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Introduction 
A distributed system consists of multiple computers (called nodes) that communicate through 

a network. Distributed systems are typically subject to several kinds of failures: nodes may 
crash, perhaps destroying local disk storage, and communication may fail, via lost messages or 
network partitions. Writing reliable programs for distributed systems is difficult and has been the 
subject of many research projects. Avalon/C-H- is the result of one such project. Avalon/C++ is 
a programming language that supports the construction of reliable programs consisting of a set 
of servers communicating over a network. It provides high-level language support for user-
defined data types with customized synchronization and fault-tolerance properties. These data 
types are encapsulated in servers, and accessed through exported server operations. 
Avalon/C-H- greatly simplifies the programming of these servers by hiding the distributed nature 
of a server from both the implementor and callers of a server. This paper explores the 
representation of servers in Avalon/C-H-. 

In the first section, we give a brief description of Avalon/C-H- and its run-time environment. A 
full description of Avalon's server type and its use is the topic of Section 2. The following 
sections discuss the various mechanisms used by the server representation. Section 3 
describes how clients locate running servers. Section 4 describes a typical Avalon/C-H- server, 
the catalog server, which is used in locating servers. A complete description of a user-defined 
concurrent data type used by the catalog server is given in Section 5. The last section details 
the current status and future plans for Avalon/C-H-, and discusses related work. 

1. Overview of Avalon/C-H-
A widely-accepted technique for preserving consistency in the presence of failures and 

concurrency is to organize computations as sequential processes called transactions. 
Transactions are atomic, that is, serializable, transaction-consistent, and permanent. 
Seriaiizability means that transactions appear to execute in a serial order. 
Transaction-consistency ("all-or-nothing") means that a transaction either succeeds completely 
and commits, or aborts and has no effect. Permanence means that the effects of a committed 
transaction survive failures. 

Avalon/C-H- provides transaction semantics via atomic objects. Atomic objects ensure the 
seriaiizability, transaction-consistency, and permanence of the transactions that use their 
operations. All objects used by transactions must be atomic. Avalon/C-H- provides a collection 
of built-in atomic types; users may define their own atomic types by subtyping the built-in types. 
Avalon/C++ includes a variety of primitives (not discussed here) for creating transactions in 
sequence or in parallel, and for aborting and committing transactions. Included with these 
primitives is a mechanism to handle transaction aborts as exceptions. 

The Avalon/C++ class hierarchy is made up of three classes, recoverable, atomic, and 
subatomic, arranged in an inheritance tree, where atomic and subatomic both inherit from 
recoverable. The most basic class in our hierarchy is recoverable. It ensures 
permanence: after a crash, a recoverable object will be restored to a state that reflects all 
operations performed by transactions that committed before the crash. Atomic is a subclass of 
recoverable, specialized to provide two-phase read/write locking and automatic recovery. 
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Locking is used to ensure seriaiizability, and the automatic recovery mechanism ensures 
transaction-consistency. The third, and perhaps most interesting, base class in the hierarchy is 
subatomic. Like atomic, subatomic ensures atomicity. While atomic provides a quick 
and convenient way to define new atomic objects, subatomic provides primitives to give 
programmers more detailed control over their objects1 synchronization and recovery 
mechanisms. This control can be used to exploit type-specific properties of objects to permit 
higher levels of concurrency and more efficient recovery. [Weihl&Liskov 85, Herlihy&Wing 87]. 

An Avalon/C-H- program consists of a set of servers, each of which encapsulates some data 
objects. Each server provides concurrent access to a set of objects through exported 
operations. A server resides at a single physical node, but each node may be home to multiple 
servers. Rather than sharing data directly, servers communicate by calling one another's 
operations. An operation call is a remote procedure call (RPC) with call-by-value transmission 
of arguments and results. A server's objects are stable, that is, they survive crashes. 

Avalon/C-H- uses the Camelot system [Spector et al. 86] to handle operating-system level 
details of transaction management, inter-node communication, commit protocols, and automatic 
crash recovery. It also uses light-weight processes (threads), provided by the 
Mach/Unix [Accetta et al. 86] operating system, to support concurrency within a server. 

2. Avalon's Server Type 
The goal of Avalon's representation of servers is to hide the complexity associated with 

invoking and processing operation requests. A server is an encapsulation of some data objects 
with operations to access the data much like an ordinary C-H- class. Avaion exploits this 
similarity, making servers look like classes, both from the point of view of the server 
implementor and the server client Before describing how servers are defined and used in 
Avaion, it is useful to explain how a server and client are implemented in the underlying 
machine. 

A server in the underlying machine is a program, running on a single node, that accepts RPC 
messages containing operation invocation requests. The server's receiver, running as a light
weight process in the server (a thread), unpacks the operation's parameters from the message 
and calls the server function that implements the operation. When a server function returns, the 
results are packaged into the return message sent to the client. To allow concurrency within the 
server, multiple threads are used to service the requests. Whenever a request arrives, a new 
thread is started to handle it. A server may contain additional threads to perform background 
processing independent of operation requests. 

A client invokes a server's operations by sending a request to the server and waiting for a 
reply. If it cannot contact the server or times out waiting for the reply, the innermost transaction 
will abort, allowing Avalon's transaction abort handler mechanism to be invoked. 

The server construct in Avaion hides all of the communication processing inherent in 
servers. A server is defined as a special C++ class. Like any other class, it contains some data 
declarations and operations which manipulate the data. The former are the data objects 
encapsulated by the server and the latter are the operations that the server exports. 
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Implementations of the operations are provided in the usual manner, as if the server were 
simply a class rather than a separate process. In particular, Avalon takes care of generating the 
code that initializes the process as a server, receives and unpacks RPC messages, calls the 
proper operation (in a new thread), and packages the results into a reply sent back to the client. 
To use a server, a client program simply includes the server definition and invokes operations 
on instances of the server, as with any other C++ class. From the client's perspective, the only 
difference between a sever and a normal class concerns how instances of the server are 
obtained. A simple server is shown in Figure 2-1. 

{ 
stable atamio_int vml; // Protected Data 

public: // Constructor 
ixrt(nod« n, path p, mxzm m, int i):(n,p,s); 
int g«t(); // Exported Op. 
void ••t(int i ) ; // Exported Op. 
void recover (); // (recovery) 
main(); // (background) 

}; 

Figure 2-1: A simple server definition 

For the remainder of the paper, the following definitions are used: 
server, server definition: 

the definition of the server. This looks like a C++ class definition with the 
keyword amrvmr replacing class 1. Both the client and server programs 
include the same server definition. 

server process: the process running on a single node that services requests from clients for 
server operation invocations. A server process is described by a server 
definition and the accompanying operation implementations. 

server object: an instance of a server definition. A server object is the data structure in a 
client that represents a particular running server process of the appropriate 
type. When a new server object is created, a new server process is also 
created. Likewise, when a server object is destroyed, the server process is 
killed. 

server reference: a C++ reference to a server object. Clients generally use references to 
server objects, rather than the objects themselves. This allows multiple 
references to the same server object. 

server type name: the name used in the server definition. The server type name is used to 
declare server object and server reference variables. It is also used when 
locating a server to restrict the search to servers of the appropriate type. 

server unique name: 
the name that a server process uses to identify itself for the purposes of 
RPC communication. The underlying machine uses a global namespace 
for these names. 

1A server may not be derived from another class since ail servers are, in effect, derived from the class 
sT™~~ n ° 0 , 3 8 8 ° r S 8 r V e r m a y 6 8 d e r i v e d from a Avalon does not define semantics for derived 
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2.1. Servers from the client's perspective 
From the client's perspective, an Avaion server is an instance of a server definition, a server 

object A client invokes an operation on a server by calling a member function of a server 
object Creating a new server object causes a new server process to be started. When a 
server object is deleted, the server is killed. 

// Start a new printer server 
prints* p a * (now prints (...)); 

// Locate an existing printer server 
prints* p m (prints*) looatt aMrv«r(...); 

// Invoke an operation 
p.spool ("myfil#.txt"); 

Figure 2-2: Example of Using Servers 

For an Avaion program to make use of a server it must first obtain an instance of the 
appropriate server. As shown in the Figure 2-2, the client may either create a new server 
object, starting a new server process, or it may, with the locmt*_s*rv»r function, obtain a 
reference to an existing server object representing a running server process. 

The underlying machine associates an RPC communication address with a server's unique 
name. A name, however, is not necessarily the most convenient means of identifying a server. 
When there are multiple instances of a server, a client often does not know the unique name of 
the specific server to use. It may not care which instance to use, or it may wish to select the 
server based on some attributes particular to one instance of the server (e.g., the machine on 
which it is running, or the printer it is controlling). The Avaion library provides the 
locat*_s*rv«r function to allow selections of this sort. This function allows clients to locate a 
server object based on a list of attributes describing the server. The operation of this function is 
fully described in Section 3. 

All servers inherit from the class serv*r_root. This class provides the data and operations 
required by all servers. A constructor is provided to start a new server process when a client 
creates a new server object. When a server is created, the server's constructor calls this 
constructor with appropriate parameters. If a server does not provide its own destructor to 
gracefully kill a server process, s«rv*r_root provides a destructor that sends a kill signal to 
the underlying machine to kill the server process whenever a client destroys a server object. 
The s«xv«r_root also provides a place to store the information necessary for the client to 
communicate with the server process, including the unique name of the server process and its 
RPC address. s«rv«r_root actually provides a number of constructors, reflecting the varying 
amount of information which may be supplied in order to start any server. Common parameters 
to the constructors are: the node on which to start the server, an executable to use, and the 
amount of recoverable memory to allocate for the server. Except for these parameters, the 
programmer need not know about the s«rv»r__root class. 

When looking at a server definition, a programmer sees what looks like a class definition. 
Invoking an operation on the server is identical to invoking an operation on a C-H- class (as 
shown in the third line of Figure 2-2). When a client invokes a server operation, however, 
Avaion takes over and a lot of behind-the-scenes action takes place. 
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Within a client, Avalon replaces the implementation of each server operation with code that 
packs the arguments into a message and initiates an RPC call to the server named by the 
unique name stored in the strv«r_root component. When the RPC call returns, the results 
are unpacked and form the result of the client's call. Avalon makes similar replacements for the 
server's constructor and destructor to provide for starting and killing servers. 

Since server objects are really just C++ objects with special operations, they can be 
manipulated in the same manner as other C++- objects. In particular, server objects and 
references to servers can be passed as parameters to and returned as values from functions. 

2.2. Servers from the implementor's perspective 
From a server implementor's perspective, a server is completely specified by its definition and 

member function implementations. A simple server definition is shown in Figure 2-1. The 
definition contains the following parts: 

• data object declarations 

• constructors 

• exported operations 

• private operations 

• racovtr 

All of the data objects used by the server are declared in the server definition. These data 
objects are restored following a failure. It is important to note that, to be properly restored, the 
data objects must be derived from one of Avalon's three built-in classes recoverable, 
atomic or subatomic. Furthermore, they must be implemented to control concurrent 
manipulation. For example, the server in Figure 2-1 declares an atomic integer. The 
operations on this type2, assignment and coercion to integer, are implemented to allow multiple 
readers or a single writer. 

The exported operations list the parameters that Avalon must package up for the client and 
unpack for the server. The implementation of an operation provides the function that is called in 
the server process when a client invokes the operation. The communication code is generated 
by the Avalon compiler. Private operations are simply functions which can be called within the 
server from other member functions. 

A server's constructor is very much like an operation. It defines the parameters that a client 
must use when creating a new server and provides code to execute when the server is started. 
The primary difference is that a constructor must also define the parameters that are sent to the 
underlying machine to start the server process. These parameters are specified as parameters 
to the parent's constructor (text to the right of the colon in Figure 2-1). When a client calls a 
server's constructor, the specified parameters are passed to the constructor for the 

2 . 
atomic_int is one of a number of basic atomic types provided by the Avalon Library. 
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s«rver_root class (described above) where they are given to the underlying machine. Once 
the server process is started, the client constructor code invokes the server's constructor 
operation in the same manner as any other operation. 

The main member function provides a place for the implementor to put code which is 
executed as a background process when the server is started. This function can be used to 
provide code which needs to be run independently of operation invocations. A printer server, for 
example, could use main for the code to run the printer. Main must exist, even if empty, 
because Avaion uses the existence of a main implementation to determine that the current 
compilation is for a server, rather than just for a client. 

The recover member function is optional, but provides a place for code that will be executed 
whenever the server is re-started after a failure. 

3. The locate_server Function 
In order for a client to invoke operations on a server, it needs to obtain a reference to its 

server object. Servers are identified in the underlying machine by a unique name. This name, 
in general, is not known by a client. Furthermore, if there are multiple instances of the server 
(e.g., printer servers for multiple printers), the client may wish to select a particular server based 
on some set of attributes. To provide this service, the Avaion library contains the function 
locata_s*rvar. This function takes the server's type name and an optional attribute list and 
returns a reference to a server object matching those attributes. Since locata_sarv*r is not 
specific to a particular server, it returns a reference to a server^root object. This should then 
be coerced to the appropriate server3. Figure 3-1 shows an example of the use of 
locate^server. 

// CMU printers are named after gems 
attr_liet attr; // an attribute list 
attr. push ("printer "pearl"); 

// Find the desired server 
prints* p =• (printSe)loaate__Mrv*r ("prints", attr); 

// Spool a file onto it 
if (4p !• MOLL) 

p.epool (filename); 
Figure 3-1: Using locate^server 

Since it is expected that the result will be coerced to the desired server type, it is crucial that 
locate^server looks only for servers of the appropriate type. Thus, locate^server 
explicitly requires the server's type name as its first parameter. If any instance of the named 
server will do, the attribute list may be empty. 

Attribute lists are currently very simple structures. They consist of a list of name-value pairs. 
A future enhancement may allow attribute expressions rather than simply attribute lists. These 

3This works since the server class definition generated by Avaion for a client does not add any data objects 
does not use virtual functions. 
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would allow boolean expressions on attribute values. 

Avalon presents the model that creating a server object starts a new server. When locating a 
server, however, it is necessary to physically create a server object in the client. Hiding this 
creation is a secondary purpose for the locata_serv»r function. When locata_serv«r is 
called, it uses an Avalon server, the catalog server, to find the unique name of the desired 
server and uses a special constructor (provided by strvtr^root) to create and initialize a 
server object representing the server. This special constructor does not start a new server. It 
simply allocates the structure. Locata_sarvar then uses a reference to this object as its 
return value. 

Although clients, in general, should not delete server objects obtained from locate_server 
(killing the server), the server objects created by locata_server have an internal flag set that 
inhibits the actual de-allocation of the object if deleted. Thus, a client is allowed to lookup a 
server, delete it, and look it up again. The final result would be a valid reference to a server 
object. The object, however, may represent a server that is not running. This would become 
apparent if a server operation were called (aborting the innermost transaction). 

4. The Catalog Server 
The catalog server is part of the Avalon runtime environment. It provides a repository of 

information about running servers. It is the job of the catalog server to maintain a mapping of 
server attributes to unique names, and to service lookup requests. 

The catalog server is a good example of a typical Avalon server. It must reliably maintain the 
server-attribute mappings and provide concurrent access to this database. The server, as 
shown in Figure 4-1, provides operations to check in attributes for a new server, modify 
attributes, and to locate a server that matches a given attribute list. 

There is exactly one catalog server. Since it is expected to be used relatively infrequently, we 
do not expect it to be a bottleneck. However, if experience shows otherwise, we may decide to 
run one per node in future versions of Avalon. 

When a server starts, it must check in its attributes. The required attributes (i.e., type name, 
unique name and, node) are checked in by the initialization code for starting a server. The 
implementor of a server may provide additional information in the constructor code for the 
server. For example, the printer server should add the name of the printer it is servicing. When 
a client wants to locate a server, the locata_sarvar function adds the server's type name 
(the first parameter) to the given attribute list, and calls the catalog operation nana. To avoid 
boot-strapping problems, Avalon ensures that all clients have a reference to the catalog server, 
which has a fixed unique name. 

Figure 4-1 shows the definition of the catalog server. When a new entry is created (with 
chack_±n) it is given a unique id. This id can later be used to look at and modify the attributes 
for the entry. In addition to chack_±n, the server provides a number of operations to set and 
query the attributes of a server as well as two operations to find a server based on an attribute 
list. The first form, find, returns the unique id of the described entry. The second form, nama, 
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server catalog { 
stable atomio_aat_hashtabla_ptr aervers; 
atabla atomic_int naxt_id; 

public: 
catalog(noda n, path p, size a) (n fp,f); 
int check_in (attr_list aliat); // returns an id 
void remove (int id); 
void set_attribut as (int id, attr_liet n*w__alist) ; 
void set_attribute (int id, xString attribute, xString ntwjralut) ; 
void renove_attributa (int id, xString attribute) ; 
attr_list get_attributes (int id) ; 
xString get~attribute (int id, xString attribute); // returns value 
int find (attr_li*t aliat); // returns an id 
xString nana (attr_list aliat); // returns unique name 
void main (); 

>; 
Figure 4-1: The Catalog server definition 

returns the value of the selected entry's uniqae^name attribute. This form is equivalent to a 
find followed by a get_attribute, and is provided since this is a common operation. 

Currently the catalog server is implemented using atomic hash tables. An entry in the catalog 
is created for each server. An entry is represented by a small hash table mapping the server's 
attribute names to values. The entries are kept in the hash table mmrvmrs, keyed by id. The 
next section describes the atomic hash table implementation. 

5. Atomic Hash Table 
The main data type used by the catalog server is a hash table. Since the server's interface 

operations are expected to run concurrently, concurrent access to the hash tables must be 
allowed. This section describes an implementation derived primarily from the class atomic. 

The hash table is implemented as a fixed length array containing pointers to a linked list (the 
buckets) of entries which hash to the bucket. Each bucket in the array is an atomic object 
consisting of three fields: k*y, value, and next. The object representing the hash table itself 
is derived from recoverable. 

provides the following operations: 

Given a key return the value. 
Given a key and a value, add a new entry, or return FALSE if the entry 
already exists. 
Given a key and a value, modify an existing entry, or return FALSE if the 
entry is not found. 
Given a key, remove the entry from the hash table, or return FALSE if the 
entry is not found. 

The hash table 
Lookup: 
Insert: 

Alter: 

Remove: 
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5.1. Synchronization Conditions 
Concurrency is controlled at the bucket level with the read/write locking provided by Avalon's 

atomic class. This is the standard multiple readers/single writer concurrency control. At the 
hash table level, there may be multiple writers as long as each writer is dealing with a unique 
bucket. The hash table proper does not need locking since, with this implementation, there are 
never any changes to the hash table structure. All changes occur within the buckets. The 
operations work as follows: 

Lookup: acquires a read lock on the appropriate bucket and searches the list of 
entries in the bucket for the desired key. 

Insart, Altar, Ramova: 
acquires a read lock on the appropriate bucket and searches for the 
indicated entry. If the entry exists (does not exist), it returns FALSE. 
Otherwise, it acquires a write lock on the bucket and adds (modifies or 
removes) the entry. 

A successful insart, altar, or ramova blocks all readers and writers of that bucket. If 
unsuccessful, they block only other writers. A lookup blocks only writers. In all cases, once an 
operation has returned a result, no other transaction will be able to make a change that would 
contradict the result, until the first transaction commits or aborts. The bucket remains locked 
until the end of the transaction. 

5.2. Implementation 
The hash table is built from three types of structures. The top-level structure, shown in Figure 

5-1, is the atomicjhashtabla class. This structure contains an array of buckets and a size. 
The size of the array is set when the hash table is constructed. This class is only 
racovarabla since none of the operations change the contents except through operations on 
the buckets. Since there are no concurrency problems, there is no need for concurrency 
control. The basic classes do not specify the types for the hash table keys and values. It is 
expected that a programmer will specialize these classes with the appropriate types. The 
functions hash_tag and nawantry are virtual and are expected to be provided by the 
specialized hash table class. Hash_tag provides a key type specific routine to generate an 
integer from a key. This function is called by atomicjbashtabla's private hash function. 
The nawantry function is called whenever a new hashantry is needed. The specialized 
version of this function allocates an instance of the appropriate specialization of hashantry 
rather than the generic one. 

Each bucket in the hash table is of class atomicjbuckat. This class represents an atomic 
set implemented by a linked list of hashantrys. The class inherits from atomic and each 
operation acquires either a read lock or a write lock on the bucket, protecting modifications to 
the haad pointer and the linked list. The linked list elements are protected since all 
modifications can only occur as a result of one of the operations on atomic_buckat. 
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claaa atomie_hashtabla : public rtoovtriblt { 
atomic_buckat* buckets; // buckets array 
int aiza; 
int. h u h (const g_ptr tag); // returns a bucket index 
virtual int hash_tag (const g_©tr tag); // returns an int given a key 

public: 
// creates a new entry struct 

virtual hashantry* nawantry (g_ptr tag, g_ptr data, hashantry* nxt); 
atomio_haahtabla (int); // constructor 
~atomic_hashtabla (); // destructor 

conat g_ptr lookup (const g_jptr tag) 
{ ratuzn buckata [hash (tag) ] . lookup (tag); } 

bool insart (g_ptr tag, g_ptr data) 
{ ratuzn buckata[hash(tag)].insart (tag, data, this); } 

bool altar (g^ptr tag, g_ptr data) 
{ raturn bucks ts [hash (tag) ] .altar (tag, data); ) 

bool ramova (const g_ptr tag) 
( raturn buckata[haah(tag)].ramova (tag); } 

>; 
Figure 5-1: The top-level atomic hashtable class 

olait atomie_buekat : public atomic { 
haahantry* haad; // linked list of entries 

public: 
atomic_buckat (); 
~atomic_buckat (); 
const g_ptr lookup (conat g_ptr tag); 
bool insert (g_ptr tag, g_ptr data, 

atomie_haehtable* ht); 
bool altar (const g_ptr tag, g_ptr data); 
bool ramova (const g_ptr tag); 
bool ie__ampty () 

( raturn (haad ••• NULL); ) 
>; 

As long as a type specific derivation of atomic_hashtabla provides a nawantry function 
which creates entries of an appropriate subtype, the atomicjbuckat class is type-
independent. No specializations of this class are needed. 

The individual entries are kept in a linked list of objects of class hashantry. This class 
inherits from racovarabla rather than atomic since it is protected by the atomic list head. 
A hashantry contains three fields: the recoverable key and value and a next pointer. The 
fields kay and valua are racovarabla* rather than void* since all objects pointed to from 
within a racovarabla structure must themselves be racovarabla to allow recovery and 
undo. 
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class hashentry : public racovarabla { 
protactad: 

racovarabla* key; 
racovarabla* valua; 
haahentry* naxt; 

public: 
haahentry (); 
haahentry* gat_naxt () ; 
void fttjitxt (haahentry* nxt) ; 

virtual ~hashentry (); 
virtual bool teet_Jcey (const g_ptr tag); 
virtual const gjptr get_key () ; 
virtual const g_ptr gat_valua (); 
virtual void aat_yalue (g_ptr data); 

>; 

To implement a hash table with specific types for the key and value, a new class is derived from 
this class, overriding the constructor and access functions to allocate and access the values 
appropriately. 

The following code implements the atomicjbuckat lookup operation. 
oonat g_ptr atomic bucket::lookup(const g_ptr tag) 
{ 

(*this).read_loek(); 
haahantry* current • head; 

whila (currant !• NULL) 
{ 

if ((*cur_ant) .tastjcey (tag)) 
return (*cur_ent).gat_yalue(); 

cur ant * (*cur ant).gat naxt(); 
} 

// NOT IN LIST 

return NULL; 
> 

It first acquires a read lock on the bucket. If another transaction already has a write lock on this 
bucket, the operation will suspend until it can acquire the read lock. Once locked, it scans the 
list. For each entry in the list the entry's te«t_kay function is called to determine if it is the 
desired entry. If found, the value of the entry is returned. 

The implementation of the atomicjbuckat inaart operation, shown below, first checks 
that the entry does not exist, and if not, adds it. 
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bool atomio_buaket:: ineart (g_ptr tag, g_ptr data, 
atomic_haahtable* ht) 

{ 
(*thie).read_look(); 
haahentry* our_ent * haad; 

while (ourjant !» NULL) 
{ 

if ( (*cur_ent) .teatjcey (tag)) 
return FALSE; ~" // Already in list 

our ant » (*aur_ant).gat naxt(); 
> 

// Not in list, Insert it 

(*thia).write_look(); 
pinning() 

head * (*ht).newentry (tag, data, head); 
return TRUE; 

> 

insert takes a pointer to the hash table so that it can use the correct user-defined newentry 
function provided by the type specific class derived from atomicjhashtable. The pinning 
statement is part of the Avaion extensions to C++ for crash recovery and abort handling. The 
pinning statement tells the underlying machine that a recoverable object is being modified, 
in this case, the bucket structure. When a pinning block is entered, the contents of the object 
are saved. When the block exits (for any reason) the changes to the contents are logged. If a 
transaction aborts, the underlying machine finds all of the recoverable objects which were 
changed and reverts them back to their original value. If a fault occurs, all of the recoverable 
objects will be restored to their value as of the last committed transaction.: 

If two transactions attempt to simultaneously insert an entry in the same bucket, it is possible 
for deadlock to occur. Both may have read locks on the bucket inhibiting the other from getting 
a write lock. This is not a problem since the underlying machine detects deadlock and aborts 
one of the transactions, allowing the other to acquire the write lock. 

5.3. More Concurrency - An Alternate Implementation 
The atomic hash table implementation, as one might guess, does not provide as much 

concurrency as one might want. An obvious enhancement would allow multiple writers at the 
bucket level. Instead of locking the entire bucket, the value and next fields in the hashentry 
class could be atomic. The insert operation, for example, could scan the linked list, 
acquiring read locks on each next field until the end of the list or an entry with the same key 
was found. If the end of the list was found, it could acquire a write lock on the last next field 
and insert the new entry. The write lock would prevent other changes or lookup of the new 
entry, but would not affect lookup of other existing entries. Unfortunately, doing so makes the 
implementation much more complicated because the concurrency control mechanism is tied in 
with the data storage implementation. The trouble occurs in the following situation. One 
transaction has a read lock on the last next field from a failed lookup. A second transaction 
tries to insert a new entry. It is able to search the list to see if the entry already exists, but if it 
does not, when it tries to add the new entry onto the end of the list, it correctly waits for the first 
transaction's read lock to be released. Finally, a third transaction also tries to concurrently 
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insert a new entry and waits for the read lock to be released. When the first transaction 
releases its read lock, the other two transactions, one after the other, gain the write lock and set 
the next field to point to their new entry and commit. The result is that only the new entry 
added by the last transaction to commit ends up in the list To solve this problem, the inserting 
transactions must check, after they receive the write lock, whether they are still looking at the 
last entry or if a new entry (possibly with the same key) has been added. The problem is that 
normal read/write locking is fairly rigid. Furthermore, even if one were to solve these problems, 
full concurrency (blocking only if the keys are the same) would not be achieved. Instead, it 
would have properties such as for remove, "it is ok to lookup entries prior to the one removed, 
but not those after it" To really solve these problems, Avalon provides another class, 
subatomic, which allows more flexible concurrency control schemes. This is fully explained in 
[Detlefs et. al. 88]. A brief description follows. 

Avalon's subatomic class provides short term locks for consistency control instead of 
read/write locks, comparison of transaction identifiers for concurrency control, and user-defined 
commit and abort functions. The basic approach is: 

1. Obtain a short-term lock on your entire data-structure. 
2. Find the object to modify. 

3. Use transaction identifiers to determine if you can make the change. 

4. Make the change, marking it with your transaction identifier and saving the 
previous version. 

5. Release the short term lock. 

6. Clean up at the end of the transaction. 
a. If you commit, throw out the undo information 
b. If you abort, undo your changes. 

The subatomic implementation of the hash table provides the same functionality as the 
atomic version, but with increased concurrency. The primary advantage of the subatomic 
implementation is that concurrency control, consistency protection, and recovery are separated 
from the data storage. Whereas the atomic implementation uses read/write locking to provide 
all of these properties, the subatomic implementation uses a lock table for determining 
concurrency conflicts, short-term locks for consistency protection, and atomic objects for data 
recovery. Since concurrency and consistency control are separated from data storage, the 
code manipulating the data structures is straightforward. While an atomic implementation 
would need to get the appropriate locks on each element of the linked list during a search, the 
subatomic implementation first checks for concurrency conflicts, gets a short-term lock on the 
data structure to ensure that no one else can access it, and finally scans through the list as in a 
non-concurrent implementation. 

Another advantage of the subatomic approach is that it is more independent of the 
implementation used for the data storage and operations. The concurrency control is entirely 
independent of how the data is stored. One disadvantage to subatomic implementations is 
the added work for the implementor. 
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6. Status 
We are currently implementing Avalon/C-t-f on IBM RTs and DEC MicroVaxen using Version 

1.1 of C++ [Stroustrup 86]. The implementation takes the form of a preprocessor that 
transforms Avalon code to C++ code. We make extensive use of the Camelot system for low-
level transaction support Camelot, in turn, relies on the Mach operating system [Accetta et al. 
86] for memory management, inter-node communication, and lightweight processes. At this 
time, all of the mechanisms described in this paper are in use. In the future, we hope to 
implement the subatomic version of the hash table and to do performance evaluation. 

7. Acknowledgements 
The initial idea of a catalog server was inspired by Argus's [Liskov&Scheifler 83] catalog 

subsystem. Jeannette Wing and Maurice Herlihy are responsible for much of the general 
design of Avalon/C++, as well as some of the introductory text. Also involved in the design were 
Dave Detlefs, who did much of the implementation, Stewart Clamen, Karen Kietzke, and Su-
Yuen Ling. I also wish to thank Jeannette Wing and Barbara Staudt for their comments on the 
paper. 



15 

References 

[Accetta et al. 86] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and 
M. Young. 
Mach: A New Kernel Foundation for UNIX Development. 
In Proceedings of Summer Usenix, July, 1986. 

[Detlefs et. al. 88] D. Detlefs, M. P. Herlihy, and J. M. Wing. 
Inheritance of Synchronization and Recovery Properties in Avalon/C-H-. 
In The Proceedings of the 21st Hawaii International Conference on System 

Sciences, Kailua-Kona, Hawaii, Jan, 1988. 
Also available as CMU-CS-TR-87-133, June 1987. 

[Herlihy&Wing 87] M. P. Herlihy and J. M. Wing. 
Avaion: Language Support for Reliable Distributed Systems. 
In The Proceedings of the 17th International Symposium on Fault-Tolerant 

Computing, Pittsburgh, PA, July, 1987. 

[Liskov&Scheifler 83] 
B. Liskov and R. Scheifler. 
Guardians and Actions: Linguistic Support for Robust, Distributed Programs. 
ACM Transactions on Programming Language and Systems 5(3):382-404, 

July, 1983. 

[Spector et al. 86] A. Z. Spector, J. J. Bloch, D. S. Daniels, R. P. Draves, D. Duchamp, 
J. L. Eppinger, S. G. Menees, D. S. Thompson. 
The Camelot Project. 
Database Engineering9{4), December, 1986. 
Also available as Technical Report CMU-CS-86-166, Carnegie-Mellon 

University, November 1986. 

[Stroustrup 86] B. Stroustrup. 
The C++ Programming Language. 
Addison-Wesley, Reading, Massachusetts, 1986. 

[Weihl&Liskov 85] W. E. Weihl and B. Uskov. 
Implementation of Resilient, Atomic Data Types. 
ACM Transactions on Programming Language and Systems 7(2):244-269, 

April, 1985. 


