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Abstract 

This paper discusses issues and techniques to automatically compile object and sensor models 
into a visual recognition strategy for recognizing and locating an object in three-dimensional 
space from visual data. Historically, and even today, most successful model-based vision 
programs are handwritten; relevant knowledge of objects for recognition is extracted from 
examples of the object, tailored for the particular environment, and coded into the program by 
the implementors. If this is done properly, the resulting program is effective and efficient, but it 
requires long development time and many vision experts. 

Automatic generation of recognition programs by compilation attempts to automate this process. 
In particular, it extracts from the object and sensor models those features that are useful for 
recognition, and the control sequence which must be applied to deal with possible variations of 
the object appearances. The key components in automatic generation are: object modeling, 
sensor modeling, prediction of appearances, strategy generation, and program generation. 

An object model describes geometric and photometric properties of an object to be recognized. 
A sensor model specifies the sensor characteristics in predicting object appearances and 
variations of feature values. The appearances can be systematically grouped into aspects, where 
aspects are topologically equivalent classes with respect to the object features "visible" to the 
sensor. Once aspects are obtained, a recognition strategy is generated in the form of an 
interpretation tree from the aspects and their predicted feature values. An interpretation tree 
consists of two parts: a part which classifies an unknown region into one of the aspects, and a 
part which determines its precise attitude (position and orientation) within the classified aspect. 
Finally, the strategy is converted into a executable program by using object-oriented 
programming. One major emphasis of this paper is that sensors, as well as objects, must be 
explicitly modeled in order to achieve the goal of automatic generation of reliable and efficient 
recognition programs. 

Actual creation of interpretation trees for two toy objects and their execution for recognition 
from a bin of parts are demonstrated. 
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1. Introduction 
A large class of practical vision problems is object recognition, that is, recognizing and 

locating objects in the scene by means of visual inputs. To name a few, visual part acquisition on 

a conveyer belt or from a bin of parts, target recognition in aerial images, and landmark 

recognition by a mobile robot, all belong to this class of problems. In most of these cases, we 

have some prior knowledge of the objects of interest, such as the shapes, sizes, reflective 

properties, and so forth. Model-based vision [7,18] seeks to actively use such prior knowledge 

of objects for guiding the recognition process in order to achieve efficiency and reliability. 

One of the critical issues in building a model-based vision system is how to quickly extract and 
organize the relevant knowledge of an object and to systematically turn it into a vision program. 
In particular, it is important to know what features of objects are useful for recognition, and what 
control is to be applied to deal with possible variations of the object appearances. In earlier 
vision systems, such knowledge of objects has been extracted from examples of the object, 
tailored for the particular environment, and coded into the program by the implementor. For 
example, in interpreting incomplete line drawings of polyhedra of known size and shape, 
Falk [20] analyzed failure patterns of line extraction and implemented strategies to cope with 
them. In fact, even today, most successful vision systems are developed based on the 
implementors' insight into the specific problems. Some representative examples include 3D 
object recognition systems in range maps by Oshima and Shirai [53] and by Faugeras and 
Hebert [21], aerial photointerpretation systems by Nagao and Matsuyama [51] and by 
McKeown, Harvey and McDermott [47], bin-picking systems by Perkins [56] and Ikeuchi and 
Horn [35], and the NAVLAV mobile robot vision system by Thorpe, et al [61]. In these 
systems, features and recognition strategies to be used are selected by the researchers. Although 
the resulting system may be effective and efficient, this "hand-coding" method requires large 
amounts of time and deep vision expertise for building model-based vision systems. 

Quite often, a geometrical model of the object is available which represents the three-
dimensional shape information by means of polyhedra, generalized cylinders, or other 
primitives. Given such an object model, visual recognition of an object amounts to determining 
its attitude (position and orientation) in space by using its various features which are observable 
in the images. In this view, one can imagine a generic model-based vision system which, given 
an input image or other sensory data, recognizes an object in it by means of a geometric 
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reasoning mechanism which can deduce possible object attitudes from apparent object features. 
The historical and pioneering vision system by Roberts [58] can be viewed as such a generic 
approach. It reduced the problem of object matching to that of estimating the parameters of 
transformation (rotation, translation, size, and projection) by minimizing a matching error 
between model vertices and image joints. 

Grimson and Lozano-Perez [25] have formulated the problem of object localization 
measurements (such as position) within a hypothesize-and-test search paradigm. When 
matching a set of observed surface points with a set of polyhedral object models, the possible 
matching pairs are expanded as a search tree. The matcher prunes this tree by using relational 
constraints between pairs of measurements which the object models impose if the matching is 
correct so far. The method has been applied to 2D and 3D object recognition using sparse range, 
touch, and orientation sensory inputs. 

Probably, however, the most representative effort toward domain-independent model-based 
vision systems is ACRONYM by Brooks [12], ACRONYM takes models of objects represented 
by generalized cylinders and their spatial relationships. Recognition or matching of the models 
to an input image is performed by using a symbolic algebraic reasoning system which reasons 
about projection and relational constraints on geometry. ACRONYM has succeeded in 
recognizing airplanes in aerial images. 

When performing matching, a generic domain-independent model-based system relies on a 
generic reasoning mechanism: numerical optimization of some matching criterion, constraint 
satisfaction by symbolic reasoning, or tree search by hypothesize-and-test. As a result, the 
system uses the object model interpretively, that is, the knowledge is extracted from the model 
and transformed into an execution strategy at run time. As a result, the system may not be most 
efficient for the particular object in hand. This is a necessary price that an interpretive method 
must pay for its generality and flexibility. 

One method for increasing efficiency is compilation. That is, the relevant knowledge in the 
object models is extracted and compiled into an object recognition strategy off-line so that as 
little computation as possible is spent at run time. Interestingly enough, we can regard some of 
the earlier vision work as examples of compilation. The generalized Hough transform by Ballard 
[3] and the direction coding method by Yoda, Motoike, and Ejiri [65] can be regarded as 
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compiling the object shape in the appropriate transform so that the recognition reduces to peak 

finding in a histogram. However, these methods have limited applicability. 

Bolles and his colleques used a "local-feature-focus" recognition strategy for recognition of 3D 
objects in a jumble [8,9]. The method involves selecting a class of "focus" features of similar 
shape on the object Matching begins with the "focus" features. In selecting appropriate features 
for the strategy, they precomputed various feature values from a given CAD model of objects. 

Goad [23] presented one of the first and most systematic methods for automatic generation of 

object recognition programs based on compilation. His method compiles visibles edge of an 

object into an interpretation tree. Each branch of the tree is constructed to execute three stages: 

prediction, observation, and back-projection. In the prediction stage, a model edge is extracted 

from the node based on the current hypothesis of viewer direction, and the position and 

orientation of its projection in the image is predicted. In the observation stage, the list of image 

edges is checked to see whether any has the predicted qualities. In the back-projection stage, if 

an edge with predicted qualities was found in the prediction stage, then the match is extended to 

include this edge, and the measured position and orientation of the edge are used to refine the 

current hypothesis as to the location of the camera. During the compilation mode, stages and 

nodes which will become unnecessary at run time are detected and pruned. Various conditions 

and data structures to be used at run time are also computed. This way, much of the computation 

at run time is saved. The method for selecting the most efficient sequence of edges to be 

examined was not discussed, however. 

Koezuka and Kanade [41] constructed an interpretation tree automatically from a model of a 

polyhedral object by using parallel edges as initial features to be used in matching. Parallel line 

features remains parallel over a wide range of viewing directions, but the direction and distance 

between a pair of lines still provide strong constraints on viewer direction, and can be used to 

create a reliable and efficient interpretation tree. 

Dceuchi [34] presented a compilation technique based on visible regions. The system classifies 
various views into aspects, where aspects are defined as topologically equivalent views. The 
interpretation tree is constructed so that an unknown view will be classified into an aspect and 
then its attitude will be determined precisely. He developed rules to generate an interpretation 
tree from a geometric model. The rules determine what kinds of features should be used in what 
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order and generate an interpretation tree. 

Automatic generation of recognition programs by compilation of object models tries to 
combine the merits of a hand-written system and those of a generic interpretive system. A 
general compilation program generates a tailored special program from a given 3D model. A 
large portion of the computation needed for using the object model, such as analysis of the best 
recognition strategy, analysis of occlusion, and estimation of expected feature values, can be 
done at compile time, and the result can be compiled into the special program. In some cases, the 
object properties might be represented in the flow of the program rather, than its data structure. 
As a result, the compiled special program to run on-line can be more efficient than generic 
programs. Yet, since the program is generated automatically, the development time could be 
reduced. 

This paper discusses issues and techniques for automatic generation of recognition programs 
by compilation. The discussion will be based on our current approach, whose key steps are 
object modeling, sensor modeling, prediction of object appearances, strategy generation, and 
program generation. An object model describes geometric and photometric properties of an 
object to be recognized. A sensor model specifies the sensor characteristics in predicting object 
appearances and variations of feature values. The appearances can be systematically predicted 
and grouped into aspects, and a recognition strategy is generated in the form of an interpretation 
tree from the grouping and the predicted feature values. Finally, the strategy is converted into an 
executable program by using object-oriented programming. A major emphasis of this paper is 
that sensors, as well as objects, must be modeled explicitly in order to achieve the goal of 
automatic generation of reliable and efficient recognition programs. First, we will present our 
initial system for generating an interpretation tree for bin-picking using photometric stereo. This 
example system will introduce various concepts as well as issues. 

2. Compiling an Object Model into an Interpretation Tree 

This section will present an example of compilation of a geometric object model into an 
interpretation tree. The example task is a bin picking task. The object shown in Figures 1 (a) 
and (b) is the sample object and the scene in Figure 1 (c) is a typical image from which the 
object must be recognized and located. 

A 3D object can give rise to an infinite number of 2D shapes in an image. These apparent 2D 



Figure 1: Object recognition example: (a) Photo of a sample object; (b) 
Geometric model of the object; (c) Sample scene. 
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shapes of a 3D object, however, can be grouped into a finite number of equivalence classes, 
called aspects [39,40], where each aspect contains the apparent shapes arising from the same set 
of visible features of objects, such as faces, edges or vertices, with the same topological 
relationships among them. We can therefore distinguish two types of shape changes: one is shape 
change between aspects (called aspect change); the other is shape change within an aspect (called 
linear change). Figures 2(a) and 2(b) show examples of an aspect change and a linear change, 
respectively, for the object in Figure 1. 

Use of aspects for object recognition has been proposed by many researchers. Our goal here 
is, given a model of an object, to automatically develop an interpretation tree which first 
classifies the input image of an object into one of the possible aspects, and then calculates the 
exact attitude of the object. It should be noted that different features are most likely required to 
resolve aspect changes than are required to resolve linear changes. Also, in resolving linear 
changes, appropriate techniques and features might be different depending on the particular 
aspect in which the linear change occurs. Thus, it is essential for both competence and 
efficiency to compile a geometrical model into an interpretation tree so that the most appropriate 
features among all the available features are used at each determination stage to resolve aspect 
and linear changes. 

2.1. Extracting Aspects 

For object recognition purposes, aspects are defined as topologically equivalent classes with 
respect to the object features "visible" to the sensors. For example, aspects have been defined by 
visible lines [40, 16]; by visible vertices [60, 62]; and by occluding boundaries [28, 26]. As will 
be explained later, our example system will use photometric stereo [64, 33] as the major sensor. 
Photometric stereo determines surface orientations by illuminating the surface with three light 
sources. Thus we categorize the aspects based on visible faces for photometric stereo. 

Viewer or camera configurations, which result in various appearances of a 3D shape, consist of 
six degrees of freedom in general: three degrees of freedom in translation, and three degrees in 
rotation. However, in most industrial vision problems, such as bin picking, we can assume 
orthographic projection as the first approximation. This is because the camera is set up at a 
relatively far and fixed distance to the objects and the objects are imaged only near the center of 
the camera's field of view. This means that the three translations are either known or constant 



Figure 2: Examples of aspect change and linear change of object appearances: 
(a) Aspect change where sets of visible surfaces differ, (b) Linear change where 
only the shape of each surface is skewed. 
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Since a rotation around the camera optical axis results in a rotation of the image, not in a change 
of appearances, the two degrees of freedom which specify the viewer direction are the dominant 
ones in determining aspects.(See Figure 3). 

We will thus explore changes of apparent shapes over the set of possible viewer directions. A 
viewer direction has two degrees of freedom and can be described as a point of the Gaussian 
sphere which is placed at the center of an object 

Each apparent shape (thus, each point on the Gaussian sphere) can be characterized by those 
faces visible from that viewer direction. Suppose we have n faces, 5 i yS 2,...,5 n, where one face 
corresponds to either a planar surface or a curved surface which will be detected as a single 
surface patch in photometric stereo. Let the variable X- denotes the visibility of face Si9 that is 

X—S1 f a c c is visible; 
LO otherwise. 

An n-tuple (Xl9X2,...rXn) represents a label of an apparent shape in terms of face visibility. This 
label will be referred to as a shape label, and we can characterize each viewer direction with this 
label. 

The set of contiguous viewer directions that have the same shape label forms an aspect. There 
are two methods to enumerate possible aspects of a given object: an analytic method and an 
exhaustive method. Though precisely finding possible aspects by an analytic method is 
relatively easy for convex polyhedra, it becomes more complex and less tractable for concave 
objects and curved objects. For practical purposes, we favor the exhaustive method, in which we 
generate apparent shapes of the object under various viewer directions sampled on the Gaussian 
sphere, examine shape labels of the generated shapes, and classify them into aspects. 

We tessellate the Gaussian sphere by using a geodesic dome which subdivides the sphere into 

many small spherical triangles [14], each of which represents a sampled viewer direction. These 

sampled viewer directions evenly cover the whole surface of the Gaussian sphere surface. At 

each sampled viewer direction, an apparent shape of the object is generated using a geometric 

modeler, and its shape label (XlJC2,...JCn) is calculated. This way, all possible shape labels are 



Visum DIJtlCTION 

Figure 3: Two degrees of freedom in viewer directions and their representation 
in the tessellated Gaussian sphere. 
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calculated, evenly sampled over all possible viewer directions, and grouped into aspects1. 
Finally, a representative attitude is selected for each aspect chosen from the set of viewer 
directions which result in the same aspect Usually, the viewer direction which results in an 
appearance with the largest sectional area is selected as the representative attitude. The viewer 
rotation for the representative attitude is determined so that the direction of maximum moment of 
the appearance agrees with the x axis of the image plane. The representative attitude is used to 
calculate the representative values of features to be used to discriminate aspects and to calculate 
the precise attitude within an aspect 

Figure 4 shows the result of applying this method to the object of Figure 1. The sample object 

has twelve component faces. Figure 4(a) shows the geometric model of the object. Figure 4(b) 

shows the Gaussian sphere tessellated into sixty small triangles using the one-frequency 

dodecahedron. Sixty different shapes corresponding to the tessellated triangles are generated as 

shown in Figure 4(c), where the faces surrounded with bold lines are detectable using 

photometric stereo. Because of the geometry of the light sources, some faces visible to humans 

are not detectable by photometric stereo. Figure 4 (d) shows the larger eight component faces 

used for the shape label among the twelve faces of the object. Smaller regions under a certain 

threshold are regarded as non-detectable. Figure 4 (e) lists the five aspects obtained as the result 

of classification of the sixty appearances in Figure 4 (c). The visible faces are indicated under 

each aspect. For example, faces 1, 2, and 3 are observable in aspect 1, whose shape label is 

11100000. For aspects 1 to 5, five representative attitudes are generated as shown in Figure 4 

(f). 

2.2. Sensors and Features 

This section will give a brief description of the sensors we used and then present how the 
aspects are described in terms of available features. In our example system, the major sensor is 
photometric stereo which provides surface orientations. In addition, we use dual photometric 
stereo to obtain depth information and an edge detector to locate fine features of objects. 

Photometric Stereo \64] 

lNotQ on effectiveness and practicality of this method: constant cost; possible omission of aspects, but it would 
not hurt anyway because of its narrow visibility. 



12 

(b) Tessellated sphere 

It 
(d) Component faces 
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Figure 4: Extraction of aspects: (a) Geometric model of an object; (b) 
Gaussian sphere tessellated into sixty triangles to represent; viewer directions 
sampled; (c) Sixty appearances. The faces surrounded with bold lines are 
detectable by photometric stereo. Because of the geometry of the light sources, 
some faces visible to humans are not detectable by photometric stereo; (d) Eight 
component faces to be used for the shape label; (e) Five aspects obtained as the 
result of classification of sixty appearances by the shape label. Eight digits at 
each aspect represent the shape label of the aspect; (f) Five representative 
attitudes. 
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Photometric stereo takes multiple images of the same scene from the same camera position under 

different illumination directions in order to determine surface orientations (p,q) based on 

differences in brightness. Since different images are taken from the same point, there is no 

disparity between the images as there is with binocular stereo, so no correspondence problem has 

to be solved. This makes photometric stereo very fast. By using photometric stereo we generate a 

needle map, which is a distribution of (p,q) over the image. From the distribution of (p,q) over a 

region, we can recover various geometric features of visible regions such as area and moment. 

Dual Photometric Stereo f331 

Although photometric stereo can determine the surface orientation vary fast, it cannot 
determine absolute depth. In order to determine absolute depth fast, we exploit binocular stereo 
based on a pair of needle maps, each of which is obtained by photometric stereo. 

A needle map obtained by photometric stereo can be easily segmented into isolated regions 
using uninterpretable regions around objects. Due to the arrangement of the light sources, a 
higher object projects shadows over the surrounding lower objects. Since the projected shadow 
areas becomes uninterpretable regions, a higher object is usually surrounded by uninterpretable 
regions. 

We will establish the correspondence between left regions and right regions by using three 
characteristics: vertical mass center positions, average surface orientation over the region, and 
region area. Since our method only checks correspondences between regions, the number of 
combinations necessary to examine is small, so the system is very rapid. A depth map is obtained 
from each region's disparity and average surface orientation. The depth map will be used to 
determine the target region from which the recognition process begins. 

Edge Detector 

We also use an edge map which is ined by differentiating brightness distributions with a 
Canny edge detector [15] and grouping edge points into line segments with a Miwa line 
finder [50]. The edge map will be used as a supplementary source when the system cannot 
determine the object attitude completely using features from a needle map. 

In summary, an input scene is described by a needle map, a depth map, and an edge map by 
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using these three sensors. In describing aspects, we can use features available from these three 

represetnations of the input scene. Since surface orientation is obtained as the needle map, we 

can actually recover 3D features of the original faces, instead of 2D projected features, such as 

the area, shape, etc. Let (p,q) be the surface gradient of a region. Then, the matrix 

gives the affine transformation to map from the 2D image coordinates to the 2D coordinates on 

the 3D face. This transformation can be used to recover the 3D features of the original face from 

2D features of the corresponding region in the image. 

Each aspect is now described by using various features obtainable from the above sensors. In 
our example, features used include face moment, face relationships, face shape, edge 
relationships, extended Gaussian image (EGI), and surface characteristic distribution. Each of 
these features is discussed below. 

Face moment 

The face moments are represented by the two principal moments of inertia, and m^, of a 

face. These inertia moments roughly describe the shape of a face. More detailed shape 

information is represented by another feature. 

Face relationship 

An object often appears as multiple separated regions in the image. This is especially true with 
non-convex objects under photometric stereo. The relationships between regions are very useful 
features. For each visible face, relative position information is stored which tells where each of 
the other visible faces should appear in the aspect. The relationship is represented by a vector 
with respect to the local face coordinate system. The origin of the local coordinate system is the 
mass center. The z-axis and x-axis agrees with the surface orientation, the direction of the 
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maximum moment, respectively2  

Face shape 

The face shape is described by the radial distance function d=d(8), where d is the radial 
distance from the mass center of the face to its boundary, and 9 is the angle from the x-axis of 
the local coordinate system. 

Edge relationships 

In some cases the needle map cannot determine the object attitude uniquely. In this case some 

of the prominent edge information is useful to reduce ambiguity. The locations of edges are 

stored by the start and end positions. As in other face information, these positions are denoted in 

the local face coordinate system. When applying this information, a position is converted into a 

position on the image plane using the inverse affine transformation matrix derivable from the 

surface orientation of the face. Then, the narrow stripe region connecting the converted start and 

end positions can be searched on the edge map to see whether or not there is actually an edge. 

Extended Gaussian image (EGI) 

An EGI of an object is nothing but a spatial histogram of its surface orientations 
[31, 32, 13, 30,44]. The EGI has two nice properties. One is that the EGI is invariant to 

translation of the object, and the other is that when an object rotates, its EGI also rotates in 
exactly the same manner while not changing the relative EGI mass distribution. 

Surface characteristic distribution 

A surface patch can be characterized as planar, cylindrical, elliptic, or hyperbolic. The 
characteristics are defined in terms of the Gaussian curvature and the mean curvature [11, 5] and 
are independent of the viewer direction and the rotation. Distribution of the characteristics are 
stored with respect to the local coordinate system, and are used in a similar way and for a similar 
purpose as prominent edges. 

2This local coordinate has 180 degree ambiguity with respect to the x-axis direction. Also, if the region has no 
unique maximum moment direction, for example, a circular region, only the direction of x-axis is defined arbitrary 
in this case, only the distance between the two region is stored 
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For each aspect extracted for an object, the features listed above are calculated. The 

descriptions of all aspects thus obtained are now used to construct the interpretation tree with 

which input scenes will be recognized. 

2.3. Generating an Interpretation Tree 
An interpretation tree consists of two parts: the first part is used for classifying the input scene 

into one of the aspects, and the second part is used for calculating the exact attitude of the object 

within the aspect determined. In this subsection we will create an interpretation tree for our 

example object First we discuss how to generate the classification part of the interpretation tree. 

The basic idea is a recursive examination of features of aspects to see whether or not they can 

discriminate a group of aspects into sub-groups of aspects. That is, starting with all the aspects 

as a single group, we check if a certain feature can divide the group into subgroups. If so, a 

branch node is created which registers the feature as the discriminator and the subgroups divided 

are connected as descendant nodes. Then for each subgroup (descendant node), the process is 

applied recursively until a subgroup is made of a single aspect or equivalently a single aspect is 

assigned to a leaf node.3 

We have used the following seven features for discrimination. In order of preference, they are: 
the original face moment, the original face shape, the extended Gaussian image (EGI), the 
surface characteristic distribution, the edge distribution, the region distribution, and the 
relationship between a particular edge and a particular surface characteristic distribution. 

As an example, we apply this method to the object shown in Figure 1 (a). The object has five 
aspects, shown in Figure 4(e), so the start node contains a group of five aspects, 
{SI, S2, S3, S4, S5} 4 See Figure 5. Since the original face moment can divide the aspect groups 
into three sub-groups, {SI}, {S2, S3, S4}, and {S5}, it is adopted as a discriminator at the 
starting node, and three descendent nodes, Nl, N2, and N3 are generated from the start node. 

3Actually, as an initial stage of the project, a "skeleton" of a tree was predesigned by considering the "distances" 
among aspects, and the decision as to whether or not a feature can divide the aspects at the node was made by 
human. For more details, see [34]. This human-assisted decision process has since been converted to an automatic 
decision process. 

4Moreprecisely, one aspect component, having the largest area, is selected among aspect components of each 
aspect as the face from which recognition process begins. Thus, the later stages examines various features of the 
selected aspect components. 



17 

Since node Nl and node N3 contain only one aspect. SI and S5, respectively, the generation 

process terminates at these nodes. On the other hand, node N2 contains three aspects, so further 

processing is applied to the node. Neither the original face shape, the extended Gaussian image, 

the surface characteristic distribution, nor the edge distribution can not discriminate the aspect 

group {S2, S3, S4}. Since the region distribution divides the aspect group into two sub-groups, 

{S2} and {S3, S4}, this feature is adopted as a discriminator for node N2, and two descendent 

nodes, N21 and N22 are generated from N2. Node N22 still contains two aspects, and requires 

further processing. Because S3 and S4 have a different internal structure of regions, the region 

distribution feature is adopted as the discriminant to produce two nodes, N221 and N222. Now 

the complete aspect classification part of the interpretation tree has been obtained. 

Once the aspect classification part is constructed, we will move on to generation of the part of 
the interpretation tree which determines the viewer direction and rotation. If a feature can reduce 
some of the remaining freedom in the viewer direction and rotation, it will be adopted into the 
tree. The decision as to whether or not a feature can reduce the freedom was made by a human 
at this point5. 

We have used the following eight features for determination of the linear shape change. In 
order of preference, they are: the mass center of EGI distribution, the EGI, the position of 
observable region distribution, the moment direction of original face, the original face shape, the 
position of the surface characteristics distribution, the position of the edges, and the position of 
the edges with respect to the position of the surface characteristics distribution. 

The viewer direction and rotation are determined for each aspect using the most effective 
feature at each step. The selection depends on the aspect and the stage of the determining 
process. As an example, we will consider the case of node N21 or aspect S2. The other cases can 
be treated in the same way. Aspect S2 has two observable regions of cylindrical surfaces. The 
EGI mass center can determine viewer direction. Theoretically, the EGI distribution could have 
determined the viewer direction and the rotation uniquely in this aspect, but due to noise it would 
have been very unreliable. Thus, we will use other features to determine the viewer rotation. 

Since aspect S2 has two observable regions, the region distribution feature is applicable and 

5This human-assisted decision process has since been converted to an automatic decision process. 
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can constrain the viewer rotation up to two directions (up or down). Neither the moment 

direction, original face shape, nor surface characteristic feature can disambiguate one of the two 

remaining possibilities. However, the edge distribution feature can do. As a result, the EGI 

mass center, region distribution, and edge distribution have been adopted into the tree in this 

order. Figure 5 shows the final interpretation tree obtained. 

2.4. Applying the Interpretation Tree 
In recognizing objects at run time with the interpretation tree created, the system uses three 

kinds of feature maps: an edge map, a needle map, and a depth map as shown in Figure 6. An 
edge map is obtained by differentiating the camera intensity image. Each of two photometric 
stereo sensors, left and right, produce a needle map using three intensity images corresponding to 
the three lighting conditions. A depth map is constructed by the dual photometric stereo 
method [33], which matches a pair of needle maps, one from the left camera and one from the 
right camera. An important advantage of these three maps is that they are registered in the same 
coordinate system; that is, all pixels having the same i-j pixel coordinates correspond to the 
same physical point. 

Our bin-of-parts example scene contains many instances of the object, while the interpretation 
tree specifies how to recognize a single object. Therefore we have to select a portion of an 
image where the interpretation tree is going to be applied. For this purpose, we choose the 
highest region (ie, the region closest to the camera) as the target region to be interpreted. 

The interpretation tree extracts necessary features from the region. These features will be 

transformed and compared with the aspect model according to the procedures contained in the 

interpretation tree. Based on the decisions at each node, the target region is classified into one of 

the aspects, and then the precise attitude and position are determined. 

Figure 7 illustrates how the interpretation proceeds for the case of Aspect 2. The white arrow 
in the picture (b) indicates the target region. According to the interpretation tree, the face 
moment of the region is calculated by using the shape and size of the region together with its 
spatial surface orientations from the needle map. The rectangle in Figure 7 (a) indicates the 
direction and magnitude of the moment value thus obtained. Based on the value of face moment, 
the interpretation tree determines this region to belong to the group of aspects S2, S3, and S4. 
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Figure 5: Interpretation tree 



20 

Differentiation 

Figure 6: Basic vision module: (a) Input scene; (b) Left needle map obtained 
by left photometric stereo. Surface orientations are depicted as small needles; (c) 
Right needle map obtained by right photometric stereo; (d) Edges obtained by 
Canny edge operator; (e) Left region map. A needle map obtained by 
photometric stereo can be easily segmented into isolated regions using 
uninterpretabie regions around objects. Due to the arrangement of the light 
sources, a higher object projects shadows over the surrounding lower objects. 
Since the projected shadow areas becomes uninterpretabie regions, a higher 
object is usually surrounded by uninterpretabie regions. The left region map is 
obtained by segmenting the left needle map based on these uninterpretabie 
regions; (f) Right region map; (g) Depth map obtained by dual photometric 
stereo. The correspondence between left regions and right regions is established 
by using three characteristics: vertical mass center position, average surface 
orientation over a region, region area. A depth map is obtained by fitting a plane 
based on the depth at a mass center given from disparity and average surface 
orientation; (h) line segments obtained by Miwa line finder. 
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The interpretation tree then distinguishes aspect S2 from the rest by determining whether a 
neighboring region exists having the same moment size and direction around the target region. 
The interpretation tree tries to find such a region. In this case it succeeds, as shown in Figure 7 
(c). From this, the interpretation tree determines that the target and the neighboring regions 
come from the same object and belong to the aspect S2. 

The rest of the processing is to verify the determined aspect and to calculate accurate object 
attitude, again following the interpretation tree. Comparison of the EGIs from the model and the 
scene determines the viewer direction (Figure 7 (d)). Next, the viewer rotation around the 
viewer direction must be determined. From the relationship between the two regions, the viewer 
rotation can be determined up to two directions (180° apart) (Figure 7(f)), but more detailed 
analysis of the edge distribution is necessary to determine it uniquely. The interpretation tree 
examines the edge distributions in the two stripe regions which are predicted from the two 
possible rotations. This prediction can be obtained by applying the affine transform already 
established for this case. In this way, by following the interpretation tree as shown by the bold 
line (Figure 7(e)), the object has been recognized and its attitude has been calculated uniquely 
(Figure 7(g)). Figure 7 (h) presents the recognition result by projecting the object model with the 
detected attitude on top of the depth map. 

For different aspects, other parts of the interpretation tree are similarly executed. When the 
interpretation tree has been executed on various regions in an image for another scene, the 
combined interpretation results look like Figure 8, in which 10 instances of objects have been 
located successfully. 

3. Toward Systematic Methods of Compilation 
The system presented in the previous section has compiled the object model into a recognition 

strategy in the form of an interpretation tree, and the resultant interpretation tree was successfully 
used to recognize the object instances in a cluttered bin-of-parts scene. In the off-line 
compilation stage, it automatically derived distinctive aspects from a geometrical object model, 
built feature descriptions of aspects by calculating expected feature values from the object 
model, and then, based on those descriptions, generated an interpretation tree for classifying the 
aspects and determining the attitude within each aspect. At on-line run time, the interpretation 
tree has controlled the localization process by using the predesignated most appropriate features 
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(h) Scene description 

Figure 7: Execution of the interpretation tree: (a) Moment of the target region 
which is represented by a rectangle; (b) Target region. The white arrow indicates 
the the target region; (c) Neighboring region which belongs to the same object. 
From this evidence the interpretation tree determines that the target region and 
the neighboring region come from the same object and belong to the aspect S2; 
(d) EGI; (e) Interpretation tree. By following the interpretation tree as shown by 
the bold line, the object has been recognized and its attitude has been calculated 
uniquely; (f) Region direction. From the relationship between the two regions, 
the viewer rotation can be determined up to two directions (180° apart); (g) Edge 
distribution. The interpretation tree examines the edge distributions at locations 
and orientations predicted from the two possible rotations. This prediction can 
be obtained by applying the affine transform already established for this case to 
the edge representation in the aspect model; (h) Scene description. 
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at each stage. The recognized object position and attitude could be used for such tasks as bin-

picking. 

Though successful and promising, the system raises several important issues to be solved in 

order to develop a more systematic and general method of compiling recognition programs from 

models. We have found that one of the most crucial things is a more systematic way for 

modeling object appearances. So far, modeling has concentrated primarily on a geometric 

modeling of an object. Modeling ranges from generic mpdels, such as generalized 

cylinders [6, 59], extended Gaussian images [31, 30], and supeiquadric models [55], to specific 

models such as aspect models [39, 57] region-relation models [4] and smooth local symmetry 

models [10] 

However, the appearance of an object in an image, and the features of an object that can be 
reliably detected are determined not only by object properties, but also by sensor characteristics. 
As shown in Figure 9, the same object model in the same attitude can create different 
appearances and features when seen by different sensors. Edge-based binocular stereo reliably 
detects depth at edges perpendicular to the epipolar lines. Photometric stereo or a light-stripe 
range -finder detects surface orientation and depth of surfaces which are illuminated and visible 
both by the light sources and by the camera. 

Thus, in model based vision, it is insufficient to consider only an object model; it is essential to 

appropriately model sensors as well. Modeling sensors for model-based vision, however, has 

attracted little attention. In fact, the lack of explicit sensor models was the basic reason that the 

system in the previous section required human assistance. In order to make automatic and 

correct decisions, the system must correctly characterize object's appearances for the particular 

sensor in use, predict uncertainty ranges of feature values, and develop a framework to convert 

those predictions into decision rules. In the following sections, we will discuss some of the 

issues toward this goal, including representation of sensor-object relationships, characterization 

of detectability and reliability of sensors, prediction of uncertainty ranges of feature values, and 

generation of flexible execution programs. 
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Figure 9: Object appearances by three different sensors. Edge-based binocular 
stereo reliable detects depth at edges perpendicular to the epipolar lines 
Photometric stereo or a light-stripe range finder detects surface orientation and 
depth of surfaces which are illuminated and visible both by the light sources and 
by the camera. The same object model in the same attitude can create different 
appearances and features when seen by three different sensors 
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4. Modeling Sensors 
Different types of sensors are used in model-based vision. For our purpose, "sensors" are 

transducers which transform "object features" into "image features". For example, an edge 

detector detects edges of an object as lines in an image. Photometric stereo measures surface 

orientations of surface patches of an object. There are both passive and active sensors. 

Binocular stereo is passive, while a light-stripe range finder is an active sensor using actively 

controlled lighting. Table 1 gives a summary of various sensors in terms of what object features 

are detected in what forms/ 

Table 1: Summary of Sensors 

Sensor Vertex Edge Face active/passive 

Edge Detector [58,45,15] - line - passive 
Shape-from-shading [29, 36] - - region passive 

Synthetic Aperture Radar [19, 63,48] point point/line point active 
Time-of-Flight Range Finder [38, 27] - - region active 

Light-stripe Range Finder [1, 54] - - region active 
Binocular Stereo [46, 24, 2, 52] - line - passive 

Trinocular Stereo [49] - line - passive 
Photometric Stereo [64, 35] - - region active 

Polarimetric light detector [42,43] - - point active 

In addition to qualitative descriptions of a sensor, a sensor model must model two 

characteristics quantitatively: detectability and reliability. Detectability specifies what kind of 

features can be detected in what conditions. Reliability specifies the expected error in the value 

of a feature. Since these two characteristics depend on how the sensor is located relative to an 

object feature, we will first define a feature configuration space to represent the geometrical 

relationship between the sensor and the feature. Then, we will investigate the way to specify 

detectability and reliability over the space. 
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4.1. Feature Configuration Space 

Whether and how reliably a sensor detects an object feature depend on various factors: 
distance to a feature, attitude of a feature, reflectivity of a feature, transparency of air, ambient 
lighting, and so forth. In most model-based vision problems, the attitude of a feature, that is, 
angular freedom in the relationship between a feature and a sensor, affects sensor characteristics 
most. For that purpose, we attach a coordinate system to an object feature and consider the 
relationship between the sensor coordinate system and the feature coordinate system. For 
example, for a face feature, we define a coordinate system so that the z axis of the feature 
coordinate system agrees with the surface normal and x-y axes lies on the face, but defined 
arbitrarily otherwise. For other features, we define can feature coordinates appropriately. 

For the sake of convenience let us fix the sensor coordinate system and discuss how to specify 
feature coordinates with respect to it. The angular from the sensor coordinate system to a feature 
coordinate system can be specified by three degrees of freedoms: two degrees of freedom in the 
direction of the z axis, and one degree of freedom in the rotation about the z axis. See Figure 10 
(a). 

We will define a sphere in which a feature coordinate system is specified as a point. Referring 
to Figure 10 (b), the direction from the sphere center to the point coincides with the z axis of the 
feature coordinate. The distance from the spherical surface to the point is determined by the 
angle of rotation (modulo 360°) around the i(z) axis from the coordinate on the spherical surface. 
A point on the spherical surface represents a feature coordinate obtained by rotating the sensor 
coordinate around the axis perpendicular to plane given by the sphere center, the spherical point, 
and the north pole. The north pole of the sphere is made to correspond to the case when the 
feature coordinate is aligned completely with the sensor coordinate.6 We will refer to this sphere 
as the feature configuration space.7 

^This representation will not create discontinuities around the north pole as opposed to the case in which Euler 
angles from the sensor coordinate frame to the feature coordinate frame are used to specify spherical points; this 
representation will instead create discontinuities at the center of the sphere and at the south pole. However, this is 
advantageous because we mostly use the area around the north pole to discuss detectability and reliability. 

7Note that this sphere is different from the Gaussian sphere used in the previous section. Previously, the Gaussian 
sphere represented the sensor coordinates (the viewer directions) with respect to the object coordinates and 
detectability of each feature was examined by an adhoc method for each viewer direction. In contrast, here we are 
developing a tool to examine the detectability of a feature using the sphere to represent the feature coordinates with 
respect to the sensor coordinates. This tool wiU be applied to features of an object which is rotated with respect to 
the sensor coordinates. 
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(b) 

Figure 10: Feature configuration space: (a) Relationship between sensor 
coordinate and feature coordinate. The feature coordinates can be specified by 
three degrees of freedoms: two degrees of freedom in the direction of the z axis 
of a feature, and one degree of freedom in the rotation about the z axis of a 
feature. (b) Feature configuration space. One feature coordinate can be 
represented as a point in the sphere. The direction from the sphere center to the 
point coincides with the z axis of the feature coordinate. The distance from the 
spherical surface to the point id determined by the angle of rotation (modulo 
360°) around the feature z axis from the coordinate on the spherical surface. A 
point on the spherical surface represents a feature coordinate obtained by rotating 
the sensor coordinate around the axis perpendicular to the plane given by the 
sphere center, the spherical point, and the north pole. The drawing at the bottom 
left depicts the coordinates corresponding to the points on the spherical surface, 
while the one at the bottom right depicts the coordinates corresponding to the 
points on one axis. 
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4.2. Constraints on Feature Detectability 

Using the feature configuration space, we will represent in a general way the constraints on the 
attitude of a feature for it to be detected by a sensor. A sensor has two types of components in 
general: iUuminators and detectors. In order for a feature to be detected by a sensor, it must 
satisfy certain conditions on being illuminated by its illuminators and being visible from its 
detectors. 

Once we define a local coordinate system on an object feature, we can compute configurations 
of a feature in which it is illuminated by each illuminator, and configurations in which it is 
visible by each detector. In this analysis, it should be noted that illuminators and detectors can 
be treated interchangeably. In [37] this concept was defined as generalized sources (G-sources). 
The illumination direction of a illuminator and the line of sight of a detector correspond to the 
G-source illumination directions, and both can be represented in the feature configuration space 
as a radial line from the sphere center. Also, illuminated configurations by an illuminator and 
visible configurations from a detector correspond to the G-source illuminated configuration, and 
both can be specified as a volume in the configuration space. Finally, we can obtain the 
constraints in which the feature is detectable by the sensor with AND and OR operations on 
illumination (line-of-sight) directions and illuminated (visible) configurations of all components 
of sensors. 

Figure 11 shows an example analysis of a face feature for a light-stripe range finder. A light-
stripe range finder has two G-sources (a TV camera and a light source): the direction denoted by 
VI indicates the line of sight of the TV camera; V2 indicates the illumination direction of the 
light source. The illuminated configurations of a face are determined by the z axis (ie, its surface 
normal), and are not dependent on its rotation. Therefore, illuminated configurations of a feature 
form a spherical cone whose axis is V2 and whose apex angle is dl. Similarly, the 
configurations of a feature visible from the TV camera form a spherical cone whose center 
direction is VI and whose apex angle is dl. Since a light-stripe range finder detects the faces 
which are illuminated from the source and visible from the TV camera, the detectable 
configurations are the intersection of the two cones. Similarly we can analyze the detectable 
configurations of various features for various sensors in Table 1. The results of the analysis are 
summarized in Figure 12: for more details, see [37]. 
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Figure 11: Detectability configurations of a face for a light-stripe range finder. 
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Figure 12: Summary of detectability configurations for various sensors. The 
feature coordinate of a face is defined so that z axis agrees with the surface 
normal and the x-y axes lie on the face. The feature coordinate of an edge is 
defined so that z axis agrees with the direction of Hi**, where N, ,N 2 are normal 
vectors of two incident faces to the edge, x axis agrees with the edge direction. 
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5. Modeling Appearances 
Aspects have been defined as topologically equivalent classes with respect to the object 

features "visible" to the sensors. Classifying object appearances into aspects systematically 

raises several issues. First, since aspect is defined relative to sensors, the detectability of features 

by the particular sensors to be used must be incorporated. In the system of section 2, however, 

we used the constraints of the surface visibility by the photometric stereo in an adhoc manner. 

Now that we have developed a way to represent the detectable configurations of features, we can 

use it in generating appearances. Second, we will discuss how to represent object appearances 

and aspects in a systematic way. In the previous system, output from the geometric modeler is 

handled by a human-assisted process to analyze them and to generate a recognition strategy from 

them. This interactive process can handle any adhoc representations. However, in the present 

system, a complete automatic process should handle the output and generate a recognition 

program. This requires a systematic representation of object appearances as well as aspects. 

Third, transition from one aspect to another may not be a discrete process because the 

detectability of features tends to degrade near the boundary of detectable configurations. Finally, 

it is useful to obtain an estimate on the number of aspects in order to make sure that the 

recognition methods based on aspects are applicable to an object with a reasonable complexity. 

This section will discuss these four issues. 

5.1. Appearance Generation from Constraints on Feature Detectability 

To predict object appearances, we apply the constraints on feature detectability to each feature 

of the object. Each feature is detectable by the sensor if it satisfies the following two conditions: 
1. None of the illumination (line-of-sight) directions are occluded by any other parts 

of the object; 
2. The detectable configurations contain the configuration of the feature. 

To check these conditions we use the constraints together with a geometric modeler. We rotate 

the object into a certain attitude to be examined, and then see whether its features satisfy the 

previous constraints. 

Figure 13 illustrates this process of predicting object appearances for a light-stripe range 
finder. Suppose an object is placed like Figure 13 (a). Figure 13 (b) shows the detectability 
constraints on a face for a light-stripe range finder. We will put this configuration space on each 
candidate face to examine whether the face is detectable. See Figure 13(c). This amounts to 
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checking the following conditions: 
1. The light source direction is not occluded by other faces. 

2. The line of sight of the TV camera is not occluded by other faces. 

3. The local coordinate of an face, defined by the surface orientation (z axis) and the 
tangential plan (x-y axis), is contained in the detectable configurations. 

Figure 13(d) shows the result of this operation. The shaded areas indicate those which satisfy the 
conditions and thus are detectable by the light-stripe range finder. 

5.2. Describing Aspects 

Appropriate descriptions of aspects must be defined so that they can be used in automatic 
generation of interpretation trees. The description of an aspect should include constituent 
appearances, a set of features extractable for the aspect, and the expected feature values. This 
description should have flexible and convenient forms for applying generation rules to them and 
for use in execution. We will represent aspects on frames by using a frame representation 
language, Framekit+, because it has a flexible structure and powerful demon facilities. Since an 
aspect is an abstract concept which represents a group of possible appearances, we will first 
consider how to represent each appearance in the frame. Then, we will represent aspects based 
on the representation of appearances. 

A geometric modeler generates a possible appearance of an object under a given attitude. We 
will convert output data from the geometric modeler into representations in Framekit+. One 
appearance, for example 10 in Figure 14(a), is represented by one frame, which points to several 
appearance component frames representing visible 2D faces, IMAGE-COMP01, and 
IMAGE-COMP02%. Each frame corresponding to one visible 2D face maintains various 
geometric properties of the face in slots. For example, face area and face moment are 
maintained in slots AREA and MOMENT. The values of these features are obtained by using 
output data from a geometric modeler. Each frame representing a 2D visible face has a 
backpointer to the 3D face from which the 2D face is projected. For example, the 

In this example, one 2D face corresponds to one image component If several 2D faces have C l continuity 
across the edges, these faces are grouped and stored as one single image component. In this case, face area and face 
moment are calculated over the group of faces. 
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Figure 13: How to use detectability configurations: (a) Light-stripe range 
finder; (b) Detectability constraints on a face for a light-stripe range finder. The 
constraints consist of detectable configurations and two G-source illumination 
directions, VI,V2; (c) Appling detectability configuration; (d) Detectable faces. 
The shaded area indicate those which satisfy the conditions and thus are 
detectable by the light-stripe range finder. 
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(d) 

Figure 13: How to use detectability configurations: (a) Light-stripe range 
finder, (b) Detectability constraints on a face for a light-stripe range finder. The 
constraints consist of detectable configurations and two G-source illumination 
directions, VltV2; (c) Appling detectability configuration; (d) Detectable faces. 
The shaded area indicate those which satisfy the conditions and thus are 
detectable by the light-stripe range finder. 
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IS-A-FACE-OF slot of IMAGE-COMP01 frame has a value FACE6.9 An image structure 

consists of an image frame and image component frames. 

Once image structures are represented, we can generate aspect structures in frames. Since an 
aspect is an abstract concept for a group of images (appearances), an aspect structure is similar to 
its constituent image structures. In order to construct aspect structures, shape labels of all image 
frames are examined one by one, where a shape label is the combination of visible 3D faces as 
explained in section 2.1. The visible 3D faces among a 2D appearance can be retrieved by 
backpointers of 2D faces to 3D faces such as FACE6 in IS-A-FACE-OF slot of 
IMAGE-COMP01 frame, where FACE6 is the frame name of a 3D face of the object. 

If an image structure cannot find any aspect structure with the same shape label among the 

already established ones, a new aspect frame is created together with aspect component frames 

which correspond to image component frames: therefore, the aspect structure has the same 

structure as the image structure. Also, frames to represent the relationships between pairs of 

aspect components are created. If an image structure can find an aspect structure with the same 

shape label, the image frame is registered to the aspect frame as an instance and its frames of 2D 

faces are registered to corresponding aspect component frames. 

An example of an aspect structure is shown in Figure 14(b). Aspect frame ASPECT1 points to 

several aspect component frames, ASPECT-COMP10, ASPECT-COMP11 with the 

IS-AN-ASPECT-COMP-OF+INV slot It also points to its instance images 10, II with 

IS-AN-IMAGE-OF-ASPECT-OF+INV slot, while its aspect component frame, 

ASPECT-COMP10 points to its instance 2D faces IMAGE-COMP01, IMAGE-COMP12. Frame 

ASPECT-COMP-RELATION-11-10 is a relation frame which represents the relationship between 

ASPECT-COMP10 and ASPECT-COMP1L 

^Each frame also contains array addresses of various geometric items such as 2D FACE, 2D EDGE and 2D 
VERTEX in the data base of the geometric modeler; for example, 9361 in REGIONS slot of IMAGE-COMP01 
frame. These allow us to access the original geometric data, if necessary. 
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(IS-A IMAGE) 
(OBJECT-PTR 5785) 
(VtSIBLE-REGION-LIST 

(9521 9513 ...)) 
(IS-AN-IMAGE-COMP-OF+INV 

IMAGE-COMP01 
IMAGE-COMP02...)}} 

{{IMAGE-COMP01 
(IS-A IMAGE-COMP) 
(IS-AN-IMAGE-COMP-OF 10) 
(IS-A-FACE-OF FACE6) 
(REGIONS (9361)) 
(AREA 13.88) 
(MASS-CENTER (1.21 0.24)) 
(MOMENT (22.50 11.47-0.53)) 
(NORMAL (0.0001 0.355 0.935)) }} 

{{IMAGE-COMP02 
(IS-A IMAGE-COMP) 
(IS-AN-IMAGE-COMP-OF 10) 
(IS-A-FACE-OF FACE4) 
(REGIONS (9481)) 
(AREA 7.47) 
(MASS-CENTER (-2.50 2.38) 
(MOMENT (8.56 2.60 0.80)) 
(NORMAL (-0.17 0.46 0.87)) }} 

( a ) 
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{{ASPECT1 
(IS-A ASPECT) 
(IS-AN-IMAGE-OF-ASPECT-OF+INV 

10 11 ...) 
(IS-AN-ASPECT-COMP-OF+INV 

ASPECT-COMP10 
ASPECT-COMP11)}} 

{{ASPECT-COMP10 
(IS-A ASPECT-COMP) 
(IS-AN-ASPECT-COMP-OF ASPECT1) 
(IS-Ar*«MAGE-COMP-OF-ASPECT-OF+INV 

IMAGE-COMP01 IMAGE-COMP12) 
(IS-A-FACE-Ot FACE4) 
(THIS-ASPECT-HAS-RELATIONS 

ASPECT-COMP-RELATION-10-11) 
{{ ASPECT-COMP-RELATION-11-10 

(IS-A ASPECT-COMP-RELATION) 
(P-ISLANO ASPECT-C0MP11) 
(N-ISLAND APSECT-COMP10)}} 

(b) 

Figure 14: Frame representation of aspects: (a) Image structure. Each image 
structure consists of a frame corresponding to an image and several frames 
corresponding to 2D visible faces in the image; (b) Aspect structure. Each aspect 
structure consists of an aspect frame, aspect component frames, and aspect 
component relation frames. 
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5.3. Probability Distribution of Detectability and Transition of Aspects 

So far, we have treated sensor detectability as a discrete process: detectable and undetectable. 
Thus, aspect changes occur abruptly. Actually, however, sensor detectability is a continuum, so 
aspect changes occur continuously. The detectable configurations in the space give the limit of 
detectability. Near the boundary, however, even when an object feature exists within the 
detectable configurations, it may be undetectable due to noise. We will investigate how the 
detectability varies probabilistically over the detectable configurations. 

For an example, let us consider a hypothetical light-strip range finder. A light-stripe range 
finder projects a plane of light onto the scene and determines the position of a surface patch from 
the slit image. The detectability depends on whether the brightness of the slit image is bright 
enough to be detected, say brighter than a threshold IQ. Assuming a Lambertian surface, the 
brightness of the slit image is given by I^N-S where N is the surface normal, S is the light source 
direction, and Is is the light source brightness. If we assume an additive zero-mean Gaussian 
noise of brightness with power a 2 , the resultant brightness distribution of a slit will be 

I (/-/jNS)2 

V2i 2 c 2 

Thus, the probability distribution of feature detectability of our hypothetical range finder can be 
described as 

Pd = Prob(I>I^ = f - ^ - 7 3 dl = <D(A-i ) 

As shown in Figure 15, this probability decreases as the incident angle of the light stripe 
increases, and near the boundary of the illuminated configuration of the light source, the 
probability approaches 0. 

This continuous change of detectability causes the continuous aspect transition and the aspect 
boundaries become blurred. In order to characterize an aspect boundary, we can define the 
distance between two aspects across the boundary by the Hamming distance between their 
corresponding shape labels {xlyx2,...ji9...jcn}> where xx=l if face / is visible and x—O otherwise. 
Thus, the distance of two aspects is the number of faces which switch between visible and 
nonvisible states across the aspect boundary. 
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Consider an aspect boundary between aspect A and B whose Hamming distance is one, that is, 

aspect A and B differ in visibility of only one face Fk. Suppose the detectability of face / is 

P^F). Then, near the aspect boundary, the aspect A may be observed incorrectly as aspect B 

with probability 1-P/JFj). A similar false observation will also occur for aspect B. 

If the distance of aspects A and B is more than one across a boundary, then erroneous 
intermediate aspects, which are neither A or B, can occur near the boundary. This can be easily 
seen by considering an example where aspect A has [xi9Xj}-[10) and aspect B has {x,.,x-}={01} 
as shape labels, respectively. Then, we will observe object appearances belonging to four 
aspects near the boundary: aspects {11} and {00} in addition to aspects A and B. For example, 
the probability of observing aspect 11, instead of aspect A, is PJF)PJFp. This consideration 
must be taken into account when grouping and classifying aspects by an interpretation tree. 

5.4. Estimating the Number of Aspects 
An interesting and important question related to using aspects for object recognition is how 

many aspects an object will have. If this number is extremely large, it is impractical to classify 

an unknown scene into an aspect and then to determine the attitude within it. 

One might think that the number of distinct aspects grows exponentially as the number of faces 

n in the object increases. However, the number of aspects grows much slower by a polynomial 

in n. To see this, let us consider the number of aspects fp(n) of a 2D convex polygon with n 
edges seen in perspective. The sensor can be placed at any point on the 2D plane. Each edge, 

when extended, divides the 2D plane into two half plane: when the sensor is located in the half 

plane corresponding to the front side of the edge, then the edge is visible; otherwise it is 

invisible. Therefore, the problem of obtaining the number of distinct aspects fp(n) is equivalent 

to obtaining the number of regions into which n lines divide a 2D plane. In fact, the 

visible/nonvisible combinations attached to each region make up the shape label. 

We can derive the formula of fp(n) by an inductive method. Suppose we add the n-th line after 

Ai -1 lines have already been drawn. This new line intersects the existing n—l lines at n—1 points 

(we are assuming the maximal case), which divide the new line into n segments. Each segment 

on the new line divides one old region into two regions. Thus, this operation adds n new regions. 

That is, 
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By solving this, we obtain 

as the upper bound on the number of aspects of a 2D convex polygon under perspective 
projection. 

We can obtain the number of aspects Fp(n) of a convex 3D polyhedron with n faces in a very 
similar way. In this case, each face, when extended, divides a 3D space into two 3D half spaces. 
We have to count the number of volumes that result when n planes divide a 3D space. We can 
again use an inductive method. Assume that we have divided the 3D space by n - l planes. As 
shown in Figure 16, if we add the n-th plane, it intersects with the existing old n - l planes, and 
generates n - l intersection lines on it Thus, on this n-th plane there are^Oi-1) polygons, each of 
which divides an old volume into two. Therefore, addition of the n-th plane adds fp(n-l) 
volumes: 

Fp{n) = Fp{n-\)+fp(n-\). 
Thus, 

Fp(n) = n3/6+5n/6+l 

is the upper bound on the number of aspects of a 3D convex polyhedron with n faces under 
perspective projection. 

If we can assume orthographic projection, as we have done in our previous system, the number 
of aspects further reduces. Orthographic projection limits the possible sensor positions on the 
infinite sphere, and one occluding plane draws a great circle on the sphere to divide it into two 
hemispheres. We should count the number of regions on the sphere divided by n great circles. 
Since the n-th great circle intersect with the previous n - l great circles at 2(n-l) points and adds 
2(n-l) new regions, we obtain the following recursive equation: 

F > ) = F > - l ) + 2 ( n - l ) . 
Thus, 

Fo(n) = n 2-n+2. 

We notice that the upper bounds of the number of aspects grows as a quadratic function of the 
number of faces n. Moreover, for practical recognition purposes, n should be taken as the 
number of significantly large faces rather than including all the tiny faces. 

Non-convex polyhedra have more aspects, because aspects are determined not only by 
occluding planes due to faces but also occlusions due to edges. Suppose a 3D non-convex 
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polyhedron has n faces, o edges, and p vertices. In the worst case, we have to consider occlusion 
planes defined by all the pairs of edge and vertex: oxp. Thus, FQ(n+oxp) provides the upper 
bounds. However, in reality, the number of aspects must be much smaller, because a large 
fraction of pairs of vertex and edge either need not be considered or do not generate significant 
aspects to be taken into account for recognition. 

6. Predicting Uncertainty in Feature Values 
In classifying an unknown scene into an aspect and determining its exact attitude, we need to 

select features with high reliability and discriminant power. The reliability and discriminant 
power of a feature depend not only on the nominal value that the aspect is expected to have, but 
also its expected variances over the aspect For example, imagine a geometric feature whose 
nominal values for two aspects are calculated as 100 and 90 by a geometric modeler. If a sensor 
has an uncertainty of plus/minus 1 for the feature, the feature is a reliable discriminator to 
separate the two aspects. On the other hand, if the uncertainty of the sensor is plus/minus 20, the 
feature is not usable. Therefore, prediction of the uncertainty that a feature will take over an 
aspect is very important for strategy generation. 

This section will discuss a method to predict uncertainties of feature values. We must consider 
two levels of feature uncertainty. The first is the uncertainty in sensory measurements and this is 
obtained by analyzing the measurement mechanism of a sensor. In many cases, however, a 
geometric feature is derived from a set of sensory measurements and is used as a discriminator. 
We must also analyze the propagation of uncertainty from sensory measurements to a derived 
geometric feature in order to determine its uncertainty. 

6.1. Uncertainty in Sensory Measurements 

As an example of predicting the uncertainty of sensory measurements, we will again consider a 

depth measurement by a hypothetical light-stripe range finder. Let us assume that the main 

source of the depth uncertainty measurement by this sensor comes from the ambiguity of the slit 

position on a surface due to the width of the light beam and angular errors in setting the light 

directions. The error model can be obtained analytically. 

As shown in Figure 17 (a), let us denote the angular ambiguity of the light stripe by 8G. The 
light is intercepted by an object surface, creating a slit pattern on it. The angular ambiguity 80 of 
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the light direction results in ambiguity 8y in the position on the surface: 

cos a 

where r is the distance of the surface from the light source, and a is the angle between the light 
direction S and the surface normal N. This positional ambiguity on the surface is observed as the 
slit position ambiguity (or "slit width") Si in the camera image. If p is the angle between the 
surface normal N and the viewer direction V, then 

5/=(cos p)8y, 

Finally, this ambiguity is transferred into the uncertainty in the depth measurement by 

triangulation. For simplicity, if we assume orthographic projection for the camera, the ambiguity 

in the image Si creates uncertainty in distance Sz, 
Sz- 9 tany 

where y is the angle between V and S. 

In total, by representing the angles a, [3, and y in terms of V, N, and S, we obtain 

cosatany (N-S)Vl^V 

Since r is roughly constant, the uncertainty distribution of this light-stripe range finder over the 

detectable area is governed by the factor ^ , V )< S < V>, Figure 17 (b) plots this function. 
(N-S)Vl^V 

6.2. Uncertainty in Geometric Features 
Usually sensory measurements, such as depth detected by a sensor are further convened into 

object features such as area and moment of a face. This process involves grouping pixels into 
regions, extracting some feature values and transforming them into another. Modeling the 
uncertainty generation and propagation in this process is difficult in general, but as an example 
of predicting uncertainty in a geometric feature, let us consider an area feature of a face detected 
as a region by our hypothetical light-stripe range finder. Figure 18 shows the conversion process 
from depth values to the area of a face. The process includes three parts: obtain the area of the 
corresponding region in the image, compute the surface orientation of the region, and finally 
convert the image area into the surface area by the affine transform determined by the surface 
orientation. We will analyze how uncertainty is introduced and propagated in these three parts. 

Suppose that a surface under consideration has the real area A and the surface orientation (3 
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(b) 

Figure 17: Predicting uncertainty in a sensory measurement by a light-stripe 
range finder (a) Detection mechanism; (b) Predicted error range of a depth 
measurement. 
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Figure 18: Conversion process from depth value values to the area of a face. 
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(angle between the surface normal and the viewing direction). It should create a region of size n 
pixels where 

n=Acos$. 

However, because of the imperfect detectability of the sensor, the sensor fails to find some of 
them, and the measured area will be different from the nominal area n. Let P denote the 
detectability for this surface which we have computed in subsection 4.2. Then, the process of 
measuring the area by sampling n pixels can be modeled by a binomial distribution with mean 
nP and variance nP(l-P). Assuming two standard deviations, the discrepancy in area 
measurement will be 

5*=n-(nP-2^nP(l-P))=n( l-F)+2VnP(l-/>). 

Another uncertainty is also introduced in obtaining the surface orientation (3 from measured 
depths due to uncertainty in depth 8z. If we estimate the surface orientation at a pixel by 
differentiating depths of neighboring pixels, then the uncertainty in surface orientation will be 
cos2$8z. However, since we have roughly n pixels in the region, the surface orientation will be 
averaged, reducing the uncertainty by a factor Vh. Thus 

Finally, the estimation of area of the face, A+5A, is obtained by converting the image area into 
3D space. 

aw(p+5p) 

Thus, assuming that 8(3 is small, we see that 

cosp 

=a(\-p)+V-l-aVpo^+^&z) 
cosp 2 

In this way, we can predict what deviations from the nominal value of the area feature should be 
expected once we model the sensor and know its intrinsic detectability P and reliability 5z. 
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6.3. Applying the Sensor Model to Aspect Structures 
By using sensor model, we can predict the ranges of various feature values at each aspect. At 

each image, since a nominal value of a feature and its configuration with respect to sensor 

coordinates are given, we can predict the range of the feature value for each 2D face of the image 

by using the formula described above. Then, the range of the feature value at an aspect 

component is obtained as a sum of ranges of the feature values over its registered image 

components which can be reachable along IS-AN-IMAGE-COMP-OF-ASPECT-OF+INV. The 

predicted range will be stored in the slot of an aspect component frame. 

Firgure 19 shows slots for this purpose. For example, area ranges, moment ranges, and 
moment ratio ranges are calculated at each image components, IMAGE-COMP01, 
IMAGE-COMP 12 . which can be retrieved along the link stored in slot 
IS-AN-IMAGE-COMP-OF-ASPECT-OF+INV of ASPECT-COMP10 frame in figure 14 (b). The 
sum of the ranges are stored in slot AREA-VARIANCE, MOMENT-VARIANCE, and 
MOMENT-RATIO-VARIANCE of ASPECT-COMP10 frame. Similarly, feature ranges of aspect 
component relations, such as DISTANCE-VARIANCE, MOMENT-ANGLE-P-TO-N-VARIANCE, 
SURFACE-ORIENTATION-ANGLE-VARIANCE, are obtained and stored. These ranges of 
features will be retrieved by generation rules at compile time to generate an interpretation tree 
and by the execution process at run time in recognizing a scene. 

7. Generating Programs 
In this section, we will consider the final step of compilation of a recognition program: rule-

based generation of a recognition strategy and conversion of the strategy into a executable 
program. As was in Section 2, the recognition strategy is represented by an interpretation tree 
which is made of two parts: the first part for classifying the input scene into one of the aspects 
and the second part for calculating the exact attitude. 

7.1. Recognition Strategy: Classification 
Strategy generation for aspect determination can be regarded as a process which classifies a 

group of aspect components into sub-groups of aspect components by applying classification 
rules recursively. At the beginning of the classification, a starting node is prepared, which 
contains all aspect components. We represent each classification stage as a node. 
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{{ASPECT-COMP10 

(AREA-VARIANCE (13.94 14.85 15 75)) 
(MOMENT-VARIANCE (22.77 25.06 27 34)) 
(MOMENT-RATIO-VARIANCE (0.53 0.65 0 76)) 
(VISIBLE-EDGE-USTASPECT-COMPlO-visiBLE-EDGE-LIST) 

{{ ASPECT-COMP-RELATION-11 - 1 0 

(DISTANCE-VARIANCE (5.04 5.38 5.69)) 
(MOMENT-ANGLE-P-TO-N-VARIANCE (1.29 1.53 1.8)) 
(MOMENT-ANGLE-N-TO-P-VARIANCE NIL) 
(SURFACE-ORIENTATION-ANGLE-VARIANCE (0.04 0.21 0.40)) 

}} 

Figure 19: Slots for representing uncertainty in features 
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The following sixteen rules have been prepared. Each rule tries to classify a group of aspect 

components at a node into smaller subgroups of aspect components by using the designated 

feature. For example, rule Al will classify a group of aspect components comparing area sizes 

of their subaspect components. 

Al: face area 

A2: face moment 

A3: face moment ratio 

A4: number of surrounding faces 

AS: distances between surrounding faces and the face 

A6: angles between moment direction of surrounding face and the face 

A7: surface orientation differences between surrounding faces and the face 

A8: face area of surrounding faces 

A9: face moment of surrounding faces 

A10: face moment ratio of surrounding faces 

All: surface characteristics of the face 

A12: surface characteristics of surrounding faces 

A13: surface characteristics distribution of the face 

A14: surface characteristics distribution of surrounding faces 

A15: edge distribution of the face 

A16: edge distribution of surrounding faces 
The cost of calculations increases in order from Al to A16; templates re required to calculate the 
features for the rules after A12. The order of preference in application is Al to A16. 

Application of a rule proceeds in the following steps: 
1. A rule selects a node which contains a group of aspect components. 
2. It computes the threshold values of the feature to be used for classification from 

ranges of the feature values over the group of aspect components. 
3. The rule classifies the group of aspect components into sub-groups by using the 

determined threshold values. 
4. It generates new nodes for the newly generated subgroups of aspect components. 
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Since the preference of rules has been set in order of Al to A16, a node will be kept divided by 
the applicable and the most preferable rules. 

If no more rule is applicable (ie., no more nodes are dividable), application of rules A1 to A16 
stops. Those nodes which contain only one aspect component are ready for the next stage of 
generating strategy for its attitude determination. At the termination, if there is a node which 
contains more than one aspect component and yet no rule is applicable to it, the parallel 
verification rule will be applied to the aspect components contained in the node. Since no further 
classification is possible, all possible aspect components in the node must be examined to see if 
any particular attitude is recognizable. 

Once a tree is obtained by these rules, unnecessary branches are pruned. A rule may have 
generated a single child node from a parent node because the rule could not divide aspect 
components in the parent node. This rule-based generation of a strategy for classification has 
been implemented in OPS-5 [22]. 

In applying this method in practice, we require a principle to choose a particular object and 
thus a particular region in an input image from which to start a recognition process. For a bin-
picking task, we assume that the highest object is the best object to recognize. Under this 
assumption, there are two alternatives for a starting region: 

1. The largest region of the highest object (conservative principle) 
2. Any region of the highest object (aggressive principle) 

Since the conservative principle begins with a set of only the largest visible aspect components, 
one from each aspect, the interpretation tree will have a smaller number of nodes than the 
aggressive principle which will begins with a set of all aspect components. Therefore it will be 
more efficient in search than that for the aggressive principle, while it may be less reliable 
because the system may fail to find the largest region in the image. 

7.2. Recognition Strategy: Attitude Determination 

Once the aspect classification part of the interpretation is completed, the part for attitude 
determination is to be constructed next. This part is constructed for each aspect component of a 
leaf node to determine the precise attitude using the linear feature calculations. First the z axis 
direction of the object coordinate system is determined and then rotation angle around it is 
determined. 



52 

The following two rules are prepared for the determination of the z axis direction: 

Dl: mass center of EGI distribution. 

D2: extended Gaussian image. 
If there is no partial occlusion of visible faces over all possible attitudes within the aspect and all 
visible faces are planar surfaces, the EGI mass center by rule Dl is used to determine the viewer 
direction. In other cases, matching of EGI by rule D2 is used. 

Once the viewer direction is determined, the rotation around the axis is obtained next. One of 

the following six rules will be adopted by examining by one to see if it constrains the freedom of 

rotation: 

Rl: position of detectable region distribution. 

R2: position of EGI distribution 

R3: moment direction 

R4: EGI moment direction 

RS: position of the surface characteristics distribution 

R6: position of the edges. 

7.3. Executable Program 
Once recognition strategy has been obtained with the necessary rules to be used at each stage, 

we have to convert the recognition strategy into an executable program. We are using the 

technique of object-oriented programming, because it simplifies to combine various elementary 

modules into a complete program. 

Each node of the tree is converted into an "object" in object-oriented programming. We are 
preparing a library of object prototypes which will be used to execute matching operations 
between image regions and models according to rules [17]. Each rule has one corresponding 
prototype in the library. Right now, we are working on an efficient way to organize the library. 
A necessary instance of prototype (ie., object) to be adopted at a node is generated from the 
corresponding rule of the node. The descendant nodes which will receive a message from this 
node are inserted in slot EXECUTION-DESTINATIONS of the object. Slot 
EXECUTION-ARGUMENTS contains the threshold value and other matching templates. Actual 
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operations are executed as message passing between objects (nodes). The operation begins by 
sending an execution message and a target region to the starting node object. After that event, a 
chain of operations takes place by passing execution messages from object to object. When an 
object receives an execution message, the object executes a matching method which had been 
particularly adopted to the node. Since regions in the image are also implemented as objects, a 
message is sent to the target region to receive a necessary feature value from it . 1 0 . Then, the 
matching method compares the value which is returned from the target region with the values in 
EXECUTION-ARGUMENTS slot. Based on the comparison result, the object determines to 
which object in EXECUTION-DESTINATION slot it should send an execution message next. 
This event is repeated until an execution message reaches one of the leaf objects of the tree. At 
that point, the tree determines the object attitude exactly. 

Rule-based automatic generation of an interpretation tree has been applied to an object shown 
in Figure 20(a), which has fourteen aspects as shown in Figure 20(d) 1 1 . The aggressive principle 
was chosen to select the starting region. The generation process generated the interpretation tree 
shown in Figure 20(b). After the pruning operation, the result was an interpretation tree shown 
in Figure 20(e). This pruning operation reduced the depth of the interpretation tree from 14 
levels to 4. The obtained recognition strategy is converted into a recognition program by using 
the object library (See Figrue 20(f)). 

The generated program is applied to the scene as shown in Figure 21(a). Figure 21(b) shows 
the needle map, Figure 21(c) shows the segmented regions based on surface orientation 
distribution, and Figure 21(d) shows edge distributions superimposed on the region distributions. 
The highest region, determined by the dual photometric stereo (indicated by an arrow in Figure 
21(c)), is given to the program. The black nodes in Figure 21(e) indicates the nodes which 
receive the execution messages in the real run. The program classifies the region to the 
corresponding aspect successfully. 

1 0This mechanism is particularly useful when calculation of a feature is expensive, such as region relation The 
system also converts an image value into a model value by using this mechanism. See [17] for more details. 

u I n this experiment, we only consider the northern hemisphere of the Gaussian sphere as viewer directions for 
the sake of simplicity. See Figure 20(c) 
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Figure 20: Generation of an interpretation tree for a toy wagon: (f) Recognition program 
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(e ) 

Figure 21: Tree execution: (a) Input scene; (b) Surface orientation distribution 
of the scene; (c) Segmented regions using shadows and surface orientation 
discontinuities. The arrow indicates the target region selected by the conservative 
strategy; (d) Edge distributions superimposed on the region map; (e) Execution 
result The target region is classified into the corresponding aspect successfully. 
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8. Future Directions 
This paper has discussed issues and techniques to automatically compile object and sensor 

models into a visual recognition program. This automatic generation requires several key 

components: object modeling, sensor modeling, strategy generation, and program generation. 

Especially we have argued for the importance of sensor modeling, as it has been studied very 

little in the past We have presented our effort toward a systematic way to modeling sensors: 

representation of geometrical relationships between a sensor and an object feature and 

calculation of a feature's detectability and reliability. Actual creation and execution of 

interpretation trees by our method has been demonstrated. 

Vision has been recognized as an important, versatile sense for industrial applications. Yet, 
the number of successful applications seems to be far below the expectation. Apart from the 
large computational requirement and the cost, one of the serious factors which hinder wider 
application of vision is the time and expertise required to program a vision system. The 
automatic generation of recognition programs by compiling object and sensor models will mend 
the situation; 

Moreover, automatic program generation may open a new dimension of capability in model-

based vision when it comes to special sensors such as synthetic aperture radars (SAR) or FLIR. 

In those cases, since their sensor characteristics are not very intuitive, even capable vision 

implementors may not be doing the best job and an automatic and mechanical method of 

generating programs may be more advantageous. 

Another area of investigation is learning from real scenes. For example, the range of a feature 

value is currently obtained solely from the analysis of sensor reliability and detectability. This 

information can be learned and modified by running the interpretation tree first generated from 

automatic analysis. The parameters used at branches are improved iteratively through real 

execution. Furthermore, branching structures themselves can be modified slightly. A critical 

difference of this approach from usual learning of recognition algorithms from scratch is that we 

start with the "skeleton" strategy which is more or less valid. Therefore there is a good chance 

that the final algorithm is truly competent. 
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