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Abstract 

General-purpose robot vision includes a number of different tasks that impose a great variety of imaging 
conditions and requirements. To support the full range of these tasks, an imaging system must provide a 
very wide dynamic range and high precision in both geometric and radiometric characteristics. In general, 
this can only be accomplished by a highly precise, automated imaging system. This paper defines a 
twelve-parameter model for a robot imaging system - six parameters in camera position, three in optical 
constraints, and three in sensitivity - that subsumes common TV cameras and "scientific" cameras as 
special cases. We call this model the "Imaging Space", a configuration space for robot imaging systems. 
Systematic consideration of this complete model leads to a more comprehensive treatment of camera 
calibration than has been seen before. While traditional calibration literature refers only to geometric 
calibration of the imaging system, the new model uses similar concepts to outline the radiometric (pixel 
value) calibration of the system. The concept of "second-order calibration" is also introduced, in which 
the interaction of geometry and radiometry is explicitly accounted for. Representing this second-order 
calibration data in a useful form is not yet a solved problem. We also outline some of the issues in 
specifying imaging constraints in a task-oriented way. This paper is not primarily a report of research 
results; instead, it is a report on the state of the art in imaging system technology and calibration and an 
outline of some future directions for work in this area. The emphasis throughout is on the achievement of 
wide dynamic range, i.e. high precision in geometry and radiometry, because modern theories for robot 
vision are showing a direct link between the precision of the imaging system and the precision in 
computed quantities such as object shape. 
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1. Imaging Requirements for Robot Vision 
Robots are being called upon to perform increasingly ambitious tasks including higher-speed outdoor 

navigation, more reliable manipulation and inspection, and responding to more "natural" environments 
with more variation and less structure. To achieve these goals, the demands upon robot vision systems 
are increasing dramatically. Yet, relatively little attention has been paid to the quality of the imaging 
equipment and the attendant calibration. Quite the contrary, the proliferation of inexpensive TV-grade 
equipment has led to an explosion in the use of this technology, regardless of whether it is well-suited to 
the vision task being undertaken. 

Modem theories for computer vision have begun to establish a direct relationship between the 
precision of the imaging system and the precision of computed quantities such as line position and 
surface shape [3,5,19, 20]. As more quantitative and precise vision systems are demanded, there is an 
increasing need for a theory of camera modeling that can capture the essential variables in the selection 
and description of imaging equipment. Also needed is a corresponding calibration methodology to 
achieve the full potential of the hardware for high-precision image acquisition. In this paper, we present 
an imaging model and calibration definition that help to set forth the dimensions of interest in high-
precision robot imaging systems. This discussion differs from previous literature in this area in its 
inclusion of both geometric and radiometric factors in a single model, and in its orientation towards 
automated imaging, in which the robot can control all possible imaging parameters. 

To begin, let us consider some vision tasks that define the limits of the precision requirements for robot 
vision systems. We will define the dynamic range of a system to be the number of reliably resolvable 
units in the total sensitivity range of the system. For the geometric domain, dynamic range means the 
number of pixels in the field of view; for the radiometric domain, dynamic range refers to the signal-to-
noise ratio in the brightest pixel value of the image. We use the term precision to refer to such a relative 
property of the imaging system. In contrast, we use the term accuracy to refer to the absolute 
correspondence between the imaging system's scale of measure and the actual physical coordinates in 
the external world. 

To determine some bounds on the geometric dynamic range we might desire for general-purpose 
imaging, we need an upper bound estimate on a "reasonable" field of view and a lower bound on the pixel 
resolution requirement. For navigation tasks indoors or outdoors, experiments have shown the need for 
at least a 60° field of view [6]. For surface characterization, little research has been reported; however, a 
pixel size of about 0.1 mm at a distance of 1 meter is a reasonable estimate for distinguishing smooth 
from rough surfaces. This corresponds to a pixel size of 0.0001 radian, or about 1/150°. Combining 
these values shows a potential need for a geometric dynamic range of 10,000:1, i.e. 10,000 pixels across 
the image! In the radiometric domain, high-precision quantitative analysis is becoming increasingly 
important [8,15, 27]. For this research and its future applications, we will likely require at least a 200:1 
pixel value resolution, which is nevertheless less than the full range of an 8-bit pixel. This must be 
augmented by considering the variation in the potential illumination level of the image, determined by the 
brightness of the scene as a whole, as well as the need to look into bright highlights or dark shadows 
within the scene. Assuming conservatively that the overall illumination level may vary by 50:1 [10], that 
shadows can easily be 10 times darker than the overall scene, and that highlights can be at least 10 
times brighter, a total radiometric dynamic range of at least 1,000,000:1 is desirable. 

These figures stand in sharp contrast to the capabilities of TV-grade equipment commonly used in 
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robot vision, which can typically provide perhaps a 500:1 geometric dynamic range and a 100:1 
radiometric dynamic range. A higher dynamic range can be achieved generally by three means: 

• Direct Precision Improvement: Certain technologies are capable of providing wider dynamic 
ranges than T V equipment. For example, imaging array sensors may soon provide as much 
as a 2000x2000 image; cooled CCDs can provide on the order of a 10,000:1 radiometric 
response range. Of course, these figures are still far below the desirable ranges. 

• Nonlinearity: If a nonlinear scale is used such as a logarithmic scale, the dynamic range can 
be increased substantially at a cost of resolution. For radiometric response, this corresponds 
to the common nonlinear intensity response function (i.e. "gamma" response); in geometric 
terms, nonlinearity would describe, for example, a sensor with larger pixels at the periphery. 
The tradeoff is that the resolution will be nonuniform, for example proportional to the absolute 
level, so that high levels (or peripheral pixels) would be measured with poor resolution. A 
variation on this is the use of multiple cameras with different parameters, e.g. one with its 
aperture set for normal illumination, and another with a wide aperture used for looking into 
shadows [12]. The result is a nonlinear resolution scale. 

• Automation: In view of the modest successes achieved with TV-grade equipment, it should 
not be surprising to note that many specific tasks do not require such extensive dynamic 
ranges. In fact, this is how most robot vision is performed: the imaging equipment for a 
specific task is dedicated to that task, and hand-tuned in all the various parameters such as 
camera position, lens focal length, aperture, etc. The result is hardware that is not capable 
of any substantial generality in the variety of tasks it can undertake. Through such 
parameter settings, the dynamic range can be manually extended by a considerable amount 
- easily 10+:1 geometric scaling by a zoom lens, and 1,000:1 radiometric range extension by 
controlling the aperture, exposure time, and digitization gain. These parameters can all be 
automated by straightforward means. Thus, while current technology cannot provide all the 
desired dynamic range at one time, the available instantaneous range can be adjusted over 
a much wider range by a robot equipped with appropriate automation. This is one of the key 
reasons for utilizing automation in a robot imaging system. 

This approach - beginning with a task description in general terms and deriving the imaging precision 
needs - is a kind of "top-down" approach to imaging system configuration. It stands in contrast to the 
traditional "bottom-up" approach that dominates the field, in which the researcher begins by selecting a 
technology (usually Closed-Circuit TV technology) that has inherent limitations, and then attempts to 
determine what tasks can be accomplished with that equipment. While the bottom-up approach is a good 
paradigm for initial exploration of the vision problem, only the top-down approach can provide the 
engineering control needed for high-performance robot vision systems. 

Measurement quality can be described in both relative and absolute terms. Relative measurement 
quality is best described by the number of resolvable units in the range of the instrument; this may be 
referred to by any of the terms precision, dynamic range, or SNR (signal-to-noise ratio). In a continuous 
measurement, these terms refer to the ratio of the total measurement range to the standard deviation of 
the signal (noise); for a discrete measurement, precision and dynamic range refer to the number of steps 
in the range. The noise level or step size itself may also be called resolution. In both the continuous and 
discrete cases, these terms refer to the repeatability of measurements and therefore characterize the 
uncertainty of the measured value. On the other hand, the term accuracy refers to the possible mis­
alignment between the internal measurement scale of the instrument and the external world. This mis­
alignment creates a very systematic and repeatable error in the measurements. The error itself may be 
known to be bounded by a tolerance, or it may be continuous and be characterized by its standard 
deviation. 
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2. The Imaging Space: A Camera Model for Automated Imaging 
In this section, we will briefly develop the "Imaging Space" camera model to describe all of the 

generally achievable degrees of freedom in automating a camera for robot vision. As we will see, these 
12 degrees of freedom can describe a wide variety of systems that includes both closed-circuit TV 
equipment and so-called "scientific" imaging systems. This set of parameters defines the Imaging Space, 
a configuration space for robot imaging systems. We also discuss the ramifications of automation of all of 
these parameters, using a wide variety of vision tasks to illustrate the precision requirements for 
automation. In the later portions of the paper, we will address the problem of calibrating the imaging 
system. 

2.1. Camera Position Parameters 

Figure 2-1: Imaging Coordinate System 
The most commonly controlled and studied parameters of the imaging system are the six degrees of 

freedom in the camera position and orientation, which we will call Tx, T y , Tv 9 X, 0 y l and 9 Z. As shown in 
Figure 2-1, we will assign x to be horizontal in the image plane and y vertical; zwill be the optical axis of 
the camera. The rotational parameters will be assumed to be rotations about the respective axes (0X = 
"tilt 9 y = •pan", and 8 2 • "roll"), but we won't go into detail on their interpretation since that is beyond the 
scope of this paper. The origin of the coordinate system is the front principal point of the lens, which acts 
as the scene perspective center for geometric optics calculations. 

Many technologies are commonly available for automation of these parameters, including particularly 
rotators and translators based on analog, stepping, or microstepping motors, and also mobile robot 
platforms that provide control over T x , T 2, and 9 y (or some rotation of these if the optical axis is tilted or 
rolled out of the standard, horizontal position), it is useful, however, to consider the impact of limited 
precision in each parameter. Let us hypothesize for a moment an outdoor vehicle using a stereo vision 
system for object detection and localization, as shown in Figure 2-2(a). It has two cameras on a 2-meter 
baseline, each having 512 pixel columns spanning a 50° field of view. In this system, the average pixel 
subtends approximately a 0.1° angle. If the vision software produces accurate matches to the nearest 
pixel location, an object at a distance of 10m (meters) can be localized to within about 18cm, 
approximately 7 inches, in z. If the rotational precision of the camera alignment is similar, the localization 
tolerance increases to about 36cm, 14 inches, giving the overall system greater than a 3% relative error. 
This would be considered rather a crude 3D vision system. If the baseline distance were in error by 0.1 
inch, about 0.25cm, which would be a fairly coarse error, the increase in the measurement error would be 
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Figure 2-2: Two Imaging Systems 

only about 2.5cm. Thus, the translationai precision at this magnitude is far less critical in this system than 
the rotational precision. 

In contrast, consider a system for inspection of fine surface details, as shown in Figure 2-2(b), with 10 
pixels per millimeter at a distance of 1 meter. In this system, each pixel subtends about 0.006°, so an 
angular tolerance of 0.1° corresponds to a 15-pixel error. Similarly, a 0.1 inch translationai error 
represents a 25-pixel shift. In this case, increasing the translationai precision is more critical. These two 
example systems illustrate the basic principle of precision analysis for imaging system design: the 
precision of the control parameters cannot be evaluated in isolation - it must be evaluated in terms of its 
effect on the resulting images. 

Automation for these degrees of freedom can readily achieve resolution that is a factor of greater than 
10 improvement over the above examples. Commonly available technology for microstepping motors and 
translation stages is advertised as providing repeatability on the order of 0.001 inches (0.025 mm), or with 
specially graded components, 0.00005 inches (0.00125 mm); standard rotation stages typically claim 
repeatability of 0.5 arc-minutes (0.008°), and precision grade stages 0.2 arc-minutes (0.003°). 
Arrangements of such stages usually involve "stacking" them together into a jig of some sort, with 
appropriate rigid support structures, to provide an automated camera platform; the motors are controlled 
by specialized boards in the host computer or by a control box with an RS-232 or IEEE-488 connection to 
the computer. 

It is extremely difficult to design such a jig to reliably place the camera's optical center on all the 
rotational axes; thus, each rotation of the stages will generally induce some translation in the camera's 
coordinate system as well. To obtain a specific motion then requires that a 6-DOF (degree of freedom) 
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inverse kinematics problem must be solved in order to move the camera to the desired position and 
orientation. Even if the jig is designed to align the rotation axes perfectly, some special 6-DOF manually-
adjustable assembly is usually required to couple the camera to the jig so that it can be aligned in the 
desired manner. Some alternative technologies to these jigs include robot arms or robot vehicles used as 
camera platforms. Usually, those devices provide substantially lower precision than the figures given 
here, but of course they are useful for many robotics tasks, especially if some on-line calibration 
procedure allows compensation for the tow repeatability in position control. Also, in some cases, the 
vehicle or arm itself defines the desired frame of reference for calibration, so that the precision of its 
motion is not an issue for the vision system. 

2.2. Rationale for Automation 
Even though we have not yet presented the full 12-DOF model for automated imaging, the above 

discussion is enough to see the gross outlines of the reasons for utilizing automation in the imaging 
process: 

• Repeatability: Automation can typically provide finer resolution of control than manual 
adjustments. In the cases above, very precise manual adjustments can be utilized, typically 
over very small ranges of travel. However, the knob itself needs to be quite specialized to 
allow human fingers to manipulate it. Similarly, manual lens focusing and aperture control 
are typically very crude by comparison with automated lens controls. 

• Separation of Parameters: Frequently, a real imaging system will not provide for 
independent adjustment of parameters. For example, as described above, rotating a camera 
platform may also induce a translation in the camera's coordinate system. By automating 
and calibrating the imaging mechanism, the system can be designed to automatically 
compensate for such couplings, in effect providing a system with independently controllable 
parameters even though their mechanisms may be physically coupled. This is analogous to 
the distinction in robotic manipulation between joint control and Cartesian control. The same 
argument applies to very pragmatic issues such as automated v. manual filter-changing: 
changing filters manually makes the camera vulnerable to being bumped or pushed into a 
different position or orientation. Another important case is that of focusing the lens, which 
generally moves the perspective center of the imaging system along the optical axis as 
described later in this paper. Compensation for this change may involve adjusting the focal 
length and position of the camera. In all these cases, automation can be used to decouple 
parameters that are physically connected but conceptually independent. 

• Knowledge of State: For use of calibration data, the imaging system must generally know 
the values of all the key imaging parameters that affect the calibration. With a manual 
system, the system may not know where it is, what the focal length is, etc. Such ignorance 
leads to calibration data that assumes specific values for ail the imaging parameters, and the 
resulting imaging systems are only useful for a single, dedicated task. 

• Image Quality Control: To maintain the best image quality, the imaging system may need to 
make minute adjustments in ail parameters. For example, when the camera is moved, it may 
now be imaging some shadows that require that the intensity sensitivity range be adjusted 
downward. When a new object is to be imaged, the lens may need to be re-focused. 
Maintaining high image quality requires that the system adapt to the changing demands 
imposed by the task and environment, which is only possible if the imaging process is highly 
automated. Achieving a wide dynamic range, as described in the introduction of this paper, 
is an example of image quality control. 

Hopefully, the above discussion will serve to clarify the immense importance of automated imaging for 
high precision and flexibility in the imaging process. It does not address the issues of real-time control of 
the imaging system or of saving labor in repetitive reconfiguration of the imaging system; while those 
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might sometimes be additional reasons for automation, they do not bear directly on precision and 
flexibility issues and are hence outside the scope of this paper. 

2.3. Lens Parameters 
In a fully automated imaging system, the lens and camera also provide several degrees of freedom. 

While the camera position and orientation are strictly geometric features, the lens and camera parameters 
will affect both the geometric and radiometric aspects of imaging. First we will examine the lens, which 
generally provides three degrees of freedom. The* focal length, F, is an optical magnification parameter 
(also called "zoom"). Zooming trades off the width of the field of view for the resolution of the individual 
pixels; zooming is thus the primary means for controlling the geometric sensitivity range. A modern lens 
generally contains as many as a dozen glass elements arranged in three to eight groups; zooming is 
implemented by elaborate movement and counter-movement of these groups to achieve the desired 
optical effect. A convenient measure of lens performance is the ratio of the maximum to the minimum 
focal length, expressed as "x3" or "x10w, etc., sometimes called the Mzoom factor of the lens. Due to the 
complex optics of focal length adjustment, a high zoom factor is very difficult to achieve. Typically, larger 
format lenses such as 35mm camera lenses have zoom factors of x3 to x6; smaller format lenses such as 
C-mount video lenses, which provide more opportunity for optimization of optical parameters, may 
achieve X10 or even x20. 

Compound 
Lens 

( \ 
Sensor 

V I 
Focus Distance D 

Figure 2-3: Focus Distance Components 

The second geometric parameter of a lens system is the focus distance, D, by which we refer to the 
distance from the sensor plane (chip, tube, film, etc.) to the plane in the scene that will be focused on the 
sensor. This distance is composed of three parts as shown in Figure 2-3: the distance Ds from the sensor 
plane to the rear principal point of the lens, the length of the hiatus between the principal points, and 
the distance DQ from the front principal point to the focused plane in the scene, according to D = Ds + Dh 

+ Do I 1 4 ! - T h e №o components D s and D0 form a "conjugate pair" of distances according to the lens law 
1/F= 1/DS + 1/D0. The focus distance is physically controlled by moving optics within the lens to move 
the locations of the two principal points, thus changing the values of all the components of D according to 
the constraints of the above laws. As can be seen in the lens law, if D s = F, then D is infinite and the lens 
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is "focused at infinity". By increasing D s , the focus distance D can be reduced down to some minimum 
value that is an attribute of the lens. Special "close-up" optics can usually be fitted to the front of a lens to 
modify F, thus allowing the minimum focus distance to be reduced yet further. 

Focused 
Plane 

Figure 2-4: Adjustment of Focus 

This parameterization describes the typical imaging arrangement of Figure 2-4, in which the camera 
body containing the sensor is held rigidly while the lens is focused. Adjusting the focus can then be seen 
to modify the lens component positions, which in turn moves the principal points of the imaging system 
forward and backward. Since the front principal point is generally taken as the origin of the scene 
coordinate system, there is an intimate coupling between D and T z . Similarly, focusing by changing the 
lens-to-sensor distance alters the angle subtended by the sensor as seen from the optical center, thus 
modifying the magnification (angular field of view and pixel resolution) of the system. To maintain a fixed 
focus plane in the scene, the lens-to-sensor distance must also be modified with F. This creates an 
awkward inter-relationship between F and T z , with the result that the focus distance must be an explicit 
parameter in the kinematic computation of the camera position. Such complexity is an inescapable 
outcome of the desire to decouple control of focal length from control of the sensor-to-object focus 
distance so that each one can be adjusted without disturbing the other, an arrangement of nearly all 
modern "equifocal" zoom lenses. 

Finally, the lens aperture, A, is generally adjustable. Widening the aperture increases the intensity 
sensivity of the imaging system but reduces the "depth-of-field", the interval about the focus distance 
within which objects will be satisfactorily focused on the sensor plane. Aperture is measured in inverse 
ratio to the focal length; this is called the f-number. Thus, an aperture of f/4 refers to an aperture 
diameter A that is one-fourth the focal length of the lens. Aperture adjustment for a lens commonly 
ranges from about f/3.5 to f/16, with many lenses providing a wider range of adjustment down as far as 
f/1.2 or up to f/32. A manual lens is generally adjustable only in large discrete steps, i.e. f/2, f/3.5, f/4, 
f/5.6, f/8, f/11, f/16, f/22. These steps are measured logarithmically to the base 2, with a difference of one 
log unit (factor of 2) called one f-stop. Automation can provide a virtually continuous adjustment of 
aperture. 

For lenses, perhaps more than for the positioning equipment or the camera itself, manual technology is 
by far the most common for robot vision. Yet, of all the elements, the lens adjustments are typically the 
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most crudely adjustable and the least repeatable. This presents a serious problem for high-precision 
computer imaging. Lens price, reflecting the optical and mechanical quality and the degree of 
automation, tends to vary over about three orders of magnitude (from $50 to $50,000), thus placing a very 
strong pressure on researchers to use inexpensive lens technology. Unfortunately, such lenses tend to 
be manual, with poor optical quality (introducing distortions) and poor mechanical quality (reducing 
repeatability). For example, in common C-mount lenses, the perspective center in the image may 
"wander by several pixels as the lens is zoomed; 35mm SLR lenses are better but still provide for poor 
repeatability of the lens parameter settings. 

Automation is also quite expensive, typically multiplying the cost of the lens by an additional factor of 
10 over a manual lens with similar performance. Inexpensive automation is sometimes achieved by 
starting with an inexpensive joystick-controlled lens such as a VCR-grade lens, chopping off the controls, 
and inserting D/A converters to provide computer control. Typical repeatability for such lenses is poor, 
and the optical quality is similar to the tow-end manual lenses that they resemble. By using a high-quality 
lens and fitting it with microstepping motors, a precision of about 2,000 steps for each parameter (F, 0, 
and A) can be achieved, with substantially lower distortions than the common lenses described above. 

2.4. Other Parameters in the Imaging System 

Lens 
Filter frtf) 

Sensor 

Amplifier 
(s) 

Digitizer 
Image 

Memory 

Shutter (E) 

Camera Body 

Figure 2-5: Overall Imaging System Block Diagram 

In addition to the 6 DOF in positioning and 3 DOF in the lens, the imaging system may provide for 
several additional adjustable parameters from the components shown in Figure 2-5. First of these is the 
exposure time, E, which determines how long the sensor will be exposed to light from the scene. A 
longer exposure will typically increase the signal-to-noise ratio of the pixel values but will of course slow 
down the imaging time. Long exposures also allow the use of smaller apertures, thus increasing the 
depth-of-field in the image. For static imaging scenarios, a long exposure time can thus be very 
advantageous. Ironically, this is the parameter that is least frequently adjustable in typical robot vision 
equipment, since nearly all robot vision uses TV-grade video cameras with a fixed 1/30 second rate for 
exposing and scanning the image. As an alternative to video equipment, there are "scientific cameras" 
that typically allow controllable exposure time ranging from about 1/5 second up. In addition, the new 
generation of "fast-frame" CCD cameras may allow adjustable exposure in the range of about 1/10 
second to 1/500 sec. 
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For even greater increase of the SNR, scientific cameras using CCDs sometimes provide for cooling 
the chip to -40°C or below, using pressurized nitrogen gas to keep moisture from condensing on the 
sensor chip. Systems with these arrangements advertise SNRs as high as 10,000:1, and are frequently 
used in astronomical observatories. For comparison, typical TV-grade equipment may provide a SNR of 
100:1, and a high-precision vidicon or an uncooled scientific camera may provide 500:1. 

The camera head generally amplifies the signal from the sensor so that it will not be swamped by noise 
while being transmitted and digitized. The gain of this amplifier, G, is a factor that can sometimes be 
externally controlled. A high gain increases the intensity sensitivity of the system, allowing the use of a 
narrower aperture and shorter exposure time; however, the noise in the pixel values is generally 
proportional to the gain. Thus, a high gain does not increase the radiometric precision of the system. In 
many TV-grade cameras, an "automatic gain control" circuit adjusts G automatically so that the average 
signal from the camera is maintained at a constant level. Such a design is totally unsuitable for 
radiometric calibration, since the gain is being adjusted without control by the software, and there is 
usually no way to measure its setting. Furthermore, such a design offsets the effects of changing the 
aperture and exposure time of the lens, rendering those control parameters useless for controlling the 
intensity sensitivity range. 

Finally, the spectral responsivity of the imaging system can be adjusted, usually by using a filter wheel 
to rotate one of several filters in front of the lens. We will use c to denote which filter is in place, and 
denote its spectral transmittance by xc(\). With a filter wheel, c and thus thus xc(X) can be automatically 
controlled. When comparing an automated filter wheel to a manual filter system, it may appear at first 
glance that repeatability is not an issue since the manual system can certainly select each desired filter at 
the proper time. However, automation is important for two reasons. First, as noted above, changing 
filters manually may make the system vulnerable to being "bumped" out of position by the human 
operator. Second, perhaps more important, an automated system will always place the same filter in the 
same position in front of the lens - thus, any irregularity in the makeup of the filter or any dust or 
markings on its surface will be placed back into the same position each time. This may seem a trivial 
matter, but it is an important issue for a "warts and all" end-to-end calibration of the system. Of course, a 
full and detailed treatment of filter irregularities can be a profound study in itself. Yet, a reasonable model 
of the most important filter properties ought to include some consideration of the optical uniformity across 
the area. While any non-uniformity may impair the absolute accuracy of the theoretical filter model, at 
least an automated system will preserve the repeatability of the effect and thus preserve the precision of 
the calculation. 

2.5. Summary of the Imaging Space Model 
We have now presented a 12-parameter model that captures the controllable parameters of a robot 

vision imaging system: 

• 7"x> T y , T z , G x, 9 y > 9 Z: the location and orientation of the imaging system 

• F, D, A: the focal length, focus distance, and aperture diameter of the lens 

• E, G: the exposure time and gain of the camera and digitizer 

• x c : the transmittance of the selected filter 

This model, which we call the Imaging Space, is a configuration space for robot imaging systems. In a 
specific system, each of the parameters can be characterized by whether it is manual or automated, by 
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the range over which it can be adjusted, and the repeatability with which it can be controlled. 

In this presentation we have not discussed the issues of controlling the illumination, although one might 
certainly develop a similar model for each light source under automated control. 
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3. Calibration and the Imaging Model for the Imaging Space 
By itself, the Imaging Space is only a parameterization of the imaging system. To be useful, it must be 

accompanied by an imaging model and a calibration methodology. The purpose of an imaging model is 
to establish the correspondence between the physical reality of the scene and the data measurements 
contained in the image, as determined by the Imaging Space characterization of the camera. Each ray in 
the scene can be parameterized as a point of origin (x,y,z) and a direction given by the vector gradient 
(p,q) = (Ax/Az, Ay/Az) [22]. Using X to represent the wavelength of light, we can then express the 
radiance of light in any ray as L(x,y,z,p,q,\). The image data can be parameterized as an integer function 
P(r,c)t where P is the pixel value and (r,c) are the integer image coordinates (row and column). With 
these definitions in mind, the goal of the imaging model can be stated as the establishment of a 
relationship between the scene, the imaging parameters of the Imaging Space, and the image, which may 
be symbolized as follows: 

A specific imaging model will consist of one or more equations relating the scene parameters to those of 
the image. Such equations typically involve several constants in addition to the imaging parameters; 
calibration is the act of determining the values of these constants for a specific implementation. 

Errors in calibration typically reduce the accuracy of the imaging model, i.e. they cause an incorrect 
registration between the scene parameters and the image parameters. The precision of the image data, 
however, is determined by three factors: 

• The precision of the control of the twelve imaging system parameters. Using an uncertainty 
model such as a Gaussian model of the control error, the precision of the imaging system 
can be related to the precision of the image data through the equations of the imaging model. 

• The precision of the calibration measurements. Calibration proceeds by imaging some 
calibration standards (such as grids or gray scales), using some external measurements of 
physical parameters of the standards, and deriving the desired constants through 
manipulation of the imaging model equations. The physical measurements themselves are 
generally subject to limited precision, which imposes a consequent limitation on the precision 
of the constant values determined through calibration. 

• Inadequate image modeling equations. If the modeling equations do not account for all the 
necessary parameters in the imaging process, the result will be an inaccurate imaging model. 
This inaccuracy will usually result in slightly mis-registered data (in either the geometric or 
radiometric domain). Because computer vision theories assume ideal registration, the 
discrepancy is generally modeled by simply increasing the assumed uncertainty ("noise") in 
the image data. Unless the researcher is actively seeking to analyze the nature of the 
uncertainty, the fact that it is systematic rather than "random" may not be detected at all. 
Thus, an inadequate imaging model leads to a preventable loss of precision and consequent 
narrow dynamic range in the imaging system, both geometrically and radiometricaily. 

This last issue - the precision loss caused by inadequate imaging models - is of particular concern for 
two reasons. First, it is entirely preventable inasmuch as it is due to a faulty theory rather than poor 
equipment. Second, as we will see, the "first-order" theory on which almost all robot vision calibration is 
currently based has just such an erroneous assumption at its very heart. To remedy this problem 
requires the development and adoption of a more complete "second-order" model of imaging. 
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3.1. First-Order Geometric Calibration 
Almost all the calibration literature in the field of computer vision addresses only the geometric aspect 

of the imaging problem, that is, determining a model to relate each ray in space to the corresponding 
image pixel through the geometric parameters of the imaging system: 

Figure 3-1: Pinhole Model of Imaging Geometry 

The most commonly used geometric model is the pinhole camera model, in which the lens is modeled 
as posessing an infinitesimally small aperture (Figure 3-1). This aperture is located at the optical center 
of the lens, the point used for calculating principal rays from the scene to the sensor plane according to 
the laws of geometric optics. For an internal calibration, the camera coordinate system is used as the 
frame of reference; thus the x -y -z coordinate system aligns with the image coordinates. Only those rays 
from the scene that pass through the aperture will contribute to the image, thus only rays with p = x I z 
and q • y / z are considered. If the lens-to-sensor distance is D s , then such a ray will strike the image 
plane at coordinates (pDs,qDJ * (xD/z^D/z) (with suitable assignment of signs). This is the common 
perspective projection imaging model; the value of D s must be determined by a calibration procedure. In 
this model, collinear rays are treated identically. 

To complete the model, we need to consider the interaction with both the task environment and the 
image. The assumption that the task and the imaging system use the same coordinate system is rather 
far-fetched; thus, the transformation between the task and imaging coordinate systems needs to be 
calculated. This introduces additional variables to be determined by calibration, and allows the imaging 
system to be related to the world in what we call an external calibration. Of course, an external calibration 
demands that measurements of the scene be made using devices independent of the imaging system, 
which introduces additional uncertainty into the imaging model. 

Similarly, the coordinates of the projection equations must be related to the image coordinates r and c. 
This is usually modeled by the linear relationships r = La r +b r yJ and c = Lac+bcx] where LcJ is the 
greatest integer part of x, and the minimum and maximum values of r and c are determined by the 
camera and digitizer. If desired, this linear model can be back-projected through the perspective 
projection equations to combine it with the 3-D transformation from scene to image described in the 
preceding paragraph. Of course, many rays project onto each pixel; for back-projection purposes, usually 
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the central ray for each pixel is selected. The calculation of the parameters in this type of model has been 
studied for a number of years [24, 28]. 

Working 

Figure 3-2: Equipment for Geometric Calibration 

The assumption that projection coordinates and imaging coordinates are related by a linear model is 
generally not strictly acccurate, due to optical distortions in the lens and possibly scanning pattern 
irregularities if a tube-type sensor is used. This type of distortion is frequently modeled as a low-order 
polynomial or trigonometric function [26]. A more comprehensive model is to relate pixel locations to rays 
in the scene on a more individual basis, effectively providing separate values for x, y, z, p, and q for each 
pixel (r,c) in the image (again, with the provision that collinear rays are treated identically) [11, 18]. A 
lookup table is then used to determine the ray that corresponds to each pixel. In this model, there need 
be no particular requirement that ail the contributing rays in the scene pass through a single point at the 
optical center of the imaging system. Recent work by Gremban et al. at CMU has developed a 
refinement of this approach that can be solved by set of linear equations [7]. A sparse lookup table is 
calculated by the calibration process, and interpolation is used for back-projection from a specific pixel. In 
this approach, a pair of surveyors' transits are used as shown in Figure 3-2 to give 3D locations of grid 
points with a resolution of better than 0.2 mm; two images of the grid taken at different distances are then 
provided to the calibration algorithm. Of course, the precision of moving the grid or camera is also critical 
to the process. With this approach, back-projection resolution of 0.2 mm can be routinely obtained at a 
working distance of approx. 0.5 meter for points located in between the two calibration grid positions. 

3.2. F i r s t -Order Radiometr ic Cal ibrat ion 
Traditional -camera calibration" methods refer only to the geometric calibration just presented. 

However, it is equally important to address the radiometric calibration, which relates the spectral radiance 
in the scene, the lens and camera parameters, and the pixel values in the image as symbolized by: 

L(X)<-A,£,G,x c->/> 

The radiometric model is developed by following the signal from start to finish through the imaging 
system. The radiance in the scene, L(\), is transmitted through the filter according to xc(^) yielding a 
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spectral irradiance proportional to L(X)xc(X) at the sensor. The sensor responds to each wavelength 
according to the spectral responsivity s(X); the output signal from the sensor, which we will designate the 
integrated spectral signal I, is integrated over the spectrum according to /=!L(X)x c(X)s(X)dX, with the 
integration taken over the portion of the spectrum to which the sensor responds. The pixel value P is 
then modeled as some function of / such as linear, logarithmic, or exponential (/?, the -gamma" model, 
with y » 1/2.2 for standard NTSC TV [25]). The camera electronics determine which model is appropriate 
for a given imaging system. The sensitivity parameters A 2 , E, and G are simply taken as multiplicative 
factors. (For a thin-lens approximation, 1/F2 should also be a factor. However, modem compound zoom 
lenses have a much smaller dropoff function; lacking an adequate model, we will simply sidestep this 
issue in this presentation.) To this model is typically added Gaussian random "noise" denoted A/(ji,a) with 
mean \i and standard deviation a. The noise may be factored into the pixel value model; for example, a 
linear model would be P = a^ + bpA2EGI + A/(0,a). Noise can be correlated with the intensity level / and 
with the control parameters E and G, as described below; these effects have not been included in this 
simple linear model. Photometric (intensity) calibration for this linear model would be aimed at 
determination of apt bpt and a using, for example, an image of a precision gray-scale chart. Of course, a 
complete radiometric calibration also requires measuring s(X) using a monochromator of some sort. 

Several problems arise in the application of such a radiometric model. First, the illumination must be 
very carefully controlled during calibration or the method must account for the differential illumination 
across the gray scale. Recalling that a single pixel level of an 8-bit value represents about 1/250 of the 
maximum response, high accuracy in illumination is seen to be critical. It is virtually impossible to control 
the illumination to such a degree; thus, some high-precision radiance measurement must be used to 
provide radiometric calibration data. 

The model for the relationship between / and P may not be accurate for any number of reasons. One 
option to deal with this is to measure a number of ordered pairs (l,P) and interpolate a curve to fit these 
measurements [17,15]. Then, table lookup can be used for each pixel value P to determine the 
corresponding value of /. This is the radiometric analog of the geometric table-lookup method described 
above, and serves the same function of accounting for all the signal transformations without modeling 
each one explicitly. Unfortunately, as shown below, such a model cannot account very well for the 
dependency of the calibration parameters on the imaging system control parameters E and G, and thus 
would not be suitable for cameras with adjustable values for these parameters. 

Radiometric models may require separate calibration at each pixel, especially for the constants a p and 
bp. This is primarily due to unevenness in the thickness of the photosensitive material or similar hardware 
non-uniformities. Thus, these variables should properly be denoted ap(r,c) and 6 p(r,c). To calibrate these 
values requires imaging flat-fields of uniform intensity rather than a gray chart; since a typical "flat field" is 
uniform to about 1 part in 30 rather than 1 part in 250, obtaining a suitable large flat intensity field is a 
severe problem. One approach would be to scan the camera geometrically so that the pixel values can 
be related to each other by imaging the same areas of the scene. This, of course, requires that a very 
precise geometric calibration and control system be in place before radiometric calibration can be 
performed. For the same reasons, the spectral responsivity s(X) can vary across the image, with an 
exponential form s(X,r,c) = s (X ) as< r ' c ) whose exponent as is independent at each pixel location (r,c). All of 
these parameters may also vary with the lens parameters, particularly A, because different parts of the 
image may be affected differently as the lens optics are changed. Calibrating these effects is beyond the 
scope of this paper. 
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Figure 3-3: Quantization and Repeatability Confidence 

The interpretation of the noise parameter a also merits some comment, since it arises in many 
disguises in the literature. It must be emphasized that the number of bits produced by a digitizer is 
not a measure of the radiometric precision. The proper measure is the standard deviation of the pixel 
values, the R.M.S. "noise" value a; the dynamic range of the system is then defined as the signal-to-noise 
ratio given by SNR = max~mm

 t where max and min are the maximum and minimum pixel values that the 

digitizer is capable of producing. The SNR may be expressed in decibels (dB), given by 
dB = 20log l QSNR . Another common way to express the SNR is by the number of "bits per pixel". This is 

commonly given as bits-per-pixel = log2SNR . In all these cases, the SNR must be interpreted with great 
care. Recalling that the underlying model is Gaussian with standard deviation a, the probability that any 
given pixel in the image is within a "resolution unit" of size o is only about 38% (the area under the normal 
curve from - | to +|) , as shown in Figure 3-3. Thus, the confidence level for pixel values at this 

resolution is only 38%. Using a 95% level instead (± 2a), the appropriate resolution unit should be 4c 
wide; thus, at a 95% confidence level, the number of bits per pixel will be seen to be two bits less than the 
commonly reported figure! 

Finally, the model given above assumes that the noise can be modeled as a simple Gaussian random 
value added to the pixel value. This model cannot account for the dependence of the final pixel value 
upon the exposure time or digitizer gain; for example, a long exposure time obviously results in a large 
integrated noise value from the sensor (though the SNR will increase). To model these effects, we need 
a somewhat more careful model of the transformation from / to P, with particular attention to the noise 
introduced at each stage shown in Figure 2-5. First of all, we can model the noise in the sensor element 
per unit time as the Gaussian A/^.a^), which can also be expressed as ^ + A/(0,as). The signal from the 
chip is then A2EI+E\LS+N(0&s^E) . (For a deeper discussion of noise in CCD imaging devices, including 
non-Gaussian models for the various processes, see [1].) The amplifier introduces additional noise 
A/(p.a,aa) and scales the result by the gain G; finally, the digitizer may introduce additional noise A/(^.d,ad) 
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before quantifying the signal. The resulting model is: 

P = L A2

EGI+GE\is+G\ia + \Ld+N(QJos^)+N(0,aa№)+N(0,ad)l 
The value of P is then limited to some maximum possible output from the digitizer, which may or may not 
utilize the full range representable by the bits available in the pixel value. This digitizing model, of course, 
presents quite a few parameters to be calibrated (j^, a s , JJ^, o a , ^ , and cxd). If all the noise is lumped 
together as A/(0,a), then this model differs from the simple model presented earlier in the inclusion of the 
terms and G ^ that model the dependence of the signal level on the control parameters G and E; 
here, the term corresponds to in the simple model. As described above, the variations over the 
image sensor plane should be modeled by parameterizing.v^fnc) and <Js(r,c) according to the image 
coordinates, along with perhaps a linear scaling a^(rtc) + bs(r,c)l substituted for the value of / in the term 
A2EGI\o reflect variations across the sensor plane. Depending on the exact nature of the scanning (e.g. 
parallel digitization of an entire row at once), some additional correction terms might be appropriate to 
include in the model. Of course, to this uncertainty model must be added the control uncertainty for the 
parameters A, E, G, and xc(X). 

3.3. Second-Order Integrated Calibration 
The above discussion of geometric and radiometric calibration is based on a very simple assumption: 

that these aspects of the imaging model can be separated from each other and treated independently. 
Because the resulting models deal only with one domain or the other, we call them "first-order" models of 
the imaging process. A more comprehensive "second-order" model would be one that deals with the two 
domains as interdependent upon each other, without attempting to separate them for the sake of 
tractability. Thus, second-order models can capture the relationship between the entire field of incoming 
light and the value of each pixel in the image. 

Using a second-order model is critical for highly accurate image modeling for several reasons. First, let 
us consider the effect of focusing the lens. As shown in Figure 3-4, the first-order model assumes a 
pinhole camera approximation. Only those rays that impinge upon the pinhole are considered in the 
model; all such rays, of course, will be perfectly focused on the sensor plane. Thus, the first-order models 
cannot model the effect of varying the focus distance D (to verify this, simply scan over the preceding 
sections of the paper on geometric and radiometric calibration!). This is an area in which the basic 
second-order model can be readily characterized, and has been utilized in software-controlled focus 
systems such as [16]. The key concept is to abandon the pinhole model of perspective and account 
instead for all the rays incident upon the aperture of the lens. For any point on the focussed plane in the 
scene, there is a bundle of rays that intercept the effective lens aperture. These rays are bent by the lens 
to converge at a point on the sensor plane determined by the principal ray passing through the optical 
center. The direction of the principal ray is not affected by the lens, thus it obeys the laws of perspective. 
For any point P = (x,y,z) not on the focussed plane, there is a similar bundle of rays intercepting the 
aperture. This bundle of rays intercepts the focussed plane in a circle, thus the area intercepted on the 
sensor plane is also a circle called the blur circle for P. The center of the blur circle is the perspective 
projection of P, i.e. (xDg/z, yDs/z). The radius will be ADS (1/D 0 - 1/z), which can be seen to vary with all 
the lens parameters A, D, and F. Thus, the effects of focusing link the geometric and radiometric imaging 
system parameters closely together. This is a thin-lens model; a more accurate thick-lens model would 
also account for displacement of the principal ray [13]. 

It might seem that the literature on software focusing would have developed general second-order 
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Figure 3-4: Pinhole Model v. Finite Aperture Model 
camera modeling and calibration techniques, but such is not the case. Published methods for focus 
control solve the problem of achieving optimum focus for a single point or area in the image, typically the 
center point, by adjusting D to maximize the high-frequency signal content in the desired neighborhood. 
Pentland's analysis of focus and aperture comes somewhat closer to the mark, showing the relationship 
between aperture diameter and local image intensity behavior, but for example does not model the 
interaction of focus and image magnification [21]. These formulations establish some of the key 
relationships, but fall somewhat short of modeling the complete interaction between radiometry and 
geometry caused by focus effects. The modeling of image magnification, in particular, is essential for any 
subsequent geometric analysis of the image data such as inferring the size of a 3D feature by analysis of 
its image. Software focussing research does not usually include such geometric inference from the 
image; on the other hand, geometric robot vision research generally assumes fixed focus which is set 
manually before calibration is performed. Thus, further research is needed in the geometric modeling of 
focus adjustment. 
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The blur circle is an example of crosstalk among the incident rays, which is a non-impulse point-spread 
function for the response of the imaging system to each incoming ray of light. Several other factors can 
contribute to such crosstalk: 

• Optical flare and diffraction: Poor optical quality in the lens may cause noticeable amounts of 
light from a ray to scatter into adjacent pixels. This is generally not a severe problem in robot 
vision, but it can be noticeable if the pixels are very small, as in a high-resolution detector. 
Diffraction, which also causes a broadening of the point-spread function, is also an inherent 
effect of a lens. 

• Mismatched electronics: Because the signal from the camera to the digitizer is analog, there 
will be some frequency limitation imposed by the electronics in the signal path. The use of 
standard analog video regimens such as RS-170 imposes noticeable frequency limitations. 
In addition, long transmission distances and other aspects of the video signal distribution 
configuraton can cause additional frequency limitations. Further, since the sensor itself may 
not have the resolution of the digitizer, the analog signal may be re-sampled by the digitizer 
in a way that smooths over several distinct sensor elements. For example, common TV -
grade CCDs have 384 columns of sensor elements, yet most commonly used digitizers 
sample each row 512 times. 

• Smoothing over blemishes: As described above, sensors typically have some non-uniformity 
across the sensor plane resulting in slightly different radiometric response at each pixel. To 
compensate for this, it is not unusual in TV-grade equipment to smooth the signal across 
each row of the image, thus inducing a local averaging process. Such smoothing introduces 
crosstalk among the pixels. 

Such effects as these are typically rather constant over time and space, and can thus be grouped 
together into the point-spread function for the imaging system. Our lab experiences with TV-grade 
equipment indicate a point-spread function for our camera that can be modeled as a Gaussian with 
horizontal a of about 1.2 (pixel widths) and vertical a about 0.5. 

J n 
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Memory 
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Figure 3-5: Video and Scientific Cameras 

Scientific-grade cameras have a telling advantage over TV-grade equipment in posessing low 
crosstalk. The key advantages of scientific cameras can be summarized as: 

• Controllable exposure time. The ability to control the exposure time under software means 
that the imaging system can take advantage of small apertures for a wide depth-of-field, 
increase the SNR of the pixel values, respond to greater variation in the scene radiance 
level, etc. 

• High SNR. As described above, the use of cooled CCDs allows scientific cameras to keep 
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sensor noise down to a very low level. 

• Low crosstalk. In a scientific camera, typically each pixel is independently digitized inside the 
camera body itself as shown in Figure 3-5, before any substantial analog signal transmission 
has occurred. Further, the use of smoothing circuits for covering blemishes is avoided. The 
result is a narrow point-spread function, which enhances the accuracy of a first-order 
calibration model and thus contributes noticeably to geometric and radiometric precision. 

The price for using a scientific camera includes the cost, the relatively slow digitization time (e.g. 1 
frame/second), the need to calibrate each pixel's radiometric response independently, and if the sensor is 
cooled, the need for external support equipment. 

Closely related to crosstalk is the integration of radiometric information over finite pixel areas. This 
gives rise to spatial aliasing in the image. Crosstalk and spatial aliasing can be concisely modeled in the 
Fourier domain. 

Sensor 

Figure 3-6: Polarization of Incoming Light at the Sensor Plane 

All of the above second-order effects are essentially uniform across the sensor plane. However, the 
value at each pixel may also be affected by a difference in the responsivity of the sensor to incident rays 
that varies according to the pixel position. One example is the well-known proportionality factor of cos4 9, 
where 9 is the angle of incidence upon the sensor plane for each pixel [14]. In addition, it is generally the 
case that photosensitive material is differentially sensitive to each incoming ray, depending on the angle 
between the ray and the sensor plane. This is primarily due to a concept not yet addressed: polarization. 
In addition to the well-known interaction between a polarizing filter and the incoming light, there is a 
less-well-known interaction with the sensor plane. Light that strikes the sensor plane at an angle can be 
characterized as having two polarization components perpendicular to the incoming ray: one is coplanar 
with the surface normal of the sensor, and the other is perpendicular to the surface normal (Figure 3-6). It 
is frequently assumed in robot vision that the sensor will be equally responsive to both components. This 
is not generally so: the coplanar component will cause less response from the sensor [2] (as much as 
10% less in our simple lab studies). If the incoming light is unpolarized, the effect is simply a reduced 
sensitivity at the periphery of the image. However, if the incoming light is highly polarized such as 
specular reflection from a smooth surface, the effect can be quite substantial [27]. To properly 
parameterize polarization requires additional parameters for the incoming scene radiance, additional 
control parameters (if polarizing filters are used), and new imaging models to account for the effect of 
polarization. Clearly, the robot vision community needs a satisfactory model for the effect of polarization 
on imaging. 
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All of the above discussion can be characterized by the use of the principal ray for each image pixel, 
along with aggregate concepts such as the blur circle. If a more detailed model is needed, each 
individual ray in the scene can be parameterized as x-y-z-p-qr and the focus model can be used to 
calculate a corresponding ray incident on the sensor plane itself. The radiometric calculations of the 
sensor's responsivity should ideally be based by considering the field of incoming light at the sensor 
plane, given by L(x,y,p,qU), rather than assuming a single spectral distribution L(X) incident at each pixel 
location. (Here, (x,y) is the location on the sensor plane, (p,q) is the direction of each incident ray at that 
point, and X is the wavelength.) This field of light is then integrated over p and q for each point on the 
sensor plane, and over x and y within the area of each pixel, to determine the spectral irradiance for each 
pixel. This model can account more accurately for orientation-specific effects at the sensor plane. 

Figure 3-7: Blooming Caused by Bright Highlights 

A final issue to motivate the use of second-order models is the effect of blooming, which is quite 
noticeable in CCD sensors. Blooming occurs when a pixel receives so much irradiance that the 
photosensitive layer cannot hold all the resulting charge; the excess then spills over into neighboring 
pixels, causing their reported values to be higher than they ought to be. Since most CCD imaging 
sensors have pixels that are arranged in columns of pixel cells, blooming tends to be mostly or entirely in 
the vertical direction as shown in Figure 3-7. Blooming can cause very dramatic effects in the image, 
including hue changes in color imaging [15]. Prospects appear dim for modeling blooming in a useful 
way, because it is frequently a very non-local effect in the image. 

In ail these situations, the first-order models commonly in use fail to adequately model the interaction 
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between geometric and radiometric aspects of the imaging process. When such models are used in 
practice, the resulting inaccuracy is subsumed in "noise" measurements that are actually much higher 
than the inherent limitations of the hardware. The development of useful representations and calibration 
procedures for second-order imaging models is thus an area that requires further research. 
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4. Higher-Level Issues in Imaging System Control 
This paper has presented a discussion of imaging precision that shows the relationship between 

dynamic range, precision, imaging models, and calibration. Unlike past literature, this presentation has 
shown how the same concepts can be applied to understand both the geometric and radiometric 
domains, either independently through "first-order" models or interdependent^ in a "second-order" 
framework. This unified view is made possible by the introduction of the Imaging Space model of the 
complete set of imaging system parameters. We have also described how the uncertainty inherent in 
measurement and control processes gives rise to uncertainty in the image data, which can be modeled 
explicitly. We have included a discussion of some existing technologies for robot imaging, along with 
indications of their inherent precision limitations. 

One of the thrusts of this paper has been the proposition that automation in the imaging process is a 
key ingredient for obtaining high precision, ease of control, and a wide dynamic range. With automation 
arises an important new question: What strategy or goals should be used for controlling the parameter 
settings? This can be modeled formally by allowing each control variable to be a function of time t, e.g. 
Tx(/) for lateral motion, Tz(/) for forward motion, 8y(/) for pan, D{tj for focusing, etc. The imaging system 
state thus follows a trajectory in the Imaging Space, which can be traversed through automation in the 
imaging system. The physical system parameters of course change correspondingly over time; thus, the 
sensor plane receives an image that varies continuously over time and can be captured when desired. 
Using the imaging model, the changes in the control parameters can be related to image properties. 
Some questions that arise for each parameter are: 

• What is the effect (or motivation) for controlling this parameter? For example, altering F(/) 
changes the angular width of the field of view, and also the magnification of the image. 

• How can data be usefully aggregated as this parameter is varied? For example, aggregating 
as Tz(tj is varied is the paradigm of "optical flow" [9]. 

• What control strategy should be used for this parameter? For example, D{tj can be 
controlled in an autofocus mode to find a single "optimal" value for imaging the scene (for a 
recent survey of this topic, see [16]). Another strategy would be to sweep D(l) continuously 
from its minimum to its maximum setting, recording at each pixel the setting producing the 
best focus; the result would be a complete depth image produced by focus manipulation. 

• How might this parameter be usefully sampled? For example, sampling T x(l) is known as 
"stereo"; sampling 0y(/) gives a "panoramic" composite image with a very wide field of view 
useful for navigation [6]; sampling A{tj can be used for looking into shadows [12]. 

By considering each of these issues for each control parameter, much of the design of a robot imaging 
system can be cast into a single comprehensive framework. This can serve to clarify some issues such 
as the use of multiple cameras as opposed to a single controllable camera. 

Based on such considerations, it should be possible to construct fully automated robot imaging 
systems that act as "smart cameras", using active control techniques to optimize the imaging quality 
based on the task being performed, the needs of imaging (such as wide apertures for precise focusing 
and narrow apertures for large depth-of-field), and producing super-high quality images by compensating 
for distortions (such as the coupling of focus distance and chromatic aberration with image magnification). 

There appear to be four inter-related aspects of the imaging specifications to be studied: 
• Aiming the camera ~ adjusting the position and orientation. Constraints include obtaining a 

clear line of sight, focus and framing limits, obtaining a desirable viewing angle, and modeling 
the kinematics and dynamics of the camera mount which may include motion of a vehicle. 
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• Framing the desired features adjusting magnification. Constraints include pixel resolution, 
field of view, obtaining uncluttered images, and avoiding motion blur. 

• Optimizing the image quality - focus and exposure. Past efforts have generally optimized 
only a single point in the image such as the perspective center point. Also, the interaction 
between these parameters and image magnification is still an open research area. 

• Acquiring the resulting images. In some situations, different imaging parameters may be 
used for optimizing the system and for actually acquiring the desired image data for vision 
analysis. 

Some of these imaging configuration issues, particularly Aiming, are being studied by Cowan and 
Kovesi, although they have not cast the corresponding modeling and calibration problems in the same 
framework [4]. 

We call this area of research "Imaging Understanding" - developing a deeper understanding of the 
imaging process and all the attendant issues for robot task automation. At the Calibrated Imaging 
Laboratory of Carnegie Mellon University, we are developing a fully automated twelve-degree-of-freedom 
imaging system, including high-precision positioning equipment, an uncooled scientific camera, an 
automated lens and filter wheel, and external equipment for geometric and radiometric calibration 
(surveyors' theodolites and spectroradiometer) [23]. With this facility, we are pursuing research in 
Imaging Understanding as well as obtaining high-quality data for research in robot vision theory and 
practice. 
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