
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



Using A Neural Network 
to Learn the Dynamics 

of the CMU Direct-Drive Arm II 

Ken Goldberg and Barak Pearlmutter 
Carnegie Mellon University 

August 1988 

CMU-CS-88-160 

Abstract 
Computing the inverse dynamics of a robot arm is an active area of research in the control literature. We apply a 
backpropagation network to this problem and measure its performance on the first 2 joints of the CMU Direct-Drive 
Arm II for a family of "pick-and-place" trajectories. Trained on a random sample of actual trajectories, the network is 
shown to generalize with a root mean square error/standard deviation (RMSS) of 0.10. The resulting weights can be 
interpreted in terms of the velocity and acceleration filters used in conventional control theory. We also report 
preliminary results on learning a larger subset of state space for a simulated arm. 

This research was sponsored in part by National Science Foundation grants DMC-8520475, EET-8716324, and by 
the Office of Naval Research under contract number N00014-86-K-0678. Barak Pearlmutter is a Fannie and John 
Hertz Foundation fellow. 



1. Introduction 
Commercial robot arms sacrifice speed for flexibility. To maintain control under increased speeds, an accurate 

model of arm dynamics is desired. Since coupled degrees of freedom are often used to orient tools in the 
workspace, arm dynamics are highly non-linear. Analytic models have improved in recent years [Hollerbach 80], 
but unmodelled effects such as friction or torque non-linearity can be significant. By training a neural network on 
the measured response of a physical arm, we hope to compensate for dynamic effects that are difficult to model 
analytically. 

1.1. Motivation 
From a control perspective, a robot arm is a filter, we put in torques at one end and at the other end we observe 

positions, velocities and accelerations (state). By dynamics, we mean the transfer function that relates input to 
output. Typically, we measure the current state of the arm and want to achieve some desired state of the arm. The 
inverse dynamics tell us what torques to apply. 

In the absence of external disturbances, a perfect model of the dynamics generates a perfect torque signal to 
achieve perfect arm motion. In the presence of noise and uncertainty, an approximate model generates an 
approximate torque while feedback is used to compensate for small errors in joint motion. This is known as the 
computed torque method, or the feedforward method if the torques are generated off-line. A typical approach is to 
employ a a set of independent linear PID (Position Integral Derivative) controllers at each joint and a second-order 
model to compensate for inter-joint coupling [Asada 82]. Yet finding an accurate model for arm dynamics has 
proven difficult 

The formulation of robot models in terms of classical Lagrangian-Euler (L-E) dynamics has been an area of 
research for die past 20 years [Hollerbach 80]. This formulation can give physical insight into the relative 
contributions of inertial, centrifugal, Coriolis, gravitational and actuation torques, but it faces two essential 
problems: the computational complexity of the model requires several hundred multiplications per cycle, and the 
idealized model does not necessarily reflect the true response of the arm. 

One way to speed up the computations is to simplify the equations by ignoring certain terms [Bejczy 74] or 
using recursive methods of computation [Hollerbach 80]. [Khosla 86] customizes the L-E model for a particular arm 
and uses a floating-point processor to achieve a sampling period of 1.2 ms (830 Hz). 

The problem of accuracy remains. The L-E equations include terms for joint dimensions, mass, and inertia. The 
latter is often difficult to measure although methods have been developed to attack the so-called identification 
problem [An 88, Khosla 86]. 

Most importantly, the L-E equations do not attempt to model such real-world effects as 
• friction [Canudas 87] 

• backlash [An 88] 

• torque non-linearity (especially dead zone and saturation) [An 88] 

• high-frequency dynamics [An 88] 

• sampling effects [Khosla 86] 

• sensor noise [Khosla 86] 
A way to address these effects is to model the arm empirically using a model-based control scheme. One class 

of model-based schemes is the adaptive controllers, where coefficients in the L-E equations are modified on-line to 
minimize a performance/stability index. (See [Craig 86] for a bibliography, [Slotine 87] and [Han 87] for more 
recent work). Adaptive controllers often compensate for the unmodeled effects by treating them as variations in the 
L-E terms, but why should these unmodeled effects be squeezed into the Procrustean bed of the L-E formulation? 

Another approach is to scrap the L-E model and treat the arm as an unknown transfer functioa The function can 
be represented as a table of input/output pairs gathered by nmning the arm with a feedback controller. Input torques 

University Libraries 
1 Carnegie Mellon U m v e r s 

Pittsburgh, Pennsyk'Sn?* 1 



can later be indexed by desired output state to generate feedforward torque for subsequent control. The central 
problems with this approach are the data generation problem: how to evenly sample the state space, and the 
generalization problem: how to interpolate new values from those in the table. 

It is possible to avoid both problems by tailoring the controller to a specific trajectory; if the state space is 
sampled along a particular trajectory it can be sampled densely enough to minimize interpolation effects. This is the 
approach described in [Raibert 78], where performance is shown to degrade sharply outside the sampled trajectory. 
Similarly, a tabular method combined with a novel hashing scheme was applied to the control problem with good 
results in simulation [Miller 87]. 

To generate torques for a general class of trajectories, the tabular approach requires storing a vast amount of 
data. One way to minimize the data storage is to fit a polynomial to the data. Unfortunately, one is placed on the 
horns of a dilemma. If the polynomial is of low order it cannot represent higher-order functions. On the other hand, 
if one allows high order terms, the solution tends to oscillate in the unconstrained areas in an effort to hit the data 
points exactly. One approach [Zhang 87] is to attempt to balance off these conflicting goals and find the happiest 
medium possible. The polynomial-fitting approach has been applied to the problem of control with good results 
[Yen 87] and warrants further investigation. 

Another way to minimize data storage is to use a neural network representation. The relative power of neural 
networks vs. polynomials is an open area of research. One way to compare these representations is by the number 
of coefficients needed to represent a given functioa For example, the parity function, which is 1 or 0 depending on 
whether the number of 1 bits in an input string of length n is even or odd, requires 0(2n) coefficients if represented 
as a polynomial but 0(n\og n) coefficients if represented with a backpropagation network. 

1.2. Backpropagation Networks 
The term *'neural network" applies to a variety of parallel schemes consisting of units and connections where 

each unit performs a weighted sum of its input connections and uses this sum to determine an activity level, which 
other units see as an input The weights are either set externally or, more commonly, learned by some learning 
procedure. 

Currently, the bread and butter connectionist learning procedure is back-propagation [Rumelhart 86], which 
repeatedly adjusts the weights in a network so as to minimize a measure of the difference between the actual output 
vector of the network and a desired output vector given the current input vector. The output of the network is taken 
from the last layer of units after all unit operations are complete, and the connections and flow of activity in the 
network are unidirectional. The simple weight adjusting rule is derived by propagating partial derivatives of the 
error backwards through the net using the chain rule. Experiments have shown that back-propagation can learn 
non-linear functions and make fine distinctions between input patterns in the presence of noise [Lang 87, Lapedes 
87, Waibel 88]. Moreover, starting from random initial states, back-propagation networks can leam to use their 
intermediate layers, or hidden units, to efficiently represent structure, such as cascaded filters, that is inherent in the 
desired transfer function. Although the backpropagation procedure imposes few constraints on the transfer function 
used, in this paper units compute their activity level as a function of their total input using the sigmoid function, 
output 

It is thus tempting to apply neural networks to the domain of robot arm control. [Kawato 87] shows some 
evidence that a network can learn the inverse dynamics of a real robot arm; after training on a single trajectory, they 
claim their network can generalize to a "faster and quite different" trajectory, although details are omitted. In this 
paper we measure the ability of a neural network to generalize within a specific family of trajectories on a physical 
arm. 

2 



2. Problem Definition 

INVERSE ARM 
MODEL 

POSITION 

ACCELERATION PHYSICAL ARM 

VELOCITY K v 

Figure 2-1: Block diagram of a typical feedforward torque controller, after [Khosla 86]. 

A typical dynamics control structure for a robot arm is shown in figure 2-1. In this method the feedforward 
torques for a desired trajectory are computed off-line using a model of the inverse arm and applied to the joints at 
every cycle in an effort to linearize the resulting system. An independent feedback loop at each joint is used to 
correct for errors in the model and external disturbances. 

We propose to use a backpropagation network to fill the box marked "inverse arm" in the diagram. We will 
treat the arm as an unknown non-linear transfer function to be represented by weights of the network. 

Since the state of the arm is represented by a window of positions (angles) for joint 0 and joint 1, our state space 
is a 2n-dimensional hypercube of size n. Due to the temporal structure of the window, much of this space is 
unreachable. We sample a subset of the space traversed by a family of "pick-and-place" trajectories. The family is 
characterized by a common initial and final position (0 degrees) and an intermediate position that can vary between 
0 and 45 degrees for each joint independently. Between these three points, the reference trajectory (position and 
velocity) is a sinusoid scaled so that the period of the trajectory is 3 seconds. Thus any member of the family can be 
specified by a pair of intermediate joint positions; we draw random samples from this family by generating pairs of 
random numbers. 

We focus on the generalization problem: trained on a random sample of this family, how well does the neural 
network generalize to other trajectories in the family? 

2.1. The CMU DD Arm H 
We tested our approach on the CMU Direct-Drive Arm II [Khosla 86]. Direct-drive arms have the capacity to 

be driven much faster than geared arms, but their ability to be backdriven exacerbates dynamic effects. DD arms are 
thus a popular target for dynamics-based control. 

3. Network Architecture 
The network architecture used in this study is shown in figure 3-1. The input to the network consists of a 

temporal "window" of desired position values x{t-nAt\ ..., x(t)y..., x(t+mAt) scaled from 0.0 to 1.0. The output 
is x(r), the torque vector applied at time r. The input units are connected to a set of hidden units which are in turn 
connected to the output units. In addition, there are direct connections from the input units to the output units. 

A neural network is used in two phases. In the learning phase, the network is exposed to samples of input/output 

3 



Figure 2-2: A photograph of DDII. 

behavior and the weights are adjusted so that network output approximates desired output When the weights are 
stable, the network is run in performance mode on a new set of input data. If the weights capture the underlying 
structure of the sample data, the output generated for the new set will be close to the desired output 

3.1. Temporal Windows 
Rather than feeding the network position, velocity and acceleration data from a single point in time, the networks 

sees a window of positions. We chose this approach because of the conceptual elegance of using only one type of 
state information; velocity and acceleration can be determined by filtering the window of position values. The time 
delay introduced by such filtering in real time is avoided because learning occurs off-line. 

Hardware cost is another reason to eschew explicit velocity and acceleration measurements. Tachometers at 
each joint increase the cost of a robot The alternative technique of simple differencing introduces noise into the 
estimates. In the neural network, the state filter is part of the model, and so is tailored to both the particular arm and 
the sensor characteristics (noise, sampling delay, etc). 

Independent of our choice to deny the network the output of the velocity sensors, we can justify the use of 
temporal windows instead of a single time slice because we do not know a priori what state information is relevant 
to generating feedforward torques. For example, it is possible that higher-order terms such as jerk and snap are 
relevant if the arm has some elasticity. By providing a window of position values, higher-order terms can be 
extracted by the network. 

4 



torque applied to joint 1 

torque applied to joint 2 

^desired output 

output units 

oc 
hidden units 

3.2. Network Topology 
If the number of joints being controlled is n> the window size is w, the number of hidden units h> and we assume 

that there are many more hidden units than output units, the number of weights in the network is approximately nwh. 
In performance mode, each weight requires a single multiplication and and single addition, and for reasonably 

large networks these computations dominate the sigmoid computations (which are typically implemented as table 
lookups). Thus, there is a linear relationship between the amount of computation required and the window size, the 
number of joints, and the number of hidden units. 

One of our objectives was to explore the relationship between window size and generalization. Although 
considerable experience has been gained on choosing the appropriate numbers of hidden units and I/O encodings for 
backpropagation networks being applied to discrete binary tasks, these issues are largely unexplored in continuous 
domains. 



3.3. Learning Parameters 
All of these networks had ten hidden units, as experimentation showed performance to be insensitive to 

increasing the number of hidden units beyond this point Each was trained to an asymptote, i.e. to the point where 
the derivative of the error was nearly zero.1 We made extensive use of the method of acceleration, which seemed 
particularly effective in this domain. 

4. Results 
A proportional controller was used to drive the first 2 links of the DD arm along 6 random trajectories (see 

Appendix I) from the specified family. Joint torque and position were measured at the actuator. Five trajectories 
were used to train the network. The network was then run in performance mode on the remaining trajectory to test 
generalization. 

Table 4-1 shows the performance of networks with window sizes of 11, 21, and 41. As in [Lapedes 87], we use 
root mean square error divided by the dataset's standard deviation (RMSS) as an error measure. This cancels out the 
effects of the translation and scaling needed to fit desired output data within the range of backpropagation units. A 
window of size 11 refers to a window centered at time t that includes 5 time steps before and 5 time steps after t, 
yeilding a total of eleven samples. As expected, the network performs better on the training set than on the new 
trajectories. The lowest error rate was achieved with a window size of 21. 

Figure 4-1 shows measured vs. predicted torque for joint 1 (the shoulder) on the test trajectory. 

RMSS errors on: 
Window Size Training Data Trajectory 6 

11 0.078 0.22 
21 0.027 0.10 
41 0.024 0.13 

Table 4-1: RMSS errors of networks with different window sizes on training and test data. 

5. Analysis 

5.1, Weight Displays 
Figures 5-1, 5-2, 5-3 and 6-1 show the weights developed by the networks after training. These "Hinton 

diagrams" show the weights in a somewhat recursive fashioa Each of the large-scale blobs is a unit; here, the top 
two are the output units, with the shoulder torque on the left and the elbow torque on the right. The rest are hidden 
units. Within each unit, the two stripes on the bottom (or, in the case of figure 6-1, the single bottom stripe) show 
the weights of the incoming connections from the input units. The top two dots on each of the hidden units are the 
weights of its outgoing connections to the output units. These hidden-to-output connections are also displayed in the 
middle portion of each of the output units. The single remaining unexplained blob on the upper left is each unit's 
bias, the strength of a connection from a unit which is always on, which is equivalent to the negative of the 
threshold. The white blobs are positive and black ones are negative. 

We can interpret the weights between the first and third layers (shown in the upper right-hand part of the figure) 
as temporally smooth filters shaped to detect a linear combination of position, velocity, and acceleration. At first 

*ln general, when training on a training corpus and testing using a different testing corpus, performance on the training corpus rises 
monotonically to an asymptote while performance on the test corpus first rises to a maximum and then falls to an asymptote. Many researchers, 
quite reasonably, use the best test corpus performance achieved as the generalization rate. In our work, we have used the more pessimistic 
asymptotic test corpus performance metric. 

6 



J I 

Window Size 11 (see figure 5-1) 

Window Size 21 (see figure 5-2) 

Window Size 41 (see figure 5-3) 
Figure 4-1: These graphs show torque profiles that are to drive joint 1 (the shoulder) through trajectory 6. The 

measured torque profile is drawn with a fine line, while the torque profiles generated by networks 
are drawn with bold lines. 

glance most of the units appear to respond almost solely to acceleration, but on closer examination one sees that the 
zero crossings are frequently a little asymmetric, an indication that velocity is also being responded to. The linear 
combination of acceleration and velocity stands out in the network of figure 5-3, in which some of the filters are 
strikingly asymmetric. It should be remembered that the networks have no built in notion of temporal adjacency. 
Because these filters are convolved with the position in every possible place, we think of them as convolution 
functions and attempt to analyze them in these terms. 

7 



Figure 5-1: This network has a window size of 11. The largest weight has a magnitude of 18.9. 

JOB 

I S 

Figure 5-2: This network has a window size of 21. The largest weight has a magnitude of 11.7. 

If we assume that the weights are samples from a continuous function that is convolved with the position of the 
joint, we can decompose this function f{x)-w<x<w into a constant part, an odd part, and an even part using the 
equations 

1 Cw 

= J - Ax)dx 2wJ _w 

const • 

even(x) =J ' y—-
2 

odd(x) =J £——const. 
Figure 5-4 shows that the weights on the connections from the elbow joint to a unit taken from the network with 
window size 21 can be understood as a simple velocity filter. Figure 5-5 shows another unit from that network 
whose weights from the shoulder joint form a simple acceleration filter, and figure 5-6 shows a unit which is 
activated by a linear combination of velocity and acceleration. 

The functions we have examined so far have been extremely smooth. This is generally the case in the network 
with window size 21, but in the network with window size 41 a new phenomenon appears. In figure 5-7 we see 
some curves with rough edges; in the section below on window size vs. generalization, we advance an explanation 
for this odd behavior. 

In figure 5-7, the odd component crosses zero near the edges of the window, suggesting that this unit responds in 
part to jerk (the derivative of acceleration). 

8 



Figure 5-3: This network has a window size of 41. The largest weight has a magnitude of 4.2. 

It might be objected that any function can be decomposed into even and odd components, but for arbitrary 
functions the decomposition would not in general yield smooth curves. For instance, figure 5-8 shows weights a set 
of weights from the network of window size 41 that do not decompose cleanly. Further, the constant terms in our 
filter functions were extremely small, suggesting an underlying symmetry. 

5.2. A More Global Perspective 
The roles of the individual hidden units is more difficult to interpret. Since the weights are quite large, most 

units are saturated most of the time. Each unit has a transition region in which it is not saturated, but rarely is it in 
this region. For example, a unit might respond to x = 3.4a + 1.2dtf/d7-2.1b, being saturated at 0 if x is less than 2.3, 
at 1 if x is greater than 2.6, and having an intermediate value only within that narrow range. Thus, the input space is 
chopped up into soft hyperplanes along these dimensions. The use made of the hidden units by the output units 
provides little information about their roles in the network in intuitive terms, as the values are used in concert, 
canceling each other out under different input conditions. In a word, the networks are not modular: it is difficult to 
understand the roles of the various units in isolation 

5.3. Window Size vs. Generalization 
Observe from table 4-1 that performance on the training set improves as the window gets larger, while 

performance on the test set first improves as window size grows, and then worsens, evidence of a tradeoff between 
window size and generalization. We conjecture that the improved generalization between a window of size five and 
a window of size ten is caused by the fact that a window of size five simply does not see enough data to make 
sufficiently accurate estimates of the acceleration. In contrast, the network with a window of size twenty seems to 
have used a portion of its extra capacity to memorize some of the training set, thus improving performance on the 

9 



« 3 / 2 ^ 
to 

1 - L 

joint 2 to unit 51 
Figure 5-4: A graph of the inputs to a unit taken from the network with a window size of 41 regarded as a 

convolution function and decomposed into constant, even, and odd components. These weights 
form a velocity filter. 

training set in a way that impairs generalization. 
Evidence of this memorization is visible in figure 5-3, where some of the hidden units have receptive fields 

which have isolated black and white dots, an indication that they respond to some particular pattern of noise that 
occurred in the training set. Another signature of this memorization is the surprisingly low magnitudes of the 
weights, which sacrifices accuracy of the acceleration and velocity filters for the ability to detect these patterns of 
noise. 

6. Preliminary Results from Simulation 
Due to the practical difficulty of obtaining samples from the entire phase space of an actual robot, we used a 

simulated arm in order to see if a backpropagation network is able to generalize to a larger subset of state space. We 
simulated the inverse dynamics of the CMU DD2 Arm using the parameters from [Khosla 86] and the L-E 
formulation found in [Brady 82], representing the state of the arm as a 6-tuple: position, velocity, and acceleration 
for each joint. We uniformly sampled the 6-dimensional subspace bounded by a hypercube of radius K. In other 
words, for each sample point we generated six random numbers between n and -n. 

The analytic model was used to generate the corresponding torques for each sample point We trained the 
network in figure 6-1 on this data until it reached an asymptote at 12,000 epochs; these weights are shown in figure 
6-1. Due to the analytic nature of the arm simulator, it was neither necessary nor expedient to use a temporal 
window; rather, the network was presented with the exact position, velocity and acceleration data. To test the 
network's ability to generalize, we generated another random set of 298 points and a set of 298 points corresponding 
to a sinusoidal trajectory from our pick-and-place family. The RMSS errors are shown in table 6-1 and overlaid 
plots of the predicted and analytic torques for the sinusoidal trajectory are shown in figure 6-2. 

It is interesting to try to figure out how the network in figure 6-1 is performing its task. The hidden units each 

10 



-10 -8 -6 -4 -2 0 2 4 6 8 10 
time 

joint 1 to unit 53 
Figure 5-5: A graph of the inputs to a unit taken from the network with a window size of 41 regarded as a 

convolution function (bold line) and decomposed into constant, even, and odd components (fine 
lines). These weights form an acceleration filter. 

seem to be sensitive to only a particular range of velocities of the shoulder joint; the position of the shoulder is 
(properly) ignored. 

Quantitative measures of the performance of this network on both its training set some test sets is shown in table 
6-1. The excellent performance on random set B indicates that the network has generalized well from its sample of 
298 points. The performance on trajectory 6, as well as the graphs shown in figure 6-2, show that the network 
performs well in that portion of phase space which the trajectories lie in. This suggests that neural networks might 
be able to learn the dynamics over the entirety of the arm's state space. 

7, Conclusion 
We have shown that a three-layer backpropagation network is capable of generating accurate feedforward 

torques for a limited family of pick-and-place trajectories on a physical robot arm. By using a temporal window of 
position values as input, the resulting weights can be interpreted as the velocity and acceleration filters used in 
conventional control theory. 

The primary argument in favor of the traditional Lagrange-Euler formulation is that by reasoning from first 
principles it models the dynamics of an ideal arm at every point in state space. The neural network described in this 
paper models the physical arm within a subset of state space. Because the neural model is derived from empirical 
data, it can be sensitive to physical effects such as friction, torque-nonlinearity and sampling error. Thus the 
tradeoff between the L-E model and the neural model boils down to range vs. accuracy. Our experiments show that 
a neural network provides high accuracy for a small range of state space. Our simulations suggest that accuracy can 
be maintained over a larger range, but further experimentation will be necessary to confirm this. 

11 



joint 2 to unit 52 
Figure 5-6: A graph of the inputs to a unit taken from the network with a window size of 41 regarded as a 

convolution function (bold line) and decomposed into constant, even, and odd components (fine 
lines). These weights form a filter with responds to a linear combination of velocity and 
acceleratioa 

7.1. Future Work 
To explore larger regions of state space, we are beginning experiments with a family of circular ''stirring'' 

motions and trajectories involving the 3rd and 4th joint of the arm. We would also like to apply the predicted 
torques at run-time and measure the performance of the neural model vs. a good L-E model in terms of endpoint 
error. Eventually we would like to integrate the neural model into an on-line controller for the arm. 

7.2. Acknowledgements 
The DD arm was used with the kind and invaluable assistance of Pradeep Khosla. Other experiments were run 

on Lee Weiss' 2D semi-direct-drive arm, and we express our gratitude to him. Regrettably, logistic difficulties 
prevented us from including data gathered from the Weiss arm in this document. We also thank Randy Brost and 
Mark Nagurka for their comments. 

I. Trajectories used 
The family of three second trajectories we used were parameterized by two values, Bx and 0 2 , which specify the 

maximum extent of the shoulder and elbow joints. Other joints were held at 0. The trajectories were generated 
using the parametric equation 

<(). = - e . s in^ 
where t is the time in seconds. The trajectories mentioned in this report were generated used the following random 
extents: 

12 



joint 2 to unit 93 
Figure 5-7: A graph of the inputs to a unit taken from the network with a window size of 81 regarded as a 

convolution function (bold line) and decomposed into constant, even, and odd components (fine 
line). These weights seem to form a filter which responds to a linear combination of acceleration 
and jerk, and also to a particular pattern of noise. 

trajectory number shoulder ^elbow 

1 45.0 45.0 
2 38.6 32.2 
3 5.4 39.4 
4 20.9 0.0 
5 0.0 45.0 
6 39.5 14.4 

Trajectories 1 through 5 comprised the training set, and 6 was reserved for testing. We collected 100 samples per 
second, resulting in 300 time samples per trajectory. Since we trained on the data from 5 trajectories, the 
environment presented to our networks had approximately 1500 cases. For our largest network, this translates to 
over 700,000 floating point multiplications per epoch, and training required over 20,000 epochs. 

13 



-20 -15 -10 -5 0 5 10 15 20 
time 

joint 1 to unit 85 
Figure 5-8: A graph of the inputs to a unit taken rom the network with window size 81 regarded as a 

convolution function (bold line) and decomposed into constant, even, and odd components (fine 
lines). These weights do not seem amenable to this sort of analysis. 

Figure 6-1: This network was trained on 298 samples taken uniformly from the state space of a simulated arm. 
The inputs (from left to right) are the position, velocity and desired acceleration of the shoulder 
joint and the position, velocity and desired acceleration of the elbow joint The magnitude of the 
largest weight is 9.63. 

testing data RMSS error 

random set A 0.068 
random set B 0.083 
trajectory 6 0.067 

Table 6-1: Network performance on various synthetic data sets. The random sets consist of 298 points chosen 
with a uniform distribution from phase space. Trajectory 6 involves moving both the shoulder and 
elbow joints through a sinusoid. The network's training set was random set A. 

14 



Torque vs. time for trajectory 1 joint 1 

i i i i 

Torque vs. time for trajectory 6 joint 1 
Figure 6-2: The network of figure 6-1 was used to generate torques to be applied in some simulated 

trajectories. The fine line is the actual required torque and the bold line is the torque output by the 
network. 

15 



References 

[An 88] An, C , C. Atkeson, and J. Hollerbach. 
Model-Based Control of a DD Arm, Part I: Building Models. 
IEEEICRA : 1374-1379, 1988. 

[Asada 82] Asada, H., T. Kanade, and I Takeyama. 
Control of a DD Arm. 
Technical Report CMU-RI-TR-82-4, Camegie-Mellon University, April, 1982. 

[Bejczy 74] Bejczy, A. K. 
Robot Arm Dynamics and Control. 
Technical Report 33-669, JPL, February, 1974. 

[Brady 82] Brady, Michael, J. Hollerbach, T. Johnson, T. Lozano-Perez, and M. Mason. 
Robot Motion: Planning and Control. 
MTT Press, Cambridge, Mass., 1982. 

[Canudas 87] Canudas, C. and Astrom, KJ. and Braun, K. 
Adaptive friction compensation in DC-motor drives. 
IEEE Journal of Robotics and Automation 3(6):681(5), December, 1987. 

[Craig 86] Craig, J. J. 
Adaptive Control of Mechanical Manipulators. 
PhD thesis, Stanford University Dept of EE, 1986. 

[Han 87] Han, J-Y., H. Hemami and S. Yurkovich. 
Nonlinear Adaptive Control of an N-link Robot with Unknown Load. 
IJRR 6(3), Fall, 1987. 

[Hollerbach 80] Hollerbach, J. M. 
A Recursive Lagrangian Formulation of Manipulator Dynamics and a Comparative Study of 

Dynamics Formulation Complexity. 
IEEE Transactions on Systems, Man and Cybernetics SMC-10(ll):730-736, November, 1980. 

[Kawato 87] Kawato, Mitsuo, Yoji Uno, Michiaki Isobe and Ryoji Suzuki. 
Hierarchical Neural Network Model for Voluntary Movement with Application to Robotics. 
In Proceedings of the IEEE International Conference on Neural Networks. IEEE, New York, 

NY, June, 1987. 

[Khosla 86] Khosla, Pradeep K. 
Real-Time Control and Identification of Direct-Drive Manipulators. 
PhD thesis, Camegie-Mellon University Department of EE, 1986. 

[Lang 87] Kevin J. Lang. 
Connectionist Speech Recognition. 
Unpublished. 
1987 
CMU CS PhD Thesis Proposal. 

[Lapedes 87] Alan Lapedes and Robert Farber. 
Nonlinear Signal Processing Using Neural Networks: Prediction and System Modelling. 
Technical Report, Theoretical Division, Los Alamos National Laboratory, 1987. 

[Miller 87] Miller, W. Thomas IH . 
Sensor-Based Control of Robotic Manipulators Using a General Learning Algorithm. 
IEEE Journal of Robotics and Automation 3, (2): 157-166, April, 1987. 

[Raibert 78] Raibert, M. H. and B. K. P. Horn. 
Manipulator Control using Configuration Space Method. 
Industrial Robot 5:69-73, June, 1978. 

16 



[Rumelhart 86] Rumelhart, D. E., Hinton, Geoffrey E., and Williams, R. J. 
Learning internal representations by error propagation. 
In D. E. Rumelhart, J. L. McClelland, & the PDP research group (editors), Parallel distributed 

processing: Explorations in the microstructure of cognition. Bradford Books, Cambridge, 
MA, 1986. 

[Slotine 87] Slotine, J. E. and W. Li. 
On the Adaptive Control of Robot Manipulators. 
IJRR 6(3), Fall, 1987. 

[Waibel 88] Waibel, A., T. Hanazawa, G. Hinton, K. Shikano and K. Lang. 
Phoneme Recognition: Neural Networks vs. Hidden Markov Models. 
In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal 

Processing. IEEE, New York, NY, 1988. 

[Yen 87] Yen, V. and M. L. Nagurka. 
A Fourier-Based Optimal Control Approach for Structural Systems. 
Technical Report CMU-RI-TR-87-12, Carnegie-Mellon University, September, 1987. 

[Zhang 87] Zhang, Jinxin and Lang, Shijun. 
Adaptive Weighted Suboptimal Control for Linear Dynamic Systems having a Polynomial Input 
IEEE Transactions on Automatic Control 32, (12):1106-1111, December, 1987. 

17 


