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Abstract

An important issue in designing manipulators for dynamic performance is the determination of the acceleration
properties of (some reference-point on) the end-effector of the manipulator. Given the dynamical equations of the
planar two degree-of-freedom manipulator and a set of constraints on the actnator torques and on the rates-of-
changes of the joint variables, we systematically develop (a) the properties of the linear mapping between the
actuator torques and the acceleration of (some reference-point on) the end-effector and (b) the properties of the
(non-linear) quadratic mapping between the rates-of-changes of the joint variables and the acceleration of the
end-effector. We then show how these mappings can be combined to obtain useful acceleration sets - for example
the acceleration set corresponding to any point in the workspace of the manipulator - as well as the properties of
these sets.



1 Introduction

An important issue in designing manipulators for dynamic performance is the determination of the
acceleration properties of (some reference-point on) the end-effector of the manipulator. Given the dynamical
equations of the planar two degree-of-freedom manipulator and a set of constraints on the actuator torques and on
the rates-of-changes of the joint variables, we systematically develop (a) the properties of the linear mapping
between the actuator torques and the acceleration of (some reference-point on) the end-effector and (b) the
properties of the (non-linear) quadratic mapping between the rates-of-changes of the joint variables and the
acceleration of the end-effector. We then show how these mappings can be combined to obtain useful acceleration
sets - for example the acceleration set corresponding to any point in the workspace of the manipulator - as well as
the properties of these sets.

It is useful to briefly mention the work done by others on related problems. Khatib (1, 2] sets up an
optimization problem to improve the acceleration of the end-effector; however the non-linear terms in the dynamical
equations are accounted for in somewhat ad-hoc fashion (by taking certain "high” and "low" values of these terms).
Graettinger and Krogh [3] use semi-infinite programming to obtain the "acceleration-radius” (or "isotropic
acceleration™) of a manipulator. In contrast to our approach, both the above-mentioned approaches do not yield the
acceleration sets of the manipulators (defined in section 2) or the properties of these sets or show how the properties
of the sets are related to the geometric and dynamical parameters of the manipulator.

The report is organized as follows: The problem and the variables of interest (in the problem) are defined in
section 2. In the next section, we describe certain decompositions of the manipulator Jacobians which are useful in
deriving certain properties of the linear and (non-linear) quadratic mappings. The properties of the linear mapping
and the quadratic mapping, respectively, are derived in section 4 and 5. In section 6, we show how these maps can
be combined to obtained the acceleration set corresponding to any point in the state space; we then determine the
properties of this set. Similarly, section 7 is devoted to determining the acceleration set (and its properties)
corresponding to any configuration (or "position™) in the workspace of the manipulator. In the final section, using
the example of the planar manipulator in our laboratory, we address the computation of the acceleration sets and



2 Definition of the Problem
In this section, using a simple two degree-of-freedom manipulator, we define the problem to understand the

dynamic performance of manipulators.

First, we define manipulator variables in subsection 2.1. In the following subsection, we express the
manipulator acceleration in terms of the variables. In subsection 2.3, we define the problem to characterize the
manipulator performance with end-effector acceleration.

2.1 Definition of the manipulator variables
Consider the serial two degree-of-freedom manipulator with two revolute joints shown in Figure 1. The

manipulator is assumed to be rigid with negligible joint friction.

Figure 1: A two degree-of-freedom manipulator

Let I, denote the length of link 1, a, the distance from joint axis 1 to the center of mass of link 1, m, the mass
ofhnklmdllmcprmcmd moment of inertia of link 1 with respect to its center of mass about an axis

endicular to the plane of the motion. Similarly, let ,, a,, m; and I, denote the corresponding properties of link
2(SeePiguml) We call these quantities design variables.

1, and 7, denote the joint torques, respectively, at joints 1 and 2 and

= [t ol | m
Il S 1, =12 @)
denote the constraints on the actuator torques at joints 1 and 2. We define
T={tl|yl < 1, =12} €)]
to be the set of allowable torques.

Lﬁ (X;.Xz) m % OO 'lss‘x‘;:

es, in a reference frame fixed to the base, of a reference point P on link 2 (See




Figure 1) and define

- T
x =[x x] )
to be the vector of task coordinates in task space. Let q; and q, denote the generalized coordinates of the
manipulator (See Figure 1), q, being the joint variable at joint 1 and q, the joint variable at joint 2. Define

q = [ &I7 )
to be the vector of joint variables in joint space. If

9 < 9 < qpy =12 (6)
denotes the constraint on joint variable i, then we can define the workspace W of a manipulator as

w={qlqy < q < qg =12} @]

Let q; and g, denote the joint velocities (the rates of change of the joint variables) q, and g,, respectively.
Define

a=1[5 o ®
to be the vector of joint velocities. If

|EI,'| < 'q,-o. i=1,2 (9)
denotes the constraints on the rates of changes of the joint variables, then we can define

F=({qllgl s g, =12} (10)
to be the set of all possible joint velocity vectors.

Define the state vector
u=(q @ =1[g ¢ q B an

to represent the dynamic state of a manipulator in the state-space.

The acceleration space or acceleration plane, A, of the manipulator is the set of all possible accelerations,
X = [X| X,]7, where X, and X, are real numbers.

More formally we can define

A = (X | XeR? (12)
where R? is the real Euclidean plane.

2.2 Manipulator acceleration
In this subsection, we derive an expression for the acceleration [4],

X = [ B 3)
of the reference-point P on the ffector

ip between the velocity, X, of point P, and the "joint velocity” vector q is well known:

x = Jq (14)
where J is a (2<2) matrix called the manipulator Jacobian. The detailed expression of Jacobian matrix is shown in
Appendix.




" The dynamic behavior of the two degree-of-freedom manipulator is described by the following equations:
d11(42>.q.1 + 412(42)21.2 - V(‘Iz)(b12+2‘.11212) + @ =17 (15)

dy @)y + dpdy - )@ + p@ = 1, (16)
where the coefficients d-y(qz), (ij=1.2), v(ay), PAq). (i = 1,2)) are given in Appendix; note that coefficients d,-j (%]
=1,2), v(qy) are functions of only joint variable g,.

Defining
[ dy(@y dyy(q) |
D(qy) = | I 17
(N C) 4y
[0 -v(gy) 1
Vig) = | [ (18)
L . gy 0 ]
P@ = @ Pz(CI)]T 19)
g -=1q gl (20)
and
¢ = @ Q0T @D
the dynamic equations (15) and (16) become,
D@,)d + V(g){@? + pl@ =t 22)

The matrix D(q,) is the mass matrix of the manipulator and the vector p(q) denotes the gravitational terms

A crucial step in the acceleration analysis is the definition of the skew-symmetric matrix V(q,) and the vector

{q}2, which allows all the non-linear terms (often called Coriolis and centrifugal) to be written as the product of
V(g,) and {q}2. The notation { }? is used to draw attention to the fact that the elements of the vector {q}2 are

quadratic in the rates-of- changes q, and Q,, respectively, of the joint variables q, and q,. Note that {q}? is not
eqmlmiﬁ:ihzi-ﬁ@z.
To obtain the expression for the acceleration X of the point P, we differentiate (14) to obtain
X = 3§ + 3 @3)

In Appendix, we show that the second term in (23), J §, can be written in the form

Jq = -E@)(g)? 24)
Combining (23) and (24) we obtain
X = J§ - EQ(q)?> @5)
Defining the cuant

A@@ = J@D gy, (26)



B(@) = -A(@QV(@® - E(®), @7

@ = -Al@p@, (28)

it is easy to verify that the expression for the acceleration X of the point P, obtained by combining equation (22) with
equations (25) through (28), is given by

X = A(@Qr + B{q}? + c(q). (29)

Note that A(q), B(q) and c(q) are position dependent, the expressions for the coefficients of which are given
in Appendix.

If the manipulator operates in a (horizontal) plane perpendicular to gravity, then ¢(q) = 0 and (29) becomes

X = A(Qr + B{g)2 (30)

In this paper, we will study manipulators, moving in horizontal planes, whose acceleration properties are
described by equation (30).

Defining
o = [0, o] = Adg)r @1
,and
a, = [o;, Gz;,]r = B(g){q)? (32
equation (30) can be written as
= 0.: <+ a-q (33)

It is convenient to think of o as the contribution of the torques to the acceleration of the reference point P and
a;,astheconm’bmionofthejoim-ramtotheaccelmﬁonof?,thesumofthzsetwoquanﬁtiesgivingusthe
acceleration of P as expressed by equation (33).

Equation (31) can be viewed as a linear, posnm—dcpendmt,mppmgbetweenmctorqucvecmartandm
contribution . to the acceleration of P. Similarly equation (32) can be viewed as a quadratic, position-depende:

mappmgbenveenthepmtmtevmqmdnscmuibunmagotheacceleraumofP.

2.3 Definition of the problem

The acceleration X of the reference point P of a manipulator, specified by its design variables, constraints on
the torques as given by (2) or (3), constraints on the joint variables as given by (6) or (7) and constraints on the joint
velocities as given by (9) or (10), will be a subset of the acceleration plane A of equation (12). In other words, the
acceleration set for a combination of the above constraints can represent the dynamic performance of manipulators.
To characterize the manipulator dynamic performance, we generate four acceleration sets as follows:

Fn'st,wecomndermemmmpumor‘ ration set when the joint velocity is zero. Physically, the set
r , nipulator dynamics when a manipulator starts to move. For the given set T of allowable acmator
uxquesdwcnbedby(B) wedeﬁmthesetofaﬂalbwab&ea‘as

s, = (g | GreTNa, = A1) 34




* Next, when the actuator torque vanishes during the operation of a manipulator, the subsequent motion of a
manipulator is also critical in manipulator dynamics. For the given (constraint) set F of allowable rates-of-change,
described by (10), we define the set S3 of all allowable o as

s; = (a; | GaeFXe; = B(@?) 35)

Finally, when a manipulator is in motion, we consider two acceleration sets in the following. The acceleration
of the reference point P corresponding to a specified state-vector u = [ q;, gy, 4y @ 17 in the state-space will be
denoted by c,. From equation (30), we write

o, = AlQr + B(@(q)? (36)

If we define a constant vector k,

k@) = k@ = k. kI = 0@ = B@@? 37
then (36) can be written as
@, = At + k() . 3%

We now define the acceleration set, S, at a specified point u in the state space as follows: For a given set T of
allowable actuator torques described by (3), the acceleration set S, ata point u = [ q, q 17 in the state - space is
given by

Se(@.® = (o | (w=(q.9), Gre T)(1,=A(@T+k(u))} (€1))
Thus S, is the image of the set T under the mapping (38).

Finally, at a given position q = [ q;, 4, 17 in the workspace of the manipulator, we can define two sets

(SP1 = Ve rSu@@ (40)

G2 = NyerSa@d @1)

The supremum of (S;), will be give us the magnitude of the maximum acceleration (in some direction ) of the
reference point P at a given position ( q,, g, ) of the manipulator. -

The infimum of (S;), will give us the magnitude of the maximum acceleration of the reference point P

available in all direction at a given position of the manipulator. The infimum of (S;), is called the isotropic
acceleration in Khatib [1] and the local acceleration radius in Kim {5].

Based on the above definitions, the manipulator problem can be written as follows;
LTodmimfommlaxﬁmsets,s,.sa, Sy Sy, with their shape and supremum and infimum.
2. To examine the behavior of four acceleration sets S., S;, S, S
In Section 4 and 5, respectively, we study the properties of the linear mapping described by equation (31) and
the properties of the non-lincar mapping described by equation (32). The acceleration properties of P, obtained by

combining these two maps, is discussed in Section 6. In the next section we present a decomposition of the Jacobian
which is helpful in the study of the aforementioned linear and non-linear maps.



3 Decomposition of the manipulator jacobian

In this section, we derive some little known decompositions of the manipulator Jacobians. These
decompositions facilitate the derivation of the properties of the acceleration properties in Sections 4 and 5. Let v
denote the velocity of point P in a reference frame fixed to the base N, (n; n,) be a set of dextral orthogonal unit
vectors fixed in N, (a; a,) a set of dextral orthogonal unit vectors fixed in A, and (b; b,) a set of dextral
orthogonal vectors fixed in B (see Figure 2).

Figure 2: Description of the velocity vector.

We pick n, so that it points in the direction of the positive x, axis and pick n, so that it points in the direction of the
positive x, axis (Figure 2).

Defining,
[ cosg; -sing; |
R( = | L (i=12) 42
and referring to Figure 2, we obtain,
[31 ‘2]T = R(Qz) [bl bzlr 43)
(n, n,]T = R(gp) [a, a,]". (44)

The velocity of the reference point,v, in the reference frame N is given by

v = hgay + L@+a)b, “3)
From equation (45), we obtain



veb, = Lig1a,°b; + L@+ | @7
Note that v @ b, and v « b, are simply the b, and b, measure numbers of the velocity of P in N. Using equations
(42), equations (46) and (47) can be rewritten in the matrix form,

[veb,1 [ising, 0 17 48)
l_v.bz.l L11C05q2+12 12 J L('hl
Defining,
[ l;sing, 0 ]
M(q,) = | | “9)
L l,cosq,+, I ]
and using (5), equation (48) becomes
[veb; veb,)” = M(g) & ' (50)
Referring again to the geometry of Figure 2, we can write,
[vea, vea)]T = R(gy) [veb, veb,]” (51)
[ven;, ven))” = R(g;) [vea; vea,)T (52)

Equation (51) simply relates the b, andbzmeasurenmnbersofvtomeilandazmmmnumbmofv;
similarly (52) relates the a, and a, measure numbers of v to the n, and n, measure numbers of v.

Combining equations (50) through (52) we obtain
[vem, vem;] = R(q;) R(g,) Mg, q (53)

If x is the position vector of P with respect to the fixed point pivot O, then from equation (4) and the choice of
the directions of m, and n, (see Figure 2), we can write

x =z + xn | | B )
and,
v =k =kn +in 69
From (535), the n, and n, measure numbers of v are given by ‘
[vom; vemyl” = [, %17 | ) e
Combining (53) and (56) we obtain,
x = [y ¥ = Rig) Rig) Mgy & | ep)

wparing equations (57) and (14), we obtain ‘
m R(g,) Rig;) Mg, 58)
decomposed M‘Immﬂ}(ﬂ) Mmmwmmmmmm
rthogonal matrices and N(g,) represents the kinemati




coupling between the two links. In a similar fashion, we can show that the matrix E(q) in equation (24) can be
written as

E(@Q = R(q)) R(gy N(gp) (59
where
T heosgpty, b 1
N(gp) = | I (60)
~l;sing, 0 1 '

Equations (58) and (59) are very useful in deriving the properties of the acceleration maps in section 4 and 5.
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4 Linear mapping

K2,
-
2 A ‘
D 20 A
\B’
- I3 ol -
Qo Qo D'\\
c - B .
T20
Cl
(a) (b)

Figure 3: Linear Mapping
For the given set T of allowable actuator torques described by (3) and represented by ( the interior and the
boundary of ) the rectangle ABCD shown in Figure 3-a, we defined the set of all allowable o, in section 2 as

Se = {0 | GreTXo, = AT)}.

In this section, we simply state that S_ is the parallelogram AB'C'D’ shown in Figure 3-b and we will derive
three properties of the set S,. The first property determines the "size” of S., as characterized by its infimum,
supremum, and its area. The second property expresses the g, invariance of S.. The third property expresses the g,
dependency of S_.

The decomposition, expressed by equation (58), of the manipulator Jacobian is extremely useful in the
derivation of the properties of the set S.. Combining equation (58) and (26) we obtain

A(@ = Rig;) R(g) M(g,) D(gy. (61)
Defining a matrix P(q,) as

P(g) = Rigy) Mlgy) DY(gy), (62)
we can rewrite (61) as

A(gQ = R(g;) P(g)). (63)

Note that we have decomposed A(q) into an orthogonal matrix R(q,). depending only on q, and a matrix P(q,)
depending only on g,. This decomposition facilitates the derivation of the properties below. The (i,j) element of A
mdeﬂ!bedemwd.mspecﬁvdy,byaﬁ,mdpﬁ.

Let A", B', C, D' denote, respectively, the points in the o, - plane into which the points A(t,, T,,), B(T,,-
). C(-t,,, -Tp,), and D(-t,,, T, ) map. Then it is easy wo verify that the coordinates of A", B', C', D' in the ¢, -
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plane are given by
A @y Tayty, ayTstanT,) (64)
B (a11T15%12%, 1T15-%22T20) (65)
C' (ay T at, —ayT, 0T, (66)
D' (ay Ty 4a1T, —OyT1 4Ty, 6N

Since (31) is a linear mapping, AB'C'D’ is a parallelogram; the equations of the sides AB’, B'C’, €D and D'A’ are
readily obtained as
1 1 411 %

AB —a,. - + (~—+—)t,, = 0, (a@1,,—a <a,.<ay T, +a (68)
%1 ;2—2“2-: a, oy e 11%107012%20 5811 a1 T1,+015T),)
ceoo 1 1 a, “22}
BC 5;“11 - 7‘2—1421: + (m 20 = 0o (-a11T1,+815T5,<41:Say Ty +a15T, ) ()
cp L 1 411 91 =0 <q < 70
i L (—‘my‘lo = 0, (a7 00T Sa <Ay T taphy)  (70)
R | 1 42 -0 < 1
DA ;;au - ;2—1“21 - ('a—n“*;z—l' = 0, (-ay1T1,7912T,581:58)1T1,7417Ty,). 71)

eProperty 1: The set S is a parallelogram whose supremum, infimum and area are given by

Sup(Sy) = max[ V(pyy 42y Yoy 2+ P 4P Y0, £ 2P P12+ PP )00 1 2
inf(s) = min[ | PP Tol  1CuPaPiPa) Tl | . .
\/Pu "’Pzz ‘quzﬂ:;zl2
lLsing
area(s )= | 1h5ing,

| 4 4
Uy +mya, )Ty +maa, DI, +maa, sin2g,)myl 2 10720 | 9
sProof:

If 5(0'A), (OB, 6(0'C), o(O'D) denote, respectively, the distances of the vertices A’, B', C’, and D’ from

theoriginO’,thenmesnprammofs._.isgivenby

sup(s,) = max[0(0'A), 6(0B), o(OC), a(OD)] (75)
Since A’ and C are equidistant from the origin O and since B’ and D’ arcalsoeqmdlstamﬁnmttwongm,(
observation (1) above ),

sup(s,) = max[o(0'A), G(OB)f zmax[o(AC), o(ED)] | 76)
whmaw(AC)mdo(BD)dumcmc hngthsofmedmgom!sAC and BD. Combmmgeqmums(&) 67), (63)
and (42), o(AC)ando{BD) are given by

OAC) = V@ 24950 2401 4P )0, 420 1P 124921 P01 0T an
OBD) = V1 24Py 1 H 01240 V0, 2Py 112 P21P ) 1520 (78)

Therefore,
sup(Sp) = max| \’(Puz%lz}‘aaz“"l’uiﬂ’n%ziz@axsz*‘szPzz}‘xa"'za I8 (79)

If p(O'A), p(O'B), p(O'C), p(O'D’) denote, respectively, the distances from O to AB’, BC,CD’, D'A’, then
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the infimum of s, is given by

inf(s,) = min[p(0'4), p(OB), p(0'C), p(OD)] (80)
Since A'B’ and C'D’ are equidistant from O and since B'C’ and D'A” are also equidistant from O', (observation (2)
above)

inf(s;) = min[p(AB), p(B'C)] A (81)
The distance p from the origin to a general line a x + B y + % = 0 in the xy - plane is given by
p = _'xl_ (82)
Vo2 + B2

Substituting appropriate values of c, B, and y; from equations (68) and (69) into equation (82) and using equations
(63) and (42), we obtain

[@1PP12P2) Tl 1detP(gy)lny,

p(AB) = = (83)
\/P122+P222 ‘/P122+P222
. |@11P2P12P2) Tl  |detP(g.
oEC) = 1P P1P2) ol _ D, @4
"P112"'P212 ‘IP112"'P212

Substituting (83) and (84) into (81), we obtain
. ldetP(g)fry, |detP(gylr,, )

inf(S,) = min( (85)
Vp1o+pnt Vpy 24por?

The det P(q,) vanishes at =0, x. Therefore inf (S.) =0 at =0, &

Since the area transformed by the linear mapping A is
| H'f  der(AMdedey (86)

e %0

the area of the parallelogram is obtained as .
det(A) [T, T3] [Ty~ (—7)] @7
= det(R(gy) det(R(gy) det(M(gy) det(D(gy) 42,7y, @9)
= det(M(gy) det®7(gy) 4,7y, (89

I Lsi

= 15504 | 41,7, (%0)

1
Uy+mya Y +mpa, D Eyrmya, sin g ym, 1,2
eProperty 2: q, - dependence of S,

The supremum, infimum, and area of the set S_ is independent of the joint variable q;. For two manipulator
positions (q;, g, ) and (q,+$, 4 ).
5{q1+9.4) = R(@)SLq,.9) ©on

oProof:

S, is a linear mapped set between actuator torques and the end-effector accelerations. So, property 2 is proved
if the vertices of S_{q;+4, q,) are the simple rotation of S,(q;, ¢,). Components of vertex A are
8 Tet Y, = (C0Sqyp)—Sing Pyt H(Cosq P ySing P Y)Yy,
= c08¢;(Py715tP12%,)SING; (0 Ty ,#P120) o2
O Te*OnT, = (SiNgyP)+C08qypy )T, Hsing Py +C0Sq1P0)T,
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= $ing;(P171,+P12720)+C08 41 (P27, +P2220) 93)
Rewriting equations (92) and (93),
[611T1+812T50 G51T15+ 02T T=R©®) [P11T154P12T00 PorT1o+P2aT20lT 94)

Similarly, other vertices of S(q;+¢. q,) can be shown as a product of R(¢) and S(q;, q5). Therefore,
S«{(q1+9.4;) = R(9)S (9,97 '

*Property 3:q, - dependence of S,
The supremum, infimum, and area of the set S, depends only on the joint variable q,.

We merely state this property to emphasize that the size of S, depends only on q,, a property which is to be
expected since, everything else being the same, two positions for which g, is identical [i.e. (q;, g,) and (ql', q,)] are
equivalent from a kinematic and dynamic standpoint. The property follows obviously from the equations (72)-(74)
which depend only on g,.
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5 Quadratic mapping
For the given (constraint) set F of allowable rates-of-change, described by (10)and represented by (the interior
and the boundary of) the rectangle E,F,E,F, shown in Figure 6-a, we defined the set Sa of all allowable o in

section 2 as

s; = (o | GaeFXo; = B(@)?)
As in the previous section, the following questions are important

1. How is Sa described ?

2. What is the size of S3 ? Specifically, what is its infimum and supremum ?

3. Howdoes s a depend on the joint-variables q, and g,.

5.1 Description of S;1
If we define a vector
y = [71 y2]T = [2112 (EI1+“Iﬁ2‘.q12]T 95)
then equation (32) can be expressed as
a, = B@ y (96)

Therefore the mapping (32) can be viewed as the product of the quadratic mapping (95) from the q - plane to y -
plane followed by the linear mapping (96) fmmmey-planetothea;lplane.

The quadratic mapping (95) maps the constraint set F in the q - plane into a set in the y - plane which we denote by
Sy- Then the linear mapping (96) maps this set S, into a set in the o plane which is simply the set S; defined in
(35).

Wewﬂldmdoreﬁxstobminmcsas,&omthccmsuamsetFundcrdwquadmﬁc mapping (95). s;listhcn
detaminedﬁ'oms’rmdermelirmrmappingm.

S.LlTheqMaticmpandthedwcripﬁono!Sy

Formally, we define S, as follows:
s, = {y | Gaer)y = (@2 )) @
Using equation (21) we can write (95) explicitly as
»n =’ ' 98)
Y2 = @+a)*4,? ©9)

We now have to determine the mapping of (the interior and the boundary of) the q - plane rectangle E,F,E,F, into
the y - plane as determined by (98) and (99).
The notation
X » X (100)
will be used o denote the fact that the point X, in the q - plane maps into the point X in the y - plane, ie. X is the
image of X,.
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q2
: s, 3
H2 H1 g
01 1
E F
2 Gz 2

Figure 4: an available joint velocity set

From equations (98) and (99) we use that the pair of points X,(q;, q,) and X,(-q;, -@,) in the q - plane both have the
same image X( 4,2, (q;+d,)*-q,? in the y - plane, i.e.

X@. 2 X -3 - X@PE @)D (101)

Consider the rectangle E,F,EF, in Figure 4. A consequence of (101) is that the quadrants O, H,E,G, and

O,H,E,G, of EF,E,F, both map into the same region of the y - plane; Similarly the quadrants O,G,F,H, and

0,G,F,H, ( of EF,E,F, ) both map into the same region of the y - plane. Therefore we only need to determine the

region of the y - plane into which the "upper-half” H E,F,H, (of the rectangle E F,E,F,) maps. Formally
H,E,F,H, is described:

F = (q! Gaer) @ 2 0) (102)
'Iherequimdsets,istheteforetheimageof?’mdmﬂ:eqmmdmdcmapping%)and(%). To determine syweﬁrst
need to establish the following:

1. the image of the points O,, H, E,, G,, F;, and H, under the mapping (98) and (99).
2. the image of a line
3 = mpy | (103)

of slope m passing through the origin O,.
If O, H, E, G, F denote the image of points O,, H;, E,, G,, and F,, then from (98) and (99) we can write

0, (0,0) - 0 (0 0) (104)

H (44 0) Hy ( 4, 0) = H (&, 0) (105)
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E; ( @ T2 ) = EC 812 @1o+020*0100) (106)
Fi ( Qi @ ) = F ( 01,2 @50 010) (107
Gy (0,3,) > G(0,3,) (108)

Note that the points H; and H, have the same image as is to be expected from (101). Also, the origin O, of the q -
plane maps into the origin O of the y - plane. Using (98) and (99), the line (103) in the y - plane maps into the set of

points

n =4, (109)

Yo = @pmg))-,% = ¢@m* + 2m) (110)
Equations (109) and (110) are the parametric equations of the straight line

¥, = (m* + 2m) y,. (111)

Therefore a line passing through the origin and of slope m in the q - plane maps into a line passing through the
origin and of slope (m? +2m ) in the y - plane.

To obtain the image in the y - plane of the rectangle H,EF, H,, it is convenient to divide H,E, F,H, into four
triangular sections O,H, E,, O,E,G,, 0,GF,, and O,F, H, and separately determine the image set for each of these
sections. The required image set is simply the union of the four image sets.

In order to determine its image set, it is convenient to think of each triangular section as composed of line
segments passing through the origin. This will enable us to readily determine the interior of the image set.

Image set of O, HE,:
E
y2
qz
P
q1 o) H y1
(b)

Figure 5: Image set of O,H,E,
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" Let (Sy)l denote the image set of the triangle O, HE, (see Figure 5-a ). Since a line passing through the

origin O, in the q plane maps into a line passing through the origin of the y - plane described by equation (103), the
image of the generic line segment O,P, of slope m passing through O, shown in Figure 5-a, will be a line segment
of slope (m?2 + 2 m) passing through the origin O in the y - plane. We now only need to determine the images of the
end points O, (0, 0) and P ( q;,, @3 ) of the O,P, . The image of O,, is of course, (see equation (104). ), the origin
O of the y - plane. Let P denote the image of P,. Then the line segment O;P; maps into the line segment OP with
one end-point at the origin O of the y - plane. All we need to do now is to determine the locus of P as P; moves
along the line segment H,E,. Using equations (98) and (99), the image of the line segment H,E, described by the
quations

211 = -qlo’ (0 < 212 < 2120 ) (112)
is the line segment HE, described by the equation

N = 21102. (0 =y, < ('4104’2174,)2“21102 ). (113)
Furthermore the images H and E, respectively, of points H, and E, are given by equations (105) and (106).

Therefore
1. the locus of P in the y - plane is the line segment HE,

2. the several line O, P, of slope m maps into the line OP passing through the origin O whose equation is
given by (111) and whose end-point P lies on the line segment and

3. any point on O, P, maps into a point on OP.
Therefore the image (S’)l of the (ihterior and boundary of the) O;H,E, is the (interior and boundary of the)

triangle OHE, shown in Figure 5-b whose vertices O, H, E are given, respectively, by equations (104), (105), and
(106). (O is of course the origin of the y - plane!).

Image-Set of O,E,G,
y2
] E
q2
P
G1 PT E
1
G
q y
O, 1 o) 1
(a) (b)

Figure 6: Image set of O;E,G,
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© Let (s’)2 denote the image-set of the triangle O,E;G,, shown in Figure 6-a. Using similar arguments as
above, the generic line segment O, P, of slope m, shown in Figure 6-a map into a line segment of slope (m? +2 m ).
If P denotes the image of P,, then the image (s,)z now reduces to obtaining the locus of P as P; moves along GE,

in Figure 6-a.

From equations (98) and (99) the image of the line segment G,E, described by the equation

& = @ (0 gy < @) (114)
is the parabolic segment GE in the y - plane described by the equation,

o>, - 21202)2 = 4E1202)'1' ( 21210 £y = (2110""420)2—21102 ). (115)
and shown in Figure 6-b.

Therefore the locus of P in the y - plane is the parabolic segment GE, the coordinates of whose end points G
and E are given by equations (108) and (106).

The image (Sy)z of the (interior and boundary of the) triangle O,E,G, is the region OEG shown in Figure 6-b,
whose vertices O, E and G are given, respectively, by equations (104), (106), and (108); EG is a parabolic segment
described by equation (115).

The Image-Set of O, G F,
02 y2
F A G, G
P
0 ’s
q
0, 1 F
(a) - (b)
Figure 7: Image set of O,E,G,
Let (S,), denote the image-set of O,GF;.

As before the generic-line O, P, incise O,G,F, ( see Figure 7-a. ) maps into the line segment OP, where P is
the image of P,.
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* In this case, we have to find the locus of P as P| moves along G,F,.

Using equations (98) and (99), the image of the line segment G,F;, described by the equation.

.Q2 = 2120- ( “;110 < 211 <0 (116)
is the parabolic segment GF in the y - plane described by the equations,
0 = @, = 4,51 ( W80 < 72 S 42 ) 1

Therefore the locus of P in the y - plane is the parabolic segment GF, the coordinates of whose end-points G and F
are given by equations (108) and (107).

The image (Sy)3 of the (interior and boundary of the) triangular segment O, G,F, is the region OGF shown in
Figure 7-b, whose vertices O, G, and F are given, respectively, by equations (104), (108) and (107). Note that (Sy)3
is not convex.

Image-Set of O,F H,

q.
F1 2 Y2
H

? - 2

P

q.
1

H 1 01 F

(a) (b)

Figure 8: Image set of O,F H,
Let (Sy)4 denote the image-set of the triangle O,F,H, in Figure 10-a.

Then the procedure for finding (s,)4 of the (interior and boundary of the ) triangle O,F H, (shown in Figure
8-a ) is the triangle OFH, shown in Figure 8-b, whose vertices O, F, and H are given by equations (104), (107) and

(105).
Image-Set of H,E,F, H,

The image-set Sy of the rectangle H,E,F H, is given by

Sy = U234 Sy (118)

Syissmwninﬁgnmﬁ

The image-set s,ofFismemeiorandbmmdmyofme)rcgionOGEF,showninFigmell,whomven.ices
0, G, E and F are given, respectively, by equations (104), (108), (106) and (107). The boundaries of OGEF are the
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9
E
G
Ho 4
(@] 1
F

Figure 9: Image set S,
line segments OG, OF, and FE and the parabolic segment GE whose equations are as follows:

0G y, =0, (0 <y <) (119)
@0 |
OF y, = 1222 — 2 228 e 2 Ty (0 <y S g2) (120)
2
41 4
FE yl=qlo’ ( (qla -qloz Sy s (é[a*.qyo)z"élaz ) (121
GE (y, - 4202)2 4212023p (0 < » s 21102 )- (122)
MOGEFrseompbwly 'IhcmmOGH:memwm,evmmough(s’)ﬂsnm-convex This is a
uen non-convex boundary of (S,), lies in the interior of S,.

ent EG by a straight line; consequently the
imations, shown in Figure 12, which are of

imated bythesnmghhmwgnmEGmngEandG the
sponding approximation aoﬂzeregmnOGEF (Sy), will be called

lﬂum&o&wmm%mmmmdbyﬁekmwgmﬂwlmhmmgmw&wmm
segment at E and which intersects the y, - axis at L. The quadrilatera OIEI"whwhmmecmrprng

approximation to the region OGEF, (S,) mﬂbecanedﬂmmu Ppros
The coordinate of I are given by '
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Figure 10: Approximation of Image set

10 0, 23,2 ). (123)

5.1.2 The linear mapping (96) and the determination of S;

Fromequatixon(35),thcd¢s'n'edimagesetséismeimageofs’ under the linear mapping (96). The matrix
B(q) which characterize the linear mapping (96) is given by equation (27). Combining equations (26) and (27) and
using the decompositions of the J(q) and E(q) matrices given, respectively, in equations (58) and (59), we can write
B(q) as

B(@) = R(g) R(gp) { -Mlgy) DNgy) V(g) - N(gp) }- (124)

S(g)) = Rigy [ -M(g) DUgy Vigy) - Nigp ). (125)
we can write B(q) as

B(g) = R{q) S(gp- (126)

Therefore B(q) can be written as the product of a matrix S which is a function of q, only and a simple orthogonal
matrix which depends on g, only.

The(i,;)m@mm&@ma@mummmmy%m%

If O, G, E,F, and I denote, respectively, the images in the A; - plane of O, G, E, F, and I, then using (96)
we can write the following:
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E@,% @10t020% 11,0 = E (011 -51)81,24012@1,+020% (021520001, +022(81,+32,)9) (127)
F@1t @120 01,0 = F (01701981,24515(@1 020" (02170290815 +095(21,82,)%) (128)
0 (0, 0) - 0 (0,0) (129)
G (0, 32) = G (bppt bud?) (130)

The images EF, OE, OF, and OG’ of the linesegments EF, OE, OF, and OG are line segments described by the
following equations:
;1 1 by by

EF - gy = o + G;,—;,,—n)qla =0 (131)

0E - | = %2 (132)
(by1=01D81, 2401201400 byt +b2 @15+ 020)°

OF - cl = %2 (133)
(51101281, 2+b01201 0, (b d)1, 008100,

0¢ - M - (134)

By, by
’Ihcpa:abohcsegmgtEGmapsmmaparabohcsegmemGE

We can therefore write: 'Ihe:magcsets of the set F is the ( interior and boundary ) of the region EFO'G,
shown in Figure 11, whose vertices E.F,0, and G are given, respectively, by equations (127), (128), (130), and
(129). The segments EF, OE, OF, and OG’ are given, respectively, by equations (131), (132), (133), and (134).
Thus Sy is completely determined.

1

Figure 11: imagcsctsé
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5.2 Properties of S,

In this section, we derive expressions for the supremum and infimum of Sg-

5.2.1 Furthest vertex of S;l

We first show that the furthest vertex of S a isE. Inspection of equations (119) through (122) shows that the
furthest vertex of the set Sy is E. Since the set S a is the image of Sy under a linear mapping, the furthest vertex of 83
is the image of the furthest vertex, E, of sy. Therefore E  is the furthest vertex of S T

- 5.2.2 Supremum of S a
The supremum of Sa is the distance of the furthest vertex E' from the origin. Using equation (127), we obtain

sup (s‘-|) =
[(513=512)* 521522181, *+ 1512455281 , 82 20515051 =51 )+ 595(521 =591, 2@+, (135)
5.2.3 Infimum of S;l

Since the origin O' (0, 0) is one of the vertices of S;, the infimum of S; is zero:

inf(sy =0 (136)




24

6 The state acceleration set, S
We defined the acceleration set, S, at a specified point u in the state space as follows:

Definition of S,(q,q): For a given set T of allowable actuator torques described by
T = {1 | ltjl < T,‘o, i=1,2],

the acceleration set S, ata point u = [ q,  I7 in the state - space is given by

Su@® = (o, | (u=(q.9), Gre D(r=A(Q)r+k(u))}
Thus S, is the image of the set T under the mapping (38).

6.1 Determination of S,
Inspection of equation (31) and (38) reveals that
(.37 = o (g7 + k(q.Q (137)

where a,(q , ) € S,(g, 7) and 0,(q, 4, ) € 5,(q. @, 7)-

From (137), we see that
(@ q=0, 1) = a(q, 1) (138)
Defining,
[ 1 0 1
I := 139
Lo L 39
and
o, = o,q, q=0, 7) (140)
then
o =1 ofq 1) 141)
and
o = o, + kiqgy. - (142)
If we define a set S,
Sy = (0 | Goges)e, = I o), (143)

then S, is the image in the A, - plane of the set S_ in the A, - plane under the identity mapping (139). From (142)
the desired acceleration set S, at a specified point u =[ g, q ]7 in the state space is the set obtained by translating S,
by the (constant) displacement vector k (g, q ). This process of generating S, is shown in Figure 12-a, b, and c.
We can write S in the following equivalent form:
Sy = {0 | Bogesy) (@ = o + k) (144)

Since S. is 2 parallelogram AB'CD’, s, and S,, are also parallelograms congruent to S, but lying in the A, - plane.
The centroid of the set S, has coordinates ( a;, 0, ) as shown in Figure 12-c. Loosely speaking, we can say that
S, is obtained by transiating S, by ( oy, @, ) from the origin.
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d2u

- d2uy B"

T

D’ ‘;'- —I" [\C — A"
o \ a

(a) (b) (c)

Figure 12: A state acceleration set

A1y

If A", B",C’, and D" denote, respectively, the images in the A, - plane of points A’, B, C,and D' in the A_ -

plane (Figure 3-a), then from equations (137) and (64) through (67), we obtain
AT 0100 T T, = A k4T 4T, ke T 4T,
B0yt 8130001 %1500 %)) = Bk ay1T1015T0, kptay Ty~
Cay T 19T 0 T Ty) = C (k=011 81300 kytyT100T,)
D=8y Ty Ha15Ty, 0y 10T = D lk=8y1Ty M5t Ky T, 40T,

(145)
(146)
(147)
(148)

S, is the ( interior and boundary ) of the parallelogram A'B'C D". The sides A'B', B'C,, C'D’, and D'A’ of the

parallelogram are obtained by (137) and equations (68) through (71),

| 1 a; a4 ky k&
AB:- —a;, — —ay, + (—+)7, + (—+—) =0
a2 e ay & - @1 9p o a3 9p

- 1 1 a2 ky Kk

BC —a,, - —ay, + (), + (—+—) =0
a1 e a1 a1 ::)12" a1 &

cp- La, - Lo - (M)Txo + (_M) =0
a2 a» a1z 4p ayy 9y
o1 1 a, )

DA:- —ay, — —dy; - (~—+— + (—+—) = 0.
ay s L3} an ::?% ap a1

6.2 Supremum of S, -

(149)

(150)

(151)

(152)

The supremum of S, is a measure of the largest acceleration available ( in some direction ) at a specified point
in the state-space. In a similar manner to that of S, the supremum of S, is obtained as the distance of the furthest

vertex of the parallelogram A'B'C'D’ from the origin O’ of the A, plane.

If{(O"A"), (O'B"), { O°C"), and i O'D") denote, respectively, the distances of the vertices A", B", C', and
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D’ from the origin O’, then from (145) through (148) we obtain

KO'A) = Vlkp+ayy Ty, 41500, 4 (bt Ty T, (153)

HO'B") = Vlkytayy Ty ;013 4y +ay 0 oy, (154)

(O'CTy = Vlky—ay)T 15Ty, Y+ (ky—0y1 Ty =BT, (155)

KO'D') = Vlky=ay Ty 4115, 2+ (g=0y Ty 485575, (156)
The supremum of S, is given by

sup(s,) = max[ I(0'A"), I(0'B"), I(0C"), KO'D") ] (157
6.3 Infimum of S,

The infimum is the maximum isotropic acceleration for a certain manipulator position in the workspace.

To obtain the infimum we must consider three cases

X7
X2
2
~ X{ /4 ?&‘1 < 3 Xy
/o T~ ol / ~
(a) (b) and () (d)

Figure 13: the relative location of a parallelogram to the origin

1. The origin O lies outside the parallelogram A"B'C'D” and O does not lie between either pair of
parallel lines (Figure 13-a) comprising the sides of the parallelogram.

2. The origin O lies outside the parallelogram A"B'C'D” and O lies between A'B” and C'D" (Figure
13-b).

3. The origin O lies outside the parallelogram A'B'C'D" and O” lies between B'C” and D'A” (Figure
13-c).
4. The origin O" lies inside the parallelogram A’B"C'D" (Figure 13-d).
Using well-known results from analytic geometry, the condition for O™ to lie between the parallel lines A'B” and
C'D’ is obtained from (149) and (151) as

condition 1:
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Kby @ B, 2, (158)
a3 Gy a17 9n :

the condition for O to lie between the parallel lines B'C" and D"A" is obtained from (150) and (152) as

condition 2:
k
P kz)z < (an “22)21702 (159)
1) Gy a11 9491

Using the above two conditions, the three cases can easily be identified from the following rules:
e case 1: both conditions 1 and 2 are false. )

¢ case 2: condition 1 is false and condition 2 is true. 3
e case 3: condition 1 is true and condition 2 is false.

e case 4: both conditions 1 and 2 are true.
The infimum for the three cases is obtained as follows:

case 1:(Figure 13-a)

In this case, the infimum is the distance of the closest vertex of A'B'C"D" from the origin O". Therefore
inf(s,) = min[ KO'A"), I(O'B"), KO'C"), KO'D") ] 160)

case 2:(Figure 13-b)
In this case the infimum is the distance from the origin to the nearest side, which is either A'B" orC'D'.

letd(A'B" ) and d( C'D" ) be, respectively, the distances from O to sides A'B” and C'D".

; -t
dABYACD) = 1(@y1329-812851 )71 , T @k a5k | a61)
‘/a122+0222 '
In a manner similar to obtaining the infimum of S, the infimum of S, is obtained from equations (161) as
inf(s,) = min[ d(A'B"), d(C'D") ] ] (162)
case 3:(Figure 13-c)

The nearest side is cither B'C” or D'A”. letd( B'C” ) and d( D'A” ) be, respectively, the from O’ to sides
B'C and D'A".
1@)282)-91180)0, £ (351 51814 | (163)
Vay Pray?
The of s, is obtained from equations (163) as
inf(Sy) = min[ d(BC), dD'A) ] (164)

dB'CHADA) =

case 4: (Figure 13-d) The infimum is the distance from the origin to the nearest side which could be either
A'B",B'C",C'D’,or D'A". These distances were computed for cases 2 and 3 above. Therefore,

inf(s,) = min[ d(A'B), d(B'C), dCD", dD'A) ] (165)
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To summarize the results of this section we can state the following lemma.

Lemma: The acceleration set S, at a point u in the state-space of the manipulator is a parallelogram with
centroid located at the point ( k,, k, ) defined by equations (37); the supremum of S, is given by (157) and the
infimum of S, is given by one of equations (160), (162), (164), and (165). The supremum and infimum of Sy is
independent of the joint angle q,.

7 Local acceleration sets
At a given position q = [ q;, q; 17 in the workspace of the manipulator, we could define two sets in section 2

(Sph

U.qe E‘Su(qvil)

(8py = MNye PEMCE:)
The supremum of (S;), will be give us the magnitude of the maximum acceleration (in some direction ) of the
reference point P at a given position ( q;, q, ) of the manipulator.

The infimum of (S;), will give us the magnitude of the maximum acceleration of the reference point P
available in all direction at a given position of the manipulator. The infimum of (S;), is called the isotropic
acceleration in Khatib [1] and the local acceleration radius Kim [5].

7.1 Determination of (Sp ),
The generic member S, of the set (S;), was described in section 6 and is shown in Figure 9. As q is varied,

S;lisaparaﬂclogramwhichmompm'aﬂeltoitself. The locus of the centroid, ( k ,k?),oftheparallelogmmasi;is
varied is simply the boundary OGEF of the set S; shown in Figure 11. Therefore we can describe (S;), as
follows: The local acceleration set (S;), is the region swept out by the parallelogram S, as its vertex moves along

[

the boundary OG EF . This is shown in Figure 14.

72 Supremum of (S ),
The supremum of (S;), is simply the distance of the origin from the furthest point of (S;),.

To determine the furthest point of (S, ),, all we need to do is to determine

1. the furthest vertex of OGEF,

2. the parallelogram at the furthest vertex, and

3. the furthest vertex of this parallelogram
In section 5, we showed that E is the furthest vertex of OGEF. The distances d( O'A’y ), d(O'Bz), d(OC'y), d(
OD'y ) of the vertices of the parallelogram with centroid E’ are given by (153) through (156). The supremum of
(Sp), is now readily obtained as

sup(Sy); = max[ d(O'Ay), dOBYy), dOCy), dODYy) 1. (166)




29

Figure 14: Determination of (S;),

Figure 15: A local supremum

7.3 Determination of (S ),

Using reasoning similar to that in the above section we can describe (S, ), as follows: The local acceleration
set (S;), is the largest region common to all the parallelograms generated by moving the generic parallelogram S,
along the the boundary OGEF.
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X 1

Figure 16: (S;), and a local infimum

7.4 Infimum of (S ),
The infimum of (S; ), is the maximum distance to the origin from the boundary of (S, ),.

Todmmmtheof(sl)z,memamdmappmxmnonofﬂlcsets in section 5 (and

inimum distance, d;, from the origin to the four sides of P;.

4.Mmm'r,d{sl)2h% approximation isgimby
= inf(Sy), = min(d,i=1234) (167)
Letr, and r, denote, respectively, the infimum corresponding to the inner approximation OGEF and OIEF.

We now need to distinguish 3 cases.
e case 1: r =min (d;,i= 1,2, 3, 4) was obtained from the parallelogram with vertex I. In this case r; and
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" 1, are different and

rp < inf(sp), < (168)
ecase 2:r; =min (d;,i=1,2,3,4) was obtained from the parallelogram with vertex G. In this case r;
and r, are different and
rp < inf(sp), < np (169)

e case 3: r, is not obtained from the parallelogram with vertex G and r, is not obtained from the
parallelogram with vertex I. In this case r, and r, are both obtained from one of the other three vertices
and therefore r; = r, and
inf(sp), =r, =ny (170)
Therefore we either obtain the inf (S;), exactly as in equation (170) or with tight bounds as in equations (168) or
(169).
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8 Example

In this section, we will illustrate the manipulator dynamic properties obtained in section 4 through 7 using a
two degree-of-freedom manipulator. First, we show the state accelerations at the vertices of joint velocity
contribution quadrilateral in section 6. The contribution, o, of actuator torques in section 4 is the local acceleration
set with the zero joint velocity vector. Then, using the state supremum and infimum in section 6, we illustrate the
manipulator state performance. Finally, the local supremum and infimum in section 7 is calculated.

To provide an experimental test-bed, we have built a two degree-of-freedom planar revolute-jointed
manipulator, shown schematically in Figure 1. The design variables of the manipulator consist of

[,=0.303 m [L,=0.254 m
a,=0.196 m 2,=0.0941m
m;=2.26kg my=0.177 kg
I,=0.129 kg m? L=2.77x1073 kg m?
The actuator torque set is
= (1l |t < 30. Nm, =12},
the joint-velocity set is

= {q | Ig;] £ 10 rad/sec, =12},
andtheworkspacexs ‘
’ ={q!l 1l < ¢, < & rad}.

We choosethemampmﬂamrposmn as q=[0, /2 )T. Our first step is to calculate the elements of matrices
A, B for the manipulator position as follows;
by,=-0.007 by,=-0.000 by=-0.247 byy=-0.247

Using equation (157), the state supremum at point O of section 6 are calculated as 1761.73 m/sec2. Since the
parallelogram of section 4 is the state acceleration atpomtO', the supremum of the contribution, o, of actuator
torques in section 4 is also 1761.73 m/sec?.

infimum, two conditions (158) and (159) are tested. Two conditions for our manipulator
are both positive, and equation (165) for case 4 is used to calculate the state infimum for [0, 1.57, 0, 0 ]T. The
infimum for [0, 1.57, 0,0 17 is 3922 m/sec?.

'ﬂwMWmm; celeration located at point O in Figure 17. From equation
suprem »«fposiu’m[ﬂ,lﬂ}rmotmdasl%lnw To calculate the local infimum, two sets
accelerations should be considered as in section 7. The infimums for the state acceleration sets at point O,
F’E G I, mecmﬁmmmm:

point O point F point E point G point I

nsxnw 1761.73 mfsecc  1761.78 mfsec?  1761.74 mfsec?  1761.74 m/sec?
s, the minimum is the infimam as in equation (170). So, the local infimum for [ 0, 1.57 }Tis
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Figure 17: The acceleration set for a dynamic state O
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Figure 18: The local acceleration set
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I. Equations of motion for a two-degree-of-freedom planar manipulator
1. Jacobian matrix

The Jacobian matrix J has the following components:
Ji=—hsinq,~ksin(q;+dp)
Jiz=—hsin(q;+qy)

Ja1=11c08 qy+1,c08 (q;+4p)

Joz=heos (@1 +)
When this relationship is differentiated with respect to the time, we obtain the following equation.

X=Jq+Jq=JG-E(q)?
where E is a (2x2) matrix which has the following elements:
€11=4,c0s 4, +1,c0s (q;+4p)
€12=500s (9, +4;)
€y=lsinqy+4sin(q,+q;)
ex=hsin(q;+q;)
2. Dynamic equation
The dynamics of a two-degree-of-freedom planar manipulator is described by the following equation:

Dg+V{g2+p=1
D is a (2x2) matrix and the components are as follows:
dy=I+m,a,>+l+m,(a, 422l cos g+, %)

dy=Iy+my(a,2+a)l c0s qy)
dyy=dy
dy=ly+mya;?.
V is also a (2x2) matrix and has a following components:
V=0
V=V
Vo= 0.
where
v =Mmyayl,sing,.
p=(p, p,}” is a vector with the rank 2.
p,=m,ga,sinq, +m,g[l,sinq, +a,sin (q,+q,)]
P,=m,ga,sin (q;+q,)
where g is a gravitational constant.

3. Acceleration equation
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The expression of the acceleration of the end-effector consists of three components as follows:

x=AT+B{q)2+c
where
A=JD!
B=—AV-E
c=—Ap
A is a (2x2) matrix and has the following components:
a;;=A( 14231212
a17=A(j1 1412+ 12d1y)
a2,=A051d25-522d12)

a=A(-Jz1d12+i22411)

where
A=(d;ydyy—dp,%T™!

B is also a (2x2) matrix and the elements are as follows:
by=—va;;—€y; '

by=va; 1~y
by1=—Vay €y

by=vay—€y;
¢ = [c, c,]T is a vector with the rank 2.

Ci=a1P1+a;oPy

Co=az1P1+32P;
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