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A Discrete Scale-Space Representation 

Z. Aviad 

Department of Computer Science 
Carnegie-Mellon University 

Pittsburgh, Pa. 15213 

Abstract 
A discrete alternative to scale space filtering is presented. The new method provides for fast solutions 

to problems of spatial containment, filtering and matching, without using arbitrary parameters and 
smoothing of the input. The discrete space-scale representation is a hierarchical perceptual organization 
that has concrete applications in computer vision research. Examples of actual implementation are 
provided. 

Subject Terms: Scale Space Filtering, Multi-scale Representation, Impressions, Matching, Image/Map 
Registration, Perceptual Organization. 

1. Introduction 

In a paper that has now become classic, Witkin [12] proposed "a useful general-purpose qualitative 

description of many kinds of signals," known by the name of Scale-Space Filtering, and henceforth called 

SSF. SSF is based on the realization that in different scales different features in the described object 

emerge as meaningful, to an extent that introducing scale-dependence by smoothing the signal with 

variable sized masks brings forth ambiguity: every setting of the scale parameter yields a different 

description. SSF's novelty is in proposing a method to automaticly select a set of scales at which it is 

useful to describe the input signal. This is done by first computing descriptions in many scales and then, 

starting from the smoothest description and working down to the more detailed ones, detecting those 

scales in which new curvature extrema are introduced. Later papers elaborated on the nice theoretical 

properties of SSF (see Babaud et. al. [4] and Yuille and Poggio[14]) and described its application to 

matching (see Asada and Brady [1], and Mokhtarian and Mackworth [9].) 
-* 

Although SSF solves some of the problems of multi-scale descriptions, it still has two major 
shortcomings, both of which result from its continuity assumptions: 

I . The input is assumed to be of continuous nature, an assumption which is frequently 
unrealistic: in many applications the input is a polygon, and in some, as shown by Leclerc 
and Zucker[6], those discontinuities in the data that SSF smoothes out are the main 
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features that one would actually want to see in the descriptions. 

2. SSF calls for smoothing the input vyith a continuum of scales [12]. Since this is 
computationally impossible various compromises have been suggested: Asada and 
Brady [1] chose scales that differ by one octave, giving no explanation, but expending a 
great deal of effort on computing correspondence between features in different scales. 
Mokhtarian and Mackworth [9] say that the scale parameter a is to be increased by "a small 
amount," without giving any more information, but indicating that their representations use 
much memory and their computations are time consuming. 

This paper presents an alternative multi-scale representation of curves that remedies these 

shortcomings, and that is therefore called the Discrete Scale-Space Representation (DSSR). In the line 

of Ehrich and Forth [5], Sankar and Rosenfeld [11] and Aviad and Lozinskii [2], who decompose the input 

into peaks and valleys, we decompose our input into convex and concave segments, thus avoiding the 

need to smooth it, and use the self-embedding nature of these primitive elements to define a hierarchy of 

descriptions. But while these previous works deal with open curves only, the work reported here concerns 

closed curves as well. The representation assumes input in the form of polygons, but can easily be 

applied to continuous input as well, is easy and fast to compute, does not have excessive memory 

requirements, and assumes no arbitrary parameters. 

DSSR was implemented and tested in the context of MAPS, a large integrated Image/Map database 

system containing high resolution aerial photographs, maps, and other cartographic products, combined 

with detailed 3D descriptions of man-made and natural features [7, 8]. Use of this database made it 

possible to obtain reliable statistics on the behavior of the algorithms when applied to real data, ranging 

from raw machine-segmentation results to precise abstract maps. 

In the following section the DSSR is defined and illustrated, and comparisons with SSF are drawn. 

Section 3 discusses applications to spatial containment queries, filtering and matching. Examples and 

cost statistics are given to the effect that DSSR is a practical candidate for these applications. Section 4 

presents concluding remarks. 

2. The Discrete Scale Space Representation 

In this section a constructive definition of the DSSR is given and illustrated. To support our claim that 

DSSR is an alternative to SSF, a comparison with SSF is drawn and the parallels are highlighted. 

Although the presentation assumes a polygon as input, all the definitions and statements hold for 

continuous curves with no self-intersections as well. 

In accordance with Aviad and Lozinskii [2] we use the term dominant points to mean those points that 
are selected to describe the input. Every level of description has its own set of dominant points, and this 
set includes the dominant points in the levels above it. We will also make a distinction between 
descriptions and impressions. A description is a set of features selected to represent an object An 
impression is the graphical interpretation of a description. Reconstructing an approximation of the input 
from a description results in an impression of the input. 
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2.1. T h e D S S R T r e e 

Intuitively, a closed input polygon is describeded as a convex body modified by concave dents, that, in 
turn, are again modified by convex bumps, and so on. 

We assume a polygon P=p0, . . . ,pn> where p0=pn, is given as input. The DSSR is defined by a tree 

that is recursively constructed top-down. Each node in the tree represents a segment of P as its convex 

hull, and the node's descendants are modifications that further refine that representation. In the topmost 

level (the root) the whole of P is represented, the dominant points being the convex hull of P. Nodes of the 

next level are defined wherever there are non-dominant points between two consecutive dominant points 

in the current level. Let /0, . . . 4k denote the indices of the dominant points in the current level. Then, for 

every / such that p; *p; , a DSSR subtree that represents p., . . . ,p{ descends from the current node. 
j v + i ; ; + 1 

2.2. C o m p a r i s o n with Sca le -Space Filtering 

Let DSL(p\ the discrete scale level of a point /?, be the topmost level in which p is dominant. The DSSR 

can then be presented as a diagram similar to the zero crossing traces that are familiar from scale-space 

filtering. The X-axis stands for p and the Y-axis stands for the DSL, with 0 at the top and the maximal, 

lowest, level at the bottom. Arches are drawn from the beginning of a dent (or bump) to its end, with a the 

peak at a Y that equals the dent's (bump's) level. The points enclosed in an arch are dominated, and 

therefore play no role, in the levels above the arch peak. Figure 2-1 shows two images and their 

corresponding DSL diagrams. One should note that although the start/end of the arch is our discrete 

analogy to inflection points, and the peak of the arch corresponds to the enclosed features' vanishing 

point, the analogy cannot be stretched much farther. In SSF the actual shape of the arch can usually be 

used to reconstruct the original curve up to an equivalence class [13], while in DSSR the actual shape of 

the arch has no meaning whatsoever. 

The DSL is naturally extended to nodes in the DSSR tree, so that the DSL of the node equals the DSL 
of the points that are dominant for the first time in that node. This extended notion of the DSL will be used 
in section 3.2. 

Like in SSF [12] the tree representation can be derived from the DSL diagram by moving an imaginary 

horizontal line from the top downwards and splitting the node when new arches are encountered. It 

follows that the additional storage needed for storing a DSSR is one number per point of the original 

input, considerably less than for SSF [1]. But unlike traditional scale space diagrams, where the 

correspondence between zero crossings and points on the curve is unknown for wide a's, a top portion of 

the DSL diagram, with its correspondence to the input points, can be computed without the corresponding 

lower portion. As will be seen in section 3.3, this can save time in matching algorithms. 

An impression of level k is derived from the DSSR tree by connecting all the points with a DSL of k or 
less, in the order of their places in the input polygon. Figure 2-2 shows a hierarchy of impressions. An 
important property of such impressions, the shape property, is that in no impression, regardless of level, 
will the direction of the angle anchored on a point change from convex to concave or vice versa. This 
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Figure 2-1: Discrete Scale Space Diagrams 

property parallels the Gaussian Filter's not introducing additional zero crossings as one moves to coarser 

scales in SSF [4]. 

File D3ID46.dssr, 66 points 

Figure 2-2: Impressions of Tidal Basin 

The time complexity of computing one level of the DSSR is at most o{n), the complexity of computing 
the convex hull of a polygon with no self intersections [10]. In practice, using features from our MAPS 
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database, from over 200 geographical objects ranging from buildings to state boundaries, only a few very 
complex ones had ten levels, and only two reached the maximal depth of eleven. Typically only a few 
branches of the DSSR tree extend to the maximal depth, so the total construction cost is usually less than 
the maximal depth times n. 

3. Applications of DSSR 

This section describes uses of DSSR in the context of a visual information system. The applications 
discussed are spatial containment queries, filtering, and matching, three of the most frequent 
requirements from a visual information system. In addition to performance in the applications themselves, 
DSSR is especially interesting since it is a single representation that serves all three applications. We are 
also planning to add polygon intersection computation to these DSSR based applications. 

3.1. Spatial Conta inment Quer ies 

One of the services that an image database is frequently required to provide is to compute whether a 

point lies inside a given polygon. DSSR provides a simple and efficient way to answer such queries. 

A point p is contained in a polygon P if is contained in its convex hull but not in any of the (not convex) 
dents that differentiate the convex hull from P. A point is contained in a dent if it is contained in the dent's 
convex hull but not in the bumps that differentiate the convex hull from the dent, and so on. To test 
containment of p in P one first tests if it is contained in the first level of the DSSR, that is, whether it lies 
inside the convex hull of P. If not, the final answer is "not contained." If p does fall inside the convex hull 
of P, one must check the next level of the DSSR. If p is not contained in any of the sons then it is not 
contained in any of the dents, so the final answer is "contained." Otherwise, the next level of the DSSR 
must be recursively checked for each son that contains p (there may be more than one.) 

Checking containment in a convex polygon is done by a simple divide and conquer procedure, and 

requires o(logn) time, where n is the number of points in the convex polygon. To realize how fast this 

really is one should note that the number of points on the convex hull of a typical natural object (such as 

geographical entities) is itself in the order of logN, where N is the number of points in the (not convex) 

polygon representing that object. The total speed is also affected by the probability of getting rejections 

without having to test lower levels, that is, by the distribution of area between the levels of the DSSR. 

Table 3-1 shows this distribution for a data base that consists of boundaries of geographical objects such 

as the states of the U.S.A. Table 3-2 shows the same information for a data base that consists of various 

geographical objects, including man-made features, in the Washington DC area. The first column in 

these tables shows the DSSR level, the second column shows how many polygons had DSSR's at least 

that deep, and the last two columns show the percentage of the convex hull's area covered by each level. 

As can be seen the fraction of the area in the lower levels decreases quickly, almost exponentially. 

Tables 3-3 and 3-4 show estimated query costs for these two data bases respectively. The first column 
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64 100.000 0 .000 
64 2 1 . 0 4 6 16 .377 
61 5 .213 4 .279 
56 1.443 1.310 
47 0.461 0 .438 
46 0 .103 0 .108 
44 0 .020 0 .020 
40 0 .003 0 .004 
28 0 .001 0 .001 
10 0 .000 0 .000 

2 0 .000 0 .000 

DSSR no. of % area covered 
level polygons avrg std 

0) 
1) 
2) 
3) 
4) 
5) 
6) 
7) 
8) 
9) 

10) 

Table 3-1: Percentage of area covered in each level, USA database. 

DSSR no. of % area covered 
level polygons avrg std 

0) 179 100.000 0 .000 
1) 179 2 0 . 6 8 3 2 0 . 0 2 2 
2) 134 5 .843 8 .230 
3) 77 1 .592 2 .960 
4) 18 0 .699 0 .908 
5) 10 0 .293 0 .404 
6) 5 0 .054 0 .044 
7) 1 0 .008 0 .000 
8) 1 0 .002 0 .000 
9) 1 0 .000 0 .000 

Table 3-2: Percentage of area covered in each level, WASHDC database, 

shows the DSSR level, the second shows how many of the input polygons had just that many levels. The 

third and forth columns provide information on the average number of points in the polygons of the 

corresponding row, and the last two columns provide information on the cost of answering a containment 

query about a point inside the polygon's convex hull. The unit of cost is taken to be one iteration in the 

divide and conquer algorithm. Single level polygons, were excluded from all the tables. 

DSSR no. of points cost 
level polygons avrg std avrg std 

1) 3 8 . 6 7 1 .89 7 .38 1 .53 
2) 5 2 2 . 4 0 8 . 9 4 1 7 . 2 8 6 . 5 6 
3) 9 4 0 . 8 9 2 3 . 7 1 2 5 . 7 0 1 2 . 6 9 

4) 
5) 
6) 
7) 
8) 
9) 

10) 

a l l ) 

1 8 4 . 0 0 0 . 0 0 3 5 . 4 2 0 . 0 0 
2 2 0 1 . 5 0 5 8 . 5 0 4 2 . 0 8 1 2 . 2 2 
4 4 7 1 . 0 0 2 2 4 . 5 5 6 4 . 9 4 4 . 8 6 

12 624.83 1 6 0 . 2 2 6 6 . 9 9 14 .85 
18 818 .11 367 .25 7 4 . 8 0 1 4 . 3 0 

8 7 0 8 . 0 0 119.98 64 .25 11 .60 
2 703 .50 1 4 . 5 0 5 7 . 5 3 8 .64 

64 5 0 2 . 6 9 3 8 7 . 6 8 5 4 . 6 6 2 5 . 5 7 

Table 3-3: Estimate of average query cost, USA database. 
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DSSR no. of p< 
level polygons avrg 

points 
std avrg 

cost 
std 

1) 
2) 
3) 
4) 
5) 
6) 
9) 

45 
57 
59 

8 
5 
4 
1 

10 .73 
2 0 . 2 1 
2 9 . 1 0 
36 .75 
68 .20 

128.25 
938.00 

5 . 3 3 9 .74 
9 .60 16 .15 

11 .91 1 9 . 2 9 
1 3 . 2 6 2 0 . 9 8 
1 7 . 8 4 2 7 . 6 2 
5 6 . 4 8 34 .61 

0 .00 62 .12 

3 . 4 4 
6 .73 
6 .86 
5 .90 
9 .62 

11 .35 
0 .00 

all) 179 3 0 . 3 8 71 .83 16 .78 8 . 7 9 

Table 3-4: Estimate of average query cost, WASHDC database. 

3.2. Discrete Scale Space Filtering 

In this section we show how the DSSR tree is modified to represent descriptions levels that are uniform 

with respect to the size of the features described in each level. The modified tree is called the DSSF tree. 

The idea of filtering, or computing impressions, is to select features from a description of an object and 

then use these features to reconstruct an impression of the original [2]. In our case the DSSR tree is used 

for selection, and any of splines, piecewise polynomial or linear approximation can be used for 

reconstruction. In our implementation reconstruction is done by simply connecting the selected points by 

straight lines. As can be seen from the examples, this proved to be enough for the impressions thus 

generated to preserve the salient features of the represented objects. 

In general, it is undesirable to have an impression hierarchy where a relatively small feature appears 

higher in the hierarchy than bigger features. Such a situation does happens in scale space 

representations [9], and can also be seen at the bottom of the second impression in Figure 2-2. In order 

to create a hierarchy that is uniform with respect to feature size we make a slight modification in the 

DSSR tree. By "dropping" nodes down to the lowest level in which they are not maximal in size the 

representation levels are made to correspond to the sizes of the features that show up at these levels of 

impressions. This is done by defining the Filtered Discrete Scale Level of a node N in the DSSF tree to be 

FDSL(N) = mox{DSL(M),DSL(M) }for every node Ms.I. size{M)>size(N)1 

where the size of a node is its area, and proceeding to produce the impression like in 2.2. One should 

note that the shape property, introduced in 2.2 still holds in the DSSF impressions, because it is full 

sub-trees that change levels. 

In practice the FDSL is efficiently computed by maintaining a list of the biggest node sizes in each level 
of the DSSR tree. 

Figure 3-1 shows the original DSSR and the modified DSSF diagrams of one polygon. Figures 3-2, 3-3 
and 3-4 are examples of impression hierarchies. Figure 3-2 is Tidal Basin in Washington DC, and figures 
3-3 and 3-4 are boundaries of states in the U.S.A.. 
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File S/009.dss, 61 points 

Unfiltered 

FileF/009.dss, 61 points 

Filtered 

Figure 3-1: Discrete Scale Space Diagrams: top - original, bottom - filtered 

Figure 3-2: Impressions of Tidal Basin 

It is interesting to note that in over two hundred impression sequences that we have inspected the 

differences between the original figure and the fifth level impression could not be found unless a detailed 

inspection was conducted, regardless of the scale in which the impressions were displayed. It is not quite 

clear whether this is caused by a psychophysical limitation of the human vision system or not. 
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File D3ID383.dssf, 366 points 

Rgure 3-3: Impressions of Massachusetts 
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Figure 3-4: Impressions of Maryland 
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3.3. Matching 

This section presents preliminary results of application of DSSF to matching. Given two polygons 

^=Po» - •' #n a n d 2=4o qm* w e d e f i n e a m a t c h between P and Q to be a list of pairs 

(Wo)* • • • »0W*) in w h i c h t h e , e f t s i d e j n e a c h j s a n j n d e x o f a P o i n t j n ^ ' a n d t h e r j 9 h t s s i d e j s a n 

index of a corresponding point in Q, where correspondence is in the sense that the two points represent a 

feature with the same visual role in the two polygons. Naturally, the longer the list of corresponding points, 
the better the match. 

Results of applying DSSF to matching tasks of the three following classes will be demonstrated: 
• Image/Model: The model image is a true, abstracted representation of an object. The other is 

a real picture of that object, suffering from quantization errors, camera distortions and other 
kinds of noise. 

• Image/Image: Both images are noisy representations of the same real object, but with 
different distortions. In general, this task is harder than Image/Model matching. 

• Image/Prototype: The two images do not represent the same object at all, but rather one 
image represents a real object and the other is a very abstract description of a class of 
objects. Nevertheless, a list of corresponding features is required. Image/Prototype matching 
tasks occur when one wants to abstract knowledge from one situation to another, such as 
identifying wings in one type of aircraft when you are given the place of the wings in another. 

Our work, like Asada and Brady's [1], and in practice also like Mokhtarian and Mackworth's [9], deals 
only with matching complete images. The harder cases, when one image is part of an other, or when 
there is only partial overlap, are subject of ongoing research. 

Scale space filtering was used for matching in two different ways. Asada and Brady [1] use SSF to 

locate a small set of predetermined features of tools, and perform matching based on these features. 

Their method is not designed to work on arbitrary shapes, where the set of predetermined features is not 

expected to be significant. Mokhtarian and Mackworth [9] match boundaries of geographical objects to a 

map by comparing the shapes of the arches in the scale space diagram. The approach taken here is a 

hybrid between these two approaches and the HYPER approach [3], where privileged segments of a 

model are used to hypothesize matches between the model and a target image. In HYPER a privileged 

segment is one of the ten longest segments in the model, with the justification that such segments are 

less likely to be in error. We use the top two levels of the DSSF to select (privileged) features in the 

polygons and then hypothesize matches between the polygons. Our justification is similar: we assume 

that these two first levels capture the objects salient features, those that remain present if the object is 

recognizable at all. The next levels of the DSSF are then used to refine the match hypotheses and select 

the one that produces the best match. 

The current version of our matching algorithm works as follows: 

1. Compute the DSSF of the two polygons. 

2. Select feature points from the first level impressions (the root). 

3. Hypothesize rotations between the first level impressions. 
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4. Confirm hypotheses by matching corresponding second level impressions. 

In Step 2 the points selected are the ones in which the original polygons deviate from the convex hull, 

that is, our analogy to inflection points. Each selected point is classified as a start of a dent, an end of a 

dent, or both. Each selected point is also assigned a number that corresponds to the distance between it 

and the (cyclicly) previous point, on a path going through points of the second level impression. The 

distances are normalized so that they sum to 1. This representation will alternatively be considered a p 

axis with ticks in places that correspond to the distance of the points from the first point. 

In Step 3, by choosing different starting points as matches, one polygon is rotated with respect to the 

other. A match list, as previously defined, is computed as follows: if pi and q-are of compatible types and 

they are mutually nearest on the normalized p axis then (/,/) is added to the match list. A start of a dent is 

not compatible with an end of a dent, and the relation mutually nearest holds between points pi and q. if 

where disfay) is the distance between the two points along the normalized p axis. 

In Step 4 additional matches are sought in the polygon segments between points in the existing match 

list. To do this one more description level is taken into account and a new p representation is created. 

Matching proceeds just like in Step 3, and the rotation with the longest match list is chosen. 

distip^qj) < dist(pitqk)for any k*j 
and 
dist(pitqj) < distip^qj) for any k*i 

Program: m Version: Dec 9, 15:59 

rtidall.dss Angle: -1.650, 14 matches 

Figure 3-5: Image/Model matching 
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Program: m Version: Dec 9, 15:59 

o w 
F/009.dss 

JX 
F/002.dss 

Angle: 0.043, 16 matches 

Figure 3-6: Image/Image matching 

Figures 3-5, 3-6 and 3-7 are examples of the results. The compared polygons are on the left, with 
plusses marking the points selected in Step 2. The right side shows the correspondences found. Boxes 
and dashed lines show correspondences found in Step 3, plusses and dotted lines show those found in 
Step 4. To make the figures somewhat clearer the top polygon is scaled to be 20% smaller than the 
bottom one. 

The Image/Model matching is between a machine segmentation and a hand segmentation of Tidal 
Basin. The Image/Image matching is between two different projections of a hand segmentation of Tidal 
Basin. The Image/Prototype matching is between a hand segmentation of an image and a loosely drawn 
approximation of that figure. 

Time requirements of this matching algorithm are usually proportional to the lengths of the polygons, 
since the hardest matching work, done in Step 3, uses only points from the first DSSR level. Furthermore, 
there is no need to compute all of the DSSF, the first three levels are generally sufficient. 



Figure 3-7: Image/Prototype matching 
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4. Conclusions 
We have shown a discrete alternative to Scale-Space representations of closed curves. The new 

representation is fast and easy to compute and is compact in storage, yet preserves the curves' dominant 

properties. The Discrete Scale-Space Representation was successfully applied to three tasks: spatial 

containment queries, filtering and matching. In all cases the resulting programs are conceptually simple 

and the statistics provided support the claim that these programs perform their tasks fast enough to be 

considered a practical alternative to previous methods. 

In comparison to SSF, DSSF is both faster and more robust. Faster because only those descriptions 

which are needed are computed, and more robust because there is no place for mistakes in the 

correspondence between descriptions of different levels. Furthermore, since DSSF does not require 

smoothing of the input, information from discontinuities is not lost. DSSR can be applied both to closed 

curves and to open waveforms, provided that they can be completed to closed curves with no self 

intersections. In this sense it is superior to the representations suggested by Ehrich and Foith [5] and 

Sankar and Rosenfeld [11] that could not be applied to closed curves. 

Future research on DSSR will include an algorithm to check polygon intersections, development of a 

three-dimensional version for filtering grey-level raster images, refining the matching algorithm, and 

checking applicability to the various forms of partial matching. 
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