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Abstract 

This paper describes the mechanics and automatic planning of a class of 
shape-orienting operations for a robotic manipulator. Using a parallel-jaw 
gripper, the robot repeatedly squeezes the object, rotating and moving the 
hand according to plan. Except for an irreducible 180 degree ambiguity, 
some polygonal shapes can be stably grasped in a completely determined 
orientation with just two squeezes, without sensing. The mechanics of the 
operation lead to a natural discretization of the continuum of action choices, 
so that straightforward graph-searching can be applied to generate the plan. 
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Figure 1: An automatically-generated squeeze plan, that orients a triangle in two squeezes. 

1. Introduction 

This paper describes part of an ongoing inquiry into the problems of autonomous robotic manipulation. 
We seek a systematic understanding of perception, planning, and plan execution, in tasks that include 
uncertainty. We have focussed on the mechanics of manipulator operations, and how knowledge of the 
mechanics is applied in automatic planning. Our approach is to study very simple, but well-defined, task 
domains, and to design a robot planner that is competent in the task domain. Hie task domain itself may 
be of some interest, but our main hope is that the principles of autonomous manipulation that apply in 
this narrow domain will also be important in a more general class of tasks. 

The task domain considered here is the problem of orienting planar, polygonal, objects, by squeezing 
them with a parallel-jaw gripper. Each squeeze has the potential of aligning an edge of the object with 
the face of one of the fingers. A carefully designed sequence of squeezes can completely orient an object, 
except for an irreducible 180 degree ambiguity. The method is an extension of the results of Brost (1988), 
who developed the approach in the context of a single squeezing operation. In this paper we will consider 
sequences of one or more squeezes. An earlier paper (Taylor, Mason, and Goldberg 1987) describes the 
overall approach, focussing on the integration of sensory information during execution of the plan. This 
paper is also closely related to work by Eidmann and Mason (1986), and Peshkin and Sanderson (1987). 
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2. Overview of system 

Figure 1 shows a typical squeezing sequence. A small triangle is to be oriented and grasped in the fingers. 
After the first squeeze, the triangle is either aligned with one of the fingers, or it is cocked. After the 
second squeeze, the triangle will be aligned with one of the fingers. The remaining 180 degree ambiguity 
cannot be removed, due to symmetry in the operation. The system described in this paper is capable of 
constructing plans, such as the plan shown in Figure 1, automatically. The basic elements of the approach 
are: 

• We assume planar motion of rigid polygonal objects, subjea to Coulomb friction, with negligible 
inertial force. Contacts occur with the finger faces, not the corners.x 

• Each finger performs a uniform translation until a large resisting force is encountered. The fingers' 
motions are symmetric with respect to a line centered between the two fingers. These assumptions 
are consistent with a parallel-jaw pneumatic gripper, where the robot arm translates the hand in a 
direction tangential to the finger faces, while the fingers close. 

• The planner is given the following information: 

- a description of the object's shape; 
- the object's center of gravity; 
- the coefficient of friction; 
- the a priori possible object orientations; and 
- the goal. 

• If the planner converges, it returns a sequence of squeeze operations that will achieve the goal, 
subject to the assumptions above. 

So far, the planner has produced sensible plans for a few, very simple, objects. The planner's search 
is (almost) exhaustive, so that in principle, if a correct plan exists, the planner should (almost) never fail 
to converge. However, our present implementation has a number of difficulties with more complicated 
objects, discussed at the end of the paper. The next sections describe the mechanics of squeezing, and 
the structure of the planner. 

3. How squeezing works. 

This section recapitulates Brest's (1988) analysis of squeezing and extends it to the problem of sequential 
squeezing. We begin by analyzing pushing and pure squeezing, before turning to more complex squeeze 
operations. 

First, consider the problem of a single finger pushing an object. We can use a result from (Mason 
1986) to predict the object's rotation. At the contact point we construct three rays (Figure 2): two rays 
are the edges of the friction cone—showing the limits of the contact force allowed by Coulomb's law. 
The third ray shows the direction of the finger's motion. We also plot the object's center of gravity. 
These three rays vote to determine the object's rotation—if the majority pass the center of gravity on the 
left, the object rotates clockwise. If the majority pass on the right, the object rotates counter-clockwise.. 
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Figure 2: Given the contact geometry, coefficient of friction /x, and center of gravity, the object's rotation 
direction is determined by the votes of three rays: /?/>, RL> and RR. (Mason 1986) 

If the vote is a tie—one ray on the left, one on the right, and one straight through—the object makes a 
pure translation. 

For a fixed object shape, these predictions can be economically expressed in a pushing diagram 

(Figure 3a). Let <f> be the initial object orientation, let 6 be the direction of motion of the finger, with 
both angles measured relative to the finger face (Figure 2). Let \dcf>\ be the direction of object rotation, 
i.e. either plus, minus, or zero. The pushing diagram plots rotation direction as a function \d4)\(<pJ) of 
object orientation and finger motion. The details of the construction are contained in (Brost 1988), but 
note that the rotation direction \d4>\ is piecewise constant Hence, the diagram is divided into regions 
of constant rotation direction. Each boundary represents a discontinuous change in rotation direction, 
where one of the three rays of Figure 2 changes its vote. Since there are two fingers, we will need two 
different pushing diagrams, representing two different functions: \d4>\\(<f>, 8) for finger 1 (Figure 3a), and 
\d4>\i(<i><>8) for finger 2 (Figure 3b). The symmetry in the finger's motions gives the following relation: 

W l 2 ( ^ * ) - | ^ l i ( * + l » , 180 - 8). 

The symmetry can be observed by comparing Figures 3a and 3b. 

Now, consider pure squeezing, where the object is definitely in contact with both fingers. Determining 
the rotation of the object, or whether the object is stable, is purely a geometrical problem. Again, the 
direction of object rotation can be expressed as a function \d4>\s(<p, 8) (Figure 3c) although there is no real 
dependence on finger motion direction 8. Here we have added a subscript s to indicate that this is the 
function for squeezing. Again, see (Brost 1988) for details of the construction. 

Now we are prepared to analyze a complex squeeze operation. At any point in time, any of three 
sub-operations may be active: finger 1 pushing, finger 2 pushing, or pure squeezing. Without knowing 
which sub-operation is active at any particular point in time, the robot must include the predictions of all 
three operations. Hence we define 

\d*\(M = {\d4>\xfa6\ |<0|2<0,«), \d<i>U<f>,6)} 

Figure 3d is a typical diagram, showing all possible instantaneous motions of the object, as a function of 

Given the feasible instantaneous motions, we can determine the feasible finite motions £${<p, 8) by 
taking the transitive closure of the instantaneous motions (Figure 3e). The resulting diagram shows, for 
a given initial (<£,£), the set of all possible changes in <f>. To complete analysis of squeezing, we want 
to identify those <j> that can be obtained when the operation is completed. This imposes a restriction that 

5 



Figure 3: Automatic planning relies on analysis of the squeeze operation, shown here. Each diagram 
plots some motion feature against object orientation <j> and finger motion direction 6. (a,b) Each pushing 
diagram shows the instantaneous rotation direction \d*t>\i(<f>,6), for finger L (c) The squeezing diagram 

gives the direction of rotation for pure squeezing, (d) The set of possible instantaneous motions 
\d$\(<f>, 6). (e) The set of feasible finite motions A$(<j>, S\ shows the orientations that might occur during 
the motion, for a few typical points, (f) The set of total motions $(0,6), is the set of possible object 
orientations when the operation ends, shown for a few typical points. 

6 



15 30 

Figure 4: The total motion diagram, starting from an initial # of [15,30]. This gives the set of a posteriori 

orientations, given the specified a priori orientations, as a function of hand orientation and finger motion 
direction. 

the object attitude be stable in the true-squeezing instantaneous motion diagram (Figure 3c). So we take 
the finite-motion diagram, and intersect with the stable 0 in the the true-squeezing instantaneous motion 
diagram, to obtain a total motion function #'(<£, 6). A typical total motion diagram is shown in Figure 3f, 
that shows the possible final 4> resulting from an initial (<f>, S). 

A squeeze operation consists of a rotation of the fingers by some angle - 7 , and then a squeezing with 
finger motion S. If an object is initially at orientation <£, then after the operation the orientation will be in 
the set $'(<(> + 7,6). If the orientation is initially ambiguous, i.e. if we know only that <j> G then after 
the operation the orientation is given by the function 

*'(7,<*) = U *'(* + 7,*) 

In effect, the total motion diagram is logically convolved with the set of initial orientations For 
example, suppose the object's initial orientation is in a small interval <f> € [15,30]. To compute $'(y,6), 
we take the diagram of Figure 3f, shift it by fifteen degrees, and "smear" it another fifteen degrees, giving 
Figure 4. 

4. How the planner works. 

The planner works by searching a graph. Each node in the graph is a set of possible object orientations 
<P. Each arc in the graph is a squeezing operation ( 7 ,6) . The planner begins with a root node, for which 
the object orientation is typically unconstrained, * = [0,360). The planner determines a finite set of 
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Figure 5: An actual plot of showing equivalent and ordered regions. Out of the entire two-dimensional 
continuum of possible actions, only two distinct effects can be obtained. 

potentially useful squeeze motions, constructing an are (7 , S) and a successor node & for each squeeze. 
By repeating this step for new nodes, the planner gradually explores the set of all possible squeeze 
sequences. During this construction, if a node is constructed satisfying the goal, the plan is complete. 

The key step is the problem of "expanding" a node—identifying a finite number of arcs from a given 
node, and determining the corresponding sets The planner constructs a total motion diagram <S), 
and constructs an arc for each different region in the diagram. The key problem is identifying a finite 

number of useful squeezes. First, consider the conditions under which a squeeze may be pruned from 
the search. Imagine a situation slightly simpler than squeeze operations—where there is a single control 
variable u and a single state variable x. The initial set of states X is given, and we arc constructing the 
resultant set of states X?, as a function of u. First, consider two different actions u\ and uz. Obviously, 
if the two actions are equivalent, i.e. if X?(u\) = Xf(ui)t we need consider only one of the actions during 
our search. The arc corresponding to wi may be pruned. Less obviously, it is also okay to prune 112 if 
u\ dominates wi, i.e. if X?(u\) C XHuz). The argument goes as follows: suppose we have a correct plan 
that employs wi, we argue that the same plan will work, with u\ substituted for ui. Hence pruning wi 
will not prevent convergence of the search. (Some subtie problems with this argument are discussed in 
(Taylor, Mason, and Goldberg 1987).) 

The real value of this observation is that it often allows us to prune away an entire continuum of 
actions. Consider Figure 5, showing for each region in the total motions diagram. In region A, 
an equivalent region, every choice of squeezing motion (<p,6) gives <P' = {0}. In region B, an ordered 

region, $ ' varies continuously, but there is a single choice of (<j>, S) that dominates the other choices. 
Every region in the diagram is a two-dimensional continuum that can be represented as a single action. 
In some instances, though, an unordered region can occur, with no dominant action, and no justification 
for pruning away any of the motions. 

It is now possible to describe in some detail how the planner works: 

1. The planner is given the object shape, center of gravity, coefficient of friction, initial set of object 
orientations,.and a goal predicate. Typically, the initial set is [0,360) and the goal is to orient the 
object completely, modulo the unavoidable 180 degree ambiguity. 
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2. For efficiency, the planner first computes a kernel motion diagram 6), for a completely oriented 
object. The diagram in Figure 3f is the kernel for the small triangle. This kernel is saved for use 
in constructing motion diagrams corresponding to different nodes in the search. Analysis of the 
kernel also allows the planner to construct a bit-vector representation of object orientation sets 
After this construction, all operations on sets of orientations can use discrete representations and 
bit-wise logical operations. 

3. At this point, an exhaustive breadth-first search begins. For each node, we construct a motion 
diagram, by convolution of the kernel diagram with the node's set of orientations In the kernel 
diagram, equivalent regions are not distinguished from ordered regions. This means that in the 
convolved diagram, we cannot distinguish unordered regions. The result is that equivalent, ordered, 
and unordered regions are all treated as equivalent regions. The resulting branching factor is always 
finite, but the search is not truly exhaustive, as the unordered regions are, in effect, being sampled. 

4. As each new set of orientations <£' is constructed, it is compared with previously constructed and 
all supersets are pruned from the search. (We should also prune any set that can, by any rotation, 
be transformed into a superset of a previously generated set.) 

5. As each new node is encountered, the goal predicate is checked. If it is satisfied, the search is 
complete, and the path from the root to the new node encodes the shortest sequence of squeezes 
that attains the goal. 

5. Experimental Results 

Constructing the total motion diagram for each node is time-consuming, and subject to a variety of 
numerical problems. Consequently, we have successfully planned sequences of squeezes for only three 
objects: a triangle, a skinny rectangle, and a fat rectangle. When we tried a simple five-sided shape, 
(Brost's roly-pointy), the program failed to produce a plan in 48 hours of elapsed time on a Symbolics 
3600 Lisp Machine. The search fails due to a subtle problem in our treatment of unordered regions. 
During construction of a diagram, a region is defined by a collection of contiguous areas that have 
the same effect. Since the subsets of an unordered regions do not have the same effect, they are not 
identified as defining a single region. Hence, where one or two unordered regions should be created, our 
implementation constructs, in the case of the roly-pointy, 91 different regions. Each region is very small, 
and all 91 regions have nearly identical effects. With our next implementation we hope to correct this 
problem and explore the performance of the system on a wider variety of parts. 

6. Conclusion 

We have designed an automatic planning system for what seems, a priori, to be a relatively simple class 
of problems. What we've learned is that even for a simple class of problems, modelling the mechanics 
and constructing a planner is a moderately complex project. We have also learned that going the next 
step, reasoning about continuous sets of action primitives, is important. Nonetheless, our preliminary 
experiments are suggestive that the overall approach is sound. 
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