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Abstract 
Line-based image analysis and area-based image analysts are rarely combined, although it is quite 

clear that these two approaches complement each other. One reason for the infrequency of the 
combination is that automatic segmentation procedures usually produce lines of poor quality, and such 
lines are hard to analyze. This paper addresses the problem of locating right angle corners in unsmooth 
digital lines, employing the concept of imperfect sequences, that has proved useful in various 
applications, including road finding and RNA homology detection. A detector of imperfect sequences is 
used to create a line analysis method that is fast and simple, yet robust enough to produce reasonable 
corner localization even in noisy lines. We have found that using this algorithm gave us a powerful tool for 
combining the line-based and area-based approaches. 

Subject Terms: Digital Corners, Imperfect Sequences. 

1. Introduction 

Region-based image segmentations frequently display very jagged lines in the boundaries of the 
segments as result of the fact that machine segmentation algorithms are designed to optimize image 
intensity criteria and not line smoothness. Edge finders, on the other hand, are based on optimizing 
curvilinear features, but provide less two dimensional information. In order to apply line reasoning to 
machine segmentation results it is necessary to simplify the segment boundaries, a complex process in 
general. Consequently, the combination of line-based analysis and area-based analysis is relatively rare. 
Figure 1-1, a result of a shadow finding program [6], is a typical example of the quality of machine 
segmentations. 

Locating significant points on curves is a difficult problem to which much research effort has been 
devoted. Scale-space analysis seem to be the current method of choice when one is dealing with the 
general curve partitioning problem [1,11], but scale-space filtering has its shortcomings [2, 7], and in 



Figure 1-1: Example of a machine segmentation 
some applications more specific requirements make it possible to use simpler and faster algorithms. This 
paper is concerned with locating right angles in noisy digital curves, a requirement motivated by 
experiments in building detection. 

Our approach is to test local properties of the line, and base the recognition of features on consecutive 
sequences of points where the local properties hold. In the example above (Figure 1-1) the relevant local 
property of the line is "going down", "going left" or "going up". Since the lines we are dealing with are 
noisy, the local property sequences that correspond to various features are imperfect, and the definition 
of consecutivity must be relaxed to the effect that some sequence breaks are ignored. Section 2 defines 
the local property tests, Section 3 describes an algorithm that delineates imperfect sequences, and 
Section 4 presents the results of running the algorithm on various curves from an edge detector, a 
shadow finding program, and an area based segmentation program. An experiment of comparison with 
Fourier approximation is also reported. Finally, Section 5 is a brief conclusion. 

2. Local Property Testing 

In this section we describe four functions, referred to as classifiers, that are used for detecting right 
angle corners. A classifier examines the segment between two consecutive points on a digitized curve, 
and returns a 1 or a 0. Our four classifiers were selected so that when examining a noise-free curve, for 
every right corner there is at least one classifier that has a different response on the two sides of the 
corner. 

The requirement of detecting right angles lets us classify lines into eight directions being sure that no 
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right angle has both edges in the same class. Each of the four classifiers distinguishes between two 
groups of four directions, and is therefore able to detect any corner composed of a member of each 
group. For each classifier we also require that it be able to distinguish between lines that are anti-parallel, 
so that very sharp angles do not go unnoticed. Given (xi9yt) and (xi+vyi+l), two consecutive points on the 
curve, the four classifiers inspect dx=xM-x( and dy=yM-yi9 responding to the following conditions 
respectively: 

1. If dx * dy then dx > dy else -dx > dy 

2.\i-dx* dy then -dx>dy else dx < dy 

3. If dx * 0 then dx > 0 else dy < 0 

4. If dy * 0 then dy > 0 else dx> 0 

0001 

1011 

1110 

0100 

Figure 2-1: Line directions and corners. The numbers outside associate 
comers to the classifiers that detect them. Inside are the classifiers' 

responses to each line. 

Figure 2-1 shows the eight line directions, the responses of each classifier to each line (inside), and 
which corner is detected by which classifier (outside). It should be noted that sometimes the data is 
ambiguous, and if one wants to be able to detect multiple right angle hypotheses there must be a 
capability to detect 135° angles. An example of such a case is given in Figure 2-2. 

To detect corners, first a dense curve representation is created by applying a DDA to the input. Then 
four sequences of ones and zeroes are generated by applying the four classifiers to the dense curve. 
Next, each of the four sequences is partitioned by delineating Imperfect Sequences, a process that is 
discussed in the next section. The partition points are collected as corner candidates. Due to the nature 
of the classifiers, some of these candidates do not correspond to significant corners, so after all the 
partition points are collected from all the classifiers, those that form angles of at most 135° are selected 



Figure 2-2: Example of multiple corner hypotheses 

as the final break points of the curve. The results are presented in detail in section 4. 

3. Delineation of Imperfect Sequences 

Many recognition tasks share the general structure of testing for a local property and requiring a 
sequence of successful tests for confirming the recognition. In matching bit strings, for instance, the local 
property is an occurrence of the same bit in corresponding places in the matched strings, and a match is 
declared when such an occurrence happens over the full length of a string. However, it is often the case 
that the desired local property cannot be detected continuously over the whole tested entity, and 
recognition must be based on the delineation of imperfect sequences of successful tests. Furthermore, it 
is frequently extremely difficult to characterize the properties of the errors in such sequences, due to the 
lack of an applicable statistic model [8]. 

The problem can be stated as follows: Let P be a process that changes back and forth from state On to 
state Off, and let 5=SQ, . . . ^ be a sequence of noisy samples of the state of P, where 1 if the Hh 
sample indicates that P is On, and ̂ =0 otherwise. The object of an Imperfect Sequence Detector (ISD) 
is to guess when the process P really changed state. The guessed state change points delineate 
imperfect sequences of samples of the same kind. 

In order for the ISD's guesses to have any significance, one must have some knowledge about the 
nature of the changes in P's states. Otherwise there would be no reason not to take S itself as the best 
guess of state changes. We concern ourselves with the case that: (1) sampling is known to be faster than 
the state changes, and (2) there are two known numbers kon and koff such that a sequence of kon On 
samples indicates beyond reasonable doubt that P is On, and a sequence of koff Off samples indicates 
beyond reasonable doubt that P is Off. 
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The ISD algorithm described in this section has been found useful in detecting imperfect sequences 
under the conditions discussed above. It was successfully used in many applications, among them finding 
homologies in RNA molecules [3], and road finding [4]. 

In the ISD algorithm two hypotheses, whether P is currently On or Off, compete for being accepted. As 
samples are processed these hypotheses gain support, and when that support exceeds a supplied 
threshold (onthresh, offthresh) the corresponding hypothesis is accepted. The sequence detector's 
performance is a result from the way support is evaluated with respect to the input samples. Two kinds of 
evaluation rules are used: 

1. Updating support in accordance with confirming or contradicting samples: Each 
consecutive confirmation has a greater contribution to the confidence in the supported 
hypothesis. In practice, a pair of variables are associated with each hypothesis: a score 
variable records the current support and an increment variable contains the increment to 
the support if the next sample confirms the hypothesis. With each consecutive 
confirmation, the increment is added to the score and then the increment variable is itself 
incremented. With each contradicting sample the increment is set back to one and not 
added to the score. (This is equivalent to computing kinetic energy, where the length of a 
consecutive sequence of one value is treated like velocity, so the score variable actually 
measures the total energy of the imperfect sequence.) 

2. Evaluating interrelations between the supports of the contradicting hypotheses: There are 
two cases: 

a. Accepting one hypothesis implies rejecting the other: When a hypothesis' score 
exceeds the corresponding threshold that hypothesis is accepted and the score-
increment pairs of both the hypotheses are reset to zero-one values. 

b. Overriding confidence buildup in an unaccepted hypothesis: When the score that 
corresponds to the currently accepted hypothesis exceeds the score that 
corresponds to the competing hypothesis, then both score-increment pairs are 
reset. This rule serves to make sure that a new hypothesis will not be accepted as 
long as the current samples have a locally better lit to the currently accepted one. 

To trace the beginnings and ends of the sequences the algorithm maintains two place variables, enter 
and exit, that hold possible beginnings of the guessed On and Off states respectively. The enter variable is 
set whenever the following three conditions hold: (1) the current state of P is assumed to be Off, (2) the 
current sample is 1; and (3) the previous enter has no support. The exit variable is treated similarly with 
respect to the other hypothesis. 

Figure 3-1 is an example of an input sample sequence. Figure 3-2 shows the execution of the 
algorithm on the first twenty nine samples of that input for kon=koff=4, implying onthresh-offthresh- 10. 
The scores in the table are given before processing of the current input. Finally, Figure 3-3 shows the 
complete results for this example. 
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1 1 1 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 1 

1 1 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 

0 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

Figure 3-1: Example of a sample sequence. 

ON OFF 
LACE SAMPLE score inc score inc COMMENTS 

0 1 0 1 0 1 enter := 0 
1 1 1 2 0 1 
2 1 3 3 0 1 
3 1 6 4 0 1 
4 0 10 5 0 1 
5 1 10 1 1 2 ON decided. 
6 1 0 1 0 1 
7 0 0 1 0 1 exit := 7 
8 1 0 1 1 2 
9 1 1 2 1 1 

10 0 0 1 0 1 exit := 10 
11 0 0 1 1 2 
12 1 0 1 3 3 
13 0 1 2 3 1 
14 0 1 1 4 2 
15 1 1 1 6 3 
16 0 2 2 6 1 
17 0 2 1 7 2 
18 0 2 1 9 3 OFF decided 
19 1 0 1 0 1 enter := 19 
20 0 1 2 0 1 
21 0 1 1 1 2 
22 0 0 1 0 1 Rule 2.b 
23 0 0 1 0 1 
24 1 0 1 0 1 enter := 24 
25 1 1 2 0 1 
26 1 3 3 0 1 
27 1 6 4 0 1 
28 0 10 5 0 1 
29 1 10 1 1 2 ON decided. 

Figure 3-2: A trace of the sequence detector's execution. 

A detailed discussion of the delineation of Imperfect Sequences may be found in [5]. 
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ON ( 0,10) : 1 1 1 1 0 1 1 0 1 1 

OFF ( 1 0 , 2 4 ) : 0 0 1 0 0 1 0 0 0 1 0 0 0 0 

ON (24,37) : 1 1 1 1 0 1 1 1 0 1 1 1 1 

OFF ( 3 7 , 5 8 ) : 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 

ON (58,73): 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 

OFF (74,84): 0 0 0 0 0 0 0 0 0 0 

Figure 3-3: Final results for the example in Figure 3-1. 

4. Experimental Results 

The corner detector described in the previous sections was tested on many curves generated by a 
Nevatia-Babu edge finder [10], a region merging segmentation program [9], and a shadow finding 
program [6]. In many cases the comers detected were based on perfect sequences of classifier tests, but 
in many others the ISD played a significant role. Figure 4-1 shows the partition of a the lower right corner 
of the shadow in Figure 1-1. The considered curve is on the left, and an ISD trace on the right. The "+" 
signs mark the suggested break points, and the comments column shows when each break point was 
decided. The break point at point 18 was rejected because the angle it forms is not sharp enough. The 
thresholds onthresh, offthresh in this case were both set to 150. 

For Figure 4-2 a line fitting algorithm was applied to each of the sequences delineated for the example 
in Figure 1-1, also repeated in the left of the Figure. Comer points were selected so as to minimize the 
sum of squared distances between the comer and the intersecting lines. The delineation of the shadow is 
almost as good as could be expected from an edge-finding program. 
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PNT DX DY tO tl t2 t3 COMMENTS 

10 -1 0 0 1 0 0 
11 -2 • -2 1 1 0 0 
11 -2 --2 1 1 0 0 
11 -2 • -2 1 1 0 0 
12 -1 0 0 1 0 0 
13 0 2 0 0 0 1 
13 0 2 0 0 0 1 
14 -1 1 0 1 0 1 
14 -1 1 0 1 0 1 
15 -2 -2 1 1 0 0 
15 -2 -2 1 1 0 0 
15 -2 -2 1 1 0 0 
16 0 -1 1 1 1 0 
17 -2 0 0 1 0 0 
17 -2 0 0 1 0 0 

+ 
18 1 1 0 0 1 1 
18 1 1 0 0 1 1 
19 0 1 0 0 0 1 
20 -1 1 0 1 0 1 
20 -1 1 0 1 0 1 
21 -2 0 0 1 0 0 
21 -2 0 0 1 0 0 
22 -1 -1 1 1 0 0 
22 -1 -1 1 1 0 0 
23 0 -1 1 1 1 0 
24 0 1 0 0 0 1 
25 -2 2 0 1 0 1 
25 -2 2 0 1 0 1 
25 -2 2 0 1 0 1 

+ + 
26 4 5 0 0 1 1 
26 4 5 0 0 1 1 
26 4 5 0 0 1 1 
26 4 5 0 0 1 1 
26 4 5 0 0 1 1 
26 4 5 0 0 1 1 
26 4 5 0 0 1 1 
27 0 2 0 0 0 1 
27 0 2 0 0 0 1 
28 2 0 1 0 1 1 
28 2 0 1 0 1 1 
29 1 1 0 0 1 1 
29 1 1 0 0 1 1 
30 0 2 0 0 0 1 
30 0 2 0 0 0 1 

+ + + 
31 3 -4 1 1 1 0 
31 3 -4 1 1 1 0 
31 3 -4 1 1 1 0 
31 3 -4 1 1 1 0 
31 3 -4 1 1 1 0 
32 1 0 1 0 1 1 
33 1 1 0 0 1 1 
33 1 1 0 0 1 1 
END 

t[3] in 

t[l] out 

t[2] in 

t[0,l] in, 
t[3] out 

Figure 4-1: Example of a partitioning of a machine-segmented region 

To demonstrate that the corners found by our algorithm are significant not only in selected cases, in 
Figure 4-3 the original curve between corners is ignored, and the corners are connected by straight lines, 
without even trying to fit the line to the original curve. (This processing will henceforth be referred to as 
beautification). The minimal significant feature (corresponding to and koffo\ Section 3) is 3 in this run. 
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0 r i 9 i n a l D a t a Wrth ISD and Line Fitting 
Figure 4-2: Fitting lines to a partitioned machine-segmented region 

As can be seen, in spite of the lines' being jagged as is characteristic in machine segmentations, the 
beautified image is suitable for line based reasoning. 

M 

Original Data Beautified 
Figure 4-3: Beautification of a machine segmentation 

Figure 4-4 shows corners detected in an edge-finder output. The typical difficulty in edge-detector 
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outputs is that the corners are smoothly rounded. Nevertheless, our corner detector does a good job of 
breaking the curves into their roughly straight components. The left side of the figure shows the original 
curve, with the break points marked, and the right side shows an idealized version, like the one in Figure 
4-3. 

Original Data with Comers Marked Beautified 
Figure 4-4: Beautification of an edge finder output 

In Figure 4-5 three of the regions in 4-3 are shown in detail, and the simplification resulting from our 
algorithm is compared to Fourier approximations. On the left is the corner detector output, in the middle a 
Fourier approximation with a comparable number of points and on the right a Fourier approximation with 
many more points. The gray line is the original curve, the black line is the approximation. All the Fourier 
approximations used nine terms. As can clearly be seen, the corner detector outperforms the Fourier in 
its data compression, in its fidelity to the original curve and especially in its corner detection and 
localization. Furthermore, the corner detector does not have to know the number of comers in advance. 

5. Conclusions 

We have presented an algorithm that can span the gap between area-based analysis and edge-based 
analysis of images - in the case where right angle comers are of interest. Instead of being based on a 
general theory of line shape analysis, this algorithm is derived from a practical paradigm that has proved 
itself in a variety of applications. The paradigm calls for designing tests that would solve the problem for 
noise-free cases and then using a detector of imperfect sequences to relax the stringency of the 
consecutivity requirement. The resulting algorithm is fast, conceptually simple, and easy to implement, yet 
performs very well in detecting and localizing significant comers, as is seen from the comparison to 
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Corner Detector 4 point Fourier 20 point Fourier 

Corner Detector 20 point Fourier 40 point Fourier 

Figure 4-5: Comer Finder compared to Fourier Approximation 
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Fourier approximations. The simplicity of our method transforms the simplification of machine segmented 
region boundaries from a project on its own right to a modest step in a larger scope system that is 
capable of deeper analysis. 
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