
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T R E S T R I C T I O N S :
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Specifying Avalon Objects in Larch

Jeannet te M. Wing

CMU-CS-88-208^

To appear in the Proceedings of TAPSOFT 1989, March 13-17, Barcelona, Spain.

This research was sponsored in part by the Defense Advanced Research Projects Agency (DOD) ARPA Order No
4976 (Amendment 20) , under contract F33615-87-C-1499 monitored by the Avionics Laboratory, Air Force Wright
Aeronautical Laboratories, Wright-Patterson AFB; and in part by the National Science Foundation under grant
CCR -o620027.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agencv or
the U.S. Government. 3

Specifying Avalon Objects in Larch

Jeannette M. Wing1

Invited Paper

Depar tment of Compute r Science
Carnegie Mel lon Universi ty

Pit tsburgh, P A 15213

Abst rac t

This paper gives a formal specification of three base Avalon/C++ classes: recoverable, atomic, and
subatomic. Programmers derive from class recoverable to define persistent objects, and from either class
atomic or class subatomic to define atomic objects. The specifications, written in Larch, provide the
means for showing that classes derived from the base classes implement objects that are persistent or
atomic, and thus exemplify the applicability of an existing specification method to specifying "non­
functional" properties. Writing these formal specifications for Avalon/C-H-'s built-in classes has helped
clarify places in the programming language where features interact, make explicit unstated assumptions,
and make precise complex properties of objects.

1 . Introduction
Formal specification languages have matured to the point where industry is receptive to using them and
researchers are bui lding tools to support their use . People use these languages for specifying the input-
output behavior, i.e., functionality, of programs, but have largely ignored specifying a p rogram ' s " n o n ­
func t iona l" propert ies . For example , the functionality of a program that sorts an array of integers might
be informally specified as follows: given an input array A of integers, an array B of integers is returned
such that B ' s integers are the same as A ' s , and B ' s are arranged in ascending order. Nothing is said about
the p rog ram ' s performance l ike whether the algori thm for sorting should be O(n) or 0(n2). Performance
is one example of a non-functional property. Other non-functional propert ies are degree of concurrency,
reliability, and security.

In this paper , we demonst ra te the applicability of formal specifications to the non-functional properties,
persistence and atomicity. Atomici ty , which subsumes persistence, requires that an object ' s state be
correct in the presence of both concurrency and hardware failures. T h e correct behavior of these objects
is fundamental to the correctness of the programs that create, access , and modify them. Section 2
describes in m o r e detail the context in which atomic objects are used: fault-tolerant distributed systems.
Sections 3, 4, and 5 present a concrete p rogramming language interface to such objects and the formal
specifications of this interface.

Sect ion 6 summar izes the lessons learned from writ ing these specifications out formally. T h e results are
extremely gratifying: they provide evidence that an existing specification method is suitable for
describing a n e w class of objects; they validate the correctness of the design and implementation of a key
part of an ongoing software development project; and not surprisingly, they demonstra te that the process
of writ ing formal specifications greatly clarifies o n e s understanding of complex behavior. Finally,

'This research was sponsored in part by the Defense Advanced Research Projects Agency (DOD) ARPA Order No 4Q7*

University Libraries
Camegif Mellon University

Pittsburgh, PgRpsylvar.ia 15213

1

Section 7 concludes with remarks about current and future work.

2. Background

2 .1 . Abstract Context: Transaction Model of Computation
A distributed system runs on a set of nodes that communica te over a network. Since nodes m a y crash and
communica t ions m a y fail, such a system mus t tolerate faults; process ing must cont inue despite failures.
For example , an airline reservat ions system must cont inue servicing travel agents and their customers
even if an air l ine 's database is temporari ly inaccessible; an automatic teller mach ine mus t cont inue
dispensing cash even if the l ink be tween the A T M and the cus tomer ' s bank account is down.

A widely-accepted technique for preserving data consis tency and providing data availability in the
presence of bo th concurrency and failures is to organize computa t ions as sequential processes called
transactions. A transaction is a sequence of operat ions performed on data objects in the system. For
example , a transaction that transfers $25 from a savings account , 5 , to a checking account , C, might be
performed as the fol lowing sequence of three operat ions on S and C (both initially containing $100) :

{S = $100 A C = $100}

Read(S)
Debi t (5 , $25)

Credi t (C, $25)

{S = $75 A C = $125}

In contrast to s tandard sequential processes , transactions must be atomic, that is serializable, transaction-
consistent , and pers i s ten t . 2 Serializability means that the effects of concurrent transactions must be the
same as if the transactions executed in some serial order. In the above example , if two transactions, T l
and T 2 , were s imultaneously transferring $25 from S to C, the net effect to the accounts should be that S
= $50 and C = $150 (that is, as if T l occurred before T 2 or vice versa) . Transaction-consistency means
that a transaction either succeeds completely and commits, or aborts and has no effect. For example , if
the transfer transaction aborts after the Debit but before the Credit , the savings account should be reset to
$ 1 0 0 (its balance before the transfer began) . Persistence means that the effects of commit ted transactions
survive failures. If the above transfer transaction commi t s , and a later transaction that modifies S or C
aborts , it should be possible to " ro l l b a c k " the state of the system to the previous commit ted state where
S = $75 and C = $125 .

It can be shown [17] that the atomicity of the entire system is guaranteeed if each object accessed within
transactions is atomic. That is, each object is an instance of an abstract data type with the additional
requirement that it must ensure the serializability, transaction-consistency, and persistence of all the
transactions that use its operat ions. For example , as long as the bank account 's Read, Debit, and Credit
operat ions are implemented " c o r r e c t l y , " then any set of transactions that access the account will be
serializable, transaction-consistent, and persistent. The advantage of construct ing a system by focusing

2

on individual objects instead of o n a set of concurrent transactions is modular i ty : one need only ensure
that each object is a tomic to ensure the more global atomicity property of the entire system.

2.2. Concrete Context: Avalon
T h e Ava lon Project [5] , conducted at Carnegie Mel lon Universi ty , provides a concrete context for this
work. W e have implemented language extensions to C + + [16] to support applicat ion p rogramming of
fault-tolerant distr ibuted systems. Ava lon relies on the Camelot Sys tem [15] , also being developed at
C M U , to handle operat ing-systems level details of transaction management , inter-node communica t ion ,
commi t protocols , and automatic crash recovery.

A program in Ava lon consists of a set of servers, each of which encapsulates a set of objects and exports
a set of operations and a set of constructors. A server resides at a single physical node , but each node
m a y be h o m e to mult iple servers. A n application program m a y explicitly create a server at a specified
node by call ing one of its constructors . Rather than sharing data directly, servers communica te by calling
one another ' s operat ions. A n operat ion call is a remote procedure call wi th cal l -by-value t ransmission of
arguments and results. Avalon/C++ includes a variety of primitives (not discussed here) for creating
transactions in sequence or in parallel, and for aborting and commit t ing transactions. Each transaction is
identified wi th a single process (thread of control) .

Transact ions in Ava lon /C+f m a y be nested. A subtransact ion 's commi t is dependent on that of its parent;
abort ing a parent will cause a commi t t ed ch i ld ' s effects to be rolled back. A t ransact ion 's effects become
permanent only when it commi ts at the top level. Each transaction has a unique parent, a (possibly
empty) set of siblings, and sets of ancestors and descendants . A transaction is considered its o w n ancestor
or descendant .

Ava lon /C+f provides transaction semantics by requiring that all objects shared by transactions be atomic.
T h e Ava lon /C+f base hierarchy consists of three classes (Figure 2-1) , each of which provides primitives
for implementors of der ived classes to ensure the "non- func t iona l " propert ies of objects of the derived
classes. P rogrammers der ive from either class atomic or class subatomic to define their o w n atomic
objects.

class recoverable

class atomic class subatomic

F i g u r e 2 - 1 : Inheritance Hierarchy of the Three Avalon/C+f Base Classes

In practice, somet imes it may be too expensive to guarantee atomicity at all levels of a system; instead it
is often useful to implement atomic objects from non-atomic objects, those which guarantee only
persistence. Programmers need only derive from class recoverable to define persistent objects.

In Ava lon /C++ when a transaction commi ts , the run-t ime system assigns it a t imes tamp generated by a
logical c lock [12]. Atomic objects are expected to ensure that all transactions are serializable in the order
of their commi t t imestamps, a property called hybrid atomicity [17] . This property is automatically
ensured by two-phase locking protocols [6], used by objects der ived from class atomic. However ,

3

addit ional concurrency can be achieved by taking the t imes tamp ordering explicitly into account , used by
objects derived from class subatomic. The key difference be tween class atomic and class subatomic is
that class subatomic gives p rogrammers a finer-grained control over synchronizat ion and crash recovery.

T h e ma in purpose of this paper is to give a formal specification of the interfaces of the three base
Ava lon /C++ classes , presented in Sections 3 , 4 , and 5. By specifying these interfaces, we provide the
means for showing that c lasses der ived from the base classes define objects that a re persistent or a tomic,
i.e., the "non - func t i ona l " propert ies of interest. Appendix I contains detai led specifications of the status
of transactions and the transaction tree; w e extract relevant pieces from them as needed.

2.3. Specification Language: Larch
T h e formal specification language used in this paper is Larch [9] , though others such as V D M [3] , Z [1] ,
or OBJ [8] , might also be suitable. Larch was designed to specify the functionality of sequential
p rograms, in part icular propert ies of abstract data types. A Larch specification has two parts: (1) A trait,
written in an algebraic specification language, describes an object ' s intrinsic properties that are
independent of the mode l of computa t ion (e.g., e lements in sets are unordered and not duplicated); (2) An
interface, writ ten in a predicat ive language us ing p r e - and post -condi t ions , describes the effects on the
objec t ' s state as operat ions are executed (e.g., its change in value or allocation of n e w storage). The
advantage gained in using Larch is this explicit separation of concerns be tween state-independent and
state-dependent behavior.

A s appl ied to the transaction mode l of computat ion, we m a k e three extensions to Larch interfaces for
operat ions, as similarly m a d e in [2].

• A w h e n clause states the condi t ion on the state of the system that must hold before the
operat ion proceeds . Specifying this condi t ion is often necessary since the state of the system
m a y change between the point of invocation (when the pre-condit ion must hold) and the
actual point of execution of the operat ion (when the when-condi t ion mus t hold) .

• W e assume that each operat ion is operation-consistent, that is, an operation completes
entirely or not at a l l . 3 N o intermediate states of an operation-consistent operat ion are
observable be tween the state in which the when-condi t ion holds and the state in which the
post-condit ion holds. For an operat ion op that is a sequence of other operation-consistent
operat ions op{ that m a y be interleaved with operat ions of other transactions and have
observable effects, we specify op's effects as a s e q u e n c e of named o p e r a t i o n s opfs, each of
which is specified as any operation-consistent operation. T h e only example of this k ind of
operat ion in this paper is the pause operat ion on subatomic objects found in Section 5.

• Self is used to denote the transaction invoking the operation.

Further details of Larch are provided as necessary. See [10] for a more comple te discussion.

is a sequence of operations, °P«*«*<oa££^ a . M f e K n t tem>- N<*« * . t since a transaction
of aborted transactions to be Xserved, while t r J ^ ^ ^ o ^ Z l * ^ *• ^ e f f e c t s

4

3. Class Recoverable
Conceptual ly , (here are two kinds of storage for objects: volatile s torage whose contents are lost upon
crashes , and stable s torage whose contents survive crashes with h igh probabili ty. (Stable storage may be
implemented using redundant hardware [13] or replication [4].) Recoverable objects are allocated in
volatile storage, but their values are " l o g g e d " to stable storage so that recovery from crashes can be
performed. If every recoverable object is writ ten to stable storage after modifying operat ions are
performed on it in volatile storage, then its state may be recovered after a crash. Restor ing an object ' s
state s imply requires " r ep l ay ing the l o g " : redoing the effects of commit ted transactions and undoing the
effects of aborted ones .

3 . 1 . Avalon Class Definition
T h e p rog rammer ' s interface to a recoverable object is through the Ava lon /C++ class header shown in
Figure 3 -1 .

class recoverable {
public:
void pin(); // Pins object in volatile storage.
void unpin(); // Unpins and logs object to stable storage.

}

F i g u r e 3 - 1 : Avalon Class Recoverable

Informally, the pin operation causes the pages in volati le storage containing the object to be pinned; unpin
causes the modifications to the object to be written to stable storage, and unpins its pages . A recoverable
object mus t be p inned before it is modified, and unpinned afterwards. For example if x is a recoverable
object, a typical use of the pin and unpin operations within a transaction would be :

start { // begin transaction

x.pin();
// modify x here

x.unpin();

}; // end transaction

After a crash, a recoverable object is restored to a previous state in which it was not pinned. Transact ions
c a n m a k e nested pin cal ls ; if so, then the changes m a d e within inner pin/unpin pairs do not become
permanent , i.e., writ ten to stable storage, until the outermost unpin is executed. Classes derived from
recoverable inherit pin and unpin operat ions, which can be used to ensure persistence of objects of the
derived class.

3 . 2 . Larch Specification
The specification shown in Figure 3-2 captures the following three properties of recoverable objects:

1. Only one transaction can pin an object at once.

2 . T h e same transaction can pin and unpin the same object mult iple t imes.

3 . Only at the last unpin does the object ' s value get writ ten to stable s torage.

5

class recoverable based on R from RecObj

recoverableO returns (recoverable x)
post x \count = 0 A n e w x

pin(recoverable x) signals (already_claimed)
modifies x
post x' = pn(x, self) A

x.pinner * self => signal already_claimed

unpin(recoverable x)
pre pinned(x) A x.pinner = self
modifies x
post x' = un(x, self)

RecObj: trait
includes

Triple (R for T, Memory for T l , Tid for T2, Card for T3,
value for .first, pinner for .second, count for .third)

Pair (Memory for T, M for T l , M for T2, volatile for .first, stable for .second)
introduces

pn: R, Tid —» R
un: R, Tid - » R
pinned: R —> Bool

asserts for all (m: Memory, m l , m2: M, c: Card, t l , t2: Tid)
pn(<m, t l , c>, t2) =

if c > 0 / / i s already pinned?
then if t l = t 2

then <m, t l , c+ l>
else <m, t l , c>

else <m, t 2 , 1 >
u n (« m l , m2>, t l , c>, t2) =

if c = 1
then « m l , m l > , t l , 0>
else « m l , m2>, t l , c- l>

pinned(r) = r.count > 0

// by same transaction
// increment count
// otherwise, leave unchanged
// initialize it

/ / i f last unpin
// write to stable storage
// or just decrement count

F i g u r e 3 -2 : Larch Specification of Class Recoverable

W e now walk through the specification in detail. The top part of the specification contains Larch
interface specifications for a constructor given by the class name, recoverable, and the two operations, pin
and unpin.4 T h e bot tom part contains the Larch trait RecObj, which gives meaning to the assertion
language of the interface specifications.

W e see in RecObj that a recoverable object is " m o d e l e d " as its value in memory , a single transaction

6

identifier, and a p in count:

Triple (R for T, Memory for T l , Tid for T2, Card for T3,
value for .first, pinner for .second, count for .third)

Here we include the trait Triple, defined in Appendix II, and rename (through the for c lauses) the sort
and functions identifiers it introduces. For example , /?, the sort identifier introduced for recoverable
objects , r enames the sort identifier T introduced in Triple. M e m o r y itself is mode led as a pair of values ,
one each for volati le and stable storage:

Pair (Memory for T, M for T l , M for T2, volatile for .first, stable for .second)

T h e const ructor ' s post-condi t ion initializes the p in count to b e zero and ensures that n e w storage is
al located for the returned object. A n omit ted pre-condit ion is interpreted as equivalent to pre true. Thus ,
the constructor can be called in any state.

Pin's post-condit ion specifies h o w the state of a recoverable object changes : x s tands for the object ' s
initial state (upon invocation) and xf s tands for its final state (upon return). Pin migh t terminate with an
error condi t ion s igna led to the invoker to indicate that the object to be p inned is already pinned by some
other transaction. Pin's post-condit ion makes use of the auxiliary function, pn, defined in the trait
RecObj:

pn(<m, t l , c>, t2) =
if c > 0
then if t l = t 2

then<m, t l , c+l>
else <m, t l , c>

else <m, t2, i>

It takes a recoverable object ' s state (of sort R) and a transaction identifier (of sort Tid) and returns a (new)
state for a recoverable object. If the count (c) is non-zero , then the object mus t be pinned. If the object is
p inned by a transaction (tl) that is the same as the transaction (t2) a t tempting to pin the already pinned
object, then the count is incremented; otherwise, the object is left unchanged. If the object is not already
pinned, then its state is initialized with the pinning t ransact ion 's identifier and a count of 1.

Unpin's pre-condit ion requires that an object cannot be unpinned unless it is already pinned; moreover it
must be pinned by the cal l ing transaction. Un is defined as follows:

u n (« m l , m2>, t l , c>, t2) =
i f c = 1
then « m l , m l > , t l , 0>
else « m l , m2>, t l , c - l>

Unl ike for pn, it is unnecessary for un to check if the object is already pinned and if the transaction (tl)
that currently has the object p inned is the same as the unpinning transaction (i2); unpin's pre-condit ion
checks for this case . Un s imply checks if there is only one outstanding call to pin (c = 7), in which case
the value of the object in volatile storage is written to stable storage: otherwise, the count is decremented.

Both pin and unpin have a modif ies c lause , which lists the set of objects in the state of the entire system
whose values m a y possibly change . It is a strong indirect assertion about which objects may not change
in value. This assertion is implicitly conjoined to the operat ion 's post-condit ion. An omitted modif ies
clause is equivalent to the assertion modifies nothing, meaning no objects are a l lowed to change in value.

7

3.3. Deriving From Class Recoverable
A typical use of class recoverable is to define a derived class for objects that are intended to be persistent.
For example , suppose w e derive a n e w class , recovjnt, from recoverable'.

class recov_int: public recoverable {
// private representation

public:
// operations on recov_ints

}

If Int is the sort identifier associated wi th values of recoverable integer objects , then the identifier M that
appears in the RecObj specification would be renamed with Int. T h e header for the Larch interface
specification for the r e c o v j n t class wou ld look l ike:

class r ecovjn t based on R from RecObj (Int for M)

/ / . . . specifications of recovjnt's operations...

4. Class Atomic
T h e second base class in the Ava lon /C++ hierarchy is atomic. Atomic is a subclass of recoverable,
specialized to provide two-phase read/write locking and automatic recovery. Locking is used to ensure
serializability, and an automatic recovery mechan ism for objects der ived from atomic is used to ensure
transaction-consistency. Persistence is 4 ' i n h e r i t e d " from class recoverable since pin and unpin are
inherited through C + + inheri tance.

4.1, Avalon Class Definition
Figure 4-1 gives the class header for a tomic.

// Obtain a long-term read lock.
// Obtain a long-term write lock.

Figure 4 -1: Avalon Atomic Class

Atomic objects should be thought of as containing long-term locks. Under certain condi t ions, read Jock
(writeJock) gains a read lock (write lock) for its caller. Transact ions hold locks until they commit or
abort. Read Jock and write Jock suspend the call ing transaction until the requested lock can be granted,
which m a y involve wait ing for other transactions to complete and release their locks. If read Jock or
write Jock is cal led while the calling transaction already holds the appropriate lock on an object, it returns
immediately.

4.2. Larch Specification

g

class atomic based on A from AtomObj

atomic() returns (atomic x)
post x'.rs = { } A x ' .ws = { } A new x

read_lock(atomic x)
when x.ws c ancestors(ts, self)
modifies x
post x ' = add_reader(x, self)

write _lock(atomic x)
when x.rs c ancestors(ts, self) A X .WS C ancestors(ts, self)
modifies x
post x ' = add_writer(x, self)

AtomObj: trait
includes

RecObj, Set(Tid, Readers), Set(Tid, Writers)
A record of (ob: R, rs: Readers, ws: Writers)

introduces
add_reader: A, TidS —• A
add_writen A, TidS - > A

asserts for all (a: A, tid: Tid)
add_reader(a, tid) = rs_gets(a, add(a.rs, tid))
add_writer(a, tid) = ws_gets(a, add(a.ws, tid))

Figure 4 -2 : Larch Specification of Class Atomic

A record of (ob: R, rs: Readers, ws: Writers)
Even though only one writer can be modifying the state of an atomic object at once , w e keep track of a set
of transactions wi th write locks because a child transaction can get a write lock if its parent has one. The
constructor for atomic initializes both the sets of readers and writers to be empty.

The transaction tree ts of type t idTree is global information:

class tidTree based on TransIdS from TransIdTree
/ / . . . TransIdTree defined in Appendix I . . .

global ts: tidTree

Appendix I gives traits for defining a transaction tree, providing functions like ancestors, which returns
the set of transactions that are ancestors of a given transaction (including itself). W e declare (he
transaction tree global only for convenience since such objects could be passed as explicit arguments to
each operat ion.

Read Jock's when-condi t ion states that a transaction can get a read lock if all transactions holding write
locks are ancestors; write Jock's when-condi t ion states that a transaction can get a write lock if all
transactions holding read or write locks are ancestors. These two requirements reflect the condit ions of
M o s s ' s locking rules for nested transactions [14] , which are implemented in Ava lon /C++.

9

A s usual , the post-condit ions look s imple; the trai t 's addjeader and addjvriter functions do the actual
work, by adding the call ing transaction to the appropriate set. Not ice that s ince rs (ws) is a set, adding a
transaction that already is in it has no effect. Thus , if the call ing transaction already has a read (write)
lock on the object, n o change is made ; otherwise, it obtains a read (wri te) lock.

4.3. Deriving From Class Atomic
Suppose w e n o w define an atomicJnt c lass as follows:

class a tomicjnt : public atomic {
int val; / / representation

public:
int operator=(int rhs); // overloaded assignment
operator int(); // overioaded coercion

}

As for the previous recovint example , when giving the Larch interface specification for the a t o m i c j n t
class, we rename the sort identifier M, introduced in the RecObj trait and included in the AtomObj t ra i t , :

class atomic_int based on A from AtomObj (Int for M)

/ / . . . specifications of atomic j n t ' s operations ...

N o w let us specify a tomic_in t ' s coercion operat ion, which takes an a t o m i c j n t , x, and returns a regular
C + + int, i:

operator int(atomicjnt x) returns (int i)
when x.ws c ancestors(ts, self) A (~pinned(x.ob) v x.ob.pinner = self)
modifies x
post x ' = add_reader(x, self) A i ' = x.ob.value.volatile

T h e second conjunct of the post-condit ion makes the cl imactic point: T h e value (of sort Int) of the int
object i re turned is the value (of sort Int) in volatile s torage of the recoverable object component of the
atomic_jnt x. W e retr ieve the value from volatile storage because w e can a s sume that the when-condit ion
held: if the object is pinned, but not yet unpinned (by self) then we want x ' s most recent value; if the
object is unpinned, then the values in volati le and stable storage would be identical.

Let us examine h o w the der ived class uses the inherited operat ions, relying o n their specifications. An
Ava lon /C++ implementator of atomic_jnt can use write Jock and read Jock of class atomic and pin and
unpin of class recoverable to ensure the serializability, t ransaction-consistency, and persistence of
a tomic_ints . (Thus , a tomic_int c l a s s ' s clients can assume these properties hold for all atomic_ints .) For
example , here is h o w the coercion operat ion would be implemented in Ava lon /C++:

atomicjnt::operator int() {
readJockQ; // get read lock on representation object
return val; // return its value

}

Using the specification of class a tomic ' s read Jock operation, we can show (1) the coercion operat ion 's
when-condi t ion trivially implies read Jock's when-condit ion; and (2) read Jock's post-condition
guarantees the call ing transaction has a read lock on the a t o m i c j n t object. These two properties imply
that val, the int representat ion of an atomic_int will not be read and returned until the call ing transaction
obtains a read lock on the atomic_int , and moreover , no concurrent transactions have write locks on it.

10

5. Class Subatomic
T h e third, and perhaps most interesting, base class in the Ava lon /C++ hierarchy is subatomic. Like
atomic, subatomic provides the means for objects of its der ived classes to ensure atomici ty. Whi le atomic
provides a quick and convenient way to define new atomic objects, subatomic provides more complex
primitives to give p rogrammers more detailed control over their objects ' synchronizat ion and recovery
mechan isms by exploit ing type-specific properties of objects. For example , a queue object with enqueue
and dequeue operat ions can permit enqueuing and dequeueing transactions to go on concurrent ly, even
though those transactions are both " w r i t e r s . " In defining an atomicjjueue c lass by deriving from class
atomic, such concurrency would not be possible; deriving from class subatomic makes it possible . See
[5] for details and other examples .

5.1. Avalon Class Definition

class subatomic: public recoverable {

A subatomic object mus t synchronize concurrent accesses at two levels: short-term synchronizat ion
ensures that concur rendy invoked operations are executed in mutual exclusion, and long-term
synchronizat ion ensures that the effects of transactions are serializable. Short- term synchronizat ion is
used to guarantee operat ion-consistency of objects derived from subatomic.

Subatomic provides the seize, release, and pause operat ions for short-term synchronizat ion. Each
subatomic object contains a short-term lock, s imilar to a moni tor lock or semaphore . Only one
transaction m a y hold the short-term lock at a t ime. T h e seize operat ion obtains the short- term lock, and
release rel inquishes it. Pause releases the short-term lock, waits for some durat ion, and reacquires it
before returning. Thus , these operations allow transactions mutual ly exclusive access to subatomic
objects. Seize, release, and pause are protected members of the subatomic class since it would not be
useful for clients to call them.

T o ensure transaction-consistency, subatomic provides commit and abort operations. Whenever a top-
level transaction commi ts (aborts) , the Ava lon /C++ run-time system calls the commit {abort) operation of
all objects derived from subatomic accessed by that transaction or its descendants. Abort operations are
also called when nested transactions " v o l u n t a r i l y " abort. Since commit and abort are C++- v i r tua l
operat ions, classes derived from subatomic are expected to re implement these operat ions. Thus,
subatomic a l lows type-specific commi t and abort processing, which is useful and often necessary in
implement ing user-defined atomic types efficiently.

protected:
void seize();
void releaseO;
void pause();

public:
virtual void commit(trans_id& t);
virtual void abort(trans_id& t);

// Called after transaction commit.
// Called after transaction abort.

// Gains short-term lock.
// Releases short-term lock.
//Temporarily releases short-term lock.

Figure 5-1: Ava lon Subatomic Class

11

5.2. Larch Specification

class subatomic based on S from SubAtomObj

subatomicO returns (subatomic x)
post ~locked(x') A new x

seize(subatomic x)
when ~locked(x)
modifies x
post xMocker = self A locked(x')

release(subatomic x)
pre x.locker = self
modifies x
post x ' .locker & self A

[x. waiters * {}
(3 tid: Tid) tid € x.waiters A
x Mocker = tid A
x'.waiters = rem_waiter(x, tid)]

pause(subatomic x) = composition of relinquish; reacquire end
pre x.locker = self
modifies x
sequence

operation relinquish
post x\ locker * self A

[x. waiters & {}
(3 tid: Tid) tid € x.waiters A
x Mocker = tid A
x'.waiters = add_waiter(rem_waiter(x, tid), self)]

operation reacquire
when ~locked(x) v x.locker = self
post xMocker = self A x'.waiters = rem_waiter(x, self)

com mit(subatomic x, trans J d & t)
pre committed(ts, t)
post true

abort(subatomic x, trans_id& t)
pre aborted(ts, t)
post true

Figure 5-2: Larch Specification of Class Subatomic (Interfaces)

Figures 5-2 and 5-3 give the Larch interfaces and trait for class subatomic. As indicated in the trait
SubAtomObj, a subatomic object is a recoverable object, a long with the transaction holding the short-term
lock, and a set of transactions that are wait ing to acquire it.

S record of (ob: R, locker: Tid, waiters: Waiters)

Initially, as specified in the constructor, no one holds the short-term lock on the object.

12

SubAtomObj: trait
includes

RecObj, Transld, Set(Tid, Waiters)
S record of (ob: R, locker Tid, waiters: Waiters)

introduces
add_waiter: S, Tid S
rem_waiter: S, Tid —» S
locked: S —» Bool

asserts for all (s: S, tid: Tid)
add_waiter(s, tid) = waiter_gets(s, add(s.waiters, tid))
rem_waiter(s, tid) = waiter_gets(s, rem(s.waiters, tid))

Figure 5-3: La rch Specification of Class Subatomic (Trait)

Seized when-condi t ion states that a transaction mus t wait until n o transaction holds the short-term lock on
the object before acquiring the lock. T h e post-condit ion states that the cal l ing transaction obtains the
short-term lock on the object, and the object is now locked.

Release's pre-condit ion requires that the call ing transaction be the one w h o has the lock on the object.
T h e post-condit ion states that the caller will no longer have the lock upon return, and if some other
transaction is wait ing to obtain the lock, it is given the lock.

Pause's pre-condit ion is similar to release's. The rest of its specification, however , is unl ike all others.
Pause's effects are specified in terms of a sequence of two operat ions, each of which can be interleaved
with other operat ions of other transactions. First, pause rel inquishes the short- term lock as release does .
However , relinquishes post-condit ion differs from release's in one critical way: . the calling transaction is
added to the wait ing set of transactions upon rel inquishing the lock. T h e second operat ion, reacquire, in
the sequence is delayed until either no one has a lock on the object or some other transaction has released
the lock and given it back to self. Its post-condit ion ensures that the original caller of pause again
possesses the short- term lock upon return.

T h e specifications of commit and abort deserve special attention. Each is cal led with a trans_id argument
denoting some transaction that has commit ted (aborted) in the given (global) transaction tree ts. The
implicit 4 4 modi f i e s noth ing ' ' assertion states that n o change to the object is a l lowed. This seemingly
strong assert ion reflects the intention that commit and abort operat ions are to have only * 4 benevo len t"
side effects on the object ' s state, meaning that the abstract state of the object remains the same, though the
representation state m a y change . Indeed, typical Avalon/C++ implementat ions of commit operations
s imply discard redundant state information stored in the representation object, not affecting the abstract
state at all. Typical implementat ions of abort operations use this redundant state information to undo
tentative changes performed by the aborting transaction (and any of its descendants that have commit ted
with respect to it).

Deriving from class subatomic is similar to deriving from class recoverable or class a tomic and is omitted
for brevity.

13

6. Observations

6.1. About Avalon
T h e exercise of formally specifying the Avalon/C-H- classes revealed unstated assumptions about the
actual implementa t ion and m a d e m o r e precise Avalon/C-H-'s fundamental semant ics .

O n e unstated assumpt ion in the under lying operat ing system (Camelot) is reflected in the implementat ion,
but was never m a d e explicit unti l we wrote the formal specification of class recoverable. The
Avalon/C-H- implementat ion precludes the possibility of concurrent p ins by different transactions;
Camelo t forbids this situation because it assumes that any transaction that pins an object intends to
modify it. This assumpt ion is one example of where crash recovery and concurrency cannot be separated
when reasoning about Ava lon programs. Without concurrency, one can give a mean ing to persistence;
without c rash recovery, one can give a meaning to the correct synchronizat ion of processes . But to
support both, there are points where one mus t consider both persistence and synchronizat ion together.

Another k ind of unstated assumpt ion discovered from this exercise is implicit pre-condit ions. For
example , whereas pin has n o pre-condit ion, unpin does . This assymmetry in the specifications reflects the
assymmetry that exists in the actual implementat ion. A n earlier version of the specification of unpin did
not have a pre-condit ion, but not until the implementor was shown this (incorrect) version was the
unstated pre-condit ion revealed. In fact, upon seeing the assymmetry in the current version of the
specification, the implementor realized that the pre-condit ion on unpin cou ld easily be removed by
performing a run- t ime check, as is already done for pin.5

Specifying the class atomic helped m a k e the rules for obtaining long-term locks more precise. It also
makes explicit , by model ing a set of writers, not just a single writer, the property that more than one
transaction might hold a long-term write lock on an object at once . Recal l this situation can arise because
of nested transactions. O n the other hand, the specification of class subatomic makes explicit that only
one transaction (the locker) can have the short-term mutual exclusion lock on an object at once.

Specifying the class subatomic helped identify a subtle source of a potential deadlock situation. As
specified in Figure 5-2, if there are waiters, pause will not return until some transaction, tid, other than
the call ing one , self, grabs the short-term lock and returns, thereby releasing the lock. If tid does not
return (perhaps it is wait ing for s o m e synchronizat ion condi t ion to become true), then self will not be able
to return since it will be unable to reacquire the lock. In fact, this si tuation can arise in the current
Ava lon /C++ implementa t ion and was discovered only through trial and error when debugging some
s imple examples . H a d w e done the specification beforehand, w e could more easily have anticipated this
problem.

6.2. About Larch
In the traditional spirit of Larch, all the complexi ty of a specification is relegated to the trails. The
rule-of- thumb is: If the post-condit ion becomes unwieldy then introduce a trait function to capture the
intended property. However , one place where that cannot easily be done is in specifying nondeterminism.
Since traits define (deterministic) functions, interfaces are responsible for specifying nondeterminist ic

5 The astute reader may have noticed that uns second argument, a vestige of the earlier specification, was ignored in its
definition; if the pre-condition for unpin is removed, then the second argument is necessary.

14

behavior . For example , the use of the existential operator in the post-condit ions of release and pause is
unavoidable .

Not surprisingly, Larch needed to be extended to deal with concurrency, as exemplified here for
Ava lon /C++ and in [2] for Modula-2-!-. The two most important extensions are: (1) the need to specify an
opera t ion ' s effects through the specification of a sequence of other operat ions, and (2) the when c lause
used for stating a third kind of condit ion in addit ion to pre- and post-condit ions. As an aside, this
when-condi t ion influenced the Ava lon /C++ designers w h o added a when s tatement to the language. This
s tatement, which makes appropriate calls to seize, release, and pause, is ak in to a condit ional critical
region.

O n e critical class of propert ies that cannot be stated in Larch, even as currently extended, is l iveness. For
example , one cannot say that an object ' s commi t or abort operat ion will eventual ly be called.
Unfortunately, many programs may be correct with respect to safety but can deadlock or livelock in
practice. In particular, typical implementat ions of operat ions of classes der ived from subatomic test at
run-t ime whether some transaction has commit ted; obtaining the short-term lock often depends on this
test to succeed. So , somet imes no progress can be m a d e until some transaction has commit ted . W e have
seen in the previous section where deadlock may arise in the implementat ion, and h o w the specification
permits for this behavior . Though Larch was never intended to address l iveness propert ies , in the context
of concurrent transactions, such properties are important to state for practical reasons.

7. Final Remarks
T h e specifications presented here represent ongoing work. They continue to change as we cont inue to
specify more of Avalon/C-H- 's intricacies, such as: (1) Avalon/C-H- 's transaction mode l of state, which
must include two kinds of store, volatile and stable. It must also include the entire transaction tree, the
status of each transaction in the tree, and the sets of locks each transaction holds . (2) System-wide
commi t and abort operat ions, which mus t be defined on behalf of a transaction commit t ing or abort ing.
For example , the sys tem-wide commi t operat ion would take a transaction identifier and a t imestamp,
modifying the status of some transaction in the transaction tree. (3) A sys tem-wide recover operation,
which would define the effects of recovering from a crash. W e would need to modify the specification
for a recoverable object by keeping track of the entire history of operations performed on it in order to
capture the set of possible values such an object can have [11], (4) Avalon/C-H- 's built-in class, transJd,
which has operat ions for creating transaction identifiers and testing whether two transactions are
serialized with respect to each other. Appropr ia te trait functions would be added to the trait TransIdTree
of Appendix I to facilitate the specification of transJd.

As we generate these specifications, we would also like to prove theorems about the objects being
specified. For example , from the specification in Figures 5-2 and 5-3 we can prove that the transaction
(tid) g iven the lock upon return from release is different from the calling transaction (self). The proof of
this property depends on the following property of subatomic objects: (V x: S) x.locker g waiters* x). Our
plan is to use the Larch Prover [7] to help with these proofs.

Though the specification of Ava lon /C++ is incomplete , we have specified a critical piece of it since all
user-defined classes derive from the built-in ones . Knowing early on that a fundamental part of
Avalon/C-H- 's semantics is implemented correctly is a t remendous reassurance to us as Avalon
implementors as well as to all Avalon programmers . In conclusion, writ ing the formal specifications of
Avalon/C-H- 's built-in classes has helped clarify places in the language where features interact, make

15

ex plicit unstated assumpt ions , and m a k e precise complex non-functional properties of objects.

Acknowledgments
Discussions with John Gut tag and J im Horning and the examples given in [2] inspired m y on-the-fly
interface language design, in particular the Larch extensions for concurrency. C h u n G o n g helped develop
the traits and R ick Lerner he lped check the interfaces. I am grateful to all members of the Avalon group,
in particular, Maur ice Herl ihy and David Detlefs, w h o he lped design Avalon/C-H-, and David w h o was
instrumental in bui lding it.

I. Transactions and the Transaction Tree
Below is a Larch trait that specifies a t ransact ion 's state. W e assume the existence of a TimeStamp trait
used for generat ing t imestamps of sort Time, and a Uniqueld trait used for generat ing unique identifiers of
sort Id. A transaction can be either commit ted, ac t ive , or aborted. Only commit ted transactions are given
t imestamps.

TidStatus: trait
includes TimeStamp
introduces

co: Time —» S
ac: —»S
ab: - » S

asserts S generated by (co, ac, ab)

Transld: trait
includes TidStatus, Uniqueld

Pair(Tid for T, Id for T l , S for T2, name for .first, status for .second)
introduces

create: Id —» Tid
commit: Tid, Time —> Tid
abort: Tid - » Tid
aborted: Tid —» Bool
committed: Tid —> Bool

asserts
Tid partitioned by (name)
for all (t: Tid, id: Id, ti: Time)

create(id) = <id, ac>
commit(<id, ac>, ti) = <id, co(ti)>
abort(<id, ac>) = <id, ab>
committed(t) = (status(t) ^ a c A status(t) * ab)
aborted(t) = (status(t) = ab)

exempting for all (id: Id, ti: Time)
(commit(<id, ab>), commit(<id, co(ti)>), abort(<id, ab>), abort(<id, co(ti)>))

TransIdTree: trait
includes Transld, Tree(Tid, TransIdS)
introduces

committed: TransIdS, Tid —> Bool
aborted: TransIdS, Tid —• Bool

asserts for all (ts: TransIdS, t: Tid)
committed(ts, t) = t € ts A committed(t)
aborted(ts, t) = t e ts A aborted(t)

16

Tree (N, T): trait
includes Set(N, Nodes)
introduces

emp: —> T
add_root: N —»T
add_node: T, N, N —» T

N, T —» Bool
des: T, N, N —• Bool
ancestors: T, N —» Nodes

asserts
T generated by (emp , addjroot, add_node)
for all (n, n l , n2, n3: N, t, t l : T)

add_node(emp,n tnl) = emp
add_node(add_root(n),nl,n2) =

if n=nl
then add_node(add_root(n),n,n2)
else add_root(n)

add_node(add_node(t,n,nl),n2,n3) =
if n l=n2
then add_node(add_node(t,n,nl),nl,n3)
else add_node(add_node(add_ncKie(t,n2,n3),n,nl))

n € emp = false
n e add_root(nl)) = (n=nl)
n € add_node(t,nl,n2) = (n e t) v (n=nl) v (n=n2)
des(emp,n,nl) = false
des(add_root(n),nl,n2) = false
des(add_node(t,n,nl),n2,n3) =

if (n=n2 A (nl=n3 v n2=n3))
then true
else if (n=n2)

then des(t,n2,n3)
else if (nl=n3)

then des(t,n2,nl)
else des(t,n2,n3)

n l € ancestors(t,n) = des(t,nl,n)

II. Auxiliary Traits
Set (E, S): trait

introduces
{ } : - > S
add: S, E —> S
rem: S, E —» S
_ e _: E, S —> Bool

c : S, S Bool
asserts

S generated by ({}, add)
S partitioned by (€)
forall (s, s l : S , e, e l : E)

rem({ },e)= {}
rem(add(s, e), e l) = if e = e l then rem(s,el) else add(rem(s,el),e)
e € (| = false
e € add(s,el) = (e = e l) v (e € s)
() c s = true
add(s,e) c s l = e e s i A s c s i

17

Triple: trait
introduces

T1 ,T2 , T 3 - > T
_ . f i r s t : T - > T l
. .second: T - » T2
. . third: T - » T 3
asserts

T generated by (<_, . , _>)
T partitioned by (.first, .second, .third)
for all (a: T l , b : T 2 , c :T3)

<a, b, c>. first = a
<a, b, o . second = b
<a, b, c>. third = c

Pain trait
introduces
<__,_>: T 1 , T 2 — » T
..first: T - * T 1
..second: T T2
asserts

T generated by (< . , _>)
T partitioned by (.first, .second)
for all (a : T l , b : T2)

<a, b>. first = a
<a, b>.second = b

Records are a shorthand for a trait defined as follows. For each record of the form
S record of (f,: S p fR: S n)

Append to the function declarat ions of the enclosing trait:
introduces

rnk.S: S , , S n - » S

fj__gets: S, Sj S

for 1 < i < n.

Append to the set of equat ions of the enclosing trait:
asserts

S generated by (mk.S)
S partitioned by (. f , , . f n)
for all (X p y p S , x„, y n : S „)

r r i k . S f r , , X j , x j . f . = Xj
f j j e t s (m k . S (x , , x { , x n) , y 4) = m k _ S (x , , y . , x n)

for 1 £ i < n.

18

References

[I] J.R. Abrial .
The Specification Language Z: Syntax and Semantics.
Technical Report , P rogramming Research Group , Oxford Universi ty, 1980.

[2] A . Birrell, J. Gut tag , J. Horning , R. Levin.
Synchronizat ion Primit ives for a Mult iprocessor: A Formal Specification.
la Proceedings of the Eleventh ACM Symposium on Operating Systems Principles, pages 94-102.

A C M / S I G O P S , 1987.

[3] D . Bjorner and C.G. Jones (Eds.) .
Lecture Notes in Computer Science. Vo lume 6 1 : The Vienna Development Method: the

Metalanguage.
Springer-Verlag, Ber l in-Heidelberg-New York, 1978.

[4] D . S. Daniels .
Distr ibuted Logging for Transact ion Processing.
In Proceedings of the 1987 ACM Sigmod International Conference on Management of Data.

Associat ion for Comput ing Machinery, San Francisco, CA, May , 1987.

[5] D . L. Detlefs, M. P . Herl ihy, and J. M . Wing .
Inheritance of Synchronizat ion and Recovery Properties in Avalon/C+f .
IEEE Computer :57-69, December , 1988.

[6] K. P . Eswaran , J. N . Gray , R. A . Lor ie , and I. L. Traiger.
The Not ions of Consis tency and Predicate Locks in a Database System.
Communications of the ACM 1 9 (l l) : 6 2 4 - 6 3 3 , November , 1976.

[7] S J . Gar land and J.V. Guttag.
Inductive Methods for Reasoning about Abstract Data Types .
In Proceedings of the 15th Symposium on Principles of Programming Languages, pages 219-228 .

January, 1988.

[8] J .A. Goguen and J.J. Tardo .
A n Introduction to OBJ : A Language for Wri t ing and Test ing Formal Algebraic Program

Specifications.
In Proceedings of the Conference on Specifications of Reliable Software, pages 170-189. Boston,

M A , 1979.

[9] J .V. Gut tag , J.J. Horning, and J .M. Wing .
T h e Larch Family of Specification Languages .
IEEE Software 2(5) :24-36, September , 1985.

[10] J .V. Gut tag, J.J. Horning, and J .M. Wing .
Larch in Five Easy Pieces.
Technical Report 5, D E C Systems Research Center . July. 1985.

[I I] M.P . Herl ihy and J .M. Wing .
Reasoning About Atomic Objects.
Technical Report CMU-CS-87 -176 , Carnegie Mellon Universi ty Depar tment of Computer

Science, November , 1987.

[12] L . L a m p o r t .
T ime , c locks , and the ordering of events in a distributed system.
Communications of the ACM 21(7) :558-565, July, 1978.

19

[13] B . Lampson .
Atomic transactions.
Lecture Notes in Computer Science 105. Distributed Systems: Architecture and Implementation.
Springer-Verlag, Berl in, 1981 , pages 246-265 .

[14] J .E .B. Moss .
Nested Transactions: An Approach to Reliable Distributed Computing.
Technica l Repor t MYTfLCS/TR-260, Massachuset ts Institute of Technology Laboratory for

Compute r Science, Apri l , 1981 .

[15] A . Spector, J. Bloch, D . Danie ls , R. Draves , D . Duchamp , J. Eppinger , S. Menees , D . Thompson .
T h e Camelo t Project.
Database Engineering 9(4) , December , 1986.

[16] B . Stroustrup.
The C++- Programming Language.
Addison-Wesley , Reading , Massachuset ts , 1986.

[17] W . E . Weihl .
Specification and Implementation of Atomic Data Types.
P h D thesis, M I T , 1984.

