
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T R E S T R I C T I O N S :
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Computational Models for Parallel Computers

H. T. Kung
August 28,1987
CMU-CS-88-164o

Department of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

ABSTRACT

Computational models define the usage patterns of a computer. They can be used to derive the architecture of the
machine, provide guidelines for programming tools, and suggest how the machine should be used in applications.
Identifying computational models is especially important for parallel computers, since their architectures and usages
are still not well understood in general.

This paper describes a number of computational models for parallel computers. These models characterize the
communication patterns under which processors exchange their intermediate results during computation. Emphases
are placed upon models for one-dimensional processor arrays, reflecting Carnegie Mellon's experiences with the
Warp systolic array machine. These models include local computation, domain partition, pipeline, multifunction
pipeline and ring.

This paper was prepared for the Royal Society Discussion Meeting on "Solving Scientific Problems on
Multiprocessors", London, United Kingdom, December 9-10,1987.

The research was supported in part by Defense Advanced Research Projects Agency (DOD) monitored by the Space
and Naval Warfare Systems Command under Contract N00039-87-C-0251, and in part by the Office of Naval
Research under Contracts N00014-87-K-0385 and N00014-87-K-0533.

1. Introduction
Many problems in science and technology are becoming so computationally demanding that conventional sequential

computers can no longer provide the required computing power. Parallel computers have the potential to provide

that power. A large number of parallel computers are commercially available. Shared memory parallel computers

include MIMD machines such as Alliant, Encore, Sequent, and Cray X-MP. Distributed memory computers include

MIMD machines such as Transputer, Warp, and Hypercube, and SIMD machines such as Connection Machine and

DAP. Many more parallel machines of enhanced capabilities are under development Successful use of parallel

computers has been demonstrated in a number of application areas including scientific computing, signal and image

processing, and logic simulation.

It is useful to develop models to capture important ways in which parallel computers are actually used in

applications. These models can be used to derive architectures of new parallel machines, provide guidelines for

programming tools, and suggest how each machine should be used in applications. There are roughly three stages in

solving an application problem on a parallel computer

Step 1: Application definition (e.g., by mathematical formula)

Step 2: Computation specification (e.g., by program)

Step 3: Computation on the parallel machine

Computational models described in this paper characterize the interprocessor communication behavior of Step 3.

These computational models are based on our experiences in parallel algorithm design and parallel architecture

development at Carnegie Mellon. In 1984-87 Carnegie Mellon developed a programmable systolic array machine

called Warp, that has a one-dimensional (ID) array of 10 or more processing elements [3]. The machine is currendy

produced and marketed by General Electric Company. Anticipating the future need for integrated Warp systems,

Carnegie Mellon and Intel Corporation have been developing a VLSI Warp chip, called the /Warp chip. The /Warp

system will be available in 1989-90. Our work in Warp and iWarp has shown us the importance of being explicit

about computational models in the development of a new parallel architecture as well as its applications and

programming tools. The paper will mention some of these insights.

In this paper we describe computational models for ID processor arrays. We use ID processor arrays because

their simple structure makes presentation easy and we have extensive applications experiences with the ID array in

Warp. It should be clear that the concepts presented here generalize to 2D or higher dimensional processor arrays,

and other parallel computer architectures.

Section 2 provides background information on the Warp and /Warp systems. Nine computational models for ID

processor arrays are presented in Section 3. Among them five models are frequently used on Warp. These are

models corresponding to local computation, domain partition, pipeline, multifunction pipeline and ring. They will

be discussed in more detail than the other models. The last section contains some concluding remarks.

Untoersitv Ubranes
I Carnegie W e l l o n U n i v e r s i t y

Pittsburgh, Pennsylvania i 5 2 U

2 . Overview of Warp and iWarp

2.1 . Warp
The Warp machine has three components- the Warp array, the interface unit, and the host, as depicted in Figure 1.

We describe the machine only briefly here; details are available from a separate papa- [3]. The Warp array performs

the bulk of the computation. The interface unit handles the input/output between the array and the hos t The host

supplies data to and receives results from the array, in addition to executing the parts of the application programs

that are not mapped onto the Warp array.

HOST

r

INTERFACE
UNIT

CELL CELL - > • • —5 CELL CELL
) 1 2 N-l N

WARP ARRAY

Figure 1. Warp machine overview

The Warp array is a ID systolic array with identical processing elements called Warp cells. Data flow through

the array on two communication channels (X and Y), as shown in Figure 1. The direction of the Y channel is

statically configurable at compile time. By configuring the Y channel in the opposite direction from the X channel,

a ring interconnection can be formed inside the ID array. Another way to form a ring is to use the interface unit to

connect the first and last cells of the array.

Each Warp cell is implemented as a programmable horizontal micro-engine, with its own microsequencer and

program memory. The cell data path includes a 5 MFLOPS floating-point multiplier (Mpy), a 5 MFLOPS floating

point adder (Add), a local memory, and two data input queues for the X and Y channels. All these components are

connected through a crossbar. An output port of the crossbar can receive the value of any input port in each cycle.

Via the crossbar the floating-point units can direcdy access data at the front of any input queue, and insert computed

results at the end of any input queue of the next cell. Data at the front of any input queue can also be sent direcdy to

the next cell. A (much) simplified description of the Warp cell data path is given in Figure 2.

A feature that distinguishes a Warp cell from many other processors of similar computation power is its high I/O

2

Mpy Add
^ /TV

Crossbar

TTT-

Local Memory

Figure 2. Warp cell data path (much simplied)

bandwidth-an important characteristic for systolic arrays. Each Warp cell can transfer up to 20 million words (80

Mbytes) to and from its neighboring cells per second This high intercell communication bandwidth makes it

possible to transfer large volumes of intermediate data between neighboring cells and support fine-grain parallelism

on the Warp array.

The host consists of a Sun-3 workstation that serves as the master controller of the Warp machine, and a

VME-based multi-processor "external host" , so named because it is external to the workstation. The workstation

provides a UNLX environment for running application programs. The external host controls the peripherals and

contains a large amount of memory for storing data to be processed by the Warp array. Its dedicated processors

transfer data to and from the Warp array and perform operations on the data, with low operating system overhead.

Warp programs are written in a high level Pascal-like language called W2, which is supported by an optimizing

compiler [6,18]. To the application programmer, Warp is a ID array or a ring of simple sequential processors,

communicating asynchronously. Based on the user's program for this abstract array or ring, the compiler generates

code for the host, interface unit and Warp array automatically. W2 programs are developed in a Lisp-based

programming environment supporting interactive program development and debugging. A C or Lisp program can

call a W2 program from any UNIX computer on the local area network.

2.2. / W a r p

Carnegie Mellon and Intel are joindy developing a large VLSI chip, called the /Warp chip, to implement an

integrated version of the Warp cell. The /Warp chip is a programmable processor capable of delivering at least 20 or

10 MFLOPS for single or double precision floating-point computations, respectively. This chip together with a

local memory form the /Warp cell, as depicted in Figure 3. The /Warp cell is a powerful building-block cell for a

variety of processor arrays, including ID and 2D arrays. With recompilation, the /Warp cell will be able to execute

W2 programs originally written for the Warp cell.

3

iWarp Cell

Local
Memory

4 iWarp
Chip

fr

Figure 3. /Warp cell consisting of /Warp chip and local memory

The initial prototype /Warp system will have an array of 72 /Warp cells, with a peak performance of at least 1,440

MFLOPS. To ensure that a large fraction of this peak performance can actually be realized in real applications, the

/Warp array supports the following features:

• large local memory for the cells (at least 24 address bits);

• high bandwidth intercell communication (320 Mbytes/sec);

• 2D or higher-dimensional interconnection; and

• on-chip message routing hardware.

Passing messages by a cell is handled by its routing hardware, and is transparent to its program. This implies that

communication between non-neighboring cells can now be easily accomplished.

4

3. Computational Models
We will describe the following computational models for ID processor arrays:

1. local computation;

2. domain partition;

3. pipeline;

4. multifunction pipeline;

5. ring;

6. recursive computation;

7. divide-and-conquer,

8. query processing; and

9. task queue.

These models correspond to different ways in which cells interchange their intermediate results during computation.

Under each model there may also be different ways in handling inputting and outputting for the processor array (see

discussions below concerning the local computation model). Therefore the computational models are based on the

communication behavior for intermediate results rather than input and output.

The current Warp system uses the first five models mostly, whereas the future /Warp system will efficiently

support all the models. Because of our experience with Warp, we will give more detailed descriptions for the first

five models. The other models will only be briefly touched, mainly to indicate that there are other models which

could be important for parallel computers to support

In the diagrams, cells in a ID processor array are denoted by square boxes, and named as cell 1, cell 2, • •, cell

N from left to right Solid arrows denote data flows of intermediate results between cells.

3.1 . Local Computat ion Mode l

The local computation model corresponds to the case where cells do not exchange their intermediate results during

computation at all. Many computational problems have the property that elements in the output set are computed

independently from each other. The use of the local computation model is natural in solving these problems on a

parallel computer. In this model each output is computed entirely within a cell, and all the cells compute different

outputs simultaneously. The main characteristic is that the entire computation for each output is done locally at a

cell, i.e., the computation does not depend on intermediate results computed by other cells.

Various methods can be used to take care of the inputting and outputting for each cell. For example, before or

during computation, the required input to a cell can be shifted in via the cells to the left, and during or after the

computation the output produced by a cell can be shifted out via the cells to the right. This is depicted by Figure 4,

where dotted arrows denote the shift-in and shift-out paths for input and output, respectively. To achieve high

performance, it is important that the I/O time and computation time can be overlapped as much as possible.

5

Figure 4. Local computation model, with input and output shifted in and out

Many image processing computations involve transforming an input image to an output image, using a kernel

operator defined by, say, a 3x3 window. Figure S depicts such a transformation, with which each pixel in the output

image depends on a neighborhood of the corresponding pixel in the input image. Clearly, all the pixels in the output

image can be computed simultaneously and independendy. Therefore the local computation model applies here.

The figure illustrates that four cells can work on the four subregions of the output image independently, provided

that the input pixels needed by each cell 's computation are pre-stored in the cell. Note that cells computing adjacent

subregions have overlapped input; the larger is the kernel the larger is the overlap.

Input Output
Figure 5. Local computation model for image processing using a kernel operator

As illustrated by the figure,.the partitioning of the image processing task for the local computation model is

straightforward. All that needs to be done is to partition the output image equally for all the cells. This partitioning

has been automated-Carnegie Mellon has developed a compiler called Apply, which can generate W 2 programs for

image processing computations based on kernel operators as described above, and other computations of similar

kind [8].

Apply-generated W2 programs are able to overlap I/O with computation. While computing a row of pixels for the

output image, a cell can output a previous row of pixels already computed and input a new row of pixels required for

future computations. The Warp array supports this overlapping well, since the array has a high intercell com

munication bandwidth, and each cell is a horizontal micro-engine capable of performing several computation and

I/O operations in each cycle. Because with Apply this overlapping is done automatically, Apply-generated Warp

programs are often more efficient than the corresponding hand-generated code.

6

There is another interesting form of overlapping input with computation for the local computation model. Al

though all the cells compute different parts of the output set, the cells may share some input. In this case the shared

input may be pumped systolically from cell to cell during computation. In the following this is illustrated with a

matrix multiplication example.

Given nxn matrices A and B, we want to compute their product C on a linear processor array of k cells. We

assume that k is much less than n, and in the illustration below, k=4. We evenly partition columns of B and C as

shown in Figure 6 (a). Using the local computation model, cell i will compute the entries of submatrix As its

inputs, cell i needs A and B.. Therefore input A is shared by all cells. Cell i will first load entries of Bi into its local

memory. Then during computation, entries of matrix A will be input to the left-most cell in the row-major ordering,

and shifted to the right from cell to cell, as depicted in Figure 6 (b). Cell i will perform inner products for all pairs

of row and column in A and B respectively. (Each entry of A will be input repeatedly as it will be used by each cell

multiple times, one for each of the columns of B that the cell has.) Each inner product involves reading in a row of

A from one of its input queues and a column of Bi from the cell's local memory, and performing a sequence of

multiply-accumulate operations. By shifting in entries of A on-the-fly, each cell does not have to store the entire

matrix. This can significandy save memory storage and access time for each cell [14].

(a) Bi » 2 B B , Ci c 2 c 3 c4]

(b)
Entries of A

Bi B 2 B3 B 4

Celli Cell 2 Cell3 Cell 4
Figure 6. Matrix multiplication: (a) partitioning of matrices B and C, and (b) distribution

of the resulting submatrices of B to the cells; entries of A moving to the right during computation

There are many other usage examples based on the local computation model. They include the discrete cosine

transform [2] and the labeled histogram computation [17].

3.2. D o m a i n Partit ion Model

For some applications the computation depicted in Figure 5 is repeated many times; each time a new output image is

computed based on the previous output image. This computational process, called successive relaxation [21,22], is

depicted in Figure 7, where the grids correspond to the images.

7

Gridi Grid 2 Grid 3
Figure 7. Successive relaxation

Grid 4

The successive relaxation process is often used in scientific computing. Consider, for example, the solution of the

following elliptic partial differential equations using successive overrelaxation [24]:

The system is solved by repeatedly computing values of u on a 2D grid using the following recurrence:

where co is a constant parameter. ^ . ; . = (l - (o) u . y + co. 4

In the recurrence, values associated with location of the grid have indices (/,;).

Suppose that the partitioning scheme of Figure 5 is used. Then when computing a new grid, each cell must

import from its neighboring cells some of the values computed for the previous grid. The required bidirectional data

flows between neighboring cells are shown in Figure 8.

Figure 8. Bidirectional data flows for successive relaxation

With this example, the concept of the domain partition model can be easily introduced. The model arises when a

8

problem domain (such as the grid space corresponding to an image, or to a finite difference or finite element

modeling) is partitioned so that each cell handles a subdomain. This model differs from the local computation

model in that each output is not computed entirely by a single cell. That is, once in a while the cell needs to receive

intermediate results from its neighboring cells before it can proceed further with its computation. Figure 9 depicts

the domain partition model.

Figure 9. Domain partition model

There are many computations that can be naturally carried out using the domain partition model. Numerical

simulations of properties of a physical object, formulated by either differential equations or Monte Carlo methods,

can be partitioned along the physical space. A large file can be sorted on a ID array by using the bi-directional

communication to merge sublists sorted by individual cells. The merging can be done with only nearest neighbor

communications, in a manner similar, to that used in the odd-even transposition sort [4]. Labeling of connected

components in an image can be done by using the bidirectional communication to merge labels in the subimages

computed by individual cells [17].

33. Pipel ine Mode l

There is another (elegant) method to carry out the successive relaxation computation depicted in Figure 7 on a ID

array. This method uses pipelining. Instead of the data space, i.e., the grid, we partition along the time axis. That

is, successive relaxation steps are done on successive cells. In the row-major ordering, each cell receives inputs

from the preceding cell, performs its relaxation step, and outputs the results to the next cell. Consider for example

the successive overrelaxation computation described in Section 3.2. While a cell is performing the 6 t h relaxation

step on row i, the preceding and next cells perform the (k-iy*1 and (AH-I)1*1 relaxation steps on rows ¿+2 and z-2,

respectively. Thus, in one pass of the u values through a £-cell processor array, k relaxation steps are performed.

This process is repeated until convergence is achieved. In a similar way we can implement many other iterative

methods such as Jacobi and Gauss-Seidel methods in a pipelined manner.

In this pipeline model, the computation for each output is partitioned into a sequence of identical stages, and cell i

is responsible for stage /. A characteristic of this model is that cell /+1 uses computed results of cell *, as depicted in

Figure 10. Intermediate results move in one direction and final results emerge from the last cell. I/O and

computation are automatically overlapped; this is a major advantage of the model. The pipeline model is natural

when implementing systolic algorithms where the partial results move from cell to cell and get updated at each cell

they pass [12, 15].

Under the pipeline model, cell z+1 cannot start its operation until cell i completes at least a stage of computation.

9

INTERMEDIATE RESULTS

INPUT OUTPUT

STAGE N STAGE 1 STAGE 2

Figure 10. Pipeline model

Thus for this model minimizing the latency between the starting times of adjacent cells is a major concern. This is

in contrast with the domain partition model, for which the starting time of a cell does not depend upon any

computed results of other cells.

For some computations the pipeline model represents the only efficient parallel implementation. To see such a

case, consider a variant of the image processing task depicted in Figure 5. For this variant, in computing the value

of each point, the new values of its neighbors will be used whenever possible. Suppose that using a 3x3 window,

the computation follows the row-major ordering. Then computing the value of each new point uses the new values

of the left neighbor and the upper three neighbors, which were computed earlier. Local computation and domain

partition models will not work here since subregions of the image cannot be computed independendy from each

other. A way of using the pipeline model is that cell i computes values of points in row i in the left to right order.

Cell / is pre-stored with values of points in rows i and i + 1 . During computation, a copy of each new value cell i

computes is sent to cell z'+1. Note that cell *'+1 can start its computation as soon as cell i has computed the values

of the first two points in row L We have implemented a version of this pipeline computation on Warp to solve a

path planning problem using a dynamic programming technique [5].

3.4. Mult i funct ion Pipel ine Mode l

A single computation may involve a series of subcomputations each performing a different function. If these

functions can be chained together on a ID array, then a one-pass execution of die entire computation will be

possible. This is the basic idea of the multifunction pipeline model [7]. In this model, the ID array is a pipeline of

several groups, each consisting of a number of cells devoted to a different function. The number of cells in each

group is adjusted so that every group will take about the same time, in order to maximize the pipeline throughput

This model is illustrated in die following example, which is a laser radar simulation implemented on Warp:

Step 1: For every 1024-point input block, perform a 1024-point complex FFT. Partition each FFT
output into 30 overlapped 256-element subsequences.

Step 2: For each of the 30 256-element subsequences, perform die following operations:

(i) multiply each element by a weight, which is a complex number,

(ii) perform a 256-point complex inverse FFT;

(iii) compute the amplitude of each element in the output subsequences.

Step 3: Threshold the resulting 3 0 x 2 5 6 image using 3 x 3 windows.

10

1024-pt
Input Block

30x256
Image

u Cell Cell Cell Cell
1 2 9 10

LT

1024-pt FFT
&

Multiplication

256-pt FFT J Amplitude

Thresholding

Figure 11. Multifunction pipeline model to implement a radar simulation on Warp

These steps are implemented with consecutive segments of the Warp array, as depicted in Figure 11.

Figure 12 illustrates another possible use of the multifunction pipeline model in implementing the geometry

system portion of 3D computer graphics. The first cell performs the matrix multiplications, the next three cells do

clipping, and the last cell does the scaling operation. Three cells are devoted to clipping as it requires more

arithmetic operations than either matrix multiplication or scaling [10].

INPUT OUTPUT

GROUP 1
(FOR MATRIX MULT)

GROUP 2
(FOR CLIPPING)

GROUP 3
(FOR SCALING)

Figure 12. Multifunction pipeline model to implement a geometry system

The multifunction pipeline model is useful when a computation requires a number of small functions, each of

which is not large enough to make an effective use of all the cells in a ID array. Concatenating these functions in a

chain offers an opportunity to use more cells effectively. Also, for some computations, it is inherent that one or few

cells must perform functions different from the rest For example, when performing a 2D convolution on a ID

array, some cells need to buffer a row of image and none of the other cells need to do that [13]. For some

computations, the first and last cells of a ID array cany out special functions such as interface with the outside

world or preparation of data for the next phase of computation on the array. An example of this is a neural network

simulation on Warp, where only the last cell performs weight updates based on weight changes computed by other

cells [19].

To support the multifunction model, the processor array must allow heterogeneous programming, that is, different

programs to be executed at different cells at a given time. Further, the rate of the input to a group may not be

compatible to that of the output from the preceding group. Thus some buffering and flow control mechanisms need

to be provided between each pair of cells. For the Warp array, all cells can be individually controlled, and dedicated

hardware queues capable of performing flow control are available between adjacent cells.

In summary, the multifunction model differs from the pipeline model described earlier in that cells are now

11

allowed to perform different functions. This flexibility in the usage offers the opportunity of effectively using a

large number of cells in a ID array.

3.5. R ing

A ID array becomes a ring when the first cell is connected to the last ceil. In the ring model intermediate results

flow on a ring of cells.

An important usage of the ring model is the implementation of a large * ' log ic" array of logical cells, under the

pipeline model, with a small * 'physical'* array of physical cells. One implementation is to have each physical cell

handle a group of consecutive logical cells as depicted in Figure 13 (a). This will incur a large latency between the

starting times of two adjacent physical cells, as the latency will be the sum of all the latencies incurred by those

logical cells which are assigned to a physical cell. Another implementation is to use the physical array in multiple

passes to simulate the function of the logical array, as depicted in Figure 13 (b). This multiple pass scheme can be

implemented with a ring as shown in Figure 13 (c). The ring is formed by using a queue to connect the last physical

cell to the first The queue can store outputs from the last physical cell while the first is still busy in doing its

computation for the current pass. This ring scheme incurs the minimum latency between the starting times of two

adjacent physical cells.

Assigned to - J ^ Assigned to —1 Assigned to — J Assigned to —1

Physical Cell 1 Physical Cell 2 Physical Cell 3 Physical Cell 4

1 P a s s l 1 1 Pass 2 1 1 P a s s 3 1

GEEK
Figure 13. Implementing a large pipeline with a small physical array:

(a) each physical cell is assigned to a set of consecutive logical cells, (b) using the physical
array in multiple passes, and (c) using a ring to implement the multiple passes on the physical array

Another major use of the ring model is in the implementation of broadcasting. Many computational problems

involve multiple levels of computation as depicted in Figure 14 (a). Each value in a level depends on all die values

computed in the previous level. For example, in the figure to compute bx in level 2 we need all the values in level 1,

as indicated by the lines connecting bx with ax, a 3 and a 4 . Therefore all die values computed in a level need to

be broadcast to all the cells which will be computing values in the next level. An example of such a computational

problem is the back propagation neural network simulation [23], for which levels of computation correspond to

12

(a)

Level 1 Level 2 Level 3 Level 4

(b)
aA.

«1

b4

«2

Figure 14. (a) Multilevel compulation where results in one level are broadcast to the next level, and
(b) using the ring model to implement the broadcasting

layers of the neural network.

The ring structure can implement the broadcasting in a natural way, provided that the computation for each value

is commutative and associative so that inputs in the previous level can be combined in any order. Figure 14 (b)

illustrates the idea, by considering how values in level 1 can be sent to cells computing values in level 2. Assume

that every value in a layer is computed by a separate cell, and for each i the cell which computes aL will also

compute bL. Then by pumping the a^s around the ring for a full cycle, as shown in Figure 14 (b), cell i (for every i)

will be able to meet all the a^s so it will have all the inputs to compute bc The computation of bi will occur

on-the-fly as each at passes by. Therefore computation and I/O are totally overlapped.

3-6. R e c u r s i v e C o m p u t a t i o n M o d e l

Recursive computations are those where results of the computation are used for computing future results. Examples

are recursive filtering [11], solution of triangular linear systems [16], and QR-decomposition [9]. By flowing

outputs that were previously computed against the flow of intermediate results that are currently being computed,

recursive computations can be implemented. The important feature of the recursive computation model is the

propagation of outputs in the opposite direction of intermediate results, as illustrated by Figure 15.

13

INPUT OUTPUT

Figure 15. Recursive computation model

3.7. Div ide-and-conquer Mode l

Divide-and-conquer is a fundamental technique in algorithm design [1]. Under this design paradigm, we solve a

problem by (1) partitioning it into subproblems of nearly equal size, (2) solving all the subproblems, and (3)

merging the solutions to the subproblems; this procedure is applied recursively to all the subproblems. Because of

this recursion, this partitioning scheme distinguishes itself from others used, in, for example, the local computation

and domain partition models. Figure 16 illustrates the divide-and-conquer model. Each subproblem is carried out

by one cell or a set of consecutive cells. When a (sub)problem is partitioned into subproblems or solutions to

subproblems are merged, communications between cells that are either 1-apart, 2-apart, • • , or N/2-apart take

place. These communications are depicted by solid arrows in the figure.

(a)

(b)

Figure 16. Divide-and-conquer model: (a) 1-apart communication and (b) 2-apart communication

The divide-and-conquer model for example can be used in sorting, and various geometric problems such as comput

ing convex hulls [20].

3.8. Q u e r y Process ing Mode l

A I D array can be used to process queries. One way to do this is to have the database partitioned evenly among the

cells. Then queries are passed to all the cells. Every cell looks at the arriving query and outputs its reply to the

query. The query processing model is depicted in Figure 17.

QUERY

REPLY

Figure 17. Query processing model

Consider for example the problem of looking for a table in an image. The particular table we are searching for is

defined as having a rectangular top, which will appear as a parallelogram in die image. Initially, we do not know

anything about the position of the table, except an upper bound on the size of its bounding square in the image.

After extracting features such as lines and edges from the image, we partition it into regions whose sizes are at least

14

that of the bounding square for the table. We assign each region to a cell. To balance the computational load

between the cells, we define the regions so that there are about the same number of features associated with each

region. Regions assigned to the cells are properly overlapped to ensure that the entire table is contained in at least

one region. All the cells can work in parallel on their own regions to respond to the query:

"list all sets of four lines that form a parallelogram'*.

Given the response to this query, the host or the cell that controls the searching process can predict the position of

other sides of the table, and produce queries such as:
44list parallel lines with a given orientation'*,

to find the other sides of the table.

The query processing model requires that the cells operate asynchronously, as when responding to a query they

may have to perform different amounts of computations and may produce variable amounts of outputs.

3.9. Task Q u e u e Model

For all of the preceding models, cells work together for a common task, whether they are tightly coupled (as in the

pipeline model) or loosely coupled (as in the local computation or domain partition model). In contrast, the task

queue model allows different cells to work on different tasks in one application. More precisely, a free cell can be

dynamically assigned to execute any task in a task queue maintained by a cell or the host, as depicted by Figure 18.

Cells operate in a totally independent and asynchronous manner. Using this model, dynamic load balancing

between cells is possible. The major concern in the implementation of this model is to minimize the latency

between when a cell becomes free and when it starts doing a new task sent from the task queue. To use the cell

effectively, this latency should not be larger than the time for the cell to execute the task.

TASK i + 3

TASK i + 2
TASK i + 1

TASK QUEUE

TASK
ir I TASK i

OUTPUT

Figure 18. Task queue model

The task queue model will be efficiendy supported by the z'Warp system. The on-chip message router at each cell

will allow flexible communication between the cell (or host) that maintains the task queue and other cells. The

communication will have low latency because of the available high bandwidth intercell communication channels.

15

4. Concluding Remarks
In this paper we have informally described a number of computational models for ID processor arrays. Among

these models, local computation, domain partition, pipeline, multifunction pipeline, and ring are frequendy used by

the Warp users. We have found that in terms of these models various applications usages of the machine can be

easily described. Also, we can discuss how architectural features support these models. For examples, the ID

systolic array is natural for the pipeline model; and die routing hardware is needed for the efficient support of the

divide-and-conquer or task queue model. Moreover, these models provide a way to classify programming tools for

the automatic generation of parallel programs. For example, the Apply programming tool is to generate parallel

code for the local computation model. There are several ongoing research projects at Carnegie Mellon intended to

generate parallel programs for die other computational models such as the pipeline model.

For these reasons, we believe that computational models need to be made as explicit as possible in parallel

computing. This paper represents an initial attempt to identify some of the models that seem to be important.

Further work is needed to expand this set of models, and characterize them more precisely. Eventually, notations

need to be developed to represent computational models.

16

Acknowledgment
Many of the ideas presented in this paper were inspired by work done under the Warp project at Carnegie Mellon.

The author is especially indebted to those members of the project, including F. Bitz, G. Gusciora, H. Ribas,

P. S. Tseng, and J. Webb, for their implementation of some of the applications examples discussed in this paper.

17

References

1. Aho, A., Hopcroft, J.E. and UUman, J.D.. The Design and Analysis of Computer Algorithms. Addison-Wesley,
Reading, Massachusetts, 1975.

2. Annaratone, M., Arnould, E., Kung, H. T. and Menzilcioglu, O. Using Warp as a Supercomputer in Signal
Processing. Proceedings of ICASSP 86, IEEE, 1986, pp. 2895-2898.

3. Annaratone, M., Amould, E., Gross, T., Kung, H. T., Lam, M., Menzilcioglu, O. and Webb, J. A. "The Warp
Computer Architecture, Implementation and Performance". IEEE Transactions on Computers C-36,12 (December
1987), 1523-1538.

4. Baudet, G. and Stevenson, D. "Optimal Sorting Algorithms for Parallel Computers". IEEE Transactions on
Computers C-27,1 (January 1978), 84-87.

5. Bitz, F . and kung, H. T. Path planning on the Warp computer using a linear systolic array in dynamic
programming. Proceedings of SPIE Symposium, Vol. 826, Advanced Algorithms and Architecturesfor Signal
Processing II, Society of Photo-Optical Instrumentation Engineers, August, 1987. The final version is to appear in
InternationalJournal of Computer Mathematics (1988).

6. Gross, T. and Lam, M. Compilation for a High-performance Systolic Array. Proceedings of the SIGPLAN 86
Symposium on Compiler Construction, ACM SIGPLAN, June, 1986, pp. 27-38.

7. Gross, T., Kung, H.T., Lam, M. and Webb, J. Warp as a Machine for Low-level Vision. Proceedings of 1985
IEEE International Conference on Robotics and Automation, March, 1985, pp. 790-800.

8. Harney, L. G. C , Webb, J. A., and Wu, I. C. Low-level Vision on Warp and the Apply Programming Model. In
Parallel Computation and Computers for Artificial Intelligence, Kluwer Academic Publishers, 1987, pp. 185-199.
Edited by J. Kowalik.

9. Heller, D.E. and Ipsen, I.C J 7 . Systolic Networks for Orthogonal Equivalence Transformations and Their Ap
plications. Proceedings of Conference on Advanced Research in VLSI, Massachusetts Institute of Technology,
Cambridge, Massachusetts, January, 1982, pp. 113-122.

10. Hsu, F.H., Kung, H.T., Nishizawa, T. and Sussman, A. Architecture of the Link and Interconnection Chip.
Proceedings of 1985 Chapel Hill Conference on VLSI, Computer Science Department, The University of North
Carolina, May, 1985, pp. 186-195.

11. Kung, H.T. Let's Design Algorithms for VLSI Systems. Proceedings of Conference on Very Large Scale
Integration: Architecture, Design, Fabrication, California Institute of Technology, January, 1979, pp. 65-90.

12. Kung, H.T. "Why Systolic Architectures?". Computer Magazine 75, 1 (Jan. 1982), 37-46.

13. Kung, H.T. Systolic Algorithms for the CMU Warp Processor. Proceedings of the Seventh International
Conference on Pattern Recognition, International Association for Pattern Recognition, 1984, pp. 570-577. A revised
revion appears as Chapter 3 in Systolic Signal Processing Systems, edited by E. E. Swartzlander, Jr., pp. 73-95, New
York, Marcel Dekker, 1987.

14. Kung, H. T. Systolic Communication. Proceedings of the International Conference on Systolic Arrays, May,
1988, pp. 695-703.

15. Kung, H.T. and Leiserson, C.E. Systolic Arrays (for VLSI). Sparse Matrix Proceedings 1978, Society for
Industrial and Applied Mathematics, 1979, pp. 256-282. A slighdy different version appears in Introduction to VLSI
Systems by C. A. Mead and L. A. Conway, Addison-Wesley, 1980, Section 8.3, pp. 37-46..

16. Kung, H.T. and Leiserson, C.E. Systolic Arrays (for VLSI). Sparse Matrix Proceedings 1978, Society for
Industrial and Applied Mathematics, 1979, pp. 256-282.

17. Kung, H. T. and Webb, J. A. "Mapping Image Processing Operations onto a Linear Systolic Machine".
Distributed Computing 7 ,4 (1986), 246-257.

18. Lam, M. S. A Systolic Array Optimizing Compiler. Ph.D. Th., Carnegie Mellon University, May 1987.

18

19. Pomerleau, D. A., Gusciora, G. L., Touretzky, D. S. and Kung, H. T. Neural Network Simulation at Warp
Speed: How We Got 17 Million Connections Per Second. 1988 IEEE International Conference on Neural Net
works, July, 1988.
20. Preparata, F.P. and Shamos, M.I.. Computational Geometry: In Introduction. Springer-Verlag, New York,
1985.
21 . Rosenfeld, A. Iterative methods in image analysis. Proceedings of the IEEE Computer Society Conference on
Pattern Recognition and Image Processing, International Association for Pattern Recognition, 1977, pp. 14-18.

22. Rosenfeld, A., Hummel, R. A., and Zucker, S. W. "Scene labelling by relaxation operations". IEEE Trans, on
Systems, Man, and Cybernetics SMC-6 (June 1976), 420-433.

23. Rumelhart, D. E„ Hinton, G. E., and Williams, R. J. Learning Internal Representations by Error Propagation.
In Rumelhart, D. E. and McClelland, J. L., Ed., Parallel Distributed Processing: Explorations in the Micro structure
of Cognition. Vol. I: Foundations, Bradford Books/MIT Press, Cambridge, MA., 1986, pp. 318-362.

24. Young, D.. Iterative Solution of Large Linear Systems. Academic Press, New York, 1971.

19

