass;

parsonnal(istraam); // For data antry
parsonnal(char* nawjnama, int naw_ss, float n«w_sal, addrai
oparator __ava_massaga();
void __r«compo8«(_avajM88ag«&) /

// Definitions of constructors omittad

parsonnal:: __ava_message() {
_avajneasage msg » new _ava message();
int i;

// this->nama
for (i =» 0; i < 40; i++) *msg « _ava_magfield(name[i]) ;

*msg « _avajtnsgfield(ss_number) ;
*msg « _ava_msgfield(salary) ;
*ma9 « _avajmagfield((int) payroll_typ«
*mag « __ava_message (home_address) ;

// this->ss numbar
// this->salary
// thia->payroll_J:ype
// this->home addrass

ratum (*msg) ;

void parsonnal _racomposa(a
int i; L__massaga£ msg) {

i++) msg » namafi]; for (i = 0; i < 40;
msg » ss_number;
msg » salary;
{ int tamp; msg » tamp; payroll_type
home__addr a a a ._recompose (msg) ;

tamp;

// this->nama
// this->ss_number
// this->salary

) // this->payroll_typa
// this->homa addrass

Figure 5 -1 : User-defined Transmission Functions

Default The default value is 4 'Medium. ' '

Notice that the combination of new-value only logging and a non-blocking commit protocol is not permittol.

Other pragma values will be determined to incorporate other meaningful combinations, e.g.. to indicate using ;>
"highly optimized" protocol for a local transaction.

Restrictions

In general, pragmas are only allowed at any place where the syntax rules allow a declaration. Currently, pragmas
are treated exacdy as comments, and thus, can appear anywhere a comment can appear. No interpretation of pragma
values is currently done.

52

53

Appendix I
Grammar

^ l a n g u a g e this grammar defines is a strict superset of that presented in Section 14 of the Reference Manual in

1.1. Expressions
expression:

term
expression binary-operator expression
expression ? expression : expression
expression-list

expression-list:
expression
expression-list, expression

term:
primary-expression
unary-operator term
term ++
term --
sizeof expression
sizeof (type-name)
(type-name) expression
simple-type-name (expression-list)
new type-name initializer• t

new (type-name)
delete expression
delete [expression] expression

primary-expression :
id
: : identifier

constant
string
this
(expression)
primary-expression^ expression]
primary-expression (expression-list t)
primary-expression. id
primary-expression -> id

id:
identifier
operator-function-name
typedef-name :: identifier
typedef-name:: operator-function-name

operator:
unary-operator
binary-operator
special-operator
free-store-operator

54

Binary operators have precedence decreasing as indicated:

binary-operator: one of
* / %
+ -
« »
< >

&
A
I
&&
II
assignment-operator

assignment-operator: one of
= += -= «,= /= %= A = &= 1= » = « =

unary-operator: one of
* & + - - ! + + -

special-operator: one of
0 []

free-store-operator: one of
new delete

type-name:
decl-specifiers abstract-declarator

abstract-declarator:
empty
* abstract-declarator
abstract-declarator (argument-declaration-list)
abstract-declarator [constant-expression t]

simple-type-name:
typedef-name
char
short
int
long
unsigned
float
double
void

typedef-name:
identifier

1 . 2 . Declarations
declaration:

decl-specifiersopt declarator-list(

name-declaration
asm-declaration
pragma

name-declaration :
aggr identifier;
enum identifier;

aggr:
class
struct

union
server
variant

asm-declaration:
asm (string) ;

pragma:
@pragma@ pragma-list

pragma-list:
prag
p rag , pragma-list

prag:
identifier
identifer = value

decl-specifiers:
decl-specifier decl-specifii

decl-specifier:
sc-specifier
type-specifier
fct-specifier
friend
typedef
server-specifier
variant-specifier

type-specifier:
simple-type-name
class-specifier
enum-specifier
elaborated-type-specifier
const

sc-specifier:
auto
extern
register
static
stable

fct-specifier:
inline
overload
virtual

server-specifier
class-specifier

variant-specifier:
class-specifier

elaborated-type-specifier:
key typedef-name
key identifier

key:
class
struct
union
enum
server
variant

56

declarator-list:
init-declarator
init-declarator, declarator-list

imt-declarator:
declarator initializeropt

declarator:
dname
(declarator)
* const o p t declarator
6 const declarator
declarator (argument-declaration-list)
declarator [constant-expression o p t]

dname:
simple-dname
typedef-name :: simple-dname

simple-dname:
identifier
typedef-name
~ typedef-name
operator-function-name
conversion-function-name

operator-function-name:
operator operator

conversion-function-name:
operator type

argument-declaration-list:
arg-declaration-listopt... o p t

arg-declaration-list:
arg-declaration-list, argument-declaration
argument-declaration

argument-declaration:
decl-specifiers declarator
decl-specifiers declarator = expression
decl-specifiers abstract-declarator
decl-specifiers abstract-declarator = expression

class-specifier:
class-head { member-listopt }

class-head:
aggr identifieropt

aggr identifier : public^, typedef-name

member-list:
member-declaration member-listopt

member-declaration:
decl-specifiersopt member-declarator initializeropt

function-definition ; t

decl-specifiers optfct-declarator base-initializeropt

private:
protected:
public:

member-declarator:
declarator
identifieropt: constant-expression

57

1.3. Statements

{ statement-list }
statement-list:

statement
statement statement-list

statement:
declaration
compound-statement
expression o p t ;
if (expression) statement
if (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for (statement expression t; expression t) statement
switch (expression) statement
case constant-expression : statement
default : statement
undo o p t break;
undo o p t continue ;
goto identifier;
identifier: statement
start trans-body
costart { coarms }
leave;
undo {expression) leave :
undo^j return expression^
pinning (expression^ statement
when (expression) statement
whenswitch (expression) statement
pragma

trans-body:
trans-tag statement except-clause t

trans-tag:
toplevel

initializer:
= expression
= { initializer-list \
= { initializer-list, }
(expression-list)

initializer-list:
expression
initializer-list, initializer-list
{ initializer-list }

enum-specifier:
enum identifier• [enum-list }

enwn-list:
enumerator
enum-list, enumerator

enumerator:
identifier
identifier = constant-expression

58

transaction
coarms:

coarm coarms .
opt

coarm:
trans-body
process statement

except-clause:
except (identifier) t statement

1.4. External Definitions
program:

externa l-defi nition
external-definition program

external-definition:
fiinction-defi nition
declaration

function-definition:
decl-specifiersoptfct-declarator base-initializeroptfct-body

fct-declarator:
declarator (argument-declaration-list)

fct-body:
compound-statement

base-initializer:
: member-initializer-list

member-initializer-list:
member-initializer
member-initializer, member-initializer-list

member-initializer:
identifier (argument-list•)

1.5. Preprocessor
#de£ine identifier token-string
#def ine identified identifier ,..., identifier) token-string
#else
#endi£
#if expression
#if def identifier
#if ndef identifier
#include "filename"
#include <filename>
#line constant "filename"
#unde£ identifier

A C C (l)
Appendix II

UNIX Programmer's Manual A C C (l)

NAME
acc - an Avalon/C++ compiler

SYNOPSIS
acc [option] ... file ...

DESCRIPTION
acc is an Avalon/C++ compiler. File names that end with

x , .c+, *h, Ji+, .av

are taken to be Avalon/C++ source files. They are compiled, producing .o files, as in cc (1).

•s are taken to be a? (1) source files,

.i are ignored.
File names that end with anything else are assumed to be object files or libraries and are handed
directly to cc.

acc uses cpp to pre-process the input, avfront to process the Avalon extensions to C++, cpp to pre-
process the avfront output, /usr/misc/.c++/lib/cfront to process the C++ extensions to C, cc to compile
the resulting C code, and /usr/misc/.c++/lib/munch to find global variables with constructors and des
tructors, acc defines the macros STDC , c_plusplus, and avalon when running cpp the first time,

STDC and c_plusplus when running cpp the second time. C++ include files are normally taken
from /usr/misc/.c++/include.

There are several options which tell acc which programs to run and where to put the output These
options are all prefixed by +a .

The following options tell acc to run a partial Avalon compile:

+aE Only cpp is run. The result is printed on stdout.

+aF Only cpp and avfront are run. The result is printed on stdout.

+aG Only cpp, avfront, and cpp are run. The result is printed on stdout.

+aH Only cpp, avfront, cpp, and cfront are run. The result is printed on stdout.

The following options tell acc to run all or part of a C++ compile:

+a l Only cpp is run. The result is printed on stdout. The avalon macro is not defined. This option
is equivalent to +aE +aK.

+ a j Only cpp and cfront are run. The result is printed on stdout. The avalon macro is not defined.
This option is equivalent to +aH +aK.

+aK All passes except avfront and the second pass of cpp are run. The avalon macro is not
defined.

The following options tell acc to generate a list of makefile dependencies:

+ a M cpp is run to generate a list of makefile dependencies. The macros STDC , c_plusplus,
and avalon are defined. The result is printed on stdout.

+aN cpp is run to generate a list of makefile dependencies. The macros STDC and c_plusplus
are defined. The avalon macro is not defined. The result is printed on stdout. This option is
equivalent to +aK +aM.

4di Carnegie-Mellon Update 7/28/87 1

60

+ah

+ai

The following options tell acc various other things about how to do the compile:

The +aE, +aFf +aG, +aH, +al, +aJ, +aK, +aM, +aN and +aP options will send the output
for each file to a corresponding file with the suffix suffix, rather than to stdout.

+af Files are used in the preprocessor stage instead of pipes. This may improve performance on
machines that spend most of their time paging.
Lines beginning with Mine or ^number will be removed from the output produced with the
+o£ , +aF, +aGt +aH, +af, +aJt +aK, +aAf, +aN and +aP options.

The output of cfront for each file is put in a file with the suffix M . .c". These files are normally
deleted, but the +az option keeps them around.

+ a P cpp and avplain are run. The result is printed on stdout. avplain is a version of ayfront that
parses but does not actually implement the Avalon extensions. It is useful only for maintainers
of ayfront.

+aT acc will print timing information.

+aV acc will print all the details about what it is doing.

The following options are passed on in various forms to the programs that acc runs. This is not an
exhaustive l i s t Other options not listed in this man page are assumed to be ayfront and cfront options
if they begin with '+% cc options if they begin with *-% and files if they begin with anything else.
+d ayfront and cfront will generate code that is more suitable for debugging. Inline functions will

not be expanded.
+S Some run-time statistics for ayfront and cfront will be printed on stderr.
+V ayfront and cfront will accept old-style C declarations. Include files will be taken from

/usr/cs/include rather than /usr/misc/\c++linclude

-2Dname=value
-IDname

Name is defined for the second pass of the C preprocessor. If no value is given, name is

defined to be 1.

The definition of name in the second pass of the C preprocessor is removed.

-Dname=value
-Dname

Name is defined for the first pass of the C preprocessor. If no value is given, name is defined

to be 1.
-Idir dir is added to the search path for include files. Directories given in - I options are searched

before lusrlmiscl.C++/include and the directories in the CPATH environment variable. This
option affects both passes of the C preprocessor.

-Uname
The definition of name in the first pass of the C preprocessor is removed.

- w ayfront, cfront, and cc warning messages are not printed.

FILES
<some directory in $LPATH>/cpp

The C preprocessor.

avfront The Avalon preprocessor.

4th Carnegie-Mellon Update 7/28/87 2

A C C (x ^ UNIX Programmer's Manual A C C (1)

A C C (l) UNIX Programmer's Manual

61

/usr/misc/.c++/lib/cfront
The C++ preprocessor.

/usr/misc/.c++/lib/munch

Finds global variables with constructors and destructors.

cc The C compiler.

•••c Output from cfront.

_ c t d t c
Output from munch.

SEE ALSO
as (1), cc (1), Id (1), The Avalon Report

BUGS
avfront sometimes prints names twice in its error messages. For example, "foo" might be printed as
"foofoo". This behavior has been observed only when avfront was given incorrect code.

The error handling routines in avfront get confused easily, resulting in unintelligible error messages.
This problem may also cause avfront to crash.

The code generated by cfront seems to be more likely to trigger bugs and overflow tables in the C com
piler than normal C code. The code generated by avfront is more likely to do these things to the C++
compiler than normal C++ code.

4th Carnegie-Mellon Update 7/28/87 3

A C C (l)

62

References

[J] Joshua J. B1och.
The Camelot Library.
In Alfred Z. Spector, Kathryn R. Swedlow (editors), The Guide to the Camelot Distributed Transaction

Facility: Release I, pages 29-62. Carnegie Mellon, 1988.

[2] D. L. Dedefs, M. P. Herlihy, and J. M. Wing.
Inheritance of Synchronization and Recovery Properties in Avalon/C++.
IEEE Computer :57-69, December, 1988.

[3] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger.
The Notions of Consistency and Predicate Locks in a Database System.
Communications of the ACM 19(l l) :624-633, November, 1976.

[4] J.V. Guttag, J.J. Horning, and J.M. Wing.
Larch in Five Easy Pieces.
Technical Report 5, DEC Systems Research Center, July, 1985.

[5] M. P. Herlihy and J. M. Wing.
Avalon: Language Support for Reliable Distributed Systems.
In Proceedings of the 17th Int'I Symposium on Fault-Tolerant Computing. Pittsburgh, PA, July, 1987.

[6] M.P. Herlihy and J.M. Wing.
Reasoning About Atomic Objects.
In Proceedings of the Symposium on Real-Time and Fault-Tolerant Systems. Warwick, England, Sept.,

1988.
Also available as CMU-CS-87-176.

[7] B.W. Kemighan, and D.M. Ritchie.
The C Programming Language.
Prentice-Hall, Englewood Cliffs, NJ, 1978.

[8] L. Lamport.
Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21(7):558-565, July, 1978.

[9] Richard Allen Lemer.
Reliable Servers: Design and Implementation in Avalon/C++.
In Proceedings International Symposium on Databases in Parallel and Distributed Systems, pages 13-21.

IEEE CS TC on Data Engineering, ACM SIG on Computer Architecture, IEEE Computer Society Press,
Austin, TX, December, 1988.

Also published as CMU Tech. Report: CMU-CS-88-177.

[10] B. Liskov, M. Day, M. Herlihy, P. Johnson, G. Leavens, R. Scheifler, W. Weihl.
Argus Reference Manual.
Technical Report TR-400, MIT Laboratory for Computer Science, Cambridge, MA, November, 1987.

[11] B. Liskov and R. Scheifler.
Guardians and Actions: Linguistic Support for Robust, Distributed Programs.
ACM Transactions on Programming Language and Systems 5(3):382-4(M. July. 1983.

[12] Alfred Z. Spector, Kathryn R. Swedlow, ed.
The Guide to the Camelot Distributed Transaction Facility: Release J
0.98(51) edition, Carnegie Mellon University, Pittsburgh, PA, 1988.

[13] Alfred Z. Spector, Randy Pausch, and Gregory Bruell.
Camelot: A Flexible, Distributed Transaction Processing System .
In Proceedings of Compcon 88. February, 1988.

[14] B. Stroustrup.
The C+f Programming Language.
Addison-Wesley, Reading, Massachusetts, 1986.

63

[15] W.E.Weihl .
Specification and Implementation of Atomic Data Tvpes.
PhD thesis, MIT, 1984.

[16] J .M.Wing.
Specifying Avalon Objects in Larch.
In Proceedings of the International Joint Conference on Theory and Practice of Software Development

(TAPSOFT). Barcelona, Spain, March, 1989.
To appear, invited paper.

64

Index
C++ 1

_ava_message 49

Abort 15,29
Abort code 30
Acc 2
Argus 2
ARRAY_SIZE 6
Atomic 1,3,7,16,26,27,43
Atomic integers. 3
Atomic objects. 1
Atomic_boo! 38
Atomic_int 5, 6, 7
Atomic_string 38
Av_jack 3
Avalon types 43
Avalon.h 6
Avalon_abort__code_to_string 10, 31
AVAJLON_SYS_USER_ABORT_MAX

Bool 35
Break 30

Call-by-value 1,25
Camelot 1,43
Case 31
Catalog server 2, 39
Class 6
Client programmers 43
Coarms 30
Commit 15, 29
Committed with respect to 1,12
Constructor 25, 49
Constructors 1
Continue 30
Costart 30,57

Declaration 5
Definition. 5
Destructor 26,49
Do 31

Ensures 2
Except 9, 31

FALSE 35
For 31

Fundamental type 32, 38

Goto 30

Heap 43
Hybrid atomicity 12
Identifiers 43
ILLEGAL_VALUE 6
INDEX_OUT_OF_BOUNDS 6

Jack 3
Jill 3

Keywords 25

Leave 9,30
Locate_server 26, 39,41
Locks 27
Long-term locks 27

Longjmp 49

Mach 43
Main 6,25
Modifies 2
Monitor 28
Mutual exclusion 28

Nested 1
Nested transactions 28
New-value only 50
New-value/old-value 50
Non-atomic 1,47

Operation consistency 32
Operations 1
Overloaded operators. 7

Persistence 1,6,28
Persistent 3
Pin 27
Pinning 7, 14,27,31
Protected 29

Read lock 28
Read Jock 7,28,47
Recover 25
Recoverable 1, 26, 27, 43
Recoverable memory 43, 44, 45
Recoverable object 31
Recovery 27
Remote procedure call I, 25, 32
Representation invariant 14
Requires 2
Return 30,31
Run-time system 28, 31, 35, 39

Serializability 1, 27
Serialization order 35
Server 6,25
Server declaration 26
Server definition 25
Server object 25
Server operations 6
Server programmers 43
Server_root 9
Servers I
Short-term lock 13, 28, 32
Stable 1,6,25
Start 9,29
Strings 36
Subatomic 3, 13, 26, 28
Subatomic object 32
Subtransaction 4
Switch 31

Tag 37
This 31,32
Threads 3
Timestamp 12
Top-level 29,30
Toplevel 29
Transjd 3, 13,35
Trans_id server 35
Transaction 9, 30
Transaction-consistency 1, 28
Transactions 1
TRUE 35
Two-phase locking 12
Two-phase read/write locking 27

Type implementors 43
Type users 43

Undo 30,31,49
Undo leave 9, 30
Undo return 9
Unpin 27
User operations 6

Value 37
Variant 37
Void 37
Volatile 1,6

When 2, 13, 14, 29, 32
Whenswitch 29,32
While 31
Write lock 28
Write Jock 7,28,47

X_string 36

68

