
NOTICE WARNING CONCERNING C O P Y R I G H T RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Reliable Servers:
Design and Implementation in Avalon/C++

Richard Allen Lerner

September 1988
CMU-CS-88-177„

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Avalon/C++ is a programming language that supports the construction of reliable programs
consisting of a set of servers communicating over a network. It provides high-level language
support for user-defined data types with customized synchronization and fault-tolerance
properties. These data types are encapsulated in servers, and accessed through exported
server operations. Avalon/C-H- greatly simplifies the programming of these servers by hiding
the distributed nature of a server from both the implementor and callers of a server. Avalon/C++
exploits the similarity of servers and classes, making server definition and use look like that for
C++ classes. A detailed description is given of a typical Avalon/C++ server, the catalog server,
which is used by clients to locate servers.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD),
ARPA Order No. 4976{Amendment 20), under contract F33615-87-C-1499 monitored by the
Avionics Laboratory, Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB.

The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the US Government.

This paper has also been published in the proceedings of the H1988 International Symposium
on Databases in Parallel and Distributed Systems", Austin, TX, December 1988.

1

Introduction
A distributed system consists of multiple computers (called nodes) that communicate through

a network. Distributed systems are typically subject to several kinds of failures: nodes may
crash, perhaps destroying local disk storage, and communication may fail, via lost messages or
network partitions. Writing reliable programs for distributed systems is difficult and has been the
subject of many research projects. Avalon/C-H- is the result of one such project. Avalon/C++ is
a programming language that supports the construction of reliable programs consisting of a set
of servers communicating over a network. It provides high-level language support for user-
defined data types with customized synchronization and fault-tolerance properties. These data
types are encapsulated in servers, and accessed through exported server operations.
Avalon/C-H- greatly simplifies the programming of these servers by hiding the distributed nature
of a server from both the implementor and callers of a server. This paper explores the
representation of servers in Avalon/C-H-.

In the first section, we give a brief description of Avalon/C-H- and its run-time environment. A
full description of Avalon's server type and its use is the topic of Section 2. The following
sections discuss the various mechanisms used by the server representation. Section 3
describes how clients locate running servers. Section 4 describes a typical Avalon/C-H- server,
the catalog server, which is used in locating servers. A complete description of a user-defined
concurrent data type used by the catalog server is given in Section 5. The last section details
the current status and future plans for Avalon/C-H-, and discusses related work.

1. Overview of Avalon/C-H-
A widely-accepted technique for preserving consistency in the presence of failures and

concurrency is to organize computations as sequential processes called transactions.
Transactions are atomic, that is, serializable, transaction-consistent, and permanent.
Seriaiizability means that transactions appear to execute in a serial order.
Transaction-consistency ("all-or-nothing") means that a transaction either succeeds completely
and commits, or aborts and has no effect. Permanence means that the effects of a committed
transaction survive failures.

Avalon/C-H- provides transaction semantics via atomic objects. Atomic objects ensure the
seriaiizability, transaction-consistency, and permanence of the transactions that use their
operations. All objects used by transactions must be atomic. Avalon/C-H- provides a collection
of built-in atomic types; users may define their own atomic types by subtyping the built-in types.
Avalon/C++ includes a variety of primitives (not discussed here) for creating transactions in
sequence or in parallel, and for aborting and committing transactions. Included with these
primitives is a mechanism to handle transaction aborts as exceptions.

The Avalon/C++ class hierarchy is made up of three classes, recoverable, atomic, and
subatomic, arranged in an inheritance tree, where atomic and subatomic both inherit from
recoverable. The most basic class in our hierarchy is recoverable. It ensures
permanence: after a crash, a recoverable object will be restored to a state that reflects all
operations performed by transactions that committed before the crash. Atomic is a subclass of
recoverable, specialized to provide two-phase read/write locking and automatic recovery.

University Libraries
Carnegie Mellon University

Pittsburgh, Pennsylvania 15/13

2

Locking is used to ensure seriaiizability, and the automatic recovery mechanism ensures
transaction-consistency. The third, and perhaps most interesting, base class in the hierarchy is
subatomic. Like atomic, subatomic ensures atomicity. While atomic provides a quick
and convenient way to define new atomic objects, subatomic provides primitives to give
programmers more detailed control over their objects1 synchronization and recovery
mechanisms. This control can be used to exploit type-specific properties of objects to permit
higher levels of concurrency and more efficient recovery. [Weihl&Liskov 85, Herlihy&Wing 87].

An Avalon/C-H- program consists of a set of servers, each of which encapsulates some data
objects. Each server provides concurrent access to a set of objects through exported
operations. A server resides at a single physical node, but each node may be home to multiple
servers. Rather than sharing data directly, servers communicate by calling one another's
operations. An operation call is a remote procedure call (RPC) with call-by-value transmission
of arguments and results. A server's objects are stable, that is, they survive crashes.

Avalon/C-H- uses the Camelot system [Spector et al. 86] to handle operating-system level
details of transaction management, inter-node communication, commit protocols, and automatic
crash recovery. It also uses light-weight processes (threads), provided by the
Mach/Unix [Accetta et al. 86] operating system, to support concurrency within a server.

2. Avalon's Server Type
The goal of Avalon's representation of servers is to hide the complexity associated with

invoking and processing operation requests. A server is an encapsulation of some data objects
with operations to access the data much like an ordinary C-H- class. Avaion exploits this
similarity, making servers look like classes, both from the point of view of the server
implementor and the server client Before describing how servers are defined and used in
Avaion, it is useful to explain how a server and client are implemented in the underlying
machine.

A server in the underlying machine is a program, running on a single node, that accepts RPC
messages containing operation invocation requests. The server's receiver, running as a light
weight process in the server (a thread), unpacks the operation's parameters from the message
and calls the server function that implements the operation. When a server function returns, the
results are packaged into the return message sent to the client. To allow concurrency within the
server, multiple threads are used to service the requests. Whenever a request arrives, a new
thread is started to handle it. A server may contain additional threads to perform background
processing independent of operation requests.

A client invokes a server's operations by sending a request to the server and waiting for a
reply. If it cannot contact the server or times out waiting for the reply, the innermost transaction
will abort, allowing Avalon's transaction abort handler mechanism to be invoked.

The server construct in Avaion hides all of the communication processing inherent in
servers. A server is defined as a special C++ class. Like any other class, it contains some data
declarations and operations which manipulate the data. The former are the data objects
encapsulated by the server and the latter are the operations that the server exports.

3

Implementations of the operations are provided in the usual manner, as if the server were
simply a class rather than a separate process. In particular, Avalon takes care of generating the
code that initializes the process as a server, receives and unpacks RPC messages, calls the
proper operation (in a new thread), and packages the results into a reply sent back to the client.
To use a server, a client program simply includes the server definition and invokes operations
on instances of the server, as with any other C++ class. From the client's perspective, the only
difference between a sever and a normal class concerns how instances of the server are
obtained. A simple server is shown in Figure 2-1.

{
stable atamio_int vml; // Protected Data

public: // Constructor
ixrt(nod« n, path p, mxzm m, int i):(n,p,s);
int g«t(); // Exported Op.
void ••t(int i) ; // Exported Op.
void recover (); // (recovery)
main(); // (background)

};

Figure 2-1: A simple server definition

For the remainder of the paper, the following definitions are used:
server, server definition:

the definition of the server. This looks like a C++ class definition with the
keyword amrvmr replacing class 1. Both the client and server programs
include the same server definition.

server process: the process running on a single node that services requests from clients for
server operation invocations. A server process is described by a server
definition and the accompanying operation implementations.

server object: an instance of a server definition. A server object is the data structure in a
client that represents a particular running server process of the appropriate
type. When a new server object is created, a new server process is also
created. Likewise, when a server object is destroyed, the server process is
killed.

server reference: a C++ reference to a server object. Clients generally use references to
server objects, rather than the objects themselves. This allows multiple
references to the same server object.

server type name: the name used in the server definition. The server type name is used to
declare server object and server reference variables. It is also used when
locating a server to restrict the search to servers of the appropriate type.

server unique name:
the name that a server process uses to identify itself for the purposes of
RPC communication. The underlying machine uses a global namespace
for these names.

1A server may not be derived from another class since ail servers are, in effect, derived from the class
sT™~~ n ° 0 , 3 8 8 ° r S 8 r V e r m a y 6 8 d e r i v e d from a Avalon does not define semantics for derived

4

2.1. Servers from the client's perspective
From the client's perspective, an Avaion server is an instance of a server definition, a server

object A client invokes an operation on a server by calling a member function of a server
object Creating a new server object causes a new server process to be started. When a
server object is deleted, the server is killed.

// Start a new printer server
prints* p a * (now prints (...));

// Locate an existing printer server
prints* p m (prints*) looatt aMrv«r(...);

// Invoke an operation
p.spool ("myfil#.txt");

Figure 2-2: Example of Using Servers

For an Avaion program to make use of a server it must first obtain an instance of the
appropriate server. As shown in the Figure 2-2, the client may either create a new server
object, starting a new server process, or it may, with the locmt*_s*rv»r function, obtain a
reference to an existing server object representing a running server process.

The underlying machine associates an RPC communication address with a server's unique
name. A name, however, is not necessarily the most convenient means of identifying a server.
When there are multiple instances of a server, a client often does not know the unique name of
the specific server to use. It may not care which instance to use, or it may wish to select the
server based on some attributes particular to one instance of the server (e.g., the machine on
which it is running, or the printer it is controlling). The Avaion library provides the
locat*_s*rv«r function to allow selections of this sort. This function allows clients to locate a
server object based on a list of attributes describing the server. The operation of this function is
fully described in Section 3.

All servers inherit from the class serv*r_root. This class provides the data and operations
required by all servers. A constructor is provided to start a new server process when a client
creates a new server object. When a server is created, the server's constructor calls this
constructor with appropriate parameters. If a server does not provide its own destructor to
gracefully kill a server process, s«rv*r_root provides a destructor that sends a kill signal to
the underlying machine to kill the server process whenever a client destroys a server object.
The s«xv«r_root also provides a place to store the information necessary for the client to
communicate with the server process, including the unique name of the server process and its
RPC address. s«rv«r_root actually provides a number of constructors, reflecting the varying
amount of information which may be supplied in order to start any server. Common parameters
to the constructors are: the node on which to start the server, an executable to use, and the
amount of recoverable memory to allocate for the server. Except for these parameters, the
programmer need not know about the s«rv»r__root class.

When looking at a server definition, a programmer sees what looks like a class definition.
Invoking an operation on the server is identical to invoking an operation on a C-H- class (as
shown in the third line of Figure 2-2). When a client invokes a server operation, however,
Avaion takes over and a lot of behind-the-scenes action takes place.

5

Within a client, Avalon replaces the implementation of each server operation with code that
packs the arguments into a message and initiates an RPC call to the server named by the
unique name stored in the strv«r_root component. When the RPC call returns, the results
are unpacked and form the result of the client's call. Avalon makes similar replacements for the
server's constructor and destructor to provide for starting and killing servers.

Since server objects are really just C++ objects with special operations, they can be
manipulated in the same manner as other C++- objects. In particular, server objects and
references to servers can be passed as parameters to and returned as values from functions.

2.2. Servers from the implementor's perspective
From a server implementor's perspective, a server is completely specified by its definition and

member function implementations. A simple server definition is shown in Figure 2-1. The
definition contains the following parts:

• data object declarations

• constructors

• exported operations

• private operations

• racovtr

All of the data objects used by the server are declared in the server definition. These data
objects are restored following a failure. It is important to note that, to be properly restored, the
data objects must be derived from one of Avalon's three built-in classes recoverable,
atomic or subatomic. Furthermore, they must be implemented to control concurrent
manipulation. For example, the server in Figure 2-1 declares an atomic integer. The
operations on this type2, assignment and coercion to integer, are implemented to allow multiple
readers or a single writer.

The exported operations list the parameters that Avalon must package up for the client and
unpack for the server. The implementation of an operation provides the function that is called in
the server process when a client invokes the operation. The communication code is generated
by the Avalon compiler. Private operations are simply functions which can be called within the
server from other member functions.

A server's constructor is very much like an operation. It defines the parameters that a client
must use when creating a new server and provides code to execute when the server is started.
The primary difference is that a constructor must also define the parameters that are sent to the
underlying machine to start the server process. These parameters are specified as parameters
to the parent's constructor (text to the right of the colon in Figure 2-1). When a client calls a
server's constructor, the specified parameters are passed to the constructor for the

2 .
atomic_int is one of a number of basic atomic types provided by the Avalon Library.

6

s«rver_root class (described above) where they are given to the underlying machine. Once
the server process is started, the client constructor code invokes the server's constructor
operation in the same manner as any other operation.

The main member function provides a place for the implementor to put code which is
executed as a background process when the server is started. This function can be used to
provide code which needs to be run independently of operation invocations. A printer server, for
example, could use main for the code to run the printer. Main must exist, even if empty,
because Avaion uses the existence of a main implementation to determine that the current
compilation is for a server, rather than just for a client.

The recover member function is optional, but provides a place for code that will be executed
whenever the server is re-started after a failure.

3. The locate_server Function
In order for a client to invoke operations on a server, it needs to obtain a reference to its

server object. Servers are identified in the underlying machine by a unique name. This name,
in general, is not known by a client. Furthermore, if there are multiple instances of the server
(e.g., printer servers for multiple printers), the client may wish to select a particular server based
on some set of attributes. To provide this service, the Avaion library contains the function
locata_s*rvar. This function takes the server's type name and an optional attribute list and
returns a reference to a server object matching those attributes. Since locata_sarv*r is not
specific to a particular server, it returns a reference to a server^root object. This should then
be coerced to the appropriate server3. Figure 3-1 shows an example of the use of
locate^server.

// CMU printers are named after gems
attr_liet attr; // an attribute list
attr. push ("printer "pearl");

// Find the desired server
prints* p =• (printSe)loaate__Mrv*r ("prints", attr);

// Spool a file onto it
if (4p !• MOLL)

p.epool (filename);
Figure 3-1: Using locate^server

Since it is expected that the result will be coerced to the desired server type, it is crucial that
locate^server looks only for servers of the appropriate type. Thus, locate^server
explicitly requires the server's type name as its first parameter. If any instance of the named
server will do, the attribute list may be empty.

Attribute lists are currently very simple structures. They consist of a list of name-value pairs.
A future enhancement may allow attribute expressions rather than simply attribute lists. These

3This works since the server class definition generated by Avaion for a client does not add any data objects
does not use virtual functions.

7

would allow boolean expressions on attribute values.

Avalon presents the model that creating a server object starts a new server. When locating a
server, however, it is necessary to physically create a server object in the client. Hiding this
creation is a secondary purpose for the locata_serv»r function. When locata_serv«r is
called, it uses an Avalon server, the catalog server, to find the unique name of the desired
server and uses a special constructor (provided by strvtr^root) to create and initialize a
server object representing the server. This special constructor does not start a new server. It
simply allocates the structure. Locata_sarvar then uses a reference to this object as its
return value.

Although clients, in general, should not delete server objects obtained from locate_server
(killing the server), the server objects created by locata_server have an internal flag set that
inhibits the actual de-allocation of the object if deleted. Thus, a client is allowed to lookup a
server, delete it, and look it up again. The final result would be a valid reference to a server
object. The object, however, may represent a server that is not running. This would become
apparent if a server operation were called (aborting the innermost transaction).

4. The Catalog Server
The catalog server is part of the Avalon runtime environment. It provides a repository of

information about running servers. It is the job of the catalog server to maintain a mapping of
server attributes to unique names, and to service lookup requests.

The catalog server is a good example of a typical Avalon server. It must reliably maintain the
server-attribute mappings and provide concurrent access to this database. The server, as
shown in Figure 4-1, provides operations to check in attributes for a new server, modify
attributes, and to locate a server that matches a given attribute list.

There is exactly one catalog server. Since it is expected to be used relatively infrequently, we
do not expect it to be a bottleneck. However, if experience shows otherwise, we may decide to
run one per node in future versions of Avalon.

When a server starts, it must check in its attributes. The required attributes (i.e., type name,
unique name and, node) are checked in by the initialization code for starting a server. The
implementor of a server may provide additional information in the constructor code for the
server. For example, the printer server should add the name of the printer it is servicing. When
a client wants to locate a server, the locata_sarvar function adds the server's type name
(the first parameter) to the given attribute list, and calls the catalog operation nana. To avoid
boot-strapping problems, Avalon ensures that all clients have a reference to the catalog server,
which has a fixed unique name.

Figure 4-1 shows the definition of the catalog server. When a new entry is created (with
chack_±n) it is given a unique id. This id can later be used to look at and modify the attributes
for the entry. In addition to chack_±n, the server provides a number of operations to set and
query the attributes of a server as well as two operations to find a server based on an attribute
list. The first form, find, returns the unique id of the described entry. The second form, nama,

8

server catalog {
stable atomio_aat_hashtabla_ptr aervers;
atabla atomic_int naxt_id;

public:
catalog(noda n, path p, size a) (n fp,f);
int check_in (attr_list aliat); // returns an id
void remove (int id);
void set_attribut as (int id, attr_liet n*w__alist) ;
void set_attribute (int id, xString attribute, xString ntwjralut) ;
void renove_attributa (int id, xString attribute) ;
attr_list get_attributes (int id) ;
xString get~attribute (int id, xString attribute); // returns value
int find (attr_li*t aliat); // returns an id
xString nana (attr_list aliat); // returns unique name
void main ();

>;
Figure 4-1: The Catalog server definition

returns the value of the selected entry's uniqae^name attribute. This form is equivalent to a
find followed by a get_attribute, and is provided since this is a common operation.

Currently the catalog server is implemented using atomic hash tables. An entry in the catalog
is created for each server. An entry is represented by a small hash table mapping the server's
attribute names to values. The entries are kept in the hash table mmrvmrs, keyed by id. The
next section describes the atomic hash table implementation.

5. Atomic Hash Table
The main data type used by the catalog server is a hash table. Since the server's interface

operations are expected to run concurrently, concurrent access to the hash tables must be
allowed. This section describes an implementation derived primarily from the class atomic.

The hash table is implemented as a fixed length array containing pointers to a linked list (the
buckets) of entries which hash to the bucket. Each bucket in the array is an atomic object
consisting of three fields: k*y, value, and next. The object representing the hash table itself
is derived from recoverable.

provides the following operations:

Given a key return the value.
Given a key and a value, add a new entry, or return FALSE if the entry
already exists.
Given a key and a value, modify an existing entry, or return FALSE if the
entry is not found.
Given a key, remove the entry from the hash table, or return FALSE if the
entry is not found.

The hash table
Lookup:
Insert:

Alter:

Remove:

9

5.1. Synchronization Conditions
Concurrency is controlled at the bucket level with the read/write locking provided by Avalon's

atomic class. This is the standard multiple readers/single writer concurrency control. At the
hash table level, there may be multiple writers as long as each writer is dealing with a unique
bucket. The hash table proper does not need locking since, with this implementation, there are
never any changes to the hash table structure. All changes occur within the buckets. The
operations work as follows:

Lookup: acquires a read lock on the appropriate bucket and searches the list of
entries in the bucket for the desired key.

Insart, Altar, Ramova:
acquires a read lock on the appropriate bucket and searches for the
indicated entry. If the entry exists (does not exist), it returns FALSE.
Otherwise, it acquires a write lock on the bucket and adds (modifies or
removes) the entry.

A successful insart, altar, or ramova blocks all readers and writers of that bucket. If
unsuccessful, they block only other writers. A lookup blocks only writers. In all cases, once an
operation has returned a result, no other transaction will be able to make a change that would
contradict the result, until the first transaction commits or aborts. The bucket remains locked
until the end of the transaction.

5.2. Implementation
The hash table is built from three types of structures. The top-level structure, shown in Figure

5-1, is the atomicjhashtabla class. This structure contains an array of buckets and a size.
The size of the array is set when the hash table is constructed. This class is only
racovarabla since none of the operations change the contents except through operations on
the buckets. Since there are no concurrency problems, there is no need for concurrency
control. The basic classes do not specify the types for the hash table keys and values. It is
expected that a programmer will specialize these classes with the appropriate types. The
functions hash_tag and nawantry are virtual and are expected to be provided by the
specialized hash table class. Hash_tag provides a key type specific routine to generate an
integer from a key. This function is called by atomicjbashtabla's private hash function.
The nawantry function is called whenever a new hashantry is needed. The specialized
version of this function allocates an instance of the appropriate specialization of hashantry
rather than the generic one.

Each bucket in the hash table is of class atomicjbuckat. This class represents an atomic
set implemented by a linked list of hashantrys. The class inherits from atomic and each
operation acquires either a read lock or a write lock on the bucket, protecting modifications to
the haad pointer and the linked list. The linked list elements are protected since all
modifications can only occur as a result of one of the operations on atomic_buckat.

10

claaa atomie_hashtabla : public rtoovtriblt {
atomic_buckat* buckets; // buckets array
int aiza;
int. h u h (const g_ptr tag); // returns a bucket index
virtual int hash_tag (const g_©tr tag); // returns an int given a key

public:
// creates a new entry struct

virtual hashantry* nawantry (g_ptr tag, g_ptr data, hashantry* nxt);
atomio_haahtabla (int); // constructor
~atomic_hashtabla (); // destructor

conat g_ptr lookup (const g_jptr tag)
{ ratuzn buckata [hash (tag)] . lookup (tag); }

bool insart (g_ptr tag, g_ptr data)
{ ratuzn buckata[hash(tag)].insart (tag, data, this); }

bool altar (g^ptr tag, g_ptr data)
{ raturn bucks ts [hash (tag)] .altar (tag, data);)

bool ramova (const g_ptr tag)
(raturn buckata[haah(tag)].ramova (tag); }

>;
Figure 5-1: The top-level atomic hashtable class

olait atomie_buekat : public atomic {
haahantry* haad; // linked list of entries

public:
atomic_buckat ();
~atomic_buckat ();
const g_ptr lookup (conat g_ptr tag);
bool insert (g_ptr tag, g_ptr data,

atomie_haehtable* ht);
bool altar (const g_ptr tag, g_ptr data);
bool ramova (const g_ptr tag);
bool ie__ampty ()

(raturn (haad ••• NULL);)
>;

As long as a type specific derivation of atomic_hashtabla provides a nawantry function
which creates entries of an appropriate subtype, the atomicjbuckat class is type-
independent. No specializations of this class are needed.

The individual entries are kept in a linked list of objects of class hashantry. This class
inherits from racovarabla rather than atomic since it is protected by the atomic list head.
A hashantry contains three fields: the recoverable key and value and a next pointer. The
fields kay and valua are racovarabla* rather than void* since all objects pointed to from
within a racovarabla structure must themselves be racovarabla to allow recovery and
undo.

11

class hashentry : public racovarabla {
protactad:

racovarabla* key;
racovarabla* valua;
haahentry* naxt;

public:
haahentry ();
haahentry* gat_naxt () ;
void fttjitxt (haahentry* nxt) ;

virtual ~hashentry ();
virtual bool teet_Jcey (const g_ptr tag);
virtual const gjptr get_key () ;
virtual const g_ptr gat_valua ();
virtual void aat_yalue (g_ptr data);

>;

To implement a hash table with specific types for the key and value, a new class is derived from
this class, overriding the constructor and access functions to allocate and access the values
appropriately.

The following code implements the atomicjbuckat lookup operation.
oonat g_ptr atomic bucket::lookup(const g_ptr tag)
{

(*this).read_loek();
haahantry* current • head;

whila (currant !• NULL)
{

if ((*cur_ant) .tastjcey (tag))
return (*cur_ent).gat_yalue();

cur ant * (*cur ant).gat naxt();
}

// NOT IN LIST

return NULL;
>

It first acquires a read lock on the bucket. If another transaction already has a write lock on this
bucket, the operation will suspend until it can acquire the read lock. Once locked, it scans the
list. For each entry in the list the entry's te«t_kay function is called to determine if it is the
desired entry. If found, the value of the entry is returned.

The implementation of the atomicjbuckat inaart operation, shown below, first checks
that the entry does not exist, and if not, adds it.

12

bool atomio_buaket:: ineart (g_ptr tag, g_ptr data,
atomic_haahtable* ht)

{
(*thie).read_look();
haahentry* our_ent * haad;

while (ourjant !» NULL)
{

if ((*cur_ent) .teatjcey (tag))
return FALSE; ~" // Already in list

our ant » (*aur_ant).gat naxt();
>

// Not in list, Insert it

(*thia).write_look();
pinning()

head * (*ht).newentry (tag, data, head);
return TRUE;

>

insert takes a pointer to the hash table so that it can use the correct user-defined newentry
function provided by the type specific class derived from atomicjhashtable. The pinning
statement is part of the Avaion extensions to C++ for crash recovery and abort handling. The
pinning statement tells the underlying machine that a recoverable object is being modified,
in this case, the bucket structure. When a pinning block is entered, the contents of the object
are saved. When the block exits (for any reason) the changes to the contents are logged. If a
transaction aborts, the underlying machine finds all of the recoverable objects which were
changed and reverts them back to their original value. If a fault occurs, all of the recoverable
objects will be restored to their value as of the last committed transaction.:

If two transactions attempt to simultaneously insert an entry in the same bucket, it is possible
for deadlock to occur. Both may have read locks on the bucket inhibiting the other from getting
a write lock. This is not a problem since the underlying machine detects deadlock and aborts
one of the transactions, allowing the other to acquire the write lock.

5.3. More Concurrency - An Alternate Implementation
The atomic hash table implementation, as one might guess, does not provide as much

concurrency as one might want. An obvious enhancement would allow multiple writers at the
bucket level. Instead of locking the entire bucket, the value and next fields in the hashentry
class could be atomic. The insert operation, for example, could scan the linked list,
acquiring read locks on each next field until the end of the list or an entry with the same key
was found. If the end of the list was found, it could acquire a write lock on the last next field
and insert the new entry. The write lock would prevent other changes or lookup of the new
entry, but would not affect lookup of other existing entries. Unfortunately, doing so makes the
implementation much more complicated because the concurrency control mechanism is tied in
with the data storage implementation. The trouble occurs in the following situation. One
transaction has a read lock on the last next field from a failed lookup. A second transaction
tries to insert a new entry. It is able to search the list to see if the entry already exists, but if it
does not, when it tries to add the new entry onto the end of the list, it correctly waits for the first
transaction's read lock to be released. Finally, a third transaction also tries to concurrently

13

insert a new entry and waits for the read lock to be released. When the first transaction
releases its read lock, the other two transactions, one after the other, gain the write lock and set
the next field to point to their new entry and commit. The result is that only the new entry
added by the last transaction to commit ends up in the list To solve this problem, the inserting
transactions must check, after they receive the write lock, whether they are still looking at the
last entry or if a new entry (possibly with the same key) has been added. The problem is that
normal read/write locking is fairly rigid. Furthermore, even if one were to solve these problems,
full concurrency (blocking only if the keys are the same) would not be achieved. Instead, it
would have properties such as for remove, "it is ok to lookup entries prior to the one removed,
but not those after it" To really solve these problems, Avalon provides another class,
subatomic, which allows more flexible concurrency control schemes. This is fully explained in
[Detlefs et. al. 88]. A brief description follows.

Avalon's subatomic class provides short term locks for consistency control instead of
read/write locks, comparison of transaction identifiers for concurrency control, and user-defined
commit and abort functions. The basic approach is:

1. Obtain a short-term lock on your entire data-structure.
2. Find the object to modify.

3. Use transaction identifiers to determine if you can make the change.

4. Make the change, marking it with your transaction identifier and saving the
previous version.

5. Release the short term lock.

6. Clean up at the end of the transaction.
a. If you commit, throw out the undo information
b. If you abort, undo your changes.

The subatomic implementation of the hash table provides the same functionality as the
atomic version, but with increased concurrency. The primary advantage of the subatomic
implementation is that concurrency control, consistency protection, and recovery are separated
from the data storage. Whereas the atomic implementation uses read/write locking to provide
all of these properties, the subatomic implementation uses a lock table for determining
concurrency conflicts, short-term locks for consistency protection, and atomic objects for data
recovery. Since concurrency and consistency control are separated from data storage, the
code manipulating the data structures is straightforward. While an atomic implementation
would need to get the appropriate locks on each element of the linked list during a search, the
subatomic implementation first checks for concurrency conflicts, gets a short-term lock on the
data structure to ensure that no one else can access it, and finally scans through the list as in a
non-concurrent implementation.

Another advantage of the subatomic approach is that it is more independent of the
implementation used for the data storage and operations. The concurrency control is entirely
independent of how the data is stored. One disadvantage to subatomic implementations is
the added work for the implementor.

14

6. Status
We are currently implementing Avalon/C-t-f on IBM RTs and DEC MicroVaxen using Version

1.1 of C++ [Stroustrup 86]. The implementation takes the form of a preprocessor that
transforms Avalon code to C++ code. We make extensive use of the Camelot system for low-
level transaction support Camelot, in turn, relies on the Mach operating system [Accetta et al.
86] for memory management, inter-node communication, and lightweight processes. At this
time, all of the mechanisms described in this paper are in use. In the future, we hope to
implement the subatomic version of the hash table and to do performance evaluation.

7. Acknowledgements
The initial idea of a catalog server was inspired by Argus's [Liskov&Scheifler 83] catalog

subsystem. Jeannette Wing and Maurice Herlihy are responsible for much of the general
design of Avalon/C++, as well as some of the introductory text. Also involved in the design were
Dave Detlefs, who did much of the implementation, Stewart Clamen, Karen Kietzke, and Su-
Yuen Ling. I also wish to thank Jeannette Wing and Barbara Staudt for their comments on the
paper.

15

References

[Accetta et al. 86] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and
M. Young.
Mach: A New Kernel Foundation for UNIX Development.
In Proceedings of Summer Usenix, July, 1986.

[Detlefs et. al. 88] D. Detlefs, M. P. Herlihy, and J. M. Wing.
Inheritance of Synchronization and Recovery Properties in Avalon/C-H-.
In The Proceedings of the 21st Hawaii International Conference on System

Sciences, Kailua-Kona, Hawaii, Jan, 1988.
Also available as CMU-CS-TR-87-133, June 1987.

[Herlihy&Wing 87] M. P. Herlihy and J. M. Wing.
Avaion: Language Support for Reliable Distributed Systems.
In The Proceedings of the 17th International Symposium on Fault-Tolerant

Computing, Pittsburgh, PA, July, 1987.

[Liskov&Scheifler 83]
B. Liskov and R. Scheifler.
Guardians and Actions: Linguistic Support for Robust, Distributed Programs.
ACM Transactions on Programming Language and Systems 5(3):382-404,

July, 1983.

[Spector et al. 86] A. Z. Spector, J. J. Bloch, D. S. Daniels, R. P. Draves, D. Duchamp,
J. L. Eppinger, S. G. Menees, D. S. Thompson.
The Camelot Project.
Database Engineering9{4), December, 1986.
Also available as Technical Report CMU-CS-86-166, Carnegie-Mellon

University, November 1986.

[Stroustrup 86] B. Stroustrup.
The C++ Programming Language.
Addison-Wesley, Reading, Massachusetts, 1986.

[Weihl&Liskov 85] W. E. Weihl and B. Uskov.
Implementation of Resilient, Atomic Data Types.
ACM Transactions on Programming Language and Systems 7(2):244-269,

April, 1985.

