
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T R E S T R I C T I O N S : 
The copyright law of the United States (title 17, U.S . Code) governs the making 
o f photocopies or other reproductions o f copyrighted material. Any copying o f this 
document without permission of its author may be prohibited by law. 



Miro' Semantics for Security 

Mark W. Maimone, J .D . Tygar, and Jeannette M. Wing 
August 1988 

CMU-CS-88-173 ^ 

To Appear in the Proceedings of the IEEE 1988 Workshop on Visual Languages, Pittsburgh, Pennsylvania, October 
10-12,1988. 

This research was sponsored in part by a contract from the National Computer Security Center, a Presidential Young 
Investigator grant by the National Science Foundation, and by the Defense Advanced Research Projects Agency 
(DOD), ARPA Order No. 4864 (Amendment 20), under contract F33615-87-C-1499 monitored by the Avionics 
Laboratory, Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB and in part by the National Science 
Foundation under grant CCR-8620027. The views and conclusions contained in this document are those of the 
author and should not be interpreted as representing the official policies, either expressed or implied, of the Defense 
Advanced Research Projects Agency or the US Government. 



Miro Semantics for Security 

Mark W. Maimone J . D. Tygar Jeannette M. Wing 

Computer Science Department 
Carnegie Mellon University 

Pittsburgh, PA 15213 

August 15, 1988 

Abstrac t 

The Mir6 project at Carnegie Mellon University is designing and implementing a visual language for 
specifying properties of large software systems. We are designing the language in tandem with giving it 
a formal semantics. We present the semantics of our language as applied to the security domain. 

I I n t r o d u c t i o n 

Visual languages, like all languages, need a formal semantics. This paper presents an outline of a visual 
language and gives a formal definition of its meaning. 

Diagrams from a language that has ambiguous (informal) interpretations for graphical constructs only 
serve to frustrate the user of the visual language, and confuse the reader ("But what does it mean?") . 
Some languages at least come equipped with rules that determine when a "picture" 1 is well-formed. A 
formal semantics, however, would describe not only the syntactically valid pictures, but more importantly, 
their mathematical interpretation. That is, it does not suffice to give only a B N F for pictures; one must 
additionally map each well-formed picture onto some underlying mathematical entity. 

The Miro project at Carnegie Mellon University is designing and implementing a visual language for 
specifying properties of large software systems. The first class of properties to which we are applying our 
visual notation is security, e.g., secrecy and integrity of files, as first described in [1]. Unlike the development 
of many other visual languages, we are designing Miro in tandem with giving it a formal semantics. We 
therefore benefit from not only the concision of visual notation, but the precision of a rigorous semantics. 

I I I n f o r m a l D e s c r i p t i o n 

The constructs of Miro are simple: boxes and arrows, each optionally labeled. 2 In giving such constructs a 
semantics, it is essential to provide an interpretation for individual boxes and arrows and their compositions 
when forming pictures. Depending on the class of properties of interest, the interpretation of the boxes 
and arrows will change. In this paper, we present a complete interpretation for the Miro constructs in the 
domain of security properties. The underlying semantic model for security is simple: an access-rights matrix, 

1 W e u s e t h e t e r m ' ' p i c t u r e " h e r e g e n e r i c a l l y t o m e a n s o m e e n s e m b l e o f g r a p h i c a l o b j e c t s d r a w n u s i n g s o m e v i s u a l l a n g u a g e . 

2 B o x e s a r e d r a w n a s r e c t a n g l e s w i t h r o u n d e d c o r n e r s , i n s p i r e d b y H a r e l ' s S t a t e c h a r t n o t a t i o n [2]. 

1 University Libraries 
Carnegie Mellon Univer 

Pittsburgh, P e ^ y t v s n ^ 



f Um niverse 
Groupl 

r Group2 

( Bob ) 

( Alice y 

Group3 

Read 

Read 

" / usr / A l i c e / m a i l ^ \ 

Figure 1: A sample Miro security specification. 

where each process and each file (e.g., users and programs) has a (possibly empty) set of rights governing 
access (e.g., Read, Write, Execute). Informally, boxes represent individual processes and files or collections 
of processes and files; arrows represent rights. Since we have negative arrows as well, we can express the 
absence of rights. The presence of negative arrows introduces some non-triviality to our semantics, since in 
particular, we wish to disallow ambiguous pictures. 

For example, Figure 1 shows a Miro security specification that reflects some aspects of the UNIX 3 file 
protection scheme. The outermost lefthand box depicts a universe, Universe, of users, three (out of possibly 
many not explicitly shown) groups, Groupl , Group2, and Group3, and two (out of many not explicitly 
shown) users, Alice and Bob. The containment and overlap relationships between the universe, groups, and 
users indicate that all users are in the universe, and users can be members of more than one group. 4 The 
righthand box denotes the set of files in Alice's mail directory. The arrows indicate that Alice, and no other 
user, has Read access to her mail files. That is, the direct positive arrow from Alice overrides the negative 
arrow from Universe. 

Already, the reader might wonder the following: What do "containment" and "overlap" mean when some 
boxes look like they denote atomic objects (e.g., Alice and Bob) and some denote sets of atomic and non-
atomic objects (e.g., Group2)? (What do "atomic" and "non-atomic" mean?) What is the interpretation 
of the absence of a box or arrow? What is the interpretation of seemingly conflicting negative and positive 
arrows (i.e., what are the rules for overriding arrows)? How are ambiguous pictures dealt with? These are 
the sorts of questions a formal semantics can answer precisely. 

In what follows, we capture these visual notions in a logical setting: the set theoretic notions hinted at 
in Figure 1 are made explicit. We formally present the syntactic domains in Section III, and the semantic 
domains (access-rights matrix) and interpretation in Section IV. We present a careful treatment of ambiguity 
in Section V, and close with some final remarks about current and future work in Section VI. 

3 U N I X i s a t r a d e m a r k o f A T & T . 

4 W e d o n o t a d d r e s s t h e p r o p e r t y t h a t a u s e r m u s t b e l o n g t o a t l e a s t o n e g r o u p h e r e , t h o u g h M i r 6 d o e s p r o v i d e f o r t h i s 

e x p r e s s i b i l i t y . 

2 



B 

CD 
CD 

D 

CD 

CD 

CD 

CD 

Figure 2: Illustration for the auxiliary definitions, 
boxes with letters. 

Atomic boxes are labeled with numbers, non-atomic 

X members (X) inside (X) contains (X) crisscrosses (X) 

1 { 1 } 0 { 1 . A . B } 0 
2 { 2 } 0 { 2, A, B } 0 
3 { 3 } 0 { 3, A, C } 0 
4 { 4 } 0 { 4, A, D } 0 
5 { 5 } 0 { 5, A, C, D } 0 
6 { 6 } 0 { 6, A, D } 0 
7 { 7 } 0 { 7, A, C } 0 
A { 1, 2, 3, 4, 5, 6, 7 } { 1, 2, 3, 4, 5, 6, 7, B, C, D } { A } 0 
B { 1 , 2 } { 1 , 2 } { A, B } 0 
C { 3 , 5 , 7 } { 3 , 5 , 7 } { A , C } { D } 
D { 4, 5, 6 } { 4, 5, 6 } { A, D } { C } 

Table 1: Some properties of the picture in Figure 2. 

I l l S y n t a x 

The basic syntactical elements of a Miro picture are atomic and non-atomic boxes, and typed arrows; these 
are formally defined in Table 2. For a particular picture, a box in BOXES is named by either a process or 
file identifier. An atomic box in ATOMS contains no other box; a non-atomic one contains a set of other 
boxes. An arrow in ARROWS denotes a typed relation^between two boxes. The type identifies which kind 
of access right a process or set of processes (the left hand box) has to a file or set of files (the right hand 
box) . Users are represented by the processes they execute. The only other definition from Table 2 that is of 
informal interest is r * which, for a set of boxes 6, defines the union of b and the set of all boxes contained 
in every box of 6. 

Throughout the paper, indentation is used to reduce the number of parentheses, negation symbols (-») 
will bind more closely than conjunction ( A ) , and conjunction will bind more closely than disjunction ( V ) . 

The symbol (l+J) will be used to denote the union of two disjoint sets, and ( = ) will be used to define new 
constructs. 

3 



Entity Symbol Example 

Set of Relation Types TYPES { read, write, execute } 

Set of File Identifiers 
Set of Process Identifiers 

Fid 
Pid 

{ passwd, vmunix, tty } 
{ alice, bob, charlie } 

Box Constructor: 
Set of Boxes with 
identifiers in I , 

£ ° = {(0, id)\id£l} 
= B£ U 

{(*, id) | x € (2B°* - {0}) A id € 1} 

B\ is the set of atoms 
B\ is the set of boxes 

containing atoms 

where 2 = Fid OT Pid 

{{x, id) | x G ( 2 B i _ 1 - { « } ) A ii G 1} 

(0, alice) alice 

{{x, id) | x G ( 2 B i _ 1 - { « } ) A ii G 1} ( {(0, alice) 
students) 

(0, bob)}, 

Set of File Boxes F £ \JBFu 
i = 0 

Set of Process Boxes * £ U 5 k . 
T=0 

Set of All Boxes B 0 X £ S = F U P { alice , 
students 

} Set of All Boxes B 0 X £ S = F U P { alice , 
alice bob } 

Subbox Operators <rF:F-+2F 

<rP:P^2p 

<T — Cp U <Tp 

, / y . . . . f 0 i f X = 0 
< t i ( { X, «<*)) = | ^ O T H E R W I S E 

r ( X ) = [ J <T(X) 

r * ( X ) = Q r > ( { X } ) 
i=o 

Atomic Boxes ATOMS = 
{x\xe BOXES A(7(x) = 0} 

Arrows AiZEOWS C 
P xF x TYPES x { pos, neg } 

Table 2: Miro syntactic entities 

I I I . 1 A u x i l i a r y Def in i t ions 

The following definitions are used in the access matrix specification. They are illustrated in Figure 2 and 
Table 1. Free variables in the definitions (x, y, P, P', N, N') range over elements in BOXES. 

m e m b e r s ( x ) : The set of atoms contained in (or equal to) x. 

members(x) = { a \ a e ATOMS A a € r * ( { x }) } 

4 



i n s i d e ( x ) : The set of boxes whose atoms form a proper subset of those in x. In particular, x g inside (x). 
The reader may find it helpful to read y € inside (x) as "box y is strictly inside box x" 

inside(x) = { b \ b £ BOXES A members(b) C members(x)} 

c o n t a i n s ( x ) : The set of boxes whose atoms are at least those of x. In particular, x € contains(x). Note 
that for a given x, inside (x) and contains (x) are disjoint sets. Read y 6 contains (x) as "box y is or 
contains box x" 

contains(x) = { b \ b £ BOXES A members(x) C members(b)} 

c r i s s c r o s s e s (x): The set of boxes which share some, but not all of their atoms with x. Note that this 
is symmetric, in that X € crisscrosses(Y) => Y € crisscrosses(X). Also note that no box can be 
both inside and crisscrossing another box (e.g., in Figure 2, box B does not crisscross box A) . Read 
y G crisscrosses (x) as "box y crisscrosses box x (and x crisscrosses y ) . " 

crisscrosses(x) = { * I be BOXES A 
(members(x) f l members(b) ^ 0) A 
(6 £ (inside(x) l±l contains(x)))} 

x M y: x is equal to, or crisscrosses y . Note that this is not a transitive relation. Read i M y a s "box x is 
equal to or crisscrosses box y . " 

x M y = (mem6ers(x) = members(y) Va? G crisscrosses ( y ) ) 

P O S * ( P , P ' ) : A positive relation of type t exists between P and P ' . 

POS*(P, P') = ( P , P ' , <, pos) € Xf l f lCWS 

N E G *(JV, A T ' ) : A negative relation of type t exists between N and N'. 

NEG*(N, N') = (JV, <, ne^) € ^ i i i 2 0 ^ 5 

To make the interactions of these definitions clearer, we introduce the concept of box level and the Closure 
Lemma. Box level refers to the hierarchy imposed on boxes through containment. Two boxes are said to be 
at the same level if and only if X M Y . 5 If X 6 inside ( Y ) , Y is said to have a higher level than box X , 
and X a lower level than box Y. In Figure 3, A and B have the same level, neither C nor D is related by 
level to any other box, F has a lower level than E, E has a higher level than P , and P has the same level 
as itself. It should be noted that box level does not provide a partial ordering of boxes. 

The following lemma illustrates some relationships among these definitions. 

L e m m a 1 ( C l o s u r e ) If two boxes B,B* both contain the same atomic box, then exactly one of B B', 
B 6 inside (B'), or B1 G inside (B) is true. 

P r o o f We will show first that at least one of the conditions holds. Let B, B' be given such that 
members(B)C\members(Bf) ^ 0. We will show that the result holds for each of four independent 
cases, one of which must always hold. First suppose members(B) C members(B')) then by 
definition of inside, B € inside {B'). Otherwise, suppose members(Bf) C members(B); then 
Bf 6 inside (J3), also by definition of inside. If neither of these holds, suppose members(B) = 
members(B'); then B &4 B' by definition of i>< . Finally, if none of these holds, we know 
B £ contains (Bf) since members(B) ^ members(Bf) and members(B) <£ members(Bf). From 
that we infer that B G crisscrosses (Bf) and thus B &4B'. Now to see that at most one condition 
will hold, refer to the definitions of , inside, and crisscrosses. 4 

5 J u s t a s i s n o t t r a n s i t i v e , n e i t h e r i s at the same level. 

5 



B 

E 

I V S e m a n t i c s 

Figure 3: Illustration of box level 

TV. 1 A c c e s s R i g h t s M a t r i x 

The ultimate interpretation of a Miro picture in the security domain is an access-rights matrix. An access-
rights matrix is a standard security entity that represents binary access relations between entities, such as 
the right for one entity to modify another. 

The access-rights matrix Z is three-dimensional, taking a Process, a File, and a type of Relation, with 
possible values pos, neg, and ambig. The expressions below determine the value of a particular matrix 
element. Let t be the type of the relation, p an atomic box representing the process, and / an atomic box 
representing the file. The interpretation is that if Z (p, ff t) is pos then process p can access file / according 
to relationship type t. If Z (p, f, t) is neg, then p cannot access / according to t. If Z (p, f, t) is ambig, the 
access cannot be determined. We want to detect and eliminate all such ambiguity in the matrix. 

In what follows, P and P1 will identify the boxes at the tail and head, respectively, of a positive arrow, 
and N and N' will identify those at the tail and head of a negative arrow. Boxes that have both kinds of 
arrows will also have both labels. That is, P and N might label the same box. Boxed symbols (e.g., [x]) are 
used to name clauses for later reference, and have no semantic or logical interpretation. 

0 is pos iff 

3p,P ' P € members(P) A / 6 members{Pt) A POSt{P, P') A 

VV,JV' p € members(N) A / 6 members(N') A NEG\Ny N') 

Tj ( P N A P'M N') V " 
=> -» I Ij2 N' 6 inside (P ' ) V 

3] N E inside ( P ) 

(1) 

Z is positive when the smallest enclosing boxes have only positive arrows; call these boxes P and 
P1. We require that no negative arrow join the following pairs of boxes: boxes at the same level 
as P and P ' (case [T] above); one box at a lower level than P or P ' , and the other box at any 
level (cases [2] and \s\ above). 

6 



Z(Pif> <) is n^9 iff 

I 
3JV,JV' p G members(N) A / G members(N') A NEGl(N, N') A 

V P , P ' p G members(P) A / G members(P') A POSt(P, P') 

Tl ( P gg JV A P ' M AT') V " 

I P ' G mstde ( J V ; ) V 
3J P G tiwtrfe ( J V ) 

(2) 

v[c 
V B , £ ' J5 G contains (p) A 5 ' G contains (/) 

- . P 0 5 ' ( B , JB ' ) A ^NEG*{B, B') 

Z is negative when the smallest enclosing boxes have only negative arrows (call these boxes N 
and TV') , or when no surrounding boxes are connected by arrows. In the former case, we require 
that no positive arrow join the following pairs of boxes: boxes at the same level as N and Nf 

(case [T] above); one box at a lower level than N or N\ and the'other box at any level (cases [2] 
and [3J above). 

Z(Pif> 0 ^ tmbig otherwise. (3) 

The value of an element of Z is ambiguous when neither a positive nor a negative relationship 
holds. An explicit derivation of those pictures that are ambiguous follows. 

I V . 2 U n i q u e n e s s 

Before we derive the explicit conditions for ambiguity, let us first ensure that the other matrix elements are 
unique. That is, we intend to show that no two atoms can have both a pos and neg relationship with the 
same type. 

C l a i m 1 A relation between two atomic boxes may not be both pos and neg. 

P r o o f Let atomic boxes p and / , and relation type t be given. We will prove the claim by 
contradiction, using equations (1) and (2) above. Suppose Z(p, f, t) is both pos and neg. Then 
|a| (in equation (1)) is true, and from [X] we know there are boxes P and P' containing p and / 
with a positive arrow connecting them; let us choose such boxes and call them P and P'. We can 
infer that [cj (in equation (2)) is false because P and P' exist. Thus [b] must be true since we 
assumed that equation (2) was true. Now from [b] we may choose N and N' containing p and / 
with a negative arrow connecting them. Using this we can determine that clauses | A l | through 

A3 must be false, in order for [X] to be true. Likewise, clauses B l through B3 must be false 
because P and P' exist and have a positive arrow. Returning to the clauses in [A], we have the 

we know that A2 following results: by -» | A l | we know that either N $h P or Nf ^ P ' ; by 
Nf £ inside ( P 7 ) ; by -> | A3 [ we know that N £ inside ( P ) . Suppose N ^ P . Then by Lemma 1 
and - i A3 , P G inside (N). But P ^ inside (N) by - i B3 , a contradiction. Suppose instead 

that N't&P*. Then by Lemma 1 and -. | A2 |, P' G inside (Nf). But P' $ inside (Nf) by - I | B2 
a contradiction. A 

7 



Figure 4: Ambiguous Pictures 

V A m b i g u i t y 

We described above explicit conditions for pictures whose contents are known to have a positive or negative 
relationship. In this section we show that ambiguity can be intuitively defined, derive explicit conditions for 
pictures whose contents have an ambiguous relationship, and demonstrate these conditions by drawing the 
corresponding pictures. 

V . l I n t u i t i o n 

We now use the box level concept to state the intuitive definition of ambiguity. 

A relation is ambiguous when positive and negative arrows connect pairs of boxes at either the 
same, or unequal and opposite levels, and at least one of these boxes has the smallest enclosing 
scope (i.e. no smaller box has a arrow of similar type). These cases are illustrated in Figure 4. 

V . 2 D e r i v a t i o n 

We will show that the intuitive definition of ambiguity given above follows logically from the other definitions. 
We begin by defining ambiguity as the condition when neither a positive nor a negative relation holds. 

Z{p,f, t) is ambig iff ~*(Z(p,f, t) is pos) A -i(Z{p,f, t) is neg) (4) 

We may now use the definitions in section IV. 1, and apply one of DeMorgan's laws to the negative case, 
to expand Equation (4) into the following: 

8 



1 

2 

3 

Z(Pif, 0 is ambig iff 

- ^ p . P ' P€ members(P) A / 6 members(P') A P O S ' ( P , P') A 

Vn.n* p€ members(N) A f£ members(N') A NEG\N, NF) 

( P M J V A P ' M A T ) V 

AT' 6 instrfc ( P ' ) V 

iV € insirfe ( P ) 

A 

•3JV\JV' p € members(N) A / € members(N') A NEG*(N, N') A 

Vp,P' p E members(P) A f € members(P') A POS\P, P') 

( P M J V A P ' M J V 7 ) V 

P ' G inside (AT') V 

P € inside (TV) 

A 

" • V B , B ' # € contains (p) A B' 6 contains ( / ) 

-*POS\B, B') A ^NEG\B, B') 

(5) 

2 

3 

Now we can use properties of first-order logic to push the negations through and express the condition 
for ambiguity as follows: 

Z(Pif> 0 is ambig iff (6) 

Vp.p- - > ( p € members(P) A / £ mem6ers(P') A POS\P, P')) V 

3AT,JV p € members(N) A / 6 members(N') A NEGt(N, N') A 

( P « i V A P ' TV') V 

JV' € inside (P ' ) V 

AT € inside ( i 3 ) 

1 

2 

3 

A 

Vn,N' ~>(p € members(N) A f € members(N') A NEG\N, TV')) V 

3 P , P ' p € members(P) A f € members(Pf) A P 0 S ' ( P , P ' ) A 

( P M AT A P ' £3 AT ' ) V 

P ' € inside ( A T 7 ) V 

P € inside ( A T ) 

A | 

1 

2 

3_ 

^B,B' B € contains (p) A B' € contains ( / ) A 

(POS'iB, B') V NEG*(B, B')) 

C l a i m 2 //" Me relation between p and f is ambiguous according to type t , Men Mere raustf be at least two 
pairs of boxes surrounding both p and f, one pair connected by a positive arrow and the other by a negative 
arrow. 

P r o o f Suppose the relation between p and f is ambiguous according to type t, i.e., Z (p, ft) 

is ambig. Then equation (6) is true, and in particular the conjuncts labeled —*A and 

9 



"C| are true. By -»C we may choose boxes B and B' which have either a positive or negative 

relation. Suppose the relation is positive. Then by instantiating P and P1 to B and B1 in 
we can derive the existence of boxes with a negative relation. Suppose instead that B and B' 
have a negative relation. Then by instantiating N and N' to B and B1 in |-»J9| we can derive 
the existence of boxes with a positive relation. 6 

Figure 5 shows all of the pictures which satisfy the three clauses in -*A , each one labeled with the 
disjuncts it satisfies and the value it would have according to these semantics. If we now inspect all pictures 

we will find that they are exactly those pictures which satisfy some disjunct in as well one in -»£ 
listed in Figure 4, which are all ambiguous. 

V I Conclusions 

As hinted in the informal description of the language, Miro also provides the capability to express constraints 
on the relationships depicted within a box and between boxes on abstractions of arrows, called cables. These 
constraints are part of the type information of a box. We have an informal interpretation for these constructs 
and are currently formulating their precise semantics. 

Miro solves several important problems in security. It provides, for the first time, a tool for configuring 
and visualizing complicated security constraints. This tool allows precise definitions of security environments 
in a convenient mathematical notation — a major advance over previous one-dimensional (i.e., textual) logic-
based approaches (such as [3, 4, 5, 6]). It is a practical tool designed to be used by people who are actively 
enforcing security constraints in real environments. 

In the long-term future, we may apply the Miro language to domains outside of security, e.g., concurrency, 
where we would reinterpret the meaning of boxes and arrows. Ideally, we would like to make that part of the 
semantics given here that is independent of security a separate library that can be reused by many entities, 
and reinterpret only that part that is dependent on the specific domain. Finally, we would like to explore 
the possibility of using a visual approach to giving semantics instead of the standard denotational approach 
as presented in this paper. 

VII Acknowledgments 

We thank David Harel for his inspiration and enthusiastic support for our work. We especially wish to thank 
Amy Moormann, Allan Heydon, and Kenneth McMillan for their comments on earlier versions of this paper. 

VII I References 

[1] J . D. Tygar and J . M. Wing, "Visual Specification of Security Constraints," in Proceedings of the 1987 
Workshop on Visual Languages, (Linkoping, Sweden), Aug 1987. 

[2] D. Harel, "Statecharts: A Visual Formalism for Complex Systems," Science of Computer Programming, 
vol. 8, 1987. 

[3] D. E. Bell and L. J . LaPadula, "Secure Computer Systems: Mathematical Foundations (3 volumes)," 
Tech. Rep. AD-770 768, AD-771 543, AD-780 528, Mitre Corporation, Nov 1973. 

[4] D. Good, R. Cohen, C. Hoch, L. Hunter, and D. Hare, "Report on the Language Gypsy, Version 
2.0," Tech. Rep. ICSCA-CMP-10, Certifiable Minicomputer Project, The University of Texas at Austin, 
September 1978. 

10 



\Z\ NEG [|] NEG 

0=0 
[3] AMBIG 

Figure 5: Pictures which contain positive arrows but do not have a positive interpretation. 

11 



[5] T . Benzel, "Analysis of a Kernel Verification," in Proceedings of the 1984 Symposium on Security and 
Privacy, (Oakland, California), pp. 125-131, May 1984. 

[6] P. G. Neumann, R. S. Boyer, R. J . Feiertag, K. N. Levitt, and L. Robinson, "A Provably Secure Operating 
System: The System, Its Applications, and Proofs, Second Edition," Tech. Rep. CSL-116, SRI, May 1980. 

12 


