
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Final Report on Information Processing Research

January 1985 to September 1987

Edited by Rachel T. Levine
and the Research Documents Group

May 1988
CMU-CS-88-110o

This research is sponsored by the Defense Advanced Research Projects Agency, DoD, through DARPA
order 4976, and monitored by the Air Force Avionics Laboratory under contract F33615-84-K-1520.
Views and conclusions contained in this document are those of the authors and should not be interpreted
as representing official policies, either expressed or implied, of the Defense Advanced Research Projects
Agency or of the United States Government.

Table of Contents

1-1

2-1
2-1

1. INTRODUCTION
1.1. Research scope 1 -1
1J2. The Research environment 1 -3
1.3. Work statement

2 . DISTRIBUTED PROCESSING
2.1. System support 2-1

2.1.1. Distributed file systems 2-1
2.1.2. Access to remote systems 2-2
2.1.3. A distributed object system 2-3
2.1.4. Communication security 2-3
2.1.5. Large scale software distribution 2-3

2.2. Programming environments 2-4
2.3. User interfaces 2-5
2.4. Bibliography 2-7

3. IMAGE UNDERSTANDING 3-1
3.1. System framework for knowledge-based vision 3-1

3.1.1. Digital mapping laboratory 3-2
3.1.2. Rule-based system for image processing 3-2
3.1.3.3D Mosaic system 3-3
3.1.4.3DFORM 3-4
3.1.5. Parallel vision on Warp 3-4

3.2. Algorithms for three-dimensional scene analysis 3-5
3.2.1. Dynamic programming in stereo vision 3-5
3.2.2. Trinocular stereo vision 3-6
3.2.3. Range data segmentation 3-6
3.2.4. Automatic generation of object recognition algorithms 3-7
3.2.5. Recognition of 3-D objects based on solid models 3-8

3.3. Inferring shape and surface properties 3-8
3.3.1. Calibrated imaging laboratory 3-9
3.3.2. Color 3-10
3.3.3. Texture 3-11
3.3.4. Motion 3-12

3.4. Bibliography 3-14
4. MACHINE INTELLIGENCE 4-1

4.1. Knowledge-intensive systems 4-1
4.1.1. Towards a better general problem solver 4-2
4.1.2. Acquiring knowledge for aerial image interpretation 4-4
4.1.3. Computational properties of chunks 4-5

4.2. Machine learning 4-6
4.2.1. Learning through experience 4-7
4.2.2. Integrating learning in a reactive environment 4-8

4.3. Massively parallel architectures 4-10
4.3.1. Parallel search and pattern recognition 4-10
4.3.2. SUP REM: A new search architecture 4-11
4.3.3. BoRzmann Networks 4-12

4.4. Rational control of reasoning 4-13
4.5. Bibliography 4-15

University Libraries
Carnegie Meiion University

Pittsburgh; Pennsylvania 15213

5. PROGRAMMING TECHNOLOGY
5.1. Generating Transform Programs
5.2. Toward an Environment Generator with Views

5.2.1. Designing an Environment's Views
5.3. Gandalf Product Development

5.3.1. Concurrency and segmentation in large software databases
5.3.2. Specifying tools

5.4. Bibliography
6. DISTRIBUTED SENSOR NETWORKS

6.1. Algorithm development
6.2. System development

6.2.1. Camelot
6.2.2. Avalon

6.3. Accent
6.3.1. Systems evaluation
6.3.2. Operating system constructs

6.4. Reliability
6.4.1. Distributed transaction facility
6.4.2. Distributed logging
6.4.3. Interaction with users
6.4.4. Replicated directory demonstration

6.5. Bibliography
7. GRACEFUL INTERACTION

7.1. Components of the UWI
7.1.1. The Lisp Shell
7.1.2. The Viewers system
7.1.3. Mirage
7.1.4. MetaMenu
7.1.5. Griffin

7.2. Chinese Tutor
7.3. A knowledge-based system

7.3.1. Representing knowledge
7.3.2. A knowledge-based interface

7.4. Bibliography
8. VERY LARGE SCALE INTEGRATION

8.1. Systolic Building-blocks
8.1.1. Building Crossbar Switches
8.1.2. Intermodule Communication

8.2. Tools for VLSI Design and Testing
8.2.1. Yield Simulation
8.2.2. Testing by Simulation
8.2.3. A Compiled Simulator for MOS Circuits
8.2.4. System Design Tools
8.2.5. Formal Verification by Simulation
8.2.6. Formal Hardware Description Semantics
8.2.7. Automatic Hardware Verification

8.3. VLSI Systems and Applications
8.3.1. A Scan Line Array Processor
8.3.2. A Coprocessor Design Environment
8.3.3. Pipelined Architectures for Data-dependent Algorithms
8.3.4. Chess Machine

II

8.4. Bibliography
APPENDIX I. GLOSSARY
INDEX

1. INTRODUCTION

This report documents a broad program of basic and applied information processing
research conducted by Carnegie Mellon University's Computer Science Department
(CMU-CSD). The Information Processing Techniques Office of the Defense Advanced
Research Projects Agency (DARPA) supported this work during the period 2 January
1985 through 31 May 1987, and extended to 30 September 1987.

The remainder of this chapter describes our research scope and the CMU-CSD
research environment. Chapters 2 through 8 then present in detail our seven major
research areas: Distributed Processing, Image Understanding, Machine Intelligence,
Programming Technology, Distributed Sensor Networks, Graceful Interaction, and VLSI
Systems Integration. Sections in each chapter present the area's general research con­
text, the specific problems we addressed, our contributions and their significance, and
an annotated bibliography.

The bibliographies present selected references that reflect the scope and significance
of CMU's contributions to basic and applied computer science. Wherever possible, par­
ticularly for key reports, we have included abstracts. Finally, though basic research
does not proceed with the mechanical regularity of industrial production, publication
dates do indicate progress in the various problem areas. CSD Technical Report dates
exhibit the closest correlation with temporal progress and the report text frequently reap­
pears later in the more accessible archival literature.

1.1. Research scope
We organize the research reported here under seven major headings. These interre­

lated categories and their major objectives are:
• Distributed Processing (DP): Develop techniques and systems for effective

use of numerous separate computers interconnected by high-bandwidth,
local area networks. This effort involves developing a methodology for ef­
ficient utilization of distributed (loosely connected) personal computers.
Research on a concept demonstration system will proceed in several
areas:

• Integration of subsystems and services at two levels—the user
interface and the underlying system architecture—in order to
provide significant improvement in the productivity of computer
science researchers.

• Design and implementation of two programming systems to
support a variety of applications.

• Development of a distributed file system offering automatic ar­
chiving facilities and transparent access to remote files.

• Building an interactive document preparation system by merg­
ing existing packages into an integrated environment.

1-1

• Extension of current message systems to handle multi-media
formats by exploiting the technology of personal computers
and their interconnecting network.

Image Understanding (IU): Apply knowledge effectively in assisting the im­
age interpretation process. Research in this area has several aims:

• Develop basic theories and construct systems for com­
prehending the three-dimensional structure of the environment
from two-dimensional visual images.

• Discovering the representations, algorithms, and control struc­
tures required to exploit pre-existing knowledge about the en­
vironment for image understanding.

• Investigate special architectures and programming structures
to realize vision algorithms efficiently.

Machine Intelligence (Ml): Explore ways to utilize knowledge in obtaining
intelligent action by computers. Long range goals of this effort include the
discovery of principles that enable intelligent action and the construction of
computer systems that can perform tasks requiring intelligence. Research
in machine intelligence covers a wide range of issues:

•Discovering and analyzing methods of problem solving, the
ways problems may be represented and how such represen­
tations affect the difficulty of solving the problems.

• Discovering and analyzing processes that produce appropriate
internal representations through recognition and description of
external task situations.

• Discovering and understanding control structures and system
organizations that can combine a collection of problem-solving
methods and problem representations into an effective total
system.

Programming Technology (PT): Develop new techniques and methods for
generating better software through work on:

• Developing advanced, highly interactive programming environ­
ments that facilitate the development and maintenance of large
software projects.

• Advanced development tools that help programmers reason
about and modify programs.

• Parallel programming methodologies.
• Program organization and development methodologies.

Distributed Sensor Nets (DSN): Construct a demonstration system of
physically and logically distributed computers interacting through a com­
munication network to identify, track, and display the situation of multiple
objects in a laboratory environment. This project will involve the following
tasks:

• Evaluate and enhance the design and performance of our cur­
rent testbed system.

• Extend the testbed by integrating multiprocessor hosts.
• Investigate design and implementation issues basic to dis­
tributed computing: architecture, language primitives, descrip­
tive representation, and reliable distributed computation.

• Graceful Interaction (Gl): Design, construct, and evaluate user interface
systems that both appear cooperative and supportive to their users and can
provide interfaces to a wide variety of application systems. We plan to em­
phasize:

• Techniques for interactive error correction of command inter­
action and the provision of contextually sensitive on-line help.

• Decoupling of application systems from direct interaction with
the user through form-based communication.

• Support for user tasks that require the coordinated use of more
than one application systems.

• VLSI Systems Integration (VLSI): Focus on research into VLSI systems
and computation, with some effort in design tools to assure that we main­
tain a minimal set of tools necessary to carry out our design tasks.

• Integrate a capability for custom VLSI design into the design of
novel computer architectures. Design and implement several
systems that can benefit greatly from custom chips of our own
design.

• Eventually establish an environment where researchers in a
wide variety of areas will have direct and convenient means of
using custom VLSI for their own systems.

1.2. The Research environment
Research in the CMU Computer Science environment tends to be organized around

specific experimental systems aimed at particular objectives, e.g. the demonstration of
an image understanding system or the design and fabrication of an advanced VLSI sys­
tems. This report describes several such activities. Sometimes the creation and
demonstration of a system is itself an appropriate scientific objective. At other times,
some level of system performance constitutes the scientific goal. Thus our work tends
to emphasize concept demonstration rather than system engineering. These research
systems provide a convenient way to discuss and even to organize the projects at
CMU-CSD. They are not always, however, ends in themselves.

A major strength of the Carnegie Mellon University environment lies in the synergy
resulting from close cooperation and interdependence among varied research efforts,
despite their diverse foci. For example, the Image Understanding project typically re­
quires extensive computational resources that can profitably employ novel machine ar­
chitectures and software techniques. Research in VLSI techniques, on the other hand,
often provides powerful, specialized hardware in need of an application to focus con­
tinuing development efforts. Close interaction and cooperation among our various

1-3

research efforts has led to innovative approaches and solutions, and has significantly
contributed to the intellectual ferment that makes Carnegie Mellon University unique in
the computer science area.

We have no administrative structure that corresponds to our organization of effort.
We consist simply of faculty, research scientists, and graduate students of the Com­
puter Science Department, with the facilities support divided into an Engineering
Laboratory and a Facilities Software Group. The rest of the organization is informal.
This organizational style keeps the barriers between efforts to a minimum and promotes
the kind of interactions and synergy reflected in the work distribution shown in Table
1-1.

Number of
Areas DP IUS Ml PT DSN Gl VLSI

Mario Barbacci 1 x
Hans Berliner 1 x
Roberto Bisiani 3 x x x
Stephen Brookes 2 x x
Jaime Carbonell 1 x
Edmund Clarke 1 x
Roger Dannenberg 1 x x
Scott Fahlman 2 x x
Merrick Furst 1 x
Nico Habermann 1 •
Phil Hayes 1 •
Peter Hibbard 2 • x
Douglas Jensen 1 x
Takeo Kanade 1 •
Elaine Kant 1 x
H.T. Kung 1 •
John McDermott 1 •
Allen Newell 1 x
Rick Rashid 1 •
Raj Reddy 3 x x x
Bill Scherlis 1 x
Dana Scott 1 •
Mary Shaw 1 x
Herb Simon 1 x
Alfred Spector 1 x
x = Active research in this area
• = Responsible for area
Faculty participating, total = 25

Table 1-1: Distribution of faculty effort

1-4

2. DISTRIBUTED PROCESSING

The basic goal of our Distributed Processing research is to understand and evaluate,
as a possible replacement for timeshared computing facilities, the use of high perfor­
mance personal computers interconnected on a high-speed network. We felt from the
outset that success depended on building real systems and subjecting them to use by a
large number of faculty and students within the Department. To achieve this goal we
built a large-scale distributed computing environment called Spice.

We developed the original Spice system on Perq computers from the PERQ Systems
Corporation. At the peak of Perq use within the Department, the Spice environment
consisted of over 150 workstations connected by 10 MHz and 3 MHz Ethernet LANs.
Spice included the Accent network operating system, Spice Common Lisp, a research-
oriented Ada+ programming environment, and numerous user interface tools. (For a
discussion of our work on Accent see Chapter 6, section 3.)

Early in 1985 we began porting the work done under the Spice project onto new
hardware and onto a new operating system base called Mach. Mach is a portable mul­
tiprocessor operating system patterned in many respects after Accent and built as part
of the DARPA Strategic Computing Initiative. One of the major issues addressed during
this porting effort was dealing with heterogeneity in both the software and hardware
bases. During the transition period many of the system's components had to function
under both Accent and Mach. In addition, the significant difference in data types and
data packing conventions between VAX , IBM RT PC, and PERQ computers placed sig­
nificant constraints on facilities, such as Matchmaker, which define and compile inter­
faces between major system modules.

However, by the middle of 1986, we had ported many of the basic components of
Spice to run under Mach, including:

• Network message services
• Spice Common Lisp (for the RT PC)
• Sesame Authentication and Authorization servers
• Matchmaker Interprocess Interface Generator
• Flamingo Window Manager.

Overall, our research led to development efforts in operating systems, distributed file
systems, languages and language support tools, and user interfaces.

2.1. System support

2.1.1. Distributed file systems

One of the challenges in the Spice project was the management of a large, distributed
file system. Our answer to this challenge was to design and implement the Sesame file

2-1

system. With Sesame we demonstrated the feasibility of using Accent ports as tokens
of identity. We also demonstrated the feasibility of using file caching to reduce network
communication traffic and to improve performance. Sesame provides most of the in­
terrelated services needed to allow protected sharing of data and services in a network
of personal and central computers. Each service is independently implementable on
other hosts on the local net. Sesame handles user verification issues both locally and
between machines, name look-up services for various typed objects, migrating files to
more stable media, as well as the fundamental functions of reading and writing files. In
1985 Sesame was running as an alternate file system in the Spice environment
[Thompson et al. 85].

A file system similar in many respects to Sesame is the Vice/Virtue distributed file sys­
tem developed by the CMU Information Technology Center (ITC). The similarities be­
tween Vice/Virtue and Sesame arose out of the fact that many members of the Sesame
design team participated in the development of Vice/Virtue as a way to transfer that
technology to the rest of the University and to industry. During the later part of 1986, we
incorporated Vice/Virtue back into Mach and worked with members of the ITC to com­
pare the performance of Vice/Virtue to remote file access facilities such as Sun's net­
work file system (NFS). Using Vice/Virtue, Mach can now provide a large shared file
system for hundreds of workstations at a time with as many as 50-75 workstations per
server.

In addition to Vice/Virtue support, we began distribution of a compatible remote file
access facility, CMU RFS, that allows workstations to cooperate and share files without
merging them into a common administrative domain. We tested CMU RFS over 10 MHz
Ethernet, 4 MHz IBM token ring, and even 56 KB and 9.6 KB serial line connections to
the CMU SEI and to a research laboratory in Princeton, NJ. During the first half of
1987, the Vice/Virtue vs. NFS benchmarks were performed and a paper on the results
was accepted by the ACM Symposium on Operating Systems Principles and recom­
mended for publication in ACM Transactions on Computing. The key result was the
demonstration of Vice/Virtue's ability to support significantly larger workstation loads
than NFS. NFS server performance fell off drastically with increasing numbers of clients
while Vice/Virtue allowed a significant number of workstation clients per server with only
slowly growing response time.

2.1.2. Access to remote systems
Early in 1985 we completed a much-improved Common Lisp version of our interface

specification language Matchmaker and its compiler. Most notably, Matchmaker can
now generate type definition files for all the target languages; this previously had to be
done by hand for each language. As a result, the entire interface definition is contained
in the Matchmaker input file rather than in a variety of files that had to be kept consistent
by the programmer [Jones et al. 85].

As we made the change from Accent to Mach, we had to refine Matchmaker because
the old Spice style interfaces had become cumbersome, and in some cases incorrect.

2-2

Almost all the syntax and some of the semantics of the interfaces were changed to con­
form to Mach programming conventions. The Matchmaker code provides communica­
tion, run-time support for type-checking, type conversions, synchronization and excep­
tion handling. Matchmaker in combination with Mach provides a heterogeneous dis­
tributed object-oriented programming environment. One refinement to Matchmaker is
MIG [Jones and Rashid 87]. M IG allows a programmer to create a distributed program
without worrying about the details of sending messages or type conversion between dif­
ferent machines, M IG is an implementation of a subset of Matchmaker that generates C
and C++ remote procedure call interfaces for interprocess communication between
Mach tasks.

2.1.3. A distributed object system

We have developed a distributed object system for Mach. This object system, named
FOG , provides machine- and language-independent descriptions of structured data,
language-independent message passing of structured data, and a distributed object
reference/method invocation system. The design of FOG was largely influenced by the
Matchmaker remote procedure call system and by the Flamingo User Interface
Management System. Unlike those systems, however, FOG provides the ability to
dynamically add the definitions of new structured types to the run-time environment, and
a transparent method invocation system.

2.1.4. Communication security

A major area of concern in managing large numbers of workstations in a local area
network is communication security. During the last part of 1986, we designed a new net­
work communication manager for Mach which included a collection of encryption al­
gorithms and protocols to securely extend the capability protection of a single node into
the network environment [Sansom et al. 86]. To allow one communicating process to
verify the identity of another, we designed a new network authentication and authoriza­
tion protocol. The underlying Mach interprocess communication facility is protected on
a single node by using capabilities managed by the operating system kernel to
represent communication channels. During the first half of 1987 this work was brought
to conclusion in the implementation of that manager and its initial testing within Mach.

2.1.5. Large scale software distribution

We developed and implemented facilities for maintaining software consistency in a
distributed environment. The key component of this work is a program called "SUP"
which performs automatic, network software distribution and update. In addition to dis­
tribution and the ability to carry out procedures for software installation, S U P provides a
level of security by allowing software collections to be protected by individual encryption
keys.

During the latter part of 1986, we tested these facilities both within our Department

2-3

and jointly with other research laboratories, including the CMU Software Engineering In­
stitute, the University of Maryland, and Berkeley. This was done using the ARPAnet as
well as private leased line networks.

The use of S U P grew substantially during the first half of 1987. For example, during
this period S U P began to be used for routine software distribution of Mach and related
source code between CMU and the DARPA-funded UltraMax project at Encore, and be­
tween CMU and the DARPA-funded BBN Monarch project. Our experiences with S U P led
to the development of an automated software distribution project proposal.

2.2. Programming environments
One of our aims while developing the Spice environment was to make it language in­

dependent and to provide it with interlanguage communication facilities. We achieved
this by developing comprehensive programming environments for Ada and Lisp, each
with its own microcode interpreter. In the beginning of 1985 our work on the Spice Ada
environment reached maturity. We distributed the compiler and utilities to the CMU
community, and individual users continue to enhance it according to their needs.

While our work on Ada ended, our work on Lisp continued to grow. In 1984 we had
designed Common Lisp and implemented Spice Lisp. In 1985 our efforts were directed
toward debugging, modifying, and improving the Lisp programming environment, build­
ing up a library of application programs, and porting the Spice Lisp system from Perqs
to IBM RT PCs. We extended the Hemlock text editor, reduced Spice Lisp's core size,
and organized an initial library of portable and semi-portable public-domain programs
for Common Lisp, including OPS5.

We extended the Hemlock text editor (written in mostly-portable Common Lisp) with
facilities such as a real-time spelling corrector and a "shell" mode that allows the user to
control many jobs while residing in a convenient, easily extensible, Lisp-based environ­
ment. Our extensions lay the groundwork for work on user interfaces in the new
workstation. (See section 2.3 and Chapter 7.)

In order to port Spice Common Lisp we first reduced its core size by 30%, with notice­
able reductions in the working sets of programs. We achieved this by eliminating redun­
dant structures and improving paging performance by automatically allocating related
procedures in adjacent virtual memory addresses. These techniques allowed us to
pack a full Common Lisp system onto a 4 Mbyte IBM RT PC. Before the compression,
we thrashed on that configuration; after, the Lisp didn't page too much except when run­
ning large Al programs. By the end of 1985 we had finished porting Common Lisp and
the Hemlock text editor to the new IBM workstation.

In 1986 we began studying RISC-like architectures with features designed especially
for Lisp and object-oriented programming. We began designing a new, more portable,
public-domain Common Lisp compiler. The compiler's design incorporated significant
optimizations and improved compatibility for today's conventional processors, par-

2-4

ticularly Rise machines. We continue to work on this highly-optimizing compiler and an­
ticipate it will be complete by the end of 1987. Its design will make it easy to convert it to
produce code for new instructions sets — a valuable attribute at a time when many new
Rise architectures are appearing.

While working on the Spice Lisp environment, it became clear to us that the Common
Lisp community needed support and that an informal group was not going to suffice. At
the December 1985 Common Lisp meeting the attendees decided to seek formal ANSI
and ISO standardization for the language. The new committee, X3J13, began work by
the year's end and is the U.S. participant in the ISO's international standards effort.
Much time and effort went into the activities that support the Common Lisp community:
answering questions about the language's design and possible extensions, discussing
various formal organizations that might be adopted, and supporting manufacturers in
their efforts to bring Common Lisp systems to market. At the IJCAI conference in
August, Xerox announced plans to introduce a Common Lisp for their machines during
1986. Among US manufacturers affiliated with the DARPA research community, Xerox
was the last major corporation to accept Common Lisp.

In the beginning of 1987 we incorporated the Xerox Common Loops object-oriented
extension into our Common Lisp and completed and released our Common Lisp im­
plementation for the IBM RT PC in source form. This enables us to gain real ex­
perience with this facility before it [the standard] becomes final and unchangeable. We
also integrated the CMU Common Lisp system with the popular X window system, and
participated in the design of CLX, a proposed standard interface between Common Lisp
and X, version 11. The Hemlock text editor was made to work under X windows and
also was made to work with standard ASCII terminals. We have been cooperating with
members of the Dante project to develop higher-level graphics facilities. As part of the
effort to interface to X, we developed a facility for interfacing Lisp programs to C sub­
routines.

In 1987 CMU remains a center of Common Lisp development and innovation in part
due to our role in Common Lisp standards efforts at both the national and international
level (ANSI and ISO), and in part because CMU Common Lisp is the most complete
public domain version of the language and is a base for many other Common Lisp sys­
tems.

2.3. User interfaces

Along with researchers from the Dante project, we developed a user interface shell for
Mach in Common Lisp which allows a Mach Common Lisp programmer to easily invoke
and control the actions of his Mach programs and at the same time do so within a full
Common Lisp programming environment. This tool, the Lisp Shell, provides con­
siderably more flexibility and programmability than traditional UNIX shells because of its
more complete programming environment. It also makes possible the extension of Al
techniques to traditional user interface tasks of UNix-like systems. (See Chapter 7, sec­
tion 1.1.)

2-5

The work on the Lisp Shell is closely linked to the Warp Programming Environment.
The main interface mechanism for the Warp Programming Environment is a Lisp-based
command interpreter. The Warp Programming Environment is a distributed software en­
vironment that allows users of the Warp multiprocessor to develop and debug Warp ap­
plications. The environment includes local user workstations, a set of central server
workstations each acting as a host for a Warp machine, and a few Warp multiproces­
sors. The command interpreter is executed in Lisp on the user's workstation, while the
more communication-intensive tasks are executed on the host workstations. The sys­
tem allows the user to choose the ideal load distribution for the different machines
(local, host, and Warp) and can provide extensive help and information about the cur­
rent status of the environment. A first version of the Warp Programming Environment
has been released to the Warp users community outside CMU.

In the area of window managers, we made the transition to X as a window manager
base to conform with emerging window system standards. Our work on object-oriented
graphics and window management was transferred to this new environment. Before this
transition we used Flamingo.
Flamingo

In February 1985, Spice researchers met to consider the current and future require­
ments of the user interface systems available on Spice systems. Our primary goal was
to create a flexible, distributed interface system that could manage input and output
resources for application programs. The challenge was to develop a system that could
span heterogeneous hardware architectures (so users could, for example, process on a
Perq and display on a MicroVAX) while providing upward compatibility for our older
software.

This group designed Flamingo, an object-oriented interface manager for programs
running within the Spice environment. Our design for the Flamingo system addressed
these key objectives through an object-oriented strategy that can associate data objects
with operations, or "methods", implemented in remote processes. The "remote method"
mechanism differs from the traditional user/server structure found in many distributed
systems. In Flamingo, the system is a central "object manager," while remote client
programs provide the methods that Flamingo and other clients may call. Flamingo and
its clients both serve and use each other.

On June 5, 1985, the first Flamingo prototype was executing on a MicroVAX I. This
prototype had the simple ability to create rectangular regions on the screen using a spe­
cially constructed raster operation, with pixel array objects representing the screen ob­
jects being managed by Flamingo. In October 1985, we released an initial version to
MicroVAX users running the Mach operating system [Smith and Anderson 86a], and in
1986 Flamingo was ported to the IBM RT PC and Sun. Flamingo usage in the Depart­
ment is limited since the switch to X was made.

2-6

2.4. Bibliography
[Back and Kurki-Suonio 85]

Back, R.J. and R. Kurki-Suonio.
Serializability in distributed systems with handshaking.
Technical Report CMU-CS-85-109, Carnegie Mellon University,

Computer Science Department,
February, 1985.

Two interleaving models, a concurrent model and a serial
model, are given for distributed systems in which two or
more processes can be synchronized for communication
by a handshake mechanism. The equivalence of the two
models is shown, up to fairness and justice properties. The
relationships between the natural fairness and justice no­
tions in the models are analyzed, and sufficient conditions
are derived for the validity of serial reasoning in the con­
current model. Proving that these conditions hold for a par­
ticular system can be carried out totally within the simpler
serial model.

[Barbacci and Wing 87a]
Barbacci, M.R. and J.M. Wing.
Durra: a task-level description language.
In Proceedings of the International Conference on Parallel

Processing, 1987.
Also available as Technical Report CMU-CS-86-176.

Computation-intensive, real-time applications such as vision,
robotics, and vehicular control require efficient concurrent
execution of multiple tasks, e.g., sensor data collection,
obstacle recognition, and global path planning, devoted to
specific pieces of the application. At CMU we are develop­
ing some of these applications and the hardware and
software environments to support them, and in this paper
we present a new language, Durra, to write what we call
task-level application descriptions. Although the language
was developed with a concrete set of needs, we aim at a
broader class of applications and hardware implemen­
tations. After a brief description of the nature of these ap­
plications and a scenario for the development process, we
concentrate on the language and its main features.

[Barbacci and Wing 87b]
Barbacci, M.R. and J.M. Wing.
Lecture Notes in Computer Science. Volume Volume II, Parallel

Languages: Specifying functional and timing behavior for real­
time applications,

Proceedings of PARLE (Parallel Architectures and Languages
Europe) 259. Springer-Verlag Publishers, 1987.

Also available as Technical Report CMU-CS-86-177.

We present a notation and a methodology for specifying the
functional and timing behavior of real-time applications for
a heterogeneous machine. In our methodology we build
upon well-defined, though isolated, pieces of previous
work: Larch and Real Time Logic. In our notation, we
strive to keep separate the functional specification from the
timing specification so that a task's functionality can be un­
derstood independently of its timing behavior. We show
that while there is a clean separation of concerns between
these two specifications, the semantics of both pieces as
well as their combination are simple.

[Barbacci et al. 85a]
Barbacci, M.R., S. Grout, G. Lindstrom, MP. Maloney, E.T. Or-
ganick, and D. Rudisill.
Ada as a hardware description language: an initial report.
In Proceedings of the 7th International Conference on Computer

Hardware Description Languages, CHDL, August, 1985.
This paper reports on our initial results in using Ada as a

Hardware Description Language. Ada provides abstraction
mechanisms to support the development of large software
systems. Separate compilation as well as nesting of
packages, tasks, and subprograms allow the construction
of modular systems communicating through well defined
interfaces. The complexity of modem chips (e.g. those
proposed in the VHSIC program) will require the use of
those features that make Ada a good language for
programming-in-the-large.

The key to our approach is establishing a writing style ap­
propriate to the objective of describing both the behavior
and the structure of hardware components. We model a
hardware system as an ensemble of typed objects, where
each object is an instance of an abstract data type. The
type definition and the associated operations are encap­
sulated by a corresponding package. In this paper we il­
lustrate out approach through a series of examples, build­
ing up a hypothetical hierarchy of hardware components.
We conclude by discussing ways to describe arbitrarily
complex simulation models and synthesis styles.

[Barbacci et al. 85b]
Barbacci, M.R., W.H. Maddox, T.D. Newton, and R.G. Stockton.
The Ada+ front end and code generator.
In Proceedings of the Ada International Conference, ACM, Septem­

ber, 1985.
It will be shown that the general design of the Ada+ system has

been kept as simple and straightforward as possible. This
has proven immensely useful in that it provides a simple
framework for dealing with many of the details involved in

2-8

Ada semantics. The semantic areas mentioned would
have been much harder to implement if the compiler had
attempted to use a more efficient or restrictive scheme. In
addition, the separation of facilities tended to minimize in­
teraction between various features and make it easier to
produce correct code.

We will describe a simplified runtime representation for Ada
programs, as implemented by the Ada+ compiler. We
believe that our experience may be of assistance to others
undertaking the development of an Ada compiler with
limited resources.

[Black 86] Black, D.L
Measure theory and fair arbiters.
Technical Report CMU-CS-86-116, Carnegie Mellon University,

Computer Science Department,
April, 1986.

The existence of fair arbiters and formal specifications for them
was a major topic of discussion at the Workshop. One of
the many results discussed is that it is possible to create a
fair arbiter by adding output delays to a mutual exclusion
element. This work builds on that result by investigating
the basic fairness properties of mutual exclusion elements
and combinations thereof. Rather than working with a par­
ticular mutual exclusion element, we abstract the behavior
of a class of such elements using a choice set model and a
probabilistic specification of the choice inherent in mutual
exclusion. This allows us to capture the choice behavior of
a mutual exclusion element in a probabilistic structure con­
taining finite and infinite traces. To analyze such struc­
tures we employ techniques from the mathematical dis­
cipline of measure theory, and in particular the measure
theoretical treatment of probability. The major result from
this analysis is that the mutual exclusion elements are fair
under a strong probabilistic notion of fairness.

[Cohen et al. 85] Cohen, E.S., E.T. Smith, and LA. Iverson.
Constraint-based tiled windows.
Technical Report CMU-CS-85-165, Carnegie Mellon University,

Computer Science Department,
October, 1985.

Typical computer workstations feature large graphical display
screens filled with windows that each show information
about a user's processes and data. Window managers im­
plemented on these systems provide mechanisms for
creating, destroying, and arranging windows on the screen.
Window managers generally follow either a 'desktop'
metaphor, allowing windows to overlap each other like
sheets of paper piled up on a physical desk, or they use a

2-9

'tiling' model, arranging each window with a specific size
and location on the screen such that no overlap occurs be­
tween windows.

Desktop models allow for the most freedom in arranging win­
dow, but can become quite frustrating to use when faced
with a large number of windows 'coming and going' over a
short period of time that must be visible on the screen
simultaneously. Tiling models save the user from having to
specify every window location and guarantee that each
window will be completely visible on the screen, but thus
far, such systems have provided relatively poor
mechanisms for the user to control layout decisions.

This paper describes work in progress on tiled window manage­
ment featuring a constraint-based layout mechanism. With
this mechanism the user can specify the appearance of in­
dividual windows and constrain relationships between win­
dows, thus providing necessary control over the tiling
process. We discuss our constraint model as well as detail
an implementation approach that would make use of those
constraints to arrange windows on a screen.

[Fahlman 87] Fahlman, S.E.
Common Lisp.
Annual Review of Computer Science 2:1 -18,1987.

The emergence of Common Lisp as a standard, well-supported
dialect of Lisp that is available on many different com­
puters has made it much easier to move artificial intel­
ligence concepts and software tools out of the laboratory
and into the commercial marketplace. This development
has also stimulated interest in Lisp as a language for ap­
plications outside of Al. This paper examines some of the
ways in which Common Lisp differs from other program­
ming languages and discusses some of the implications of
these differences for the Lisp programmer, the Lisp im­
plemented, and the designer of hardware intended to run
Lisp.

[Fitzgerald and Rashid 86]
Fitzgerald, R. and R. Rashid.
The integration of virtual memory management and interprocess

communication in Accent.
In ACM Transactions on Computing Systems, ACM, May, 1986.

The integration of virtual memory management and interprocess
communication in the Accent network operating system
kernel is examined. The design and implementation of the
Accent memory management system is discussed and its
performance, both on a series of message-oriented
benchmarks and in normal operation, is analyzed in detail.

2-10

Herlihy, M.
Comparing how atomicity mechanisms support replication.
In Proceedings of the 4th Annual ACM SIGACT-SIGOPS Sym­

posium on Principles of Distributed Computing, ACM SIGACT-
SIGOPS, August, 1985.
Most pessimistic mechanisms for implementing atomicity in dis­

tributed systems fall into three broad categories: two-phase
locking schemes, timestamping schemes, and hybrid
schemes employing both locking and timestamps. This
paper proposes a new criterion for evaluating these
mechanisms: the constraints they impose on the
availability of replicated data.

A replicated data item is a typed object that provides a set of
operations to its clients. A quorum for an operation is any
set of sites whose co-operation suffices to execute that
operation, and a quorum assignment associates a set of
quorums with each operation. Constraints on quorum as­
signment determine the range of availability properties
realizable by a replication method.

This paper compares the constraints on quorum assignment
necessary to maximize concurrency under generalized
locking, timestamping, and hybrid concurrency control
mechanisms. This comparison shows that hybrid schemes
impose weaker constraints on availability than timestamp­
ing schemes, and locking schemes impose constraints in­
comparable to those of the others. Because hybrid
schemes permit more concurrency than locking schemes,
these results suggest that hybrid schemes are preferable
to the others for ensuring atomicity in highly available and
highly concurrent distributed systems.

Herlihy, M.
A quorum-consensus replication method for abstract data types.
ACM Transactions on Computer Systems 4(1):32-53, February,

1986.
Also available as Technical Report CMU-CS-85-164.

Replication can enhance the availability of data in distributed
systems. This paper introduces a new method for manag­
ing replicated data. Unlike many methods that support
replication only for uninterpreted files, this method sys­
tematically exploits type-specific properties of objects such
as sets, queues, or directories to provide more effective
replication. Each operation requires the cooperation of a
certain number of sites for its successful completion. A
quorum for an operation is any such set of sites. Neces­
sary and sufficient constraints on quorum intersections are
derived from an analysis of the data type's algebraic struc­
ture. A reconfiguration method is proposed that permits
quorums to be changed dynamically. By taking advantage

2-11

of type-specific properties in a general and systematic way,
this method can realize a wider range of availability
properties in a more flexible reconfiguration than com­
parable replication methods.

[Jones and Rashid 87]
Jones, M.B. and R.F. Rashid.
Mach and Matchmaker: Kernel and language support for object-

oriented distributed systems.
Technical Report CMU-CS-87-150, Carnegie Mellon University,

Computer Science Department,
September, 1987.
Also available in the Proceedings of the First Annual ACM Con­

ference on Object-Oriented Programming Systems, Languages
and Applications, OOPSLA, September 1986.

Mach, a multiprocessor operating system kernel providing
capability-based interprocess communication, and
Matchmaker, a language for specifying and automating the
generation of multi-lingual interprocess communication in­
terfaces, are presented. Their usage together providing a
heterogeneous, distributed, object-oriented programming
environment is described. Performance and usage statis­
tics are presented. Comparisons are made between the
Mach/Matchmaker environment and other related systems.
Possible future directions are examined.

[Jones et al. 85] Jones, M.B., R.F. Rashid, and M.R. Thompson.
Matchmaker: an interface specification language for distributed

processing.
In Proceedings of the 12th ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages, 1985.
Matchmaker, a language used to specify and automate the

generation of interprocess communication interfaces, is
presented. The process of and reasons for the evolution of
Matchmaker are described. Performance and usage
statistics are presented. Comparisons are made between
Matchmaker and other related systems. Possible future
directions are examined.

[Kurki-Suonio 85] Kurki-Suonio, R.
Towards programming with knowledge expressions.
Technical Report CMU-CS-85-153, Carnegie Mellon University,

Computer Science Department,
August, 1985.

Explicit use of knowledge expressions in the design of dis­
tributed algorithms is explored. A non-trivial case study is
carried through, illustrating the facilities that a design lan­
guage could have for setting and deleting the knowledge
that the processes possess about the global state and
about the knowledge of other processes. No implicit

2-12

capabilities for logical reasoning are assumed. A language
basis is used that allows not only eventual but also true
common knowledge between processes. The observation
is made that the distinction between these two kinds of
common knowledge can be associated with the level of
abstraction: true common knowledge of higher levels can
be implemented as eventual common knowledge on lower
levels. A knowledge-motivated abstraction tool is therefore
suggested to be useful in supporting stepwise refinement
of distributed algorithms.

[Liskov et al. 85] Liskov, B., M. Herlihy, and L Gilbert.
Limitations of synchronous communication with static process struc­

ture in languages for distributed computing.
Technical Report CMU-CS-85-168, Carnegie Mellon University,

Computer Science Department,
October, 1985.

Modules in a distributed program are active, communicating en­
tities. A language for distributed programs must choose a
set of communication primitives and a structure for
processes. This paper examines one possible choice:
synchronous communication primitives (such as rendez­
vous or remote procedure call) in combination with
modules that encompass a fixed number of processes
(such as Ada tasks or UNIX processes). An analysis of the
concurrency requirements of distributed programs sug­
gests that this combination imposes complex and indirect
solutions to common problems and thus is poorly suited for
applications such as distributed programs in which concur­
rency is important. To provide adequate expressive power,
a language for distributed programs should abandon either
synchronous communication primitives of the static
process structure.

[McDonald et al. 87]
McDonald, D.B., S.E. Fahlman, and A.Z. Spector.
An efficient Common Lisp for the IBM RT PC.
Technical Report CMU-CS-87-134, Carnegie Mellon University,

Computer Science Department,
July, 1987.

CMU Common Lisp is a full implementation of Common Lisp
developed within the Computer Science Department of
Carnegie Mellon University. It runs on the IBM RT PC un­
der CMU's Mach operating system, which is compatible
with Berkeley Unix 4.3. An important consideration in the
design of CMU Common Lisp was our desire to make the
best possible use of the IBM RT PC's RISC instruction set
and flexible memory architecture.

CMU Common Lisp provides a comprehensive Lisp program-

2-13

ming environment and is now heavily used within the CMU
Computer Science Department, both in Lisp's traditional
role as the language of Al research, and in many other
areas where 'mainstream' languages were formerly used.

In this paper we focus on the design and implementation
strategy used in CMU Common Lisp. We also briefly
describe the improvements we plan for the future.

[Rashid 86a] Rashid, R.F.
From RIG to Accent to Mach: the evolution of a network operating

system.
In Proceedings of the ACM/IEEE Computer Society 1986 Fall Joint

Computer Conference, November, 1986.
This paper describes experiences gained during the design, im­

plementation and use of the CMU Accent Network Operat­
ing System, its predecessor, the University of Rochester
RIG system and its successor CMU's Mach multiprocessor
operating system. It outlines the major design decisions
on which the Accent kernel was based, how those deci­
sions evolved from the RIG experiences and how they had
to be modified to properly handle general purpose mul­
tiprocessors in Mach. Also discussed are some of the
major issues in the implementation of message-based sys­
tems, the usage patterns observed with Accent over a
three year period of extensive use at CMU and a timing
analysis of various Accent functions.

[Rashid 86b] Rashid, R.F.
Threads of a new system.
Unix Review 4(8):37-A9,1986.

The Department of Defense, anxious for better multithreaded
application support, has funded the development of Mach,
a multiprocessor operating system for UNIX applications.

[Sansom et al. 86] Sansom, R.D., D.P. Julin, and R.F. Rashid.
Extending a capability based system into a network environment.
Technical Report CMU-CS-86-115, Carnegie Mellon University,

Computer Science Department,
April, 1986.

The Mach operating system supports secure local communica­
tion within one node of a distributed system by providing
protected communication capabilities called Ports. The lo­
cal port-based communication abstraction can be extended
over a network by Network Server tasks. The network ser­
vers efficiently act as local representatives for remote tasks
by implementing an abstraction of Network Ports. To ex­
tend the security of the port-based communication abstrac­
tion into the network environment, the network servers
must protect both the messages sent over the network to
network ports and the access rights to network ports. This

2-14

paper describes in detail the protocols used by the network
servers to support protection.

[Scherlis and Jorring 86]
Scherlis, W.L and U. Jorring.
Deriving and using destructive data types.
In IFIP TC2 Working Conference on Programs Specification and

Transformation, IFIP, March, 1986.
Techniques are presented that support the derivation and reuse

of high performance implementations of programs
specified using applicative abstract data types. There are
two facets to this work.

First, we show how the performance of programs specified
using general-purpose types such as lists or trees can be
improved by specializing the types to their contexts of use.
These techniques provide a means for using mechanical
tools to build, given a small set of general types, a diverse
collection of derived specialized types suitable for a broad
variety of applications.

Second, we sketch techniques for deriving, from simple applica­
tive programs, efficient implementations that use destruc­
tive data operations and that can reuse heap-allocated
storage. These techniques rely on simple propagation of
non-interference assertions; reasoning about the global
state of storage is not required for any of the examples
presented.

[Sha 85] Sha, L
Modular concurrency control and failure recovery— consistency, cor­

rectness and optimality.
Technical Report CMU-CS-85-114, Carnegie Mellon University,

Computer Science Department,
March, 1985.

A distributed computer system offers the potential for a degree
of concurrency, modularity and reliability higher than that
which can be achieved in a centralized system. To realize
this potential, we must develop provably consistent and
correct scheduling rules to control the concurrent execution
of transactions. Furthermore, we must develop failure
recovery rules that ensure the consistency and correctness
of concurrency control in the face of system failures.
Finally, these scheduling and recovery rules should sup­
port the modular development of system and application
software so that a transaction can be written, modified,
scheduled and recovered from system failures indepen­
dently of others.

To realize these objects, we have developed a formal theory of
modular scheduling rules and modular failure recovery
rules. This theory is a generalization of the classical works

2-15

of serializability theory, nested transactions and failure
atomicity. In addition, this theory addresses the concepts
of consistency, correctness, modularity and optimality in
concurrency control and failure recovery. This theory also
provides us with provably consistent, correct and optimal
modular concurrency control and failure recovery rules.

[Smith and Anderson 86a]
Smith,E.T. and D.B. Anderson.
Flamingo: object-oriented window management for distributed,

heterogeneous systems.
Technical Report CMU-CS-86-118, Carnegie Mellon University,

Computer Science Department,
April, 1986.

This report describes the Flamingo User Interface System
(Version 15). Flamingo is a system for managing the inter­
face between users and programs that run in large, dis­
tributed, heterogeneous computing environments. Using
the mechanisms described herein, Flamingo provides a set
of user interface features associated with traditional win­
dow management.

Flamingo uses an object-oriented structure whose objects can
have methods (or 'operations') implemented in remote
processes. This mechanism differs from the traditional
'user/server* relationship that is used to structure many dis­
tributed systems. In Flamingo, the system is a central
'object manager1, while client programs running as remote
processes provide the implementations for methods called
upon by Flamingo and other clients. Both the clients and
Flamingo act as servers and users of each other.

Flamingo is built on the Mach operating system, which provides
a UNIX environment plus a message-based Interprocess
Communication (IPC) mechanism. Flamingo uses a
machine-generated Remote Method Invocation (RMI)
mechanism to provide a symmetric interface between it
and client programs that wish to call on method implemen­
tations located in each. The Remote method Invocation
system itself uses a machine-generated Remote Proce­
dure Call mechanism as a message transport layer.

[Smith and Anderson 86b]
Smith, E.T. and D.B. Anderson.
Flamingo: object-oriented abstractions for user interface manage­

ment.
In Proceedings of the Winter 1986 USENIX Conference, USENIX,

January, 1986.
This paper describes the Flamingo User Interface System

designed for use by programs running on Spice machines.
Flamingo is designed to use the remote procedure call

2-16

mechanism available through the various operating sys­
tems running on Spice machines to provide a flexible,
robust, machine-independent interface to a variety of dif­
ferent machines communicating over local area networks.

Flamingo separates the abstractions of the objects used by the
program to communicate with the user from the actual
devices used to read or write information. A window
manager is provided that makes a suitable mapping from
output provided to map input events from real devices to
either window management routines or to a form suitable
for input by a program.

Flamingo itself can be divided into different processes running
on different machines each implementing different parts of
the system. All exported objects used for communicating
between users and programs are implemented with
specific methods defining the operations available for an
instance of a particular object or for all objects of a class in
a given running Flamingo system. These mechanisms
provide a flexible framework within which a variety of win­
dow managers and user interfaces can be realized and
evaluated.

[Thompson et al. 85]
Thompson, M.R., R.D. Sansom, M.B. Jones, and R.F. Rashid.
Sesame: the Spice file system.
Technical Report CMU-CS-85-172, Carnegie Mellon University,

Computer Science Department,
November, 1985.

Sesame provides several distinct but interrelated services
needed to allow protected sharing of data and services in
an environment of personal and central computers con­
nected by a network. It provides a smooth memory hierar­
chy between the local secondary storage and central file
system. It provides a global name space and a global user
authentication protocol.

[Wing 87] Wing.J.M.
Writing Larch interface language specifications.
ACM Transactions on Programming Languages and Systems

9(1):1-24,1987.
Current research in specifications is emphasizing the practical

use of formal specifications in program design. One way
to encourage their use in practice is to provide specifica­
tion languages that are accessible to both designers and
programmers. With this goal in mind, the Larch family of
formal specification languages has evolved to support a
two-tiered approach to writing specifications. This ap­
proach separates the specification of state transformations
and programming language dependencies from the

2-17

specification of underlying abstractions. Thus, each mem­
ber of the Larch family has a subset derived from a pro­
gramming language and another subset independent of
any programming languages. We call the former interface
languages, and the latter the Larch Shared Language.

This paper focuses on Larch interface language specifications.
Through examples, we illustrate some salient features of
Larch/CLU, a Larch interface language for the program­
ming language CLU. We give an example of writing an in­
terface specification following the two-tiered approach and
discuss in detail issues involved in writing interface
specifications and their interaction with their Shared Lan­
guage component.

[Wing and Nixon 85]
Wing, J.M. and M.R. Nixon.
Adding temporal logic to Ina Jo.
Technical Report CMU-CS-85-146, Carnegie Mellon University,

Computer Science Department,
July, 1985.

Toward the overall goal of putting formal specifications to prac­
tical use in the design of large systems, we explore the
combination of two specification methods: using temporal
logic to specify concurrency properties and using an exist­
ing specification language, Ina Jo, to specify functional be­
havior of nondeterministic systems. In this paper, we give
both informal and formal descriptions of both current Ina Jo
and Ina Jo enhanced with temporal logic. We include
details of a simple example to demonstrate the expressive­
ness of the enhanced language. We discuss at length our
language design goals, decisions, and their implications.
The appendices contain complete proofs of derived rules
and theorem schemata for the enhanced formal system.

[Wing et al. 85] Wing, J.M., J. Guttag, and J. Homing.
The Larch family of specification languages.
In IEEE Software, IEEE, September, 1985.

The use of suitable formalisms in the specification of computer
programs offers significant advantages. Although there is
considerable theoretical interest in this area, practical ex­
perience is rather limited. The Larch Project, a research
project intended to have practical applications within the
next few years, is developing tools and techniques to aid in
the productive application of formal specifications. A major
part of the project is a family of specification languages.
Each specification language has components written in two
languages. The Larch interface languages are particular to
specific programming languages, while the Larch Shared
Language is common to all languages.

2-18

3. IMAGE UNDERSTANDING

Image understanding (IU) research aims at developing adequate and versatile tech­
niques to facilitate the construction of IU systems. Such techniques include processing
methods for extracting useful information from images; representation and control struc­
tures for exploiting relevant knowledge sources; and special architectures and program­
ming structures to realize the algorithms efficiently. The CMU Image Understanding
program covers a variety of topics in vision ranging from the theory of color and texture
to the system issues in building demonstrable vision systems. Our research focused
on:

• System Framework for Knowledge-Based Vision: Developing systems that
can combine generic reasoning with task-specific, constraints to solve com­
plex vision problems.

• Algorithms for Three-Dimensional Object Recognition: Investigating spe­
cial architectures and programming structures to realize vision algorithms
efficiently. Extending current techniques in image analysis, representation,
and geometrical reasoning.

• Inferring Shape and Surface Properties: Developing new methods for infer­
ring basic surface and shape information from images using color, texture,
and motion.

3.1. System framework for knowledge-based vision
To broaden the applicability of knowledge-based vision systems, we must have a

general framework in which we can represent the 3-D object models, control the
analysis using both generic and domain-specific knowledge, and access image features
flexibly and efficiently. Toward this goal, we have developed image processing systems
that combine general vision techniques with task-specific application-oriented
knowledge. During the contract period, we have:

• Created the Digital Mapping Laboratory, a facility that uses the MAPS (Map
Assisted Photointerpretation System) system to explore the generation and
maintenance of a large-scale domain knowledge base.

• Improved the 3D Mosaic system to integrate techniques that allow us to
build and verify 3-D scene models and demonstrate acquisition of scene
models.

• Developed and tested SPAM (System for the Photointerpretation of Airports
using MAPS), a rule-based system that uses map and domain-specific
knowledge to interpret airport scenes.

• Worked on 3DFORM, a 3-D vision system based on a frame language
(Framekit) defined on Common Lisp.

3-1

3.1.1. Digital mapping laboratory
A key issue in building systems for cartography and aerial photointerpretation is the

generation and maintenance of a domain knowledge base. Loosely speaking, this
"knowledge base" should contain known facts and spatial relations between objects in
an area of interest, access to historical or normalcy reports, and methods that relate
earth coordinates to pixel locations in digital imagery. Unfortunately, these spatial
database capabilities are somewhat different from those found in traditional geographic
information systems. Another issue is including methods for utilizing and representing
spatial knowledge. Simply having access to cartographic descriptions does not address
the problem of how to operationalize iconic descriptions for image analysis and inter­
pretation.

In 1985, we created the Digital Mapping Laboratory (DML) for aerial photointerpreta­
tion, cartography, and computer vision [McKeown et al. 85a]. The DML uses MAPS(Map
Assisted Photointerpretation System) to explore the generation and maintenance of a
large-scale domain knowledge base, MAPS is an image/map database system that con­
tains approximately 100 high-resolution aerial images, a digital terrain database, and a
variety of map databases from the Defense Mapping Agency. We have continued work
on the MAPS image/map database system primarily in the area of integrating map data
to support our work in rule-based analyses of airport scenes.

3.1.2. Rule-based system for image processing
Interpreting aerial photographs requires extensive knowledge about the scene under

consideration. Knowledge about the type of scene aids in low-level and intermediate-
level image analysis, and drives high-level interpretation by constraining search for
plausible consistent scene models.

We investigated using a rule-based system to control image processing and interpret
the results with respect to a world model, as well as representing the world model within
an image/map database, SPAM (System for the Photointerpretation of Airports using
MAPS) uses domain-specific knowledge to interpret airport scenes [McKeown et al. 85b].
We have developed a set of specialized tools to aid this task. These tools include:

• A user interface for interactive knowledge acquisition
• Automated compilation of that knowledge from a schema-based represen­

tation into productions that are executable by our interpretation system
• A performance analysis tool that generates a critique of the final interpreta­

tion.

We demonstrated the generality of these tools by generating rules for a new task—
suburban home scenes—and analyzing a set of images with our interpretation system.

(For more information, see section 4.1.2 in the Machine Intelligence Chapter.)

3-2

3.1.3.3D Mosaic system

Most vision systems are based on many implicitly assumed relationships that restrict
their usefulness to a single domain. By making all of these assumptions explicit, they
can be used for reasoning about vision in a wide variety of domains. The 3D Mosaic
system is a photointerpretation system built on the principle of explicit reasoning at all
levels.

The 3D Mosaic system is based on both low-level and high-level image-processing
tools, along with procedures that determine each tool's applicability. We use these tools
for bottom-up verification of hypotheses developed by the top-down component of the
system. For example, when a building roof is found in an image, the system
hypothesizes edges from each roof vertex to the ground. We are studying operators
that will verify these hypothesized edges to determine which ones to use under what
conditions. We are testing the system on several aerial images of Washington, D.C.
We have worked on a scheme for representing and reasoning about geometric objects,
such as projections between 2-D images and 3-D scenes, shape and surface properties
of objects, and geometrical and topological relationships between objects [Walker and
Herman 87]. These capabilities are essential for knowledge-based, 3-D photoin­
terpretation systems.

We adopted a frame-based representation using the CMU-built Framekit tool in Com­
mon Lisp. Each object type, such as a point, line, or plane, is represented as a frame.
Specific objects are created by instantiating the generic frame. Instantiating an object
consists of creating a new frame with a unique name and filling in slots specific to the
new object. Empty slots are inherited from the generic object by means of an IS-A
hierarchy.

Frames also represent geometric relationships between objects, such as parallel or
perpendicular for lines. Each geometric relationship has slots for two or more geometric
objects plus one or more numeric ranges. For example, the LINES-IN-PLANE relation­
ship adds each line to the plane's list of contained lines and adds the plane's normal to
the list of vectors perpendicular to each line. Finally, computations are done to ensure
that the true numeric values (such as the angle between two lines) fall within the
specified ranges. If the values fall outside the ranges, then the evaluation function
returns FALSE, indicating an inconsistency in the data. The primitive geometric
relationships are combined into conjunctions to describe the complex geometric
relationships between objects.

Successful evaluation of the conjunction results in hypotheses for the remaining slots
of the concepts. We have used this model to define such concepts as a roof and a
building wall for understanding city scenes, a similar task domain to aerial photoin­
terpretation.

3-3

3.1.4. 3DF0RM
Three-dimensional representation of objects is necessary for many applications of vi­

sion such as robot navigation and 3-D change detection. Geometric reasoning is also
an important capability, since geometric relationships among object parts are a rich
source of knowledge and constraint in image analysis. Unfortunately, past systems for
geometric representation and reasoning have not had sufficient flexibility and efficiency
to be generally applied for computer vision.

Motivated by our work with the 3D Mosaic system, we began work on a system, called
3DFORM (Frame-based Object Recognition and Modeling), that has the desirable
properties of generality, efficiency, and extensibility for computer vision applications
[Walker et. al. 87]. This system includes a number of features that make it an improve­
ment over past systems. 3DFORM uses frames to model object parts such as buildings
and walls, geometric features such as lines and planes, and geometric relationships
such as parallel or perpendicular. The system includes explicit modeling of the projec­
tions from the 3-D scene to the 2-D image and back, which allows a program to reason
back and forth as needed. Active procedures can be attached to the frames to dynami­
cally compute values as needed. For example, a line has an active procedure to com­
pute its direction vector from known points on the line; this procedure would be invoked
only when the direction vector is needed for other computations.

Since the order of computation is controlled largely by accessing objects' attribute
values, the system can perform top-down and bottom-up reasoning as needed. This
allows an efficient system that can perform the most reliable computations first, using
the resulting constraints to guide the interpretation of more questionable or ambiguous
data. There is no need for an external "focus of attention" mechanism, which in past
systems has sometimes been a complex and problematic item to construct.

In 3DFORM, both objects and relationships are explicitly represented. Thus, extending
the system to handle additional kinds of objects and relationships involves adding new
frames but does not require modification of the existing system. This makes 3DFORM a
relatively easy system to extend or tailor for a specific application domain. We have ap­
plied it to aerial photointerpretation, finding buildings from very sparse initial information
with good success.

3.1.5. Parallel vision on Warp
The prototype Warp machine is an important research tool in our Image Understand­

ing effort. Warp is CMU's Systolic Array Machine providing 100 MFLOP. The Warp
group has been developing vision software for us to use in our vision research. This is
one of the first examples of a parallel computer being used to advance research in an
application area. To date, we have achieved the following:

• Several demonstrations of Warp's use for stereo vision, ERIM laser range
scanner data, NMR image processing, signal processing, and other vision
algorithms.

3-4

• A library based on the Spider Fortran subroutine library, all written in the
Warp programming language W2. The current library includes about 80
different Warp programs, covering edge detection, smoothing, image
operations, Fourier transforms, and so on. The actual number of routines
in the Spider library covered by these Warp programs is about 100.

• We have developed a special-purpose programming language, Apply, in
which low-level vision (local operation) programs can be written quickly and
efficiently. By simply describing the local operations on a local window, the
Apply compiler can generate code for the Warp machine (in W2) which ex­
ecutes the operations on the whole image efficiently. The compiler can also
generate code in C under UNIX, which allows debugging algorithms off
Warp [Harney et al. 87].

As the software environment for Warp improves, it is becoming a tool for vision
research, not merely for demonstrations of architectural concepts. In his research on
analyzing repetitive textures (see section 3.3.3), Harney needed to detect local point
symmetry to locate the texture elements. Point symmetry is detected by an analysis of
variance (ANOVA) statistical test which is applied to a window surrounding each pixel
location. The ANOVA method consists of partitioning the variance of the data into two
portions: that which is explained by the model and that which remains unexplained.
The method is to be applied at each pixel location to measure point symmetry. Local
peaks in an image of a symmetry measure values representing points of local sym­
metry. This analysis requires a large amount of computation.

The Warp implementation of this algorithm performs 346 million multiplications and
519 million additions. The prototype Warp processes a 512x512 image in 30 seconds.
The same processing would take more than an hour on a Sun-3. This speedup was
critical to Harney's research progress.

3.2. Algorithms for three-dimensional scene analysis
Efficiently matching a model description with visual sensory input (images or ranges)

forms the central part of recognition procedures. We have studied algorithms for
generating 3-D data by stereo analysis, segmenting 3-D data, and automatically
generating object recognition algorithms.

3.2.1*. Dynamic programming in stereo vision

One of the most useful methods for obtaining 3-D depth information from images is
stereo vision. The key problem in stereo is finding corresponding points in the left and
right images so that the depth can be computed by triangulation using a known camera
model. This stereo matching problem can be cast as a search problem.

Our dynamic programming stereo algorithm uses both intra- and inter-scanline search
to obtain a disparity map, beginning with gray-scale real world images [Ohta and
Kanade 85]. In 1985, we developed a faster version of the algorithm using a coarse-to-
fine multi-resolution search strategy [Szeliski 85].

3-5

The images are first preprocessed using the DOLP Transform to build an image
pyramid. Low-pass (blurred) images are used to calculate the cost function used by the
stereo matcher, while band-pass images are used to extract the edges. The stereo
matching algorithm is then applied to the coarsest (smallest) image, resulting in a list of
matched edges that is used to constrain the stereo matching of the next finer (larger)
level.

The matching proceeds until the solution for the finest level is obtained. The com­
bined processing time of pyramid creation and multi-resolution search is much lower
than that of single-resolution processing, since the constraints from the previous level
greatly reduce the search space of the current level. In practice, the multi-resolution
method was 2.5 times faster than the single-resolution method. The results for the
single- and multi-resolution versions are similar in quality.

3.2.2. Trinocular stereo vision
In 1985, we developed a trinocular stereo algorithm, a variation of edge-based stereo

algorithms using three cameras instead of two to reduce erroneous matches [Milenkovic
and Kanade 85]. The trinocular matching algorithm performs better even though it uses
the same order of computing resources as the binocular method.

The third view provided by trinocular stereo vision aids in selecting matching pairs of
edge points from the first two views by providing a positional constraint. In addition to
this constraint, trinocular stereo provides two constraint principles for use in determining
correct matches. The first principle constrains the orientations of the matched edge
pixels, and the second principle constrains the image intensity values in the regions sur­
rounding the edge pixels.

We have applied the trinocular stereo algorithm to both real and synthetic images. In
general, our trinocular method can match better than the best binocular method. The
key features of the trinocular stereo vision include that it does not require the continuity
assumption (i.e. neighboring edge pixels have similar disparities), and that it can
handle reversals (i.e. the case where the matching pixels' order of appearance reverses
between images).

3.2.3. Range data segmentation
One area we are pursuing is developing a 3-D vision system that provides a descrip­

tion of an unknown environment to a mobile robot. This description, a three-
dimensional map of the observed scene in which regions are labeled as accessible ter­
rain, objects, etc., can provide the necessary information for path planning and
landmark recognition. As part of our efforts, Hebert developed several range data seg­
mentation algorithms [Hebert and Kanade 86]. We have used the segmentation
programs to produce input for path planning programs of the Terregator mobile robot.

We use a state-of-the-art sensing device, the ERIM scanner, that can produce 64x256

3-6

range images with an accuracy of 0.4 feet at a frame rate of two images per second.
This sensor combines a large field of view (30 degrees horizontal and 40 degrees
vertical) and a fast acquisition rate, making it suitable for outdoor imagery analysis.

Our algorithms produce three types of features: 3-D edges, accessible and non-
accessible terrain regions, and obstacles divided into planar regions. The final segmen­
tation product is a graph of edges, regions, and objects. The segmentation algorithms
proceed by first extracting low-level attributes such as edge points, surface normals,
and surface curvature. Then each attribute is used to derive an intermediate segmen­
tation. Finally, the intermediate segmentations are merged together to form a consistent
scene description. The complete segmentation takes about one minute on a VAX-785.
We plan to reduce this computation time by using the Warp systolic array processor.

The range data segmentation techniques described so far proceed by independently
processing one image at a time. In addition to this independent processing, the system
can develop a global map by accumulating information from consecutive images. As
the vehicle moves, the robot obtains an image every one to ten meters and consecutive
images are registered with respect to the previous ones. Matching proceeds by finding
the best match between the features produced by the segmentation program. This
matching, in turn, provides an estimate of the current image's 3-D position with respect
to the global map. The sequence of merged images then forms a global map of all the
terrain the robot has seen.

We have tested the matching algorithms in a real outdoor navigation environment
using a sensor mounted on a mobile testbed robot. The results indicate that active
range data processing is suitable for navigation through an unknown environment.

3.2.4. Automatic generation of object recognition algorithms

Historically, computer vision programs have been "hand" written by a vision program­
mer. An alternative approach is to develop a general model-based vision program that
takes a model of the object and recognizes the scene by reasoning about various
properties and relationships based on the model. We developed an approach that
provides a third alternative: develop a general program that takes a model of an object
and generates a specialized run-time program tailored for the object [Ikeuchi 87]. We
have applied this method in a task for bin-picking objects which include both planar and
cylindrical surfaces.

The program analyzes the apparent object shapes from all possible viewing direc­
tions. These shapes are classified into groups based on dominant visible faces and
other features. Based on the grouping, recognition algorithms are generated in the form
of an interpretation tree. The interpretation tree classifies a target region into a repre­
sentative shape group, and then determines the precise attitude of the object within that
group. We have developed a set of rules for determining the appropriate features and
the order in which the geometric modeler will use them to generate an efficient and reli­
able interpretation tree.

3-7

This approach will also have an impact on automatic learning in vision. During the
course of the research, Ikeuchi developed a set of rules (mostly heuristic) which guide
the decisions about what features to use in what order to generate an efficient and reli­
able interpretation tree. Currently, the interpretation trees are represented by semi-
automatically written Lisp programs. We are developing a new approach that generates
interpretation trees represented by object-oriented programming.

3.2.5. Recognition of 3-D objects based on solid models
Different sensors such as a video camera, light-stripe projector, or synthetic aperture

radar have very different properties and respond to different types of object features un­
der different circumstances. Since past research in computer vision assumed a single
type of sensor, existing programs are restricted to the sensor for which they were
designed. Our research in automatically generating object recognition algorithms has
the potential to break out of this restriction by using an explicit sensor model in addition
to the solid object model. In this way, we will be able to automatically generate ap­
propriate object recognition algorithms from several different sensors. This capability
will be important for sensor fusion or integration tasks that involve the use of many sen­
sors to recognize a single object, and will also be important in robot system design as
an automated aid to sensor selection for specific applications.

We have developed a model for sensor properties that can specify two important
characteristics: detectability and reliability. Detectability refers to the kind of features
that can be detected, such as faces, edges, and vertices. For example, an edge detec­
tor is sensitive to edges; a laser range scanner is sensitive to faces; synthetic aperture
radar is most sensitive to vertices. We have developed a uniform representation for
such detectability properties that allows many different sensor modalities to be
described in a single framework. Reliability specifies how reliable the detection process
is, and how errors are propagated from the measured data to the inferred geometric
features.

We have used this sensor modeling methodology to construct a survey of commonly
available sensors, and have produced detailed descriptions of photometric stereo and
light-stripe range finders as examples. We plan to include the use of these sensor
models in conjunction with our previous methodology for recognizing objects from solid
models, to produce a system that can operate with diverse sensors.

3.3. Inferring shape and surface properties
Developing computational techniques for recovering scene and shape information

from images remains a basic computer vision research area. Working vision theories
must build on sound models of geometric, optical, and statistical processes. Research
must be undertaken to evaluate the theories in controlled environments to understand
their scope and limitations, such as requisite measurement precision, illumination con­
ditions, surface shape, etc. Finally, we can apply the theories to real situations with the

3-8

appropriate instrumentation and assumptions identified. Toward these goals, we have
established the Calibrated Imaging Laboratory. Using our new facility, we have been
investigating three basic vision areas: color, texture, and motion.

3.3.1. Calibrated imaging laboratory

In 1986, we established the Calibrated Imaging Laboratory (CIL), a facility for high-
precision imaging with accurate ground truth data [Shafer 85]. The CIL bridges the gap
between vision theories, which typically depend on idealized models about the world,
and applications, which must function on real images. Real images are provided in a
controlled environment, with the ability to incrementally add more complexity to the im­
aging situation and the scene. In all cases, accurate ground truth data make it possible
to quantitatively evaluate the performance of methods used for image analysis.

The facilities of the CIL include:
• A variety of cameras including sets of color and other filters, R-G-B color

cameras, and a high-precision camera yielding 512x512x8-bit images that
are nearly noise-free (repeatable) and linearly related to scene radiance,
using color filters in a filter wheel.

• Calibration Data provided by appropriate tools including photometers,
precision targets, and calibration camera filters.

• Accurate Ground Truth Data given by an optical table with precision posi­
tion control devices and surveyors' transits for position measurement.

• Flexible Lighting Control with a near-point light source (arc lamp) for preci­
sion shadow analysis, and a complete track lighting system for flexible
general illumination.

• Background Reflection Control in a room with a black ceiling, black carpet,
and black or white curtains, with other colored backdrops as needed.

• Geometric control of the camera and object positions, with a mobile plat­
form to allow for controlled position, motion, and stereo configurations.

• A variety of test objects including calibration materials, simple objects for
color and texture studies, and a highly detailed landscape model for study­
ing images of a complex environment within the laboratory.

Our goal is to provide images with every bit noise-free and with ground truth data that
allows any pixel value to be exactly calculated from direct measurements of the scene.
The CIL has already provided data for several vision projects, including our studies of
color and highlights, color edges, motion, and image segmentation. We have also
provided tapes of images for other universities, and we have provided assistance for
other labs in deciding what equipment to obtain, such as cameras and color filters.

3-9

3.3.2. Color
Using the facilities of the Calibrated Imaging Laboratory, we have been developing

techniques for using color information in a manner which is sound computationally and
physically. Current work includes measurement of gloss components from color images
and extraction of color edges.
Gloss from color

Image segmentation methods that are widely used today are confused by artifacts
such as highlights, because they are not based on any physical model of these
phenomena [Klinker et al. 87]. We have developed and implemented a method for
automatically separating highlight reflection from matte object reflection. By exploiting
the color difference between object color and highlight color, our algorithm generates
two intrinsic images from one color image of a scene, one showing the scene without
highlights and the other showing only the highlights. The successful modeling of high­
light reflection can provide a useful preprocessor for: stereo and motion analysis, direct
geometric shape inference, color image segmentation, and material type classification.

Our work is based on a spectral theory of light reflection from dielectric materials. The
theory describes the color at each point as a linear combination of the object color and
the highlight color. According to this model of light reflection, the color data of all points
from one object forms a planar cluster in the color space. The cluster shape is deter­
mined by the object and highlight colors and by the object shape and illumination
geometry. We use the shape of such clusters to determine the amount of highlight
reflection and matte object reflection at each image point. We have successfully run
this method on several real images.
Color edge detection

Edge detection is one of the most useful steps in early vision. We have been study­
ing how to improve it by using color data instead of black-and-white images. As our test
case, we selected Canny's algorithm, which finds high-contrast edges in smoothed
images.

In general, the color edges are noticeably better than edges from intensity images as
evaluated by human judgment. The color version of the Canny operator differs in that
the pixel value is a color vector C=[R G B]. The color version of the Canny operator cal­
culates the x- and ^-derivatives of each color band independently after smoothing the
images, then calculates the magnitude and direction of each edge using the eigenvec­
tors of the local covariance matrix at each point. This method is theoretically sound, but
as a practical method it is computationally expensive. We have also developed a less
expensive, general method for creating color operators from multi-stage intensity
operators, such as edge detectors, using a color distance metric.

We have evaluated the theoretical color Canny operator and all of the non-trivial multi­
stage color operators on a set of images of our landscape model.

By visually comparing these operators' output with each other and with the output of
the Canny operator applied to intensity images of these scenes, we observed the follow­
ing:

3-10

• The color edges are consistently better than edges from intensity images,
though most (over 90%) of the edges are about the same.

• The best multi-stage operator seems to be calculating the magnitude and
direction independently for each color band and then selecting the edge
with the maximum magnitude. This operator produced almost exactly the
same edges as the theoretical operator based on Jacobian analysis.

• The quality of the input image was very important; producing marginally
better quality input images yielded substantially better results.

We developed similar color operators for stereo feature point detection and matching,
and have greatly reduced the matching error rate using color.
Supervised color constancy

Color constancy—the recognition of a color independent ot the illumination—is one of
the fundamental problems in color vision. Traditional color constancy methods attempt
to compensate for the color of illumination by assuming some heuristic such as that the
average color in the image is gray. This provides three measurements (red-green-blue)
to use in the color correction. In our method, a standard color chart is placed in the
scene to provide more comprehensive reference data. The color chart has 24 blocks
with three color measurements on each (red-green-blue), yielding 72 measurements.
These measurements are used in a system of linear equations to solve for coefficients
of the illumination, yielding a tremendous improvement in the ability to model the details
of the illumination color. Based on this model, the color of an object in colored illumina­
tion can then be calculated. This method is far more accurate than standard color con­
stancy approaches, but requires the use of the color chart as a reference standard. For
this reason, we call the method "Supervised Color Constancy." Our future work will in­
clude experimental verification of the method, which will take place when the necessary
equipment (spectroradiometer) arrives in our lab.

3.3.3. Texture

In addition to color, texture is a vital clue to object properties for low-level vision. To
understand texture, we are studying the perception of regular texture repetitions. The
central problem in texture analysis is a chicken-and-egg problem: the texture element is
difficult to define until the repetition has been detected, but at the same time the repeti­
tion cannot be found until the texture element is defined. We have developed a way to
address this problem by identifying several potential features to define the texture ele­
ment, then looking for all possible repetitions in these features. Some of the features
we use include constant intensity regions and corners.

After identifying the potential features, we look for local repetitions in them. This is
done by forming a histogram around each feature point of the vectors leading to other
nearby feature points. These histograms are analyzed to discover which vectors occur
most frequently. The shortest of these vectors indicates the direction and distance of
the repetition. If this repetition applies over a sufficient number of feature points, it in­
dicates a region of the image containing a repetition. Because the method is local in

3-11

nature, it can deal with distortions such as a checkered pattern on fabric or a perspec­
tive texture gradient (foreshortening) on a tall building. This method has been applied to
several images of textured objects with good results. We have now determined some
new constraints that identify the dominant features within each repetition pattern. We
plan to incorporate these constraints in our future work.

3.3.4. Motion
Vision is a vital source of information for mobile robots. Vision can be used to deter­

mine vehicle motion, detect obstacles, and recognize objects. Unfortunately, the in­
herent uncertainty in vehicle motion and 3-D vision has limited its usefulness for mobile
robots in the past. We are addressing these limitations by studying and modeling this
uncertainty directly, and by developing motion stereo methods to reduce the uncer­
tainty.
Determining vehicle motion by stereo vision

In many situations it is desirable to estimate vehicle motion directly from information in
the sequence of images provided by the cameras, rather than to obtain it from external
sources. Prior performance on this task has been very poor due to inadequate model­
ing of the inherent uncertainty in imaging due to finite pixel size. In 1985, we developed
a method for incorporating adequate models into motion estimates [Matthies and Shafer
86]. Our work applies directly to the visual mapping and navigation problems in
autonomous vehicles.

Previous efforts based on this type of algorithm have performed poorly because the
measurement error inherent in triangulation was not adequately modeled in the proce­
dure that determined the 3-D transformations. Previous error models were based on
scalar descriptions of the uncertainty in the position of each 3-D point. This treats the
uncertainty in the position of a point as spherically distributed in space. However, with
triangulation the actual uncertainty can be highly non-spherical. Treating each 3-D point
as the mean of a 3-D normal distribution can obtain a much better error model. The
uncertainty in the location of the point can then be modeled by the covariance of the
distribution. We have developed a new method for estimating the motion of the
cameras based on this model.

We demonstrated this method in a scenario in which the motion of a mobile robot was
determined from image sequences provided by onboard stereo cameras. The algorithm
has two main steps:

• Building simple 3-D scene models from each stereo pair
• Finding the 3-D transformation that best maps the model built at each robot

location into the model built at the next location.
The transformations produced by the second step are the desired output of the algo­
rithm. The 3-D models consist of points whose positions are computed by triangulation
from corresponding features in the stereo pairs. We have tested the new algorithm in
simulations and in live operation with real images. The results show reductions in es-

3-12

timation error by factors of three to ten or more, depending on the distance of the points
from the cameras. The greater the distance, the greater the difference in performance.
This shows that error modeling is important for obtaining high performance in algorithms
for visual range and motion estimation.
Modeling uncertainty in representations for low-level vision

Most work in computer vision has ignored uncertainty in the past, leading to methods
that are brittle and tend to fail when confronted with the noise that arises in real data.
We are developing methods for explicitly modeling uncertainty and using the noise
properties of the sensor, measured over multiple images, to produce improved results.

We have been working on modeling uncertainty in low-level dense representations,
such as depth maps and optical flow (velocity) maps, by means of Bayesian models.
This approach has the potential to provide more accurate surface descriptions from im­
age sequences than currently available surface methods. Researchers have already
used the Bayesian modeling in low-level vision processing. However, one of the distin­
guishing features of our approach is that it uses Bayesian modeling not only to recover
optimal estimates (as is currently done), but also to calculate the uncertainty associated
with these estimates.

Low-level representations are usually derived from the input image(s) using "shape-
from-X" methods such as stereo or shape from shading. These methods usually yield
data that is sparse, (e.g. stereo) or underconstrained (e.g. shape from shading). Two
approaches to overcoming this problem are currently popular. The first—
regularization—reformulates the problem in terms of the minimization of an energy func­
tional. Smoothness constraints, in the form of added energy terms, are used to
guarantee a unique and well-behaved solution. The second method, Bayesian estima­
tion, assumes both a probabilistic prior model for the data being estimated and a
probabilistic imaging model relating the data to the sensed image [Szeliski 86]. An op­
timal estimate (e.g. Maximum A Posteriori or Minimum Variance) can then be obtained.

The main emphasis of this research is to study how the uncertainty inherent in the
Bayesian modeling approach can be estimated and used in further processing. Pre­
vious work, both in regularization and Bayesian estimation, has concentrated solely on
obtaining a single optimal estimate of the underlying field. However, the Bayesian ap­
proach actually (implicitly) defines a whole distribution conditional on the sensed data.
For example, when regularization is used, the resulting distribution is a multivariate
correlated Gaussian image. Thus knowing both the mean (minimum variance estimate)
and the covariance fully characterizes the distribution. The estimated uncertainty can
then be used for further processing, such as integration with new data, or matching to a
model. Current research is focusing on the former application (using Kalman filtering),
as well as examining the use of alternate representations that better model the uncer­
tainty.

3-13

3.4. Bibliography
[Gross et al. 85] Gross,!"., H.T. Kung, M. Lam, and J. Webb.

Warp as a machine for low-level vision .
In Proceedings of the 1985 IEEE International Conference on

Robotics and Automation, IEEE, March, 1985.
Warp is a programmable systolic array processor. One of its

objectives is to support computer vision research. This
paper shows how the Warp architecture can be used to ful­
fill the computational needs of low-level vision.

We study the characteristics of low-level vision algorithms and
show they lead to requirements for computer architecture.
The requirements are met by Warp. We then describe
how the Warp system can be used. Warp programs can
be classified in two ways: chained versus severed, and
heterogeneous versus homogeneous. Chained and
severed characterize the degree of interprocessor depen­
dency, while heterogeneous and homogeneous charac­
terize the degree of similarity between programs on in­
dividual processors. Taken in combination, these classes
give four user models. Sophisticated programming tools
are needed to support these user models.

[Harney et al. 87] Harney, L.G.C., J.A. Webb, and I.C. Wu.
Low-level vision on Warp and the Apply programming module,
In J. Kowalik, Parallel Computation and Computers for Artificial

Intelligence. Kluwer Academic Publishers, 1987.
In the course of implementing low-level (image to image) vision

algorithms on Warp, we have understood the mapping of
this important class of algorithms well enough so that the
programming of these algorithms is now a straightforward
and stereotypical task. The partitioning method used is in­
put partitioning. This seems to consistently provide an ef­
ficient implementation of this class of algorithms, which is,
moreover, quite natural for the programmer. We have
developed a specialized programming language, called
Apply, which reduces the problem of writing the algorithm
for this class of programs to the task of writing the function
to be applied to a window around a single pixel. Apply
provides a method for programming Warp in these applica­
tions which is extremely easy, consistent, and efficient.
Apply is application specific, but machine independent—it
appears possible to implement versions of Apply which run
efficiently on a wide variety of computers, including uni­
processors, bit-serial processor arrays, and distributed
memory machines. Apply is therefore a significant aid to
the programmer, which allows him to program efficiently
and consistently in a well-defined application area, for a
specialized type of machine, without restricting his code to
be run just on that machine.

3-14

[Hebert and Kanade 86]
Hebert,M., and T. Kanade.
Outdoor scene analysis using range data.
In IEEE International Conference on Robotics and Automation, 1986.
Also available in Proceedings ofDARPA Image Understanding

Workshop, DARPA, December 1985.
This paper describes techniques for outdoor scene analysis

using range data. The purpose of these techniques is to
build a 3-D representation of the environment of a mobile
robot equipped with a range sensor. Algorithms are
presented for scene segmentation, object detection, map
building, and object recognition.

We present results obtained in an outdoor navigation environ­
ment in which a laser range finder is mounted on a vehicle.
These results have been successfully applied to the
problem o path planning through obstacles.

[Herman 85] Herman.M.
Representation and incremental construction of a three-dimensional

scene model.
Technical Report CMU-CS-85-103, Carnegie Mellon University Com­

puter Science Department,
January, 1985.

The representation, construction, and updating of the 3D scene
model derived by the 3D Mosaic scene understanding sys­
tem is described. The scene model is a surface-based
description of an urban scene, and is incrementally ac­
quired from a sequence of images obtained from multiple
viewpoints. Each view of the scene undergoes analysis
which results in a 3D wire-frame description that
represents portions of edges and vertices of buildings.
The initial model, constructed from the wire frames ob­
tained from the first view, represents an initial approxima­
tion of the scene. As each successive view is processed,
the model is incrementally updated and gradually becomes
more accurate and complete. Task-specific knowledge is
used to construct and update the model from the wire
frames. At any point along its development, the model
represents the current understanding of the scene and
may be used for tasks such as matching, display genera­
tion, planning paths through the scene, and making other
decisions dealing with the scene environment.

The model is represented as a graph in terms of symbolic primi­
tives such as faces, edges, vertices, and their topology and
geometry. This permits the representation of partially com­
plete, planar-faced objects. Because incremental
modifications to the model must be easy to perform, the
model contains mechanisms to (1) add primitives in a man­
ner such that constraints on geometry imposed by these

3-15

additions are propagated throughout the model, and (2)
modify and delete primitives if discrepancies arise between
newly derived and current information. The model also
contains mechanisms that permit the generation, addition,
and deletion of hypotheses for parts of the scene for which
there is little data.

[Ikeuchi 87] Ikeuchi,K.
Precompiling a geometrical model into an interpretation tree for ob­

ject recognition in bin-picking tasks.
In Image Understanding Workshop, DARPA , February, 1987.

Given a 3D solid model of an object, we first generate apparent
shapes of an object under various viewer directions.
Those apparent shapes are then classified into groups
(representative attitudes) based on dominant visible faces
and other features. Based on the grouping, recognition al­
gorithms are generated in the form of an interpretation
tree. The interpretation tree consists of two parts: the first
part for classifying a target region in an image into one of
the shape groups, and the second part for determining the
precise attitude of the object within that group. We have
developed a set of rules to find out what appropriate fea­
tures are to be used in what order to generate an efficient
and reliable interpretation tree. Features used in the inter­
pretation tree include inertia of region, relationship to the
neighboring regions, position and orientation of edges, and
extended Gaussian images. This method has been ap­
plied in a task for bin-picking objects which include both
planar and cylindrical surfaces. As sensory data, we have
used surface orientations from photometric stereo, depth
from binocular stereo using oriented-region matching, and
edges from an intensity image.

[Ikeuchi et al. 86] Ikeuchi.K., H.K. Nishihara, B.K.P. Horn, P. Sobalvarro, and
S. Nagata.
Determining grasp configurations using photometric stereo and the

PRISM binocular stereo system.
The International Journal of Robotics Research 5(1):46-65,1986.

This paper describes a system which locates and grasps parts
from a pile. The system uses photometric stereo and
binocular stereo as vision input tools. Photometric stereo
is used to make surface orientation measurements. With
this information the camera field is segmented into isolated
regions of a continuous smooth surface. One of these
regions is then selected as the target region. The attitude
of the physical object associated with the target region is
determined by histograming surface orientations over that
region and comparing them with stored histograms ob­
tained from prototypical objects. Range information, not

3-16

available from photometric stereo, is obtained by the
PRISM binocular stereo system. A collision-free grasp
configuration is computed and executed using the attitude
and range data.

and Shafer 85]
Kanade ,T., and S. Shafer.
Image understanding research at CMU.
In Proceedings of the DARPA Image Understanding Workshop,

DARPA, December, 1985.
In the CMU Image Understanding Program we have been work­

ing on both the basic issues in understanding vision
processes that deal with images and shapes, and the sys­
tem issues in developing demonstrable vision systems.
This report reviews our progress since the October 1984
workshop proceedings. The highlights in our program in­
clude the following:

V. Milenkovic has developed and edge-based trinocular (three-
camera) stereo method for computing depth from images.

R. Szeliski has extended Ohta and Kanade's dynamic program­
ming stereo method to use a coarse-to-fine multi-resolution
search strategy.

E. Walker is analyzing the object-independent geometric
reasoning rules in the 3D Mosaic system.

S. Shafer is constructing the Calibrated Imaging Lab which will
provide high-precision images for stereo, motion, shape
analysis, and photometric analysis.

M. Hebert has developed several algorithms for analysis of out­
door range images to extract edges, planar faces of ob­
jects, and terrain patches.

L. Matties is analyzing motion stereo image sequences using a
statistical analysis of uncertainty to yield high accuracy.

D. McKeown has started a Digital Mapping Laboratory as a fo­
cal point for work in aerial photo interpretation, cartog­
raphy, and computer vision. Current projects include
MAPS, a large-scale image/map database system, SPAM,
a rule-based system for airport scene interpretation, and
ARF, a system for finding and tracking roads in aerial im­
agery.

J. Webb is developing a high-performance vision system on a
systolic machine, Warp, which will be actively used by the
vision community at CMU. The Warp hardware is a reality,
and almost a dozen implementation programs are now run­
ning.

G. Klinker has implemented the FIDO mobile robot vision and
navigation system using the WARP.

C. Thorpe, R. Wallace, and A. Stentz are working on the
Strategic Computing Vision project, building an intelligent
mobile robot for outdoor operation.

3-17

[Klinker et al. 87] Klinker.G., S. Shafer, and T. Kanade.
Measurement of gloss from color images.
In Proceedings of the Conference on Appearance, ISCC, February,

1987.
It is the goal of computer vision to automatically recover the

three-dimensional objects in the scene from images. Most
current research in computer vision analyzes black-and-
white images and assumes that the objects in the scene
are matte. Brightness variation in the image is then at­
tributed to variations of surface orientation on the objects
and to material changes at object boundaries. However,
real scenes generally contain glossy objects, as well as
matte objects. Highlights on glossy objects provide ad­
ditional brightness variations in the images and are com­
monly misinterpreted by current computer vision systems.
Shafer has introduced a spectrally-based dichromatic
reflection model that accounts for both diffuse and specular
reflection. Along with the model, we describe a method
that exploits the model to detect and remove highlights
from color images. This approach thus provides a useful
preprocessor for many areas of computer vision. We
present the results of applying the technique to real
images.

[Kung and Webb 86]
Kung.H.T., and J. Webb.
Mapping image processing operations onto a linear systolic machine,
In Gouda, M.C., Distributed Computing. Springer-Verlag, 1986.

A high-performance systolic machine, called Warp, is opera­
tional at Carnegie Mellon. The machine has a programm­
able systolic array of linearly connected cells, each
capable of performing 10 million floating-point operations
per second. Many image processing operations have
been programmed on the machine. This programming ex­
perience has yielded new insights in the mapping of image
processing operations onto a parallel computer. This
paper identifies three major mapping methods that are par­
ticularly suited to a Warp-like parallel machine using a
linear array of processing elements. These mapping
methods correspond to partitioning of output dataset, and
partitioning of computation along the time domain
(pipelining). Parallel implementations of several important
image processing operations are presented to illustrate the
mapping methods. These operations include the Fast
Fourier Transform (FFT), connected component labeling,
Hough transform, image warping and relaxation.

3-18

[Lucas 84] Lucas,B.D.
Generalized image matching by the method of differences.
Technical Report CMU-CS-85-160, Carnegie Mellon University Com­

puter Science Department,
July, 1984.

Image matching refers to aligning two similar images related by
a transformation such as a translation, rotation, etc. In its
general form image matching is a problem of estimating
the parameters that determine that transformation. These
parameters may be a few global parameters or a field of
parameters describing local transformations.

This thesis explores in theory and by experiment image match­
ing by the method of differences. The method uses inten­
sity differences between the images together with the spa­
tial intensity gradient to obtain from each image point a
linear constraint on the match parameters; combining con­
straints from many points yielqs a parameter estimate. The
method is particularly suitable where an initial estimate of
the match parameters is available. In such cases it
eliminates search which can be costly, particularly in multi­
dimensional parameter spaces. Essential to the technique
are smoothing, which increases the range of validity of the
constraint provided by the gradient, and inteation, because
the parameter estimate is an approximation. Smoothing in­
creases the range of convergence but it decreases ac­
curacy, so a coarse-fine approach is needed. A theoretical
analysis supports these claims and provides a means for
predicting the algorithm's behavior.

[Matthies and Shafer 86]
Matthies, L.H. and S. Shafer.
Error modeling in stereo navigation.
In 1986 Proceedings of the Fall Joint Computer Conference,

ACM/IEEE, November, 1986.
In stereo navigation, a mobile robot estimates its position by

tracking landmarks with onboard cameras. Previous sys­
tems for stereo navigation have suffered from poor ac­
curacy, in part because they relied on scalar models of
measurement error in triangulation. The authors show that
using 3-D Gaussian distributions to model triangulation er­
ror leads to much better performance. They also show
how to compute the error model from image correspon­
dences, estimate robot motion between frames, and up­
date the global positions of the robot and the landmarks
over time. Simulations show that compared to scalar error
models the 3-D Gaussian reduces the variance in robot
position estimates and better distinguishes rotational from
translational motion. A short indoor run with real images
supported these conclusions and computed the final robot

3-19

position to within 2% of distance and one degree of orien­
tation. These results illustrate the importance of error
modelling in stereo vision for this and other applications.

[McKeown et al. 85a]
McKeown, D.M., C.A. McVay, and B.D. Lucas.
Stereo verification in aerial image analysis.
In Proceedings of DARPA image Understanding Workshop, DARPA,

December, 1985.
Also available as Technical Report CMU-CS-85-139.

Computer vision systems that attempt to extract cultural fea­
tures from aerial imagery are often forced to interpret seg­
mentations where the actual features are broken into
numerous segments or fragments. For example, roads and
road-like features are difficult to completely segment due to
occlusions, poor contrast with their surroundings, and
changes in surface material. Often the nature of the seg­
mentation process is designed to err toward oversegmen-
tation of the image, since the joining of feature descriptions
is believed to be simpler than their decomposition. No mat­
ter what the cause, it is necessary to aggregate these in­
complete segmentations, filling in missing information, in
order to reason about the overall scene interpretation. This
paper describes a method to select sets of such fragments
as candidates for alignment into a single region, as well as
a procedure to generate new linear regions that are linked
composites of the original sets of fragments. Portions of
the composite region that lie between pairs of the original
fragments are approximated with a spline. The resulting
composite region can be used to predict the areas in which
to search for missing components of the cultural feature.

[McKeown et al. 85b]
McKeown.D.M. Jr., W.A. Harvey, and J. McDermott.
Rule-based interpretation of aerial imagery.
IEEE Transactions on Pattern Analysis and Machine Intelligence

7(5):570-585,1985.
In this paper, we describe the organization of a rule-based sys­

tem, SPAM, that uses map and domain-specific knowledge
to interpret airport scenes. This research investigates the
use of a rule-based system for the control of image
processing and interpretation of results with respect to a
world model, as well as the representation of the world
model within an image/map database. We present results
of a high resolution airport scene where the image seg­
mentation has been performed by a human, and by a
region-based image segmentation program. The results of
the system's analysis is characterized by the labeling of in­
dividual regions in the image and the collection of these

3-20

regions into consistent interpretations of the major com­
ponents of an airport model. These interpretations are
ranked on the basis of their overall spatial and structural
consistency. Some evaluations based on the results from
three evolutionary versions of SPAM are presented.

[McVay et al. 85] McVay.C, B.D. Lucas, and D.M. McKeown.
Stereo verification in aerial image analysis.
Technical Report CMU-CS-85-139, Carnegie Mellon University Com­

puter Science Department,
July, 1985.

This paper describes a flexible stereo verification system,
STEREOSYS, and its application to the analysis of high
resolution aerial photography. Stereo verification refers to
the verification of hypotheses about a scene by stereo
analysis of the scene. Unlike stereo interpretation, stereo
verification requires only coarse indications of three-
dimensional structure. In the case of aerial photography,
this means coarse indications of the heights of objects
above their surroundings. This requirement, together with
requirements for robustness and for dense height
measurements, shape the decision about the stereo sys­
tem to use. This paper discusses these design issues and
details the results of implementation.

[Milenkovic and Kanade 85]
Milenkovic, V. and T. Kanade.
Trinocular vision using photometric orientation constraints.
In Proceedings of the Image Understanding Workshop, Pages

163-175. DARPA , December, 1985.
Trinocular vision is stereo using three non-collinear views. It

has been shown in the literature that a third view aids in
the selection of matching pairs of edge points from the first
two views by providing a constraint on the positions of the
points. In addition to this positional constraint, this paper
proposes two new constraint principles for use in determin­
ing the set of correct matches. The first principle con­
strains the orientation of the matched edge pixels, and the
second principle constrains the image intensity values in
the regions surrounding the edge pixels. Statistical con­
fidence measures and rejection thresholds are derived
from these constraint principles in order to maximize the
correct matches in the presence of error. An trinocular
stereo algorithm based on these principles is described
and applied to synthetic and real images with good results.

3-21

[Ohta and Kanade 85]
Ohta.Y., and T. Kanade.
Stereo by intra- and inter-scan line search using dynamic program­

ming.
In IEEE Transactions on Pattern Analysis and Machine Intelligence,

IEEE, March, 1985.
This paper presents a stereo matching algorithm using the

dynamic programming technique. The stereo matching
problem, that is, obtaining a correspondence between right
and left images, can be cast as a search problem. When a
pair of stereo images is rectified, pairs of corresponding
points can be searched for within the same scan lines. We
call this search intra-scanline search. This intra-scanline
search can be treated as the problem of finding a matching
path on a two-dimensional (2D) search plane whose axes
are the right and left scanlines. Vertically connected edges
in the images provide consistency constraints across the
2D search planes. Inter-scan line search in a three-
dimensional (3D) search space, which is a stack of the 2D
search planes, is needed to utilize this constraint.

Our stereo matching algorithm uses edge-delimited intervals as
elements to be matched, and employs the above men­
tioned two searches: one is inter-scanline search for pos­
sible correspondences of connected edges in right and left
images and the other is intra-scanline search for cor­
respondences of edge-delimited intervals on each scanline
pair.

Dynamic programming is used for both searches which proceed
simultaneously: the former supplies the consistency con­
straint to the latter while the latter supplies the matching
score to the former. An interval-based similarity metric is
used to compute the score.

The algorithm has been tested with different types of images in­
cluding urban aerial images, synthesized images, and
block scenes, and its computational requirement has been
discussed.

[Shafer 85] Shafer, S.A.
The Calibrated Imaging Lab under construction at CMU.
In Proceedings of DARPA Image Understanding Workshop, DARPA,

December, 1985.
This document describes the Calibrated Imaging Laboratory, a

facility for precision digital imaging under construction at
CMU. The purpose of this lab is to provide images with ac­
curate knowledge about ground truth (concerning the
scene, illumination, and camera) so that computer vision
theories and methods can be tested on real images and
evaluated to determine how accurate they really are. The
lab aims to provide ground truth data accurate, in the best

3-22

circumstances, to the nearest pixel geometrically and the
nearest 8-bit pixel value photometrically. There are also
many illumination and imaging facilities in the lab that
provide increased flexibility or increased complexity of the
visual situation, at a cost of reduced precision in the
ground truth data.

To accomplish these goals, the lab includes mechanisms to
carefully control and measure the direct and indirect il­
lumination in the scene, the positions of objects, and the
properties of the camera/digitizer system. Lighting can be
provided by a near-point source (5 mm diameter aperture)
for high precision, or by a general-purpose track lighting
system for flexibility. The work area can be surrounded by
black curtains etc. to reduce stray light and indirect il­
lumination. The cameras include a very high-precision
CCD camera on a static mount, and an X-Y-X-pan-tilt jig
with multiple inexpensive CCDs aligned with each other.
Surveyors' transits are used to measure positions of points
in space, and other calibration materials are available for
all types of camera property measurement. Color imaging
by serial selection of filters is also available.

The lab is described as we currently envision it will be equipped
when the facilities are operational; the current status is
summarized at the end of the paper.

[Smith and Kanade 85]
Smith,D.R., and T. Kanade.
Autonomous scene description with range imagery.
Computer Vision, Graphics, and Image Processing 31 (3):322-334,

1985.
This paper presents a program to produce object-centered 3-

dimensional descriptions starting from point-wise 3D range
data obtained by a light-stripe rangefinder. A careful
geometric analysis shows that contours which appear in
light-stripe range images can be classified into eight types,
each with different characteristics in occluding vs occluded
and different camera/illuminator relationships. Starting
with detecting these contours in the iconic range image,
the descriptions are generated moving up the hierarchy of
contour, surface, object to scene. We use conical and
cylindrical surfaces as primitives. In this process, we ex­
ploit the fact that coherent relationships, such as sym­
metry, collinearity, and being coaxial, which are present
among lower-level elements in the hierarchy allow us to
hypothesize upper-level elements. The resultant descrip­
tions are used for matching and recognizing objects. The
analysis program has been applied to complex scenes
containing cups, pans, and toy shovels.

3-23

[Szeliski 85] Szeliski, R.
Multi-resolution stereo using dynamic programming.
IUS internal report, Carnegie Mellon University Computer Science

Department,
May, 1985.

[Szeliski 86] Szeliski,R.
Cooperative algorithms for solving random-dot stereograms.
Technical Report CMU-CS-86-133, Carnegie Mellon University Com­

puter Science Department,
June, 1986.

This report examines a number of parallel algorithms for solving
random-dot stereograms. A new class of algorithms based
on the Boltzmann Machine is introduced and compared to
previously developed algorithms. The report includes a
review of the stereo correspondence problem and of
cooperative techniques for solving this problem. The use
of energy functions for characterizing the computational
problem, and the use of stochastic optimization techniques
for solving the problem are explained.

[Tomita and Kanade 85]
Tomita.F. and T. Kanade.
A 3D vision system: generating and matching shape descriptions in

range images,
In H. Hanafusa and H. Inoue, Robotics Research, Pages 35-42. MIT

Press, 1985.
We have developed a vision system to recognize and locate

three dimensional (3D) objects in range images. A light-
stripe rangefinder image is first segmented into edges and
surfaces. This segmentation is done in 3D space; edges
are classified as either 3D straight lines or circular curves,
and surfaces are either planar or conic. An object model
consists of component edges and surfaces and their inter­
relationships. Our model representation can accom­
modate not only objects with rigid, fixed shape, but also
objects with articulations between their parts, such as
rotational-joint or linear-slide motions. The system sup­
ports interactive construction of object models. Using
sample scenes, the object models can be generated and
modified till they become satisfactory. The matching
process is rather straightforward. A transformation from an
object model to the scene is hypothesized by initially
matching a few scene features with model features. The
transformation is then tested with the rest of the features
for verification.

3-24

[Walker and Herman 87]
Walker, E. and M. Herman.
Geometric reasoning for constructing 3-D scene descriptions from

images.
In Proceedings of the Workshop on Spatial Reasoning and Multisen-

sor Fusion, AAAI, October, 1987.
There are many applications for a vision system which derives a

3-dimensional model of a scene from one or more images
and stores the model for easy retrieval and matching.
Geometric reasoning is used at several levels of the
derivation, as well as for the eventual matching. Ex­
perience with the 3D Mosaic system has shown that
domain specific knowledge can be used to drive much of
this geometric reasoning. A general framework for the
representation and use of domain knowledge is proposed.

[Walker et. al. 87] Walker, E., M. Herman, and T. Kanade.
A framework for representing and reasoning about three-dimensional

objects for vision.
In Proceedings of the AAAI Workshop on Spatial Reasoning and

Multisensor Fusion, AAAI, October, 1987.
The capabilities for representing and reasoning about three-

dimensional objects are essential for knowledge-based, 3-
D photointerpretation systems that combine domain
knowledge with image processing, as demonstrated by
such systems as 3D Mosaic and Acronym. Three-
dimensional representation of objects is necessary for
many additional applications such as robot navigation and
3-D change detection. Geometric reasoning is especially
important, since geometric relationships between object
parts are a rich source of domain knowledge. A practical
framework for geometric representation and reasoning
must incorporate projections between a 2-D image and a
3-D scene, shape and surface properties of objects, and
geometric and topological relationships between objects.
In addition.it should allow easy modification and extension
of the system's domain knowledge and be flexible enough
to organize its reasoning efficiently to take advantage of
the current available knowledge. We are developing such
a framework, called the 3D FORM (Frame-based Object
Recognition and Modeling) System. This system uses
frames to represent objects such as buildings and walls,
geometric features such as lines and planes, and
geometric relationships such as parallel lines. Active
procedures attached to the frames dynamically compute
values as needed. Since the order of processing is con­
trolled largely by accessing objects' slots, the system per­
forms both top-down and bottom-up reasoning, depending
on the current available knowledge. The FORM system is

3-25

http://addition.it

being implemented using the CMU-built Framekit tool in
Common Lisp. Examples of interpretation using a simple
model of a building as a rectangular prism are presented.

3-26

4. MACHINE INTELLIGENCE
Machine Intelligence (Ml) is the study of how to obtain intelligent action by computers.

It encompasses both the attempt to discover the principles whereby intelligent action is
possible and to construct computer systems that can perform tasks requiring intel­
ligence. To achieve acceptable levels of performance, artificially intelligent systems in­
creasingly need the ability to acquire, represent, and effectively utilize large amounts of
knowledge. In the Ml project, we have been investigating methods for acquiring,
representing, and utilizing knowledge to obtain intelligent action by computers. For the
past three years, we have concentrated our work in the following areas:

• Knowledge-intensive systems—Extending expert systems technology by
attacking on several fronts the problem of how to develop systems that
combine the power and efficiency of a knowledge-based system with the
generality and robustness of a general problem solver.

• Machine learning—Investigating systems that can learn from the ex­
perience of solving a problem and develop techniques through which ex­
pert systems can acquire knowledge and skill.

• Massively parallel architectures—Exploring massively parallel architectures
as means of meeting the computational demands imposed by large
constraint-satisfaction problems, particularly in recognition tasks.

• Rational control of reasoning—Incorporating rationally controlled reasoning
to increase the power, flexibility, and reliability of knowledge-based sys­
tems.

4.1. Knowledge-intensive systems

Current knowledge-based systems typically exhibit a rather narrow character—often
described as shallow. Though substantial knowledge is piled up in the rules and can be
released appropriately to perform a given task, the systems have no ability to reason
further with that knowledge. They do not understand the basic semantics of the task
domain. New rules are not learned from experience nor does behavior with the existing
rules become automatically tuned. To point out such limitations is not to be hypercriti­
cal. Indeed, the important scientific discovery behind the success of Al knowledge-
based expert systems is precisely that sufficient bodies of such shallow knowledge
could be assembled, without any of the supporting reasoning and understanding ability,
and still prove adequate to perform real consultation tasks in the medical and industrial
world.

A major—and widely recognized—item on the agenda for expert systems research is
to transform the current generation of systems so they are no longer shallow. Resear­
chers differ on which aspect to tackle first, but candidates are plentiful: reasoning
power; internal semantic models; learning ability; explanation ability. Increased reason­
ing power implies combinatorial search in conjunction with extensive knowledge bases.
Internal semantic models imply large data structures and the corresponding processing
power to manipulate them. Learning ability implies finally getting beyond the volume of

4-1

rules that can be encoded by hand, thus opening the way to systems with a hundred
thousand and ultimately a million rules. Such immense rule bases will result not only
from extending the scope and depth of knowledge in rule-based systems, but also from
introducing automatic learning techniques. Automatic learning is likely to increase by an
order of magnitude the density of rules that represent a given microbody of knowledge
and its applicability.

4.1.1. Towards a better general problem solver

One of our research concerns is to understand what mechanisms are necessary for a
system to demonstrate intelligent behavior, whether they are adequate for a wide range
of tasks, and how they work together to form a general cognitive architecture. In the
Soar project, we have developed a general architecture for solving problems and learn­
ing. Our ultimate goal is to give it all the capabilities it needs to display the full range of
intelligent behavior. We have already realized some of these capabilities.

Soar represents all goal-oriented cognitive activity as a heuristic search of problem
spaces. Its objective is to find a viable path from a given initial state to a desired final
state. Soar and our research strategy for its development should be understood within
the context of several decades of research on problem spaces and production systems.
Productions, containing both search control and instructions for implementing primitive
operators, represent Soar's long-term knowledge about a problem space. Failure to
progress toward a solution produces an impasse. The architecture detects the impasse
then establishes a subgoal to resolve it. When subgoal searches terminate, Soar builds
productions (chunks) that summarize processing within the subgoal. It can then reuse
its experience-derived chunks to speed future problem solving in equivalent situations.

The Soar project was originally located entirely at CMU, but in mid-1984, it became a
distributed effort among CMU, Xerox PARC , and Stanford University (when Laird moved
to PARC and Rosenbloom moved to Stanford). Much of Fall 1984 and Spring 1985 was
spent establishing the research at these new locations. In June 1985, we summarized
the part of the research program that focused on learning. We solidified our under­
standing of chunking in Soar (its learning mechanism) by showing that if Soar were
given the appropriate tasks, it would automatically accomplish the macro-operator-
learning scheme developed by Korf [Laird et al. 85a].

One significant demonstration of Soar's abilities was in 1985. Van de Brug, visiting
CMU from DEC , examined a number of different task decompositions for configuring
VAXes. Soar handled the same sized tasks as R1, the VAX-configuring expert system
used by DEC , and did it within a factor of about two. Of greater interest, he showed how
the basic task structure used by Soar could be the basis of a rationalized version of R1
(called Proto-R2) which could also form the basis of a knowledge-acquisition system
(called Sear) for R1 -like expert systems [vandeBrug et al. 85]. DEC used this scheme to
restructure R1 in 1985.

Since 1986, Soar research at CMU has focused on three main areas, each of which

4-2

we believe is crucial to successfully investigating the nature of intelligence. First, we
completed some architectural details that address aspects of intelligence for which the
framework was uncommitted. Second, we continued to use Soar as the foundation of
several systems that represent and apply substantial amounts of knowledge for problem
solving in complex domains. Third, we began mapping our ideas about Soar into the
immense body of data from cognitive psychology, with the intent of presenting a single
system of mechanisms that could serve as a unified theory of human cognition. Each of
these research foci is strongly influenced by work in the other areas and brings together
distinct perspectives not often integrated within artificial intelligence.

For the first research focus, filling in the details of Soar, we concentrated on charac­
terizing the implications of Soar's simple and uniform approach to problem solving and
learning. For example, we addressed the following question: How should Soar acquire
new problems to solve? The current method requires a "Soarware engineer" to analyze
the problem and write a set of Soar productions implementing the problem spaces re­
quired. Eventually, we want Soar to build the productions automatically from new task
descriptions. We tried several approaches to the task acquisition problem. The
strategy we chose has two phases: a comprehension phase that parses the task
description (given in pseudo-natural language), and an interpretation phase that ex­
ecutes the internal task representation, acquiring chunks as it resolves impasses. The
chunks closely resemble task productions that we would have otherwise built by hand.
Though this task acquisition method is still inefficient and under development, we have
already demonstrated it in the missionaries-and-cannibats and the eight-puzzle tasks.

The second focus of our research is to employ Soar in building knowledge-intensive
systems for "real" tasks. The aim is to duplicate our earlier success with R1 -Soar, the
partial reimplementation of the VAX-configuring expert system. We made significant
progress towards developing knowledge-based systems in the automatic programming
domain. Our system Designer-Soar reimplements and extends Designer, a prototype
automatic algorithm designer. Our objective with Designer-Soar is to demonstrate that
we can profitably integrate diverse knowledge about application domains, algorithm
design, and general problem solving into a single framework for designing algorithms. It
currently designs several simple set and numeric algorithms, producing data-flow con­
figurations to describe them. A second system, Cypress-Soar, reproduces much of the
behavior of the Cypress system (developed by D. Smith at Kestral Institute) that designs
divide-and-conquer sorting algorithms. Cypress-Soar has already produced several
novel results that combine performance, search, and learning in this domain.

Our third focus is to establish the Soar paradigm as a leading candidate for a unified
theory of cognition. This long-term goal requires Soar's behavior to explain, or at least
be consonant with, the psychological literature covering the complete spectrum of cog­
nitive activity: problem solving, decision making, routine action, memory, learning, skill,
perception, behavior, and language. Substantial parts of the scheme (problem spaces
for problem solving, and chunking for learning and skill acquisition, for example) are al­
ready in place, and we elaborated other parts of a Soar-based cognitive theory.
Progress was most significant on the specification of Soar's mechanisms for interacting

4-3

with the external world (the perception-cognition-motor interface), and the use of mental
models. The former specifies that the perceptual and motor systems interact with en­
coding and decoding productions by communicating through working memory. The
specification is strongly constrained by psychological reaction-time data, as well as the
current structure of Soar. For the latter, we used Johnson-Laird's study of mental
models as the basis of a simple system for working with logical syllogisms.

4.1.2. Acquiring knowledge for aerial image interpretation
Interpreting aerial photographs requires extensive knowledge about the scene under

consideration. For example, just knowing the scene type—airport, suburban housing
development, urban neighborhood—can aid in low- and intermediate-level image
analysis and can drive high-level interpretation by constraining searches for plausibly
consistent scene models. Building versatile, automated photointerpreters that incor­
porate such complex knowledge poses a challenging problem.

We have already hand-crafted one system that embodies expert photo interpretive
knowledge. The SPAM system, developed primarily under Defense Mapping Agency
sponsorship and partly with DARPA support, represents one of the few vertically in­
tegrated, knowledge-intensive systems. It utilizes knowledge during all interpretive
phases, from pixels to symbolic objects, from segmenting an initial image to generating
and describing a final scene model. While other systems such as ACRONYM and 3D
Mosaic focus on geometric aspects of isolated objects and V ISIONS performs two-
dimensional segmentations based upon direct mappings between object color and view-
specific spatial relationships, SPAM is unique in employing spatial, structural, and func­
tional knowledge to perform 2-D and 3-D interpretation of complex scenes.

Our research addresses a broad set of topics within the overall knowledge acquisition
framework. First and foremost, we are interested in automating the process through
which an interpretation system can collect and represent new knowledge—to improve
its performance on existing tasks or to gain proficiency on new tasks. Knowledge
serves primarily to constrain the search for a plausible interpretation. For SPAM'S
original airport scene task, we relied mainly on spatial constraints from airport design
books and, to a lesser extent, on relationships we observed in aerial imagery. Other
task domains, such as aerial suburban scenes, may not have codified spatial
guidelines, though they may exhibit similar patterns across many examples. To function
effectively in such domains, a versatile system must allow users to identify and measure
spatial relationships in representative imagery and then automatically compile the new
information into the photointerpreter. This need for automated support is one of many
and emphasizes the critical role that specialized tools play in assembling and organizing
large knowledge bases.

We have already developed three powerful tools: an interactive user interface for ac­
quiring scene and spatial knowledge, an automatic compiler that transforms new
knowledge from a schema-based representation into productions directly executable by
our interpretation system, and a performance analyzer that critiques the final image.

4-4

During the second half of 1986, we demonstrated the generality of our tools by generat­
ing knowledge rules for a new task, interpreting suburban house scenes, and using our
compiled knowledge to analyze an image set [McKeown and Harvey 87].

In our work with SPAM , we have attempted to identify knowledge sources that do not
suffer such drawbacks as dependency on objects' spectral properties or reliance on
viewpoint-specific spatial relationships. We strive rather to exploit spatial relationships
to generate a reasoning chain by applying multiple constraints across several interpre­
tive levels. While spectral knowledge can play a role in certain domains, we assert that
other types of spatial knowledge offer greater power for interpreting aerial imagery. In
particular, we have found the following knowledge types generally available and effec­
tive:

• Knowledge for determining and defining appropriate scene domain primi­
tives

• Knowledge of spatial relationships and constraints among the domain
primitives

• Knowledge of model decompositions that determine collections of primi­
tives that form "natural" scene components

• Knowledge of methods for combining scene components into complete
scene interpretations

• Knowledge of how to recognize and evaluate conflicts among competing in­
terpretations.

SPAM is also discussed in Chapter 3 of this report.

4.1.3. Computational properties of chunks

For several years now, we have been applying the notion of chunking to problem solv­
ing. Briefly, chunking divides a total problem configuration into smaller "chunks", each
of which is easily recognizable and has properties useful in understanding the current
situation. Our earliest work, in the chess domain, produced a program that operated on
a subset of pawn endings and produced speedups of 10 1 4 over previous strategies.
This result encouraged us to extend the chunking approach to cover the full domain of
pawn endings. Our present program, Chunker, can decompose any pawn ending into
chunks.

The basic problem-solving technique employs selective search augmented by excel­
lent knowledge. Strategic plans and chunk properties, up to a dozen properties per
chunk, form Chunked knowledge. Once the program identifies a chunk, it can look up
the chunk's properties in a database, or in case of an unusual chunk, compute the
properties dynamically. Once it has ascertained each chunk's property values, the
program can operate across chunks to identify which side is ahead and what alternative
plans each side has. Each chunk restricts what is possible and, out of this reduced
search space, alternative plans come quite easily.

We have exerted considerable care to order plans according to potency and likelihood
of success. It is quite possible that the most potent plan in a position can, given the
various chunk properties, be pronounced to be a win for one side without any further
investigation. In such cases the search immediately backtracks to other issues that
have yet to be resolved. When the Chunker cannot statically determine a plan's out­
come, the search proceeds until the plan either succeeds or is found lacking in some
significant way. The solution to difficult problems cannot immediately be looked up, or
found through only a moderate amount of combinatoric investigation. To solve
problems such as this, it is necessary to have enough accurate domain knowledge to be
able to rule out alternatives, that under a less stringent appraisal may appear to be
plausible. Only in this way is it possible to search a meaningful subset of the many pos­
sible trees of alternatives. It is in this, that Chunker excels.

Chunker can now solve approximately 70% of the problems in the most comprehen­
sive pawn-endings text. The book presents an authoritative treatise on all aspects of the
subject, including those at the highest level. Most of its exercises challenge even the
world's best players. The problems require showing that a proposed plan will win
against any possible counterplan or demonstrating that there is no viable winning plan.
Showing that a plan wins or fails to win against a particular counterplan generally in­
volves a highly directed search. Chunker has found about 20 major errors in the book
of 1600 problems. It has also found about 30 alternative solutions. One interesting
aspect of these errors, is similar to what occurred in the original Chunker work: There is
a particular maneuver which can be used to save certain types of positions which is ap­
parently unknown or at least not well known. Chunker has found this maneuver in a
number of problems. In any case, we consider Chunker to be just about equal to the
highest human level of performance in this domain.

4.2. Machine learning
Learning—including acquiring new information, formulating new heuristics, adapting

to new situations, and refining problem-solving skills—forms a major component of intel­
ligent behavior. We are investigating aspects of machine learning that include experien­
tial learning in problem solving and integrated systems that adapt to new environments.
Much of the earlier research into machine learning takes the form of learning from ex­
amples in which the machine has no opportunity to manipulate the situation and to per­
form experiments to gain more knowledge. In the World Modelers and Prodigy projects,
we are pursuing a more interactive approach. While expert systems have demonstrated
their power and utility in many domains, manually acquiring the requisite knowledge
from an expert and transforming it into formal rules typically remains a time-consuming
and difficult process. Machine learning techniques offer a potential solution to the
"knowledge bottleneck" by automating the knowledge acquisition process. In particular,
by developing problem-solving systems that can learn by experience and instruction, we
can enable human domain experts to transfer their knowledge in a natural and efficient
manner. The World Modelers project is building a simulated environment in which we
can examine the interactive aspects of learning. The Prodigy project also deals in inter­
active learning but focuses on the learning system itself.

4-6

4.2.1. Learning through experience

We are developing the Prodigy system), a "learning apprentice" intended to facilitate
the acquisition of problem-solving expertise [Minton et al. 86]. Our ultimate objective is
to create a unified architecture for building instructable expert systems in multiple
domains, an architecture that enables learning from both expert instruction and direct
experience.
Acquiring problem-solving expertise

The initial version of Prodigy's problem solving architecture was modeled after that of
Strips, and much of the early part of 1985 was devoted to making changes and im­
provements on the Strips approach. These included adding a simple reason-
maintenance system and enabling the problem solver to have direct control over the in­
vocation of inference rules as well as operators. We adopted a variation of predicate
calculus as the input language and revised to be more intelligible to human users of the
system. In addition, we designed the problem solver its activities could be controlled by
the addition of search control rules.

The Prodigy system comprises a general-purpose problem solver integrated with an
explanation-based learning module (EBL) and a knowledge-refinement interface (KRI).
The Strips paradigm offers a stable, tried-and-true base for our learning research.
Prodigy's problem solver also incorporates a flexible, rule-guided control structure.
Control rules provide a means for distinguishing control knowledge (when to work on a
task) from domain knowledge (how to accomplish a task) and may encode either
domain-specific or domain-independent search heuristics. Prodigy represents all its
knowledge, including control rules and domain operators, using a uniform, logic-based
description language.

Prodigy's EBL facility learns domain-specific control rules by analyzing problem-
solving traces. While previous explanation-based learning systems could learn by
analyzing problem solutions, EBL can also learn from additional experiences, including
problem-solving failures and goal interferences. The KRI module enables a domain ex­
pert to instruct and interact with Prodigy. In the second half of 1986, we added a facility
that allows Prodigy to learn from experimentation and handle situations where its
domain operators have been incorrectly or incompletely specified.
New knowledge from current explanations

One challenge in developing systems that can learn from their own experience lies in
how to capture and efficiently exploit relevant experience. Our strategy is to build a
general explanation facility that is also closely tied to Prodigy's steps in solving a
particular problem. This facility will enable Prodigy to explain its problem solutions so
that both it and humans can use the information.

Earlier systems restricted their target concepts to the problem solver's actual goals.
That is, they could transform a failure to "stack block 27 on cylinder 5" into new
knowledge, but had no higher-level concept for "the stack operator failed at node 7" in
the search tree. In the former case, the mapping from problem-solving trace to causal

4-7

explanation is fairly obvious, though limited in applicability. The latter case, however,
requires an explicit means of mapping from trace to explanation proving some more
general concept such as "this operator failed". We have designed an efficient
"explanation-based specialization" (EBS) method that handles the more general case.
Our initial EBS module links EBL and the problem solver, mapping from trace to ex­
planation through explicit discrimination functions that indicate which axioms are ap­
propriate.

Mechanically generated explanations, unfortunately, tend toward arcane verbosity, as
researchers in automatic theorem-proving would agree. Humans have difficulty reading
them and other programs have difficulty evaluating them. EBS is no different, so we
designed a procedure to meet both clients' needs. Our "compression analysis" method
embodies a post-processing strategy that rewrites learned control rules, increasing their
readability and reducing their match cost. The compressor employs partial evaluation,
truth-preserving logical transformations, and domain-specific simplification rules.

Merely identifying and formulating new knowledge cannot guarantee that it will con­
tribute a cost-effective control rule. Quite possibly the time to match a rule with precon­
ditions may exceed any savings in solution time. To address this issue and give
Prodigy a selective learning capability, we designed a method that empirically analyzes
control rule utility, as suggested in [Minton 85a]. Our metric compares a rule's average
match cost to its average savings, adjusting for application frequency.

Finally, since the ultimate test is how well Prodigy solves a realistic problem, we
created an experimental test domain. Our domain describes the expertise required for
crafting a primary telescope mirror from raw materials and includes operators for grind­
ing, aluminizing, and polishing. We produced an initial design for methods of monitoring
a solution plan while it executes, dynamically replanning when reality diverges from ex­
pectation, and learning through experiment. These capabilities represent preliminary
steps toward learning that can correct an incomplete or inaccurate world model.

4.2.2. Integrating learning in a reactive environment
The World Modelers Project explores machine learning within a simulated reactive en­

vironment that facilitates designing, implementing, and testing integrated learning sys­
tems [Carbonell and Hood 86]. Researchers can define autonomous "agents" whose
"bodies" can move about the environment, performing simple actions such as pushing
objects. An agent's "mind" resides in a program that learns how to satisfy its predefined
needs and priorities. Our project goals include discovering learning techniques ap­
plicable to a wide range of real-world learning tasks such as planning and sensory-
motor skill acquisition. We also seek methods for combining such learning techniques
to form a complete, autonomous agent that can gradually acquire knowledge through
experience and adapt to a changing environment.

Our work focuses on constructing agents that can survive within the environment for
extended periods. That is, we strive to build complete cognitive systems that continue

4-8

acquiring new abilities without losing those they already have. We seek robust learning
techniques that apply in a wide variety of situations and that remain insensitive to small
environmental changes. An agent should be able to obtain food, for example, even if it
knows only approximately where to look. Such techniques offer the greatest promise of
successful transfer to real-world robots that must deal with environments about which
they have incomplete knowledge. During the latter half of 1986, we extended our
agents' cognitive architectures to incorporate leaming-from-experiment mechanisms
and built supporting software to help implement such agents.

As a first step toward building organisms capable of interesting learning behavior, we
designed a cognitive architecture partitioned into ten basic components: the internal
state generator, the object and event recognizers, the cognitive map constructor, the fo­
cal attention mechanism, the working memory, the long term memory, the scheduler,
the planner, and the schema-learning mechanisms [Mozer and Gross 85]. We designed
the architecture as a framework within which subsystems could be independently
designed and implemented. During the first half of 1985, we completed designing and
implementing one such subsystem, a schema-based event memory.
Extending agent architectures

To create a substrate for more sophisticated abilities, we developed a method of ac­
tive learning through which an agent can exploit environmental feedback to refine its un­
derstanding of operator capabilities. This experimental learning—trying an action se­
quence and observing the result, in effect—permits an agent to begin "life" from a very
basic specification and almost no knowledge of its world. Our method allows an agent
to improve its knowledge by discovering which environmental features are relevant to
selecting a particular operator. When its initially simple operator descriptions prove in­
adequate to identify an effective operator, the agent can enrich the descriptive
templates. To develop a new template feature, the agent searches heuristically for a
linear discriminator function that will distinguish cases where the operator succeeds
from those where it fails unexpectedly.
Software for building agents

Each learning agent needs an interface between itself and the environment
simulator—the "mind-body" connection. Such an interface provides mechanisms for
transforming and filtering the available, potentially voluminous sensory data down to
those few data that the agents' higher cognitive mechanisms can perceive directly. We
designed and implemented a generalized sensor-effector interface that meets this need.
Our design provides a set of shared utilities and offers sufficient versatility that it will
reduce the code each investigator must write when building a new agent.

In another move to simplify building agents, we implemented a production system
package that combines frame-like data structures with priority-ordered control rules.
Our Rulekit package employs a fast, Rete-style match algorithm and, due to its in­
heritance capability, offers more powerful and flexible pattern-matching than standard
O P S packages. Rulekit's conflict-resolving mechanisms, based on agendas, also yield
greater flexibility and facilitate obtaining desirable agent behavior. We can, for example,
assign invocation precedence to higher-priority rules. This strategy would allow intense

4-9

sensory data, such as a loud noise, to interrupt an agent's current activity and let the
agent attend to a more urgent stimulus. Rulekit provides a general-purpose Al tool,
simplifying the investigator's task by transparently handling such issues as match ef­
ficiency. Beyond the World Modelers domain, other projects in machine learning and
expert systems have recognized Rulekit's value and currently use it.

Seeing what transpires within the simulated physical environment has proven crucial
to debugging the simulator. We recently upgraded our monitoring capability by im­
plementing a graphical interface on a Sun workstation. The interface allows inves­
tigators to monitor agents' behavior as they interact with other agents and objects. The
new implementation exploits specialized color graphics hardware to achieve a hundred­
fold increase in drawing speed and a tenfold increase in resolution over our previous
implementation. With it, we have identified and corrected numerous, previously un­
detected qualitative problems in collision resolution.

Finally, we shipped our world simulator to the UC-lrvine group, which will also use it to
study learning within reactive environments. They, however, will investigate a different
task set and will probably test the environment in areas where our group has not ven­
tured. Our success in exporting the simulator augurs well for porting the system to
other sites, too.

4.3. Massively parallel architectures
Humans apparently solve problems in a "knowledge-intensive" mode, applying small

amounts of search when necessary. The human strategy is flexible and avoids the
need to encode all knowledge. Many successful Al systems mimic the human style and
expert systems offer the prime example. Competitive gaming systems typically employ
the opposite scheme, relying primarily on search.

In the quest for higher performance, "more of the same" offers diminishing amounts of
"better". Clearly, a more productive approach would evolve knowledge-intensive sys­
tems toward increased search or introduce intelligence into search-intensive systems.
Our research offers an opportunity to study the effects of extremely fast—and relatively
clever—searches in very large problem spaces. The opportunity here is significant be­
cause we have no experience with intelligent systems, human or mechanical, solving
problems in this manner.

4.3.1. Parallel search and pattern recognition
Our work on parallel architectures has concentrated mainly on the Hitech chess

machine, which achieves its success from parallelism in the right places. Hitech has
now reached a National rating of 2359, making it approximately the 180 t h best US chess
player.

Hitech's search algorithm must identify possible moves, determine whether a given
position is legal, recognize positions seen before, and evaluate the candidate position,

4-10

among other things. To minimize elapsed time, Hitech performs these tasks in parallel.
This strategy alone allows it to process approximately 175,000 positions/second, com­
parable to the fastest chess program on a 4XMP-Cray.

Parallelism is most crucial in the evaluation stage. At Hitech's search rate, it can
spend, at most, one microsecond evaluating each position. During that interval, a
super-fast, general-purpose machine could execute possibly 50 instructions, a number
that could not go very far in evaluating a complex situation, even given the power of
vector instructions. We have found that pattern recognition complements Hitech's
powerful search extremely well, though other systems typically avoid it because either:

• On a serial machine, examining all potential patterns is simply too expen­
sive.

• Where pattern-specific hardware is employed, adding a new pattern or
changing an old one means building new hardware.

Hitech avoids these problems by having programmable pattern recognition hardware.
At present there are 22 such units, each capable of recognizing patterns of limited com­
plexity. Before Hitech begins a search, a software Oracle analyzes the root position
and decides which patterns from its pattern library should be loaded into each unit. This
provides both speed and flexibility, since the loading occurs only once per search.
Since we incorporated the parallel pattern approach, Hitech's rating has climbed about
200 points, or one full rating category from high Expert to high Master.

4.3.2. S U P R E M : A new search architecture

Out of our Hitech research has emerged a new search architecture, which we call
S U P R E M (Search Using Pattern Recognition as an Evaluation Mechanism). The system
architecture has two parts:

• The Oracle is S U P R E M ' s primary knowledge repository and has all
knowledge the system needs to operate. Since the knowledge is domain-
dependent, each domain requires a unique Oracle. After analyzing the root
position, the Oracle selects which patterns should be loaded into which
units, and directs the compilation and down-loading of these patterns.

• The Searcher executes the search, and evaluates the nodes of the search
tree. This involves a move generator that can order the legal moves ac­
cording to their potency so that likely best solutions are tried first. It also
involves evaluation using the Pattern Recognizer units. These units
retrieve values whenever the candidate state—as a pattern of state com­
ponents — matches pre-tabulated patterns in the recognizer memory. The
outputs of these recognizer units is summed to form the evaluation of a
node. The tree of possibilities is evaluated in the usual way by backing up
the values of leaf nodes to produce a more informed view of what the value
of any action at the root really is.

During 1986, the pattern recognizing units were made more powerful, so as to allow
global context— the most essential characteristics of the current state— to influence the

4-11

evaluation. For instance, the interest in King safety is very much dependent upon how
much opponent material exists for attacking the King. As the amount of material les­
sens, so does the interest in protecting the King. In 1987, we have been developing
software to take advantage of this new hardware. This is a difficult undertaking involv­
ing much tuning to determine just what the global state variables (which we have called
Application Coefficients in earlier work) should look like, and how much influence each
should have.

We have also been working on new search algorithms since it is becoming apparent
that in order to play chess at the highest level, it will be necessary to search deeper
than any chess machine presently can. To this end a new second generation hardware
move generator has been built which is faster than the Hitech move generator, only re­
quires a single chip, and can be paired with other identical chips to make a multiproces­
sor searching several parts of the tree at the same time. This chip with very rudimen­
tary support was able to achieve an even score in the 1986 ACM North American Com­
puter Chess Championship.

4.3.3. Boltzmann Networks
The Boltzmann Machine group, an interdisciplinary research team from the Computer

Science and Psychology departments, is investigating a class of fine-grained, massively
parallel computer architectures that may allow us to build a fast, general recognition en­
gine. The machine can be trained by showing it examples of the desired input/output
mappings and has some capacity for generalizing from the cases it has seen to similar
cases. Boltzmann networks resemble neuron networks and may help us to understand
how such operations are carried out by the human brain. In addition, Boltzmann net­
works are good candidates for wafer-scale VLSI technology because they employ a dis­
tributed representation that is inherently fault-tolerant.

We conducted a series of experiments on small-scale Boltzmann networks using
simulators. At present, we have an interesting mathematical result that guarantees a
certain learning procedure will build internal representations that allow the connection
strengths to capture the underlying constraints implicit in a large ensemble of examples
taken from a domain. We also have simulations that show that the theory works for
some simple cases, but the current version of the learning algorithm is very slow [Ackley
et al. 85].

In an attempt to speed up the learning, we are investigating variations on the
Boltzmann learning algorithms. We are focusing on back-propagation, a technique that
was discovered by Hinton, along with Rumelhart and Williams of UCSD. Back-
propagation learns from examples without the costly "simulated annealing" searches of
the Boltzmann architecture. Similar techniques were considered years ago, but were
rejected because the learning process could get stuck. Fortunately, we have found,
based on simulations, that this seldom happens in practice, and for some kinds of
problems, back-propagation is one or two orders of magnitude faster than the pure
Boltzmann architecture [Hinton et al. 86].

4-12

Boltzmann and back-propagation networks are naturally suited for recognition tasks
because the networks are trained to produce some particular response for a given class
of inputs. But, to broaden the architecture's application to more than just recognition
tasks, Touretzky has been studying the problem of building more conventional symbol-
processing Al architectures on a connectionist substrate [Touretzky and Hinton 85].

4.4. Rational control of reasoning
On the more theoretical side of Machine Intelligence, Doyle has been investigating

issues related to rational control of reasoning. Rational control of reasoning aims at in­
creasing the power, flexibility, and reliability of knowledge-based systems. Current
techniques are relatively unreliable and inflexible, since they may fail on one problem
even though they succeed on closely related ones, and since excessive effort is often
necessary to revise them to correct such failures. Rationally controlled reasoning
reduces unreliability, for the hallmarks of rationality are flexibility and comprehensive­
ness, taking everything into account. Doyle's research uses tools from modem logic,
decision theory, and the theory of algorithms to develop formal specifications and
designs for agents that rationally and deliberately control their own reasoning and or­
ganization as well as their external actions.

Doyle first explains each of the central topics in Al in terms of rationally planned and
conducted revisions of the agent's attitudes. Rationally adopting and revising beliefs
and probabilities forms the basis of reasoning, learning, and reason maintenance. Ra­
tionally adopting and revising goals and preferences forms the basis of problem solving,
search, and decision making. Rationally adopting and revising intentions and priorities
forms the basis of planning. Further, most issues concerning meta-reasoning, reflec­
tion, and control of reasoning are more clearly described and evaluated as aspects of
rationally planned reasoning.

Doyle then applies theories from logic and decision theory to formalize the special
sorts of decisions that arise in controlling one's own reasoning. These formalizations
connect the common non-numerical Al techniques with the common numerical statis­
tical techniques in a theoretically rigorous way. This permits ready connections be­
tween ideas and techniques in Al and ideas and techniques in logic, statistics, decision
theory, economics, and operations research, facilitating transportation of good ideas
and techniques into and out of Al.

During the first half of 1987, Doyle completed a monograph on rational control, and
began circulating the draft in July 1987. The monograph, titled Artificial Intelligence and
Rational Self-Government, is an initial presentation of the rational view of artificial intel­
ligence theories. One specific accomplishment is an application of Dana Scott's theory
of information systems to describing the internal logic of the agent's states. This theory
addresses some sort of unreliability through notions of constitutive logics and constitu­
tive intentions, which are limited logics and self-specifications that the agent automati­
cally respects without special control. Such abstract logics permit formal presentations
of Al architectures that are just as rigorous as formal theories of programming language
semantics.

4-13

Another accomplishment is a formal theory of decision-making under incomplete and
inconsistent beliefs and preferences. This theory is based on qualitative comparisons of
relative likelihood and preferability, and consistent selections from inconsistent sets.
Expressing rational control knowledge qualitatively instead of in terms of inconvenient
numerical representations enhances the flexibility with which the agent's beliefs may be
modified, either by itself or by its informants during knowledge acquisition. As an added
attraction, one special case of this theory is formally identical to the standard theory of
group decision-making and public choice. This means that ideas about decision-making
with conflicting preferences developed in the study of political, social, and business or­
ganizations may be readily transformed into techniques with which artificial agents
might overcome inconsistencies in their knowledge.

4-14

[Ackley et al. 85] Ackley, D.H., G.E. Hinton, and T.J. Sejnowski.
A learning algorithm for Boltzmann machines.
Cognitive Science 9(1), January-March, 1985.

The computational power of massively parallel networks of
simple processing elements resides in the communication
bandwith provided by the hardware connections between
elements. These connections can allow a significant frac­
tion of the knowledge of the system to be applied to an in­
stance of a problem in a very short time. One kind of com­
putation for which massively parallel networks appear to be
well suited is large constraint satisfaction searches, but to
use the connections efficiently two conditions must be met:
first, a search technique that is suitable for parallel net­
works must be found; second, there must be some way of
choosing internal representations which allow the preexist­
ing hardware connections to be used efficiently for encod­
ing the constraints in the domain being searched. We
describe a general parallel search method, based on
statistical mechanics, and we show how it leads to a
general learning rule for modifying the connection
strengths so as to incorporate knowledge about a task
domain in an efficient way. We describe some simple ex­
amples in which the learning algorithm creates internal
representations that are demonstrably the most efficient
way of using the preexisting connectivity structure.

[Berliner and Ebeling 86]
Berliner, H. and C. Ebeling.
The SUPREM architecture: A new intelligent paradigm.
Artificial Intelligence 28:3-8,1986.

[Bisiani 87] Bisiani, R.
A software and hardware environment for developing Al applications

on parallel processors.
In Proceedings of the 5th National Conference on Al, AAAI, August,

1987.
This paper describes and reports on the use of an environment,

called Agora, that supports the construction of large, com­
putationally expensive and loosely-structured systems, e.g.
knowledge-based systems for speech and vision under­
standing. Agora can be customized to support the pro­
gramming model that is more suitable for a given applica­
tion. Agora has been designed explicitly to support mul­
tiple languages and highly parallel computations. Systems
built with Agora can be executed on a number of general
purpose and custom multiprocessor architectures.

4-15

[Carbonell 85] Carbonell, J.G.
Derivational analogy: A theory of reconstructive problem solving and

expertise acquisition.
Technical Report CMU-CS-85-115, Carnegie Mellon University Com­

puter Science Department,
March, 1985.

Derivational analogy, a method of solving problems based on
the transfer of past experience to new problem situations,
is discussed in the context of other general approaches to
problem solving. The experience transfer process consists
of recreating lines of reasoning, including decision se­
quences and accompanying justifications, that proved ef­
fective in solving particular problems requiring similar initial
analysis. The role of derivational analogy in case-based
reasoning and in automated expertise acquisition is dis­
cussed.

[Carbonell and Hood 85]
Carbonell, J.G. and G. Hood.
The World Modelers project: Objectives and simulator architecture.
In Proceedings of the Third International Machine Learning

Workshop, June, 1985.
Machine learning has long sought to construct complete,

autonomous learning systems that start with general in­
ference rules and learning techniques, and gradually ac­
quire complex skills and knowledge through continuous in­
teraction with an information-rich external environment.
The World Modelers project provides a simplified artificial
environment—a continuous three-dimensional physical
model of the world—to facilitate the design, implemen­
tation, and testing of integrated learning systems. This
paper presents the rationale for building the simulator, and
briefly describes its capabilities and the system architec­
ture underlying its implementation.

[Carbonell and Hood 86]
Carbonell, J.G. and G. Hood.
The World Modelers project: Learning in a reactive environment,
In Mitchell, T.M., J.G. Carbonell, and R.S. Michalski, Machine Learn­

ing: A Guide to Current Research, Pages 29-34. Kluwer
Academic Press, 1986.

[Doyle 85a] Doyle, J.
Circumscription and implicit definability.
Journal of Automated Reasoning 1:391 -405,1985.

We explore some connections between the technique of cir­
cumscription in artificial intelligence and the notion of im­
plicit definition in mathematical logic. Implicit definition can
be taken as the informal intent, but not necessarily the for­
mal result, of circumscription. This raises some questions

4-16

for logical theory and suggests some implications for artifi­
cial intelligence practice. The principal implication is that
when circumscription 'works' its conclusions can be ex­
plicitly described.

[Doyle 85b] Doyle, J.
Expert systems and the 'myth' of symbolic reasoning.
IEEE Transactions on Software Engineering SE-11(11), November,

1985.
Elements of the artificial intelligence approach to expert sys­

tems offer great productivity advantages over traditional
approaches to application systems development, even
though the end result may be a program employing Al
techniques. These productivity advantages are the hidden
truths behind the 'myth' that symbolic reasoning programs
are better than ordinary ones.

[Doyle 85c] Doyle, J.
Reasoned assumptions andpareto optimality.
Technical Report CMU-CS-85-121, Carnegie Mellon University Com­

puter Science Department,
December, 1985.

Default and non-monotonic inference rules are not really epis-
temological statements, but are instead desires or
preferences of the agent about the makeup of its own men­
tal state (epistemic or otherwise). The fundamental rela­
tion in non-monotonic logic is not so much self-knowledge
as self-choice of self-determination, and the fundamental
justification of the interpretations and structures involved
come from decision theory rather than from logic and epis-
temology.

[Goetsch 86] Goetsch, G.
Consensus: A statistical learning procedure in a connectionist

network.
Technical Report CMU-CS-86-131, Carnegie Mellon University Com­

puter Science Department,
May, 1986.

We present a new scheme for the activity of neuron-like ele­
ments in a connectionist network. The Consensus scheme
is based on statistical inference. The guiding principle of
Consensus is that decisions should be deferred until suf­
ficient evidence accumulates to make an informed choice.
Consequently, large changes in network structure can be
made with confidence. Nodes have an awareness of their
role and utility in the network which allows them to in­
crease their effectiveness. The reinforcement scheme util­
izes the notion of confidence so that only nodes proven to
contribute successfully issue reinforcements. Nodes are
grouped into communities to exploit their collective

4-17

knowledge which exceeds any individual member. The
network was tested against several problems and was able
to find suitable encodings to solve them.

[Gupta et al. 86] Gupta, A., C. Forgy, A. Newell, and R. Wedig.
Parallel algorithms and architectures for rule-based systems.
In Thirteenth Annual International Symposium on Computer

Architecture, IEEE, June, 1986.
Rule-based systems, on the surface, appear to be capable of

exploiting large amounts of parallelism-it is possible to
match each rule to the data memory in parallel. In prac­
tice, however, we show that the speed-up from parallelism
is quite limited, less than 10-fold. The reasons for the
small speed-up are: (1) the small number of rules relevant
to each change to data memory; (2) the large variation in
the processing required by the relevant rules; and (3) the
small number of changes made to data memory between
synchronization steps. Furthermore, we observe that to
obtain this limited factor of 10-fold speed-up, it is neces­
sary to exploit parallelism at a very fine granularity. We
propose that a suitable architecture to exploit such fine-
grain parallelism is a bus-based shared-memory mul­
tiprocessor with 32-64 processors. Using such a mul­
tiprocessor (with individual processors working at 2 MIPS),
it is possible to obtain execution speeds of about 3800
rule-firings/sec. This speed is significantly higher than that
obtained by other proposed parallel implementations of
rule-based systems.

[Gupta et al. 87] Gupta, A., C.L Forgy, D. Kalp, A. Newell, and M. Tambe.
Results of parallel implementation of OPS5 on the Encore

multiprocessor.
Technical Report CMU-CS-87-146, Carnegie Mellon University Com­

puter Science Department,
August, 1987.
Anoop Gupta is now a member of the Computer Science Depart­

ment, Stanford University.
Until now, most results reported for parallelism in production

systems (rule-based systems) have been simulation
results—very few real parallel implementations exist. In
this paper, we present results from our parallel implemen­
tation of OPS5 on an Encore multiprocessor with 16 CPUs.
The implementation exploits very fine-grained parallelism
to achieve significant speed-up. Our implementation is dis­
tinct from other parallel implementations in that we attempt
to parallelize a highly optimized C-based implementation of
OPS5. This is in contrast to other efforts where slow lisp-
based implementations are being parallelized. The paper
discusses both the overall structure and the low-level

4-18

issues involved in the parallel implementation and presents
the performance numbers that we have obtained.

[Hinton and Lang 85]
Hinton, G.E. and K.J. Lang.
Shape recognition and illusory conjunction.
In Proceedings of the International Joint Conference on Artificial

lntelligence-85, Pages 252-259. IJCAI, 1985.
One way to achieve viewpoint-invariant shape recognition is to

impose a canonical, object-based frame of reference on a
shape and to describe the positions, sizes and orientations
of the shape's features relative to the imposed frame. This
computation can be implemented in a parallel network of
neuron-like processors, but the network has a tendency to
make errors of a peculiar kind: When presented with
several shapes it sometimes perceives one shape in the
position of another. The parameters can be carefully tuned
to avoid these 'illusory conjunctions' in normal cir­
cumstances, but they reappear is the visual input is
replaced by a random mask before the network has settled
down. Treisman and Schmidt (1982) have shown that
people make similar errors.

[Hinton et al. 86] Hinton, G.E., J.M. McClelland, and D.E. Rumelhart.
Distributed representations,
In Rumelhart, D.E. and J.L. McClelland, Parallel Distributed Process­

ing: Explorations in the Microstructure of Cognition. Bradford
Books/MIT Press, 1986.
Every representational scheme has its good and bad points.

Distributed representations are no exception. Some
desirable properties arise very naturally from the use of
patterns of activity as representations. Other properties,
like the ability to temporarily store a large set of arbitrary
associations, are much harder to achieve. As we shall
see, the best psychological evidence for distributed
representations is the degree to which their strengths and
weaknesses match those of the human mind.

The first section of this chapter stresses some of the virtues of
distributed representations. The second section considers
the efficiency of distributed representations, and show
clearly why distributed representations can be better than
local ones for certain classes of problems. A final section
discusses some difficult issues which are often avoided by
advocates of distributed representations, such as the
representation of constituent structure and the sequential
focusing of processing effort on different aspects of a
structured object.

4-19

Hood, G.
Neural modeling as one approach to machine learning.
In Proceedings of the Third International Machine Learning

Workshop, June, 1985.
In this paper I propose that a neural modeling approach is

reasonable for investigating certain low-level learning
processes such as are exhibited by invertebrates. These
include habitation, sensitization, classical conditioning, and
operant conditioning. Recent work in invertebrate
neurophysiology has begun to provide much knowledge
about the underlying mechanisms of learning in these
animals. Guided by these findings, I am constructing simu­
lated organisms which will display these basic forms of
learning.

Iwasaki, Y.
Generating behavior equations from explicit representation of

mechanisms.
Technical Report CMU-CS-87-131, Carnegie Mellon University Com­

puter Science Department,
June, 1987.

The methods of causal ordering and comparative statics provide
an operational means to determine the casual relations
among the variables and mechanisms that describe a
device, and to assess the qualitative effects of a given dis­
turbance to the system. However, for correct application of
the method of causal ordering, the equations comprising
the model of the device must be such that each of them
stands for a conceptually distinct mechanism. In this paper,
we discuss the issue of building a model that meets this re­
quirement and present our solution. The approach we
have taken for building device models in our domain of a
power plant is to represent explicitly one's understanding
of mechanisms underlying an equation model as flows of
matter and energy. A system was implemented to
generate structural equations automatically from this
representation. We discuss the results and some of the
problems encountered along the way.

[Iwasaki and Simon 85]
Iwasaki, Y. and H. Simon.
Causality in device behavior.
Technical Report CMU-CS-85-118, Carnegie Mellon University Com­

puter Science Department,
March, 1985.

This paper shows how formal characterizations of causality and
of the method of comparative statics, long used in
economics, thermodynamics and other domains, can be
applied to clarify and make rigorous the qualitative causal

[Hood 85]

[Iwasaki 87]

4-20

calculus recently proposed by de Kleer and Brown (1984).
The formalization shows exactly what assumptions are re­
quired to carry out causal analysis of a system of inter­
dependent variables in equilibrium and to propagate distur­
bances through such a system.

[Iwasaki and Simon 86]
Iwasaki, Y. and H. Simon.
Theories of causal ordering: Reply to de Kleer and Brown.
Technical Report CMU-CS-86-104, Carnegie Mellon University Com­

puter Science Department,
January, 1986.

In their reply to our paper, Causality in Device Behavior, de
Kleer and Brown seek to establish a clear product differen­
tiation between the well-known concepts of causal ordering
and comparative statics, on the one side, and their mythi­
cal causality and qualitative physics, on the other. Most of
the differences they see, however, are invisible to our
eyes. Contrary to their claim, the earlier notion of
causality, quite as much as the later one, is qualitative and
derives the relationship between the equations and their
underlying components which comprise the modeled sys­
tem. The concepts of causal ordering and comparative
statics offer the advantage of a formal foundation that
makes clear exactly what is being postulated. Hence, they
can contribute a great deal to the clarification of the causal
approaches to system analysis that de Kleer and Brown
are seeking to develop.

In this brief response to the Comments, we discuss the source
of the structural equations of the causal ordering approach,
and we challenge more generally the claim that there are
inherent differences (e.g. in the case of feedback) between
the engineer's and the economist's approach to the study
of system behavior.

[Kahn and McDermott 85]
Kahn, G. and J. McDermott.
MUD: A drilling fluids consultant.
Technical Report CMU-CS-85-116, Carnegie Mellon University Com­

puter Science Department,
March, 1985.

This paper reports on M U D , a drilling fluids consultant developed
at Carnegie Mellon University, M U D is able to diagnose
fluid problems and recommend treatments for their correc­
tion, M U D ' S functionality, its approach to diagnosis, and its
treatment strategies are discussed. In addition, we ex­
amine why M U D ' S approach to diagnosis is successful
given domain constraints, and draw several conclusions
with respect to knowledge acquisition strategies.

4-21

[Laird 85] Laird, J.E.
Soar 4.0 user's manual
1985.

The Soar software is available for non-commercial research
purposes and it may be copied only for that use. Any
questions concerning the use of Soar should be directed to
John E. Laird at the address below. This software is made
available as is and Xerox Corporation makes no warranty
about the software, its performance, or the accuracy of this
manual describing the software. All aspects of Soar are
subject to change in future releases.

[Laird et al. 85a] Laird, J.E., P.S. Rosenbloom, and A. Newell.
Chunking in Soar: the anatomy of a general learning mechanism.
Technical Report CMU-CS-85-154, Carnegie Mellon University Com­

puter Science Department,
August, 1985.

The goal of the Soar project is to build a system capable of
general intelligent behavior. We seek to understand what
mechanisms are necessary for intelligent behavior,
whether they are adequate for a wide range of tasks - in­
cluding search-intensive tasks, knowledge-intensive tasks,
and algorithmic tasks - and how they work together to form
a general cognitive architecture. One necessary com­
ponent of such an architecture, and the one on which we
focus in this paper, is a general learning mechanism. A
general learning mechanism would possess the following
properties. Task generality. It can improve the system's
performance on all of the tasks in the domains.
Knowledge generality. It can base its improvements on
any knowledge available about the domain. Aspect
generality. It can improve all aspects of the system.
Otherwise there would be a wandering-bottleneck
problem\x\ which those aspects not open to improvement
would come to dominate the overall performance effort of
the system. Transfer of learning. What is learned in one
situation will be used in other situations to improve perfor­
mance. It is through the transfer of learned material that
generalization, as it is usually studied in artificial intel­
ligence, reveals itself in a learning problem solver.

There are many possible organizations for a general learning
mechanism, each with different behavior and implications.
The one adopted in Soar is the simple experience learner.
There is a single learning mechanism that bases its
modifications on the experience of the problem solver. The
learning mechanism is fixed, and does not perform any
complex problem solving.

4-22

[Laird et al. 85b] Laird, J., P. Rosenbloom, A. Newell, J. McDermott, and E. Orciuch.
Two Soar studies.
Technical Report CMU-CS-85-110, Carnegie Mellon University Com­

puter Science Department,
January, 1985.

The first paper is titled Towards Chunking as a General Learn­
ing Mechanism (Laird, Rosenbloom, & Newell, 1984).
Chunks have long been proposed as a basic organiza­
tional unit for human memory. More recently chunks have
been used to model human learning on simple perceptual-
motor skills. In this paper we describe recent progress in
extending chunking to be a general learning mechanism by
implementing it within Soar. By implementing chunking
within a general-problem solving architecture we take sig­
nificant steps toward a general problem solver that can
learn about all aspects of its behavior. We demonstrate
chunking in Soar on three tasks: the Eight Puzzle, Tic-Tac-
Toe, and a part of the R1 computer-configuration task. Not
only is there improvement with practice but chunking also
produces significant transfer of learned behavior, and
strategy acquisition.

The second paper, titled R1-Soar: An Experiment in
Knowledge-Intensive Programming in a Problem-Solving
Architecture (Rosenbloom, Laird, McDermott Newell, & Or­
ciuch, 1984), presents an experiment in knowledge-
intensive programming in Soar. In Soar, knowledge is en­
coded within a set of problem spaces, yielding a system
capable of reasoning from first principles. Expertise con­
sists of additional rules that guide complex problem-space
searches and substitute for expensive problem-space
operators. The resulting system uses both knowledge and
search when relevant. Expertise knowledge is acquired ei­
ther by having it programmed, or by a chunking
mechanism that automatically learns new rules reflecting
the results implicit in the knowledge of the problem spaces.
The approach is demonstrated on the computer-system
configuration task, the task performed by the expert sys­
tem, R1.

[Lehr 86] Lehr, T.F.
The implementation of a production system machine.
In Proceedings of the Nineteenth Annual Hawaii International Con­

ference on System Sciences, University of Hawaii, January,
1986.

Also available as Technical Report CMU-CS-85-126.
The increasing use of production systems has drawn attention

to their performance drawbacks. This paper discusses the
architecture and implementation of a uniprocessor O P S
production system machine. A brief tutorial on the O P S

4-23

production system and its Rete algorithm introduces salient
issues that temper the selection of a uniprocessor architec­
ture and implementation. It is argued that general features
of Reduced Instruction Set Computer (RISC) architectures
favorably address these issues. The architecture and a
RTL description is presented for a pipelined RISC proces­
sor designed specifically to execute O P S . The processor
has a static branch prediction strategy, a large register file
and separate instruction and data fetch units.

[McKeown and Harvey 87]
McKeown, D.M. Jr. and W.A. Harvey.
Automating knowledge acquisition for aerial image interpretation.
Technical Report CMU-CS-87-102, Carnegie Mellon University Com­

puter Science Department,
January, 1987.

The interpretation of aerial photographs requires a lot of
knowledge about the scene under consideration.
Knowledge about the type of scene: airport, suburban
housing development, urban city, aids in low-level and in­
termediate level image analysis, and will drive high-level
interpretation by constraining search for plausible consis­
tent scene models. Collecting and representing large
knowledge bases requires specialized tools. In this paper
we describe the organization of a set of tools for interactive
knowledge acquisition of scene primitives and spatial con­
straints for interpretation of aerial imagery. These tools in­
clude a user interface for interactive knowledge acquisition,
the automated compilation of that knowledge from a
schema-based representation into productions that are
directly executable by our interpretation system, and a per­
formance analysis tool that generates a critique of the final
interpretation. Finally, the generality of these tools is
demonstrated by the generation of rules for a new task,
suburban house scenes, and the analysis of a set of im­
agery by our interpretation system.

[Minton 85a] Minton, S.N.
Selectively generalizing plans for problem solving.
In Proceedings of the Ninth International Joint Conference on Artifi­

cial Intelligence, August, 1985.
Problem solving programs that generalize and save plans in or­

der to improve their subsequent performance inevitably
face the danger of being overwhelmed by an ever-
increasing number of stored plans. To cope with this
problem, methods must be developed for selectively learn­
ing only the most valuable aspects of a new plan. This
paper describes M O R R I S , a heuristic problem solver that
measures the utility of plan fragments to determine

4-24

whether they are worth learning, M O R R I S generalizes and
saves plan fragments if they are frequently used, or if they
are helpful in solving difficult subproblems. Experiments
are described comparing the performance of M O R R I S to a
less selective learning system.

[Minton 85b] Minton, S.N.
A game-playing program that learns by analyzing examples.
Technical Report CMU-CS-85-130, Carnegie Mellon University Com­

puter Science Department,
May, 1985.

This paper describes a game-playing program that learns tac­
tical combinations. The program, after losing a game, ex­
amines the opponent's moves in order to identify how the
opponent forced the win. By analyzing why this sequence
of moves won the game, a generalized description of the
winning combination can be produced. The combination
can then be used by the program in later games to force a
win or to block an opponent's threat. This technique is ap­
plicable for a wide class of games including tic-tac-toe, go-
moku and chess.

[Minton 85c] Minton, S.N.
Overview of the Prodigy learning apprentice.
In Proceedings of the Third International Machine Learning

Workshop, June, 1985.
This paper briefly describes the Prodigy system, a learning ap­

prentice for robot construction tasks currently being
developed at Carnegie Mellon University. After solving a
problem, Prodigy re-examines the search tree and
analyzes its mistakes. By doing so, Prodigy can often find
efficient tests for determining if a problem solving method
is applicable. If adequate performance cannot be achieved
through analysis alone, Prodigy can initiate a focused
dialogue with a teacher to learn the circumstances under
which a problem solving method is appropriate.

[Minton et al. 86] Minton, S.N., J.G. Carbonell, C.A. Knoblock, D. Kuokka, and
H. Nordin.
Improving the effectiveness of explanation-based learning.
In Proceedings of the Workshop on Knowledge Compilation, Sep­

tember, 1986.
In order to solve problems more effectively with accumulating

experience, a system must be able to extract, analyze,
represent and exploit search control knowledge. While
previous research has demonstrated that explanation-
based learning is a viable method for acquiring search con­
trol knowledge, in practice explanation-based techniques
may generate complex expressions that are computation­
ally expensive to use. Better results may be obtained by

4-25

explicitly reformulating the learned knowledge to maximize
its effectiveness. This paper reports on the PRODIGY
learning apprentice, an instructable, general-purpose
problem solver that combines compression analysis with
explanation-based learning, in order to formulate useful
search control rules that satisfy the dual goals of generality
and simplicity.

[Mozer and Gross 85]
Mozer, M.C. and K.P. Gross.
An architecture for experiential learning.
In Proceedings of the Third International Machine Learning

Workshop, June, 1985.
This paper describes a cognitive architecture for an intelligent

organism residing in the World Modelers environment.
The architecture is partitioned into ten basic components:
the internal state generator, the object and event recog­
nizers, the cognitive map constructor, the focal attention
mechanism, the working memory, the long term memory,
the goal scheduler, the planner, and the schema-learning
mechanisms. A uniform procedural representation is
necessary for interactions among the components.

[Rappaport 85] Rappaport, A.
Goal-free learning by analogy.
In Proceedings of the Third International Machine Learning

Workshop, June, 1985.
The purpose of this research is to propose and study

mechanisms for incremental learning by goal-free learning
by analogy in an information-rich world. A similarity matrix
is obtained on which a clustering analysis is performed.
The abstractions obtained are transformed into a plan of
action which may be considered an imitation of previously
observed behavior. While the agent has no explicit idea of
the original goals, it acquires a subjective knowledge by an
a posteriori identification of goals. We discuss such
mechanisms for the building of a concept-based behavior
and the goal-free acquisition of knowledge on which
knowledge-intensive learning methodologies can then be
applied.

[Rosenbloom and Laird 86]
Rosenbloom, P.S. and J.E. Laird.
Mapping explanation-based generalization onto Soar.
In Proceedings AAAI-86:5th National Conference on Artificial

Intelligence, AAAI, August, 1986.
Explanation-based generalization (EBG) is a powerful approach

to concept formation in which a justifiable concept defini­
tion is acquired from a single training example and an un­
derlying theory of how the example is an instance of the

4-26

concept. Soar is an attempt to build a general cognitive ar­
chitecture combining general learning, problem solving,
and memory capabilities. It includes an independently
developed learning mechanism, called chunking, that is
similar to but not the same as explanation-based
generalization. In this article we clarify the relationship be­
tween the explanation-based generalization framework and
the Soar/chunking combination by showing how the EBG
framework maps onto Soar, how several EBG concept-
formation tasks are implemented in Soar, and how the
Soar approach suggests answers to four of the outstanding
issues in explanation-based generalization.

[Rosenbloom and Newell 85]
Rosenbloom, P.S. and A. Newell.
The chunking of goal hierarchies: A generalized model of practice,
In Michalski, R.S., J.G. Carbonell, and T.M. Mitchell, Machine Learn­

ing: An Artificial Intelligence Approach, Volume II. Morgan Kauf-
mann Publishers, Inc.: Los Altos, CA, 1985.
This chapter describes recent advances in the specification and

implementation of a model of practice. In previous work
the authors showed that there is a ubiquitous regularity un­
derlying human practice, referred to as the power law of
practice. They also developed an abstract law of practice,
called the chunking theory of learning. This previous work
established the feasibility of the chunking theory for a
single 1023-choice-reaction-time task, but the implemen­
tation was specific to that one task. In the current work a
modified formulation of the chunking theory is developed
that allows a more general implementation. In this for­
mulation, task algorithms are expressed in terms of hierar­
chical goal structures. These algorithms are simulated
within a goal-based production-system architecture
designed for this purpose. Chunking occurs during task
performance in terms of the parameters and results of the
goals experienced. It improves the performance of the
system by gradually reducing the need to decompose
goals into their subgoals. This model has been success­
fully applied to the task employed in the previous work and
to a set of stimulus-response capability tasks.

4-27

[Rosenbloom et al. 85]
Rosenbloom, P.S., J.E. Laird, J. McDermott, A. Newell, and
E. Orciuch.
R1-Soar: An experiment in knowledge-intensive programming in a

problem-solving architecture.
In IEEE Transactions on Pattern Analysis and Machine Intelligence,

IEEE, 1985.
Also available in Proceedings of the IEEE Workshop on Principles of

Knowledge-Based Systems, Denver, 1984, and as part of Tech­
nical Report CMU-CS-85-110.

[Saito and Tomita 86]
Saito, H. and M. Tomita.
On automatic composition of stereotypic documents in foreign

languages.
Technical Report CMU-CS-86-107, Carnegie Mellon University Com­

puter Science Department,
December, 1986.

This paper describes an interactive system that composes high
quality stereotypic documents. The language for the inter­
action is totally independent from the target language in
which the documents are written; that is, a user can
produce documents in a foreign language by interacting
with the system in his language without any knowledge of
the foreign language. It is also possible to produce docu­
ments in several languages simultaneously. The idea is
that the system first builds, by interaction, a semantic con­
tent which contains enough information to produce the
documents. Then the system composes the document by
looking at the specification file, which specifies the
stereotypic document of a particular language. A new type
of document or a new target language can be added to the
system by simply creating a new specification file without
altering the program itself. A successful pilot system has
been implemented at the Computer Science Department,
Carnegie Mellon University.

[Saxe 85] Saxe, J.B.
Decomposable searching problems and circuit optimization by retim­

ing: Two studies in general transformations of computational
structures.

Technical Report CMU-CS-85-162, Carnegie Mellon University Com­
puter Science Department,

August, 1985.
An important activity in the advancement of knowledge is the

search for general methods: techniques applicable to large
classes of problems. This dissertation studies general
transformations of computational structures in two domains
(1) design of data structures for decomposable searching

4-28

problems and (2) optimization of synchronous digital
circuits.

[Shen 87] Shen, W.
Functional transformations in Al discovery systems.
Technical Report CMU-CS-87-117, Carnegie Mellon University Com­

puter Science Department,
April, 1987.

The power of scientific discovery systems derives from two
main sources: a set of heuristics that determine when to
apply a creative operator (an operator for forming new
operators and concepts) in a space that is being explored;
and a set of creative operators that determine what new
operators and concepts will be created for that exploration.
This paper is mainly concerned with the second issue. A
mechanism called functional transformations (FT) shows
promising power in creating new and useful creative
operators during exploration. The paper discusses the
definition, creation, and application of functional transfor­
mations, and describes how the system ARE, starting with
a small set of creative operations and a small set of heuris­
tics, uses FT's to create all the concepts attained by
Lenat's AM system and others as well. Besides showing a
way to meet the criticisms of lack of parsimony that have
been leveled against AM, ARE provides a route to dis­
covery systems that are capable of "refreshing" them­
selves indefinitely by continually creating new operators.

[Stern and Lasry 85]
Stern, R.M. and M.J. Lasry.
Dynamic speaker adaptation for feature-based isolated word recog­

nition.
In IEEE Transactions on Acoustics, Speech, and Signal Processing,

IEEE, May, 1985.
In this paper we describe efforts to improve the performance of

Feature, the Carnegie Mellon University speaker-
independent speech recognition system that classifies iso­
lated letters of the English alphabet, by enabling the sys­
tem to learn the acoustical characteristics of individual
speakers. Even when features are designed to be speaker-
independent, it is frequently observed that feature values
may vary more from speaker to speaker than from letter to
letter. In these cases it is necessary to adjust the system's
statistical description of the features of individual speakers
to obtain optimum recognition performance. This paper
describes a set of dynamic adaptation procedures for up­
dating expected feature values during recognition. The al­
gorithm uses maximum a posteriori probability (MAP) es­
timation techniques to update the mean vectors of sets of

4-29

feature values on a speaker-by-speaker basis. The MAP
estimation algorithm makes optimal use of both knowledge
of the observations input to the system from an individual
speaker, and the relative variability of the features' mean
vectors across the various letters enables the system to
adapt its representation of similar sounding letters after
any one of them is presented to the classifier. The use of
dynamic speaker adaptation improves classification perfor­
mance of Feature by 49% after four presentations of the al­
phabet, when the system is provided with a posteriori
knowledge of which specific utterance had been presented
to the classifier from a particular user. Performance can be
improved by as much as 31 % when the system is allowed
to adapt passively, without any information from individual
users.

[Touretzky 86a] Touretzky, D.S.
BoltzcONS: Reconciling connectionism with the recursive nature of

stacks and trees.
In Proceedings of the Eighth Annual Conference of the Cognitive

Science Society, Cognitive Science Society, August, 1986.
Stacks and trees are implemented as distributed activity pat­

terns in a simulated neural network called BoltzcONS. The
BoltzcONS architecture employs three ideas from connec-
tionist symbol processing—coarse coded distributed
memories, pullout networks, and variable binding spaces,
that first appeared together in Touretzky and Hinton's
neural net production system interpreter. In BoltzcONS, a
distributed memory is used to store triples of symbols that
encode cons cells, the building blocks of linked lists.
Stacks and trees can then be represented as list struc­
tures. A pullout network and several variable binding
spaces provide the machinery for associative retrieval of
cons cells, which is central to BoltzcONS' operation.
Retrieval is performed via the Boltzmann Machine simu­
lated annealing algorithm, with Hopfield's energy measure
serving to assess the results. The network's ability to
recognize shallow energy minima as failed retrievals
makes it possible to traverse binary trees of unbounded
depth without maintaining a control stack. The implications
of this work for cognitive science and connectionism are
discussed.

[Touretzky 86b] Touretzky, D.S.
Representing and transforming recursive objects in a neural network,

or "Trees do grow on Boltzmann machines".
In Proceedings of the 1986 IEEE International Conference on Sys­

tems, Man, and Cybernetics, IEEE, October, 1986.
BoltzCONS is a neural network that manipulates symbolic data

4-30

structures. The name reflects the system's mixed
representational levels: it is a Boltzmann Machine in which
Lisp cons cell-like structures appear as an emergent
property of a massively parallel distributed representation.
BoltzcONS is controlled by an attached neural network
production system interpreter also implemented as a
Boltzmann Machine. Gated connections allow the produc­
tion system and BoltzcONS to pass symbols back and
forth. A toy example is presented where BoltzcONS stores
a parse tree and the production system contains a set of
rules for transforming parse trees from active to passive
voice. The significant features of BoltzCONS are its ability
to represent structured objects and its generative capacity,
which allows it to create new symbol structures on the fly.

[Touretzky and Hinton 85]
Touretzky, D.S. and G.E. Hinton.
Symbols among the neurons: Details of a connectionist inference ar­

chitecture.
In Proceedings of the International Joint Conference on Artificial

lntelligence-85, Pages 238-243. IJCAI, 1985.
Pattern matching and variable binding are easily implemented in

conventional computer architectures. In a distributed
neural network architecture each symbol is represented by
activity in many units and each unit contributes to the
representation of many symbols. Manipulating symbols
using this type of distributed representation is not as easy
as with a local representation where each unit denotes one
symbol, but there is evidence that the distributed approach
is the one chosen by nature. We describe a working im­
plementation of a production system interpreter in a neural
network using distributed representations for both symbols
and rules. The research provides a detailed account of two
important symbolic reasoning operations, pattern matching
and variable binding, as emergent properties of collections
of neuron-like elements. The success of our production
system implementation goes some way towards answering
a common criticism of connectionist theories: that they
aren't powerful enough to do symbolic reasoning.

[vandeBrug et al. 85]
van de Brug, A., J. Bachant, and J. McDermott.
Doing R1 with style.
In Proceedings of the Second Conference on Artificial Intelligence

Applications, IEEE, 1985.
A premise of this paper is that much of an expert system's

power is due to the strong constraints on the way its
knowledge can be used. But the knowledge that an expert
system has is seldom explicated in terms of uses, nor does

4-31

there seem to be much interest in identifying the source of
the usage constraints. The work reported in this paper ex­
plores the relationship between a problem-solving method
and the various roles knowledge plays in a computer sys­
tem configuration task. The results suggest that the
knowledge in a system like R1 can be represented more
coherently if the problem-solving method is exploited to ex­
plicitly define the various knowledge roles.

4-32

5. PROGRAMMING TECHNOLOGY
Programming technology comprises both the principles and knowledge (the know-

how) and the tools (primarily software systems) used to produce software—compilers,
debuggers, editors, design systems, etc. The high cost of producing software creates a
need for increasingly sophisticated environments and tools that a programmer can use
to develop and maintain software.

The Gandalf project explores two key issues in improving programming technology:
What kinds of expert knowledge about system building can we incorporate into a pro­
gramming environment, and in what respects can we make system development a
cooperative effort between the environment and the user? Our primary strategy is to
create effective methods and systems for evolving software development environments
automatically and intelligently. We divide our efforts between building tools for generat­
ing environments and testing our ideas and tools by applying them to expert systems.

We continued work on three established fronts. We completed our design for a trans­
form program generator and implemented enough of it to demonstrate its basic
feasibility. We also worked out the details of how a designer can specify alternative
data views for a target environment. Finally, we completed significant product develop­
ment on Gandalf itself, our fundamental environment-generating system.

5.1. Generating Transform Programs
A serious problem in programming environments and operating systems is that exist­

ing software becomes invalid when the environment or operating system is replaced by
a new release. Unfortunately, there has been no systematic treatment of the issues in­
volved in updating an existing environment. Current approaches are manual, ad hoc,
and time-consuming for both environment implementors and program users.

We have developed a way to move existing programs automatically from one version
of the underlying environment to the next. To see the potential of automating the tran­
sition process, consider that it took us more than half a year to convert from U N I X 4.2
BSD to the newer 4.3 version. With our new strategy, we could accomplish such a con­
version in days rather than months.

Our approach eases the tasks facing environment implementors and introduces a
higher-level role: the environment designer. Environment descriptions, as well as all
existing software, reside in a comprehensive database. The designer specifies a
revised environment by changing the formal environment descriptions. A "transformer
generator" tracks the alterations, then builds a transformer program that can map old
data formats and values into new ones. When an environment user later attempts to
access or modify a database-resident program specified under the old structural gram­
mar, the transformer program automatically converts old data structures to the new or­
ganization [Garlan et al. 86].

5-1

5.2. Toward an Environment Generator with Views
Gandalf environments are typically highly specialized systems for controlling data.

Within an environment, a user can manipulate the available database objects via tools
that perform legal operations on those objects. A user might employ distinct environ­
ments, for instance, when editing text and developing programs. One of our goals is to
make it easy to design numerous customized environments and then connect them so
the user can migrate among them according to task demands.

Our major concern centered on the idea that both tools and human users want to look
at software database objects in different ways at different times. While constructing
software, for example, a user may want the environment to display the abstract syntax
tree's structure. When maintaining a software system, the programmer may wish to
browse a high-level system outline to rapidly locate the place for modifications. Tools,
on the other hand, typically don't care about the display at all. A semantic analyzer
might search for type declarations but ignore documentation text. A program-managing
package might not be concerned with code at all but may want to know who last
modified a particular procedure. Our interest is to provide a means of merging the im­
plementation of distinct views so that users and tools can access software objects
through a variety of views. We find the problem of extending an existing database par­
ticularly interesting. How can new tools and new views be added and integrated with
existing ones? New tools are hard to add because, usually, a single data represen­
tation must serve all tools. The main difficulty is defining a data format that satisfies all
the tools.

Our solution [Garlan 87] extends existing structure-oriented approaches to tool in­
tegration by allowing a designer to define a tool in terms of its "views" into the common
database. A view describes the data types the tool contains and the primitives that
comprise its permissible operations. Tools can share data objects but each tool ac­
cesses objects only through its own views. The designer adds new tools by defining
new views, and the database thus synthesizes all views that the environment's tools
define. We have now specified the types of primitives that will be available in the
designer's environment and which will enable him to express view descriptions.

The underlying basis of our approach consists of an object-oriented notation that is
independent of any particular programming language and a translator for generating ex­
ecutable code from the notation. Reusable software building blocks are written in this
notation, which provides flexible means for combining both data structures and al­
gorithms [Kaiser and Garlan 87]. We used techniques from software generation and
object-oriented programming to design a translator to produce efficient executable sys­
tems.

From software generation techniques, we used the concept of a declarative notation
that is independent of any particular programming language but that can be translated
into an efficient implementation. To this idea, we added the object-oriented program­
ming concepts of inheritance and of encapsulating behavior with data structures. We

5-2

have added our unique concept of merging both data structures and operations. Other
object-oriented languages merge data structures, in the sense of inheriting instance
variables defined by a superclass, but no other notation besides attribute grammars
supports combining algorithms on the basis of dependencies.

5.2.1. Designing an Environment's Views

During the second half of 1986, we completed the first phases of designing and im­
plementing a new structure-oriented environment generator that employs views as its
fundamental building blocks. To evaluate our design, we employed it in extending IDL-
based systems to support concurrent views. These extensions led to a model of tool in­
tegration that combines the flexibility provided by sequentially-oriented tools with the
benefits of close cooperation and database management provided by database-oriented
tools. The extensions are based on the idea that some IDL descriptions can be treated
as views of shared views of a common object base. These views provide tools with
abstract interfaces to shared data in the same spirit in which IDL structures now provide
abstract interfaces between tools.

Our IDL extensions allow several tools to share access to a common data pool. Each
tool's data interface is defined by an IDL structure that determines its view of the ob­
jects. Mappings between views are to be handled automatically by the IDL translator
and database support mechanisms.

Our work included the following:
• extending Snodgrass' SoftLab model of tool integration to allow tools to

specify collections of structures as common views of a shared pool of ob­
jects. Tools thus act as scoping units for sharing and cooperation.

• augmenting the IDL collection types (sequence and set) with additional
primitives (indexed table, sorted table, array, multi-set). The purpose of this
extension is to give the implementor greater diversity in specifying at an
abstract level operationally distinct groupings of objects.

• introducing the notion of type compatability as mappings between opera­
tions of one type and those of another. Type compatability extends to IDL
structure compatability and provides an operational interpretation for
describing a set of objects with two different IDL structures.

• adding notation, called dynamic views, that allows one IDL structure to
describe its contents in terms of properties of nodes in another structure.
Coupled with a shared database, dynamic views serve the function of as­
sociate query found in database systems.

We also implemented a special case of views to support display tools. Several work­
ing environments now use this implementation. Approximately 2000 students used
these environments at CMU, Stanford, and NYU.

5-3

5.3. Gandalf Product Development
The Gandalf System forms the foundation for our work in generating environments

automatically, providing a workbench for creating and developing interactive program­
ming environments. The system itself includes four specialized environments that a
designer uses to specify and fine-tune target user environments, each of which offers
task-specific tools and facilities. Gandalf eliminates the economically impractical
process of handcrafting individual environments and permits environment designers to
generate families of software development environments, semi-automatically and with­
out excessive cost.

Gandalf-produced environments permit interactions not available in traditional en­
vironments. They integrate programming tools, which ease the programming process,
and system development support, which reduces the degree to which a software project
must depend on goodwill among its members. In practice, our industrial customers
have built environment prototypes and small control systems where, for example, a user
can modify system-supplied templates and icons to prepare reports on physical
parameters in a manufacturing process.

In the first half of 1987, we introduced an improved, more marketable Gandalf Sys­
tem. The enhancements represent basic software engineering that will aid a potential
environment designer in understanding the system.

5.3.1. Concurrency and segmentation in large software databases
In 1986 the Gandalf System generated environments for programming-in-the-small,

though systems like the C Prototype demonstrated that programming-in-the-large and
programming-in-the-many can be successfully approached with proper database sup­
port. Providing this "proper database support" meant addressing the diverse require­
ments and operating characteristics that programming-in-the-small, programming-in-
the-large, and programming-in-the-many have with respect to the integrated database.

The most promising approach appeared to be a method of segmenting the tree struc­
tured databases into a collection of smaller trees. The original structure is preserved (by
symbolic pointers between segments) so there is a single virtual database comprised of
many smaller segments, each residing in a separate file on secondary storage. This
scheme provides the segmentation needed for large software databases since a single
user will typically need only one or two segments in his address space at any one time.
It supports concurrent access into the database by multiple users since different users
can access different segments without readers/writers problems, and semaphores can
be associated with segments. This scheme also provides modularity in the database's
grammar description. For example, in a version control system, procedures would be
stored in separate segments and the module description (which would contain pointers
to a set of procedures for that module) would be in another segment. Since the gram­
mar for the module level should be unrelated to the grammar of the procedures, seg­
mentation at the boundary provides a natural means for keeping the two grammars
separate.

5-4

One of the issues in this scheme that we had to address was the behaviour of the
system at and across the boundaries of segments. An early version of the Gandalf Sys­
tem used a paging scheme top fault in segments whenever needed. Any node in a
database grammar could be designated as a "filenode" that would be a root for a new
segment. This was to be completely transparent to the user. This approach failed be­
cause there was no way to localize the page-in/page-out code for segments. All opera­
tions in the database kernel could never be sure if they were looking at a filenode or real
node, so each operation had to test. Even implementor-written semantic routines would
have to test for filenodes. This code became very hard to maintain and very expensive
to execute. Also, there was neither concurrency nor modularity in the database gram­
mar.

To solve these problems, we decided to incorporate into the grammar a special type
of terminal node that corresponds to a segment. This terminal node contains the sym­
bolic pointer to the actual segment. Nodes of this type will usually appear as any other
terminal node to the user, the database kernel, and the semantic routines. A few spe­
cial operations will allow the system to change its focus of attention from one segment
to another. Since we expect segment boundaries to occur at natural points, such as in
the module and procedure example given above, explicit commands and operations to
change context should also be natural for users and semantic daemons. This
eliminated the problems associated with the filenode approach by localizing the seg­
ment swapping code to those special operations.

5.3.2. Specifying tools

During the second half of 1985 we focused our attention on specifying tools for a
software development environment. We incorporated the language design from the first
half of 1985 into a new version of the Gandalf System for generating language-oriented
software development environments. Toward this end, we rewrote the Gandalf Kernel
to support the description of tools written in Action Routine Language (ARL) [Ambriola
and Staudt 86]. This involved adding kernel support for ARL primitives, attributes, sig­
nals, and transactions.

We also implemented the implementor's environment for producing structure editors
using ARL. This environment consists of two systems, A L O E G E N for generating environ­
ment descriptions, and DBgen for linking environment descriptions to form a working
editor. Both systems were bootstrapped using ARL itself. We distributed copies of the
new system, including a tutorial introduction, as a beta test release to a number of
research groups both within the CMU computer science department and outside [Staudt
86].

In a parallel development, we implemented a new generation of user interface to run
on inexpensive bitmapped personal computers such as the Macintosh. We based it on
viz, a language for describing flexible unparsing, and developed a corresponding user
interface to support multiple views of a program [Garlan 85]. This was made available
to the general public within the year as a novice programming environment for Pascal.

5-5

5.4. Bibliography
[Ambriola and Montangero 85]

Ambriola, V. and C. Montangero.
Automatic generation of execution tools in a Gandalf environment.
The Journal of Systems and Software 5(2):155-172, May, 1985.

The formal definition of a programming language in denotational
style is taken as the basis for the automatic generation of
its interpreter. The facilities available in Gandalf are ex­
ploited to implement and integrate such a generation tech­
nique in a Gandalf environment.

[Ambriola and Staudt 86]
Ambriola, V. and B.J. Staudt.
The ALOE action routine language manual.
Technical Report CMU-CS-86-129, Carnegie Mellon University Com­

puter Science Department,
May, 1986.

ARL (Action Routine Language) is a special-purpose language
for the manipulation of abstract syntax trees with attributes.
It is the language in which the users of the Gandalf System
write the semantic processing of Gandalf-style environ­
ments. This document describes ARL 1.3.

The Gandalf system provides a user with the ability to generate
a language-based programming environment given a
description^ the language. The syntax of the language is
described using a BNF-like notation. The semantics of the
language is described using attributes and ARL routines.
The syntactic and semantic language descriptions are
linked with a standard editing kernel provided by the Gan­
dalf system to produce a language-specific programming
environment. Environments generated in this manner are
often called ALOEs (A Language-Oriented Editor). The
terms Gandalf environment and Aloe are used inter­
changeably in this paper. Programs that are written with a
Gandalf environment are maintained as attributed syntax
trees, not text. ARL was therefore designed with trees as
the basic data type. The primitive operations in ARL
provide facilities to browse and manipulate tree structures.

[Anantharaman et al. 85]
Anantharaman, T.M., E.M. Clarke, M.J. Foster, and B. Mishra.
Compiling path expressions into VLSI circuits.
In Twelfth Annual ACM Symposium on Principles of Programming

Languages, ACM, January, 1985.
Path expressions were originally proposed by Campbell and

Habermann as a mechanism for process synchronization
at the monitor level. We argue that path expressions are
also useful for specifying the behavior of complicated

5-6

asynchronous circuits, and in this paper we consider the
possibility of directly implementing them in hardware.

Our implementation is complicated in the case of multiple path
expressions by the need for synchronization on event
names that are common to more than one path. Moreover,
since events are inherently asynchronous in our model, all
of our circuits must be self-timed.

Nevertheless, the circuits produced by our construction have
area proportional to N@k(dot)log(N) where N is the total
length of the multiple path expression under consideration.
This bound holds regardless of the number of individual
paths or the degree of synchronization between paths.

[Barbacci et al. 85a]
Barbacci, M.R., W.H. Maddox, T.D. Newton, and R.G. Stockton.
The Ada+ front end and code generator.
In Proceedings of the 1985 International Ada Conference: Ada in

Use, May, 1985.
The Ada + compiler is being written as a part of the Spice

project at Carnegie Mellon University, and is intended
eventually to be a full implementation of the Ada program­
ming language. A preliminary version has been released
within the university and runs on both the P E R Q workstation
and the Digital Equipment Corporation V A X , producing
code for the P E R Q under the Accent operating system.
This paper deals with the compilation issues of the Ada+
project.

[Barbacci et al. 85b]
Barbacci, M.R., S. Grout, G. Lindstrom, M. Maloney, E. Organick,
and D. Rudsill.
Ada as a hardware description environment: an initial report.
In Proceedings of the IFIP Seventh International Symposium on

Computer Hardware Description Languages, CHDL, August,
1985.

Also available as Technical Report CMU-CS-85-104.
This paper reports on our initial results in using Ada as a

Hardware Description Language. Ada provides abstraction
mechanisms to support the development of large software
systems. Separate compilation as well as nesting of
packages, tasks, and subprograms allow the construction
of modular systems communicating through well defined
interfaces. The complexity of modern chips (e.g. those
proposed in the VHSIC program) will require the use of
those features that make Ada a good language for
programming-in-the-large.

5-7

[Barbacci et al. 85c]
Barbacci, M.R., G. Lindstrom, M. Maloney, and E. Organick.
Representing time and space in an object oriented hardware descrip­

tion language.
Technical Report CMU-CS-85-105, Carnegie Mellon University Com­

puter Science Department,
January, 1985.

Hardware description languages (HDLs) will clearly play a vital
role in the comprehensive VLSI design tools of the future.
Now that the requirements for such HDLs are becoming
better understood, it is becoming increasingly evident that
the central issues are abstraction, modularity, and com­
plexity management — the same issues faced by desig­
ners of large scale software systems, rather than low-level
technological details (although these must ultimately be
served as well).

Consequently, we argue that Ada, constituting the most ad­
vanced, carefully conceived, and (soon to be) widely avail­
able modern high-order programming language, forms not
only an adequate but a compelling choice as an HDL.
Specifically, Ada offers separate compilation as well as
nesting of packages, tasks, and subprograms. These, and
other important features of Ada, allow the construction of
modular systems communicating through well defined in­
terfaces.

This paper demonstrates how placement and routing infor­
mation can be incorporated into Ada hardware descrip­
tions: another paper, "Ada as a Hardware Description Lan­
guage: An Initial Report", submitted to the IFIP 7th Inter­
national Symposium on Computer Hardware Description
Languages and their Applications, Tokyo, August 1985
shows how component and signal propagation delays over
carriers are also incorporated into the same hardware
descriptions.

[Brookes 85a] Brookes, S.D. and A.W. Roscoe.
Deadlock analysis in networks of communicating processes.
Technical Report CMU-CS-85-111, Carnegie Mellon University Com­

puter Science Department,
February, 1985.

We use the failures of Communicating Sequential Processes to
describe the behavior of a simple class of networks of
communicating processes, and we demonstrate this fact
by proving some results which help in the analysis of dead­
lock in networks. In particular, we formulate some simple
theorems which characterize the states in which deadlock
can occur, and use them to prove some theorems on the
absence of global deadlock in certain classes of systems.
Some examples are given to show the utility of these
results.

5-8

[Brookes 85b] Brookes, S.
On the axiomatic treatment of concurrency.
Technical Report CMU-CS-85-106, Carnegie Mellon University Com­

puter Science Department,
February, 1985.

This paper describes a semantically-based axiomatic treatment
of a simple parallel programming language. We consider
an imperative language with shared variable concurrency
and a critical region construct. After giving a structural
operational semantics for the language we use the seman­
tic structure to suggest a class of assertions for expressing
semantic properties of commands. The structure of the
assertions reflects the structure of the semantic represen­
tation of a command. We then define syntactic operations
on assertions which correspond precisely to the cor­
responding syntactic constructs of the programming lan­
guage; in particular, we define sequential and parallel com­
position of assertions. This enables us to design a truly
compositional proof system for program properties. Our
proof system is sound and relatively complete. We ex­
amine the relationship between our proof system and the
Owicki-Gries proof system for the same language, and we
see how Owicki's parallel proof rule can be reformulated in
our setting. Our assertions are more expressive than
Owicki's, and her proof outlines correspond roughly to a
special subset of our assertion language. Owicki's parallel
rule can be thought of as being based on a slightly different
form of parallel composition of assertions; our form does
not require interference-freedom, and our proof system is
relatively complete without the need for auxiliary variables.
Connections with the 'Generalized Hoare Logic' of Lambort
and Schnieder, and with the Transition Logic of Gerth, are
discussed briefly, and we indicate how to extend our ideas
to include some more programming constructs, including
conditional commands, conditional critical regions, and
loops.

[Brookes and Roscoe 85]
Brookes, S.D. and A.W. Roscoe.
An improved failures model for communicating processes.
Technical Report CMU-CS-85-112, Carnegie Mellon University Com­

puter Science Department,
February, 1985.

We extend the failures model of communicating processes to al­
low a more satisfactory treatment of divergence in addition
to deadlock. The relationship between the revised model
and the old model is discussed, and we make some con­
nection with various models proposed by other authors.

5-9

[Bruegge 85a]

[Bruegge 85b]

[Bryant 85]

Bruegge.B.
Adaptability and portability of symbolic debuggers.
Technical Report CMU-CS-85-174, Carnegie Mellon University Com­

puter Science Department,
September, 1985.

The design and implementation of symbolic debuggers for com­
plex software systems is not a well understood area. This
is reflected in the inadequate functionality of existing
debuggers, many of which are seldomly used. For ex­
ample, 30% of all programmers asked in a questionnaire
(which was distributed as part of this thesis work) do not
use a debugger at all or only very infrequently (Bruegge,
1984). Yet debugging tools are needed: Many software
systems are produced by the cooperative effort to many
designers and programmers, sometimes over several
years, resulting in products that inevitably contain bugs.

Bruegge, B.
Debugging Ada.
Technical Report CMU-CS-85-127, Carnegie Mellon University Com­

puter Science Department,
May, 1985.

The complexity of the Ada language poses several problems for
the builder of a debugger. We identify the Ada language
constructs that cause these problems and propose solu­
tions that can be incorporated in a debugger based on
Pascal. Several of the solutions involve changes in the
symbol table of the Ada compiler, others are based on the
argument that having to obey the language rules is an
obstacle when debugging programs.

Bryant, R.E.
Symbolic verification ofMOS circuits.
Technical Report CMU-CS-85-120, Carnegie Mellon University Com­

puter Science Department,
April, 1985.

The program MOSSYM simulates the behavior of a MOS circuit
represented as a switch-level network symbolically. That
is, during simulator operation the user can set an input to
either 0 ,1 , or a Boolean variable. The simulator then com­
putes the behavior of the circuit as a function of the past
and present input variables. By using heuristically efficient
Boolean function manipulation algorithms, the verification
of a circuit by symbolic simulation can proceed much more
quickly than by exhaustive logic simulation. In this paper
we present our concept of symbolic simulation, derive an
algorithm for switch-level symbolic simulation, and present
experimental measurements from MOSSYM.

5-10

[Chandhok et al. 85]
Chandhok, R., D. Garlan, D. Goldenson, P. Miller, and and
M. Tucker.
Programming environments based on structure editing: the GNOME

approach.
In AFIPS Conference Proceedings of the 1985 National Computer

Conference, Pages 359-369.1985.
The use of integrated programming environments based on

structure editing is an emerging technology that has now
reached the stage of being both demonstrably useful and
readily implementable. We have outlined some of the
salient aspects of our work in developing the GNOME and
MacGNOME programming environments and suggested
paths of implementation that seem to be worth traveling. A
predominant theme in all of this has been the need to
separate policy from mechanism. While the choice of user
interface policies will probably differ widely from those we
have made here, the mechanisms that we have sketched
will nonetheless be applicable to future environments.

[Dill and Clarke 85]
Dill, D.L and E.M. Clarke.
Automatic verification of asynchronous circuits using temporal logic.
In 1985 Chapel Hill Conference on VLSI, Computer Science Press,

May, 1985.
Also available as Technical Report CMU-CS-85-125.

We present a method for automatically verifying asynchronous
sequential circuits using temporal logic specifications. The
method takes a circuit described in terms of boolean gates
and Muller elements, and derives a state graph that sum­
marizes all possible circuit executions resulting from any
set of finite delays on the outputs of the components. The
correct behavior of the circuit is expressed in CTL, a tem­
poral logic. This specification is checked against the state
graph using a 'model checker* program. Using this
method, we discover a timing error in a published arbiter
design. We give a corrected arbiter, and verify it.

[Durham 86] Durham, I.
Abstraction and the methodical development of fault-tolerant

software.
PhD thesis, Carnegie Mellon University Computer Science Depart­

ment, February, 1986.
Also available as Technical Report CMU-CS-86-112.

The reliable operation of software is a factor of increasing im­
portance with the use of computers for critical functions.
Software in general is demonstrably unreliable, particularly
in the presence of external failures. Software that con­
tinues to provide reliable, if degraded, service in spite of

5-11

external failures is termed Fault-Tolerant. Fault-tolerant
software uses redundancy in code and data to recover
from failures. Because few tools are available to guide the
introduction of redundancy for the most cost-effective im­
provement in reliability, an ad hoc approach is commonly
used. Unfortunately, such an approach cannot guarantee
that the most serious potential failures have even been
recognized. There is, therefore, a need for a methodical
approach to deciding where to introduce redundancy.
Abstraction has provided a foundation for the methodical
development of correct software. As a conceptual tool, it
simplifies the structure of software and supports both the
precise specification of its behavior in the absence of
failures and the ease of reasoning about it. This thesis
provides a foundation for the methodical development of
fault-tolerant software using abstraction as the basis for
describing both failures and the behavior of software in the
presence of those failures.

[Ellison and Staudt 85]
Ellison, R.J. and B.J. Staudt.
The evolution of the Gandalf system.
The Journal of Systems and Software 5(2):107-120, May, 1985.

The Gandalf System is used to generate highly interactive
software development environments. This paper describes
some design decisions made during the development of
the Gandalf system and the system's applicability to the
generation of single-user programming environments and
multi-user software development environments.

[Garlan 85] Garlan, D.
Flexible unparsing in a structure editing environment.
Technical Report CMU-CS-85-129, Carnegie Mellon University Com­

puter Science Department,
April, 1985.

Generators of structure editing-based programming environ­
ments require some form of unparse specification
language with an implementor that can describe mappings
between objects in the programming environment and con­
crete, visual representations of them. They must also
provide an unparser to execute those mappings in a run­
ning programming environment. We describe one such
unparse specification language, called VIZ, and its unpar­
ser, called UAL VIZ combines in a uniform descriptive
framework a variety of capabilities to describe flexible
views of a programming database using a library of high-
level formatting routines that can be customized and ex­
tended by the implementor. The UAL unparser allows the
highly conditional unparse mappings of VIZ to be executed

5-12

efficiently. Its implementation is based on the automatic
generation of explicit display views, together with a
scheme for efficient incremental updating of them in
response to arbitrary changes to objects in the program­
ming environment.

[Garlan 86] Garlan, D.
Views for tools in integrated environments,
Proceedings of the 1986 International Workshop on Advanced Pro­

gramming Environments. Springer-Verlag, 1986.
This paper addresses the problem of building tools for in­

tegrated programming environments. Integrated environ­
ments have the desirable property that the tools in it can
share a database of common structures. But they have
the undesirable property that these tools are hard to build
because typically a single representation of the database
must serve all tools. The solution proposed in this work al­
lows tools to maintain appropriate representations or
"views" of the objects they manipulate while retaining the
benefits of shared access to common structures. We il­
lustrate the approach with two examples of tools for an en­
vironment for programming-in-the-large, and outline cur­
rent work in progress on efficient implementations of these
ideas.

[Garlan 87] Garlan, D.
Views for tools in integrated environments.
Technical Report CMU-CS-87-147, Carnegie Mellon University Com­

puter Science Department,
May, 1987.

Integrated environments have the desirable property that the
tools in them may share a database of common structures.
But they have the undesirable property that tools are hard
to add to an environment because typically a single
representation of the database must serve the needs of all
tools. The solution described in this thesis allows an im-
plementor to define each tool in terms of a collection of
"views" of the objects to be manipulated. A view is a
description of a common database, defined in such a way
that objects can be shared among a collection of tools,
each tool accessing objects through the views it defines.
New tools are thus added by defining new views. The
common database then becomes the synthesis of all of the
views defined by the tools in the environment.

5-13

[Garlan et al. 86] Garlan, D., C.W. Krueger, and B.J. Staudt.
A structural approach to the maintenance of structure-oriented en­

vironments.
In Proceedings of The ACM S1GSOFT/SIGPLAN Software Engineer­

ing symposium on Practical Software Development
Environments, ACM SIGSOFT/SIGPLAN, Palo Alto, CA, Decem­
ber, 1986.
A serious problem for programming environments and operating

systems is that existing software becomes invalid when the
environment or operating system is replaced by a new
release. Unfortunately, there has been no systematic
treatment of the problem; current approaches are manual,
ad hoc, and time consuming both for implementors of
programs and for their users. In this paper we present a
new approach. Focusing on a solution to the problems for
structure-oriented environments, we show how automatic
converters can be generated in terms of an implementor's
changes to formal descriptions of these environments.

[Gunter 85] Gunter, C.
Profinite solutions for recursive domain equations.
Technical Report CMU-CS-85-107, Carnegie Mellon University Com­

puter Science Department,
February, 1985.

The purpose of the dissertation is to introduce and study the
category of profinite domains. The study emphasizes those
properties which are relevant to the use of these domains
in a semantic theory, particularly the denotational seman­
tics of computer programming languages. An attempt is
made to show that the profinites are an especially natural
and, in a sense, inevitable class of spaces. It is shown, for
example, that there is a rigorous sense in which the count-
ably based profinites are the largest category of countably
based spaces closed under the function space operation.
They are closely related to other categories which appear
in the domain theory literature, particularly strongly al­
gebraic domains (SFP) which form a significant sub­
category of the profinites. The profinites are bicartesian
closed-Si noteworthy property not not possessed by SFP
(because it has no coproduct). This gives rise to a rich type
structure on the profinites which makes them a pleasing
category of semantic domains.

[Habermann 85] Habermann, A.N.
Automatic generation of execution tools in a Gandalf environment.
The Journal of Systems and Software 5(2):145-154, May, 1985.

Information generated in a programming environment is often
allowed to grow indefinitely. Designer and user alike are
counting on standard backup and disc clearing procedures

5-14

for archiving old data. In this paper we take the view that
one should distinguish between relevant old data that is
purposely archived and obsolete information that should
automatically be deleted. The two main topics of the paper
are the strategies and mechanisms for deleting information
and the facilities available to designers of programming en­
vironments to specify deletion strategies. Information can
be deleted applying a passive or an active strategy. With
the passive strategy, information will not actually be
deleted until it is certain that there is no interest in it any
longer. With the active strategy, an object is immediately
deleted when it becomes obsolete, while users of the ob­
ject are notified of the deletion event. This paper dis­
cusses various implementation of these two strategies and
shows when they apply. Taking the view that it must be
easy to modify and fine tune programming environments,
much attention must be given to the designers support en­
vironment for generating programming environments. This
paper discusses in particular the facilities for expressing
the semantics of names in an environment. Various
naming modes are useful for a designer to specify the
deletion strategies for his target programming environment.
Details are illustrated by applying the ideas to an environ­
ment for software development and maintenance.

[Habermann 86] Habermann, A.N.
Technological advances in software engineering.
In Proceedings of the 1986 ACM Computer Science Conference,

Pages 29-37. ACM, Cincinnati, February, 1986.
A major challenge for software engineering today is to improve

the software production process. Nowadays, most
software systems are handcrafted, while software project
management is primarily based on tenuous conventions.
Software engineering faces the challenge of replacing the
conventional mode of operation by computer-based tech­
nology. This theme underlies the Software Engineering In­
stitute that the DoD has established at Carnegie Mellon
University. Among the contributors to software develop­
ment technology are ideas, such as workstations, and pro­
gramming environments that provide integrated sets of
tools for software development and project management.
Facilities and tools are by themselves not sufficient to ach­
ieve an order of magnitude improvement in the software
production process. Future directions in software en­
gineering must emphasize a constructive approach to the
design of reusable software and to automatic generation of
programs. The author briefly explores the promising tech­
nology that can be used to implement these ideas.

5-15

[Habermann and Notkin 86]
Habermann, A.N. and D.S. Notkin.
Gandalf software development environments.
IEEE Transactions on Software Engineering, December, 1986.

Software development environments help programmers perform
tasks related to the software development process. Dif­
ferent programming projects require different environ­
ments. However, handcrafting a separate environment for
each project is not economically feasible. Gandalf solves
this problem by permitting environment designers to
generate families of software development environments
semiautomatically without excessive cost.

Environments generated using Gandalf address both program­
ming environments, which help ease the programming
process, and system development environments, which
reduce the degree to which a software project is depend­
ent on the good will of its members. Gandalf environments
integrate programming and system development, permit­
ting interactions not available in traditional environments.

The paper covers several topics including the basic characteris­
tics of Gandalf environments, our method for generating
these environments, the structure and function of several
existing Gandalf environments, and ongoing and planned
research of the project.

[Herlihy 85a] Herlihy, M.
Atomicity vs. availability: concurrency control for replicated data.
Technical Report CMU-CS-85-108, Carnegie Mellon University Com­

puter Science Department,
February, 1985.

Data managed by a distributed program may be subject to con­
sistency and availability requirements that must be
satisfied in the presence of concurrency, site crashes, and
network partitions. This paper proposes two integrated
methods for implementing concurrency control and replica­
tion for data of abstract type. Both methods use quorum
consensus. The Consensus Locking method minimizes
constraints on availability, and the Consensus Scheduling
method minimizes constraints on concurrency. These
methods systematically exploit type-specific properties of
the data to provide better availability and concurrency than
methods based on the conventional read/write classifica­
tion of operations. Necessary and sufficient constraints on
correct implementations are derived directly from the data
type specification. These constraints reveal that an object
cannot be replicated in a way that simultaneously min­
imizes constraints on both availability and concurrency.

5-16

[Herlihy 85b] Herlihy, M.
Using type information to enhance the availability of partitioned data.
Technical Report CMU-CS-85-119, Carnegie Mellon University Com­

puter Science Department,
April, 1985.

A partition occurs when functioning sites in a distributed system
are unable to communicate. This paper introduces a new
method for managing replicated data in the presence of
partitions. A novel aspect of this method is that it sys­
tematically exploits type-specific properties of the data to
support better availability and concurrency than com­
parable methods in which operations are classified only as
reads or writes. Each activity has an associated level,
which governs how it is serialized with respect to other ac­
tivities. Activities at the same level are serialized systemati­
cally, but higher-level activities are serialized after lower-
level activities. A replicated data item is a typed object that
provides a set of operations to its clients. A quorum for an
operation is any set of sites whose co-operation suffices to
execute that operation, and a quorum assignment as­
sociates a set of quorums with each operation. Higher-
level activities executing 'in the future' may use different
quorum assignments than lower-level activities executing
'in the past.' Following a failure, an activity that is unable to
make progress using one quorum assignment may switch
to another by restarting at a different level.

[Herlihy 85c] Herlihy, M.
Comparing how atomicity mechanisms support replication.
Technical Report CMU-CS-85-123, Carnegie Mellon University Com­

puter Science Department,
May, 1985.

Most pessimistic mechanisms for implementing atomicity in dis­
tributed systems fall into three broad categories: two-phase
locking schemes, timestamping schemes, and hybrid
schemes employing both locking and timestamps. This
paper proposes a new criterion for evaluating these
mechanisms: the constraints they impose on the
availability of replicated data.

A replicated data item is a typed object that provides a set of
operations to its clients. A quorum for an operation is any
set of sites whose co-operation suffices to execute that
operation, and a quorum assignment associates a set of
quorums with each operation. Constraints on quorum as­
signment determine the range of availability properties
realizable by a replication method.

This paper compares the constraints on quorum assignment
necessary to maximize concurrency under generalized
locking, timestamping, and hybrid concurrency control

5-17

mechanisms. This comparison shows that hybrid schemes
impose weaker constraints on availability than timestamp­
ing schemes, and locking schemes impose constraints in­
comparable to those of the others. Because hybrid
schemes permit more concurrency than locking schemes,
these results suggest that hybrid schemes are preferable
to the others for ensuring atomicity in highly available and
highly concurrent distributed systems.

[Hisgen 85] Hisgen.A.
Optimization of user-defined abstract data types: a program transfor­

mation approach.
Technical Report CMU-CS-85-166, Carnegie Mellon University Com­

puter Science Department,
September, 1985.

This dissertation introduces a programming language facility for
optimizing user-defined abstract data types. Current op­
timizing compilers have concentrated on the optimization
of built-in, predefined types, for example, the integers. This
work investigates the possibility of extending the benefits
of program optimization to user-defined abstract data
types. The programmer of an abstract data type writes
transformations that state when one operation of the type
(or sequence of operations) may be replaced by another
operation (or sequence of operations). A transformation
may have an enabling precondition, which says that it is
legitimate only in contexts in which the enabling precon­
dition can be shown to be true. When compiling a program
that is a client of the type, the compiler analyzes the
client's calls on the operations of the type and attempts to
apply the transformations to particular calls (or sequences
of calls).

This dissertation presents a language for writing transformations
between the operations of an abstract data type. The
transformation language also includes facilities for writing
specifications for the type in a manner that caters to the
task of optimization. Examples of data types that can ex­
ploit the transformation language are given. Techniques for
compiling client programs are described.

[Kaiser 85a] Kaiser, G.E.
Semantics for structure editing environments.
Technical Report CMU-CS-85-131, Carnegie Mellon University Com­

puter Science Department,
May, 1985.

This thesis addresses the processing of semantics by structure
editor-based programming environments. This processing
is performed incrementally while the user writes and tests
her programs. The semantics processing involves the

5-18

manipulation of two kinds of properties, static and dynamic.
The implementor of a programming environment describes
the semantics processing in terms of these properties.

Recent research in structure editing environments has focused
on the generation of programming environments from
description. Several mechanisms have been proposed,
and the most successful of these have been action
routines and attribute grammars. Using action routines,
written as a collection of imperative subroutines, it is dif­
ficult to anticipate all possible interactions that may result
in adverse behavior. Attribute grammars are written in a
declarative style and the implementor need not be con­
cerned with subtle interactions because all interactions
among attribute grammar rules are handled automatically.
Unfortunately, attribute grammars have hitherto seemed
unsuited to the description of dynamic properties.

This thesis describes a very large extension to attribute gram­
mars that solves this problem. The extended paradigm is
called action equations. Action equations are written in a
declarative notation that retains the flavor of attribute gram­
mars but adds an easy means to express both dynamic
properties and static properties. The extensions include
attaching particular attribute grammar-style rules to events
that represent user commands; supporting propagation
both of events and of change with respect to attribute
values; limited support for non-applicative mechanisms, al­
lowing attributes to be treated as variables and permitting
both modification of and replacement for changes to at­
tribute values. Together, these extensions are sufficient to
support dynamic properties.

[Kaiser 85b] Kaiser, G.E. and E. Kant.
Incremental parsing without a parser.
The Journal of Systems and Software 5(2):121 -144, May, 1985.

This article describes an algorithm for incremental parsing of ex­
pressions in the context of syntax-directed editors for pro­
gramming languages. Since a syntax-directed editor
represents programs as trees and statements and expres­
sions as nodes in trees, making minor modifications in an
expression can be difficult. Consider, for example, chang­
ing a '+' operator to a '*' operator or adding a short sub­
expression at a syntactically but not structurally correct
position, such as inserting ') * (d ' at the # mark in ' (a + b #
+ c)'. To make these changes in a typical syntax-directed
editor, the user must understand the tree structure and
type a number of tree-oriented construction and manipula­
tion commands. This article describes an algorithm that al­
lows the user to think in terms of the syntax of the expres­
sion as it is displayed on the screen (in infix notation)

5-19

rather than in terms of its internal representation (which is
effectively prefix), while maintaining the benefits of syntax-
directed editing. This algorithm is significantly different
from other incremental parsing algorithms in that it does
not involve modifications to a traditional parsing algorithm
or the overhead of maintaining a parser stack or any data
structure other than the syntax tree. Instead, the algorithm
applies tree transformations, in real-time as each token is
inserted or deleted, to maintain a correct syntax tree.

[Kaiser 86] Kaiser, G.E.
Generation of run-time environments.
In SIGPLAN '86 Symposium on Compiler Construction, June, 1986.

Attribute grammars have been used for many years for
automated compiler construction. Attribute grammars sup­
port the description of semantic analysis, code generation
and some code optimization in a formal declarative style.
Other tools support the automation of lexical analysis and
parsing. However, there is one large part of compiler con­
struction that is missing from our toolkit: run-time environ­
ments. This paper introduces an extension of attribute
grammars that supports the generation of run-time environ­
ments. The extension also supports the generation of in­
terpreters, symbolic debugging tools, and other execution-
time facilities.

[Kaiser and Garlan 87]
Kaiser, G.E. and D. Garlan.
Composing software systems from reusable building blocks.
In The Twentieth Hawaii International Conference on System

Sciences (HICSS-20), Kona, HA, January, 1987.
Current approaches to software reuse have had little effect on

the practice of software engineering. Among the reasons
that most existing approaches have been so limited is the
fact that they result in software that is highly tied to linguis­
tic and/or functional context. A software building block can
be reused only in a manner envisioned by the original
programmer. A generic stack module written in Ada can
only be used for manipulating stacks, and only within an
Ada environment. A window manager written in any pro­
gramming language can only be used as a window
manager.

We argue that to achieve an order of magnitude improvement in
software production, we need to support software
reusability that has three important characteristics: (a)
language-independence, (b) support for component reuse
through composition, and (c) the ability to reuse a com­
ponent in a way not anticipated by the original program­
mer. We describe a framework for achieving these three

5-20

[Newton 86a]

goals. The important components of the famework are
features, a unit for modularity that can be composed in a
manner similar to the multiple inheritance of object-
oriented languages and action equations, a declarative
notation for specifying the behavior of software building
blocks.

Newton, T.D.
An implementation of Ada generics.
Technical Report CMU-CS-86-125, Carnegie Mellon University Com­

puter Science Department,
May, 1986.

This paper describes the technique used for implementing
generics in the Ada+ compiler. It involves performing
semantic analysis on generic units, producing code for in­
stantiations by generic expansion, and preserving the
results of semantic analysis on a template in its copies.

One of the more interesting features of the Ada programming
language is the capability to define generic subprograms
and packages which can be parameterized by types and
subprograms as well as by objects. By allowing the reuse
of code, generic units can save programming time and in­
crease reliability. However, while generic units are a nice
tool from a programmer's point of view, they pose an
added burden for a compiler both in terms of semantic
analysis and in terms of code generation. This paper is an
attempt to describe how the Ada+ compiler deals with the
problems posed by generic units.

Newton, T.D.
A survey of language support for programming in the large.
Technical Report CMU-CS-86-124, Carnegie Mellon University Com­

puter Science Department,
May, 1986.

The support provided by a number of programming languages
for the activity of programming in the large is examined,
and their features are categorized with respect to decom­
position of a system, import/export mechanisms, separate
compilation, and version/configuration control. A com­
parison is made using this categorization. Eighteen lan­
guages are surveyed; ranging from Simula-67 to Modula-2
to Ada to BCPL, they exhibit a number of design
philosophies.

[Newton et al. 85] Newton, T.D., W.H. Maddox, and R.G. Stockton.
User's guide to the Ada+ compiler
1985.

[Newton 86b]

5-21

[Notkin 85] Notkin, D.
The Gandalf project.
The Journal of Systems and Software 5(2) :91 -106, May, 1985.

The Gandalf project is concerned with the automated genera­
tion of software development environments. In particular,
the project has considered project management environ­
ments, system version control environments, and in­
cremental programming environments. The artifacts sur­
rounding these environments are described. Later ver­
sions of these environments have been constructed as
structure editors. The processes and tools involved in
generating structure editors for software development en­
vironments are also discussed. Future plans of the project
are briefly mentioned.

[Saraswat 86] Saraswat, V.A.
Problems with concurrent Prolog.
Technical Report CMU-CS-86-100, Carnegie Mellon University Com­

puter Science Department,
January, 1986.

In this paper I argue that pure Horn logic does not provide the
correct conceptual framework for concurrent programming.
In order to express any kind of useful concurrency some
extra-logical apparatus is necessary. The semantics and
proof systems for such languages must necessarily reflect
these control features, thus diluting the essential simplicity
of Horn logic programming.

In this context I examine Concurrent Prolog as a concurrent and
as a logic programming language, highlighting various
semantic and operational difficulties. My thesis is that
Concurrent Prolog is best thought of as a set of control fea­
tures designed to select some of the many possible execu­
tion paths in an inherently non-deterministic language. It is
perhaps not a coherent set of control and data-features for
the ideal concurrent programming language. It is not a
Horn logic programming language because it does not dis­
tinguish between derivations and refutations, because of
its commitment to don't care indeterminism. As a result,
soundness of the axioms does not guarantee a natural no­
tion of partial correctness and the failure-as-negation rule
is unsound. Because there is no don't know determinism,
all search has to be programmed, making it a much more
procedural rather than declarative language.

Moreover, we show that its proposed '?' (read-only) annotation
is under-defined and there does not seem to be any con­
sistent, reasonable way to extend its definition. We
propose and justify alternate synchronization and commit­
ment annotations.

5-22

[Scherlis 86] Scherlis, W.L
Abstract datatypes, specialization, and program reuse.
In International Workshop on Advanced Programming Environments,

ACM SIGPLAN/SIGSOFT, April, 1986.
It is often asserted that our ability to reuse programs is limited

primarily by the power of programming language abstrac­
tion mechanisms. We argue that, on the basis of perfor­
mance considerations, this is just not the case in practice --
these generalization mechanisms must be complemented
by techniques to adapt the generalized structures to
specific applications. Based on this argument, we consider
a view of programming experience as a network of
programs that are generalizations and specializations on
one another and that are interconnected by appropriate
program derivation fragments. We support this view with a
number of examples. These examples illustrate the impor­
tant role of abstract data type boundaries in program
derivation.

[Scherlis and Jorring 86]
Scherlis, W.L. and U. Jorring.
Compilers and staging transformations.
In Proceedings of the Thirteenth POPL Conference, ACM, January,

1986.
Computations can generally be separated into stages, which

are distinguished from one another by either frequency of
execution or availability of data. Precomputation and
frequency reduction involve moving computation among a
collection of stages so that work is done as early as pos­
sible (so less time is required in later steps) and as infre­
quently as possible (to reduce overall time).

We present, by means of examples, several general transfor­
mation techniques for carrying out precomputation trans­
formations. We illustrate the techniques by deriving frag­
ments of simple compilers from interpreters, including an
example of Prolog compilation, but the techniques are ap­
plicable in a broad range of circumstances. Our aim is to
demonstrate how perspicuous accounts of precomputation
and frequency reduction can be given for a wide range of
applications using a small number of relatively straightfor­
ward techniques.

Related work in partial evaluation, semantically directed com­
pilation, and compiler optimization is discussed.

[Shombert 85] Shombert.LA.
Using redundancy for testable and repairable systolic arrays.
Technical Report CMU-CS-85-157, Carnegie Mellon University Com­

puter Science Department,
August, 1985.

5-23

This thesis presents a method of using spares to enhance the
reliability and testability of systolic arrays. The method,
called roving spares, provides fault detection and fault
isolation without interrupting array operation, essentially
providing a self testing array. Systolic arrays are defined
and the design space of systolic arrays is identified. The
methodology for roving spares on the simplest, but still
very powerful, type of systolic array is then derived.
Several detailed designs are generated to provide sample
data points for the analysis that follows. The analysis
shows that reliability is increased by factors to two to ten,
over a nonredundant array, and that this improvement is
achieved at low cost. The testing capability of roving
spares does not significantly decrease the reliability
benefits of spares. A brief analysis of a more complex sys­
tolic array indicates that the benefits achievable for the
simple array can be expected for all types of systolic ar­
rays.

[Staudt 86] Staudt, B.J., C.W. Krueger, A.N. Habermann, and V. Ambriola.
The Gandalf system reference manuals.
Technical Report CMU-CS-86-130, Carnegie Mellon University Com­

puter Science Department,
May, 1986.

The Gandalf System is a workbench for the creation and
development of interactive programming environments.
The system consists of several components that an im-
plementor uses for designing and fine tuning a user en­
vironment with task-specific tools and facilities. This report
is a collection of three documents describing the use of the
Gandalf System: The Gandalf Editor Generator Reference
Manuals, The Aloe Action Routine Language Manual, and
The Implementor's Guide to Writing Daemons for Aloe.

[Stockton 85] Stockton, R.G.
Overload resolution in Ada+.
Technical Report CMU-CS-85-186, Carnegie Mellon University Com­

puter Science Department,
December, 1985.

This paper describes one technique for performing Ada over­
load resolution. It involves a bottom-up scan of an at­
tributed syntax tree which examines all possible interpreta­
tions of an expression and filters out all invalid interpreta­
tions.

One of the many useful features of the Ada programming lan­
guage is the capability to overload various symbols. Al­
though this can contribute immensely to the readability of
programs, it places a much greater burden upon the com­
piler, since the meaning of a symbol can not always be

5-24

uniquely determined based upon its name. In fact, in some
cases there might be several equally valid interpretations
of the given symbol. The compiler must determine, based
on the context of the symbol, which of the possible inter­
pretations is the correct one. This document is an attempt
to describe the way in which the Ada+ compiler ac­
complishes this task.

Listlessness is better than laziness.
Technical Report CMU-CS-85-171, Carnegie Mellon University Com­

puter Science Department,
August, 1984.

The thesis is about a style of applicative programming, and a
program transformation method that makes programs writ­
ten in the style more efficient. It concentrates on a single,
important source of clarity and inefficiency in applicative
programs: the use of structures to communicate between
components of a program.

White pebbles help.
Technical Report CMU-CS-85-101, Carnegie Mellon University Com­

puter Science Department,
December, 1984.

A family of directed acyclic graphs of vertex in degree 2 is con­
structed for which there are strategies of the black-white
pebble game that use asymptotically fewer pebbles than
the best strategies of the black pebble game. This shows
that there are straight-line programs that can be evaluated.

[Wadler 84] Wadler.P.L.

[Wilber 84] Wilber, R.

5-25

5-26

6. DISTRIBUTED SENSOR NETWORKS
The long term goal of our research is to seek problem solutions that would influence

both the long-term design goals of DSNs and distributed intelligence systems in
general. Systems for building DSNs are complex. Their design raises a number of dif­
ficult issues including:

• Suitable physical structures and system architectures for fault-tolerant com­
putation.

• Languages and tools to assist in creating and debugging programs for a
distributed environment.

• Techniques for distributed signal processing.
• Construction and maintenance of distributed knowledge structures.

Though our research is particularly relevant to various aspects of the distributed sensor
network problem, it more generally relates to any system that has distributed data,
which are concurrently read and updated by a potentially large collection of processes.
Much of this work was done using results from our earlier research on Accent and T A B S

[Spector et al. 85a].

Our objective has been to develop a distributed transaction facility and associated lin­
guistic support to simplify the construction of and interoperability of databases of all
types, particularly those that require continued access despite the occurrence of
failures. We also began to develop example applications that use such databases, and
continue to function despite failures. All of our work is machine independent and
designed to use Mach and both uni- and multi-processors. These facilities simplify pro­
gramming by freeing the application programmer from many reliability and concurrency
concerns. With the facilities we are developing, application programs appear to run se­
quentially, despite other concurrently-executing programs. Programs also can more
easily deal with failures, because failures are guaranteed to never leave programs in in­
consistent states.

Our work divided into two components: In one component, we were winding down
our experimentation with the Accent operating system, but learning as many lessons as
possible from that testbed. In the other, we began the major effort to design and imple­
ment the Camelot distributed transaction facility and the Avalon language extensions to
C++, Common Lisp, and Ada. As part of our integrational and systems development
work, there were numerous opportunities to innovate in the development of algorithms.
We have developed efficient algorithms for restoring the state of computers after
failures, managing disk storage, coordinating multiple computers that are involved with
a transaction, and storing replicated data. Overall, our research efforts in DSN
generally divide into three categories: developing algorithms, developing systems, and
analyzing systems.

6-1

6.1. Algorithm development
During 1986 we analyzed the trade-offs between concurrency and availability. In par­

ticular, we described how two-phase locking, multi-version timestamping, and hybrid
synchronization techniques affect the availability of objects using quorum consensus
protocols [Herlihy 86]. For example, we showed that hybrid schemes permit more
quorum assignments than timestamping schemes , and thus could provide for higher
availability in some instances. In related work, we also described new synchronization
techniques. These techniques can use increased semantic knowledge to gain greater
concurrency and can be used in conjunction with standard techniques such as two-
phase locking.

We also enhanced our theoretical work on a replicated directory algorithm we had
previously developed and implemented. This resulted in a better set of correctness
proofs [Bloch et al. 87]. (See section 6.4.4.)

We concluded the design and implementation of a technique for demand-driven trans­
fer of data across a network. This technique is useful for transferring program images
intended for execution on another machine [Zayas 87].We performed the work on Ac­
cent but expect it to be portable to Mach.

We completed the development of a replication algorithm for storing log data, that is,
data that describes the essential state transitions that occur on nodes of a distributed
system. This algorithm permits recovery of nodes even after they are themselves physi­
cally destroyed [Daniels et al. 87]. We had previously done a simplified implementation
of the algorithm in the T A B S system, and we proceeded with its reimplementation and
enhancement for use in Camelot. The reimplementation required the development of a
more efficient communication protocol, and a complete implementation of the low-level
storage structures. (See section 6.4.2.)

We began development of a new commit algorithm that coordinates multiple nodes
that may be involved in committing a transaction. This algorithm has the reliability
benefits of so-called Byzantine algorithms, with the many performance benefits of tradi­
tional algorithms. The reliability benefits are most useful in systems that are less
tolerant while nodes or networks are repaired.

We began developing a new replication technique that should be practical for replicat­
ing a wide variety of abstract data types, such as queues, stacks, directories, sets, and
typical database storage structures such as multiply indexed data sets.

We enhanced our previous T A B S techniques for manipulating long-lived data. These
techniques will be useful in Camelot and now support up to 2 4 8 bytes of data; permit
rapid streaming of data into memory; interact more efficiently with recovery
mechanisms; require a reduced number of messages during normal processing; and
help systems recover after node crashes.

The recovery algorithms that we developed support nested transactions with the ef-

6-2

ficiency usually associated with large, commercial database systems. In addition, the
recovery algorithms permit efficient log usage for short transactions, the type that are
most commonly used. We began the implementing these techniques in Camelot.

6.2. System development
Because we believe that researchers today need usable systems and languages on

which to base their own work, we have twin goals in constructing Camelot and Avalon.
First, we are constructing the Camelot and Avalon facilities so they can be used by
others in the D A R P A internet community. This requires balancing complexity,
functionality, performance, and ease of implementation so we can produce working sys­
tems in a short period of time. Second, Camelot and Avalon must develop higher risk
features, constructs, or algorithms in order to produce a system with sufficient flexibility
and performance. Examples of areas in which Camelot and Avalon should be useful
include the development of various types of database systems, command and control
systems, messaging systems, and various near real-time control tasks.

This work on Camelot and Avalon was influenced by Accent, but more importantly, by
T A B S [Spector et al. 85b]. With T A B S we demonstrated that general purpose distributed
transactions are a valuable tool for structuring highly reliable distributed systems, and
sufficiently efficient to be practical.

After a series of intensive group-wide sessions, we determined that a system like
T A B S was required, but that it should have more flexibility, higher performance, an
easier to use interface, and relatively wide distribution. The latter required that the sys­
tem run on the Berkeley 4.3 UNix-compatible Mach operating system. We determined
the other requirements were feasible given careful design and coding [Spector et al.
86a].

Thus, we functionally specified the Camelot distributed transaction facility and the
Avalon programming language extensions. We specified Camelot as supporting nested
transactions, very large user-defined objects, distributed operation, distributed logging,
and compatibility with Mach. We specified Avalon as being built on standard program­
ming languages, such as C + + , Ada, and Common Lisp, and providing linguistic support
for developing highly reliable distributed applications. These functional specifications
were just a beginning, but they have led to large efforts [Spector et al. 86b, Herlihy and
Wing 87a] and the current D A R P A Reliable Distributed Systems Effort.

6.2.1. Camelot

The Camelot Project divided into two parts: Camelot implementation and Camelot
testing/demonstration. Camelot implementors developed the low-level functions in the
system including the disk manager, recovery manager, transaction coordinator, node
server, node configuration application, communication manager, and Camelot library.
Substantial time was devoted to evaluating the performance of the initial system func-

6-3

tions. Camelot testers developed applications to both test and demonstrate the utility of
Camelot. These applications include an X-based, graphical room reservation system
sufficient to support the CMU Campus; a document ordering system for use over the
ARPAnet; a system to support the Department's cheese cooperative; and abstract data
type libraries for shared recoverable hash tables and B-trees. These applications were
chosen because they are representative of many problems in both industry and military
applications, and because they will be widely used at Carnegie Mellon. A substantial
amount of effort was put into documenting the system, resulting in the Guide to the
Camelot Distributed Transaction Facility Release 1.0. Edition 0.4(23).

Camelot implements the synchronization, recovery, and communication mechanisms
needed to support the execution of distributed transactions and the definition of shared
abstract objects. It runs with the underlying support of the UNix-compatible Mach
operating system and its programming tools and provides flexible support for distributed
transactions by accessing a wide variety of user-defined objects. Internally, Camelot
uses many efficient algorithms to reduce the overhead of transaction execution includ­
ing write-ahead logging, careful management of recoverable data, and highly tuned
commit protocols. In June 1987 we had Camelot running on MicroVAxes, IBM RT PCs,
and Multimaxes.

We completed the release of a system that is a sufficient base for our internal users:
the Camelot test group and the Avalon project. We have also completed a release of
our user's guide and the evaluation of our distributed logging package. As presented at
S I G M O D '87, our logging package proved capable of supporting the execution of 70
transactions per second on a 2 M I P S IBM RT PC. We also evaluated the base Camelot
system. The performance numbers show that the Camelot's overhead is not high and
that it will not interfere with the intended uses of the system.

6.2.2. Avalon

We began a detailed design of the Avalon language in the first half of 1987. Avalon is
a language interface for building reliable distributed applications on top of Camelot and
Mach. Initially, it will be a set of extensions for C + + , but there will also be extensions for
use with Common Lisp and Ada. The Avalon effort has been divided into three parts:

• Design: We are tailoring our language extensions to maintain the spirit of
each base language.

• Implementation: The Avalon runtime system exploits the Camelot trans­
action management facility.

• Tool Support: The Avalon/C"1"*" preprocessor provides the interface to an
Avalon programmer. The Avalon type library will contain a set of built-in
types and user-extensible types. Avalon and Camelot share other version
control and administrative tools.

We also began to design the first of the Avalon language extensions, which are to be
made to the C++ language [Herlihy and Wing 87a]. In general terms, these extensions

6-4

permit programmers to implement permanent, synchronized abstract data objects with
little or no more work than they use for traditional objects. The concepts are applicable
to Common Lisp and Ada, and we intend to extend them for use in these systems.

The Avalon work necessarily lags behind the Camelot work since it depends on un­
derlying Camelot facilities, and there are no completed portions of Avalon at this time.
The Avalon group is aiming toward having the first Avalon demonstration by September
1987.

6.3. Accent
Many of the innovative ideas that were being incorporated in the Mach operating sys­

tem come from our experience with Accent. For example, the Mach message system
with its emphasis on copy-on-write data transfer is directly based on the Accent mes­
sage system [Rashid 86]. Also, Mach's ultimate goal of producing a system comprising
a relatively small operating system kernel with many servers derives from the structure
of the Accent system. As a final example, the Mach Interface Generator(MiG) is based
on the Matchmaker interface tool we previously wrote for Accent. (See Chapter 2.)

6.3.1. Systems evaluation

In 1986 Rashid and Fitzgerald concluded a long-term (multi-year) effort to evaluate
the implementation of the Accent message passing mechanism. This message passing
mechanism substantially reduces message passing costs by permitting the efficient
transfer of very large messages. The technique Accent uses is called copy-on-write
data transfer.

Our evaluation work, as detailed in [Fitzgerald 86], demonstrated that Accent substan­
tially reduced the data copying costs associated with message passing while still retain­
ing its other benefits. For example, after comparing Accent with the conventionally or­
ganized U N I X 4.1 BSD, we showed that Accent's file system performance is com­
parable, despite the fact that files were transferred using messages and copy-on-write
mapping. This evaluation work substantially influenced the development of the Mach
operating system [Accetta et al. 86], which is on-going work under the D A R P A Strategic
Computing Initiative.

The work that we performed involved developing a performance evaluation methodol­
ogy for precisely measuring certain very short events in an operating system. This
methodology and associated tools are also described in [Fitzgerald 86]; we expect the
measurement techniques to be useful in future projects.

6-5

6.3.2. Operating system constructs
During the second half of 1985 we developed and evaluated operating system con­

structs that make it easier to write distributed programs—programs that must execute
on multiple nodes of a distributed system. Such programs are growing more important
because of needs for increased performance, reliability, and availability despite failures.
They are also essential to solving parts of the distributed sensor network problem.

We completed the design of a message-passing mechanism, implementable on Ac­
cent, for doing demand-driven data transfer. In conventional message passing ap­
proaches, a network processing node that wishes to send a message dispatches the
entire message at once, regardless of its size. The recipient/remote node must wait for
the entire message to arrive before it can begin processing it. In a demand-driven ap­
proach, the sender node dispatches an "IOU" to the remote node. Then, as the remote
node accesses portions of the message, it demands the rest of the message/data only
as needed. This "lazy" transfer approach permits the recipient node to begin processing
before all the data has arrived. In common situations where not all the data in a mes­
sage will be accessed, this approach can substantially reduce system delays.

In other kernel work, we formalized and analyzed a mechanism for accessing objects
in recoverable storage. Recoverable storage refers to the areas in virtual memory
which contain objects that persist across program invocations and are not destroyed by
processor, memory, or disk failures. With such recoverable storage, programmers can
declare program variables normally and be assured the variables will always have their
most recent values. Our implementation technique for recoverable storage is based on
a generalization of the database technique of write-ahead logging. Like all logging tech­
niques, write-ahead logging records state transitions of objects in a highly reliable log.
The log is used to redo or undo changes following failures. However, unlike less ef­
ficient techniques, our write-ahead strategy permits most log writes to be done
asynchronously; hence, they do not slow down the execution of application programs.
We implemented a variant of this recoverable storage implementation technique as part
of TABS[Spector et al. 85a]. This work lays the groundwork for a more flexible,
production-quality implementation.

6.4. Reliability
We completed three major tasks in our work on reliability: We designed a distributed

algorithm to efficiently record the state transitions of processing nodes across a network
on remote log servers, we finished implementing a system whereby transaction-based
applications can more effectively communicate with human users, and we concluded
the performance evaluation of the T A B S system.

6-6

6.4.1. Distributed transaction facility
We built the T A B S distributed transaction facility to demonstrate that general purpose

facilities that support distributed transactions are feasible to implement and useful in
simplifying the construction of reliable distributed applications. Although there is room
for diversity in its exact functions, a distributed transaction facility must make it easy to
initiate and commit transactions, to call operations on objects from within transactions,
and to implement abstract types that have correct synchronization and recovery
properties.

To date, transactions have been useful in the restricted domain of commercial sys­
tems. Our research has been based on the notion that transactions provide properties
that are essential to many other types of distributed applications. Synchronization
properties guarantee that concurrent readers and writers of data do not interfere with
each other. Failure atomicity simplifies the maintenance of invariants on data by ensur­
ing that updates are not partially done despite the occurrence of failures. Permanence
provides programmers the luxury of knowing that only catastrophic failures will corrupt
or erase previously made updates.

Overall, the most important contributions of the T A B S system were:
• The development of a system architecture in which transactions can be

used for a wide variety of applications, including the maintenance of dis­
tributed and replicated data that is useful in distributed sensor networks.

• The integration of virtual memory management and recovery to provide
very efficient, yet easy to use memory structures for programmers using
T A B S .

• An efficient set of communication mechanisms to track the nodes that are
involved in a transaction and permit them to come to an agreement that the
transaction has successfully completed.

• The first implementation of two recovery algorithms that provide decreased
recovery time after system crashes and increased flexibility in using com­
plex data types.

6.4.2. Distributed logging

This work is based on the following idea: If a processing node's fundamental state
transitions are recorded on one or more other nodes, then even after a catastrophic
failure, that processing node's state can be reconstructed by reapplying the state tran­
sitions, one after another. In other words, if a processing node N 1 is destroyed, there
exists sufficient information on other nodes to allow N 1 to be reconstituted. We
amplified this basic idea by developing the concept of a replicated log service [Daniels
et al. 87]:

1. Logically, a replicated log service provides primitives to append new data
records to the end of a logically infinite log. Depending on its precise con­
figuration, the replicated log guarantees that these data records will be
available in the future, despite a high number of failures.

6-7

2. A replicated log service is implemented through the use of a collection of
networked, dedicated log servers. To write a log record to the replicated
log service, the log records are written in parallel to some of the remote
log servers using a special-purpose, high-performance protocol. To read
a previously written record, it is necessary only to read the information on
a single log server having up-to-date information. The algorithm makes it
easy to learn which log servers are current and does some rather complex
bookkeeping to handle all possible failure conditions.

The log service is tuned to support transaction-based systems but could be used
wherever people want to record state transitions reliably. In some transaction-based
environments, the use of a replicated log service could offer survival, operational, per­
formance, and cost advantages. Survival is likely to be better for a replicated log ser­
vice because it can tolerate the destruction of one or more entire processing nodes.
Operation could be better because it is easier to manage high volumes of log data at a
small number of logging nodes, rather than at all transaction processing nodes. Perfor­
mance might be better because shared facilities can have faster hardware than could
be afforded for each processing node. Finally, providing a shared network logging
facility would be less costly than dedicating highly reliable storage (e.g., duplexed disks)
to each processing node, particularly in some distributed systems environments.

6.4.3. Interaction with users
Reliability projects typically concentrate on maintaining the consistency of data inter­

nally stored at multiple processing nodes. Our work on user-interaction focused on how
human users should interact with such systems. One major question is how to present
tentative, committed, or aborted information to a user in the presence of unreliable com­
munication and display equipment. Another is how to reexecute a user's commands so
as to automatically retry transactions that have aborted.

We developed a user interaction system in which users can count on receiving correct
information about the status of transactions they have initiated. Additionally, system out­
put to the user is stable across crashes; that is, a display's output can be viewed as a
type of database which has the same integrity guarantees as any other database. Even
though there may be failures that temporarily delay a user from seeing his output, the
failures can be repaired, and the user is guaranteed not to lose any information.

Human input, too, is stored reliably in a database. If a program reading from that
database aborts due to a failure, the human input remains in the database and can be
automatically reused when the work resumes.

In our prototype implementation of this, we stored both types of data in T A B S data ser­
vers which are stored as reliably as any other system data. The system's performance
shows the idea will work satisfactorily on machines that can deliver 2 or more M I P S . We
gave our I/O subsystem an interface similar to the standard I/O system to make it easy
for programmers to use.

6-8

6.4.4. Replicated directory demonstration

One way to ensure reliability is to replicate data—store it redundantly at multiple loca­
tions. Replicated data can enhance data availability in the presence of failures and in­
crease the likelihood that data will be accessible when needed. Researchers at CMU
have developed algorithms that exploit knowledge about the semantics of the replicated
data to provide more effective replications than traditional approaches such as disk mir­
roring provide. In particular, Bloch, Daniels, and Spector developed an algorithm to
replicate directory objects having operations on data such as Lookup, Update, Insert,
and Delete [Bloch et al. 87].

We implemented this algorithm on top of T A B S , both to demonstrate the correctness
and performance of the algorithm, and also to demonstrate the completeness of T A B S .

We ran tests in which machines were turned off to show that data remains accessible
despite failures. Then, the machines were turned on to show that they would automati­
cally reconnect to the network after failures. This demonstration was one of the few
demonstrations of replication algorithms that has actually been implemented.

6.5. Bibliography
[Accetta et al. 86] Accetta, M., R. Baron, W. Bolosky, D. Golub, R. Rashid,

A. Tevanian, and M. Young.
Mach: a new kernel foundation for UNIX development.
In Proceedings of Summer Usenix, USENIX, July, 1986.

Mach is a multiprocessor operating system kernel and environ­
ment under development at Carnegie Mellon University.
Mach provides a new foundation for U N I X development that
spans networks of uniprocessors and multiprocessors.
This paper describes Mach and the motivations that led to
its design. Also described are some of the details of its im­
plementation and current status.

[Bhandari et al. 87]
Bhandari, I.S., H.A. Simon, and D.P. Siewiorek.
Optimal diagnosis for causal chains.
Technical Report CMU-CS-87-151, Carnegie Mellon University Com­

puter Science Department,
September, 1987.

Probe Selection (PS) is an important facet of any diagnostic
program. The problem solved here is to find an optimal al­
gorithm for PS in a causal chain. The word "optimal" has
been used in the literature on diagnosis to designate both
locally optimal and globally optimal algorithms. Locally op­
timal algorithms use some best-first technique to choose
next the probe that optimizes some metric and they are not
generally optimal, although they do provide good heuris­
tics. Globally optimal algorithms choose that sequence of
probes that optimizes some metric and they are truly op­
timal. In this work, optimal will be used to refer to the lat­
ter.

An optimal algorithm to do probe selection in causal chains is
presented. Probes may have different costs of measure­
ment. The algorithm runs in polynomial time.

[Bloch et al. 87] Bloch, J.J., D.S. Daniels, and A.Z. Spector.
A weighted voting algorithm for replicated directories.
J ACM 34(4), October, 1987.
Also available as Technical Report CMU-CS-86-132.

Weighted voting is used as the basis for a replication technique
for directories. This technique affords arbitrarily high data
availability as well as high concurrency. Efficient al­
gorithms are presented for all of the standard directory
operations. A structural property of the replicated directory
that permits the construction of an efficient algorithm for
deletions is proven. Simulation results are presented and
the system is modeled and analyzed. The analysis agrees
well with the simulation, and the space and time perfor-

6-10

mance are shown to be good for all configurations of the
system.

[Daniels et al. 87] Daniels, D.S., A.Z. Spector, and D.S. Thompson.
Distributed logging for transaction processing.
In Sigmod '87 Proceedings, ACM, May, 1987.
Also available as Technical Report CMU-CS-86-106.

Increased interest in using workstations and small processors
for distributed transaction processing raises the question of
how to implement the logs needed for transaction
recovery. Although logs can be implemented with data
written to duplexed disks on each processing node, this
paper argues there are advantages if log data is written to
multiple logserver nodes. A simple analysis of expected
logging loads leads to the conclusion that a high perfor­
mance, micro-processor based processing node can sup­
port a log server if it uses efficient communication
protocols and low latency, non-volatile storage to buffer log
data. The buffer is needed to reduce the processing time
per log record and to increase throughput to the logging
disk. An interface to the log servers using simple, robust,
and efficient protocols is presented. Also described are
the disk data structures that the log servers use. This
paper concludes with a brief discussion of remaining
design issues, the status of a prototype implementation,
and plans for its completion.

[Detlefs et al. 87] Detlefs, D.L, M.P. Herlihy, and J.M. Wing.
Inheritance of synchronization and recovery properties in

Avalon/C++.
In Proceedings of Hawaii International Conference on System

Sciences, ACM, August, 1987.
Also available as Technical Report CMU-CS-87-133. Also published

in Proceedings of OOPSLA 87, March 1987.
We exploit the inheritance mechanism of object-oriented lan­

guages in a new domain, fault-tolerant distributed systems.
We use inheritance in Avalon/C++ to transmit properties,
such as serializability and crash resilience, that are of
specific interest in distributed applications. We present
three base classes, R E S I L I E N T , A T O M I C , and D Y N A M I C , ar­
ranged in a linear hierarchy, and examples of derived
classes whose objects guarantee desirable fault-tolerance
properties.

[Durham 86] Durham, I.
Abstraction and the methodical development of fault-tolerant

software.
PhD thesis, Carnegie Mellon University Computer Science Depart­

ment, February, 1986.
Also available as Technical Report CMU-CS-86-112.

6-11

The reliable operation of software is a factor of increasing im­
portance with the use of computers for critical functions.
Software in general is demonstrably unreliable, particularly
in the presence of external failures. Software that con­
tinues to provide reliable, if degraded, service in spite of
external failures is termed Fault-Tolerant. Fault-tolerant
software uses redundancy in code and data to recover
from failures. Because few tools are available to guide the
introduction of redundancy for the most cost-effective im­
provement in reliability, an ad hoc approach is commonly
used. Unfortunately, such an approach cannot guarantee
that the most serious potential failures have even been
recognized. There is, therefore, a need for a methodical
approach to deciding where to introduce redundancy.
Abstraction has provided a foundation for the methodical
development of correct software. As a conceptual tool, it
simplifies the structure of software and supports both the
precise specification of its behavior in the absence of
failures and the ease of reasoning about it. This thesis
provides a foundation for the methodical development of
fault-tolerant software using abstraction as the basis for
describing both failures and the behavior of software in the
presence of those failures.

[Fitzgerald 86] Fitzgerald, R.P.
A performance evaluation of the integration of virtual memory

management and interprocess communications in Accent.
PhD thesis, Carnegie Mellon University Computer Science Depart­

ment, October, 1986.
Also available as Technical Report CMU-CS-86-158.

All communication-oriented operating systems need a way to
transfer data between processes. The Accent network
operating system addresses this need by integrating copy-
on-write virtual memory management with inter-process
communication. Accent provides a flat, 32-bit, sparsely al-
locatable, paged virtual address space to each process. It
uses mapping, the manipulation of virtual memory data
structures, to transfer large data objects between
processes and to provide mapped access to files and other
data objects. It uses copy-on-write protection to prevent
accidental modification of shared data, so that mapping
transfers data by value.

Although by-value data transfer and mapped file access have
been considered desirable on methodological grounds, ex­
perience with previous systems such as RIG and CAL
raised serious questions about the performance possible in
such systems. This dissertation examine the impact of the
Accent approach on the design, implementation, perfor­
mance and use of Accent.

6-12

[Fitzgerald and Rashid 85]
Fitzgerald, R. and R.F. Rashid.
The integration of virtual memory management and interprocess

communication in Accent
Technical Report CMU-CS-85-164, Carnegie Mellon University Com­

puter Science Department,
September, 1985.

The integration of virtual memory management and interprocess
communication in the Accent network operating system
kernel is examined. The design and implementation of the
Accent memory management system is discussed and its
performance, both on a series of message-oriented
benchmarks and in normal operation, is analyzed in detail.

[Grizzaffi 85] Grizzaffi, A.M.
Fault-free performance validation of fault-tolerant multiprocessors.
Technical Report CMU-CS-86-127, Carnegie Mellon University Com­

puter Science Department,
November, 1985.

By the 1990's, aircraft will employ complex computer systems to
control flight-critical functions. Since computer failure
would be life threatening, these systems should be ex­
perimentally validated before being given aircraft control.

Over the last decade, Carnegie Mellon University has
developed a validation methodology for testing the fault-
free performance of fault-tolerant computer systems. Al­
though this methodology was developed to validate the
Fault- Tolerant Multiprocessor (FTMP) at NASA-Langley's
AIRLAB facility, it is claimed to be general enough to
validate any ultrareliable computer system.

The goal of this research was to demonstrate the robustness of
the validation methodology by its application on NASA's
Software Implemented Fault-Tolerance (SIFT) Distributed
System. Furthermore, the performance of two architec­
turally different multiprocessors could be compared by con­
ducting identical baseline experiments.

From an analysis of the results, SIFT appears to have a better
overall performance for instruction execution than FTMP.
One conclusion that can be made is thus far the validation
methodology has been proven general enough to apply to
SIFT, and has produced results that were directly com­
parable to previous FTMP experiments.

[Herlihy 86] Herlihy, M.P.
Optimistic concurrency control for abstract data types.
In Fifth ACM SIGACT-SIGOPS Symposium on Principles of Dis­

tributed Computing, ACM SIGACT-SIGOPS, August, 1986.
A concurrency control technique is optimistic if it allows trans­

actions to execute without synchronization, relying on

6-13

commit-time validation to ensure serializability. This paper
describes several new techniques for objects in distributed
systems, proves their correctness and optimality
properties, and characterizes the circumstances under
which each is likely to be useful. These techniques have
the following novel aspects. First, unlike many methods
that classify operations only as reads or writes, these tech­
niques systematically exploit type-specific properties of ob­
jects to validate more interleavings. Necessary and suf­
ficient validation conditions are derived directly from an
object's data type specification. Second, these techniques
are modular: they can be applied selectively on a per-
object (or even per-operation) basis in conjunction with
standard pessimistic techniques such as two-phase lock­
ing, permitting optimistic methods to be introduced exactly
where they will be most effective. Third, when integrated
with quorum-consensus replication, these techniques cir­
cumvent certain trade-offs between concurrency and
availability imposed by comparable pessimistic techniques.
Finally, the accuracy and efficiency of validation are further
enhanced by some technical improvements: distributed
validation is performed as a side-effect of the commit
protocol, and validation takes into account the results of
operations, accepting certain interleavings that would have
produced delays in comparable pessimistic schemes.

[Herlihy 87] Heriihy.M.
Extending multiversion time-sharing protocols to exploit type infor­

mation.
In IEEE Transactions on Computers, IEEE, April, 1987.

Atomic transactions are a widely accepted approach to im­
plementing and reasoning about fault-tolerant distributed
programs. This paper shows how multiversion time-
stamping protocols for atomicity can be extended to induce
fewer delays and restarts by exploiting semantic infor­
mation about objects such as queues, directories, or
counters. This technique relies on static preanalysis of
conflicts between operations, and incurs no additional run­
time overhead. This technique is deadlock-free, and it is
applicable to objects of arbitrary type.

[Herlihy and Wing 86]
Herlihy, M.P. and J.M. Wing.
Avalon: language support for reliable distributed systems.
Technical Report CMU-CS-86-167, Carnegie Mellon University Com­

puter Science Department,
November, 1986.

Avalon is a set of linguistic constructs designed to give
programmers explicit control over transaction-based

6-14

processing of atomic objects for fault-tolerant applications.
These constructs are to be implemented as extensions to
familiar programming languages such as C++, Common
Lisp, and Ada; they are tailored for each base language so
the syntax and spirit of each language are maintained.

This paper presents an overview of the novel aspects of
Avalon/C++: (1) support for testing transaction serialization
orders at run-time, and (2) user-defined, but system-
invoked, transaction commit and abort operations for
atomic data objects. These capabilities provide program­
mers with the flexibility to exploit the semantics of applica­
tions to enhance efficiency, concurrency, and fault-
tolerance.

[Herlihy and Wing 87a]
Herlihy, MP. and J.M. Wing.
Avalon: language support for reliable distributed systems.
In 17th Symposium on Fault-Tolerant Computer Systems, IEEE,

July, 1987.
Also available as Technical Report CMU-CS-86-167.

Avalon is a set of linguistic constructs designed to give
programmers explicit control over transaction-based
processing of atomic objects for fault-tolerant applications.
These constructs are to be implemented as extensions to
familiar programming languages such as C++, Common
Lisp, and Ada; they are tailored for each base language so
the syntax and spirit of each language are maintained.

This paper presents an overview of the novel aspects of
Avalon/C++: (1) support for testing transaction serialization
orders at run-time, and (2) user-defined, but system-
invoked, transaction commit and abort operations for
atomic data objects. These capabilities provide program­
mers with the flexibility to exploit the semantics of applica­
tions to enhance efficiency, concurrency, and fault-
tolerance.

[Herlihy and Wing 87b]
Herlihy.M.P., and J.M. Wing.
Axioms for concurrent objects.
In Conference Record of the 14th Annual ACM Symposium on Prin­

ciples of Programming Languages, ACM, January, 1987.
Specification and verification techniques for abstract data types

that have been successful for sequential programs can be
extended in a natural way to provide the same benefits for
concurrent programs. We propose an approach to specify­
ing and verifying concurrent objects based on a novel cor­
rectness condition, which we call linearizability.
Linearizability provides the illusion that each operation
takes effect instantaneously at some point between its in-

6-15

vocation and its response, implying that the meaning of a
concurrent object's operations can still be given by pre-
and post- linearizability, and then give examples of how to
reason about concurrent objects and verify their implemen­
tations based on their (sequential) axiomatic specifications.

[Herlihy and Wing 87c]
Herlihy, MP. and J.M. Wing.
Reasoning about atomic objects.
Technical Report CMU-CS-87-176, Carnegie Mellon University Com­

puter Science Department,
November, 1987.

Atomic transactions are a widely-accepted technique for or­
ganizing activities in reliable distributed systems. In most
languages and systems based on transactions, atomicity is
implemented through atomic objects, which are typed data
objects that provide their own synchronization and
recovery. This paper describes new linguistic mechanisms
for constructing atomic objects from non-atomic com­
ponents, and it formulates proof techniques that allow
programmers to verify the correctness of such implemen­
tations.

[Herlihy et al. 87] Herlihy, MP., N.A. Lynch, M. Merritt, and W.E. Weihl.
On the correctness of orphan elimination algorithms.
In 17th Symposium on Fault-Tolerant Computer Systems, IEEE,

July, 1987.
Abbreviated version of MIT/LCS/TM-329.

Nested transaction systems are being explored in a number of
projects as a means for organizing computations in a dis­
tributed system. Like ordinary transactions, nested trans­
actions provide a simple mechanism for coping with con­
currency and failures. In addition, nested transactions ex­
tend the usual notion of transactions to permit concurrency
within a single action and to provide a greater degree of
fault-tolerance, by isolating a transaction from a failure of
one of its descendants.

In a distributed system, however, various factors, including node
crashes and network delays, can result in orphaned com­
putations: computations that are still running but whose
results are no longer needed. Even if a system is
designed to prevent orphans from permanently affecting
shared data, orphans are still undesirable, for two reasons.
First, they waste resources. Second, they may see incon­
sistent information.

Several algorithms have been designed to detect and eliminate
orphans before they can see inconsistent information. In
this paper we give formal descriptions and correctness
proofs for the two orphan elimination algorithms in [7] and

6-16

[10]. Our analysis covers only orphans resulting from
aborts of actions that leave running descendants; we are
currently working on modeling crashes and describing the
algorithms that handle orphans that result from crashes.
Our proofs are completely rigorous, yet quite simple. We
show formally that the algorithms work in combination with
any concurrency control protocol that ensures serializabil-
tity of committed transactions, thus providing formal jus­
tification for the informal claims made by the algorithms'
designers. Separating the orphan elimination algorithms
from the concurrency control algorithms in this way con­
tributes greatly to the simplicity of our results, and is in
marked contrast to earlier work on similar problems.

[Jones and Rashid 87]
Jones, M.B. and R.F. Rashid.
Mach and Matchmaker: Kernel and language support for object-

oriented distributed systems.
Technical Report CMU-CS-87-150, Carnegie Mellon University Com­

puter Science Department,
September, 1987.
This paper also appeared in Proceedings of the First Annual ACM

Conference on Object-Oriented Programming Systems, Lan­
guages and Applications, OOPSLA, September, 1986.

Mach, a multiprocessor operating system kernel providing
capability-based interprocess communication, and
Matchmaker, a language for specifying and automating the
generation of multi-lingual interprocess communication in­
terfaces, are presented. Their usage together providing a
heterogeneous, distributed, object-oriented programming
environment is described. Performance and usage statis­
tics are presented. Comparisons are made between the
Mach/Matchmaker environment and other related systems.
Possible future directions are examined.

[Jones et al. 85] Jones, M.B., R.F. Rashid, and M.R. Thompson.
Matchmaker: an interface specification language for distributed

processing.
In Proceedings of the 12th ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages, 1985.
Matchmaker, a language used to specify and automate the

generation of interprocess communication interfaces, is
presented. The process of and reasons for the evolution of
Matchmaker are described. Performance and usage
statistics are presented. Comparisons are made between
Matchmaker and other related systems. Possible future
directions are examined.

6-17

[Liskov et al. 86] Liskov, B., M. Herlihy, and L Gilbert.
Limitations of synchronous communication with static process struc­

ture in languages for distributed computing.
In 13th ACM Symposium on Principles of Programming Languages,

ACM, January, 1986.
Also available as Technical Report CMU-CS-85-168.

Modules in a distributed program are active, communicating en­
tities. A language for distributed programs must choose a
set of communication primitives and a structure for
processes. This paper examines one possible choice:
synchronous communication primitives (such as rendez­
vous or remote procedure call) in combination with
modules that encompass a fixed number of processes
(such as Ada tasks or UNIX processes). An analysis of the
concurrency requirements of distributed programs sug­
gests that this combination imposes complex and indirect
solution to common problems and thus is poorly suited for
applications such as distributed programs in which concur­
rency is important. To provide adequate expressive
power, a language for distributed programs should aban­
don either synchronous communication primitives or the
static process structure.

[McKendry and Herlihy 86]
McKendry, M.S. and M. Herlihy.
Time-driven orphan elimination.
In Proceedings of the Fifth Symposium on Reliability in Distributed

Software and Database Systems, IEEE, January, 1986.
An orphan in a transaction system is an activity executing on

behalf of an aborted transaction. This paper proposes a
new method for managing orphans created by crashes and
by aborts. The method prevents orphans from observing
inconsistent states, and ensures that orphans are detected
and eliminated in a timely manner. A major advantage of
this method is simplicity: it is easy to understand, to imple­
ment, and to prove correct. The method is based on
timeouts using clocks local to each site. The method is
fail-safe: although it performs best when clocks are closely
synchronized and message delays are predictable, un-
synchronized clocks and lost messages cannot produce in­
consistencies or protect orphans from eventual elimination.

[Rashid 86] Rashid, R.F.
Threads of a new system.
Unix Review 4(8):37-49,1986.

The Department of Defense, anxious for better multithreaded
application support, has funded the development of Mach,
a multiprocessor operating system for U N I X applications.

6-18

[Rashid et al. 87] Rashid, R.F., A. Tevanian, M. Young, D. Golub, R. Baron, D. Black,
W. Bolosky, and J. Chew.
Machine-independent virtual memory management for paged

uniprocessor and multiprocessor architectures.
Technical Report CMU-CS-87-140, Carnegie Mellon University Com­

puter Science Department,
July, 1987.

This paper describes the design and implementation of virtual
memory management within the CMU Mach Operating
System and the experiences gained by the Mach kernel
group in porting that system to a variety of architectures.
As of this writing, Mach runs on more than half a dozen
uniprocessors and multiprocessors including the VAX
family of uniprocessors and multiprocessors, the IBM RT
PC, the Sun 3, the Encore Multimax, the Sequent Balance
21000 and several experimental computers. Although
these systems vary considerably in the kind of hardware
support for memory management they provide, the
machine-dependent portion of Mach virtual memory a con­
sists of a single code module and its related header file.
This separation of software memory management from
hardware support has been accomplished without sacrific­
ing system performance. In addition to improving por­
tability, it makes possible a relatively unbiased examination
of the pros and cons of various hardware memory
management schemes, especially as they apply to the
support of multiprocessors.

[Spector 85] Spector, A.Z.
The T A B S project.
Database Engineering 8(2), 1985.

To simplify the construction of reliable, distributed programs, the
TABS Project is performing research in the construction
and use of general purpose, distributed transactions
facilities. As part of this work, it has constructed a
prototype and data objects that are built onto it. The goals
of the work are to show that a distributed transaction
facility can simplify programming some types of distributed
applications and that its performance can be satisfactory.

[Spector 87] Spector, A.Z.
Distributed transaction processing and the Camelot system,
In Paker, Y. et al., Distributed Operating Systems. Springer-Verlag,

1987.
Also available as Technical Report CMU-CS-87-100.

This paper describes distributed transaction processing, a tech­
nique used for simplifying the construction of reliable dis­
tributed systems. After introducing transaction processing,
the paper presents models describing the structure of dis-

6-19

tributed systems, the transactional computations on them,
and the layered software architecture that supports those
computations. The software architecture model contains
five layers, including an intermediate layer that provides a
common set of useful functions for supporting the highly
reliable operation of system services, such as data
management, file management, and mail. The functions of
this layer can be realized in what is termed a distributed
transaction facility. The paper then describes one such
facility - Camelot. Camelot provides flexible and high per­
formance commit supervision, disk management, and
recovery mechanisms that are useful for implementing a
wide class of abstract data types, including large
databases. It runs on the Unix-compatible Mach operating
system and uses the standard Arpanet IP communication
protocols. Presently, Camelot runs on RT PC's and
Vaxes, but it should also run on other computers including
shared-memory multiprocessors.

[Spector and Daniels 85]
Spector, A.Z. and D.S. Daniels.
Performance evaluation of distributed transaction facilities.
Presented at the Workshop on High Performance Transaction

Processing, Asilomar, September, 1985.
[Spector and Swedlow 87]

Spector, A.Z. and K.R. Swedlow, eds.
Guide to the Camelot distributed transaction facility: release 1
0.92(38) Edition, Carnegie Mellon University, 1987.
No abstract appeared with the paper.

[Spector et al. 85a]
Spector, A.Z., D.S. Daniels, D.J. Duchamp, J.L Eppinger, and
R. Pausch.
Distributed transactions for reliable systems.
In Proceedings of the Tenth Symposium on Operating System

Principles, ACM, December, 1985.
Also available as Technical Report CMU-CS-85-117.

Facilities that support distributed transactions on user-defined
types can be implemented efficiently and can simplify the
construction of reliable distributed programs. To
demonstrate these points, this paper describes a prototype
transaction facility, called TABS, that supports objects,
transparent communication, synchronization, recovery, and
transaction management. Various objects that use the
facilities of TABS are exemplified and the performance of
the system is discussed in detail. The paper concludes
that the prototype provides useful facilities, and that it
would be feasible to build a high performance implemen­
tation based on its ideas.

6-20

[Spector et al. 85b]
Spector, A.Z., J. Butcher, D.S. Daniels, D.J. Duchamp, J.L Eppinger,
C.E. Fineman, A. Heddaya, and P.M. Schwarz.
Support for distributed transactions in the T A B S prototype.
IEEE Transactions on Software Engineering SE-11 (6), June, 1985.
Also available as Technical Report CMU-CS-84-132.

The Tabs prototype is an experimental facility that provides
operating system-level support for distributed transactions
that operate on shared abstract types. The facility is
designed to simplify the construction of highly available
and reliable distributed applications. This paper describes
the TABS system model, the TABS prototype's structure,
and certain aspects of its operation. The paper concludes
with a discussion of the status of the project and a prelimi­
nary evaluation.

[Spector et al. 86a]
Spector, A.Z., D. Duchamp, J.L. Eppinger, S.G. Menees, and D.S.
Thompson.
The Camelot interface specification.
Camelot Working Memo 2.

We present a performance evaluation methodology for general
purpose distributed transaction processing facilities. This
methodology extends previous techniques in two ways:
First, it provides more insight into a transaction facility's in­
ternal operation and makes it possible to predict the effects
of algorithmic and architectural changes. Second, it per­
mits the performance of many types of transactions to be
understood. We illustrate the methodology by applying it
to a prototype transaction facility called T A B S .

[Spector et al. 86b]
Spector, A.Z., J.J. Bloch, D.S. Daniels, R.P. Draves, D. Duchamp,
J.L. Eppinger, S.G. Menees, and D.S. Thompson.
The Camelot project.
Database Engineering 9(4), December, 1986.
Also available as Technical Report CMU-CS-86-166.

This paper is an early discussion of Camelot. It broadly dis­
cusses its key functions and some aspects of its im­
plementation. For perspective, it was written just after the
project measured the performance of local write trans­
actions without stable storage. A pretty early paper.

[Spector et al. 87] Spector, A.Z., D. Thompson, R.F. Pausch, J.L. Eppinger,
D. Duchamp, R. Draves, D.S. Daniels, and J.J. Bloch.
Camelot: A flexible and efficient distributed transaction processing

facility for Mach and the Internet.
In IEEE Transactions on Computers, special issue on reliability,

IEEE, June, 1987.
Also available as Technical Report CMU-CS-87-129.

6-21

Camelot is a distributed transaction facility that runs on top of
the Berkeley Unix 4.3 compatible Mach operating system.
Camelot runs on a variety of different hardware and sup­
ports the execution of distributed transactions on shared
user-defined objects, and hence the operation of dis­
tributed network services. The Camelot library, akin to the
Unix Man 3 library, provides about 30 macros and proce­
dure calls to simplify the development of applications and
distributed services. To achieve good performance,
Camelot is implemented using a combination of multi-
thread tasks, shared memory, messages, and datagrams.
This paper reports on a number of latency experiments to
show the overhead of Camelot Release 0.4(22).

[Tevanian and Rashid 87]
Tevanian, A. Jr. and R.F. Rashid.
MACH: A basis for future UNIX development.
Technical Report CMU-CS-87-139, Carnegie Mellon University Com­

puter Science Department,
June, 1987.

Computing in the future will be supported by distributed comput­
ing environments. These environments will consist of a
wide range of hardware architectures in both the
uniprocessor and multiprocessor domain. This paper dis­
cusses Mach, an operating system under development at
Carnegie Mellon University, that has been designed with
the intent to integrate both distributed and multiprocessor
functionality. In addition, Mach provides the foundation
upon which future Unix development may take place in
these new environments.

[Tevanian et al. 87]
Tevanian, A. Jr., R.F. Rashid, D.B. Golub, D.L Black, E. Cooper,
and M.W. Young.
Mach threads and the Unix kernel: The battle for control.
Technical Report CMU-CS-87-149, Carnegie Mellon University Com­

puter Science Department,
August, 1987.

This paper examines a kernel implementation lightweight
process mechanism built for the Mach operating system.
The pros and cons of such a mechanism are discussed
along with the problems encountered during its implemen­
tation.

[Tygar and Wing 87]
Tygar,J.D., and J.M. Wing.
Visual specification of security constraints.
In 1987 Workshop on Visual Languages, IEEE and the Swedish

Defense Organization, February, 1987.
Also available as Technical Report CMU-CS-87-122.

6-22

We argue and demonstrate that the security domain naturally
lends itself to pictorial representations of security con­
straints. Our formal model of security is based on an ac­
cess matrix that traditionally has been used to indicate
which users have access to which files, e.g., in operation
systems. Our formal visual notation borrows from and ex­
tends Harel's statechart ideas, which are based on graphs
and Venn diagrams. We present a tour of our visual
language's salient features and give examples from the
security domain to illustrate the expressiveness of our
notation.

[Wendorf 87] Wendorf, J.W.
OS/application concurrency: A model.
Technical Report CMU-CS-87-153, Carnegie Mellon University Com­

puter Science Department,
April, 1987.

A model of the processing performed on a computer system is
presented. The model divides processing into two types:
OS processing and application processing. It then defines
what it means to have OS/application concurrency, and
enumerates the different forms such concurrency can take.
Examples are presented to illustrate the model's analytic
and predictive capabilities. The model provides a common
framework for describing the concurrency in different sys­
tems, and it aids in identifying the areas where increased
concurrency may be possible. The potential performance
improvements' resulting from increased OS/application
concurrency can also be predicted from the model.

[Wendorf and Tokuda 87]
J.W. Wendorf and H. Tokuda.
An interprocess communication processor: Exploiting OS/application

concurrency.
Technical Report CMU-CS-87-152, Carnegie Mellon University Com­

puter Science Department,
March, 1987.

The efficiency of the underlying interprocess communication
facility is often one of the key determinants of the overall
performance (and success) of a message-based operating
system. Because of its importance, IPC has frequently
been a target for extra hardware support, through the ad­
dition of special machine instructions or specialized IPC
coprocessors. In this paper we propose and evaluate
software-level functional specialization within a tightly-
coupled multiple-processor system, as a "hardware" sup­
port technique for improving the performance of com­
municating processes. Our experiments, conducted on a
V A X - 1 1 / 7 8 4 shared-memory multiprocessor, show that per-

6-23

formance is significantly improved by the overlapped ex­
ecution of IPC and application processing. We analyze un­
der what conditions a software-specialized IPC processor
will be effective, and we indicate how remote IPC support
can be easily integrated with local IPC in our design.

[Wing 87] Wing, J.M.
A study of twelve specifications of the library problem.
Technical Report CMU-CS-87-142, Carnegie Mellon University Com­

puter Science Department,
July, 1987.

Twelve workshop papers include an informal or formal
specification of Kemmerer's library problem. The
specifications range from being knowledge-based to logic-
based to Prolog-based. Though the statement of the infor­
mal requirements is short and "simple," twelve different ap­
proaches led to twelve different specifications. All twelve,
however, address many of the same ambiguities and in­
completenesses, which we describe in detail, present in
the library problem. We conclude that for a given set of in­
formal requirements, injecting domain knowledge helps to
add reality and complexity to it, and formal techniques help
to identify its deficiencies and clarify its imprecisions.

The purpose of this paper is to summarize and compare the
twelve different papers that address the same set of infor­
mal requirements-Kemmerer's library problem-as as­
signed to participants of the Fourth International Workshop
on Software Specification and Design held in Monterey,
California in April 1987.

[Zayas 87] Zayas, E.R.
The use of copy-on-reference in a process migration system.
Technical Report CMU-CS-87-121, Carnegie Mellon University Com­

puter Science Department,
April, 1987.

Process migration is a valuable tool in a distributed program­
ming environment. Two factors have conspired to dis­
courage efficient implementations of this facility. First, it
has been difficult to design systems that offer the neces­
sary name and location transparency at a reasonable cost.
Also, it is often prohibitively expensive to copy the large vir­
tual address spaces found in modern processes to a new
machine, given the narrow communication channels avail­
able in such systems.

This dissertation examines the use of lazy address space trans­
fers when processes are migrated to new sites. An IOU for
all or part of the process memory is transferred to the
remote location. Individual memory pages are copied over
the network in response to attempts by the transplanted

6-24

process to touch areas for which it holds an IOU. The
S P I C E environment developed at Carnegie Mellon has
been augmented to provide a process migration facility that
takes advantage of such a copy-on-reference scheme.
The underlying Accent kernel's location-independent IPC
mechanism is integrated with its virtual memory manage­
ment to supply the necessary transparency and the ability
to transmit data in a lazy fashion.

Study of the testbed system reveals that copy-on-reference ad­
dress space transmission improves migration effectiveness
(performance). Relocations occur up to a thousand times
faster, with transfer times independent of process size.
Since processes access a small portion of their memory in
their lifetimes, the number of bytes transferred between
machines drops by up to 96%. Message-handling costs
are lowered by up to 94%, and are more evenly distributed
across the remote execution. Without special tuning, fault­
ing in a remote page took only 2.8 times longer on average
than accessing a page on the local disk. Page prefetch
and explicit transfer of resident pages are shown to be
helpful in certain situations.

6-25

6-26

7. GRACEFUL INTERACTION
In the timesharing era, the great challenge was to use every machine cycle as ef­

ficiently as possible. In the new world of workstations, user time is increasingly expen­
sive, while machine cycles are cheap and plentiful. The challenge now is to use these
cycles to facilitate the flow of information between user and computer and promote ef­
fective, graceful man-machine interaction. This will make the computer users more com­
fortable and productive, and should thus be a help in both the development effort and
usefulness of any major piece of software.

The target environment for our work in Graceful Interaction is a heterogeneous net­
work of workstations and multiprocessors. We tailored our work specifically for large,
heterogeneous computer systems because such systems have become predominant in
the academic, military, and industrial environment, but not enough is known about
providing effective and understandable user interfaces for them.

One of our goals was to facilitate the creation of a new generation of user interface
systems by developing a prototype interface environment with some of the features we
believed would be available in the future. We developed the notion of the Uniform
Workstation Interface (UWI), i.e., a homogeneous interface system that integrated the
results of previous research in man-machine communication, and formed the Dante
project.

An important strategic decision for the Dante Project was to develop the Uniform
Workstation Interface on top of the Mach operating system. This decision serves
several purposes:

• The Mach operating system provides us with a large community of users
(both at Carnegie Mellon and at external sites) and with a very diversified
range of computer systems.

• The community of Mach users includes very experienced and sophisticated
users and software developers, and thus represents an ideal testbed for
our system. The Mach community will provide us with extensive feedback
and thus contribute significantly to the ultimate success of the system.

• By taking advantage of the best possible development environment, we
were able to minimize the effort we spent on implementation details and
concentrate instead on the conceptual issues of designing user interface
systems.

• We expect that the early availability of the UWI will in turn significantly en­
hance the appeal of Mach as an operating system and will contribute to its
widespread acceptance.

• Finally, the Mach operating system gives us a powerful programming en­
vironment that supports efficient communication among local or remote
processes, possibly written in different programming languages. Such an
environment is the ideal layer upon which an interface system for a
heterogeneous computing environment can be built.

7-1

We are developing the UWI as an interface manager written in Common Lisp. This is
based on our experience with Lisp-based systems and on the clear trend towards com­
puters that can run Lisp as efficiently as more traditional languages like C or Pascal.
The tools we built to accompany it were intended to be as standard as possible so they
would be accessible to as wide a community as possible.

7.1. Components of the UWI

7.1.1. The Lisp Shell
The Lisp Shell, which we started designing in the first half of 1986, is a Lisp-based

command language interpreter that constitutes one of the interaction mechanisms in the
UWI. The Lisp Shell is completely customizable, both through the customary user-level
mechanisms and through an embedded programming language. This programming lan­
guage, Common Lisp, makes the Lisp Shell an extremely powerful tool, allowing it to
execute commands written as Lisp programs or as external processes written, for in­
stance, in C or Pascal. This gives the user the full functionality of the U N I X programming
environment without having to leave Lisp [Giuse 85].

During the second half of 1986, we implemented the first version of the Lisp Shell and
ported it to an external environment, i.e. to the Warp project. A member of the Warp
group did the porting which consisted of moving the Lisp Shell from CMU Common Lisp
under Mach to Lucid Common Lisp under U N I X 4.2 (on a Sun workstation). The port
also required converting the system's editor from Hemlock to Sun Emacs. The resulting
system, called the Warp Shell, constitutes the top-level user interface to the Warp sys­
tolic multiprocessor. A first version of the Warp Shell was released to users outside the
CMU community (see section 2.3 in the Distributed Processing Chapter).

Based partly on our experience with porting the Lisp Shell to the Warp environment,
we recently redesigned the Lisp Shell. We added an operating system independent
layer and clarified the boundary between the editor and the shell. This increased its por­
tability and functionality. The increased functionality includes support for multiple com­
mand interpreters which can be active simultaneously, thus allowing application
programs to define and use their own customized command languages as necessary.

7.1.2. The Viewers system
Inspired by the ZOG project and the Xerox Notecards project, we built Viewers, a

frame-based interaction system that allows a user to navigate through a network of in­
terconnected frames of information. The Viewers system represents both a browsing
mechanism and a knowledge representation system. Knowledge is represented as
frames of information that are connected into complex networks. The user can employ
a simple, menu-like interaction to browse through the network and to perform actions
such as running programs or manipulating system resources. We released the Viewers
system to the Spice Lisp community on the Perq workstation and later completed a ver-

7-2

sion for the IBM RT PC, running under Mach. During the first half of 1987, we revised
and extended the Viewers system. Now the interface can be customized and is
dynamic; the application can change how Viewers interacts with the user as it runs.

7.1.3. Mirage

In the Spring of 1987, we implemented the graphical component of UWI called
Mirage. Several of our tools are already using the meta-device for all their graphics in­
put and output; moreover, we have made the system available as a stand-alone tool for
developers of Lisp systems within the Mach environment [Busdiecker 86]. Mirage is
written in Spice Lisp (CMU Common Lisp) and provides a powerful object-oriented
programmable interface. This interface allows application programmers to develop
complex applications more easily, since the system can be developed incrementally.
One of the components of Mirage is a device- and window system-independent
graphics layer, which provides complete insulation between the application program and
the underlying hardware and software. The graphics layer is not itself a window
manager, but rather uses whatever window manager is provided by the underlying
machine. This first implementation uses the X window manager as the underlying win­
dow system, thus providing very powerful graphics capabilities on a large number of dif­
ferent machines. The object-oriented interface is built in Common Lisp and uses Port­
able Common Loops, a public-domain object system that is evolving into the standard
object system for all Common Lisp implementations.

7.1.4. MetaMenu

We have completed the design of MetaMenu, a powerful menu-based system that will
be another of the basic building blocks of the Uniform Workstation Interface. This sys­
tem will be integrated with Mirage, the graphic component described above. We have
started implementing MetaMenu, based on the X window manager.

7.1.5. Griffin

During the Spring of 1987, we completed the first implementation of Griffin, a new in­
terface tool that implements a form-filling paradigm. This paradigm lets a user interact
with a program through forms, which contain slots that can be individually manipulated
by the user. Griffin is based on our past experience with the Cousin system and
represents a considerable extension to that system, both in terms of power and in terms
of performance. Griffin can be modified by the user, and it provides extensive type
checking, a built-in help facility, and on-line documentation [Engelson 87].

7.2. Chinese Tutor
To test and validate some of the tools we have created so far, we developed the

Chinese Tutor, an intelligent computer-based tutoring system for beginner-level

7-3

Chinese. The Chinese Tutor represents the first prototype of an application program
that uses the Uniform Workstation Interface to allow the user to interact with the system
through diverse styles of interaction. The application program itself is totally unaware of
exactly how the user is interacting with it, which translates into a greatly simplified ap­
plication program. The Chinese Tutor makes extensive use of the Viewers system and
uses KR, described in section 7.3.1, to represent knowledge about the language. It also
uses some of the preliminary work we have done on Mirage to provide graphical sup­
port for the display of Chinese characters. Work on the Chinese Tutor has provided us
with invaluable feedback about the interactions among some of the subsystems we are
developing, and we have already used some of this feedback to improve the design of
those subsystems.

7.3. A knowledge-based system
Early form-based systems, including our own, were limited to a static model of the

user and a single interface paradigm that forced the user to use a rigidly defined inter­
action style. To overcome the limitations, we began pursuing a different approach: By
giving the interface system sufficient knowledge, we could enable it to make some deci­
sions without explicit user intervention.

7.3.1. Representing knowledge

In the beginning of 1985 we analyzed what knowledge was required and how it could
be represented. The required knowledge included a user model, i.e. a description of the
user's expertise level, particular preferences, and goals, as well as a system model that
described the environment and available resources and how to best utilize some of
those resources. We chose to represent the knowledge using semantic networks and in
1986 constructed a simple semantic network prototype system. This prototype, called
KR, provides very flexible knowledge representation without the performance overhead
normally associated with full-blown semantic network systems. We designed it specifi­
cally for efficiency, since we felt that traditional frame-based systems would have a sig­
nificant performance impact on a user interface environment like the one we are build­
ing. KR will constitute the central representation mechanism for the UWI; we have al­
ready converted the Lisp Shell to use it, and will convert the other system components
to use it too. We have released the first version of KR to the CMU Common Lisp com­
munity as a stand-alone knowledge representation mechanism.

7.3.2. A knowledge-based interface
As one example of our knowledge-based interface strategy, we designed and imple­

mented CoalSORT, a prototype intelligent interface to a large bibliographic database in
the coal technology domain [Monarch 86]. The system's knowledge resides in a frame-
based semantic network that represents a domain expert's knowledge, particularly in its
organizational aspects.

7-4

Our CoalSORT research attacks consistency problems that plague more conventional
document access strategies, specifically statistical and manual indexing. The system's
network representation minimizes guesswork in the indexing task. Both users seeking
information and those cataloging documents can browse through the concept net.
Searchers and indexers thus select concept keywords from the same organization.
Consistency between query and catalog views reflects the network's ability to represent
the meaning underlying relevant terms.

By applying its understanding of the domain's conceptual structure, the system can
guide and progressively restrict the search through a large document collection.
Through menus and multiple window displays, CoalSORT cooperates with a user to for­
mulate and refine partial concept descriptors. Descriptors express the information con­
tent match between a topical query and documents that the system knows about.
Query formulation proceeds by recognition rather than recall or guesswork and the
search employs a weighted key-concept mechanism. CoalSORT displays different kinds
of information in separate windows and currently works with several terminal types, in­
cluding Concepts and the D E C VT series, a Macintosh personal computer, and a Perq
workstation. Relationships among network nodes appear as verbal diagrams and the
system offers both global views and local context cues.

Our prototype system demonstrates the feasibility of combining a network knowledge
representation with a browsing interface. Preliminary studies with engineers ex­
perienced in coal liquefaction technology proved encouraging. Users found the system
relatively easy to learn and our network design adequately captured the meanings of
key domain concepts. Our work opens the way for more powerful systems that can
automatically parse queries and abstracts into a uniform semantic representation.

7.4. Bibliography
[Busdiecker 86] Busdiecker,R.

Mirage user's manual.
Dante Project internal working document.

[Engelson 87] Sean P. Engelson.
Griffin — a form-filling interface system.
Dante Project internal working document.

This document contains a description of Griffin, the Dante form-
based user-interface system. Griffin is designed to work
with clisp, and more specifically, with Hemlock, the meta-
device, and the Dante knowledge structures.

Form-based communication between a user and an application
is analogous to a person filling in a form for the purposes
of conveying information to the readers of the form. The
form provides slots, or fields, which either contain infor­
mation to be communicated between the user and the ap­
plication, or perform actions for the user. The user will fill
in the fields with various values, which the application can
then read and use, when the user signals events on action
oriented fields.

[Giuse 85] Giuse, D.
Programming the Lisp Shell.

This document contains a description of how to program the
Lisp Shell, both in terms of writing new Shell commands
and in terms of creating programs that use the Shell as
one of their resources to achieve a higher level of control.

The document is still under development, since the Lisp Shell it­
self is under very active development. At this stage, this
document should not be interpreted as a cast-in-concrete
specification yet, but rather as an overview of the current
functionality.

[Giuse 87] Giuse, D.
KR: An efficient knowledge representation system.
Technical Report CMU-RI-TR-87-23, Carnegie Mellon University

Robitics Institutes,
October, 1987.

KR is a very efficient semantic network knowledge represen­
tation language implemented in Common Lisp. It provides
basic mechanisms for knowledge representation which in­
clude user-defined inheritance, relations, and the usual
repertoire of knowledge manipulation functions. The sys­
tem is simple and compact and does not include some of
the more complex functionality often found in other
knowledge representation systems. Because of its
simplicity, however, KR is highly optimized and offers good
performance. These qualities make it suitable for many ap-

7-6

plications which require a mixture of good performance
and flexible knowledge representation.

[Hayes et al. 85] Hayes, P.J., P.A. Szekely, and R.A. Lerner.
Design alternatives for user interface management systems based

on experience with Cousin.
In CHI '85 Proceedings, April, 1985.

User interface management systems (UIMSs) provide user in­
terfaces to application systems based on an abstract
definition of the interface required. This approach can
provide higher-quality interfaces at a lower construction
cost. In this paper we consider three design choices for
UIMSs which critically affect the quality of the user inter­
faces built with a UIMS, and the cost of constructing the in­
terfaces. The choices are examined in terms of a general
model of a UIMS. They concern the sharing of control be­
tween the UIMS and the application it provides interfaces
to, the level of abstraction in the definition of the sequenc­
ing of the dialogue. For each choice, we argue for a
specific alternative. We go on to present Cousin, a UIMS
that provides graphical interfaces for a variety of applica­
tions based on highly abstracted interface definitions.
Cousin's design corresponds to the alternative we argued
for in two out of three cases, and partially satisfies the
third. An interface developed through, and run by Cousin
is described in some detail.

[Monarch 86] Monarch, I.
Abstract: intelligent information retrieval interfaces and a new con­

figuration of text.
In AAAI-86 Workshop on Intelligence in Interfaces, AAAI, August,

1986.
The focus of this abstract is to summarize the approach taken to

provide an intelligent interface for a bibliographic database.
However, at the peripheries, the implications of this ap­
proach for a new conception of textual communication and
a textual boundaries will be noted. Such an approach has
these implications because an index at the back of a book
is similar to the subject index in a library card catalogue.
The linear organization of a book as specified by its table
of contents is always capable of being supplemented by
the multiple access points indicated by its index. The non­
linear reading and also writing of texts made possible by
indexing can become a more central feature of textual
communication in the emerging context of knowledge-
based browsing interfaces to bibliographic databases.

7-7

7-8

8. VERY LARGE SCALE INTEGRATION
The ultimate goal of our research in VLSI is to make it practical to use VLSI routinely

as a tool in the design of experimental computer systems. Our principal focus in the
past three years has been constructing working systems that apply VLSI in several key
areas. This approach allows us to evaluate algorithms and architectures that have at­
tractive theoretical properties when actually applied to a particular problem and
designed into circuitry. It can suggest new ideas for tools and in the meantime allow us
to test and refine existing tools. It also induces innovations in the applications them­
selves. Our work during this period has been in three general areas: systolic building-
blocks, design and testing tools, and VLSI systems and applications.

8.1. Systolic Building-blocks

8.1.1. Building Crossbar Switches

One of our goals is to develop methods that permit fabricating chips with good perfor­
mance, even while working in a silicon-broker environment. The X B A R chip, with its
simple structure, allowed us to concentrate on path optimization and gate sizing. The
use of a second layer of aluminum provided a further challenge.

We have completed the layout of X B A R , a building block for implementing large
crossbars, X B A R is a high-bandwidth, 16x16, two-bit crossbar chip implemented in
double-metal, C M O S P-well technology with 3u.m feature size. The chip is about 7.8x8.8
mm 2 and will be housed in a 144-pin grid array package. Speed has been the major
goal and this explains the chip's large size despite its simple structure and functionality.
Our target speed is a delay of less than 60 nanoseconds (data-in, data-out) on a 10OpF
load over the commercial temperature range. We have performed accurate S P I C E

simulations, achieving a 35 nanoseconds delay in the critical path (pads included,
100pF load).

8.1.2. Intermodule Communication

L I N C is a custom chip whose function is to serve as an efficient link between system
functional modules such as arithmetic units, register files, and I/O ports. In this respect,
L I N C is a "glue" chip for powerful system construction: It can provide efficient hardware
support to connect high-speed, high-density building-block chips, provide physical com­
munications and data buffering between functional system units, and implement some
complicated data shuffling operations. During this contract period we have explored two
applications that can use this processor array: the fast Fourier transform (FFT) and a
simulated annealing algorithm for chip placement and wire-length minimization.

In June 1985 we completed L INC'S layout, with General Electric's cooperation, and
simulated its functionality on a Daisy workstation. GE simulated the low-level cells,
verified timing of critical paths through the chip, and tested the fabricated chips using

8-1

test vectors designed and simulated at CMU. L I N C will be demonstrated in the WarpJr
systolic array being designed at CMU.

WarpJr is a 32-bit, floating-point, linear systolic processor of our design. Its
functionality resembles that of the Warp processor, but it uses L I N C to implement the
data path and the AM29325 floating point chip as the ALU. To simplify programming
the systolic array and to test the feasibility of exploiting L INC'S pipelined registers ef­
ficiently, we wrote a compiler specifically for WarpJr. The high-level language is W2,
just as in the Warp compiler, and its front end is also the same as the Warp compiler's.

8.2. Tools for VLSI Design and Testing

8.2.1. Yield Simulation
With partial support from the Semiconductor Research Corporation, we have built a

catastrophic-fault yield simulator for integrated circuits. Our V L A S I C simulator employs a
Monte Carlo strategy and statistical defect models to hypothesize random catastrophic
point defects on a chip layout and then determine what circuit faults, if any, have oc­
curred. The defect models are described in tables, and therefore readily extend to new
processes or defect types. The defect statistical model is based on actual fabrication
line data and has not appeared before in the literature. The circuit fault information
generated by V L A S I C can be used to predict yield, optimize design rules, generate test
vectors, evaluate redundancy, etc. We are extending V L A S I C to handle larger designs
and to improve its redundancy analysis system.

The process tables assume a single-level metal N M O S technique. The simulator takes
as inputs a circuit and wafer layout, and defect statistics. The simulator uses a Monte
Carlo method to generate potentially-faulty circuit instances with the correct statistical
distribution. A back end is currently being implemented for use in fault-tolerant circuit
design. We are currently fitting the process models to real data from a two-micron
double-metal N M O S process. We will then use the simulator to predict the yield of a 16K
S R A M containing 100,000 transistors, and compare our results with actual fabrication
results.

8.2.2. Testing by Simulation
As VLSI circuit sizes have increased, researchers have found that testing manufac­

tured circuits for defects proves at least as challenging as designing and manufacturing
them. Simulation offers one fundamental means of debugging and gaining confidence
in designs, and research at CMU is exploring several techniques that promise sig­
nificant advances in fault simulation and test generation. Our work includes both fault
simulators and test data pattern generators for M O S circuits.

8-2

Several aspects of CMU's research program stand out among related efforts in both
industry and academia. First, much of our work is based on switch-level models, an
abstract representation of M O S circuits in which each transistor is modeled as a
parameterized switch. The switch-level representation of a system can capture many
aspects of circuit behavior that more traditional gate-level models cannot, while provid­
ing a level of abstraction that allows efficient validation of very large circuits operating
over long input sequences. Second, our work applies symbolic methods, in which an
abstract representation of a circuit is created, describing its behavior for many possible
input and timing conditions. Symbolic methods are used both to enhance the perfor­
mance of conventional simulators, as well as to provide new capabilities in circuit
verification and automatic test pattern generation. Finally, our work emphasizes an
algorithmic approach that spans the entire range from theory to practice. On the
theoretical side, we explore and develop new algorithms and verification methodologies.
On the practical side, we implement production quality programs for a variety of valida­
tion tasks. These programs receive widespread use by VLSI designers nationwide.
Switch-level Models

A switch-level simulator models a logic circuit as a network of nodes connected by
transistors. This allows a detailed modeling of many of the phenomena associated with
M O S circuits such as bidirectional transistors, dynamic memory, precharged logic, and
various bus structures. In contrast, simulators based on more traditional gate-level
models cannot model these features accurately and will often fail to detect major design
errors. Unlike detailed circuit level simulators, however, switch-level simulators abstract
away many details of the circuit electronics in the interest of performance. Node vol­
tages are represented by three states 0 ,1 , and X (for uninitialized or invalid), and tran­
sistors are modeled as discrete switches. Consequently, switch-level simulators can
simulate circuits containing 100,000 or more transistors for thousands of clock cycles in
a timely fashion.
Symbolic Methods

A symbolic simulator computes a circuit's behavior for a sequence of user-supplied
input patterns. The user can then interactively examine and manipulate the computed
symbolic representations to gain insight into circuit operation. Alternatively, a user
might attempt to prove circuit correctness by testing the representation for equivalence
with another derived from the circuit specification. Such a program opens up a totally
new way for designers to analyze circuits. A conventional simulator forces the designer
to try out a small number of test cases one at a time. Serious design errors often
remain undetected. Once improper behavior has been detected, the designer must en­
gage in the laborious process of hypothesizing the source of the error, devising test pat­
terns to validate the hypothesis, and simulating these patterns. In contrast, a symbolic
simulator helps the user understand how the circuit processes arbitrary Boolean data.
A single simulation sequence determines the circuit behavior for many test cases.
Using the symbolic manipulation capabilities of the program, the user can examine the
function at different points in the circuit to more quickly identify the source of an error.

In a conventional simulator, the description of a system is read in, the user specifies a
series of input patterns, and the simulator computes the behavior of the system for

these patterns. In a symbolic simulator, however, the input patterns consist of Boolean
variables in addition to the constants 0 and 1, and the behavior computed by the
simulator consists of Boolean functions over the present and past input variables.
These functions can then be tested for equivalence with functions representing the
desired behavior of the system, thereby verifying the correctness of the system for the
set of all possible input data represented by the input patterns. Although a complete
symbolic verification of a large circuit may be impractical, the user can adopt a hybrid
approach with some inputs set to variables and others to constants.

Our M O S S Y M simulator simulates M O S circuits represented as switch-level networks
[Bryant.85.Symbolic]. M O S S Y M implements the same circuit model as the our previous

simulator M O S S I M II and can accurately model such M O S circuit structures as ratioed,
complementary and precharged logic, dynamic storage, bidirectional pass transistors,
and busses. Experimental results with M O S S Y M are quite promising
[Bryant&.85.Performance]. The availability of a symbolic simulator raises a new set of
problems on how to rigorously verify a circuit based on observations of its input-output
behavior. This task is related to the "machine identification" problem of classical finite
state machine theory, but with some new twists that allow more positive results. (For
related discussion, see section 8.2.5.)

8.2.3. A Compiled Simulator for MOS Circuits
The C O S M O S project, begun in early 1986, addresses the issue of algorithmic im­

provements to switch-level simulation [Bryant.86.Collection]. C O S M O S , a compiled
simulator for M O S circuits, will replace M O S S I M II as the leading switch-level simulator at
CMU. It will operate approximately an order of magnitude faster than M O S S I M II while
providing additional capabilities including fault simulation. Furthermore, it can easily be
implemented on any special purpose simulation accelerator that supports Boolean
evaluation. Features of C O S M O S include both logic and concurrent fault simulation,
mechanisms to interface user-written C code to implement new simulation commands
as well as behavioral models, and the ability to simulate up to 32 sets of data simul­
taneously. Programs are provided to translate circuit descriptions produced by the
Berkeley Magic circuit extractor into the network format required by the symbolic
analyzer.

Unlike switch-level simulators that operate directly on the transistor level description
during simulation, C O S M O S transforms the transistor network into a Boolean description
during a preprocessing step. This Boolean description, produced by a symbolic
analyzer, captures all aspects of switch-level networks including bidirectional transis­
tors, stored charge, different signal strengths, and indeterminate (X) logic values. Most
significantly, for all but a small class of dense, pass transistor networks (e.g. barrel
shifters), the size of the Boolean description grows linearly with the size of the transistor
network. Even for these exceptional cases, the growth is no worse than quadratic. This
compares favorably to the exponentially sized results produced by all previous symbolic
analyzers.

8-4

For execution on a general purpose computer, C O S M O S generates a procedure for
each channel-connected subnetwork. When called, this procedure computes the new
states of the subnetwork nodes as a function of the initial transistor and node states.
The Boolean description produced by the symbolic analyzer maps directly into machine-
level logical instructions, and hence execution time is very short, C O S M O S compiles
these sub-network procedures together with an event-driven scheduler and user inter­
face code. The resulting program appears to the user much like an ordinary simulator,
except that the network is already loaded at the start of execution. This program is be­
ing written in C and will be made available to the D A R P A VLSI community.

For execution on special purpose hardware, C O S M O S maps the output of the symbolic
analyzer into a set of Boolean elements. Whatever methods are provided to support
logic gate simulation are then used to perform switch-level simulation, C O S M O S requires
no special hardware to support switch-level simulation. In fact, many of the costly fea­
tures found in existing simulation accelerators such as bidirectional elements and multi­
valued logic modeling are not needed. Preprocessors such as ours encourage a R I S C

approach to hardware design where only basic operations on a limited set of data types
are implemented. The preprocessor must perform the mapping between the complex
models required by the simulator and the simple operations implemented by the
hardware. For switch-level simulation, the payoff in terms of greater flexibility and per­
formance clearly favors this approach.

C O S M O S provides a combination of high simulation performance and a variety of
simulation features. It simulates between 10 and 200 times faster than other switch-
level simulators such as M O S S I M I I . C O S M O S achieves this performance by preprocess­
ing the transistor network using a symbolic Boolean analyzer, converting the Boolean
description into procedures describing the behavior of subnetworks plus data structures
describing their interconnections, and then compiling this code into an executable
simulation program.

An earlier bottleneck caused by the long time required to preprocess a circuit into an
executable simulation program has been solved by a combination of hierarchy extrac­
tion, incremental analysis, and assembly code generation. The preprocessor takes a
flat network description and extracts a two-level hierarchy consisting of transistor sub­
networks as leaves, and their interconnection as root. This extraction utilizes graph
coloring/isomorphism-testing techniques similar to those used by wirelist comparison
programs. To avoid ever repeating the processing of isomorphic subnetworks, it main­
tains a directory of subnetworks and their compiled code descriptions with file names
derived from a hash signature of the transistor topology. Finally, the code generation
program can generate assembly language declarations of the data structures rather
than C code. The data structure formats for all U N I X assemblers are sufficiently similar
that the assembly code generator for a new machine type can be produced with minimal
effort. As an example, a 1600 transistor circuit that earlier required 23 minutes to
preprocess on a VAX-11/780 now requires only 2.9 minutes to preprocess the first time,
and only 2.3 minutes subsequently.

8-5

8.2.4. System Design Tools
Standard Frame Configuration

When planning chip fabrication via M O S I S , designers must conform to the M O S I S Stan­
dard Frame I/O pad conventions. To facilitate placing and connecting input/output pads
around the edges of a chip design, we have written a useful tool that we call a "standard
frame instantiator". The user gives our Frame program a pad frame description iden­
tifying the parameters of the frame itself, characteristics of the pad cells used, the sorts
of wires connecting the frame's cells, and which particular pad cell goes at each pin.
The program provides a completely laid-out frame, including the "glue" between pad
cells. It takes only minutes to generate an error-free pad frame. We are currently ex­
tending Frame to include labels in the generated frame cells in such a way that Magic's
router can automatically route the frame to the chip's internals. We have already used
the tool to generate frames for two chips.
Asynchronous Building Blocks

We have designed a chip that contains a collection of asynchronous circuit building
blocks that are unavailable as standard IC parts. Without these parts, building real
asynchronous circuits is extremely difficult. The chip has eight different configurations,
each offering a different set of asynchronous parts to the user. The parts include Muller
C-elements, two and four input transition call modules, two and four way select
modules, transition toggles, asynchronous arbiters, asynchronous F I F O , and Q-Flops
(for building internally clocked delay-insensitive modules). With only a few exceptions,
the parts use a two-phase transition-sensitive communication protocol.

Our Parts-R-Us chip for building self-timed circuits returned from fabrication in the fall
of 1986 [Brunvand.87.Parts-R-Us]. Thirteen chips were delivered and, although yield
was quite low, we found at least one functional example of every design element. Two
chips were completely working and three were completely non-functional, indicating that
the yield problem was probably the fabricator's and not due to the design. We have
developed test software that allows the same Common Lisp program that was used to
drive a design's simulation to be used to test the completed chip. This allows easy
comparison of the simulated behavior to that of the chip, and also means that test
programs need only be written once. After testing, we built two small demonstration cir­
cuits in the Spring, revised the design slightly to permit building more complex circuits,
and returned the chip to M O S I S for refabrication.

Our next step will be to use the Parts-R-Us building block designs to construct a
silicon compiler for automatically generating asynchronous circuits from programs. The
compiler will map algorithms to logic designs and then apply a series of optimizing
transformations to derive efficient hardware realizations. We have already begun work
on tools and methods that will take behavioral descriptions written in Occam and trans­
late them into self-timed circuits. Occam is a CSP-like language used for describing
concurrent communicating objects. It turns out to provide a very natural medium for
describing one class of self-timed circuits.

An Asynchronous Multiplier
Rockoff completed the layout of an asynchronous multiplier with a recursive symbol

structure. This chip project has been engineered for delays using Sutherland's "logical-
effort" delay model. Switch-level simulation has been performed on the entire chip. Ad­
ditionally, the layout has been verified including boundary circuitry such as pads. In­
cluded on the chip is a set of test structures that will allow us to characterize both the
speeds of devices fabricated on the die as well as the DC transfer effects of various
gates' logical efforts.

8.2.5. Formal Verification by Simulation

We have also investigated methods for formally verifying digital circuits by logic
simulation [Bryant.86.Can]. A simulator can prove correctness if it can be shown that
only circuits implementing the system specification will produce a particular response to
a sequence of simulation commands. This style of verification has advantages over
other proof methods in being readily automated and requiring less attention to the low-
level details of the design, as well as advantages over other approaches to simulation in
providing more reliable results, often at a lower cost.

Our work has explored two verification methods: The first, called "black-box" simula­
tion, involves simply observing the output produced by the simulator in response to a
sequence of inputs with no consideration of the internal circuit structure. In contrast to
the machine identification problem of classical sequential systems theory, however, the
simulator is assumed capable of modeling a signal as having an unknown or X value,
where the simulator must produce responses that are monotonic for the partial ordering
X < 0 and X < 1. In addition to supplying input sequences, the user can command the
simulator to set all internal signals to X. It has been shown that a circuit can be verified
by black-box simulation if and only if the specified behavior is that of a definite system,
i.e. the output of the system at any time depends only on the most recent k inputs for
some constant k. The second method, called "transition" simulation, requires the user
to specify the relation between states in the circuit and the specification. The simulator
is then used to prove that each state transition in the specification is implemented cor­
rectly. Arbitrary systems can be verified by this method, but the simulation sequences
depend on the implementation.

In general the circuit verification problem is NP-hard. However, in some cases the
ability of the simulator to model unknown signals can be exploited to reduce the number
of patterns simulated. A variety of memory circuits can be verified by simulation se­
quences that are linear or near-linear in the memory size.

State-transition verification has been applied to two circuits, the dynamic stack in the
Mead-Conway text, and various sizes of a 3-transistor dynamic R A M . The number of
simulation steps necessary to verify a n-bit R A M is asymptotically proportional to n log n.
However, as each simulation step involves simulation of the entire circuit, the duration
of a simulation step also increases with the size of the circuit; thus, the time required to
verify an n-bit R A M is more nearly proportional to n**2 log n. Measurements bear this

8-7

out; for example, verifying a 256-bit R A M on a lightly loaded V A X using M O S S I M II as the
logic simulator took 8 hours. Though these measurements show that state-transition
verification of large circuits is not yet feasible, a symbolic simulator such as M O S S Y M

should significantly reduce the number of simulation steps required. As M O S S Y M ma­
tures, state-transition verification should become more promising.

8.2.6. Formal Hardware Description Semantics
Another research focus centers around applying concepts from the domain of pro­

gramming systems to hardware design. We are particularly interested in the problem of
assuring the correctness of hardware implementations with respect to specifications.
We are addressing this problem in two ways: verification and compilation.

We have been developing temporal logic based tools for specifying and verifying se­
quential machines. Recently, we have used our state machine verifier to debug the
design for a complicated DMA controller. This was the most ambitious verification effort
that we have attempted so far. We have also developed a prototype version of an
automatic verifier for asynchronous circuits. Circuit specifications are given as finite
state machines and a very flexible timing model for circuit behavior is supported. In ad­
dition, the system makes it possible to verify a circuit in parts, following the modular
structure of the circuit. Finally, we have also developed techniques for analyzing se­
quential circuits that are composed of many identical processing elements. These tech­
niques permit a reduced version of the circuit with one or two processing elements to be
considered instead of the entire circuit. The "state explosion" phenomenon (See section
8.2.7), which had previously hindered the analysis of such circuits, is avoided by these
techniques.

Verification methods can be used to check whether an existing design satisfies a
specification. We have concentrated on automatic techniques for verifying sequential
circuits. This work has proceeded in two directions: verifying asynchronous sequential
circuits described at the gate level, and verifying synchronous sequential circuits
described by a program in a high-level hardware description language (SML).

In both asynchronous and synchronous cases: the circuit is specified by formulas in
temporal logic, a state-graph describing the possible circuit behaviors is automatically
extracted from the circuit description, and then the formulas are automatically compared
with the state graph. The last step is performed by a program called the model-checker.
If the state graph (and hence the circuit) satisfies the specification, the model-checker
reports that all is well. If the circuit fails to meet the specification, the model-checker
tries to produce an example of an execution (sequence of circuit actions) which can be
used to find and correct the problem.

Another way to guarantee the correctness of a hardware implementation is to compile
it directly from its specification. We are doing this in two different ways. First, we have
developed means for compiling path expressions into asynchronous controllers. Path
expressions were originally devised as a way to specify the desirable interactions

8-8

among "loosely-coupled" systems of concurrent programs. We believe that they are
also a good way to specify the interactions among loosely-coupled hardware devices.
Our technique isolates the concurrency control in a separate circuit which interacts with
the circuits it controls via request/acknowledge signals. The controller circuit allows the
controlled circuits to execute in only those orderings allowed by the path expression.

Second, an SML program can be regarded as a specification of a correct circuit once
it has been verified. We can translate SML programs into a form suitable for input to
existing programs that translate state machines into hardware. For example, it is pos­
sible to write a high-level program for a device controller, check that it is correct with
respect to a specification in temporal logic, and then translate it automatically into
various hardware implementations.
Programming Language Issues

We have continued experimenting with our SML language, using it to describe a com­
mercial U A R T interface. We were able to verify some temporal properties of our descrip­
tion for this common and nontrivial device. We also produced a description of SML's
syntax and semantics and illustrated its usefulness in designing small finite state
machines [Browne&.85.SML].

Although most formal models of asynchronous circuits avoid making assumptions
about the relative speeds of the circuit components, many practical designs rely on such
assumptions for their correct operation. Therefore we extended the theory and im­
plementation of our asynchronous verifier to include simple timing assumptions.

We have also begun to investigate the formal foundations of asynchronous circuit
operation as a basis for more powerful methods of verifying and synthesizing them.
"Fairness" and "liveness" properties play critical roles in concurrent systems. An ex­
ample of a fairness property is "if any user requests a resource, he will eventually be
granted it"; a liveness property might be "a circuit always acknowledges a request".
Recently, others have proposed trace theory as an appropriate formal semantics theory
for asynchronous circuits. Previously, trace theory had only considered finite circuit ex­
ecutions, and describing fair or live behavior requires infinite executions in general. We
extended trace theory to include infinite executions, and showed that it is possible to
describe a fair, delay-insensitive arbiter (a circuit whose existence previous researchers
had questioned) [Black.85.Existence].

Finally, many apparently complex circuits have a fairly simple recursive structure. We
have implemented a system, Escher, that allows the user to describe the recursive
structure using a graphical interface. The circuit structure is expanded when some
parameters are provided (such as how many bits wide it should be). The result is a
layout of the primitive cells and their connecting wires. We have applied the system to a
variety of examples, including a sorting network, FFT, and a recursive hardware mul­
tiplier [Clarke&. 85. Escher].

8-9

8.2.7. Automatic Hardware Verification
Many hardware systems can be viewed at some level of abstraction as communicat­

ing finite state machines. The dream of somehow using this observation to automate
the verification of such programs can be traced all the way back to the early papers on
Petri nets in the 1960's. The temporal logic model checking procedure also attempts to
exploit this observation. The model-checking algorithm determines whether the global
state transition graph associated with some concurrent program satisfies a formula in
the CTL temporal logic. The algorithm is linear in both the size of the global state graph
and the length of the specification. Researchers have successfully used it to find subtle
errors in many sequential circuit designs. Several other researchers have extended the
basic model checking algorithm or proposed alternative algorithms. Although these al­
gorithms differ significantly in the type of logic they use and in the way they handle
issues like fairness, they all suffer from one apparently unavoidable problem: In analyz­
ing a system of N processes, the number of states in the global state graph may grow
exponentially with N. We call this problem the state explosion problem. Our approach
to this problem is based on another observation about distributed programs. Although a
given program may involve a large number of processes, it is usually possible to par­
tition the processes into a small number of classes so that all of the processes in a
given class are essentially identical. Thus, by devising techniques for automatically
reasoning about systems with many identical processes, it may be possible to make sig­
nificant progress on the general problem.

We have devised a means of reducing the problem of checking the correctness of
large networks of identical finite state machines to the problem of checking very small
networks. This allows us to apply our automatic verification tools to large systems with
vast numbers of states.

To understand how our method works, consider a distributed mutual exclusion algo­
rithm for processes arranged in a token ring network. How can we determine that such
a system of processes is correct? Our first attempt might be to consider a reduced sys­
tem with one or two processes. If we can show that the reduced system is correct and if
the individual processes are really identical, then we are tempted to conclude that the
entire system will be correct. In fact, this type of informal argument is used quite fre­
quently by designers in constructing systems that contain large numbers of identical
processing elements. Of course, it is easy to contrive an example in which some
pathological behavior only occurs when, say, 100 processes are connected together.
By examining a system with only one or two processes it might even be quite difficult to
determine that this behavior is possible. Nevertheless, one has the feeling that in many
cases this kind of intuitive reasoning does lead to correct results. The question that we
address is whether it is possible to provide a solid theoretical basis that will prevent fal­
lacious conclusions in arguments of this type.

We have addressed the problem of devising an appropriate logic for reasoning about
networks with many identical processes. The logic that we propose is based on com­
putation trees and is called Indexed Temporal Logic. Typical operators include

8-10

GLOBALLY/, which will hold in a state provided that / holds globally along all computation
paths starting from that state and INEVITABLY/, which will hold in a state provided that /
eventually holds along all computation paths. In addition, our logic permits formulas of
the form A / (/) and Y/(i) where/(i) is a formula of our logic. Intuitively, the formula A.
/(/) will be true in a global state of some concurrent system, provided that the formula
/ (i) holds for each component process /. y/(i) is explained similarly.

Since a closed formula of our logic cannot contain any atomic propositions with con­
stant index values, it is impossible to refer to a specific process by writing such a for­
mula. Hence, changing the number of processes in a family of identical processes
should not affect the truth of a formula in our logic. We make this intuitive idea precise
by introducing a new notion of equivalence between networks of finite state processes.
We prove that if two systems of processes correspond in this manner, a closed formula
of our logic will be true in the initial state of one if and only if it is true in the initial state of
the other. We have devised a procedure that can be used in practice to find a network
with a small number of processes that is equivalent to a much larger network with many
identical processes. We call this result the collapsing theorem for networks with many
identical processes.

To see how the collapsing theorem might be used, consider the distributed mutual ex­
clusion algorithm discussed above. We assume that the atomic proposition c(is true
when the Ath process is in its critical region, and that the atomic proposition dt is true
when the i-Xh process is delayed waiting to enter its critical region. A typical require­
ment for such a system is that a process waiting to enter its critical region will eventually
enter the critical region. This condition is easily expressed in our logic by the formula

/y}LOBALLY{dp> INEVITABLYC,).

By using our results it is possible to show that exactly the same formulas of our logic
hold in a network with 1000 processes as hold in a network with two processes! We can
use one of the temporal logic model checking algorithms to automatically check that the
above formula holds in networks of size two and conclude that it will also hold in net­
works of size 1000.

8.3. VLSI Systems and Applications

8.3.1. A Scan Line Array Processor

The S L A P project is developing a highly parallel (100-1000 processor) SIMD linear ar­
ray architecture for image computation and similar applications [Fisher.86.Scan]. The
scan line array processor (SLAP) architecture devotes a processor to each pixel of an
image scan line. Processing elements are connected in a linear array by both nearest-
neighbor bidirectional paths and a specialized video-rate shift register, and are con-

8-11

trolled in SIMD fashion. This architecture has a number of advantages for VLSI im­
plementation, and appears to be well-suited to a wide variety of image processing tasks.
We also expect it to be of use in graphics and specialized numeric processing, and
preliminary investigation suggests that it can also be fruitfully applied to the simulation
of connectionist architectures for artificial intelligence. We estimate that a 512 processor
S L A P can be built from 128 M O S I S 3 micron C M O S chips, and provide 2 billion operations
per second using 8 bit pixels and 16-20 bit results.

Most recently, our work has concentrated on hardware implementation and on the
development of programming paradigms and tools. The S L A P PE datapath layout has
been completed, and a test chip has been submitted for fabrication in 3 micron C M O S .

We have used a conservative design style that should allow us to get useful chips from
both N well and P well runs. In anticipation of the availability of M O S I S standard frames
with higher pincounts, we are redesigning the S L A P interprocessor communication path
to handle a full word in a single cycle, yielding improvements in latency, ease of pro­
gramming, and system construction. We expect to submit a 4-PE layout for fabrication
in 2 micron C M O S near the end of 1987.

We are also engaged in the design of a prototype machine. We expect a 512-
processor machine to include a one-board microprogrammed global controller and two
or three array boards. We plan to implement the controller as a triple height VME
wire wrap board, and the array boards as triple height VME PC boards. The controller
will be interfaced to a Sun-3 host, while the array boards, using the VME cage only for
mechanical support and power, will receive data over point to point cables from com­
mercial image capture and storage components. Our schedule calls for the prototype to
become operational in the summer of 1988. When fully populated with 128 S L A P chips,
the system should yield a peak throughput of some four billion 20 bit operations per
second.

Our goal has been to refine the architecture of the 20-bit processing element for ef­
ficiency and ease of code generation, while laying the groundwork for the chip layout.

On the architecture front, we have settled on a two-bus datapath with separate ALU
(with support for 40 bit Booth multiplication and division) and barrel shifter, specialized
circuitry for a video shift register and neighbor communication, and an unusual two-port
register file. Instructions are pipelined three cycles deep, with a simple fixed layout and
timing scheme. Supporting flexible programming within the S I M D paradigm are a novel
context nesting mechanism, local addressing of the register files, and support for global
voting and fast combinational signal propagation.

Now that the hardware effort is well underway, we have also begun to work on pro­
gramming support. We have designed a two-level programming language (one level for
the array controller, and one for the SIMD array itself) that has two options for program­
ming the array: a high-level assembler with full expressive power, and a high-level ex­
pression language that allows straightforward expression of data-parallel programs. In
support of this expression language, we have developed an abstract treatment of com-

8-12

munication in fine-grain machines that unifies it with computation, and allows the
automatic generation of code that maximizes sharing of intermediate results among
neighboring processors. Our preliminary experiments with a handful of examples have
yielded high-level code of handcrafted quality.
Fisher and Highnam have made further progress in mapping computer vision algorithms
onto such machines, and Highnam is developing a flexible coding and simulation facility
for further algorithm studies. Rockoff is investigating functional block designs in C M O S

in order to provide good speed and area estimates for the detailed design.

8.3.2. A Coprocessor Design Environment

The coprocessor design environment project, started in Fall 85, is developing a suite
of hardware and software tools aimed at assisting the process of designing and deploy­
ing custom coprocessors within an existing application environment. The tools provide
early feedback on eventual system performance as well as assistance in hardware and
software interfacing.

We have completed the logic design of a MC68020-compatible coprocessor design
frame. We are currently designing an example coprocessor with raster graphics and
data structure applications that exercises the most commonly used features of the
frame. We expect the design frame to use the pending M O S I S 108 pin standard; in case
the standard is not set by the time the example design is ready for fabrication, we plan
to disable some signals and fabricate it in an 84 pin package.

We are also using the example design to test out our initial design and implemen­
tation of a coprocessor interface compiler that produces code generation facilities, and a
performance simulator, which runs actual application code, emulates the coprocessor,
and provides estimates of system performance before the device is built.

We have completed a register-transfer and transistor-level logic design of a 68020-
compatible coprocessor design frame at the detailed timing level. We have tested the
logic design by running it against a functional simulator, and we have begun to lay out
the chip [Chatterjee&.86.Specialized]. We plan to insert coprocessors in systems
through the use of a daughterboard holding the CPU, the coprocessor and any
peripheral circuitry. Our initial design will support slave-mode and DMA operation. We
had initially expected that DMA, which our preliminary studies show can yield speedups
on many tasks in the 68020 environment, would require the use of a support chip, since
we have limited ourselves to M O S I S standard packages with an eye to making the
design frame and associated software available to other M O S I S users. Now, however,
we plan to use a soon-to-be-announced M O S I S package with a higher pincount.
Specialized Coprocessors

In this area we have begun a study of single-chip coprocessors, linked closely to
general-purpose hosts as accelerators for inner loops of programs. As a first step, we
have begun to measure the expected performance of coprocessors that use system
memory rather than local memory, and hence are essentially bandwidth limited. We

8-13

plan to carry out similar estimates for more algorithms, and to do more detailed es­
timates of coprocessors with and without local memories. We also plan to design and
implement a C M O S design frame, a la Katz, for the production of coprocessors for the
Motorola 68020.

8.3.3. Pipelined Architectures for Data-dependent Algorithms
We have been working on architectures for data dependent applications, such as en­

countered in speech recognition. First, we evaluated a class of custom architectures in
which the processor, the processor memory interconnection, and the synchronization
supported by the shared memory could be customized to the task, using custom VLSI
chips. One particular task, the Harpy speech recognition system, was fully simulated on
a number of architecture configurations, and speed ups of above 8000 compared to the
VAX-780 were obtained assuming M O S I S level N M O S technology (100 ns clock cycle
time, 400ns memory cycle time). The speed up as a function of the number of M O S tran­
sistors (excluding memory) was found to be superlinear, even though the speed up in
terms of number of processors was sublinear. The explanation lies in the reduction in
number of M O S transistors per processor that can be achieved by customizing each
processor individually to more and more specialized tasks.

Currently, we are investigating a general-purpose architecture for data dependent
programs. Our aim is to provide performance similar to that of the full custom architec­
ture with full programmability while eliminating hardware utilization (speedup/MOS
transistors). We expect to use VLSI technology to implement a memory controller which
supports efficient synchronization primitives including H E P style bit/word semaphores,
Cedar style synchronization keys, atomic operations on shared queues and stacks, and
blocking/unblocking of processors waiting on synchronization events.

Bisiani and Anantharaman have completed simulations of both a pipelined and a
parallel version of the search accelerator. The simulations have been done using real
speech data. The simulations indicate that both versions of the accelerator can speed
up search by about three orders of magnitude [Anantharaman&.86.Hardware].

We are not planning to build a VLSI device because of the manpower involved and
because the details of the search algorithm (e.g. size of some data elements, pruning
heuristics, etc.) are still changing. Since the device would be a definite plus for the
speech project we are now planning to build an emulator out of off-the-shelf hardware.
Because of the nature of this project and since it interacts closely with all the other
"software" work done for speech we have proposed to build the accelerator as part of
the next Strategic Computing contract.

Continuing our work toward designing an architecture suitable for a large set of
speech recognition search algorithms, we have analyzed in detail various algorithms for
searching Hidden Markov model graphs. We have described all the algorithms as varia­
tions of a single basic algorithm and compared their individual requirements. Given this
unified description, we can recast each algorithm as a pipeline of simple register-to-

8-14

register machines that can be tailored to attain some speed/cost or speed/size trade-off.
We are now building a simulator to test various trade-offs using (or with) real data. The
other issue we have been working on is how to use a collection of identical pipeline
machines to achieve higher performance. Load balancing is a challenge because all the
algorithms we are dealing with are data dependent. As soon as we have a reasonable
design, we will build and test it within the distributed speech system. We expect to be
able to do that easily since most of the hardware/software interfacing has already been
done for a signal processing accelerator and we can take advantage of this environ­
ment.

8.3.4. Chess Machine
Chess programs and chess machines that search a large space of possibilities in a

very simple way have established dominance over chess programs that try to bring a lot
of knowledge to bear in guiding the search and evaluating each situation.
A Parallel Chess Machine

The CMU Chess Machine, which features a move generator built from 64 custom
VLSI chips designed by Ebeling and fabricated through MOSIS, came to life in 1985.
Programmed by Berliner's chess group, it has since attained a provisional USCF rating
of 2170 (higher than that of any current computer program) and is expected to achieve
Master level (2200) before long. The machine comprises a microprogrammed processor
that controls a variety of chess-specific hardware, including the move generator that
produces and orders moves at the rate of 200,000 moves/s.

Most successful chess programs utilize a brute-force a-p search with as much posi­
tional evaluation at the leaf positions as can be afforded. Since positional evaluation
can be done very fast incrementally while move generation requires a lot of time, we
chose to investigate whether we could use VLSI to implement a fast move generator.
The result is an array of 64 (identical) custom VLSI chips, each of which generates a
subset of the legal moves. The chips also perform move ordering based on capture in­
formation and square safety and maintain the search context for searches up to 40 ply.

Each chip comprises about 14,000 transistors, divided about equally between the
legal move computation, move ordering and the context stack. The time required to
perform the different operations ranges from 120 nanoseconds for making moves to 300
nanoseconds for performing a distributed arbitration cycle. The time required to
process each position in the search with the current hardware implementation is about 5
microseconds and includes the time for evaluation, handling the transposition and
repetition tables, and the a-p search.

After about 20 tournament games with a variety of human players, the machine has
yet to lose to a player rated under 2100 and has a win and a draw in 5 games against
master players. While the speed of the hardware has brought us this far, we have im­
plemented the position evaluation as programmable hardware that is not yet being fully
utilized. We expect that the speed of the move generator combined with more intel­
ligent evaluation will take us well into the Master category.

8-15

A 3-Chip Set for Chess
We are now applying our Hitech and Chess Machine experience to develop a three-

chip set: move generator, controller, and evaluator. The three-chip set is expected to
search at around one million positions/second, or about 5-10 times faster than the cur­
rent generation of chess machines. While the chip set should be able to reach well into
Master level performance searching in single-processor configuration, the real goal is to
operate the chip set in a multiprocessor configuration. A new parallel oc-p algorithm that
has shown "asymptotically optimal" speedup in preliminary analytical results is now
been examined. The controller chip itself is also being designed along with the study of
the parallel algorithm. The three-chip set coupled with a commercial static R A M chip will
form a self-contained chess machine. Inside the controller will be the move stack,
various status registers, communications interface to the parent processor, and board
repetition detection logic. The repetition detection logic is based on a new incremental
algorithm instead of the usual hash table implementation. The evaluator is based on a
new pipelined evaluation scheme and will implement a mixture of the Belle evaluation
function and the Hitech evaluation function.

Our first chip was a 40 pin chess move generator that essentially implemented the
Belle move generation algorithm. The chip incorporates several circuit refinements and
measures 6912x6812 microns (MOSIS standard die size) in three-micron p-well C M O S
process. We simulated the ~36K-transistor chip in its entirety on a Daisy workstation at
the transistor switch level, S P I C E simulation of the critical path circuitry indicated a max­
imum throughput of about two million moves/second.

The initial fabrication yield was good (up to 50%), with the exception of a run from one
vendor apparently having fabrication problems. We built a chip tester and a simple
chess machine around the chip to evaluate its performance. The chip operates at a raw
speed of about 2,000,000 moves/second—about three times as fast as the Belle TTL
move generator and 10 times as fast as the Hitech 64-chip move generator. In terms of
speed over chip count, the single chip move generator is about three orders of mag­
nitude better than either of the previous designs. We have built one test machine
capable of searching around 1,000,000 nodes/second (less than the raw speed be­
cause of controller overhead). We are currently constructing a machine using three
move generators that will search some 3,000,000 nodes/second, about 20 times faster
than any existing chess machine.

ChipTest, the Sun-based system built around one of our move generator chips, was
recently crowned the new ACM North American Computer Chess Champion. A new
two processor chess machine is currently being constructed. The new machine is ex­
pected to run at around 2,000,000 nodes/second. This represents about a factor of four
increase in raw speed over the retiring champion. Because of algorithm improvement,
the actual speed increase should be around a factor of five. The new machine will be
completed before the end of the 1987. The new machine will be a single VME triple
height, full depth board that plugs directly into a Sun workstation. Based on test results
between ChipTest and Hitech, we expect that once the chess knowledge in Hitech is
merged with the new machine, a computer grandmaster will become a reality.

8-16

We have also made progress on new algorithms for minimax searching. Our
"selective extension" method of following promising lines of play has shown success in
preliminary experiments and will receive a full-scale trial when the new hardware is
ready.

We have started work on a companion controller/evaluator. Because of the good
yield achieved for the move generator, we decided to design the controller and the
evaluator as a single chip. Preliminary simulation results on parallel a-p algorithms
have been extremely promising; speedup on the order of hundreds seems to be readily
achievable. The new parallel algorithms have also been shown theoretically to
dominate the weaker form of sequential a-p algorithm that does not use deep cutoff.

8-17

8.4. Bibliography
[Anantharaman and Bisiani 86]

Anantharaman, T., and R. Bisiani.
A hardware accelerator for speech recognition algorithms.
In Proceedings of the 13th Annual International Symposium on Com­

puter Architecture, June, 1986.
Two custom architectures tailored to a speech recognition beam

search algorithms are described. Both architectures have
been simulated using real data and the results of the
simulation are presented. The design of the custom ar­
chitectures is described, and a number of ideas are
presented on the automatic design of custom systems for
data-dependent computations

[Black 85] Black, D.L
On the existence of delay-insensitive fair arbiters: Trace theory and

its limitations.
Technical Report CMU-CS-85-173, Carnegie Mellon University Com­

puter Science Department,
October, 1985.

In this paper, we attempt to settle the controversy over whether
delay-insensitive fair arbiters exist. We examine Udding's
(1985) claim that they do not exist and find that this result
is theoretically correct but of no practical significance be­
cause it relies on an inappropriate notion of fairness. We
show that for the relevant notions of fairness, the existing
trace theory of finite traces lacks sufficient expressive
power to adequately specify a fair delay-insensitive
arbiter-the existing specification of a fair arbiter is also
satisfied by an unfair arbiter. Based on this reasoning, we
extend trace theory to include infinite traces, and show by
example the importance of including liveness in such a
theory. The extended theory is sufficiently expressive to
distinguish fair arbiters from unfair ones. We use this
theory to establish the existence of a delay-insensitive fair
arbiter. In the process of formulating the extension we de­
velop a more general trace-theoretic composition operator
that does not require the domain constraints (composability
restrictions) used by other authors. Finally, we introduce
wire modules as an abstraction to capture the important
role transmission media properties play in circuit behavior.

8-18

[Browne and Clarke 85]
Browne, M.C. and E.M. Clarke.
SML - a high level language for the design and verification of finite

state machines.
Technical Report CMU-CS-85-179, Carnegie Mellon University Com­

puter Science Department,
November, 1985.

In this paper, we describe a finite state language named SML
(State Machine Language) and illustrate its use with two
examples. Although the compilation procedure is exponen­
tial, the compiler is fast enough that we believe that SML
can still be a useful tool for the design of small (< 1000
state) finite state machines. Furthermore, we have inter­
faced our SML compiler with a temporal logic theorem
prover that can assist in the debugging and verification of
SML programs. In addition to being useful for design, SML
can also be a documentation aid, since it provides a suc­
cinct notation for describing complicated finite state
machines. A program written in SML can be compiled into
a state transition table that can then be implemented in
hardware using an appropriate design tool. The output of
the SML compiler can also be used by the Berkeley VLSI
design tools to layout the finite state machines as either a
ROM, PLA, or PAL.

[Browne et al. 85a]
Browne,M., E. Clarke, D. Dill, and B. Mishra.
Automatic verification of sequential circuits.
In Proceedings of the 7th International Conference on Computer

Hardware Description Languages, August, 1985.
Also available as Technical Report CMU-CS-85-100.

Verifying the correctness of sequential circuits has been an im­
portant problem for a long time. But lack of any formal and
efficient method of verification has prevented the creation
of practical design aids for this purpose. Since all the
known techniques of simulation and prototype testing are
time-consuming and not very reliable, there is an acute
need for such tools. In this paper we describe an
automatic verification system for sequential circuits in
which specifications are expressed in a propositional tem­
poral logic. In contrast to most other mechanical verifica­
tion systems, our system does not require any user assis­
tance and is quite fast - experimental results show that
state machines with several hundred states can be
checked for correctness in a matter of seconds!

The verification system uses a simple and efficient algorithm,
called a Model Checker. The algorithm works in two steps:
in the first step, it builds a labeled state-transition graph;
and in the second step, it determines the truth of a tem-

8-19

poral formula with respect to the state-transition graph.
We discuss two different techniques that we have imple­
mented for automatically generating the state-transition
graphs: The first involves extracting the state graph
directly from the circuit by simulation. The second obtains
the state graph by compilation from an HDL specification of
the original circuit. Although these approaches are quite
different, we believe that there are situations in which each
is useful.

[Browne et al. 85b]
Browne, M.C., E.M. Clarke, and D.L Dill.
Automatic circuit verification using temporal logic: two new ex­

amples.
In 1985 IEEE International Conference on Computer Design: VLSI in

Computers, IEEE, October, 1985.
In this paper provide further evidence for the usefulness of our

approach by describing enhancements to the basic verifier
that automates the extraction of state transition graphs
from circuits. We discuss two different techniques. The
first approach involves extracting the state graph from a
wire-list description of the circuit and is for asynchronous
circuits. The second obtains the state diagram by compila­
tion from an HDL specification of the original circuit. Al­
though these approaches are quite different, we believe
that there are situations in which each is useful.

[Brunvand 87] Brunvand, E.
Parts-R-Us: A chip apart(s)....
Technical Report CMU-CS-87-119, Carnegie Mellon University Com­

puter Science Department,
May, 1987.

Parts-R-Us is a chip that contains a collection of building block
parts for asynchronous circuit design. The parts contained
on the chip are either not available as standard commercial
components, or are standard gates combined into small
modules that are particularly useful for building
asynchronous control circuits. There are eight different
configurations of Parts-R-Us, each offering a different set
of asynchronous parts to the user. The parts contained on
the chip include: C-elements, transition call modules, tran­
sition selectors, transition toggles, transition arbiters, a four
phase mutual exclusion element, an asynchronous
register, two phase Q-registers, and four phase Q-
registers.

This document is both a description of Parts-R-Us, and a user's
manual for designers using the chip.

8-20

[Bryant 85a] Bryant, R.E.
Symbolic manipulation of Boolean functions using a graphical

representation.
In 22nd Design Automation Conference, IEEE, June, 1985.

In this paper we describe a data structure for representing
Boolean functions and an associated set of manipulation
algorithms. Functions are represented by directed, acyclic
graphs in a manner similar to the representations of Lee
and Akers, but with further restrictions on the ordering of
decision variables in the graph. Although a function re­
quires, in the worst case, a graph of size exponential in the
number of arguments, many of the functions encountered
in typical applications have a more reasonable represen­
tation. Our algorithms are quite efficient as long as the
graphs being operated on do not grow too large. We
present performance measurements obtained while apply­
ing these algorithms to problems in logic design verifica­
tion.

[Bryant 85b] Bryant, R.E.
Symbolic verification of MOS circuits.
In 1985 Chapel Hill Conference on VLSI, Computer Science Press,

Inc., March, 1985.
The program MOSSYM simulates the behavior of a MOS circuit

represented as a switch-level network symbolically. That
is, during simulator operation the user can set an output to
either 0 ,1 , or a Boolean variable. The simulator then com­
putes the behavior of the circuit as a function of the past
and present input variables. By using heuristically efficient
Boolean function manipulation algorithms, the verification
of a circuit by symbolic simulation can proceed much more
quickly than by exhaustive logic simulation. In this paper
we present our concept of symbolic simulation, derive an
algorithm for switch-level symbolic simulation, and present
experimental measurements from MOSSYM.

[Bryant 86a] Bryant, R.
A collection of papers about a symbolic analyzer for MOS circuits.
Technical Report CMU-CS-86-114, Carnegie Mellon University Com­

puter Science Department,
March, 1986.

COSMOS, a compiled Simulator for MOS Circuits, aims to per­
form accurate switch-level simulation at least an order of
magnitude faster than previous simulators such as MOS-
SIM II. Unlike programs that operate directly on the tran­
sistor level description during simulation, COSMOS trans­
forms the transistor network into a Boolean description
during a preprocessing step. This Boolean description,
produced by a symbolic analyzer, captures all aspects of

8-21

switch-level networks including bidirectional transistors,
stored charge, different signal strengths, and indeterminate
(X) logic values. These papers give a brief overview of
COSMOS as well as a detailed presentation of the theory
and algorithms behind the symbolic analyzer.

Bryant, R.
Can a simulator verify a circuit?,
In Milne, G.J., Formal Aspects of VLSI Design. North-Holland, 1986.

A logic simulator can prove the correctness of a digital circuit if
only circuits implementing the system specification can
produce a particular response to a sequence of simulation
commands. This paper explores two methods for verifying
circuits by a three-valued logic simulator where the third
state X indicates an indeterminate value. The first, called
black-box simulation, involves simply observing the output
produced by the simulator in response to a sequence of in­
puts with no consideration of the internal circuit structure.
This style of simulation can verify only a limited class of
systems. The second method, called transition simulation,
requires the user to specify the relation between states in
the circuit and the specification. The simulator is then
used to prove that each state transition in the specification
is implemented correctly. Arbitrary systems may be
verified by this method.

Bryant, R.E.
Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on CompwfersC-35(8):677-691,1986.
Also available as CMU-CS-85-135.

In this paper we present a new data structure for representing
Boolean functions and an associated set of manipulation
algorithms. Functions are represented by directed, acrylic
graphs in a manner similar to the representations intro­
duced by Lee and Akers, but with further restrictions on the
ordering of decision variables in the graph. Although a
function requires, in the worst case, a graph of size ex­
ponential in the number of arguments, many of the func­
tions encountered in the typical applications have a more
reasonable representation. Our algorithms have time com­
plexity proportional to the sizes of the graphs being
operated on, and hence are quite efficient as long as the
graphs do not grow too large. We present experimental
results form applying these algorithms to problems in logic
design verification that demonstrate the practicality of our
approach.

Bryant, R.
Graph-based algorithms for Boolean function manipulation.
In IEEE Transactions on Computers, IEEE, August, 1987.

8-22

In this paper we present a new data structure for representing
Boolean functions and an associated set of manipulation
algorithms. Functions are represented by directed, acyclic,
graphs in a manner similar to the representations intro­
duced by Lee and Akers, but with further restrictions on the
ordering of decision variables in the graph. Although a
function requires, in the worst case, a graph of size ex­
ponential in the number of arguments, many of the func­
tions encountered in typical applications have a more
reasonable representation. Our algorithms have time com­
plexity proportional to the sizes of the graphs being
operated on, and hence are quite efficient as long as the
graphs do not grow too large. We present experimental
results from applying these algorithms to problems in logic
design verification that demonstrate the practicality of our
approach.

[Bryant 87b] Bryant, R.E.
Two papers on a symbolic analyzer for MOS circuits.
Technical Report CMU-CS-87-106, Carnegie Mellon University Com­

puter Science Department,
February, 1987.

This report contains two papers describing a set of algorithms to
extract the logical behavior of a digital metal-oxide semi­
conductor (MOS) from its transistor representation.
Switch-level network analysis, applied symbolically, per­
forms the extraction. The analyzer captures all aspects of
switch-level networks including bidirectional transistors,
stored charge, different signal strengths, and indeterminate
(X) logic values. The output is a set of Boolean formulas,
where the behavior of each network node is represented
by a pair of formulas. In the worst case, the analysis of an
n node network can yield a set of formulas containing a to­
tal of 0(n3) Boolean operations. However, all but a limited
set of dense, pass transistor networks give formulas with
0(n) total operations.

The analyzer can serve as the basis of efficient programs for a
variety of logic design tasks, including : logic simulation (on
both conventional and special purpose computers), fault
simulation, test generation, and symbolic verification.

These papers have been accepted for publication in IEEE
Transactions on Computer-Aided Design of Integrated
Circuits.

[Bryant 87c] Bryant, R.E.
A methodology for hardware verification based on logic simulation.
Technical Report CMU-CS-87-128, Carnegie Mellon University Com­

puter Science Department,
June, 1987.

8-23

A logic simulator can prove the correctness of a digital circuit if it
can be shown that only circuits implementing the system
specification will produce a particular response to a se­
quence of simulation commands. This style of verification
has advantages over other proof methods in being readily
automated and requiring less attention to the low-level
details of the design. It has advantages over other ap­
proaches to simulation in providing more reliable results,
often at a comparable cost.

This paper presents the theoretical foundations of several re­
lated approaches to circuit verification based on logic
simulation. These approaches exploit the three-valued
modeling capability found in most logic simulators, where
the third value X indicates a signal with unknown digital
value. Although the circuit verification problem is NP-hard
as measured in the size of the circuit description, several
techniques can reduce the simulation complexity to a
manageable level for many practical circuits.

[Bryant and Schuster 85]
Bryant, R.E. and M.D. Schuster.
Performance evaluation of FMOSSIM, a concurrent switch-level fault

simulator.
In 22nd Design Automation Conference, IEEE, June, 1985.

This paper presents measurements obtained while performing
fault simulation of MOS circuits modeled at the switch
level. In this model the transistor structure of the circuit is
represented explicitly as a network of charge storage
nodes connected by bidirectional transistor switches.
Since the logic model of the simulator closely matches the
actual structure of MOS circuits, such faults as stuck-open
and closed transistors as well as short and open-circuited
wires can be simulated. By using concurrent simulation
techniques, we obtain a performance level comparable to
fault simulators using logic gate models. Our measure­
ments indicate that fault simulation times grow as the
product of the circuit size and number of patterns, assum­
ing the number of faults to be simulated is proportional to
the circuit size. However, fault simulation ties depend
strongly on the rate at which the test patterns detect the
faults.

[Chatterjee and Fisher 86]
Chatterjee, S., and A.L Fisher.
Specialized coprocessor chips: fast computation with slow memory.
In Platinum Jubilee Conference on Systems and Signal Processing,

December, 1986.
Advances in VLSI technology, computer aided design and

design automation, and rapid turnaround fabrication have

8-24

made the use of special-purpose architectures more and
more practical. Our focus in this paper is on the prospects
of using special-purpose devices to speed up the inner
loops of programs, as an extension of the usual techniques
of code tuning and vertical migration. In particular, we con­
sider the use of single-chip coprocessors that do not con­
tain large local memories, and hence operate on data
stored in system memory. We show that the intrinsic ef­
ficiency of specialized hardware can lead in some cases to
dramatic speedups over software implementations, despite
the processor-memory "bottleneck."

[Clarke and Feng 85]
Clarke, E.M., and Y. Feng.
Escher- a geometrical layout system for recursively defined circuits.
Technical Report CMU-CS-85-150, Carnegie Mellon University Com­

puter Science Department,
July, 1985.

An Escher circuit description is a hierarchical structure com­
posed of cells, wires, connectors between wires, and pins
that connect wires to cells. Cells may correspond to primi­
tive circuit elements, or they may be defined in terms of
lower level subcells. Unlike other geometrical layout sys­
tems, a subcell may be instance of the cell being defined.
When such a recursive cell definition is instantiated, the
recursion is unwound in a manner reminiscent of the pro­
cedure call copy rule in Algol-like programming languages.
Cell specifications may have parameters that are used to
control the unwinding of recursive cells and to provide for
cell families with varying numbers of pins and other internal
components. We illustrate how the Escher layout system
might be used with several nontrivial examples, including a
parallel sorting network and a FFT implementation. We
also briefly describe the unwinding algorithm.

[Dally and Bryant 85]
Dally, W.J., and R.E. Bryant.
A hardware architecture for switch-level simulation.
In IEEE Transactions on Computer-Aided Design, IEEE, July, 1985.

The Mossim Simulation Engine (MSE) is a hardware accelerator
for performing switch-level simulation of MOS VLSI circuits
(1), (2). Functional partitioning of the MOSSIM algorithm
and specialized circuitry are used by the MSE to achieve a
performance improvement of ~300 over a VAX 11/780 ex­
ecuting the MOSSIM II program. Several MSE processors
can be connected in parallel to achieve additional
speedup. A virtual processor mechanism allows the MSE
to simulate large circuits with the size of the circuit limited
only by the amount of backing store available to hold the
circuit description.

8-25

[Fisher 85a] Fisher, A.L
Design synthesis and practical considerations for bit-level arithmetic

arrays.
In Second International Symposium on VLSI Technology, Systems

and Applications, Pages 274-277. May, 1985.
Bit-serial implementations of systolic and other array algorithms

are often found attractive because of their potential for
ease of design, high clock rates and flexible word length.
The author deals with two aspects of serial implemen­
tations: their design and their cost and performance. In the
first section, the author shows a new approach to deriving
serial arrays, in two steps, from word-parallel arrays of in­
ner product cells. In the second section, he considers the
costs and benefits of such arrays, and presents a list of
factors that determine the best degree of serialization in a
given system.

[Fisher 85b] Fisher, A.L. and P.T. Highnam.
Real-time image processing on scan line array processors.
In Workshop on Computer Architecture for Pattern Analysis and Im­

age Database Management, IEEE, November, 1985.
[Fisher 85c] Fisher, A.L. and H.T Kung.

Synchronizing large VLSI processor arrays.
In IEEE Transactions on Computers, Pages 734-740. IEEE, 1985.

Highly parallel VLSI computing structures consist of many
processing elements operating simultaneously. In order for
such processing elements to communicate among them­
selves, some provision must be made for synchronization
of data transfer. The simplest means of synchronization is
the use of a global clock. Unfortunately, large clocked sys­
tems can be difficult to implement because of the inevitable
problem of clock skews and delays, which can be espe­
cially acute in VLSI systems as feature sizes shrink. An al­
ternative means of enforcing necessary synchronization is
the use of self-timed asynchronous schemes, at the cost of
increased design complexity and hardware cost. Realizing
that different circumstances call for different synchroniza­
tion methods, this paper provides a spectrum of
synchronization models; based on the assumptions made
for each model, theoretical lower bounds on clock skew
are derived, and appropriate or best possible sychroniza-
tion schemes for large processor arrays are proposed.

One set of models is based on assumptions that allow the use
of a pipelined clocking scheme where more than one clock
event is propagated at a time. In this case, it is shown that
even assuming that physical variations along clock lines
can produce skews between wires of the same length, any
one-dimensional processor array can be correctly

8-26

synchronized by a global pipelined clock while enjoying
desirable properties such as modularity, expandability, and
robustness. This result cannot be expanded to two-
dimensional arrays, however; the paper shows that under
this assumption, it is impossible to run a clock such that
the maximum clock skew between two communicating
cells will be bounded by a constant as systems grow. For
such cases, or where pipelined clocking is unworkable, a
synchronization scheme incorporating both clocked and
asynchronous elements is proposed.

[Fisher 85d] Fisher, A.L.
Memory and modularity in systolic array implementations.
In International Conference on Parallel Processing, August, 1985.

Although systolic array algorithms are usually pictured in terms
of processing elements with very little if any local storage,
practical implementations can often make good use of siz­
able local memories. This paper explores some of the cost,
performance and modularity issues involved in memory-
intensive systolic array implementations.

The paper is divided into two main sections. The first presents a
clarification and uniform summary of two known applica­
tions of local memory in systolic arrays, and derives some
new design criteria and improves on some existing
designs. The second section proposes a structure which
allows the efficient separation of dataflow from computa­
tion in a systolic implementation, providing some benefits
of flexibility and modularity.

[Fisher 86] Fisher, A.L.
Scan line array processors for image computation.
In Proceedings of the 13th Annual International Symposium on Com­

puter Architecture, June, 1986.
The scan line array processor (SLAP), a new architecture

designed for high-performance, low-cost image computa­
tion, is described. A SLAP is an SIMD linear array of
processors, and hence is easy to build and scales well with
VLSI technology. At the same time, appropriate special
features and programming techniques make it efficient for
a wide variety of low- and medium-level computer vision
tasks. The basic SLAP concept and some of its variants
are described, a particular planned implementation is dis­
cussed, and its performance for computer vision and other
applications is indicated.

8-27

[Fisher et al. 85] Fisher, A.L, H.T. Kung, and K. Sarocky.
Experience with the CMU programmable systolic chip,
In P. Antognetti, F. Ancheau, and J. Vimillemin, Microarchitecture of

VLSI Computers, Pages 209-222. Martinus Nijhoff Publishers,
1985.

Also available as Technical Report CMU-CS-85-161.
The CMU programmable systolic chip (PSC) is an experimental,

microprogrammable chip designed for the efficient im­
plementation of a variety of systolic arrays. The PSC has
been designed, fabricated, and tested. The chip has about
25,000 transistors, uses 74 pins, and was fabricated
through MOSIS, the DARPA silicon broker, using a 4
micron nMOS process. A modest demonstration system
involving nine PSCs is currently running. Larger
demonstrations are ready to be brought up when additional
working chips are acquired.

The development if the PSC, from initial concept to silicon
layout, took slightly less than a year, but testing, fabrica­
tion, and system demonstration took an additional year.
This paper reviews the PSC, describes the PSC
demonstration system, and discusses some of the lessons
learned from the PSC project.

[Gupta 86] Gupta, A.
Parallelism in production systems.
Technical Report CMU-CS-86-122, Carnegie Mellon University Com­

puter Science Department,
March, 1986.

Production systems (or rule-based systems) are widely used in
Artificial Intelligence for modeling intelligent behavior and
building expert systems. Most production system
programs, however, are extremely computation intensive
and run quite slowly. The slow speed of execution has
prohibited the use of production systems in domains re­
quiring high performance and real-time response. This
thesis explores the role of parallelism in the high-speed ex­
ecution of production systems.

On the surface, production system programs appear to be
capable of using large amounts of parallelism- it is possible
to perform match for each production in a program in paral­
lel. The thesis shows that in practice, however, the speed­
up obtainable from parallelism is quite limited, around 10-
fold as compared to initial expectation of 100-fold to 1000-
fold. The main reasons for the limited speed-up are: (1)
there are only a small number of productions that are af­
fected (require significant processing) per change to work­
ing memory; (2) there is a large variation in the processing
requirement of these productions; and (3) the number of
changes made to working memory per recognize-act cycle

8-28

is very small. Since the number of productions affected
and the number of working-memory changes per
recognize-act cycle are not controlled by the implementor
of the production system interpreter (they are governed
mainly by the author of the program and the nature of the
task), the solution to the problem of limited speed-up is to
somehow decrease the variation in the processing cost of
affected productions. The thesis proposes a parallel ver­
sion of the Rete algorithm which exploits parallelism at a
very fine grain to reduce the variation. It further suggests
that to exploit the fine-grained parallelism, a shared-
memory multiprocessor with 32-64 high performance
processors is desirable. For scheduling the fine-grained
tasks consisting of about 50-100 instructions, a hardware
task scheduler is proposed.

[Hsu 86] Hsu, F.H.
Two designs of functional units for VLSI based chess machines.
Technical Report CMU-CS-86-103, Carnegie Mellon University Com­

puter Science Department,
January, 1986.

Brute force chess automata searching 8 plies (4 full moves) or
deeper have been dominating the computer chess scene
in recent years and have reached master level perfor­
mance. One interesting question is whether 3 or 4 ad­
ditional piles coupled with an improved evaluation scheme
will bring forth world championship level performance. As­
suming an optimistic branching ratio of 5, speedup of at
least one hundredfold over the best current chess
automaton would be necessary to reach the 11 to 12 plies
per move range.

One way to obtain such speedup is to improve the gate utiliza­
tion and then parallelize the search process. In this paper,
two new designs of functional units with higher rate ef­
ficiency than previous designs in the literature will be
presented. The first design is for move generation only,
and is essentially a refinement of the move generator used
in the Belle chess automation, the first certified computer
chess master. The second design is a general scheme
that can be used for evaluating a class of chess-specific
functions, besides generating moves. A move generator
based on the second design will be described. Applica­
tions of the same general scheme will be briefly discussed.

[Hsu et al. 85] Hsu, F.H., H.T. Kung, T. Nishizawa, and A. Sussman.
Architecture of the link and interconnection chip,
In Fuchs, H., 1985 Chapel Hill Conference on Very Large Scale In­

tegrated Systems. Computer Science Press, 1985.
The link and interconnection chip (LINC) is a custom chip

8-29

whose function it is to serve an efficient link between sys­
tem functional modules, such as arithmetic units, register
files and I/O ports. This paper describes the architecture
of LINC, and justifies it with several application examples.

LINC has 4-bit datapaths consisting of an 8x8 crossbar inter­
connection, a FIFO or programmable delay for each of its
inputs, and a pipeline register file for each of its outputs.
Using pre-stored control patterns LINC can configure an in­
terconnection and delays on-the-fly. Therefore the usual
functions of busses and register files can be realized with
this single chip.

LINC can be used in a bit-sliced fashion to form interconnec­
tions with datapaths wider than 4 bits. Moreover, by tri-
stating the proper data output pins, multiple copies of LINC
can for crossbar interconnections larger than 8x8.

Operating at the target cycle time of 100 ns, LINC makes it pos­
sible to implement a variety of high-performance process­
ing elements with much reduced package counts.

[Kung 85] Kung, H.T.
Memory requirements for balanced computer architectures.
Technical Report CMU-CS-85-158, Carnegie Mellon University Com­

puter Science Department,
June, 1985.

In this paper, a processing element (PE) is characterized by its
computation bandwidth, I/O bandwidth, and the size of its
local memory. In carrying out a computation, a PE is said
to be balanced if the computing time equals the I/O time.
Consider a balanced PE for some computation. Suppose
that the computation bandwidth of the PE is increased by a
factor of a relative to its I/O bandwidth. Then when carrying
out the same computation the PE will be imbalanced, i.e., it
will have to wait for I/O. A standard method to avoid this
I/O bottleneck is to reduce the overall I/O requirement of
the PE by increasing the size of its local memory. This
paper addresses the question of by how much the PE's lo­
cal memory must be enlarged in order to restore balance.

[Lam and Mostow 85]
Lam, M.S. and J. Mostow.
A Transformational Model of VLSI Systolic Design.
Computer! 8(2) :42-52, February, 1985.
An earlier version appears in Proc. 6th International Symposium on

Computer Hardware Description Languages and Their
Applications, May, 1983.

8-30

[Mishra 86] Mishra, B.
Some graph theoretic issues in VLSI design.
Technical Report CMU-CS-86-117, Carnegie Mellon University Com­

puter Science Department,
May, 1986.

It is often said that VLSI design is the ultimate batch job! The
statement succinctly characterizes several problems that a
VLSI designer must face: many man-months of design ef­
fort, high turn-around time, long hours spent in testing and
the difficulty of correcting a design error. In order to al­
leviate these problems, a VLSI design must be equipped
with powerful, efficient and automated design tools. In ad­
dition, such tools, if properly designed, can help in eliminat­
ing the errors that hand-designs are prone to.

The first part of the thesis describes a graph theoretic problem
(called All-Bidirectional-Edges Problem) that arises
naturally in the context of the simulation of an MOS tran­
sistor network. The algorithm can be used to quickly
detect all the pass-transistors in the network that can be­
have as bilateral devices. The knowledge of such transis­
tors in the network can be used profitably in several exist­
ing simulation algorithms to obtain a significant speed-up in
their performance. In addition, the algorithm can also be
used to find sneak paths in the network and hence detect
functional errors.

The second part of the thesis studies the design of tools for
verifying the correctness of sequential circuits. Though the
problem of verifying asynchronous circuits is considered to
be rather important, there is a severe lack of practical
design aids for this purpose. Since all the known tech­
niques of simulation and prototype testing are time-
consuming and not very reliable, the need for verification
tools becomes more acute. Moreover, as we build larger
and more complex circuits, the cost of a single design error
is likely to become even higher. We investigate several al­
gorithm design issues involved in an automatic verification
system for (asynchronous) sequential circuits, in which the
specifications are expressed in a propositional temporal
logic of branching-time, call CTL. We also study how to
tackle a large and complex circuit by verifying it hierarchi­
cally.

[Nowatzyk 85] Nowatzyk, A.
Advanced design tools for programmable logic devices.
Technical Report CMU-CS-86-121, Carnegie Mellon University Com­

puter Science Department,
November, 1985.

Programmable Logic Devices (PLD's) such as field programm­
able logic arrays based on fusable link or floating gate

8-31

technology have become a viable alternative to random
logic designs. Increasing device complexity and decreas­
ing gate transfer delays allow PLD's to replace large frac­
tions of circuits previously implemented with LSI and MSI
chips. This trend has permitted designs that use fewer
device types and achieve much higher logic densities.

PLD's are not only a direct replacement for conventional gate
and flip flop level designs, but they support systematic
design styles that were considered to be too expensive
with conventional logic. The cost function for PLD designs
can be radically different from those of gate-level im­
plementations because PLD's come in standard sizes, so
the actual number of gates used matters little as long as it
does not exceed the available resources in a given pack­
age.

The complexity of PLD's and the unique constraints that a PLD
imposes on a logic design requires new design tools to
describe, encode, verify, and implement PLD based cir­
cuits. This paper provides a brief overview of available
PLD design aid software and describes a more general
method of using a general purpose language (here C) to
specify and implement complex functions efficiently.

[Walker 85] Walker, H. and S.W. Director.
VLASIC: A Yield Simulator for Integrated Circuits.
In IEEE International Conference on Computer-Aided Design, IEEE,

November, 1985.

8-32

APPENDIX I
GLOSSARY

Accent

ALOEGEN

ANAMOS

ARL
Avalon

Camelot

Canny
Chinese Tutor

ChipTest
Chunker

CIL
CLX
CMU-CSD
CoalSORT

COSMOS

Cypress-Soar

DBgen

Designer-Soar

DML
DP
DSN
EBL

network operating system for the Spice project that influenced the
development of Mach
A Language-Oriented Editor GENerator, structure editor for syntax
description
a symbolic analyzer for M O S circuits that captures all aspects of
switch-level networks
Action Routine Language
a set of linguistic constructs designed to give programmers explicit
control over transaction-based processing of atomic objects for
fault-tolerant applications
CArnegie MEIIon Low Overhead Transaction facility, implements
the synchronization, recovery, and communication mechanisms
needed to support the execution of distributed transactions and the
definition of shared abstract objects
an algorithm that finds high-contrast edges in smoothed images
an intelligent computer-based tutoring system for beginner-level
Chinese
a chess system built around one of our move-generator chips
a program that applies the notion of chunking to pawn endings in
chess
Calibrated Imaging Laboratory
a standard interface between Common Lisp and X
Carnegie Mellon Computer Science Department
a prototype intelligent interface to a large bibliographic database in
the coal technology domain
COmpiled Simulator for M O S circuits that combines the capabilities
of M O S S I M II and F M O S S I M and is nearly an order of magnitude faster
a Soar implementation of the Cypress system which designs divide-
and-conquer algorithms
a system for linking environment descriptions to form a working
editor
a Soar implementation and redesign of Designer, an automatic al­
gorithm designer
Digital Mapping Laboratory
Distributed Processing
Distributed Sensor Network
Explanation-Based Learning module within the Prodigy system

1-1

EBS
Escher

Flamingo

FMOSSIM

FOG

Gandalf

Griffin

Hemlock
Hitech
IDL
IPC
ITC
IU
KR

LGCC

Lisp Shell
Mach
MAPS

Matchmaker
MetaMenu

MIG

Mirage

MOSSIM II

MOSSYM

NFS
Oracle
Parts-R-Us

Explanation-Based Specialization module within the Prodigy system
a system that allows the user to describe the recursive structure of
complex circuits using a graphical interface
a system for managing the interface between users and programs
that run in large, distributed, heterogeneous environments
a concurrent switch-level fault simulator for MOS circuits
a distributed object system in Mach
project that investigates ways to facilitate and automate the con­
struction of programming environments
GRaceful Interface Featuring Form-based INteraction, an interface
tool that implements a form-filling paradigm
a text editor written in Common Lisp for Spice
a chess machine with programmable pattern recognition hardware
Interface Description Language
InterProcess Communication
Information Technology Center
Image Understanding
a prototype tool for building simple semantic networks to provide
flexible knowledge representation
a program that translates the Boolean representation produced by
A N A M O S into a set of C evaluation procedures, as well as a set of
initialized arrays representing the network structure
a customizable Lisp-based command language interpreter
a multiprocessor operating system kernel and environment
Map-Assisted Photointerpretation System
interprocess interface generator
a menu-based system that will be one of the building blocks of the
UWI
Mach Interface Generator
the device- and window system-independent graphical component
of the UWI
a software implementation of an algorithm for switch-level simula­
tion of M O S circuits
a simulator that simulates M O S circuits represented as switch-level
networks
Network File Server
S U P R E M ' S primary knowledge repository
a chip that contains a collection of asynchronous circuit building
blocks that are unavailable as standard IC parts

1-2

Prodigy an artificially intelligent "learning apprentice" intended to facilitate
the acquisition of problem solving expertise

PT Programming Technology
R1-Soar a Soar implementation of D E C ' S V A X configuring expert system R1
RFS Remote File Server
Rise Reduced Instruction Set Computer
Rulekit a production system package that combines frame-like data struc­

tures with priority-order control rules
SAR Synthetic Aperture Radar
Sear a knowledge acquisition system for R1 -like expert systems
Sesame a distributed file system that demonstrated the feasibility of using

ports as tokens of identity
SIMD Single Instruction, Multiple Data stream
SLAP Scan-Line Array Processor
SML State Machine Language
Soar a general architecture for problem solving and learning
SPAM System for Photointerpretation of Airports using M A P S

Spice a large-scale distributed computing environment
SUP a program for automatically distributing and updating network

software
SUPREM Search Using Pattern Recognition as an Evaluation Mechanism
TABS TransAction Based Systems
3D Mosaic a photointerpretation system which combines domain knowledge

with image processing
3DFORM 3 Dimensional Frame-based Object Recognition Modeling system
UWI Uniform Workstation Interface
Vice/Virtue a distributed file system, similar to Sesame, developed by the CMU

ITC
Viewers system a frame-based interaction system that allows a user to navigate

through a network of interconnected frames of information
viz a language for describing flexible unparsing
VLASIC a catastrophic-fault yield simulator for integrated circuits
VSLI Very-Large Scale Integration
Warp Carnegie Mellon's systolic array machine
Warp shell the top-level user interface to the Warp systolic multiprocessor. The

Warp shell is based on the Lisp Shell.
World Modelers project that explores machine learning within a simulated reactive

1-3

environment that facilitates designing, implementing, and testing in­
tegrated learning systems

XBAB a high-bandwidth, 16x16 two-bit crossbar chip implemented in
double-metal, C M O S P-well technology with 3um feature size

1-4

INDEX
3D Mosaic system 3-2

30FORM 3-3
SPAM 3-2
AVALON 6-3

Accent 2-1,6-1,6-5
Action Routine Language 5-5
Ada 2-4
Asynchronous multiplier 8-7
Authentication 2-3
Authorization 2-3
Automatic algorithm design 4-3
Automatic circuit generation 8-6
Automatic programming 4-3
Automatic verification 8-8
Avalon 6-1

Back-propagation 4-12
Boltzmann 4-12

Calibrated Imaging Laboratory 3-9
Camelot 6-1,6-3
Canny operator 3-10
Chess machine 8-15, 8-16
Chinese Tutor 7-3
ChipTest 8-16
Chunker 4-5
Chunks 4-2,4-3,4-5
CLX 2-5
CoalSORT 7-4
Collapsing theorem 8-11
Color constancy methods 3-11
Commit algorithm 6-2
Common Lisp 2-4, 2-5, 7-3
Communication security 2-3
Compression analysis 4-8
Computer-based tutoring 7-3
Controller/evaluator 8-17
Coprocessor design environment 8-13
Correctness, circuit analysis 8-3
COSMOS 8-4
Customizable interface 7-3
Cypress-Soar 4-3

Dante 2-5, 7-1
Data transfer 6-2, 6-5, 6-6
Designer-Soar 4-3
Detectability and reliability 3-8
Digital Mapping Laboratory 3-2
Distributed file systems 2-1
Distributed logging 6-7
Distributed transaction facility 6-7
Distributed transactions 6-4

EBL 4-7
EBS 4-8
Encryption 2-3
Escher 8-9

Fault simulator 8-2
Flamingo 2-3, 2-6
FOG 2-3
Form-based system 7-4
Form-filling paradigm 7-3

-1

Frame-based interaction 7-2
Frame-based system 7-4

Gandalf System 5-4
Graceful Interaction 7-1
Griffin 7-3

Hemlock 2-4,2-5
Hitech 4-10

Knowledge representation 7-4
Knowledge-based interface 7-4
Knowledge-intensive systems 4-1
KR 7-4

LINC 8-1
Lisp 2-4
Usp Shell 7-2,7-4

Mach 2-1,2-2,2-5,7-1
Machine learning 4-6
Matchmaker 2-2
Mental models 4-4
Menu-based system 7-3
Meta-device 7-3
MetaMenu 7-3
MIG 2-2
Mirage 7-3, 7-4
MOSSYM 8-8
Motion stereo methods 3-12
Move generator 4-12, 8-16

Oracle 4-11

Parallel algorithms 8-17
Parts-R-Us 8-6
Performance simulator 8-13
Ports 2-2
Prodigy 4-7,4-8

R1 4-2
R1-Soar 4-3
Recoverable storage 6-6
Recovery algorithm 6-2, 6-7
Reliability 6-6
Remote file access 2-2
Replicated data 6-9
Replicated directory algorithm 6-2
Rulekit 4-9

Sear 4-2
Search accelerator 8-14
Search algorithm 4-10
Sesame 2-2
Simulation 8-2
Single-chip coprocessors 8-13
SLAP 8-11
SML 8-9
Soar 4-2
Software distribution 2-3
SPAM 4-4
Spice 2-1
Standard frame instantiated 8-6
State explosion 8-8, 8-10
Stereo vision 3-5
SUP 2-3
SUPREM 4-11
Switch-level simulation 8-4, 8-5

Switch-level simulator 8-3
Symbolic simulator 8-3, 8-4
Systolic building blocks 8-1

TABS 6-1
Transformer program 5-1
Trinocular stereo 3-6

Unified theory of cognition 4-3
Uniform Workstation Interface 7-1
User interface 7-1
User interfaces 2-5
User verification 2-2

Vice/Virtue 2-2
Viewers system 7-2, 7-4
Views 5-2
Virtual memory management 6-7
VLASIC 8-2
VLSI 8-1

Warp 2-5,3-4,8-2
Warp Shell 2-5,7-2
WarpJr 8-2
World Modelers 4-8
Write-ahead logging 6-6

XBAR 8-1

Yield simulator 8-2

