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1. Overview

1.1. Terminology

A distributed system consists of multiple computers (called nodes) that communicate through a network.
Distributed systems are typically subject to several kinds of failures: nodes may crash, perhaps destroying local disk
storage, and communications may fail, via lost messages or network partitions. A widely-accepted technique for
preserving consistency in the presence of failures and concurrency is to organize computations as sequential
processes called transactions. Transactions are atomic, that is, serializable, transaction-consistent, and persistent.
Serializability means that transactions appear to execute in a serjal order. Transaction-consistency (**all-or-
nothing’’) means that a transaction either succeeds completely and commits, or aborts and has no effect. Persistence
means that the effects of a committed transaction survive failures.

An Avalon/C++ program consists of a set of servers, each of which encapsulates a set of objects and exports a set of
operations and a set of constructors. A server resides at a single physical node, but each node may be home to
multiple servers. An application program may explicitly create a server at a specified node by calling one of its
constructors. Rather than sharing data directly, servers communicate by calling one another’s operations. An
operation call is a remote procedure call with call-by-value transmission of arguments and results. Objects may be
stable or volatile; stable objects survive crashes, while volatile objects do not. Avalon/C++ includes a variety of
primitives for creating transactions in sequence or in parallel, and for aborting and committing transactions. Each
transaction is identified with a process, and is the execution of a sequence of operations.

Transactions in Avalon/C+ may be nested. A subtransaction’s commit is dependent on that of its parent; aborting a
parent will cause a committed child’s effects to be rolled back. A transaction’s effects become permanent only
when it commits at the top level. We use standard tree terminology when discussing nested transactions: a
transaction T has a unique parent, a (possibly empty) set of siblings, and sets of ancestors and descendants. A
transaction is considered its own ancestor or descendant. If transaction B is an anicestor of A, then A is committed
with respect to B if every transaction that is both an ancestor of A and a proper descendant of B has committed. 1f B
is not an ancestor of A, then A is committed with respect to B if A is committed with respect to the least common
ancestor of A and B in the transaction tree.

Avalon/C++ provides transaction semantics via aromic objects. All objects accessed by transactions must be atomic
to ensure their serializability, transaction-consistency, and persistence. Avalon/C-++ provides a collection of built-in
atomic types, and users may define their own atomic types by inheriting from the built-in ones.

Sometimes it may be too expensive to guarantee atomicity at all levels of a system. Instead it is often useful to
implement atomic objects from non-atomic components, called recoverable objects in Avalon; they satisfy certain
weak consistency properties in the presence of crashes. Users who define their own atomic types from non-atomic
components are responsible for ensuring that their types are indeed atomic.

1.2. Avalon/C++ Specifics

Avalon/C++ is a superset of C++ [14], itself an extension of C {7]. C++ is designed to combine advantages of C,
such as concise syntax, efficient object code, and portability, with important features of objeci-oriented
programming, such as abstract data types, inheritance, and generic functions. We assume the reader has some
knowledge of C++ and freely use its terminology; see [14] for more information on C-+-.

Avalon’s run-time environment relies on the Camelot system [13, 12] to handle operating-system level details of



transaction management, inter-node communication, commit protocols, and automatic crash recovery. We benefited
extensively from the Camelot Library [1]), which provides a clean interface between the Avalon and Camelot
implementors. Some of Avalon's design was influenced by Camelot, in particular those aspects that Camelot
implementors worked hard 10 make efficient; however, the reader is not expected to know Camelot nor use it

directly.

Much of Avalon’s design has been inspired by Argus [11] and we owe the descriptions of some of Avalon’s control
structures 1o the Argus Reference Manual [10]. For other papers on Avalon/C++, please see [2, 5, 6, 16].

1.3. A Roadmap to this Document

The rest of this document is divided as follows:

Chapter 2 A tutorial introduction to the langnage. Detailed walkthroughs of three simple exampies.
Chapter 3 A reference manual for the Avalon extensions to C++. Note that it is only about nine pages
long.
Chapter 4 A library of Avalon built-in classes and the catalog server.
Chapter 5 A list of practical guidelines for novice and expert programmers.
Appendix I The full grammar for Avalon/C++.
Appendix II The Unix man pages for running acc, the Avalon/C++ preprocessor.
A Note on Specifications

In writing the descriptions of the meanings of operations, in particular a class’s member functions, we use the

following clauses:

o modifies: A list of objects whose values may possibly change as a result of executing the operation.

» requires: A pre-condition on any invocation state of the operation. The caller is responsible for
ensuring it holds; the implementor may assume it holds at the point of invocation.

« when: A condition on the state of the system that must hold before the operation proceeds. This
condition is often necessary to give since the state of the system may change between the point of
invocation and the actual point of execution of an operation.

s ensures: A post-condition on the returning state. The implementor must ensure that it holds; the caller
may assume it holds upon return.

In C++, a pointer to the object for which a member function is invoked is a hidden argument to the function. As
C++ does, we refer to this implicit argument as this in our specifications.

The absence of a requires (when) clause is the same as the predicate being TRUE. The absence of a modifies
clause indicates that no changes are made to the values of any object. This specification style and notational
conventions are borrowed from Larch [4].



2. A Tutorial Introduction

An Avalon/C++ system consists of a set of programs, each of which is an application ot a server. Applications
invoke operations on servers, which may, in tumn, invoke operations on other servers.

An Avalon server is very much like a C++ class. Just like a class, a server encapsulates some data, and defines the
operations that can be used to manipulate that data. A client invokes an operation on a server object using the same
syntax it would use to invoke an operation on a class object. There are two main differences between classes and
servers. First, a server supports concurrency: more than one client may invoke operations on a server at the same
time. These concurrent operations execute as concurrent threads (ot lightweight processes) within the server. The
server must be impiemented so that this concurrency makes sense. Second, a server’s data (if the server is
implemented correctly) is persistent, i.e., it will survive crashes in a consistent state.

This chapter describes at length three examples, illustrating al the basic features of Avalon/C++. The first example
shows how to create, commit, and abort transactions; to invoke operations on servers; and to define and use a simple
atomic type derived from the built-in Avalon class atomic. The second and third examples illustrate the use of
two other built-in classes, tzans_id and subatomic, to show another way Avalon users can define atomic
types, and to show what makes Avalon especially different from other (fault-tolerant) distributed programming
languages. We hope the reader will see that programming in Avalon/C++ is not much different from ordinary C++

programming.

2.1. Array of Atomic Integers

In this section, we walk through the use and implementation of a simple Avalon server, called *‘Jill,”* and client,
called ‘‘Jack,’” (so named for historical reasons). The Jill server encapsulates an array of aromic integers. From the
client’s viewpoint, each of these integers is atomic; they are recovered after a crash to the state observed by the last
commitied transaction, and they ensure the serializability of the transactions that access them. Since each of the
elements of the array is atomic, the array as a whole is also atomic. The elements of the Jill array are initially given
the value -1 to represent an uninitialized state, after which the Jill server permits only non-negative values to be
written in the array.

An atomic array of integers might be useful as a representation for a conference room reservation system. The
elements of the array could represent blocks of time, and writing a value into an element could represent reserving
the conference room at that time for the person represented by that value. Or, the array could be used to represent a
set of bank accounts, indexed by account numbers. Applications that wished to transfer money from one account to
another could do so within a transaction, 50 that no partial transfers would ever happen. These examples are only
meant to be suggestive; in both cases, other representations might be more convenient and/or efficient. Still, they
show that even a very simple server such as Jill is not too far removed from real-world applications.

2.1.1. Using Jack and Jill
Before we show any Avalon code, let us first see how a user might interact with Jack and Jill. We begin by
assuming that the Jill server has been started. To start up Jack on a Unix system (after making sure that the directory
containing the av_ jack executable is on your search path), type:

* av_jack
The Jack application starts a transaction and responds with:

TyYpes ? for a list of commands.
Jack[1]

Jack[1] is the prompt. The ‘1" indicates the current transaction nesting level. If we type *“?”°, we get the



following list of commands:

Commands are:

Read array elsmant.

Write array elament.

Bagin nested transaction.

Commit innermost transactioen.

Abort innermost transaction.

Abort top lavel transaction.

Abort top lavel transaction and quit program.

a»meartn

Jack([1]

Let’s say we want to read what is stored at location 7 of the array:
Jack{l] r
Locaticon to read: 7

Location 7 is uninitialized.
Jack[1l]

As we can see, we have not yet given location 7 a value. Let’s do so:
Jack[1] w
Location to write: 7
Valua to write: 7
Write succeaded.
Jacki{l] r
Locaticn to read: 7
Valus at location 7 is 7.
Jack([1l]

Now we can begin a subtransaction, using the *‘b’’ command. In this transaction, we first read the value in location
7, and then give it a new value:

Jack[1l] b
Jacki2] r
Location to read: 7
Value at location 7 is 7.
Jack[2] w
Location to write: 7
Valua to write: 27
Hrite succaeaaded.
Jack[2] ©
Loaation to read: 7
Valua at location 7 is 27.
Jack([2]
Note that the prompt has changed to indicate the transaction nesting level Let's continue with another nested
transaction:
Jack(2] b
Jack{3] =»
Location to read: 7
Value at locaticn 7 1is 27.
Jack[3] w
Location to write: 17
Value to write: 37
Write succeeded.
Jack([3]
Location to read: 7
Value at location 7 is 37.
Jack[3]
If we commit this subtransaction, then we return to its parent, with its effects visible:
Jack{3]
Transaction committed.
Jack[2] r©
Location to read: 7
Value at location 7 is 37.
Jack[2]

Now, however, if we abort the second-level transaction, we retum to the top-level transaction, but none of the
effects of the aborted transaction (ot its children) are visible.



Jack[2) a

Transaction abortaed as per requast.
Jack(l) r

Location to read: 7

Value at locaticon 7 is 7.

Jack[1]

Now, suppose we start up another instance of av_jack (in another window, perhaps). In this Jack, we start a

transaction, and write into location 10, Then we attempt to read the value we have written into location 7.

* av_jack

Typs ? for a list of commands.
Jack([l] w

Location to writae: 10

Value to write: 10

Write succeadad.

Jack[l] r

Locatien to read: 7

The other Jack (*‘Jack B*") does not immediately return an answer. This is because the first Jack (“Jack A’")
obtained a write lock on location 7. This lock excludes all other transactions from observing the value written there.
This is needed to ensure serializability: Jack A’s transaction may either commit or abort, If it commits, then Jack
B’s query should retum 7; if it aborts, then Jack B should inform the user that location 7 is still uninitialized. Thus,
Jack B cannot return anything until Jack A’s top-level ransaction terminates. Let’s commit Jack A’s transaction:

Jacsk[1] =

Transaction committed.

(Transaction was top lavel.) Value at location 7 ias 7.
Jack[1] Jack([1l]

Committing Jack A’s transaction allowed Jack B's transaction to proceed with the completion of the read operation.
Now let Jack A start a new transaction. If we attempt to write a new value into location 7 in this transaction, we are
also suspended, for similar reasons:

Jack{l] w
Location to write: 7
Value to write: 70

Jack A cannot write into location 7, because Jack B's transaction has already observed a value there. Jack A must
wait for Jack B’s transaction to terminate before it can invalidate this observation. Let’s terminate Jack B’s
transaction with an abort;

Jack([l] a

Iransaction aborted as par raquest.
Write succesdsd. (Transaction was top laval.)
Jack([l] ¢ Jack[1]

Location to read: 7
Value at location 7 ia 70.
Jack[1]

Note that in this particular situation, even if Jack B had committed, Jack A still reads a 70 at location 7 since Jack
A’s write would still be serialized after Jack B’s read. This scenario has shown how the Jack application can
manipulate the atomic integers contained in a Jill server. In doing so, it has demonstrated some of the properties of
transactions, nested transactions, and atomic objects.

The next two sections describe the declaration and definition of the Jill server, all the way down to the fevel of the
Avalon built-in atemic_int type: then the following section describes the Jack application program.

2.1.2. The Jill Server Declaration

A C+ class has a declaration and a definition. A class declaration is generally put in an include file, so that all files
that need to use the class can have access to the necessary information. The class definition (the bodies of the class
operations) is put in one or more files, each of which includes the declaration. An Avalon server should be written



av_jill.h:
#include <avalon.h>

// Error return codas from oparation procedures.
const int INDEX CUT OF BOUNDS = 1; // Attempt to access a location ocut of boundas.
const int ILLEGAL VALUE = 2; // Attesmpt to insert a negative number.

// System Constants.
const int ARRAY SIZE = 1000; // Rumber of cells in the array.

searver 4111 {
stable atomic_int data[ARRAY_SIZE];
public:
int read(int indax):;
vold writae(int indax, int valuas):
Ji1l (x_string cmdline, x_string host) : (amdline, host});
vold main ();

¥i

Figure 2-1: Declaration of Jill Server

using the same conventions. Thus, we will first examine Figure 2-1, the include file that declares the Jill server.

The first Jine of this file includes the file avalon.h. All Avalen programs must include this file before all others,
The next three statements in the file declare and initialize constants used in the program. We follow the C++
recommendation against using preprocessor macros whenever possible. The first two constants,
INDEX_OUT_OF_BOUNDS and ILLEGAL_VALUE, are used as error codes. The third, ARRAY SIZE, determines
the size of the array.

Next, we come to the declaration of the Jill server. This is textually identical to a C++ class declaration, with the
keyword server substituted for class. A Jill server contains one data member, data, and four operations,
which are the only means of accessing the server’s data. A server differs slightly from a class in that all data
members of a server must be private. Here, data is also declared to be stable, which asserts that it is persistent,
i.e., will survive crashes. Avalon guarantees persistence of the built-in atomic data type, atomic_int; in general,
the programmer must correctly implement any uvser-defined type of stable variables to ensure their persistence.
Though the Jill server does not, a server could also have data members that are volatile, that is, not stable. Volatile
data are often useful for efficiency, but care should be taken to ensure that all important data is stable. For example,
a server might represent a database as set of records, and maintain a volatile index that allows operations to look up
records based on different fields of the record. The index would speed up the server during normal operation, but
could always be reconstructed after a crash.

The four operations of the Jill server come in two categories: user operations and server operations. Read,
write, and the constructor, 3ill, are user operations, the ones that clients can invoke. Read returns the integer
stored at the given index, and wzite writes the given value at the given index. The intent of these should be lairly
clear; we will go over their implementations shortly. The constructor is a special user operation invoked to initialize
the Jill server. A server will not accept any calls to other user operations until it has received a constructor call. and
it will not accept any constructor calls once it has started accepting calls to other user operations. The remaining
operation, main, is invoked automatically by the server. For implementation reasons, every server must have a
main operation, even if it has no body. (The definition of main serves as a marker, so the Avalon preprocessor can
decide where to put the C++ main procedure for the server.} If the main operation does have a body, it is executed
in the background, concurrently with user operations. Another kind of server operation (not shown bere), invoked



automatically by the system, is an optional recover operation. If defined, it is executed whenever the server is
started afier any crash. A typical recover operation might reinitialize volatile data.

2.1.3. The Jill Server Definition

2.1.3.1. Jill's Data Member

Jill’s data member, data, is a stable array of ARRAY SIZE atomic_int’s. An atomic_int is an atomic
integer, an integer specially implemented so that it ensures the serializability of transactions that access it, and is
recovered after a crash with the value observed by the last committed transaction that accessed it. These properties
are quite easy to achieve in Avalon. Figure 2-2 shows the declaration and definition of the atomic_int class.

atomic_int.h:
// Daclares the atomic integer class.

#include <avalon.h>

class atomic_int: public atomia {
int wval;

public:

int cperatorws{int rhas);

oparator int();

}:

atomic_int.av:
// Defines the atomic integer claas.

#include <avalon.h>

int ltamiq_int::op.:atorh(int rhs) {
write lock();
Pinning () return val = rhs;

}

atemic_int::cperator int() {
read_lock();
reaturn val;

}
Figure 2-2: The atomic_int Class

The file atomic_int.h declares the atomic_int class. This is derived from the class atomic, which
provides operations that are used to make integers appear atomic. In particular, class atomic has two operations,
read_lock and write_lock, which can be used in implementing operations of derived classes.

The class atomic_int has one data member, an integer called val. which holds the value of the atomic imeger.
We show two operations of atemic_int’s, both of which are C++ overloaded operators. One is the assignment
operator, and the other is the coercion operator that converts an atomic_int into an int. The assignment
operator is the only way to change the value of an atomic_int, and the coercion to int is the only way of using
that value in a program. Thus, these operators mediate all access to the atomic integer.

In the file atemic_int . av, we see that the implementations of these operations are quite simple. Taking them in
reverse order, we see that the operator int {) simply calls read_lock and returns the current value. The
assignment operator gets a write lock on the atomic_int, and then, within a pinning block, it sets the value to



a new value, and retums the new value. The pinning block informs the Camelot system that the change must be
logged permanently (i.e., to stable storage) so that in the event of crash recovery, the value of an atomic integer is
consistent. Modifications to any atomic object should always be made from within a pinning block. The use of read
and write locks guarantees that if a transaction observes the value of an atomic integer, then no other transaction
may change it until the observer terminates. (Note that data type induction is needed to reafly make this guarantee;
we can prove that this is true only if these two operators are the only ways of accessing atomic_int’s.)

2.1.3.2. Jill’s Operations
Now that we understand atomic integers, we can consider the implementation of the operations of the Jill server.
Figure 2-3 shows the contents of the file av_jill.av, which contains the definitions.

av_jill.av:
// Tha body of tha "av_3jill" server.

#include "av_jill.h"

int Jlll::read{int 1lndex) {
J// If index is out of bounda, return an error code.
if (index < 0 || index >= ARRAY_ SIZE) undo (INDEX_OUT OF BOUNDS) leavae;
raturn data[index];

}

vold jill::write{int index, int value) {
// If index is cut of bounds, Isturn an srror code.
if (indax < 0 || indax >= ARRAY STIZE) undo (INDEX OUT OF BOUNDS) leava;

// If value is negative, return an error cods.
if {valus < 0) undo (ILLEGAL VALUE) leave;

data[index] = value;
}

3Jill::}i1l(x_string cmdline, x_string host} {
for (int 1 = 0; 1 < ARRAY STZE; i++4) data(i] = -1;
}

vold 31l1l::madn() (}
Figure 2-3: Definition of the Jill Server

Read takes an index, and retums the value at that index. Read assumes that it is being invoked by a client that is
executing within a transaction. If the index is not within the array bounds, read executes the statement:
unde (INDEX_OUT OF BOUNDS) leave;

This aborts the client’s transaction. The abort code INDEX OUT_OF_BOUNDS can be used in an except clause,
as we will see when we examine the Jack application. If the index passes this test. then we simply return the value
in the data amay at the index. Actually this is a little more subtle than that: the elements of data ar
atomic_int’s, and read retums an int. Thus, the C4++ automatic coercion mechanisms call the coercion
operator on the indexed element before retuming it. The coercion operator gets a read lock on the element before
returning its value. Write is very similar. It checks that the index is within the proper range, and that the value to
be written is not negative; if so, it assigns the new value to the element. Again, the overloaded assignment operator
of atomic_int takes care of getting the write lock on the atomic imteger and logging its new value. The
important lesson to leam from the Jill server is how the right implementation of atomic_int made it possible to
treat atomic_int’s almost as if they were regular int’s within the bodies of the server’s operations.



The constructor, jill, sets all the elements of data to -1, as we specified in the description of Jill. Since all
servers implicitly inherit from the server root class. the cofon syntax tells the server_root constructor where to
find the server executable (first argument)} and what machine to start it on (second argument). Finally, the server
operation main has no body but, as we have explained, every server must have a main operation.

2.1.4. The Jack Application

This section shows the code for the Avalon application, “*Jack,”’ which uses a Jill server. Most Avalon applications
took very similar to Jack so in subsequent examples, we will omit the application-side code. When Jack starts, it
enters a transaction. It then executes user commands until the user enters the command to exit the program. The
user may read or write array elements, start nested transactions, and commit or abort transactions. Figure 2-4 shows
the first part of the code in av_jack.av.

Like all Avalon programs, av_jack.av starts by including avalon.h. It also includes stream.h and
ctype.h from the C++ library, and av_jill.h to get the declaration of the Jill server. After the includes,
av_jack.av declares two more constants used as abort codes within this file and declares the two functions
defined in this file so that they can be used before they are defined. The next statement declares a global variable of
the Jill server type. The client program can invoke operations on this server object just as if it were a class object.

The main procedure prints out an initial message and locates the jill server. If it cannot find it, it calls the jill
constructor with the names of the executable (“*av_jill’’} and local host as arguments. It then repeatedly calls
jill transaction until the value of quit_£lag indicates that the user wants to exit the program. Finally,
the print_help procedure prints out a help message.

Now we consider the heart of the Jack application, the jill_transaction function. jill transaction
begins (Figure 2-5) by starting a transaction. It then enters a command loop, in which it remains until the
user decides to quit the program, or terminate (commit or abort) the current top-level transaction. It prints out a
prompt (which contains the current transaction nesting level, which it is given as an input.) Nexlt, it gets an input
command, and enters a switch statement that processes that input. The ‘r’ and ‘w’ commands shouid be fairly
self-explanatory. Note that the read and write operations are invoked on the object denoted by the jill srv
variable exactly as if it were a normal class object. The ‘c’ command uses the leave statement to commit and exit
the current transaction. The ‘a’ command aborts the innermost transaction, using the undo leave statement. We
pass an abort code that indicates that the user aborted the transaction. The ‘A’ command aborts the current top-level
transaction. This is implemented by first aborting the innermost transaction, using a special abort code. We will see
in a moment how this code is processed. The ‘q’ command exits the program. To do this, we set the quit_£1lag,
and exit Jill_transaction. We use the special undo return statement to indicate that we not only want
to return from the current procedure, but also to abort any transactions started by that procedure. The ‘b’ command
starts a nested transaction by making a recursive call to jill_transaction (with level incremented by one.)
An input of °?’ causes the help message to be printed, and if the input command is none of these, a message 1o that
effect is printed.

The rest of jill_transaction is shown in Figure 2-6. The first statement in this figure is just after the bodly of
the loop that waited for the quit_£1lag to be set (by a nested transaction.) If we reach here, we do the same thing
we did when the user entered a 'q’: undo return. The next scope we leave is that of the transaction. This
transaction block has an except clause appended to it. An except clause allows access to the abort codes
provided in unde leave statements. If a transaction with an except clause aborts, the abort code, if there is one,
is assigned to the variable named after the except. The rest of the except statement is exactly like a switch on
this vaive. In jill transaction, the first two cases handle user-requested aborts. In either case, we print out
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av_jack.av:

finclude <avalon.h>
#include <stream. h>
#include <ctype.h>
finclude "av_jill.h"

// Abort codes.
const int USER _REQUESTED_ABORT = 100;
const int TOP_LEVEL ABORT = 101;

// Forward declarations.
veid jill transaction(int, int*);
veld print_help():

// Global servaer variabla.
3111 *3111 sxv;

veid main() {
int quit_flag = 0;

cout << "Looking for 3ill...\n";

311l _srv = {}ill¥) élocate_server ("3jill"};

if (3111 srv === NULL){
cout << "Couldn’t find jill. Starting a new 3jill...\n*;
3ill_srv = neaw 3111 {"av_Jill", "localhost™);

}alse cout << "Found 3ill\n";

cout << "Type ? for a list of commands.\n";
while (quit flag < 2) {
quit flag = O;
}i1l_transaction(l, &quit_flag):
cout << " (Transaction was top leval.)}\n";
) .
axit (0);
)

// print_help -- Prints the commands.

vold print_help() {
cout << "\n\
Commands are: \n\
Read array elament.\n\
Write array element.\n\
Bagin nested transaction.\n\
Commit innermost transaction.\n\
Abort innermcst transaction.\n\
Abort top leval transaction.\n\
Abort top levael transaction and quit program.\n\n';

2 P00 RLH

Figure 2-4: First Part of the Jack Application

a message and remum. If a top-level abort has been requested. then we set the quit_£lag to exit all enclosing
jill_transaction calls. The third and fourth cases handle transactions that were aborted by server operations
because of improper inputs. They both print an appropriate message and return from jill transaction.
Finally, if the iransaction aborted but the code is none of the above, then the abort must have been caused by the
underlying system. We can find out why by calling the routine avalon_abort code to_string, which
takes an integer argument (Section 3.4.6). All arms of the except statement retum from jill_transaction,
so if we exit the transaction and reach the last line of the procedure, the transaction must have committed. We print
a message to that effect.



// Interactively construct and perform a transaction utilizing the 11l
// server. Can be called recursivaly to construct nestaed transactions.

vold jill_prnnsnction(int lavel, int* quit_ﬁlag_ptr) {
start transaction {
char comd;

while {!*quit flag ptr} (
int index = 0;
int value = 0;

cout << "Jack{" << laval << "] “;
while {(isspace (cmd = getchaz(}));

switch (cmd) {
case 'r’;: // Read an array element
cout << "Location to rmad: ";
cin >> indaex;
value = jill_srv.rond(ind.x):
if (values = -})

cout << "Location " << index << " 1s uninitialized.\n";

alse
cout << "Value at location " << indax << " 1s " << value .A\a";

break;
casa 'w: // Write an array slement

cout << "Location to write: ";

ein >» index;

csout << "Value to write: ";

cin >>» value;

3ill srv.write(index, valus):;

cout << "Write succesded.\n":

break;

case ‘c’: // Commit this transaction

laave;

case ‘&’ : // Abort thia transaction

undo (USER_REQUESTED ABCRT) laave;

¢ase 'A‘: // RAbort top-level transaction

undo (TOP_L!V!L_;BORT) ilesave;

case ‘q’': // Abort to top laval transaction and quit.

*quit_flag ptr = 2;
unde return;

case ‘b’ ; // Begin a subtransaction
Jill transaction(level+l, quit_ flag ptr);
centinue;

case '?': // Print short help message
print_help(};
break;

dafault:

cout << “Onknown command. Type ? for a list of commands . \n";

}
} // ...continued...

Figure 2-5: Beginning of the jill_transaction Function




12

// ...rest of 4ill transaction...
// Quit_flag from nested transactiocn is non-zerc, so we must unde return.
undo return;

} axcept (t:a.nl_stntus) {

case TOP_LEVEL ABORT:
*quit flag ptr = 1;

case UBBR_REQU!STED_ABORT:
cout << "Transaction abortad as per request.\n";
return;

case INDEX OUT OF BOUNDS:
cout << "fransacticn aborted: Array indax out of bounds.\n";
raturn;

case ILLEGAL VALUE:
cout << "Transaction abortad: Attampt to write a negative valus.\n";
return;

dafault:
cout << lvnlon_nbott_coch_to_string(tra.nl_atntus) << "\n";
reaturn;

}

// COtharwisa, wa committed.

cout << "Transaction committed.\n";

}

Figure 2-6: End of the jill_transaction Function

2.2. FIFO Queue

Let us consider how one would implement an atomic first-in-first-out (FIFQ} queue. The easiest way to define such
a queue is to inberit from atomic. A limitation of this approach is that enq and deq operations would both be
classified as writers, permitting little concurrency. Instead, we show how a highly concurrent atomic FIFO queue
can be implemented by inheriting from subatomic. Our implementation is interesting for two reasons. First, it
supports more concurrency than commutativity-based concurrency control schemes such as two-phase locking. For
example, it permits concurrent enq operations, even though eng’s do not commute. Second, it supports more
concurrency than any locking-based protocol, because it takes advantage of state information. For example, it
permits concurrent enq and degq operations while the queue is non-empty.

In order to permit such concurrency it is necessary to provide:
1. A way to compare whether one transaction has committed with respect to another. In particular,
suppose A and B are concurrent transactions:
o If it is known that A has committed with respect to transaction B, then B should be allowed to
observe the effects of A’s operations. Thus, B need not wait and may proceed.

o If it is not known that A has committed with respect to B, then B must not do anything that
depends on A’s effects, since A may still commit or abort. B should also not invalidate any
results that A may have observed, since B may commit before A. Thus, B might have to wait till
A completes.

2. Exclusive access to an object per operation. That is. while transactions may go on concurrently. we
need to prevent individual operations from interfering with each other.
Fortunately, Avalon provides the first capability with the class trans_id. which gives us a way to test transaction-
commit order, and the second with the class subatomic, which gives us a way to provide mutual exclusion per
object.

In Avalon when a transaction commits, the run-time system assigns it a imestamp generated by a logical clock [8].
Atomic objects are expected to ensure that all transactions are serializable in the order of their commit timestamps, a
property called hybrid atomicity [15]. This property is automatically ensured by two-phase locking protocols [3],
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such as that used for the atomic_int’s in Jill's array. However, additional concurrency can be achieved by taking the
timestamp ordering explicitly into account. The trans_id class provides operations that permit run-time testing
of transaction-commit order, and thus of serialization order. In particular, trans_id provides a partial-ordering
function <: for transactions with trans_id’s t! and 12, if t1 < 2 evaluates to true, then if both transactions commit, t}
is serialized before t2. Note that < induces a partial order on trans_id’s; as transactions commit they become
comparable. Section 4.1.2 describes this type in more detail.

Class subatomic provides operations that give transactions exclusive access to objects. Each subatomic object
has a short-term lock, similar to a monitor Iock, used to ensure that concurrent operations do not interfere. Avalon's
special control construct, the when statement, is used as a kind of conditional critical region:

when { <TEST> ) {
<...BODY...>
}

The calling process atomically acquires the object’s short-term fock, blocks until the condition becomes true
(releasing the lock if it is not), and then executes the body. The lock is released after the body is executed. Any
changes made to the object while the lock is held will not be backed up to stable storage until sometime after the
lock is released. A wransaction’s changes are guaranteed to be backed up before it commits.

2.2.1. The Queue Representation

Figure 2-7 shows that information about enq invocations is recorded in a struct. The item component is the
enqueuved item, the enqr component is a trans_id generated by the enqueuing transaction, and the last componert
defines a constructor operation for initializing the struct. Information about deq invocations is recorded similarly in
deq_rec’s.

struct eng_rec {

int item; // Item enqueued.
trans_id anqr; // Who snqueued it.

eng Tec(int i, t.ra.n-_ids t) { item = %i; angr = t; }
};

struct deq reec {

int item; // Item dequeued.
trans_id engr; // Whe enquaued it.
trans_id deqr; // Who dequeuned it.

d-q_roc(int itm, trans_ idi en, trnnu_idi de);
{ itam = 1tm; enqr = an; deqr = de; }
}:

class atemic int_queue : public subatomic {

deq_stack deqd; // Stack of deq records.
ang_heap snqd; // Heap of enq records.
public:

atomic int_queue{) {}; // Create ampty queue.
void eng(int item); // Enqueue an item.

int deq(}; // Deguaue an itam.

void commit (trans_id&);
vold abort (trans_idg):;
~atomic_int_queua();

};

Figure 2-7: Queue Representation

The queue is represented as follows: The deqd component is a stack of deq_rec’s used to undo aborted deq
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operations. The engd component is a partially ordered heap of enq_rec’s, ordered by their enq_tid fields. A
partially ordered heap provides operations to enqueue an enq_rec, to test whether there exists a unique oldest
enq_rec, 1o dequeue it if it exists, and to keep and discard all enq_rec’s committed with respect to a particular
transaction identifier.

Qur implementation satisfies the following representation invariant; First, assuming all enqueuved items are distinct,
an item is either ‘‘enqueued’ or ‘‘dequeved,’’ but not both: if an enq_rec containing (item, enqr] isin the
enqgd component, then there is no deq_rec containing [item, engr, deqr] in the deqd component, and
vice-versa. Second, the stack order of two items mirrors both their enqueuing order and their dequeuing order: if
d1l is below d2 in the deqd stack, then dl->enqr < d2->enqgr and d1->deqr < d2->deqr. Finaily, any
dequeued item must previously have been enqueved: for all deq_rec’sd, d->enqr < d->deqr.

2.2.2. The Queue Operations

Enq and deq operations (Figure 2-8) may proceed under the following conditions: A transaction A may dequeue
an item if (1) the most recent dequening transaction is committed with respect to A, and (2) there exists a unigue
oldest element in the queue whose enqueuing transaction is committed with respect to A. The first condition ensures
that A will not have dequeued the wrong item if the earlier dequeuer aborts, and the second condition ensures that
there is something element for A to dequeue. Similarly, A may enqueue an item if the last item dequeved was
enqueued by a transaction B committed with respect to A. This condition ensures that A will not be serialized before
B, violating the FIFO ordering.

vold atomic _int_ queus::sng{int item) {
trane_id tid = trane_id();
- when (deqd.is_empty() || {(deqd.top{)->engr < tid))
shqd. indert (1tem, tid)};
¥

int atomlc_int_queua::deq() {
trans_id tid = trans_id();
when ((deqd.is empty() || deqd.top()->deqr < tid)
46 engd.min exista() && (engd.get min()->engr < tid)} {

ang_rec* min_er = engd.dalete_min():
deg rec dr(’min er, tid):;
deqgd.push(dr);
return min_er->item;

Figure 2-8: Queue Operations

Both enqg and degq first obtain a new, unique trans_id for the calling transaction. The constructor creates and
commits a “‘dummy’’ subtransaction, returning the subtransaction’s trans_id to the calling transaction (i.e.. parent).
Since this constructor call returns a unique trans_id, a parent transaction can thus genernte multiple trans_id's
ordered in the serialization order of their creation events. We exploit this property here by using this trans_id 1o tag
the current enq (deq) operation.

As for the atomic_int example, the modifications done by enq and deq must be wrapped in a pinning construct
to ensure persistence (that is, changes are made to stable storage).

‘We use the when statement to guand against simultaneous access to the queue object itself. Enq checks whether the
item most recently dequeued was enquened by a transaction committed with respect to the caller. If so, the new
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trans_id and the new item are inserted in enqd. Otherwise, the transaction releases the short-term lock and tries
again later. Deq tests whether the most recent dequeuing transaction has committed with respect to the caller, and
whether engd has a unique oldest item. If the transaction that enqueued this item has committed with respect to the
caller, it removes the item from engd and records it in deqd. Otherwise, the caller releases the short-term lock.,
suspends execution, and tries again later.

2.2.3. Commit and Abort

Avalon lets programmers define type-specific commit and abort operations for atomic data types inheriting from
class subatomic. They each take a trans_id as an argument. The Avalon run-time system automatically calls
an object’s abort operation whenever a tramsaction that may have modified the object aborts, Whenever a
top-level transaction commits, the system calls the commit operation on al subatomic (and atomic) objects that the
transaction {or any of its descendants) may have modified. We make no guarantee about the arrival times of commit
operations, i.e., when the run-time system is informed of a transaction’s commit. In particular, if Tl commits before
T2, the run-time might execute T2's commit before T1's. In addition, the order in which commit (abort) operations
for a given transaction are applied to multiple objects is left unspecified.

Figure 2-9 gives the code for the queue’s commit and abort operations. When a top-level transaction commits, it
discards deq_rec's no longer needed for recovery. The representation invariant ensures that all deq_rac’s
below the top are also superfluous (they have ail committed with respect to the top), and can be discarded. Abort
has more work to do. It undoes every operation executed by a transaction committed with respect to the aborting
transaction. It interprets deqd as an undo log, popping records for aborted operations, and inserting the items back
in engd. Abort then flushes all items enqueuved by the aborted transaction and its descendants,

void atomic int_queus: icommit (trans_id& committer) (
when (TRUE)
if ('deqd.is_ampty() && descendant (deqd.top() ->daqr, committer)) {
deqd.clear{);
}
}

void ntonic__int_qu.uo::an:t {trans_id{ aborter) {
whan (TRUE) {
while ('deqd.is_empty() s& descendant {deqd. top () ->degr, abortaer)) {
deq_rec* d = deqd.pop();
angd.ingert (d->item, d->engr};
}
enqd.dizscard (abortar);
}
}

Figure 2-9: Queuve’s Commit and Abort

Notice that commit and abort for the Queue example use the descendant operation of trang id's rather
than the < operation. For example, when we are aborting. we want to remove all items enqueued by transactions
that we know are aborting, i.e., the aborting transaction (abort ‘s argument) and all of its descendants. 11 we were

to use <, an item enqueued by a separate top-level transaction that committed before the aborting transaction would
be incorrectly deleted.



16

2.2.4. Enq and Deq Synchronization Revisited

Let us look more carefully at the synchronization conditions on enq and deq. Consider why enq must wait for the
enqueuer of the last dequeuned item to commit. If it does not wait, then it is possible that a dequeuer may get the
wrong head of the queue as a result of the commit of some concurrent enqueue. For example, suppose a transaction
A starts two subtransactions Al and A2. Al enquenes 5 and commits. A2 does a dequeue (A2 can proceed because
Al has committed with respect to A2), gets a 5, but does not yet commit. Now suppose another top-level
transaction B starts and tries to enqueve 7. (B and A2 are both concurrent.) If B does not wait then it proceeds to
put 7 at the head of the queue (A2 has temporarily claimed the 5). If B commits before A (the parent transaction of
Al and A2}, then B is serialized before A, implying that A2 should get a 7, not a 5. In short, the FIFO behavior of
the quene is violated because B did not wait for A to commit.

The condition on enq is sufficient as well. In particular, an enqueuing transaction does not need to wait for the
dequeuver of the last dequeved item to commit because in some circumstances it can proceed even if the dequeuer
has not finished. For example, suppose transactions A, B, and C are top-level transactions. A enqueues 5 and
commits. B dequeues 5, but remains active. If C wants to enqueue, it should be allowed to proceed even though B
(the dequeuer of the last dequeued item) has not completed. Here, if B commits, it does not matter whether B
commits before or after C; B will correctly see 5 as the head of the queue and C will correctly place 7 as the new
head. If B aborts, then C will correctly place 7 after 5, which remains at the head of the queue. Thus, C can proceed
without waiting for B to complete because there is no way C can be serialized before A and it does not matter in
which order B and C are serialized. '

It is easier to see why a dequeueing transaction, B, must wait for the dequeuer, A, of the last dequeued item to be
committed with respect B. If B proceeds to dequeue without waiting for A to complete, then it will have dequeued
the wrong item if A aborts. '

2.3. Atomic Counters

As our final example, suppose we wish to implement an atomic counter with operations to increment (inc),
decrement (dec), and test for zero (is_zero). This counter could be used to represent a joint checking account:
One party might be depositing money at one branch, another party may be withdrawing money from somewhere
else, and a third party, perhaps an auditor, may be searching for depleted accounts. This is not quite realistic since
one could not find out the exact balance of the account (there is no read operation}, but adding that function would
compticate our example.

By deriving from class atomic, we can easily implement the atomic counter as shown in Figure 2-10. (Recall that
class atomic provides read lock and write_lock operations.) The counter is represented by a
nonnegative_int, a class supporting all the usual arithmetic operations on integers, with the property that a
non-negative integer can have a value only greater than or equal to zero. (The overloaded subtraction operation is a
‘‘monus’’ operation.) Again, one can see that building a new atomic class from class atomic is fairly
straightforward: Before performing its real work. an accessing operation {*'reader™ ") should first obtain a read Inck:
a modifying operation (**writers”’) should first obtain a write lock and then pin the object.

This implementation, however, does not realize the greatest possible concurrency. From the abstract viewpoimnt of
our atomic¢ counter, incrementing and decrementing transactions can go on concurrently (inc and dec are “*blind ™
writes since they do not return any results); moreover, under certain conditions. it should be possible to return a
resuli to is_zero even before all incrementing and decrementing transactions have completed. The
implementation in Figure 2-10 does not suppont this degree of concurrency since it is based on standard two-phase
read/write locking.
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class atomic counter: public atomic {
nonnegative int count;
public:
atomiz counter() {pinning() count = 0;} // initialize counter
vold inec();
vold dec();
bool i1a_ zero(};
}

vold atomic_countar:: ine{} {
write_ leck(};
pinning {) count += 1;

}

vold atomic _countar:: dee() {

write lock();

pinning () count -= 1; // will return max of count-1 and 0
}

beol is_zero{); {
read_lock();
return (count == 0);

}

Figure 2-10: Atomic Counter Derived from Class Atomic

Thus, as for the queue example, we will use trans_id’s and subatomic objects as an altemative way to build atomic
objects.

2.3.1, Counter Representation

Let us walk through the representation of the atomic counter by beginning with some auxiliary structures shown in
Figure 2-11. A counter_range will keep track of the range of possible values of the counter in order to pemit
is_zero to return possibly before transactions have completed. We will record in a log information about each
transaction’s sequence (op_seq) of inc and dec operations. Each log_entry consists of a transaction’s
trans_id and the sequence of its operations. Assume we have defined elsewhere (recov_sorted alist.h)
types for a recoverable sorted association list (recov_sorted_alist), parameterized over the tag type (e.g.,
trans_id) and value type (e.g., pointer to log_entry’s) of the pairs to be inserted in the list, an equality function (e.g.,
on trans_id’s) used for list insertion, lookup, and removal, and a comparison function (e.g., < on trans_id’s) used for
ordering the elements in the list. Its iterative version, ( recov_sorted alist_ittr), similar to that used in the
C++ Manual (p. 183 of [14]), provides a method for looping over all elements in the list, guaranteeing that elements
are yielded in sorted order. Our (recoverable sorted association) list will be sorted by trans_id’s partial order < so
that we can iterate over transactions in commit-time order.

Finally, we represent the counter by a non-negative integer {count) and a transaction log {log_t) (Fignre 212,
The value of the non-negative integer will be determined by operations of only top-level committing transactions.

2.3.2. Counter Operations

Implementations of the ine and dec operations are shown in Figure 2-13. They use the internal auxiliary functions
shown in Figure 2-14. Inc and dec attempt to record themselves in the log. Add_op to_log first calls the
trans_id constructor with the value CURRENT to obtain the trans_id of the calling transaction (compare this to a
different cali with no argument in the enq operation of Figure 2-8). If the addition of the operation would not
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#include <nonnaegative_int_h>

struct counter_range ({
nonnegative int lo;
nonnagative int hi;
counter_ range{counter rangaf, op seq¥*);
counter range{counter range& cr)
counter_range{int 1, int h)
counter_range{int i)}
counter_rangs{)
vold init ()
bool unsat()

lo = er.lo, hi = cr.hi; }
lo = 1; hi = h; }

lo = hi = 1; }

init(); }

lo = 1; hi = 0; }

return {(lo && thi); }

o~ e e i o e

counter rangeé operatorde (int 1) { lo = 1o+ 1; hi = hi + Li;
return *this; }
counter_ range& operators {[counter_ range& cr)
{ 1o m cr.lo; hi = or.hi; return *this; }

struct op_seq : public recoverabls {
bool te_inc;

op seq* ops;

op_sag(boecl b);
~op_seql) { daleta opsa; }
op_saqk opsrator<<(op_seq®);

struct log_entry :public recoverable {
trans id common id;
counter range query ranga;

op_seq* ops;

log_sentry(trans_id&);
log_sentry{trans_id&, bool):
log_antry(trans_id&, counter range&);

~log entry() { dalate ops; }
bool operator<({log_entry& le) { reaturn {common_id < le.common_id);
bool operator>(log_sntryé le) { return {common_id > le.common_id);

log_entry& cperator=m({log sntry& la);

// Load recoverable list from library

#include "recov sorted alist.h"

recov_sorted alistdeclare(trans_id,Plog_sentry, tid_eq, tid_1t);
recov_sorted aliastittrdaecl (trans_id,Plog entry, tid eq, tid 1t):

typsdaf recov_sorted alist(trans_id,Plog sntry,tid eq,tid It) log t;
typedef recov_sorted alist ittr(trans_id, Plog entry, tid eq, tid 1t) logittr:

Figure 2-11: Auxiliary Structures for Counter

}
}
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class atomlc_counter : public subatomic {
nonnegative int count;
log_t log;
// Anternal functions
Countar range* 1a_z¢ro__work(tranl_id&) H
bool 1l_z-ro_in_rmg'. (count-:_rang.&) ;
bool is_rzerc_value {(ccuntar_range&);
vold add op_to_log(bool);
bool l.dd_ep_to_log__work(trlns_ids, beool, log_sntry*s);
public:
void ine(};
vold dec():
bool is_zero();
ntonic_count-r() { count = 0; }
vold commit (t::nnt__id& ty;
volid abort (trn.nl_:l.d.s t);
};

Figure 2-12: Atomic Counter Derived from Class Subatomic

// Add incremant cperation to log
vold atomic_counter::ine() { add op te log(TRUE); }

// Add decremsnt cperation to leg
veld atemic counter::dec() { ad:l_op_ta_lag(!'us!:); }

Figure 2-13: Counter’s Inc and Dec Operations

change the possible view of the counter as seen by other active transactions, the operation proceeds. Otherwise, the
operation is forced to wait until all interfering transactions terminate (by either committing or aborting).

An example of a blocked case is as follows: Assume a transaction tests for the zero state of the counter and receives
a positive (i.e., TRUE) result. Until that transaction commits (or aborts) no other transaction can increment the
counter, since that would change its state from zero to non-zero. Other transactions are free to decrement the
counter, however, as this does not alter the visible state of the counter.

The add_op_to_log routine uses 2 when construct to ensure exclusive access to the log during the operation
insertion. Prior to that, however, it verifies that the insertion of the operation record is possible by calling
add_op_to_log_work, which examines the counter from views by all active: transactions whose entries are
present in the log. The add_op_to_log_work retums FALSE if the operation cannot be added at this time,
causing the when construct to pause and be reactivated at a later time when the situation changes. When the
condition in the when statement succeeds, add_op_to_log adds the operation to an existing log record (indexed
by the current trans_id) if possible, creating a new record otherwise.

Much of the work for the is_zero predicate {Figure 2-15) is done by the auxiliary function is_zerc wark
(Figure 2-16), which constructs a range of possible values for the counter. given the committed value and the Ing.
Is_zero first obtains the trans_id of the calling transaction. Then is_zero_work iterates over all log entries.
constructing the range of counter values. For each log entry, the logged operations are added together to determine
what the pet effect of committing the transaction represented by the trans_id would be. Then, the net value is added
to the high bound or subtracted from the low bound, as appropriate. Operations of uncommitted transactions ettlarge
the range of possible values. If the low end of the range is bounded below by a positive integer, is_ zerxo returns
-1. If the range starts and ends at zero, then it returns 1. In all other cases (the range starts at zero and ends at a
non-zero integer), it returns 0.
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// Add (ine/dec) operatien te log, by adding it to cperaticn sequance {op_seq) of existing
// log raccrd, or by making a new one. Log entriss are keyed by current trans ids.
void atomic_counter::add op_to_log{boel b} {

trans_id current_id = trane id{CURRENT):

log_entry* sntry m= RULL;

bool new_entry neadsd = FALSE;

when (add_op_to_log work{current_id, b, entry)) {
if (entry == NULL) {
entry = new log_entry(current_id,b);
log.insert {current_id, entry):
} alse {
if {(entry->ops) *(entry->ops) << new op_seqi{b);
alsa pinning {(sntry) entry->ops = new op_seq(b);
}
}
}

inline bool atomic _counter::is_zero _in range (counter range range)
{ raturn ({int) range.loc <= 0}; )

inline bool atomic counter::is zero value(counter range& range)
{ return ({int) range.hi == 0); )

bool atomic _countar::add_cp_to_log_work(trans id&é id, bool to_ing, log_entry*& thias_entry) {
log_antry** entry;
log_antry** found entry;
logittr naxt sntry(log);

found_entry = log.lookup(id);
if {found entry == NULL) {
this_entry = NOLL;
} else {
this_antry = *found antry:
}

for (entry = next_entry(); entry; entry = next entry(}) {
if ((*entry)->common_id == id) { // We've already sesn this gquy, so ignore it
} slse if ({(*entry)->common_id < id) ||
{descendant (id, (*entry)->common_id})) {
// committed wrt to ma, so not a problam

} else { // uncommittad, the tough one. Must ensuras thera is no active transaction
// whose termination state (commit or abort) could change the visible state
// (zars or nonzerc) of the countar.
countar range old range = (*entry}->query_range;
if ('old_range.unsat(}} {
counter_range range((*antry)->query_range,
{found antry) ? (*found entry)->ops : NULL);
counter rangs naw_range =
gounter_ range(range.lo - {((tec_inc) 7 0 : 1),
ranga_-hi + ((te_dine) 2 1 : Q));
if ((is zerc_valus{cld rangs) {= is zero valus(new_rangae)) ||
(is_zero_in range(cld_range) !'= is zerco_in range (new_range)))
{
return FALSE; // bad news
}
}
}
}
return TROE;
}

Figure 2-14: Counter’s Inc and Dec Auxiliary Operations
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// Public is_zaro() predicate
bool ntomic_pountcr::13_:.:0() {
counter range* result;
trans id current_id = trans_i1d (CURRENT) ;

whan {(result = is_z-ro_york(currong_id)) {
log_entry** entry = log.lookup (current_id);
if {entry) {
pinning{*entsy) (*antry)->query_range = *result;
} alse
1og.incort(cur:.nt_1d, neaw log_.ntty(currcnt_}d, *result));

is (is_z.ro_in_rango(*rosult))
return TRUE;

alse
return FALSE;

Figure 2-15: Counter’s Is_zero Operation

The predicate is_zero uses the resuit (-1, I, or 0) of is_zero_work to determine whether it can returmn
immediately (cases -1 or 1) or not. If it cannot, it exits the when block {thereby releasing the short-term lock), waits
for more transactions to commit (or abort), and tries agam later. This process repeats indefinitely, until one of the
two cases for returning from is_zero holds.

2.3.3. Counter’s Commit and Abort _

The commit and abort operations (Figure 2-17) must clean up the log. The commit operation additionally
updates the value of the counter by going through the log, finding all the entries for transactions committed with
respect to it, applying these in serialization order, and then applying its own operations. Log entries for transactions
relatively committed to the committing transaction can be discarded. Notice that we need to use the < operation
because we cannot assume anything about the order in which commit operations are executed. Suppose A and B are
transactions and the committed value before either transaction commits is 2. Suppose A does | inc and then 5
dec’s; B does 3 ine’s. If A commits, followed by B, the counter’s committed value after A’s commit operation
is executed should be 0 (a dec has no effect on the counter if its value is 0 already); then after B commits, the
counter's value changes to 3. However, if we were to execute B’s commit operation before A’s, then B would
update the counter to 5, and A would change it to a final value of L, which is wrong. By using <, the commit
operator makes sure it installs all changes of transactions that have committed with respect to the committing
transaction, not just its descendants,

On the other hand, the abort operation throws away only transactions that are descendants of the aberting
transaction; it would be incorrect to throw away transactions that are not descendarts but have relatively commitied
with respect to the aborter.
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// Returns the rangs of possible counter values as seen by the trans_id.
// Committed transactions oparate directly on countar value,
// while (as yet) uncommitted ones increase range.
countsr_range* atomic_counl:o:::is__z.ro_wo:k(txa.nu_id& id) {
log_entry** entry;
op_eaq* op;
legittr next satry(leg);
// Begin with committed value, and a seguence of op_seqs of uncommitted cperations.
nonnegative int committad value (count) ;
struct op_seq seq {cp_saq* ops; op_seq_se* next;};
op_saq_saq* uncommitted op reqs = new op_saq seq;
op_seq_saq* last uos = uncommitted op_seqs;

for {(entry = next_antry(); entry; eatry = next_entry()) {
if ((id == (*entry)->common_id) ||
{descandant (1d, ("satry)->common 1d}) i1
{id > (*antry)->common_id)) {
// Install relatively-committed operations
for (op = (*entry)->cpa; op; op = op->ops)
comnitted value += ({op->to_ine) ? 1 : -1);
} slse { // Cache uncommitted cpsration until all committed one ara "in"
if (last_uocs != uncommittad op_seqgs) { // not firat one
last_uos->next = new op_saq _seq;
last_ucs = last_uocs->naxt;
}
last_uos->ops = {*entry)->ops;
}
}

// Dalete uncommittad_op_ seqs altogether if we haven’’t seen any as yet
if (uncommitted op seqs->cps == NULL) {
daleta uncommitted op_seqs;
uncommitted op segs = NULL;
) .

// Now, we can go through all (if any) uncomuitted op_segs. Build range of
// possible vwalues from other operaticns "adding" it to range as appropriats.
counter_range *range = naw count.:__:l.ngo(connitt-d._valuo);
last uos = uncommitted op seqgs;
while (last uos) {

counter_range possible range(*range, last_ucs->ops);

range->hi = max{range->hi, possible_rangs.hi};

range->lo = min{range->lo, possible rangs.lo);

op_seq_seq* tamp = last_ucs; last_uocs = last_uos->next; delata temp;

// There are only twe ways to produce a "result”. If the range doas not
// inciluds zere, then wa can safely return FALSE. If the range includes a
// single valus, then we can determine with certainty whethar it is zero.
// If neither condition is attained, we pausa (realsasing the short-term lock
// for another transaction), and then try the loop again.
{ int result:
it (1-_;.:o_}n_:nngo(*rnngo))
if (il_zo:o_ynluo(*rango)) regult = 1;
slsa result = 0;
alse
result = -1;
if (result '= 0)
reaturn rangs;
alse
return NULL;

Figure 2-16: Counter’s Is_zero_work Operation




// Install (and remove) all descendants from log. They are all committaed,
// by definition, since aborted ones have been previcusly delated by the log.
// (Sea abort routine below.)

vold atom.i.c_caunt-r::comit(trans_ids ey {
log_entry** antry:
op seaqt op;

when (TROE)
Pinning() {
logittr next entry(leq);
for {entry = next_entry(); sntry; entry = next_ antry()) {
if {({{*entry) —>common_id == t) || ((*lntry)—)comon_id < £}y {
for (op = (*entry)->opa; ep; op = op=->ops)
count 4= ((op->|:o_inc:) 2?1 : =1);
log.remove{ (*entry) =>common_3id);
delete *antry;
}
}
}
}

// Remove all descendants from log

vold atomlec countaer: rabort (trans_idc t) {
log_sentry** antry;

whan {TRUE)
Pinning{) {
logittr next entry({leq);
for (entry = next_entzy(): entry; entry = next_entry({)} {
1f (({*entry) ~>cemmon_id == t) || descendant( (*antzry) ->common_id, €)) {
log.ramovae { {*antry) —>common_id);
delate *antry;
}
}
}

Figure 2-17: Counter’s Commit and Abort
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3. Reference Manual

3.1. Lexical Considerations

Avalon nonterminals are in roman face. C++ nonterminals are in italics, as in Section 14 of the C4+ Reference
Mamual in {14). Keywords are in bold typeface. C++ extended BNF is used. Eg., ‘s'ymbalopt means an optional
symbol. A C+ nonterminal followed by *:..."” denotes an extension to that nonterminal.

The extended set of keywords is as follows:

costart pinning stable transaction when
except pProcess start undo whenswitch
leave server toplevel variant

3.2. Servers

aggr: ...
server

decl-specifier: ...
server-specifier

server-specifier:
class-specifier

sc-specifier: ...
stable
An Avalon server object is an instance of a sexver definition. A server definition, like a C++ class definition,
encapsulates a set of objects, and exports to clients a set of operations that manipulate the objects and a set of
operations that create and destroy instances of servers. A client invokes an operation on a server by calling a
member function of a server object. Creating a new instance of a server causes a new server process to be started,
When a server object is deleted, the server is killed.

3.2.1. Defining Servers
A server definition contains the following parts:

* Data declarations: Data declared to be stable in the server are restored following a failure. To be
restored properly, stable data must be derived from one of Avalon’s three base classes (Section 3.3):
recoverable, atomic or subatomic. All data must be implemented to control concurrent
access.

* A mandatory main. The main member function is executed as a background process when the server
is started. This function can be used to provide code which needs to be run independently of the
server’s other operations. A printer server. for example. could use main for the code to run the printer
Main must exist, even if empty, because Avalon uses the existence of a main implementation 1n
determine that the current compilation is for a server. rather than just for o client.

* An optional recovexr operation, which is executed whenever the server is restarted after a failure.

* Exported (and possibly internal) operations: The exported operations provide the clients the only means
of accessing the server’s data. Communication between clients and servers is through (hidden) remote
procedure call with call-by-value transmission of data.

* A nonempty set of constructors: A server's constructor defines the parameters that a client must use
when creating a new server and provides code to execute when the server is started. In contrast to
constuctors for classes, a server’s constructor must also specify to the run-time system the parameters
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needed to start the server process; these parameters are specified in the declaration in a way similar to
passing parameters to the constructor of a class’s parent (see example below). When a client calls a
server’s constructor, the specified parameters are passed (o the routines that start the server.!

» An optional destructor.

Example
Below is a simple server declaration:
sexrver simple {

stable atomic int val; // Protected atomic intager
public:

simple(x_string p, x _string n) : (p.,n); // Consttuctor

int get(); // An axported cperation

void set{int 1} // Another axported cperation
vold recover{):; // Called upon server recovary
void main(); // Background process

};

The parameters to the right of the colon in the constructor are passed to the run-time routines that start the server.
The first parameter is the name of an executable file; if the full path name is not given, the user’s path is used. The
second parameter is the name of a node on which to start the server; If the value "localhost” or NULL is given, local
machine is used; otherwise an x_string argument such as "wing.avalon.cs.cmu.edu” can be given to start the server
on some remote machine.

3.2.2. Using Servers
For an Avalon program to make use of a server it must first obtain a reference to an instance of the appropriate
server. As shown below the client may either create a2 new server object, starting a new server process:

(1} printserveri p = *(new printsexrver{...}); // Start a new printserver
{2) printserver p (...): // Sstart a temporary server

or it may, with the Avalon library locate_server function (see end of Section 4.3), obtain a reference to an
existing server object representing a nmning server process:

(3) printsarveré p = (printservaert) locate_server(...):; // Locate an axisting printserver

Deleting a server object kills the associated server process. A declaration local to some block (as in (2) above) of a
server object starts the server upon entering the block and kills it zpon exit. Thus, (1) is recommended for ordinary
starting of servers.

Once a server instance is found, operations are invoked on the object as for any C4+ object:
P-spool ("myfile.txt"”); // Invoks an opearation

Since server objects are really just C++ objects with special operations, they can be manipulated in the same manner
as other C++ objects. In particular, server objects and references to servers can be passed as parameters to and
returped as values from functions.

3.3. Base Classes

There are three base Avalon classes: recoverable., atomic. and subatomic. Users define their own
recoverable types by deriving from recoverable. They define their own atomic types by deriving from atomic
or subatomic, and are responsible for ensuring that the types they define are indeed atomic. If a type is not

Unlike normal C++ usage, the startup parameters must be in the declaration seen by the client, rather than with the constructor definition.
This information is useful only to the client, so it must appear in a place visible to the client, such as the server declaration.


http://wing.avalon.cs.cmu.edu

27

atomic then transactions that use objects of that lype are not guaranteed to be atomic. We expect most users to
derive from class atomic, and more experienced (and demanding) users to derive from subatomic, especially if
more control over the object’s synchronization and recovery is desired. We refer the reader to Chapter 5, in
particular Section 5.2, for correct usage of base classes, and (16] for a more formal description of their interfaces.

3.3.1. Class Recoverable
Class Definition
class recoverable |
public:
virtual voidpin(int size),
virtual void unpin{int size);

Y

Operations

void pin(int size)
ensures Subsequent changes to the object will not be recorded to stable storage until a later matching
unpin operation. Muitiple pins (and their matching unpins) by the same transaction to the
same object have no effect. 1f the object is already pinned by a transaction different from the
calling transaction, a run-time error is signaled.
void unpin(int size)
modifies The value of the object in stable storage.
requires The calling transaction is currently pinning the object,
ensures If there is exactly one outstanding pin operation, the modifications to the object are logged to
stable storage.

The pin and unpin operations, which should be called in pairs, are used to notify the run-time system that a
modification to an object is to be made. In most cases, the integer argument to pin and unpin should be the size of
the object being pinned. After a crash, a recoverable object will be restored to a previous state in which it was not
pinned. The pin and unpin operations are usually not called explicitly by programmers: instead, Avalon/C++
provides a special control structure, the pinning block (Section 3.4.7), both for syntactic convenience and as a
safety measure.

3.3.2. Class Atomic

Atomic is a subclass of recoverable, specialized to provide two-phase read/write locking and automatic
recovery. Objects derived from class atomic should be thought of as containing long-term locks, used to ensure
serializability. Each transaction obtains read (write) locks on all objects it accesses (modifies); locks are held until
the transaction commits or aborts.

Class Definition

class atomic: public recoverable |
public:
// pin and unpin are inherited from recoverabla.

virtual void read_lock();
virtual void write_lock();

}
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Operations

void read_lock()
when  No transaction other than the calling transaction has a write lock on the object.
ensures If the calling transaction already has a read lock on the object, there is no effect; otherwise, it
obtains a read lock on the object. Many transactions may simultaneously hold read locks on
the same object.

void write_lock()
when  No transaction other than the calling transaction has a read or write lock on the object.
ensures If the calling transaction already has a write lock on the object, there is no effect; otherwise it
obtains a write lock on the object, preventing other transactions from gaining any kind of
lock on it.
Read lock and write_lock suspend the calling transaction until the requested lock can be granted (i.e., when
the when condition holds); this may involve waiting for other transactions to complete and release their locks.

The run-time system guarantees that for nested transactions, the following rules are obeyed in oblaining read and
write locks:

* A child can get a read lock if all transactions holding write locks are ancestors.
» A child can get a write lock if all transactions holding read or write locks are ancestors.
* When a child commits, locks are inherited by parents.

+ When a child aborts, locks are discarded.
The run-time system guarantees transaction-consistency of atomic objects, by performing special abort processing
that ‘‘undoes’’ the effects of aborted transactions, including those aborted by crashes. Thus, implementors of atomic
types derived from atomic need not provide explicit commit or abort operations. Finally, persistence is
*‘inherited’’ from class recoverable; its pin and unpin operations should be used in the same way as
described in Section 3.3.1.

3.3.3. Class Subatomic

Like atomic, subatomic provides the means for objects of its derived classes to ensure atomicity. While
atomic provides a quick and convenient way to define new atomic objects, subatomic provides primitives to
give programmers more detailed control over their objects’ synchronization and recovery mechanisms. This control
can be used to exploit type-specific properties of objects to permit higher levels of concurrency and more efficient
recovery. A subatomic object must synchronize concurrent accesses at two levels: shorr-rerm synchronization to
ensure that concurrently invoked operations are executed in mutual exclusion, and long-term synchronization to
ensure that the effects of transactions are serializable. For short-term synchronization, each object derived from
class subatomic should be thought of as containing a shorr-term lock, much like a monitor lock.

Class Definition

class subatomic: public recoverable |
protected:
void seize();
void release();
void pause();
public:
/{ pin and unpin are public, by inheritance from recoverable.

virtual void commit{trans_id& tid):
virtual wvoid abort{trans_td& tid);
]
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Operations

void seize()
when  No transaction holds the shori-term lock on the object.
ensures The calling transaction obtains the short-term lock on the object.

void release()
requires The cailing transaction holds the short-term lock.
ensures The calling transaction relinquishes the short-term lock.

wvoid pause(}
requires The calling transaction holds the short-term lock.
ensures The calling transaction releases the lock, waits for some duration, and reacquires the lock
before returning.

The above operations ensure that only one transaction may hold the short-term lock at a time, thus allowing type
implementors to ensure that transactions have mutnally exclusive access to subatomnic objects. These operations are
protected members of the subatomic class: They are not provided to clients of derived classes, since it would not
be useful for clients to call them. Like pin and unpin, the above operations are usually not calied explicitly;
instead, Avalon/C++ provides special control structures, the when and whenswitch statements (Section 3.4.8),
which automatically seize, release, and pause on the short-term lock,

Since commit and abort are Ci+ virtual operations, classes derived from subatomic are allowed (and indeed,
expected) to reimplement these operations. They each take a reference to a transaction identifier as an argument.
(See the Avalon class trans_id of Section 4.1.2.) The typical effects of these operations are specified as follows:
void commit(trans_id& tid)
requires The transaction tid has committed.

ensures Non-idempotent undo information stored for transactions that have committed with respect
to tid is discarded.

void abort(trans_id& tid)
requires The transaction tid has aborted.
ensures The effects of every transaction that has committed with respect to tid are undone.

Commit operations are called for only transactions that commit at the top-level. Whenever a top-level transaction
commits (aborts), the Avalon run-time system calls the commit (abort) operation of all subatomic objects
accessed by that transaction or its descendants. Abort operations are also called when nested transactions abort,
When commit or abort is called by the system, the most specific implementation for the object will be called.
Thus, subatomic allows type-specific commit and abort processing, which is useful and often necessary in

implementing user-defined atomic types efficiently. Notice that users need not call commit and abort explicitly;
the system automatically calls them when appropriate.

3.4. Control Structures

3.4.1. Start

Statement: ...

start trans-body
trans-body:

trans-tag statement except-clause
trans-tag:

toplevel

transaction

Sequential transactions are created by means of a start statement. The toplevel qualifier causes the body of

Pt
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the start statement to execute as a new top-level (root) transaction. The transaction qualifier causes the
body to execute as a subtransaction of the current transaction, if there is one; otherwise, it too begins a new top-level
transaction. When the body terminates, the transaction either commits or aborts. Normal completion of the body
results in a commit of the transaction. Control flow stalements (return, leave, break, and continue) that
transfer control outside the scope of the transaction normally commit it, unless they state otherwise via an undo
qualifier (Sections 3.4.4, 3.4.3, 3.4.5). The undo leave statement can be used to pass an abort code that can be
used as a switch value in an except clanse (Section 3.4.6). Goto statements that transfer control outside a
transaction are currently not supported. Future versions of Avalon will prohibit such transfers at compile-time;
presently, the result of such a statement is undefined.

3.4.2. Costart

statement: ...
costart { coarms }

coarms:

coamm coarmsopt

coarm:

trans-body

Concurrent transactions and processes are created by means of the costart statement. The process executing the
costart is suspended; it resumes after the costart is finished Execution of the costart consists of
executing all the coarms concurrently. No guarantee is made about order of execution, or of initialization. Each
coarm runs as a separate (lightweight) process. The toplevel or transaction qualifier indicates whether the
coarm is a top-level transaction or subtransaction.

A coarm may terminate without terminating the entire costart either by normal completion of its body, or by
executing a leave statement (Section 3.4.3). A coarm may also terminate by transferring control outside the
costart statement. If an outside transfer occurs, the following steps take place:

1. All containing statements are terminated to the outermost level of the coarm, at which point the coarm
becomes the controlling coarm.

2. Every otber active coarm is terminated (and aborts if declared as a transaction). The controlling coarm
is suspended until all other coarms terminate.

3. The controlling coarm commits or aborts.

4. The entire costart terminates. Control flow continues cutside the costart statement.

3.4.3. Leave

statement: ...

leave ;

undo (e,\'pre.s'.a'im:)opt leave;
Executing a leave statement terminates the (innermost) transaction that the leave occurs in. By itself. 1aave
commits the transaction, but with the undo gualifier. it aborts it. An unqualified leave statement must occur
textually within the scope of a transaction, or a compile-time etror results, An undo leave statement need not
occur within the textual scope of a transaction, but it it must occur within the dynamic scope of one, or a mun-time
error will occur. The optional integer expression in an undo leave statement can be used to pass a value that can
be used in the except clause of the aborted transaction (see section 3.4.6.) The value of the expression must be
greater than zero, but less than or equal to the constant AVALON_SYS_USER_ABORT_MAXZ, or a run-time error

2Currently equal to (2'%)-1.
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will result. If the expression can be evaluated at compile-time, this restriction will be enforced then.

3.4.4. Return

Statement. ...

undo opt TREULN expression opt

The return statement terminates execution of the containing operation. If no undo qualifier is presemnt, then all
comaining transactions (if any) terminated by this statement are committed. If the undo qualifier is present, then alt
terminated transactions are aborted. When a return statement in a coarm causes control to leave the costart
statement, active sibling coarms are aborted. The undo qualifier can only be used within the lexical scope of a
transaction, or a compile-time error will result.

3.4.5. Break and Continue

Statement: ..,
|.1,nr.lr:>0'Jt break:
““d%pt continue
Terminating a cycle of a loop (while, do, for), or a switch statement may also terminate one or more
transactions within the loop or switch. If no undo qualifier is present, then all these terminated transactions (if any)
are committed. If the undo qualifier is present, then all of the terminated transactions are aborted. When a break
or continue in a coarm causes control to leave the costart statement, active sibling coarmis are aborted. The

undo qualifier can only be used within the lexical scope of a transaction, or a compile-time error will result.

3.4.6. Except Clauses

except-clause:
except (ia"emtz]'fer)o!Jt statement

An except clause, which may be appended to a transaction body, is used to handle different cases of an aborting
transaction. Afier a transaction aborts, it allows some case-specific action to be taken. The statement in the clause
is expected to be one or more case statements. If the transaction was aborted as a result of an undo (expression)
leave statement, then the value of the integer expression (called the aborr code) is used to determine which of the
cases in statement are executed, just as in a switch statement. The Avalon run-time system may abort the
transaction for a variety of other reasons; in this case, the abort code will be an integer greater then
AVALON_SYS_USER_ABORT_MAX. If the optional identifier is present, then an integer variable of that name will
be defined to have the value of the abort code within the scope of the except clause. The routine
avalon abort_code_to_string may be used to translate system abort codes to strings describing the reason
for the abort:

char* avalon_abort_code_to_string(int ac)
ensures The returned string describes the reason for an underlying system-induced abort according 10
the integer abort code ac.

3.4.7. Pinning
Statement: ...
pinning (expression opt) Statement
The pinning statement indicates that statement may modify expression. Expression must evaluate to be the
address of a recoverable object (Section 3.3.1); if it is not provided, this will be used. All modifications to
recoverable objects should be done within pinning statements. If a recoverable object is not “‘pinned’’ in
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memory while it is being modified, it may cease to be recoverable. If the object to be pinned is of variable size, then
explicit calls to pin and unpin are necessary; the pinning statement cannot be used.

3.4.8. When

statement: ...
when (expression) statement
whenswitch (expression) statement
The when statement provides short-term synchronization for operations on this, which must be a subatomic
object (Section 3.3.3). After a shon-term lock on this is obtained, expression is evatuated; if true, statement is
executed. If expression evaluates to false, execution pauses, temporarily relinquishing the lock, until it becomes
true. The short-term lock is released after statement is executed.

The when statement can also be used to provide operation consistency of implementations of operations of
subatomic objects. The operations done in a when statement are done atomically: either they all happen or none of
them happen. If the implementation of a subatomic operation does all of its work in a when statement, operation
consistency is guaranieed. When's can be nested, but the use of more than one (non-nested) when statements in the
implementation of an operation (e.g., two when's in sequence) is strongly discouraged and will void this guarantee.

As its name suggests, the whenswitch statement is a combination of the when and switch statements.
Expression and statement are handled just as they would be in a switch statement, with one difference: the
default action is to pause execution until the value of expression equals the value of one of the cases. Since the
default action is provided, it is illegal to include a default in statement.

3.5. Transmission of Data :

Clients and servers communicate through remote procedure call. The arguments and return values of server member
functions are passed by value. Hence, references and pointers to objects are not transmissible. Objects of any other
C++ or Avalon fundamental type are transmissible. An array, struct, or variant (Section 4.1.4) is transmissible if
and only if al} its component types are transmissible. Unions cannot be transmitted, since their actual type is not
known at compile time. The chart in Figure 3-1 summarizes which types are transmissible and which are not.
Future releases of Avalon/C++ are likely to reduce the restrictions on transmissible types, and allow pointer
indirection in structures to be transmitted (by copying) between server and client.

In most cases, users can rely on the Avalon/C++ compiler to determine automatically how to transmit a value as an
argument to a server function. In the cases where the compiler fails to recognize a type as transmissible, or when the
automatically generated transmission functions are inefficient, the user can define his or her own transmission
functions as part of the class definition. Section 5.4.2 explains how this can be accomplished, and should be read on
a need-to-know basis only.



Types Transmissible Non-Transmissible

int, short int. long int, unsigned int,
C++ Fundamemtal char, float, double, enum pointers, references

Avaton/C++ Fundamenta! | bool, trans_id, x_string (character strings)

servers, arrays, vadants, unions, functions,
C+4+ Derived (1) classes (-}, structs (-) classes (+), structs (+)
Avalon/C++ Derived : recoverable, atomic, subatomic

Ialics indicates that transmission of that type is not yet supported by the current implementation.
{!) Provided component types and inherited supertypes, if any, are transmissible.

(+) With union or bitfield component types.

(-) With no union or bitfield component types.

Figure 3-1: Transmissible and Non-Transmissible Types
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4. Library

4.1. Non-atomic Avalon/C++ Types and Type Generators

4.1.1. Bools

Avalon defines a boolean type, boel, with exactly two values, TRUE and FALSE, and the usual C++ operations on
booleans: !, &&, I, =, !=, and =.

4.1.2. Transaction Identifiers

The Avalon mn-time system guarantees that the serialization order of transactions is the order in which they
commit. The trans_id class defines operations on Avalon transaction identifiers to permit run-time testing of the
transaction serialization order. There is a trans_id server at each site which keeps track of all the trans_id’s at that
site and handles sending trans_id’s to other sites that need them,

Class Definition

class trans_id |
public:
trans_id(int = UNIQUE);
~trans_id();
trans_id& operator=(trans_id& t);
bool cperator==(trans_id& t);
bool operator<(trans_id& t);
bool operator>(trans_id& t);
bool done(); .
£riend bool both(trans_id& t1, trans_id& 12);
£riend bool descendant(trans_id& tl, trans_id& t2);
b

Operations

trans_id(), trans_id(UNIQUE)
ensures A dummy subtransaction is created and committed and the subtransaction’s identifier is
retumed to the calling transaction. Note that UNIQUE is the default argument to the trans_id

constructor.

trans_id(CURRENT)
ensures Retums the trans_id of an operation’s calling transaction.

~trans_id()
ensures The trans_id is deleted.

trans_id& operator=(trans id& t)
modifies this
ensures this becomes identical tot.

bool operator=—(trans_id& t)
ensures tl ==t evaluates to TRUE if t] and t are equivalent: FALSE, otherwise. Note that irang iel's
created by different operations within the same transaction are not equivalent.

bool operator<(trans_id& t)
ensures Iftl <t evalvates to TRUE, then if both t1 and t commit to the top level, tt serializes before
t. If the expression evaluates to FALSE, either tl serializes after t, or t! and t are
incomparable.
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bool operator>(trans_idé& t)

ensures If tl >t evaluates to TRUE, then if both t1 and t commit to the top level, t1 serializes after t.
If the expression evaluaies to FALSE, either t! serializes before t, or t1 and t are

incomparable.

bool done()

ensures Retums TRUE if this is committed to the top level; FALSE, otherwise.

bool both(trans_id& 1, trans_id& 2)

ensures Retumns TRUE if t]1 and {2 are committed to their least common ancestor; FALSE, otherwise.

bool descendant(trans_id& tl, trans_id& 2)
ensures Retumns TRUE if tl is a descendant of t2; FALSE, otherwise.

4.1.3. x_string: Transmissible Strings

Strings are normally declared in C4++ in two subtly different ways: (1) as a fixed array of chars, whose size is
known at compile time, and (2) as a char pointer, terminated by a \0, whose size is dynamic; its space is allocated at
run-time. Whereas strings as arrays of characters can be trivially transmitted (Section 3.5), strings as char pointers
cannot because pointers are not transmissible. The built-in Avalon/C++ class, x_string, provides for

transmission of dynamically allocated strings.
Class Definition
class x_string {
public:
operator char*();
x_string(char* c);

b

Operations

operator char*(}
ensures Coerces an x_string into a character array.

x_string {char* ¢)
ensures Retums an x_string constructed from c.

Example

server namelList {
public:
add mamber(x_string mambar name);
x_string pick_random mamber():
}:

main() {
namalist nl;
char* name = new char;

nl.add mesmber("Stewart");
nama = nl.pick random mamber{);
}

The constructor from char* to x_string will be automatically called
namelist: :add membexr. The coercion operater will  transform
nameList: :pick random member into a char*.

4.1.4, Variants

ager: ...
variant

decl-specifier: ...

in the case of calls

the

result

value

1

of
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variant-specifier

variant-specifier:
class-specifier
Avalon/C++ provides an aggregate data type generator, the variant, which is declared similarly to a structure or
class. An object of variant type can contain a value from a set of types. A varant differs from a standard C++
structure in that it can be only one of its possible subtypes at any given time; it differs from the standard C++ union
type in that it is transmissible, i.e., can be sent as an argument to or retumed as a result from a server member
function.

A variant is 2 tagged, discriminated union and is made up of two parts, a tag and a value. The tag field specifies
which of the possible subtypes is stored in the vaiue field, while the value field contains some instance of that
specified type.
Operations
A variant declaration of the form:

variant VT (T, Vi T, Vih
automatically defines the following operations:

VT operator= (VT v)

modifies this

ensures Copies v into this. The operational effect is that this’s tag field changes to be v’s, and
this’s value field is assigned v's, using the the assignment operator defined on v’s type.

bool operator= (VT v)
ensures vl == v retumns TRUE if vl and v have the same tag, and their values are equal. FALSE,
otherwise. Two void instances of the same variant type are equal.

bool is_void () )
ensures Retums TRUE if this has no value, and is of the special null-valued void type; FALSE,
otherwise. The void type represents the state of a variant instance prior to its first
assignment.

and the following operations for each type T, and tag V;:
void set_V(T, val)
modifies this
ensures Sets the tag of this 1o V, and its value to val.
T, value_Vi()
ensures Retums the value of this ifits tag is Vi retums a run-time error otherwise.
boot is_V ()
ensures Returns TRUE if the tag of this is V., FALSE, otherwise.
Restrictions
Variants are a special type of class, and can only be declared and defined af the top level. i.e., variants cannot be
nested within declarations or definitions of other types. including variants. Variants cannot have member functione
Example

enum PF {FAIL, PASS}:
variant grads {
char letter;
short parcentage;
PF pass_fail;
}:

In the above example, grade: : set_letter (char c) would be defined to set the tag of the variant instance to
char, and its value to ¢, bool grade: :is_letter () retums TRUE if the tag of the variant instance is chax,
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and FALSE otherwise, and char grade::value letter() returns the char value of the instance if it
contains a char, and produces a run-time error otherwise. Similar functions for percentage and pass_£fail
are provided as well.

4.2. Atomic Types

Each C++ fundamental type, t, has a derived Avalon atomic type counterpart, atomic_t, where ¢ currently can
be int, char, or £loat. There is also an Avalon atomic type for booleans, atomic_bool, and for
(dynamically-sized) strings, atomic_string (Section 4.2.1). Each Avalon atomic type has the same sets of
values and operations as its non-atomic counterpart. No atomic type is transmissible.

4.2.1. Atomic Strings

The atomic_string class is intended to be used in a manner similar to a char*, as used to represent C++
strings. They shouid be used as components of atomic and subatomic objects to ensure their recoverability. An
atomic_stxing can be of arbitrary, varying length.

Class Definition

class atomic_string {

public:
atomic_string();
atomic_string(const char* str);
atomic_string(atomic_string& astr);

void operator=(const char* str);

void operator=(const atomic_string& astr)
opearator char*();

friend bool operator==(const atomic_string& astr, const char* str);
friend bool oparator==(const char* str, const atomic_string& astr);
friend ostream& operator<<(ostreamé& s, atomic_string& astr);
|5
Operations

atomic_string()
ensures Creates and retumns a new, empty atomic_string.

atomic_string(const char* str)

atomic_string(const atomic_string& astr)
ensures Creates and returns a new atomic_string, initialized with the value of str (astr).

void operator={const char* str}

void operator=(const atomic_string& astr)
modifies this
ensures Assigns str (astr) to an atomic_string. adjusting the amount of storage for the string il
necessary.

opexator char*()
ensures Coerces an atomic_string into a ‘‘standard”” C string. char*, allowing atomic_strings (o he
used in standard C routines.

bool ocperator==(const atomic_string& astr, const char* str)

bool operator==(const char* str, const atomic_string& astr)
ensures Retums TRUE if astr and str contain the same characters in the same order; FALSE,
otherwise. Equality is case-sensitive.
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ostreamé& operator<<(ostream&: s, atomic_string& astr)
modifies s
ensures astr is written to the output stream s.
Restrictions
The char* retummed by the coercion operator must only be used as a const chax*, i.e., the contents of the string
should not be changed. The returned char* is only valid until the next operation on an atcmic_string. Thus,
multiple coercions may return different char#* addresses.
Example
server foo {
stable atomic string a_str;
| ¥

a_str = "Hello";
if {a_str == "Hello")
ulstremp {a_str, "hellec"):;

a_str is defined to be an atomic_string. When the server is started, a_str is created uninitialized. The first
statement assigns the value "Hello" 10 a_str. The second statement uses the equality operator. 'The last
statement shows a use of an atomic_string where a char* is expected; this use is only acceptable if the called
routine does not attempt to modify the contents of the chaz* generated by the coercion. See 5.2 for other usage
guidelines.

4.3. Catalog Server

The catalog server [9] is part of the Avalon run-time system It maintains a mapping of server attributes to unique
server names, and services lookup requests. The current implementation of Avalon has exactly one catalog server
since it is expected to be used relatively infrequently: hence, we do not expect it to be a bottleneck. If experience
shows otherwise, however, we may decide to run one catalog server per node in future versions of Avalon.

When a server starts, it must check in its attributes. The required attributes (type name (TYPE), unique name
(UNIQUE_NAME), and node (NODE)), are automatically registered when the server starts. If more attributes are
desired, the server programmer can add them in the constructor code. For example, a printer server might add the
identity of the printer it is servicing. When a client wants to locate a server, the locate_server function (see
end of this section) calls the catalog operation name with a list of attributes and returns an object representing the
described server. To avoid boot-strapping problems, Avalon ensures that all clients have a reference to the catalog
server, which has a fixed unique name, catalogS.
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Class Definition

server catalog {

public:
catalog(path p, node n, size s) : (p,n.8);
~catalog(};
int check_in(attr_list alist);
void remove(int id);
void set_attributes(int id, attr_list new_alist);
void set_attribute(int id, x_string attribute, x_string new_value);
woid remove_attribute(int id, x_string attribute);
attr_list get_attributes(int id);
x_string get_attribute(int id, x_string attribute);
int find(attr_list alist);
x_string name(attr_list alist);

void main();

R

Operations

catalog(node n, path p, size s) : (n.p.s)
ensures Starts and initializes the catalog server on node n, using an executable file p, and reserving s
(Camelot) chunks of recoverable storage (where 5 is a reasonable value for s).

~catalog()
ensures Kills the catalog server.

int check_in(attr_list alist)
meodifies catalog server
ensures Creates a pew entry in the catalog server with the attributes specified in alist and retums a
unigue id to be later used to look at and modify the attributes of the new entry.

void remove(int id)
maodifies catalog server
ensures Deletes the entry of the server identified as id.

void set_attributes(int id, attr_list new_alist)
modifies Atntributes of id
ensures Replaces the attributed list of the server entry id with the new list alisz.

void set_attribute(int id, x_string attribute, x_string new_value)
modifies artribute’s value
ensures Replaces the value of attribute with new_value for the server id in the catalog server.

void remove_attribute(int id, x_string attribute)
modifies Attributes of id.
ensures The set of attributes for id no longer contains attribute.

attr_list get_attributes(int id)
ensures Retums a list of attributes for the server id.

x_string get_attribute(int id, x_string attribute)
ensures Returns the value associated with gtrribure for the server id.

int find(atr_list alist)
ensures Retumns the unique id of a server whose attributes match alisr.

x_string name(attr_list alist)
ensures Retums the value of the unigue name attribute of a server whose attributes match alisr.

void main()
ensures No effect.
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Locating a Server
In order to locate an existing, running server. nne uses one of the following functions:

server_root& get_server (char* unique_server_name)
ensures Returns a reference to a server object for the named server, for those cases where the unique

name is fixed or otherwise known, For example, the single catalog server is known as
“‘catalogS.”’

server_root& locate_server (char* typename, attr_list attrl==NULL)
requires Each instance of a type of server supplies identifying attributes when it is started.
ensures Retums a reference to a server of type type with attribute values that match those in attzl, if
such a server exists; retums NULL otherwise. For multiple instances of a particular type of
server, a specific instance may be selected by listing its unique attributes in attri.

Note that since locate_server is a generic function, the resulting reference must be coerced to the appropriate type
when received.
Example

attr list alist; // a new attribute list
alist.push ("printer", "iren"}; // CMU printers are named after gqems and minerals

Printservert ps = (printsarvers) locate_server ("printsarver", aliat);

if (&ps != NULL) // check for NULL return value
pPe.spool (filename);

This code obtains a reference to the printserver server object for the printer “‘iron.”” If such a server exists, it
invokes the server’s spool operation.
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3. Guidelines for Programmers

5.1. Choosing Identifiers

In most ways, Avaion hides the complexity of its underlying mechanisms. When choosing identifiers, however, it
must be remembered that Avalon is a preprocessor that generates code for the underlying system, Camelot, which in
turn is built on top of Mach. Fortunately between Mach, Camelot, Avalon, C++, and C, some valid identifiers
remain.

Here are some guidelines:
1. Do not begin your identifiers with “‘_avalon’. Except for names documeanted in this report, all
identifiers inserted into the generated Code by Avalon/C++ begin with this string,

2. Do not end your identifiers with “_t”. All Camelot types end with *‘ £,

3. Do not end your st ruct names with “_struct’’. Again, Camelot uses these.

4. Beware of uppercase identifiers. There are many constants (#define, enums, etc.) and macros
which use uppercase identifiers.

5.2. Using and Implementing Avalon Types

This section gives some guidelines for correct usage of the two Avalon built-in classes, recoverable and
atomic. (Rules for subatomic are forthcoming.) The rules outlined here do not represent the only correct
usage, but rather, a usage which is ‘‘guaranteed’’ to provide correct results. These rules, of course, do not address
standard programming practices such as ‘‘Do nor free memory rwice.”’

There are three kinds of programmers:

Client programmers:
These people write programs which invoke operations on servers. Their job is (0 ensure that the
operations are called correctly. There is only one rule for client programmers to obey: All server
operation invocations must be made within a transaction.

Type users/Server programmers:
These people define servers, and use built-in or user-defined types. Their job is to declare,
construct, and invoke operations properly on instances of these types.

Type implementors: These people define new types, Avalon types, derived from built-in or other user-defined types.
Their job is to define and implement the member functions of the type such that, provided it is
used correctly, it will exhibit a desired behavior. Note that, when creating a new Avalon type
that uses another Avalon type, the programmer is both a type implementor (of the new type) and
a type user (of the used type).

In the next four sections, we give rules for users of recoverable types, users of atomic types, implementors of
recoverable types, and finally, implementors of atomic types.

5.2.1. Using a Recoverable Type

Allocation: All Avalon types are allocated from recoverabie memory {a spectal beap). This is accomplished
through an appropriate construcior provided by either the type implementor or generated by Avalon. Care must still
be taken, however, not to force allocation of an Avalon type from other than recoverable memory (such as the
stack). Thus:

1. Do not declare variables or functions of an Avalon type. Instead, use references or pointers to Avalon
types.



2. Do not new an array of Avalon objects (e.g., new myatomic[10])°.

3. Do not coerce a non-Avalon type to an Avalon type either explicitly, e.g.,
str = {(atomlc string)"string”;
or implicitly, e.g.,
atomic_string::atomic atring (char* istr) (...} // constructor taking a char* argument

void afunction (atomic_stringé s) {...} // function expecting an Avalon type
afunction ("string"); // BAD code!

The trouble here is that C++ interprets a constructor of onme argument as a coercion from the
argument’s type to the class type. In the example, C++ converts the char* "string" to an
atomic string reference by creating a temporary variable on the stack of type
atomic_string.

Use: All usage of an Avalon type should be through member functions provided by the type.

5.2.2. Using an Atomic Type
Constructing Atomic Objects: When constructing an atomic object it is important that the creating transaction has
exclusive access to the location which will hold the new object. Thus:

class myatomic : public atomic {
atomic_int* 1;

veold newint (int);
HH

vold myatomic: ::nawint (int n) (
(*this) .write lock{):
pinning ()} i = naw atomic int (n);
}

Before creating the new atomic_int, the function obtains exclusive access to the variable (1) which will hold the
address of the object.

Destroying Atomic Objects: Similarly, when destroying an atomic object, the transaction must have exclusive
access to al! pointers to the object.

class myatomic : public atomic {
atomie int* i;

vold deletsint();
¥

vold myatomic: :deletsint{) {
(*this) .write lock();
dalets 1;
pinning () 1 = O;

}

5.2.3. Implementing Recoverable Types

Constructors and Destructors: Storage for all Avalon types must he alfocated from recoverable memory. Avalon
takes care of storage allocation and deallocation for types with constructors which do not make assignments 1o
this. See the section Assignment to This for special rules concerning the proper use of such assignments.

Any initializations made to the object within a constructor must be within a pinning block or pin and unpin
statements (see the section below on Modifications).

*This restriction should be temporary.
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Contents: Avalon types may be constructed from only the following types:
1. In-line basetypes such as int, char, bool, etc.,

2. In-line Avalon types,
3. Pointers to Avalon types.
4. In-line arrays and structs of the preceding types.

All fields must be either private or protected.

Modifications: All modifications must be (dynamically) within a pinning block or a pinfunpin pair. There
must be a matching unpin called for each pin and unpin may not be called without a prior call to a matching
Pin.

Coercions: Care should be taken against providing the user with a pointer directly into recoverable memory. All
changes to a recoverable object should occur within only the object’s member functions. For example, an
atomic string may have an operator char* function. This function should mallec volatile memory to
hold the string rather than return a pointer to the array in recoverable memory. Otherwise, the user could modify it
outside a pinning block with undefined results. Ideally, C++ would let you define an operator const
chaz*, but it does not.

Overriding Member Functions: If the type overrides the default pin and unpin operations, the new
implementations must ensure that, if pinning, or pin and unpin are properly called, all changes will be made
within calls to recoverable: :pinand recoverable: :unpin.

Assignment to This (fong section): C++ allows the programmer to manage the allocation of objects through special
code in its constructors, particularly assignments to the variable this. Using assignments to this, the
programmer can, for example, implement variable-sized objects, and objects which are allocated from a programmer
maintained memory free siore. When using an assignment to this, however, care must be taken not to interfere
with Avalon’s managing of the recoverable heap.

In what follows, we will describe the requirements for
¢ A simple constructor which explicitly allocates its memory,

* Variable-sized objects, and

*» Objects which may be either allocated by the constructor or pre-allocated (such as when the object is an
in-line part of a struct). ’

A simple constructor or destructor could lock like this:

mytype: :mytype() {
int mysize = sizeof (mytype):;
this = (mytype*) REC_MALLOC (mysize):

pinning() {
// Initiallze the fiaelds of your typa.
}
}

mytype: :~mytypa{} {
pinning() {
// Cleanup the fislds of your type.
}

REC_FREE (thias};
this = 0;
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In the constructor:
¢ All execution paths must make an assignment to this.
e To allocate memory for the object you must use REC_MALLOC rather thant new or malloc. If you
have reason 10 allocate another recoverable object, you ‘may (and should) use new. For example:
this = (mytype*) new atcomic_int;

* You must compute the size correctly (use sizeof (your_type) 5o you include any space needed by
the type’s ancestors.)

+ No member functions (e.g. pin and unpin) may be called before the assignment to this.

In the destructor:
¢ REC_FREE (rather than deletea or £ree) must be used to deallocate the memory.

+ After deallocation, this must be assigned the value O so that the ancestor’s destructors will not be
called.

» No member functions may be called after the deallocation of this.

The most common use of an assignment to this is to implement variable-sized objects_4. However, any
recoverable type for which sizeof (yourtype) may retumn an incorrect value must either call the functions pin
and unpin with the correct size rather than use the pinning statement, or override these functions so that they
use the correct size, allowing pinning to work properly (as shown here).

vold mytype::pin{int ignore_size) {
int size = (*this).object size;
recoverable: :pin(size);

}

void mytype: :unpin{int ignore_size) {
int size = (*this).object_size;
recoverable: :unpin(size);

}
These functions ignore the incorrect size which the pinning statement uses when it calls pin and unpin and
instead, uses the real size of the object. This particular example assumes that the constructor stores the allocated
size in the field object_size.

It is important to remember that, with C++, many uses of a type force the allocation of the object’s memory prior to
calling its constructor. These uses include: (1) construction of a derived type, (2) allocation of an array of objects of
this type, and (3) in-line use of the type in a struct. If a type which bandles its own allocation {assignment to this)
is to be used in these situations, the constructor must be written such that:

1. Memory is allocated only if this is 0 upon entering.

2.1f this is not 0, an assignment to this is still executed. The statement this = this; will
suffice.

3. If memory is allocated, the function (*this) .on_heap is called after the assignment to this.
This tells the destructor that the memory was allocated and needs to be deallocated.
For example:
mytype: :mytypea{) {
if (this == 0) {
int mysize = sizeof (mytype) + <whatevercise>;
this = (mytype*) REC MALLOC (mysize);
(*this) .on_heap(};

“The last field of a struct is declared as an array of size 1. When you construct an instance of the type, however, you REC_MALLOC as
much memory as needed for an array of the desired length (plus the initial fixed size portion of the struct and its ancestors), See [14] for
examples.
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}
eslse this = this;

Pinning() {
// Initislize the fialds of your type.

}
}

The destructor would then deallocate the memory only if the constructor allocated it:

mytype: :mytype () {
pinning() ¢
// Clemnup the fields of your typs.

}

ir ((*thi-).got_hoap_bit() == TRUE) {
REC_FREE ({thia);
this = 0;
}
}

The functions on_heap and get_heap bit are protected member functions exported by class recoverable,
(Since these are used only in the rare instances in which programmiers wish to pre-allocate objects, they are not
described with the other exported functions.) The function on_heap simply sets a bit in the object which is
checked by the function get_heap_bit (returning TRUE if it was set and FALSE otherwise).

5.2.4. Implementing an Atomic Type

Types derived from class atemic should follow the requirements outlined above. In addition, if the type is
expected to exhibit atomic behavior (serializability, transaction-consistency, and persistence), the guidelines in this
section should be followed.

Contents: Pointer fields in the type should point only to types which are atomic (derived from atomic or
subatomic), or recoverable provided that concurrent access to a recoverable object is protected by an appropriate
lock on the containing atomic object.

Modifications:

1. read_lock on the object should be called by a member function prior to accessing any data in the
object. write_lock should be called prior to any modification to the data. Pointers to non-atomic
(recoverable) objects should be treated the same as in-line non-atomic objects in that appropriate locks
should be obtained on the enclosing atomic object prior to invoking member functions on the object.
No locking is required when accessing atomic components (in-line or pointers) since the objects’
member functions should acquire the necessary locks.

2.1If it is intended that a non-in-line subcomponent of an object be protected through locks on the
containing object, the subcomponent should be derived from recoverable rather than atomic
(i.e., the object is persistent but relies on the caller for concurrency control),

Coercions: An atomic object should not be coerced to a non-atomic npe.

Overriding Member Functions: If the type overrides the default read lock and write lock operations, the
‘new implementations must ensure that, if the type user propetly calls read_lock or write lock. the
appropriate calls to atomic: : read_lock and atomic: :write_lock are made.
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5.3. Constructing an Avalon Program

5.3.1. Server Programs
A server program should be broken into files as follows:

<server>.h

<server>.av

declares the server and includes any type definitions required by the server.
provides the implementation for each of the server’s member functions and any support

functions not declared or included in <server>.h.

<other>.{av,0}
member functions.

provides the implementation for any functions deciared in <setver>.h other than the server’s

A server program should be linked with the following libraries in order:

~lmisc -lava -lgen -lcamlib -lswitches -ltermcap \

-lthreads -lcam -lmach -lm -lnode

5.3.2. Client Programs

A client program includes the <server>.h file for each server it uses. Avalon ensures that implementations for the

server’'s member functions are included.

It is the responsibility of the programmer, however, to include the

implementations of any other functions declared in <server>.h and any files it includes. In general, a client program
must be linked with all of the .o files for each server it uses except for <server>.0. The libraries needed by (he

server should also be linked with the client program.

5.3.3. Example Templates

---- myserver.h -—
#include <avaloen.h>
#include <mytype.h>

server myserver {
mytype mt;
public:

myserver (...);

ma_opl {...);

me_op2 (...);

¥i

=== MYSErVEr.av -
#includa <myserver.h>

int private_utility ()} {...}
(...}

myserver: myserver {(...)
myserver::ms_cpl (...) (..
myserver: :ms_op2 (...} {...}
- mytype.av -

finclude <mytypas.h>

mytype: :mytyps(...) {...)

mytypa::mt opl(...) {...}

mytype::mt_op2(...} {...}

neee server.make ——

acc -0 MYySArver myserver.o mytyps.o \
-lmiac -lava -lgen ~-lcamlib \
-lswitchas -ltermcap -lthreada \
~lcam -lmach -lm ~lnode

// always first file included.
// dafines types used by the sarver.

---- myclient.av ----
#include <myserver.h>

e

. private utility(); ...}

-+ client.make ----

acc -o myclient myclient.o mytype.o \
-lmisc -lava -lgen -lcamlib \
-lswitches -ltermcap -lthreads )\
-lcam ~-lmach -lm -lnoda

The file myserver.av provides only the implementations of the server’'s member functions and the
implementation of private_utility which is not defined in myserver . h and thus, will not be needed by the
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client. The object file generated for myserver . av is linked in with the server program but not the client program.

The file mytype.av provides implementations of the other functions defined in myserver.h through the
#include <mytype.h> Since the client includes this file, it also needs to be linked with mytype . o.

Finally, both the client and the server need to be linked with the standard set of libraries needed by Avalon. For
complete examples, look at the servers, clients and makefiles in /afs/cs/project/avalon/src/avalon/bin/validate. See
also the acc man pages (Appendix II) for approptiate flags with which to call acc.

5.4. For Experts Only

5.4.1. Undo and Destructors

When a transaction is aborted using an undo leave (return, break, continue) statement, control may
be transferred directly to the textual end of the transaction using the C longjmp mechanism. This transfer of
control will exit one or more blocks in which automatic variables may have been initialized by a constructor. These
variables may be instances of a class that has a destructor, and, if so, this destructor would normally be called on
these variables before the block was exited. When a transaction is aborted, however, these variables will not have
destructors called for them. (Note that this is a problem shared with any use of the set jmp/ longjmp mechanism
in C++.) Normally, the constructor and destructor of a clasg only modify the object they are invoked on, In this
case, this may not be a serious problem; the only result of not calling the destructor is that space on the free store is
gradually lost. However, some classes are written so that the constructor and destructor modify some external data
structures, and rely on the assumption that both the constructor and the destructor will be called for each object to
maintain the integrity of those data structures. These kinds of classes would interact badly with undo statements
that exit multiple blocks, and should probably be avoided. Future versions of Avalon/C+ may attempt to handle
this interaction more gracefully.

5.4.2. User-Defined Transmission Functions

Before any class instance can be actually transmitted to another process, it must be translated into a special, built-in
class called _ava message. The .ava_message abstract representation is that of a queue. Objects are removed
from the queue in the same order in which they were inserted.

Class Definition

class _ava_message {
_ava_message();
-ava_message& operator<<(_ava_message& msg);
—ava_message& operator<<(_ava_msgfield& msg);
-ava_message& operator>>(_ava_message& ms )

L]

Operations

—ava_message()
ensures Creates and retums a new instance of an _ava_message.

—ava_message& operator<<(_ava_message& msg)

-ava_message& operatoxr<<(_ava_msgfield& msg)
ensures Appends msg to the end of an _ava_message.

—ava_message& operator>>(_ava_message& msg)
ensures Extracts built-in base types from the message instance. Higher-order types are extracted
using the class’s _recompose function (see below} with the message instance as an argument.
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To add user-defined transmission to a user-defined class, you must define two class member functions in order to be
able to transmit a class instance:

operator _ava_message()
ensures Coerces a class instance into an _ava_message, It will typically need to call the transmission
functions on other types. For each class, _ava_message instances are constructed by calling
the class’s coercion operator. For each built-in fundamental type (int, chars, floats), a special
class, _ava_msgfield, with overloaded constructors, is provided. Since enumerations are
represented in C++ as integer constants, they should be treated as if they were of type int for
the purpose of transmission.

void _recompose(_ava_message& msg)
modifies *this (Obscure, but true.)
ensures Constructs a new instance of the class and overwrites the old one with the new.

Figure 5-1 gives a sample of transmission functions for a simple class.

5.4.3. Processes
Support for processes has not yet been implemented and will not be soon.

A coarm of a costart statement can also be a regular process with no trantsaction semantics:

coarm: ...
process statement

We make no guarantees as to giving any meaningful semantics to processes that run concurrently with transaction
coarms, or processes that run within transactions.

5.4.4. Pragmas
Support for pragmas has not yet been implemented and will not be saon.
" pragma:
@pragma@ pragma-list
pragma-list:
prag
prag , pragma-list
prag:
identifier
identifer = value

A pragma is used to convey information to the compiler. Use of pragmas is an appropriate escape mechanism to
Camelot features.

For example, Camelot provides two different kinds of logging. new-valuc/old-value and new-value only and
mechanisms to support various commit protocols. Different combinations are useful depending on the expected
length of a transaction. Thus, we allow the user to specify via a pragma whether a newly started transaction will e
“‘short’’ or ‘‘long.”’ The standard default is ‘‘medium’’ and the following combinations are defined for each value:
Short new-value only logging

blocking protocol, e.g., two-phase commit
Mediom new-value/old-value logging

blocking protocol, €.8., two-phase commit

Long new-value/old-value logging
non-blocking commit protocol
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struct address {

int numbar;
char streaet [40];
char appt[8]);
char eity[20];
char stata[3);
int zipcoda;

}:

class personnel {

char name [40];
int #5_numbex;
float salary;

snum {WEEKLY, EOURLY,
address home_address;

MONTHLY} payroll type;

perscnnel (1straam); // Foxr data entry
parsonnel {(char* New _name, int new_aa, float naw sal, addreas naw_add) ;
operater ava massage();
void _reacomposa {(_ava messages);
| H

// Definitions of constructors omitted

personnel:: _ava message() {
_AVa_massage msg = naw _ava massage();
int 1;

// this->nams
for (1 = 0; 1 < 40; 1++4) mag << _ava magfileld(namefi]};

*meg << ava msgfield(ss_number);

*msg << _ava msgfield (salary);

*mag << _ava megfield({int) payrell type);
*mag << _Ava message (home_address);

/7 this->as_number

// thia->salary

// thia->payroll type
'y this->hom_addt-a-

return (*msg);
}

void personpel _recomposa (_ava massage&é msg) |

int 1;
for {1 = 0; 1 < 40; i+4) mag >> name(1i); // this->name
mag >> as_number; 7 this->28_number

msg >> salary; o4
{ int temp; meg >> temp; payrcll type = temp; } //

this->salary
this =>payroll type

home_address._recomposs (msg) ; // this->home _addresa
}
Figure 5-1: User-defined Transmission Functions
Default The default value is ‘“Mediym. "’

Notice that the combination of new-value only Togging and a non-blocking commit protocol is not permitted

Other pragma values will be determined to incorporate other meaningful combinations. eg.
“‘highly optimized’" protocol for a local transaction.

Restrictions

In general, pragmas are only allowed at any place where the syntax rules allow a declaration. Currently, pragmas
are treated exactly as comments, and thus, can appear anywhere a comment can appear. No interpretation of pragma
values is currently done.

to indicae vang o
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Appendix I
srammar
The language this grammar defines is a strict superset of that presented in Section 14 of the Reference Manual
[14].

I.1. Expressions

expression:
term
expression binary-operator expression
expression 7 expression : expression
expression-list

expression-list:
expression
expression-list , expression

term:
primarv-expression
unary-operator term
term ++
term --
sizeof expression
sizeof ( type-name )
( type-name ) expression
simple-type-name ( expression-list )
new fype-name initializeropr
new ( fype-name )
delete expression
delete [ expression } expression

primary-expression:
id
: : identifier
constant
string
this
( expression )
primary-expression| expression ]
primary-expression  expression-list
primary-expression . id
primary-expression -> id

opt )

id:

identifier

operator-function-name

typedef-name :: identifier

typedef-name :: operator-function-name
operator:

inary-operator
binary-operator
special-operator
free-store-gperaror
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Binary operators have precedence decreasing as indicated:

binarv-aperator: one of
* /9
+ . -
<< >>
< >

=

R

&&
il
dssignment-operator

assignment-operator. one of

= = -= = /: %z Am &: != o= L=
unary-operator: one of
*& -~ -

special-operator: one of
0l

Jree-store-operator: one of
new delete

type-name:
decl-specifiers abstraci-declarator

abstract-declarator:
empty
* abstract-declarator
abstract-declarator { argument-declaration-list )

abstract-declarator | constant-expression,, - ]

simple-type-name:
typedef-name
char
short
int
long
unsigned
float
double
void

typedef-name:
idertifier

I.2. Declarations

declaration:
decl-specifiers op
name-deciaration

asm-declaration

pragma
name-declaration:

aggr identifier ;

enum identifier ;
aggr:

class

struct

( declarator-list, .



union
server
variant

asm-declaration:
asm( string };

pragma:
@pragma@ pragma-list

pragma-list:
prag
prag , pragma-list

prag:
identifier
identifer = value

decl-specifiers:
decl-specifier decl-specifiers opt

deci-specifier:
sc-specifier
type-specifier
fct-specifier
friend
typedef
server-specifier
variant-specifier

type-specifier:
simple-type-name
class-specifier
enum-specifier
elaborated-type-specifier
const

sc-specifier:
auto
extern
register
static
stable

Jet-specifier:
inline
overload
virtual

server-specifier:
class-specifier

variant-specifier:
class-specifier

elaborated-type-specifier:
key typedef-name
key identifier

key:
class
struct
union
anum
server
variant
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declarator-list.
init-declarator
init-declarator , declarator-list

init-declarator:

declarator imnahzt-:'ropr

declarator:
dname
( declarator)
* const _, declarator
& const declara:or
declarator { argument-decigration-list )

declarator [ constant-expression opt ]

dname:
simple-dname
typedef-name :: simple-dname

simple-dname:
identifier
typedef-name
~ typedef-name
operator-function-name
conversion-function-name

operator-function-name:
operator operator

comversion-function-name:
opezator type

argumeni-declaration-list:

a'rg-de.':!'arc.\'a‘r'on-h'stoplr - opt

arg-declaration-list:
arg-declaration-list . argument-declaration
argument-declaration

argument-declaration:
decl-specifiers declarator
decl-specifiers declarator = expression
decl-specifiers abstract-declarator
decl-specifiers abstract-declarator = expression

class-specifier:
class-head | member-list

opt }
class-head.
aggr tdenttﬁer
aggr identifier : pub.‘l.:.c opt typedef-name

member-list:
member-declaration n'a.-?mt';er-h‘stw,r

member-declaration:
decl-specifiers opt member-declarator initializer
function-definition ;
decl-specifiers opt fet-declarator base-initializer opt
private:
proteacted:
public:

member-declarator:
declarator
identifier opt *

opt ?

: constant- express:on



initializer:

= expression

= { initializer-list |

= { initializer-list ,

( expression-list )
initializer-list:

expression

initializer-list , initializer-list

{ ininializer-tist }
enum-specifier:

enum identifier, pr { enum-list

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

I.3. Statements

compound-statement:
| statement-list opt }

Statement-list;
Statement
statement statement-list

Statement:
declaration
compound-statement
expression opt 5
if (expression) statement

if (expression ) statement else statement
while ( expression ) statement

do statement while ( expression ) ;

for ( statement expression opt + expression opt ) statement
switch ( expression ) statement

case constgnt-expression ; statement
default : statement

undo opt break;

““d"opg continue;

goto identifier ;

identifier : statement

start trans-body

costart { coarms )

leave;

undo (expression) opt leave :

undoopt return expression opt

Pinning (e.rpressionopt) statement

when (expression) statement
whenswitch (expression) statement
pragma

trans-body:

trans-tag statement except-clause opt

trans-tag:

toplevel

57
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transaction

coamms:

coarm C('.'Hill'll'ISc'pt

coarm:
trans-body
process startement

except-clause:
exceapt (identifier) opt Statement

1.4. External Definitions

program:
external-definition
external-definition program

external-definition:
SJunction-definition
declaration

Junction-definition:
decl-specifiers opr fer-declarator base-init:’ah'zerop, Sfet-body

Set-declarator:
declarator ( argument-declaration-list )

Jet-body:

compound-statement

base-initializer:
> member-initializer-list

member-initializer-list:
member-initializer
member-initializer , member-initializer-list

member-initializer:

idenn'ﬁeropr ( argument-!istop, )

L.5. Preprocessor

#define identifier token-string
ddefine identifier( identifier , ... , identifier ) token-string
#else

#endif

#i € expression

#ifdef identifier

#ifndef identifier
#include "filename”
#include <filename>

#line constant "filename”
#undef idenrifier
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ACC(1) UNIX Programmer’s Manual ACC(1)
NAME
acc — an Avalon/C++ compiler
SYNOPSIS
acc [ option ] ... file ...
DESCRIPTION

acc is an Avalon/C++ compiler. File names that end with

., .C+, .h, .h+, av
are taken to be Avalon/C++ source files. They are compiled, producing .o files, as in cc (1).

S are taken to be as (1) source files.
4 are ignored.

File names that end with anything eise are assumed to be object files or libraries and are handed
directly to cc.

ace uses cpp © pre-process the input, avfront to process the Avalon extensions to C++, cpp o pre-
process the avfront output, /usr/misc/.c++flib/cfront o process the C++ extensions to C, cc to compile
the resulting C code, and /usr/misc/.c++/lib/munch 1o find global variables with constructors and des-
tructors. acc defines the macros __STDC__, ¢_plusplus, and avalon when running cpp the first time,
__STDC__ and c_plusplus when rnning cpp the second time. C++ include files are normally taken
from fusrfmisc/.c++finclude.

There are several options which tell acc which programs 10 run and where to put the output. These
options are all prefixed by +a .

The following options tell acc to run a partial Avalon compile:

+aE Only cpp is run. The result is printed on stdous.

+aF Only cpp and avfront are run. The result is printed on stdowur.

+aG  Only cpp. avfront, and cpp are un. The result is printed on stdout.

+aH  Only cpp, avfront, cpp, and cfront are run. The result is printed on stdout,

The following options tell ace to mun all or pan of a C++ compile:

+al Only cpp is run. The result is printed on stdow. The avalon macro is not defined. This option
is equivalent o +aE +aK.

+aJ Only cpp and ¢front are min. The result is printed on stdout. The avalon macro is not defined.
This option is equivalent to +aH +aK.

+aK  All passes except avfront and the second pass of cpp are run. The avalon macro is not
defined.

The following options tell acc to generate a list of makefile dependencies:

+aM  ¢pp is run to generate a list of makefile dependencies. The macros __STDC__, ¢_plusplus,
and avalon are defined. The result is printed on sidout.

+aN cpp is run to generate a list of makefile dependencies. The macros ___ STDC__ and c_plusplus
are defined. The avalon macro is not defined. The result is printed on stdour. This option is
equivalent to +aK +aM.,

4th Camegie-Mellon Update 7/28/87 1
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ACC(1) UNIX Programmer’s Manual ACC(1)

FILES

The following options tell acc various other things about how to do the compile: ’

+a.suffix
The +aE, +aF, +aG, +aH, +al, +al, +aK, +aM, +aN and +aP options will send the output

for each file 1o a corresponding file with the suffix suffix, rather than to stdout.

+af Files are used in the preprocessor stage instead of pipes. This may improve performance on
machines that spend most of their time paging.

+ah Lines beginning with #line or #number will be removed from the output produced with the
+aE, +aF, +aG, +aH, +al, +aJ, +aK, +aM, +aN and +aP options.

+ai The output of ¢frons for each file is put in a file with the suffix "..c". These files are normally
deleted, but the +ai option keeps them around.

+aP ¢pp and avplain are run. The result is printed on stdowt. avplain is a version of avfront that
parses but does not acmally implement the Avalon extensions. It is useful only for maintainers
of avfront.

+aT  acc will print timing information.
+aV  acc will print all the details about what it is doing.

The following options are passed on in various forms to the programs that acc rns. This is not an

exhaustive list Other options not listed in this man page are assumed to be avfront and cfront options

if they begin with *+’, cc options if they begin with *=’, and files if they begin with anything else.

+d avfront and cfront will generate code that is more suitable for debugging. Inline functions will
not be expanded. .

+S Some run-time statistics for avfront and cfront will be printed on stderr.

+V avfront and cfront will accept old-style C declarations. Include files will be taken from
Jusrfesfinclude rather than fusrimisc/.c++/include

=2Dname=value

~2Dname
Name is defined for the second pass of the C preprocessor. If no value is given, name is
defined to be 1.

=2Uname
The definition of name in the second pass of the C preprocessor is removed.

-Dname=value

=Dname
Name is defined for the first pass of the C preprocessor. If no value is given, name is defined
1o be 1.

_Idir dir is added to the search path for include files. Directories given in -I options are searched
before /jusrimisc/.c++finciude and the directories in the CPATH environment variable. This
option affects both passes of the C preprocessor,

=Uname
The definition of name in the first pass of the C preprocessor is removed.

-w avfront, cfront, and cc wamning messages are not printed.

<some directory in SLPATH>/cpp
The C preprocessor.

avfront The Avalon preprocessor.

4th Carnegie-Mellon Update 7/28/87 2
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ACC(1) UNIX Programmer’s Manual ACC(1)

fusr/misc/.c++/ib/cfront
The C++ preprocessor.

lasr/misc/.c++/lib/munch
Finds global variables with constructors and destructors.,

cc The C compiler.
L. Output from cfront.

__ctdt.c
Output from munch,

SEE ALSO
as (1), ec (1), ld (1), The Avalon Report

BUGS
avfront sometimes prints names twice in its error messages. For exampie, "foo” might be printed as
"foofoo". This behavior has been observed only when avfront was given incorrect code.

The error handling routines in avfrons get confused easily, resulting in unintelligible error messages.
This problem may also cause avfront to crash.

The code generated by cfront seems to be more likely to trigger bugs and overflow tables in the C com-
piler than nomal C code. The code generated by avfron: is more likely to do these things to the C++
compiler than normal C++ code.

4th Camegie-Mellon Update 7/28/87 3
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