
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Towards a Shared Memory Hypercube

Donald C. L indsay
28 November 1988

CMU-CS-88-190 -

Copyright © 1988
Donald C. Lindsay

Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890
lindsay@k.gp.cs.cmu.edu

mailto:lindsay@k.gp.cs.cmu.edu

Towards a Shared Memory Hypercube

Donald C. Lindsay
Department of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213-3890
lindsay@k.gp.cs.cmu .edu

Abstract

Early generation hypercube computers have
shown great promise, but only message-based
programs have been successful in exploiting the
potential of these machines. The article shows
that shared memory programming techniques
can be efficient on a conventional hypercube
with appropriate communications support. Spe
cific hardware features are proposed, based on
double-ended circuit transactions.

Introduction

Although hypercube computers were construct
ed in the 1970's [6], they have only recently
become attractive. They are now seen as a way
to assemble our increasingly powerful board-lev
el (or chip-level) microsystems into products
having high aggregate bandwidths. This avoids
the mainframe approaches to high computation
al bandwidth, high memory bandwidth, and high
I/O bandwidth, all of which involve diminishing
returns. $ There is a bright promise that hyper-
cubes can be scaled to large sizes without diffi
culty. The high speed and sophistication of
recent microprocessors shows that a hypercube
may be composed of quite powerful elements,
instead of being "an army of ants". Hypercubes
are already supporting large disk farms, and it
seems possible to eliminate disk cabling by dis
persing today's increasingly tiny disk drives
throughout a machine. A large number of
efforts have shown that hypercubes can be pro
grammed, and even time-shared, and that many

+ Some examples: almost any cooling method;
thin film interconnection; the extensive cross
bars of a multiported, highly interleaved memory.

applications can exploit the power of these
machines [8,9,15].

If there is a problem, it is that the early genera
tion machines were unforgiving. For example,
performance was quite dependent on the pro
grammer arranging that messages mostly went
to directly adjacent nodes. In order to achieve
this high locality, tasks and data had to be
mapped onto the machine with great care.
Although there is now a record of experience
and success in this area, it is clear that this was
limiting.

In a similar vein, the use-of message based pro
gramming paradigms has often resulted in high
latencies, which can easily impact performance if
the nodes are not multiprogrammed. It has
become important to measure how synchronous
an application can be, since highly synchronous
codes can carefully overlap all message waits
with computation.

Message based programming is not without
drawbacks, since control transfer must occur in
code which would otherwise only do data trans
fer. Messages impose a style on programming,
which can be intrusive on the application logic.
(For example, porting a shared-memory pro
gram involves recasting data references into
pairs of procedure calls - one to start the refer
ence, and one to obtain the answer. The pro
grammer may want to distort the logic so as to
introduce computation between the two calls.)

Communications Alternatives

All first-generation hypercubes used store-and-
forward communication. The hardware didn't
have to know about forwarding, since it simply

University IBagaei
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

mailto:lindsay@k.gp.cs.cmu

interrupted the processor at each intermediate
node. However, this reduced performance, by
consuming both processor cycles and memory
cycles at each stage. One solution is to move
message buffering out of the node memory, but
then the communications hardware at each
node must have increased resources (local
RAM), or else message sizes must have a very
small upper bound. Such bounds will cause mes
sage fragmentation. This has costs, which may
be large if the destination must deal with
reassembling the fragments (which may arrive
out of order). And, in any case, buffered
schemes have particularly high latency if there is
any network contention.

Circuit switching is an attractive alternative. In
these schemes, a path to the destination is con
structed, and later "torn down" when the mes
sage has been sent. These schemes require a
data crossbar at each node, which is quite easy
to build. (The node must switch six to twelve
paths, which may be as little as one wire wide.
Commercially available nonblocking crossbar
chips are as large as 32 x 32 bits.)

At first glance, circuit switching would appear to
offer absolutely minimum latency, particularly
when a message must travel several hops.
After all, the data simply flows through the inter
mediates, and is not stored until it reaches the
destination. However, the circuit setup phase
can be done in a variety of ways. In some sys
tems, a fixed path is chosen, and the circuit is
not established until all the elements of the path
are simultaneously free [2,13]. A more desirable
method would attempt to do dynamic adaptive
routing. This would retain the (potential) advan
tages of store-and-forward, such as tolerance
of node failures, tolerance of network "hot
spots", self-adaptation to missing hardware,
and so on.

The question about any such routing method, is
whether it can achieve these advantages, with
out paying too high a price in search times, link
traffic, or risk of deadlock. The author has writ
ten a simulation which uses the K(K-1) method,
since the Caltech/JPL Concurrent Processor
Group is constructing hardware support for this
method [3,14]. Some parameters of the simula
tion are listed in Table 1 , and Figure 1 shows
some encouraging results. An overall conclusion
is that the K(K-1) method (described in the

Appendix) appears to have the claimed proper
ties of stability and low latency.

Coherence

A memory scheme is said to be coherent if the
value returned by a LOAD instruction is always
the value stored by the last STORE instruction
with the same address [5]. This is obviously a
crucial property, but on a multiprocessor, this
definition is actually imprecise, and we get into a
realm of "strong" and "weak" orderings. When
an application is spread across unshared memo
ries, this property is in some trouble. (For exam
ple, messages may cross in flight.)

This does not cause semantics trouble, since
message protocols can be found for any desired
semantic property. The problem is one of effi
ciency, since messages not only travel, but must
be sent, received, and decoded, at the cost of
memory traffic, procedure calls, kernel entries,
and task switches. It is in this manner that a sim
ple reference may wind up costing as much as
several milliseconds.

This cost does not have to be paid for every
variable. However, it certainly has to be paid
for every variable which synchronizes the appli
cation's tasks.

Double Ended Circuits

A critical aspect of synchronization is that it
involves a double-ended flow of information
[11], (Note, for example, the test-and-set
primitive, commonly found in instruction sets.
This instruction leaves data in two places, not in
one.) Given that a circuit has been established
between two nodes, it can reasonably be held
open for some short t ime, and data flow can
occur in either direction, or in both, promptly
and naturally.

The statement above glosses over some aspects
of implementation. It may be that each bidirec
tional channel is built as two unidirectional chan
nels, as on the NCUBE/ten and iPSC/2
[10,13]. (In this case, the setup phase must
instruct all participating nodes that both chan
nels must be seized.) It may be that channels
need to be "turned around", in which case partic
ipating nodes must respond to backchannel sta
tus information, or to per-channel state

Page 2

machines, or perhaps respond to control infor
mation embedded in the data [13]. In general,
these issues appear to have adequate solutions.
I therefore conclude that it is both feasible and
reasonable to use the built circuit in one direc
tion, and then in the other direction, before
tearing the circuit down.

Test and Set

Given that the communications system offers
double-ended circuits, the first and most obvi
ous idea is to implement some flavor of test-and-
set. A simulation of this was run, and the distri
bution of latency found by this simulation is
shown in Figure 2. It was assumed that twenty
bytes of information are sent, and that the
same amount is returned. (This number was cho
sen since it seemed adequate to convey a value:
a virtual address: an address space identifier: a
serial number: and a checksum.) It was also
assumed that the destination could perform the
test-and-set (or compare-and-swap, or fetch-
and-add) locally, in four microseconds. (This
number was chosen since it allows enough mem
ory cycles to perform table walks.) As the fig
ure shows, the simulated 128-node system can
support some tens of thousands of these syn
chronizations per second per node. As a gener
al conclusion, it seems fair to say that the simu
lated system is very efficient.

Since the K(K-1) method propagates a 32 bit
header during the setup phase, it might be possi
ble to (conditionally) extend this header by
twenty bytes, with the aim of speeding up these
transactions. This piggybacked implementation
has also been simulated, and essentially it
reduced the modal latency from nine microsec
onds to seven. The cost of this scheme would
be increased complexity in the communications
logic, plus extra buffering to hold the header.
(It was assumed that the logic is smart enough
to begin acting in the normal way as soon as
the normal header has arrived, but without wait
ing for the next twenty bytes to arrive.)

The efficiency of this operation is not heavily
dependent on the link bandwidth. If the simulat
ed bandwidth is reduced by a factor of eight,
then the various measures of latency increase by
less than a factor of four. If the piggybacked
operation is not worthwhile in a specific real sys
tem, it would probably be because the system's

software overheads are completely dominant.
We shall return to this topic in the section on
protocols.

Generalizing

We have argued that double-ended circuit trans
actions between non-adjacent nodes can have
efficient hardware support. It seems easy
enough for a communications chip to perform a
test-and-set at a physical memory address: after
all, the chip will have DMA, and gate arrays of
100,000 gates are now on the market. But in a
sophisticated system, test-and-set is not
enough, and physical addresses are not
enough. The chip may have to deal with virtual
circuits, channel identifiers, and serial numbers.
The operating system may require other opera
tions, such as compare-and-swap or fetch-and-
add. In short, programmability is needed. If the
communications chip is microcoded, then this
useful generality can be achieved. If the
microcode can be easily modified, then the func
tions can be modified in the light of suggestions
from the operating system programmers, and
from the applications programmers. The commu
nications system can also be more readily adapt
ed to suit different node processors.

No matter how general the communications log
ic becomes, there may be limitations on its
action. The chip might receive virtual addresses,
and need to do MMU translations. It may need
to manipulate the processor's cache - for exam
ple, to cause cache flushes. Therefore, the need
ed generality may be best provided by interrupt
ing the node's processor, which is not limited in
this regard. This approach gives access, not
only to the MMU and to the cache, but to an
arithmetic engine.

The interrupt approach has the disadvantage
that it places requirements on the processor,
both of suitability and of speed. The speed
issue is not simply a question of impact on the
processing bandwidth. There is also the issue
that the circuit is being held, and if it is not
released with some promptness, then network
contention may result. Also, the application may
choose to have all of the nodes referencing a
single node, perhaps to obtain work from a cen
tralized queue. As with any potential bottleneck,
we must be quite careful about efficiency.

Page 3

Luckily, some recent microprocessors have quite
excellent interrupt characteristics. For example,
the Motorola 88000 can store the state of its
pipelines sideways into "shadow" registers, and
then restore them in parallel [12]. This allows a
very small (but non-null) interrupt routine to run
in a dozen-odd clocks. Even better, this time is
not the time until the currently executing pro
cess resumes, but the time that the process is
slowed by. (This of course assumes that the
added memory accesses did not generate cache
faults or translation buffer faults.)

If the interrupt approach is viable in a particular
system, then the way is open to more general
things, such as an Ada rendezvous, or a remote
procedure call (RPC). In this case, there is less
need of hardware complexity, since system soft
ware can be modified as the need arises. The
correct semantics of an operation may be much
more easily obtained because the return path
down the circuit is present and guaranteed.
However, for more extended operations, there
is incentive to release the circuit, and then send
results as a later reply. In any case, longer oper
ations are probably best done by having the
interrupt routine (or the communications logic)
place them into the processor's scheduling
queue. Short operations, such as test-and-set,
should be both useful, efficient, and semantically
desirable when implemented over a single circuit.

Paging

With the availability of operations such as fetch-
and-add, an application can use standard
shared-memory techniques with fair efficiency.
These conceptually simple mechanisms can do
much to ease the software task. However, syn
chronization is not the only area where the mes
sage paradigm intrudes into application logic.
On shared memory machines, virtual memory
techniques have become increasingly popular,
because they do not intrude: they are decoupled
from the application level, and hence amenable
to tooling, to selectable policies, and in general
to the later addition of sophistication.

Given adequate bandwidth, it is not difficult to
handle a page fault by having the operating sys
tem send a message. The recipient of the mes
sage might then return a page as a second
(much larger) message. This should work well
enough if contention is not high and if the com

munications network can handle the message
(non)locality which the system achieves.

A page fault message is quite important, because
the originating process cannot proceed until the
page fault has been satisfied. The message
latency may not be crucial, particularly if the
nodes (which may, after all, be multiprocessors)
have many other processes to run. However,
fault latency may be directly or indirectly reflect
ed in the time-to-solution, and therefore it is
important to explore any possibilities of
improvement.

A now obvious idea is that one might pull a
page, rather than having some other node push
it. This could be done by adding a communica
tions mode which increases the size of the K(K-
1) header, from 32 bits to perhaps 96. Inter
mediate nodes along the built path would under
stand that the mode's data flow, although unidi
rectional, would be backwards. The destination
node would obtain the appropriate table entry,
and then simply stream the page out of its mem
ory.

Protocols

The idea of pulling data across the hypercube is
most attractive for smaller pieces of data, since
the reduced overheads of a pull operation are
more relevant when the overheads are not domi
nated by large transfer times. This brings up
the idea of peek and poke operations, which pull
or push as little as a single word. Although
these operations can replace certain message
exchanges, their semantic power is actually
much greater. They implement directly shared
memory, without any wait for a message server
to choose to answer. They allow non-invasive
status monitoring, whereby non-busy nodes can
check around without putting a processing load
on the busy nodes. (Dynamic load balancing
could be highly effective in such a system.) They
allow ideas such as remote pages, wherein a
node writes to a page by doing pokes to it. We
can imagine an operating system offering repli
cated pages, which nodes read from by doing
local reads, and write to by doing pokes to ail
the other copies. (This could actually be quite
efficient, if writes were sufficiently dominated by
reads.) Even better, we can imagine an operat
ing system which replicates pages, or which
migrates pages, or which load balances, with a

Page 4

minimum of explicit involvement from the appli
cation logic.

All of the primitives suggested above could be
used directly by application programs. Howev
er, applications really should live in a virtual mem
ory, and really should go through task schedul
ing, and so on, for quite good reasons. These
reasons are at odds with obtaining flat-out effi
ciency, and in fact software generality can cause
large software overheads. These overheads are
a problem if we wish to exploit the high efficien
cies of the new primitives.

There is an answer in the idea of protocols.
Rather than merely offering primitives, a kernel
should offer (and use) entire protocols, support
ed by low-level code. The reason is that a proto
col can "know" what it is doing, and therefore
can be heavily tuned. For example, a protocol
may be able to do synchronizations with short
physical addresses, because only some specific
kernel data structure is being addressed. (A load-
balancing protocol, or a clock-synchronizing
protocol, might do probes involving no address
es at all.) Low-level code can be hand crafted,
and can do things like spin (rather than task
switch), knowing that an answer will return in
microseconds. In short, kernel support which is
specific, rather than general, can in many cases
realize the potential efficiency of the primitives.
For these reasons, the operating system fea
tures which we have suggested, could have
good or even excellent performance.

Caches

If page faults can operate across the cube, then
we would like to know if cache faults can do the
same. At first glance, it seems reasonable
enough, since the pull of a cache line should
have approximately the same performance as a
test-and-set operation, and Figure 2 shows this
to be quite fast. Cache protocols exist that
don't need to do broadcasts [1].

There a number of problem areas. In general,
they can all be solved, but they must be solved
very efficiently, or else a coarser-grained opera
tion, such as page faulting, will be more effec
tive.

The obvious way to obtain high efficiency is to
limit or remove the involvement of software in

the most frequent cases. The simplest hardware
arrangement would be to have the communica
tions logic in the path of signals from a node's
cache/MMU to its main memory. If certain high-
order bits of the "physical address" are non
zero, then the communications logic would
know that the referenced memory is off-node,
and that the reference must be communicated.

The page tables of each node could specify that
certain virtual addresses were at the special kind
of physical addresses. If the address range of a
node is large enough to address the collective
physical memories, then a quite simple mapping
exists to be used. In any case, there is no need
that the "physical address" generated at one
node, be interpreted as a physical address by
the next node. There are also games that can be
played by placing context registers in the com
munications logic, although these registers
might have to be modified at each task switch.

The suggestions presented above are incom
plete, because they have not dealt with the
actions to be done on a write, or the actions
required at the receiving end of a reference.
There has to be a protocol for the cache directo
ry information, even if multiple copies are disal
lowed. Page map information has to propagate
from node to node, or else be bundled into load
modules.

The evaluation of cache protocols is not com
pletely straightforward. For example, spin
loops on semaphore variables can make proto
cols thrash, but rather than search for a perfect
protocol, it might be better to have the users
not do that. (They could keep semaphores on
uncached pages, and use remote fetch-and-add
operations.)

In general, it seems possible that the above sug
gestions can be extended in a workable manner,
without requiring any further hardware sup
port. Simulations of such a solution will have to
be detailed, since they will be affected by details
of the host (such as the hardware-supported
cache line size). Cache simulations should also
be trace-driven, and not based on random num
ber generators.

If further hardware were to be added, it would
probably be an extra cache, in parallel with a
node's normal one, and matching cache control
logic that would be integrated with the communi-

Page 5

cations control. The reason for this is that the
normal cache has presumably been optimized
under assumptions that are being violated.
Adding a communications cache opens up the
possibility of choosing a cache organization,
and in particular a cache line size, which are well
matched to the specific system.

Conclusions

This article has presented some corroboration
of published results on K(K-1) routing, which
appears to be of practical use. Further, imple
mentations of this method seem to be quite rea
sonable starting points for implementations of
double-ended circuit transactions. These opera
tions may allow efficient remote synchroniza
tion, remote procedure calls, and a variety of
shared-memory and virtual-memory arrange
ments.

The basic ideas described in this article do not
require particularly expensive hardware. The
major difficulty would be the complexity of the
communications controllers, but the proposed
JPL controller would not be affected to the
point of requiring two large gate array chips
instead of one. The bandwidth requirements are
not as high as that used in the simulation, since
a lower bandwidth would mostly change the
page fault rate that causes network contention.
A low bandwidth might affect whether cache
faulting could ever be supported, and it would
certainly affect the design of any communica
tions cache.

The approach suggested in this article addresses
the fundamental barriers to the progress of
hypercubes, by allowing more generalized sys
tems, which offer broader programming
paradigms. It is hoped that this approach will
allow existing and future applications to be more
easily and directly cast into efficient parallel
forms.

Appendix I

Adaptive Routing

If the message traffic in a network is composed
of tiny messages (such as synchronization
actions), then the best scheme is to give up easi
ly, free the seized resources (to prevent dead

lock), and then retry a very short time later.
This is true because a path which is busy at this
moment, will be free shortly. It simply does not
pay to investigate numerous alternative paths.

If the message traffic is composed of huge mes
sages (such as large data pages), the best
scheme is to investigate every possible alterna
tive path, since the paths that don't work now,
are going to still not work a moment from now.
The number of paths is factorial in the path
length K, but it can be best to try all K! paths.

The parallelism of the available hardware deter
mines how much an attempt will lock out
attempts by other nodes. The author's simula
tion assumes that an intermediate node can be
attempting N path setups at once, one for each
incoming link. This simulated system can occa
sionally benefit from searching K! paths. When
the assumption is changed, and an intermediate
node is only allowed one path setup at a time,
then excessive searching quickly becomes coun
terproductive.

In a real system, the messages vary in size, and
the mix varies in time. In this situation, the best
approach may be the avoidance of extremes.
That appears to be the virtue of the scheme
described in Appendix II.

Appendix II

Implementing a K(K-1) Search

The "K" family of routing schemes have the
property that of K! possible paths, they will
search K paths, K(K-1) paths, K(K-1)(K-2)
paths, and so on, all the way to the family mem
ber which searches all possible paths. The fami
ly has the pleasant property that a single imple
mentation offers the entire family. To choose a
particular member, it is only necessary to supply
a parameter at the originating node.

As described in [3,7,14], a "hyperswitch" node
attempts to construct a path by sending a
probe to one of its directly connected neigh
bors. It chooses this neighbor by two criteria.
The first criterion is the obvious, that the link is
free, and that this step represents progress
towards the goal. Progress is easy to deter
mine. The basic, defining property of a hyper
cube is that one numbers each node so that

Page 6

nearest neighbors differ in one bit position. Fur
ther, the bit position in which the numbers dif
fer, shows which link either should use to talk to
the other. This means that the distance
between two nodes is simply the Hamming dis
tance of their node numbers. The exclusive-or
of the source's node number, and the destina
tion's node number, is thus a bit mask giving
the cube dimensions that must be traversed.
We may traverse the dimensions in any order:
hence there are K! paths.

The second probe criterion is the special contri
bution of the K family. A history tag is kept,
which is a bit mask showing the dimensions that
are thought to be workable. A source node cre
ates a fresh history tag, and sends it as part of
the probe.

When a destination node receives a probe, it
knows this because the incoming header has a
destination field which matches the local node
number. An ACK status signal is sent back (if
possible), and this status propagates through
any intermediates to the sender, who then
knows that the circuit has been built.

When an intermediate node accepts a probe, it
chooses an outgoing link which is free, and
which is permitted by the incoming history tag.
A probe is sent, and if it results in an ACK,
then the setup is done.

If a node receives a NAK, then it will turn off
the corresponding bit in its copy of the history
tag. It then attempts to choose another outgo
ing link to probe. If there are no free links per
mitted by the history tag, then a NAK status is
returned.

The method described above needs two refine
ments. The first is a relaxation, whereby a
probe that is "near enough" to the destination
will reset the history that was sent to it. (This is
determined by a distance field in the header, and
is the choice that distinguishes between the
members of the K family.) The second refine
ment is a pruning step. It uses the observation
that if there are too few one-bits left in the his
tory tag, then further probes will be stopped
short of the destination, and therefore needn't
be even attempted.

average message could try up to 4(4-1) = 12
paths, by doing up to 21 probe actions. JPL
reports that a probe action will be done in well
under one microsecond.

For example, on a 256-node 8-cube, the aver
age message would want to go 4 hops, and this

References

1. A. Agarwal, R. Simoni, J . Hennessy, and M.
Horowitz, "An Evaluation of Directory Schemes
for Cache Coherence" in Proceedings of the
15th Annual International Symposium on Com
puter Architecture {Computer Architecture News
Vol. 16 #2 P.280, May 1988)

2. Ametek Computer Research Division, "Series
2010 System General Description", March
1988

3. E. Chow, H. Madan, J . Peterson, D. Grun-
wald, and D. Reed, "Hyperswitch Network for
the Hypercube Computer" in Proceedings of the
15th Annual International Symposium on Com
puter Architecture (Computer Architecture News
V o l 1 6 # 2 P . 9 0 , May 1988)

4. M. Denneau, P. Hochschild, and G. Shich-
man, 'The Switching Network of the TF-1 Paral
lel Supercomputer" in Supercomputing, P.7, Win
ter 1988

5. M. Dubois, C. Scheurich, and F. Briggs,
"Memory Access Buffering In Multiprocessors"
in The 13th Annual International Symposium on
Computer Architecture {Computer Architecture
News Vol. 14 #2 P.434, June 1986)

6. Electronics, "Hypercube 'federates' Eight
Microcomputers", 10 May 1979 P.70

7. D. Grunwald, and D. Reed, "Networks for
Parallel Processors: Measurements and Prog
nostications" in Proceedings of the Third Con
ference on Hypercube Concurrent Computers
and Applications, 1988, P.610

8. J. Gustafson, G. Montry, and R. Benner,
"Development Of Parallel Methods For A 1 0 2 4 r
Processor Hypercube" in SIAM Journal on Sci
entific and Statistical Computing, Vol. 9 #4
P.609(July 1988)

9. J . Gustafson, "Reevaluating Amdahl's Law" in
Comm. ACM Vol 31 #5 P.532 (May 1988)

10. J. Hayes, T. Mudge, Q. Stout, S. Colley, and
J. Palmer, "A Microprocessor-based Hypercube
Supercomputer" in IEEE Micro, October 1986
P.6

11 . M. Herlihy, "Impossibility and Universality
Results for Wait-Free Synchronization", Techni
cal Report CMU-CS-88-140, also in Proceed
ings of the Seventh ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Comput
ing, August 1988

12. Motorola Inc., "MC88100 Technical Summa
ry", Document BR588/D, 1988

13. S. Nugent, 'The iPSC/2 Direct-Connect
Communications Technology" in Proceedings of
the Third Conference on Hypercube Concurrent
Computers and Applications, 1988 P.51

14. J . Peterson, E. Chow, and H. Madan, "A
High-Speed Message-Driven Communication
Architecture" in Proceedings of the 1988 ACM
International Conference on Supercomputing,
Saint-Malo, France, July 1988, P.355

15. C. Seitz, 'The Cosmic Cube", in Comm.
ACM Vol 28 #1 P.22(January 1985)

Page 8

Table 1 . Parameters of the s imula t ion , as der ived f rom [3].

Bandwidth per link 128 Mbits/second
Simultaneous DMA streams to/from memory 3
Header size 32 bits
Switch time, per hop 780 nanoseconds

Figure 1 . Effects of the hypercube order on message latency. Message size was 512 bytes plus 16
bytes. Messages were generated by a Poisson process, with a mean of 2500 messages per second
per node. (Therefore, message interarrival time had a negative-exponential distribution, with a mean
of 400 microseconds.) Message source and destination were equiprobable. Each simulation was run
until 11,000 messages had exited; the first 1,000 were ignored for statistical purposes. Each data
point is the average of two runs, using different random number seeds.

The left hand graph represents the mean latency of the messages, in microseconds. (Note that the
latency axis does not start at zero.) The horizontal line represents the minimum possible latency, that
is, the latency of a message which travels one hop without contention. (Since some of the error
bars extend below this, the distribution must be skewed. See, for example, Figure 2.)

The r ight hand g raph represents the ratio between the mean latency, and the latency which would
have been observed (for that mean message distance) if the network had had no contention.

Note that a cube of order 12 contains 4096 nodes.

Page 9

50 r

40

30

20

1 0 h

30 m ic roseconds
(mean) per node

5 10 15 20 25 30 35 40

40 mic roseconds
(mean) per node

H s u •i i i i

5 10 15 20 25 30 35 40

50 r

40

30

20

10 -

50 m ic roseconds
(mean) per node

5 10 15 20 25 30 35 40

100 mic roseconds
(mean) per node

J i i i i

5 10 15 20 25 30 35 40

Latency

Figure 2. These histograms represent the latency for a test-and-set operation. Each graph
shows percentage of messages versus latency (to the nearest microsecond).

The four graphs differ in the arr ival rate of requests. The mean interarrival time, per node, was set
at (respectively) 30, 40, 50, and 100 microseconds. In all cases, the minimum latency is 7.5 microsec
onds: the mean is (respectively) 13.9,11.4,10.7, and 9.9 microseconds: the mode is 9 in each case.

The simulation parameters are as in Figure 1, except that the cube order has been fixed at 7 (that is,
128 nodes). The operation sends 20 bytes down the built circuit, and receives 20 bytes back down
the same circuit, before the circuit is torn down. It is assumed that the destination has a turnaround
time of four microseconds in which to do the test-and-set on its local memory.

Page 10

