
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Impossibility and Universality Results
for Wait-Free Synchronization

Maurice P. Herlihy
12 May 1988

CMU-CS-88-14C

Abstract

A wait-free implementation of a concurrent data object is one that guarantees that any process can
complete any operation in a finite number of steps, regardless of the execution speeds of the other
processes. The problem of constructing a wait-free implementation of one data object from another lies
at the heart of much recent work in atomic read/write registers, multiprocessor architectures, and
concurrent data structures. In the first part of this paper, we introduce a simple and general technique,
based on reduction to a consensus protocol, for proving statements of the form "there is no wait-free
implementation of X by Y." We derive a hierarchy of objects such that no object at one level has a
wait-free implementation in terms of objects at lower levels. In particular, we show that atomic read/write
registers, which have been the focus of much recent attention, are at the bottom of the hierarchy: they
cannot be used to construct wait-free implementations of many simple and familiar data types. Moreover,
classical synchronization primitives such as test-and-set and fetch-and-add, while more powerful than
read and write, are also computationally weak, as are the standard message-passing primitives.
Nevertheless, in the second part of the paper, we show that there do exist simple universal objects from
which one can construct a wait-free implementation of any sequential object.

Copyright © 1988 Maurice P. Herlihy

This paper will be published in the Proceedings of the Seventh ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, August 1988.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order
No. 4976 under contract F33615-87-C-1499 and monitored by the:

Avionics Laboratory
Air Force Wright Aeronautical Laboratories
Aeronautical Systems Division (AFSC)
Wright-Patterson AFB, OHIO 45433-6543

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the US Government.

1

1. Introduction
A concurrent object is a data structure shared by concurrent processes. Algorithms for implementing
concurrent objects lie at the heart of many important problems in concurrent systems. The traditional
approach to implementing such objects centers around the use of critical sections: only one process at a
time is allowed to operate on the object. Nevertheless, critical sections are poorly suited for
asynchronous, fault-tolerant systems: if a faulty process halts in a critical section, non-faulty processes
will also be unable to progress. Even in failure-free systems, processes may be subject to unexpected
delay. For example, if a process executing in a critical region takes a page fault, exhausts its scheduling
quantum, or is swapped out, then other processes needing that resource will also be delayed. Similar
problems arise in heterogeneous architectures, where some processors may be faster than others.

A wait-free implementation of a concurrent data object is one that guarantees that any process can
complete any operation in a finite number of steps, regardless of the execution speeds of the other
processes. The wait-free condition provides fault-tolerance: no process can be prevented from
completing an operation by undetected halting failures of other processes, or by arbitrary variations in
their speed. The fundamental problem of wait-free synchronization can be phrased as follows:

Given two concurrent objects X and Y, does there exist a wait-free implementation ofXby Y?
It is clear how to show that a wait-free implementation exists: one displays it. Most of the current
literature takes this approach. Examples include atomic read/write registers from non-atomic "safe"
registers [16], complex atomic read/write registers from simpler atomic registers
[3, 4, 13, 2 1 , 23, 24, 27, 29], read-modify-write operations from combining networks [8, 12], and typed

objects such as queues or sets from simpler objects [10,15, 17].

It is less clear how to show that such an implementation does not exist. In the first part of this paper, we
propose a simple new technique for proving statements of the form "there is no wait-free implementation
of X by Y." We derive a hierarchy of objects such that no object at one level can implement any object at
higher levels (see Figure 1-1). The basic idea is the following: we identify a property of X that is
necessarily shared by any object that implements X, hence any object that does not satisfy that property
cannot implement X. The property we use is the ability to solve a simple consensus problem.

These impossibility results do not by any means imply that wait-free synchronization is impossible or
infeasible. In the second part of this paper, we show that there exist simple universal objects from which
one can construct a wait-free implementation of any object. We give a simple test for universality,
showing that an object is universal if and only if it can solve consensus. Figure 1-1 shows a number of
simple universal objects: each object at level n is universal for a system of n processes. A machine
architecture or programming language is computationally powerful enough to support arbitrary wait-free
synchronization if and only if it provides a universal object as a primitive.

Most recent work on wait-free synchronization has focused on the construction of atomic read/write
registers [3, 4, 13,16, 21 , 23, 24, 27, 29]. Our results address a basic question: what are these registers
good for? Can they be used to construct wait-free implementations of more complex data structures?
We show that atomic read/write registers have few, if any, interesting applications in this area. From a set
of atomic read/write registers, we show that it is impossible to construct a wait-free implementation of (1)
common data types such as sets, queues, stacks, priority queues, or lists, (2) most if not all the classical
synchronization primitives, such as test-and-set, compare-and-swap, and fetch-and-add, and (3) such
simple memory-to-memory operations as move or memory-to-memory swap. These results suggest that

University Libraries
CarnepeMelten University

Pittsburgh, Pennsylvania

2

further progress in understanding wait-free synchronization requires turning our attention from the

conventional read and write operations to more fundamental primitives.

Our results also illustrate inherent limitations of certain multiprocessor architectures. The NYU
Ultracomputer project [9] has investigated architectural support for wait-free implementations of common
synchronization primitives. They use combining networks to implement fetch-and-add, a generalization of
test-and-set IBM's RP3 [25J project is investigating a similar approach. The fetch-and-add operation is
quite flexible: it can be used for semaphores, for highly concurrent queues, and even for database
synchronization [8,10, 28]. Nevertheless, we show that it is not universal, disproving a conjecture of
Gottlieb et al. [8]. We also show that message-passing architectures such as hypercubes [11, 26] are not
universal either.

This paper is organized as follows. Section 2 defines a model of computation, Section 3 presents

impossibility results, Section 4 describes some universal objects, and Section 5 concludes with a

summary.

Processes Object

1 read/write registers

2 test-and-set, swap, fetch-and-add, queue, stack

... ...

2n-2 n-register assignment

... ...

Unbounded
memory-to-memory move and swap, augmented queue,
compare-and-swap, fetch-and-cons

Figure 1-1: Impossibility and Universality Hierarchy

2. The Model
Informally, our model of computation consists of a collection of sequential threads of control called
processes that communicate through shared data structures called objects. Each object has a type,
which defines a set of possible states and a set of primitive operations that provide the only means to
manipulate that object. Each process applies a sequence of operations to objects, issuing an invocation
and receiving the associated response. The basic correctness condition for concurrent systems is
finearizability^O]: although operations of concurrent processes may overlap, each operation appears to
take effect instantaneously at some point between its invocation and response. In particular, operations
that do not overlap take effect in their "real-time" order. Linearizability unifies and generalizes many of
the ad hoc correctness conditions in the literature on concurrent objects.

2.1. I/O Automata
Formally, we model processes and objects as I/O automata [19, 20]. An i/O automaton is a

deterministic automaton A with the following components:1

1To remain consistent with the terminology of [10], we use "event" where Lynch and Menitt use "operation," and "history"
they use "schedule."

3

• states(A) is a finite or infinite set of states, including a distinguished set of starting states.

• in(A) is a set of input events,

• out(A) is a set of output events,

• steps(A) is a transition relation given by a set of triples (s',e,s), where 5 and s'are states and
e is an event. Such a triple is called a step, and it means that an automaton in state s' can
undergo a transition to state s, and that transition is associated with the event e.

If (s',e,s) is a step, we say that e is enabled in s\ I/O automata must satisfy the additional condition that
inputs cannot be disabled: for each input event e and each state s', there exist a state s and a step
(s\e,s).

An execution of an automaton A is a finite sequence s0, ep sv en, sn or infinite sequence SQ, ev sv ...
of alternating states and events such that s0 is a starting state and each (sr e M , sM) is a step of A. A
history of an automaton is the subsequence of events occurring in one of its executions.

A new I/O automaton can be constructed by composing a set of I/O automata with disjoint output events.
A state of the composed automaton S is a tuple of component states, and a starting state is a tuple of
component starting states. The set of events of S, events(S), is the union of the components' sets of
events, and the set of output events of S, out(S), is the union of the components' sets of output events.
The sets of input events of S, in(S), is events(S) - out(S), all the events of S that are not output events for
some component. A triple (s',e,s) is in steps(S) if and only if, for all component automata A, one of the
following holds: (1) e is an event of A, and the projection of the step onto A is a step of A, or (2) e is not
an event of A, and A's state components are identical in s' and s. If H is a history of a composite
automaton and S a set of component automata, H | S denotes the subhistory of H consisting of events of
automata in S. If A is an automaton, we use H | A as shorthand for H | {A}.

2.2. Sequential Systems
In this section, we define "sequential systems" that model the behavior of processes and objects in the
absence of concurrency. We use sequential systems to define the basic notion of correctness for the
more complex concurrent systems defined in the next section. A sequential system consists of
processes, objects, and a sequential scheduler, shown schematically in Figure 2-1 . Processes represent
sequential threads of control, objects represent data structures shared by processes, and the sequential
scheduler mediates all communication between processes and objects, ensuring that objects execute
operations in a one-at-a-time, serial order. All components are I/O automata. (Lynch and Merritt [19] use
a similar decomposition to model nested transaction systems.)

Process

CALL

t RETURN
r

r
Scheduler

INVOKE

Object

RESPOND

Figure 2 -1 : Schematic View of Processes, Objects, and the Scheduler

An object X has two events: the input event INVOKE(P, op, X), where P is a process and op is an

4

operation2 of the object, and the output event RESPOND(P, res, X), where res is a result value. Two
INVOKE and RESPONSE events match if their process and object names agree. An invocation is
pending if it is not followed by a matching response.

A process P has the output event CALL(P, op, X), where op is an operation of object X, and the input
event RETURN(P, res, X), where res is a result value. Two CALL and RETURN events match if their
process and object names agree. To capture the notion that a process represents a single thread of
control, we say that a process history is well-formed if it begins with a CALL event and alternates
matching CALL and RETURN events.

The sequential scheduler, shown in Figure 2-2, has two input events: CALL(P, op, X) and RESPOND(P,
res X), which are identified with the corresponding output events of processes and objects, and two
output events: RETURN(P, res, X) and INVOKE(P, op X), which are identified with the corresponding
input events of processes and objects. A state s of the sequential scheduler consists of three
components: called(s) is a set of triples (P, op, X), initially empty, responded(s) is a set of triples (P, res,
X), initially empty and mutex(s) is a value in {busy, idle), initially idle. In postconditions, 5 denotes the
object's new state, and s' its old state. When process P calls an operation of object X, the scheduler
records the call in its state. When no other operation is in progress, the scheduler relays the invocation to
the object and marks the system as busy. When the object returns the response, the scheduler marks
the system as idle and records the response, which it later forwards to the calling process.

CALL(P, op, X)
Postcondition:

called(s) . called(s') u {(P, op, X)}

RETURN(P, res, X)
Precondition:

(P, res, X) € responded(s')

Postcondition:

responded(s) = responded(s') - {(P, res, X)}

INVOKE(P, op X)
Precondition:

mutex(s') = idle
(P, op, X) € called(s')

Postcondition:

called(s) = called(s') - {(P, op, X)}
mutex(s) = busy

RESPOND(P, res X)
Postcondition:

responded(s) - responded(s') u {(P, res, X)}
mutex(s) = idle

Figure 2-2: The Sequential Scheduler

2 Op may also include argument values.

5

A sequential system {P 1 P n ; A v A m } is an I/O automaton composed from processes Pv P n ,
objects A 1 ? A m , and the sequential scheduler. A history of a sequential system is well-formed if each
H | Pj is well-formed, and a sequential system is well-formed if each of its histories is well-formed.
Henceforth, we restrict our attention to well-formed sequential systems.

The behavior of an object in a sequential system can be specified in a particularly simple way: by giving
pre- and postconditions for each operation. We refer to an object whose behavior is specified only for
sequential systems as a sequential object In this paper, we consider only sequential objects whose
operations are totah if the object has a pending invocation, then it has a matching enabled response. For
example, a partial deq might be undefined when applied to an empty queue, while a total deq would
return an exception. We restrict out attention to objects whose operations are total because it is unclear
how to interpret the wait-free condition for partial operations. For example, the most natural way to define
the effects of a partial deq in a concurrent system is to have it wait until the queue becomes non-empty, a
specification that clearly does not admit a wait-free implementation.

2.3. Concurrent Systems
Sequential systems permit an inadequate level of concurrency; we use them only to define correctness
for more realistic "concurrent systems." A concurrent system { P v P n ; A v A m } is an I/O automaton
composed from process automata P v P n , object automata A v A m , and a concurrent scheduler.
The concurrent scheduler is very simple: it asynchronously but reliably relays invocations from processes
to objects and results from objects to processes. It is constructed from the sequential scheduler in Figure
2-2 simply by omitting the mutex component of the state, together with every pre- and postcondition that
mentions it. Well-formedness is defined exactly as for sequential systems.

A concurrent system {Pv P n ; A 1 f A m } is llnearizable if, for each of its histories H, there exists a
history S of the corresponding sequential system such that:

H | { P 1 f . . . , P n } = S | { P 1 f . . . , P n }
In other words, the system "appears" sequential to the ensemble of processes. Each operation appears
to take effect instantaneously at some point between its invocation and its response. A concurrent object
Aj is llnearizable if every concurrent system {Pv P n ; Aj} is linearizable. A linearizable object is thus
"equivalent" to a sequential object, and its operations can also be specified by simple pre- and
postconditions. Henceforth, all objects are assumed to be linearizable. Unlike related correctness
conditions such as sequential consistency [14] or strict serializability [22], linearizability is a local property:
a concurrent system is linearizable if and only if each individual object is linearizable [10].

2.4. Implementations
An implementation of an object A is a concurrent system {F 1 f F n ; R}, where the Fj are called front-end
automata, and R is a called the representation object. Informally, process P } executes an operation of A
by sending the invocation to F j f which in turn applies a sequence of operations to R before returning a
result to Pj. As.usual, all communication is mediated by the concurrent scheduler. Figure 2-3 illustrates
an object implementation; the scheduler is omitted for clarity.

An implementation is wait-free if:

• There is no history in which a pending invocation of Pj is followed by an infinite number of
steps of Fj.

Object A

Process

CALMNVOKQ

RETURN/RESPOND

Front-End

CALL7INVOKE

RETURN/RESPOND

Object R

Figure 2-3: Schematic View of Object Implementation

• If P| has a pending invocation, but F } does not, then F } has an enabled output.
The first condition rules out unbounded busy-waiting: any sequence of representation operations that
implements an abstract operation is finite. The second condition, together with the assumption that R is
total, asserts that neither F } nor R can enter a halted state while an operation of A is in progress, ruling
out conditional waiting.

An implementation is strongly wait-free if the sequence of representation operations that implements any
abstract operation has bounded (as opposed to finite) length. Strongly wait-free implies wait-free, but not
vice-versa. We use the wait-free condition for impossibility results, and the strongly wait-free condition for
universal constructions.

For brevity, we say that R implements A if there exists a wait-free implementation { F v ... F n ; R} of A. It is
immediate from the definitions that implements is a reflexive partial order on the universe of objects. In
the rest of the paper, we investigate the mathematical structure of the implements relation. In the next
section, we introduce a simple technique for proving that one object does not implement another, and in
the following section we display a "universal" object U such that for any linearizable object X, U
implements X.

3. Impossibility Results
Informally, a consensus protocol is a system of n processes that communicate through a shared object
X. The processes each start with an input value from some domain D, they communicate with one
another by applying operations to X, and they eventually agree on a common input value and halt. Our
notion of a consensus protocol is essentially the same as that of Fisher, Lynch, and Paterson [7], except
we have found it convenient to treat consensus as a form of election: we take D to be the set of process
names, and we assume each process uses its own name as its input value.

More precisely, an n-process consensus protocol for X is a concurrent system { P t , P n ; X}, where each
Pj has an additional output event: D E C I D E R , v), for v in { P v . . A history for a protocol has decision
value v if it includes a DECIDER, v) event. A protocol is partially correctIf:

1. No history has more than one decision value.

2. If a history has decision value P j f then Pj took at least one step.
The second condition rules out the trivial protocol where each process makes a predefined choice. A
protocol state is bivalent if either decision value is still possible, otherwise it is univalent An X-valent
state is a univalent state with eventual decision value X. A decision step carries a protocol from a bivalent

7

to a univalent state.

A partially correct protocol is wait-free if it satisfies two conditions:
1. No process takes an infinite number of steps without deciding.

2. If an undecided process has no pending invocation, then it has an enabled output transition
(either a decision or another invocation).

The second condition rules out the trivial protocol where one process non-deterministically chooses a
value, and the others immediately halt without deciding.

For brevity, we say "X solves n-process consensus" if there exists a wait-free n-process consensus
protocol for X. It is an immediate consequence of our definitions that if Y implements X, and X solves
n-process consensus, then "substituting" Y for X yields an n-process consensus protocol for
Y. Consequently:

Theorem 1: Iff X solves /r-process consensus but Y does not, then there exists no wait-free
implementation off X by Y in a system off n or more processes.

In the rest off this section, we consider a number off objects, displaying wait-ffree consensus protocols ffor
some, and impossibility results ffor others. For brevity, processes and objects are defined informally by
pseudo-code; their translations into I/O automata should be selff-evident.

3.1. Atomic Read/Write Registers

Theorem 2: There is no wait-ffree solution to two-process consensus by atomic read/write registers.

Proof: We assume such a protocol and derive a contradiction. The initial protocol state is bivalent
by assumption. Consider the following execution, which starts in the initial state, and leaves the
protocol in a bivalent state. In the tirst stage, run process P until it reaches a state where it cannot
continue without executing a decision step. P must eventually reach such a state, since the wait-
ffree condition ensures that it has an enabled step in every bivalent state, and that it cannot run
forever. In the second stage, run Q until it reaches a similar state, and in successive stages,
alternate running P and Q until each is about to make a decision step. Because the protocol cannot
run forever, it must eventually reach a bivalent state s in which any subsequent step off either
process is a decision step. Since s is bivalent, some step p off P carries the protocol to an X-valent
state s', and some step q off Q carries the protocol to a Y-valent state, where X and Y are distinct.

We first argue that the decision step cannot be a CALL Since q carries s to a Y-valent state, there
exists an execution o from s in which Q chooses Y, and P is idle. Suppose p is a CALL step.
Because s and s' differ only in the internal states of P and the scheduler, a is also an execution from
s' in which Q chooses Y, an impossibility since s' is X-valent. A symmetric argument shows that the
decision step cannot be a RETURN.

The decision step must be an INVOKE or RESPOND step. Since registers are linearizable, we can
consider complete read and write operations.

• Neither operation can be a read. Suppose p is a read of a shared register. Since q
carries s to a Y-valent state, there exists an execution a from s consisting entirely off
steps off Q that yields the decision value Y. Because s and $' difffer only in the internal
states of P and the scheduler, a is also an execution ffrom s' in which Q chooses Y, an
impossibility since s'is X-valent.

• Both operations cannot be writes. Iff the processes write to difffferent shared registers,
the state that results iff p is immediately followed by q is identical to the state that results

8

if q is immediately followed by p, which is impossible, since one is X-valent and the
other is Y-valent. Suppose the processes write to the same shared register. Since s' is
X-valent, there exists an execution a from s' consisting entirely of steps of P that yields
the decision value X. Let s" be the Y-valent state reached by executing q followed by p.
Because p overwrites the value written by q, s'and s" differ only in the internal states of
Q and the scheduler, and therefore a is also an execution from s"in which P chooses X,
an impossibility since s"is Y-valent.

Similar results have been shown by Loui and Abu-Amara [18], Chor, Israeli, and Li [5], and Anderson and
Gouda [2]. Our contribution lies in the following corollary:

Corollary 3: If X solves two-process consensus, then it is impossible to construct a wait-free
implementation of X from atomic read/write registers.

Fischer, Lynch, and Paterson [7] have shown that there is no wait-free solution to two-process consensus
by message channels that permit messages to be delayed and reordered. That result does not imply
Theorem 2, however, because atomic read/write registers lack certain commutativity properties of
asynchronous message buffers. (In particular, Lemma 1 of [7] does not hold.)

Dolev, Dwork, and Stockmeyer [6] give a thorough analysis of the circumstances under which consensus
can be achieved by message-passing. They consider the effects of thirty-two combinations of
parameters: synchronous vs. asynchronous processors, synchronous vs. asynchronous communication,
FIFO vs. non-FIFO message delivery, broadcast vs. point-to-point transmission, and whether send and
receive are distinct primitives. Expressed in their terminology, our model has asynchronous processes,
synchronous communication, and distinct send and receive primitives. We model send and receive as
operations on a shared message channel object; whether delivery is FIFO and whether broadcast is
supported depends on the type of the channel. Some of their results translate directly into our model: it is
impossible to achieve two-process consensus by communicating through a shared channel that supports
either broadcast with unordered delivery, or point-to-point transmission with FIFO delivery. Broadcast
with ordered delivery, however, does solve r>process consensus.

A safe read/write register [16] is one that behaves like an atomic read/write register as long as operations
do not overlap. If a read overlaps a write, however, no guarantees are made about the value read. Since
atomic read/write registers implement safe read/write registers, safe read/write registers cannot solve
two-process consensus, and hence the impossibility results we derive for atomic read/write registers
apply equally to safe read/write registers.

3.2. Read-Modify-Write Operations
Kruskal, Rudolph, and Snir [12] have observed that many, if not all, of the classical synchronization
primitives can be expressed as read-modify-write operations, defined as follows. Let r be a register, and
f a function from values to values. The operation RMW(r, f) is informally defined by the following
procedure, which is executed atomically:

RMH = proc(r: register, £: function) returns(value)
temp := r;
r := £(r);
return (temp) ;
end RMH

If f is the identity, RMW(r, f) is simply a read operation. A read-modify-write operation is non-trivial if f is
not the identity function. Examples of well-known non-trivial read-modify-write operations include

9

test-and-set, swap, compare-and-swap, and fetch-and-add. Numerous others are given in [12].

Loui and Abu-Amara [18] give a number of constructions and impossibility results for consensus protocols
using shared read-modify-write registers, which they call "test-and-set" registers. Among other results,
they show that n-process consensus for n > 2 cannot be solved by any read-modify-write operations on
single-bit registers.

Theorem 4: Two-process consensus can be solved by a register supporting any non-trivial read-
modify-write operation.

Proof: Since f is not the identity, there exists a value v such that v * f(v). Let P and Q be the two
processes, and let the shared register r be initialized to v. P executes Decide_P, and Q executes
Decide_Q:

Decide_P = proc(r: register) Decide_Q = proc(r: register)
if RMW(r, f) = v if RMW (r, f) = v

then decide (0) then decide (1)
else decide (1) else decide (0)
end end

end Decide_P end Decide_jQ
The protocol chooses 0 if P's operation is linearized first, and 1 otherwise.

Corollary 5: It is impossible to construct a wait-free implementation of any non-trivial read-modify-
write operation from a set of atomic read/write registers.

Although read-modify-write registers are more powerful than read/write registers, many common read-
modify-write operations are still computationally weak. In particular, one cannot construct a wait-free
solution to three process consensus using registers that support any combination of read, write,
test-and-set, swap, and fetch-and-add operations. Let F be a set of functions indexed by an arbitrary set
S. Define F to be interfering if for all values v and all / and j in S, either (1) ff and fy commute: f((fj (v)) - fj
(fi (v)h or (2) one function "overwrites" the other: either ff (fj (v)) - ff (v) or 1f (f((v)) - ff (v).

Theorem 6: There is no wait-free solution to three-process consensus using any combination of
read-modify-write operations that apply functions from an interfering set F.

Proof: By contradiction. Let the three processes be P, Q, and R. As in the proof of Theorem 1,
construct an execution leaving the protocol in bivalent state where every step enabled for P and Q is
a decision step, some step of P carries the protocol to an X-valent state, and some step of Q carries
the protocol to a Y-valent state, where X and Y are distinct. By the usual case analysis, P and Q
must operate on the same register; say, P executes RMW(rf f) and Q executes RMW(r, ty.

Let v be the current value of register r. There are two cases to consider. First, suppose ft (fj (v)) =
fl (fj Mh The state s that results if P executes RMW(r, f) and Q executes RMW(r9 fj) is X-valent, thus
tnere exists some execution o consisting entirely of steps of R that yields decision value X. Let s' be
the state that results if P and Q execute their operations in the reverse order. Since the register
values are identical in s and s\ o will also yield the decision value X in s\ contradicting the
hypothesis that s' is Y-valent.

Second, suppose fj (fj (v)) = l (v). The state s that results if P executes RMW(r, f) and Q executes
RMW(r, fj) is X-valent, thus there exists some execution o consisting entirely of steps of R that yields
decision value X. Let s' be the state that results if Q alone executes its operation. Since the register
values are identical in s and s\ o will also yield the decision value X in s', contradicting the
hypothesis that s'is Y-valent.

It follows that one cannot use any combination of these classical primitives to construct a wait-free

10

implementation of any object that solves n-process consensus for n > 2.

Another classical primitive is compare-and-swap, which takes two values, v and v'. If the register's

current value is v, it is replaced by v', otherwise is left unchanged. The register's old value is returned.

Theorem 7: compare-and-swap solves n-process consensus for arbitrary n.

Proof: The register is initialized to 1, and process P { executes

Decide__i = proc(r: register)
prefer: bool := i
old: bool := compare-and-swap(r, ±, prefer)
if old = 1

then decide(prefer)
else decide(old)
end

end Decide_i
Corollary 8: It is impossible to construct a wait-free implementation of a compare-and-swap register
from a set of registers that support any combination of read, write, test-and-sett swap, or
fetch-and-add operations.

3.3. Queues, Stacks, Lists, Etc.
Consider a FIFO queue with two operations: enq places an item at the end of the queue, and deq
removes the item from the head of the queue, returning an error value if the queue is empty.

Theorem 9: Two-process consensus can be solved by a FIFO queue.
Proof: The queue is initialized by enqueuing the value first followed by the value second.

Decide_P » proc(q: queue) DecidejQ = proc(q: queue)
if deq(q) = first if deq(q) = first

then decide (0) then decide (1)
else decide (1) else decide (0)
end end

end Decide_P end DecidejQ
P and Q each attempt to dequeue the first item in the queue; if P succeeds, the protocol decides on
0, otherwise it decides on 1.

Trivial variations of this program yield protocols for stacks, priority queues, lists, sets, or any deterministic
object with operations that return different results if applied in different orders.

Corollary 10: It is impossible to construct a wait-free implementation of a queue, stack, priority
queue, set, or list from a set of atomic read/write registers.

Lamport [15] gives a queue implementation that permits one enqueuing process to execute concurrently
with one dequeuing process. With minor changes, this implementation can be transformed into a wait-
free implementation using atomic read/write registers. Theorem 2 implies that Lamport's queue cannot
be extended to permit concurrent deq operations without augmenting the read and write operations with
more powerful primitives.

Theorem 1 1 : There is no wait-free solution to three-process consensus using FIFO queues.
Proof: As before, we maneuver the protocol to a state where the next process to execute an
operation establishes the decision value. Let P, Q, and R be the processes, and assume that P's
operation would carry the protocol to an X-valent state and Q's to a Y-valent state. The rest is a
case analysis.

11

First, suppose P and Q both execute deq operations. Let s be the protocol state if P dequeues and
Q dequeues, and let s' be the state if the dequeues occur in the opposite order. Since s is X-valent,
there exists an execution a starting in s, consisting entirely of steps of R, and yielding the decision
value X. But s and s' differ only in the internal states of P and Q, thus o is also an execution from s'
yielding decision value X, a contradiction because s' is Y-valent.

Second, suppose P does an enq and Q a deq. If the queue is non-empty, the contradiction is
immediate because the two operations commute. If the queue is empty, then the Y-valent state
reached if Q dequeues and P enqueues is indistinguishable to R from the X-valent state reached if P
enqueues.

Finally, suppose all three do enq operations. Let s be the state at the end of the following execution:

1. P, Q, and R enqueue in that order.

2. Run P until it completes a deq.

3. Run Q until it completes a deq.
Let s' be the state after the following alternative execution:

1. Q, P, and R enqueue in that order.

2. Run P until it completes a deq.

3. Run Q until it completes a deq.
Clearly, s is X-valent and s' is Y-valent. Since the only way to observe the queue's state is via the
deq operation, both of P's executions are identical until its deq returns. Since P is halted before it
can modify any other objects, Q's executions are also identical until its deq returns. By a now-
familiar argument, a contradiction arises because s and s'are indistinguishable to R.

The same result holds for many similar data types such as sets, stacks, or priority queues.

A message-passing architecture (e.g., a hypercube, [11, 26]) is a set of processors that communicate via
shared FIFO queues. Theorem 11 implies that message-passing architectures cannot solve three
process consensus or implement any object that can. Dolev, Dwork, and Stockmeyer [6] give a related
result: point-to-point FIFO message channels cannot solve two-process consensus. That result does not
imply Theorem 11, however, because a queue item, unlike a message, is not "addressed" to any
particular process, and hence it can be dequeued by anyone.

3.4. An Augmented Queue
Let us augment the queue with one more operation: peek returns but does not remove the first item in
the queue.

Theorem 12: The augmented queue solves n-process consensus for arbitrary n.

Proof: The queue q is initialized to empty, and each process enqueues its own identifier. Process Pj
executes:

Decide_i = proc(r: register)
enq(q, i)
decide (peek(q))
end Decide_i

The process whose enq is ordered first establishes the decision value.

Corollary 13: It is impossible to construct a wait-free implementation of the augmented queue from
a set of registers that support any combination of read, write, test-and-set, swap, or fetch-and-add

12

operations.
Corollary 14: It is impossible to construct a wait-free implementation of the augmented queue from
a set of regular queues.

Elsewhere [10], we have given an implementation of a FIFO queue using read, fetch-and-add, and swap
operations that permits an arbitrary number of concurrent enq and deq operations. (Although this queue
does not use mutual exclusion, it is not wait-free, since a deq applied to an empty queue busy-waits until
an item is enqueued.) Corollary 13 implies that this queue implementation cannot be extended to support
a wait-free peek operation without making use of more powerful primitives.

3.5. Memory-To-Memory Operations
Consider a collection of atomic read/write registers having one additional operation: move atomically

copies the value of one register to another.

Theorem 15: Move solves rvprocess consensus for arbitrary n.
Proof: We first give a two-process protocol. Let ri and r2 be respectively initialized to 1 and 2. P 1

and P 2 respectively execute Decide_1 and Decide_2:
Decide__l = proc(rl,r2: register) Decide__2 = proc(rl,r2: register)

r2 := 1; move(r2,rl)
decide(rl) decide(rl)
end Decide_l end Decide__2

The protocol decides 2 if P 2 's move is linearized before P^s write, and 1 otherwise.

To generalize this protocol to n processes, let r[i. .n,i. .2] be an array of registers, where
r [i, l] is initialized to /, and r [i, 2] to /-/. Process Pj executes the following procedure:

Decide_i • proc(r: array[array[[register]])
move(r[i,l], r[i,2])
for j in i+1 .. n do

r[j, 1] := j-1
end

for j in n .. 1 do
if r[j,2] = B j then decide (j) end
end

end Decide__i

Each process iterates the two-process protocol given above. In the first round (the move operation),
the process achieves consensus with the lower-numbered processes, and in subsequent rounds it
achieves consensus with successively higher-numbered processes. Consensus round / was won by
P { if r[i, 2] is /, otherwise it was won by a lower-numbered process. The overall winner is the
highest-numbered process to win its first round.

Theorem 16: The memory-to-memory swap operation3 solves n-process consensus for arbitrary n.
Proof: The processes share an array of registers p[l. .n] whose elements are initialized to 0, and
a single register r, initialized to 7. Process Pj executes:

3jhe memory-memory swap should not be confused with the read-modify-write • « « ft.*• V a , U e S °* ^
public registers while the latter exchanges the value of a public register wrth a processor s private reg«ter.

13

Decide_i = proc(p: array[register], r: register)
swap(p[i], r)
for k: int in 1 .. n do

if p[k] = 1 then decide (k) end
end

end Decide__i
The first process to swap 1 into p wins.

Corollary 17: It is impossible to construct a wait-free implementation of memory-to-memory move or
swap from a set of registers that support any combination of read, write, test-and-set, swap, or
fetch-and-add operations.

Corollary 18: It is impossible to construct a wait-free implementation of memory-to-memory move or
swap from a set of FIFO queues.

3.6. Multiple Assignment
The expression:

atomically assigns each value v ; to each register rv

Theorem 19: Atomic rvregister assignment solves />process consensus.

Proof: The protocol uses n "private" registers rx, r n > where Pj writes to register r±, and n(n-1)/2
"shared" registers r i j f where / > j, where P { and Pj both write to registers r ± and ry All registers
are initialized to _L. Each process atomically assigns its input value to n registers: its private register
and its n-1 shared registers. The decision value of the protocol is the first value to be assigned.

After assigning to its registers, a process determines the relative ordering of the assignments for two
processes P } and Pj as follows.

• Read r± y If the value is 1, then neither assignment has occurred, and we are done.

• At least one assignment has occurred. Read r ± and r j $ If r^s value is 1, then Pj
precedes Pj, and similarly for ry Otherwise, let v be the value of r±.

• Both assignments have occurred. Reread r±y If its value is now v, Pj went first,
otherwise P { went first.

By repeating this procedure, a process can determine the value written by the earliest assignment.

This result can be improved.
Theorem 20: Atomic />register assignment solves 2n-2-process consensus.

Theorem 2 1 : This protocol has two phases. Each process has two private registers, one for each
phase, and each pair of processes share a register. Divide the processes into two groups of n-1. In
the first phase, each group uses n-2-register assignment to achieve consensus within itself, using
the previous theorem's protocol. In the second phase, each process atomically assigns its group's
value to its phase-two private register and the n-1 registers shared with processes in the other
group. Using the ordering procedure described above, the process constructs a directed graph G
with the property that there is an edge from P= to P k if Pj and P k are in different groups and the
former's assignment precedes the latter's. It then locates a source process having at least one
outgoing edge but no incoming edges, and decides on that process's value. At least one process
has performed an assignment, thus G has edges. Let P n be the process whose assignment is first
in the linearization order. P n is a source, and it has an outgoing edge to every process in the other
group, thus no process in the other group is also a source. Therefore, all source processes belong

14

to the same group.

This algorithm is optimal with respect to the number of processes.

Theorem 22: Atomic n-register assignment cannot solve 2n-7-process consensus.
Proof: By the usual construction, we can maneuver the protocol into a bivalent state s in which any
subsequent step executed by any process is a decision step. We refer to the decision value forced
by each process as its default.

We first show that each process must have a "private" register that it alone writes to. Suppose not.
Let P and Q be processes with distinct defaults X and Y. Let $' be the state reached from $ if P
performs its assignment, Q performs its assignment, and the other registers perform theirs. Because
P went first, s' is X-valent. By hypothesis, every register written by P has been overwritten by
another process. Let s"be the state reached from s if P halts without writing, but all other processes
execute in the same order. Because Q wrote first, $" is Y-valent. Let o be an execution, starting in
s', that consists entirely of steps of Q and that yields the decision value X. Because the values of the
registers are identical in s'and s", o also yields the decision value X from s", a contradiction.

We next show that if P and Q have distinct default values, then there must be some register written
only by those two processes. Suppose not. Let s' be the state reached from s if P performs its
assignment, Q performs its assignment, followed by all other processes' assignments. Let s" be the
state reached by the same sequence of operations, except that P and Q execute their assignments
in the reverse order. Because s'is X-valent, there exists an execution a of P that yields the decision
value X. But because every register written by both P and Q has been overwritten by some other
process, the register values are the same in both s and $\ hence o also yields the decision value X
from s", a contradiction.

It follows that if P has default value X, and there are k processes with default value Y, then any
protocol requires P to assign to k+1 registers. If there are 2n-1 processes, then we can minimize the
number of registers any process must assign to if n processes have default X and n-1 have default
Y, implying that each process in the first class must assign to n+1 registers.

These last two theorems show that there is a sense in which consensus is irreducible: if n is even, one

cannot achieve consensus among n processes by calling subroutines that achieve consensus among m

processes, where m < n.

4. Universality Results
In this section, we show that there exist universal objects from which one can construct a wait-free
implementation of any object. How is it possible to provide a universal implementation for behaviors as
disparate as those of queues, databases, counters, etc.? We use a two-step reduction. First, we show
that we can systematically transform a sequential implementation of an object into a wait-free concurrent
implementation if (and only if) we can atomically thread an item onto the front of a list. Second, we show
that we can implement this fetch-and-cons operation if (and only If) we can solve /^process consensus.
This reduction greatly facilitates universality proofs, since proving that X solves />process consensus is
easier than proving directly that X implements fetch-and-cons, and considerably easier than proving
directly that X is universal.

15

4.1. Reduction to Fetch-And-Cons
A sequential object is deterministic if the result returned by each RESPONSE step is completely
determined by the object's history of INVOKE steps. We first consider deterministic objects, and then
introduce refinements for non-deterministic objects. As usual, all operations must be total.

Informally, our strategy is the following. We represent the object's state as a list of the invocations that
have been applied to it, placing the most recent invocation at the head of the list. To reconstruct the
object's abstract state, the deterministic sequential implementation is used to "replay" the list of
invocations. A list object provides the usual operations: cons, car, cdr, null, etc. The only operation that
destructively modifies a list is the read-modify-write operation fetch-and-cons, which atomically (1) places
an item at the head of the list, and (2) returns the list of items that follow the new item. A process
executes an operation in two steps. First, it uses fetch-and-cons to place the operation at the head of the
list. This step is when the operation "really happens," in the sense that it determines the operation's
position in the linearization order. Second, the process computes the operation's result after traversing
the list to reconstruct the object's previous state.

Let OP be the object's domain of operations, RES its domain of results, and STATE its domain of states.
Any sequential object whose operations are deterministic and total defines two functions:

eval: OP* -> STATE

yields the object state after executing a sequence of operations, and:

apply: OP x STATE RES

yields the response to an invocation in a particular state. Because the object is deterministic and total,
these functions are total and well-defined.

A state s of process P's front-end (Figure 4-1) consists of three components: incoming is an element of
OP u ± , initially 1, outgoing an element of RES u 1, initially 1, and pending a boolean value. A state s of
the representation object (Figure 4-2) is a sequence (list) of operations log, initially empty, and replyto, in
PROCESS u {!}, initially ± . In the transition relations, "•" denotes concatenation of sequences, and
"cdr" returns the sequence following its argument's first element.

To implement a non-deterministic object, we simply choose a deterministic implementation. For example,
a set object with a non-deterministic remove operation can be implemented as a stack or a queue.
Probabilistic properties of non-deterministic operations can be ensured by providing randomly-generated
arguments to deterministic invocations. For example, to make remove equally likely to return any item in
the set, the set implementation can choose a value r from a uniform distribution, and deterministically
remove the r-th element modulo the set size.

This fetch-and-cons construction is wait-free, but not strongly wait-free, since the /c-th operation requires k
steps to replay the list. We can make this construction strongly wait-free by having each process truncate
the list as it completes each operation. We allow each element in the list to be either an operation or a
state. A process executes an operation just as before, but before it returns it destructively modifies the
list, replacing the cdr of its operation with its newly-reconstructed state. The eval function is extended in
the obvious way, returning immediately when it encounters a state in place of an operation. With this
change, the number of operations in a list is at most n, since a front-end will replay at most n operations
before it encounters a state.

16

CALL(P, op, A)
where op € OP

Postcondition:

incoming = op

INVOKE(P, fetch-and-add(op), R)
where o p e OP

Precondition:

incoming = op
pending = false

Postcondition:

pending = true

RESPONSES, log, R)
where log e OP*

Postcondition:

outgoing * apply(incoming', eval(log))
pending = false

REPLY(P, res, A)
where res e RES

Precondition:

outgoing = res

Postcondition:

outgoing = 1

Figure 4 - 1 : Front-end Automaton

INVOKE(P, fetch-and-add(op), R)
where o p e OP

Postcondition:

log = op • log'
replyto = P

RESPOND(P, list, R)
Precondition:

replyto = P
list - cdr(log')

Postcondition:

replyto = 1

Figure 4-2: Representation Automaton

17

In a real implementation, fetch-and-cons would return a pointer to a list, not the list itself. When can an
element of such a shared list be discarded? Because a front-end executing an operation will traverse no
more than n list elements following its own operation, it is safe to discard any state elements whose n
immediate predecessors in the list are also state elements. Since there can exist at most n operations in
a list, and each of those can prevent the reclamation of an additional n elements, the worst-case space
complexity of the object is reduced to 0(nP).

One way to show that an object is universal is to give a direct implementation of fetch-and-cons. For
example, Figures 4-3 and 4-4 show a constant-time implementation of fetch-and-cons by memory-to-
memory swap.

Anchor Object

Figure 4-3: Fetch-and-cons: before executing swap

Anchor

Object

Figure 4-4: Fetch-and-cons: after executing swap

4.2. Reduction to Consensus
Direct constructions of fetch-and-cons tend to be complex. This section, however, shows that any object
that solves consensus implements fetch-and-cons, and hence is universal. Our construction is too
inefficient to apply directly in practice, since it uses unbounded storage, but it does provide a basic insight
into the algorithmic complexity of wait-free synchronization. Our fetch-and-cons implementation requires
at most n rounds of consensus, implying that any consensus protocol that is polynomial in n can be
systematically transformed into a wait-free fetch-and-cons polynomial in n.

We now give a wait-free implementation of fetch-and-cons that calls a consensus protocol as a
subroutine. First, some notation: let h and g be lists (sequences) of operations and p an operation. The
notation "p € h" means that p appears in h. The empty list is written "A", and the list constructed by
prepending p to h is written "p • h". The merge operator, written "\", takes two lists, a suffix and a prefix,
and returns the list constructed by prepending to the suffix all the entries in the prefix but not in suffix,
preserving their relative order in the prefix:

A \ h = h

(p • g) \ h = if p e h then g \ h else p • (g \ h)

18

A consensus object is any object that solves n-process consensus. To keep our notation consistent, we
model multiple rounds of consensus as an unbounded array consensus. A process joins a consensus
protocol by calling:

decide = operation(k: integer) returns (integer)
which takes the caller's input value and returns the decision value. In our construction, each process
always inputs its own identifier; the process whose identifier is chosen in round / is the winner of that
round. Each process has the following set of read/write registers.

• Announce is the latest operation executed by Pjf initially 1.

• round \s the latest round of consensus executed by Pj, initially 0.

• and prefer is P('s decision list from its most recent consensus, initially A.

Each process also has a local variable winner that keeps track of the winner of the last round of
consensus in which it participated.

fetch-and-cons = proc(x: item) returns (list)
announce[i] := x
goal := A
lastRound := 0
for each process P do

if announce[P] ^ 1 then goal := announce[P] • goal end
lastRound := max(lastRound, round[P])
end

if lastRound > round[i] then
winner := consensus[lastRound].decide(i)
end

for round in lastRound+1..lastRound+n do
prefer[i] := goal \ pref[winner]
winner := consensus[round].decide(i)
prefer[i] := prefer[winner]
rounds[i] := round
if winner = i then return (trim (prefer [winner], i)) end
end

return(trim(prefer[winner], i))
end fetch-and-cons

Figure 4-5: Implementing Fetch-And-Cons Using Rounds of Consensus

The pseudo-code for process / is shown Figure 4-5. In the first part of the protocol, the process
announces its new operation by writing to announce^], and then creates a goal history consisting of all
processes' recently announced operations. The process also checks whether it failed to participate in the
most recently observed round of consensus. If so, it "catches up" by ascertaining that round's winner. In
the second part of the protocol, the process undertakes a sequence of at most n consensus protocols,
starting just above the highest observed round number. For each round, it merges its goal with the
previous round's winner. If it wins, it returns immediately; otherwise, it returns after n unsuccessful
rounds. Upon returning, it calls trim to return the suffix following its own most recent operation.

Define the viewior a fetch-and-cons to be the list constructed by prepending the operation's argument to
its result. A sequential list history consisting of fetch-and-cons operations is legal if and only if each
operation's view is a suffix if its predecessor's view. A concurrent history is linearizable if (1) ail
operations' views are coherent: given any two views, one is a suffix of the other, and (2) if p and q are

19

fetch-and-cons operations such that p completes before q starts, then p's view is a suffix of q's.

We use the following auxiliary variables: lastRoundp is process P's value of the local variable lastRound,
and maxRound \s the current maximum value of round[P], for all P.

Lemma 23: If maxRound > 0, then consensus round y has a winner for 0 < y£ maxRound.
Proof: By induction on the number of times any process P has advanced round[P]. The result holds
trivially in the initial state when maxRound is zero. Assume the result holds for the current value of
maxRound. P advances round[P] to y = lastRoundp + 1 when it completes consensus round y,
ensuring that round / has a winner. Since lastRoundp £ maxRound, however, advancing round[P]
advances maxRound by at most 1.

Lemma 24: All views generated by the implementation shown in Figure 4-5 are coherent.
Proof: By construction, the winner's preference for consensus round y is a suffix of all preferences
for round y+7, and hence it is a suffix of the winner's preference. The sequence of winner's
preferences are thus coherent. To show that the operations' views are also coherent, we show that
each operation's view is a suffix of some winner's preference.

Suppose process P invokes fetch-and-cons with item x. The result is immediate if P returns after
winning a round of consensus, so assume P loses all n rounds of consensus. At each step in P's
fetch-and-cons, let unseen(P) the set of processes Q such that P has not yet read round[Q], and
seen(P) the complement of seen(P). Let Pmax be:

Pmax = max(lastRoundp, max Q € u n s e e n (P) (round[Q]))

While P is scanning the array, Pmax is a lower bound on the eventual value of lastRoundp.

We claim the following is invariant:

For all Q, round[Q] > Pmax + n => x e PreferfQ].

In other words, if consensus round Pmax + n has a winner, then x is an element of that winner's
preference. When P invokes fetch-and-cons, the invariant holds trivially because Pmax > round[Q].
If some Q in seen(P) advances roundfQ] to Pmax + n, then maxRound > Pmax + n, and Lemma 23
implies that consensus rounds Pmax + 1 , P m a x + n have winners. Since we assume that P didn't
win any of these rounds, some other process Q must have won twice. If Q won twice, it must have
executed two fetch-and-cons operations. During the second operation, it must have read x from
announce[P], and therefore x must be an element of prefer[Q], and an element of the winner's
preference for all subsequent rounds.

Lemma 25: If a fetch-and-cons by process P precedes a fetch-and-cons by Q, then P's view is a
suffix of Q's.

Proof: By the previous lemma, one operation's view must be a suffix of the other's. Let P's item be
x and Q's item be y. Clearly, y cannot be an element of P's view, hence P's view must be a suffix of
Q's.

These lemmas imply that every history of fetch-and-cons operations permitted by our implementation is
linearizable, and hence:

Theorem 26: In a system of n processes, an object X is universal if (and only if) it solves n-process
consensus.

Corollary 27: Any polynomial-time consensus algorithm can be transformed into a polynomial-time
fetch-and-cons.

Corollary 28: Each object at level n in Figure 1-1 is universal in a system of n processes.

20

5. Conclusions
We believe that wait-free synchronization represents a qualitative break with the traditional, locking-based
techniques for implementing concurrent objects. We have tried to suggest here that the resulting theory
has a rich structure, yielding a number of unexpected results with consequences for algorithm design,
multiprocessor architectures, and real-time systems. Nevertheless, many additional issues must be
addressed if wait-free synchronization is to become useful in practice. For example, although we have
characterized some circumstances under which wait-free synchronization is possible, little is known about
practical techniques for achieving it. Also, the extent to which universal wait-free primitives can be
implemented in hardware remains unclear. For example, it is known that fetch-and-add has a wait-free
implementation in terms of combining networks [12]. Although we have shown that fetch-and-add itself is
not universal, it is natural to ask whether more powerful primitives such as memory-to-memory swap have
similar implementations. Finally, the use of randomization [1] for wait-free concurrent objects remains
unexplored.

21

References

[1] K. Abrahamson.
On achieving consensus using a shared memory.
In Seventh ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC).

August, 1988.
To appear.

[2] J.H. Anderson and M.G. Gouda.
The Virtue of Patience: Concurrent Programming With and Without Waiting.
Private Communication.

[3] B. Bloom.
Constructing two-writer atomic registers.
In Proceedings of the Sixth ACM Symposium on Principles of Distributed Computing, pages

249-259. 1987.

[4] J.E. Bums and G.L Peterson.
Constructing Multi-reader atomic values from non-atomic values.
In Proceedings of the Sixth ACM Symposium on Principles of Distributed Computing, pages

222-231. 1987.

[5] B. Chor, A. Israeli, and M. Li.
On processor coordination using asynchronous hardware.
In Proceedings of the Sixth ACM Symposium on Principles of Distributed Computing, pages

86-97. 1987.

[6] D. Dolev, C. Dwork, and L Stockmeyer.
On the minimal synchronism needed for distributed consensus .
Journal of the ACM 34(1):77-97, January, 1987.

[7] M. Fischer, N.A. Lynch, and M.S. Paterson.
Impossibility of distributed commit with one faulty process.
Journal of the ACM 32(2), April, 1985.

[8] A. Gottlieb, B.D. Lubachevsky, and L. Rudolph.
Basic Techniques For the Efficient Coordination of Very Large Numbers of Cooperating

Sequential Processors.
ACM Transactions on Programming Languages and Systems 5(2):164-189, April, 1983.
A. Gottlieb, R. Grishman, C P . Kruskal, K.P. McAuliffe, L. Rudolph, and M. Snir.
The NYU Ultracomputer - Designing an MIMD parallel computer.
IEEE Transactions on Computers C-32(2):175-189, February, 1984.

[10] M.P. Herlihy and J.M. Wing.
Axioms for concurrent objects.
In 14th ACM Symposium on Principles of Programming Languages, pages 13-26. January, 1987.

[11] W.D. Wilis.
The Connection Machine.
The MIT Press, Cambridge, MA, 1985.

[12] C P . Kruskal, L. Rudolph, and M. Snir.
Efficient Synchronization on Multiprocessors with Shared Memory.
In Fifth ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing. August,

1986.

[13] L. Lamport.
Concurrent Reading and Writing.
Communications of the ACM 20(11):806-811, November, 1977.

[9]

22

[14] L Lamport.
How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs.
IEEE Transactions on Computers C-28(9):690, September, 1979.

[15] L. Lamport.
Specifying Concurrent Program Modules.
ACM Transactions on Programming Languages and Systems 5(2):190-222, April, 1983.

[16] L Lamport.
On Interprocess Communication, Parts I and II.
Distributed Computing 1:77-101,1986.

[17] V. Lanin and D. Shasha.
Concurrent set manipulation without locking.
In Proceedings of the Seventh ACM Symposium on Principles of Database Systems, pages

211-220. March, 1988.
[18] M.C. Loui and H.H. Abu-Amara.

Memory Requirements for Agreement Among Unreliable Asynchronous Processes.
Advances in Computing Research,
JAI Press, 1987, pages 163-183.

[19] N.A. Lynch and M. Merritt.
Introduction to the Theory of Nested Transactions.
Technical Report MIT/LCS/TR-387, Massachusetts Institute of Technology Laboratory for

Computer Science, April, 1986.

[20] N.A. Lynch and M.R. Tuttle.
Hierarchical Correctness Proofs for Distributed Algorithms.
Technical Report MIT/LCS/TR-387, Massachusetts Institute of Technology Laboratory for

Computer Science, April, 1987.

[21] R. Newman-Wolfe.
A Protocol for wait-free, atomic, multi-reader shared variables.
In Proceedings of the Sixth ACM Symposium on Principles of Distributed Computing, pages

232-249. 1987.
[22] C.H. Papadimitriou.

The Serializability of Concurrent Database Updates.
Journal of the ACM 26(4):631 -653, October, 1979.

[23] G.L Peterson.
Concurrent reading while writing.
ACM Transactions on Programming Languages and Systems 5(1):46-55, January, 1983.

[24] G.L. Peterson and J.E. Burns.
Concurrent reading while writing II: the multi-writer case.
Technical Report GIT-ICS-86/26, Georgia Institute of Technology, December, 1986.

[25] G.H. Pfisteretal.
The IBM research parallel processor prototype (RP3): introduction and architecture.
In International Conference on Parallel Processing. 1985.

[26] C.L Seitz.
The Cosmic Cube.
Communications of the ACM28(\), January, 1985.

[27] A.K. Singh, J.H. Anderson, and M.G. Gouda.
The elusive atomic register revisited.
In Proceedings of the Sixth ACM Symposium on Principles of Distributed Computing, pages

206-221. 1987 \

23

[28] H.S. Stone.
Database applications of the FETCH-AND-ADD instruction.
IEEE Transactions on Computers C-33(7):604-612, July, 1984.

[29] P. Vitanyi and B. Awerbuch.
Atomic Shared Register Access by Asynchronous Hardware.
In Proceedings of of the 27th IEEE Symposium on Foundations of Computer Science, pages

223-243. 1986.
See also errata in SIGACT News 18(4), Summer, 1987.

