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Abstract

An important issue in designing manipulators for dynamic performance is the determination of the acceleration
properties of (some reference-point on) the end-effector of the manipulator. Given the dynamical equations of the
planar two degree-of-freedom manipulator and a set of constraints on the actuator torques and on the rates-of-
changes of the joint variables, we systematically develop (a) the properties of the linear mapping between the
actuator torques and the acceleration of (some reference-point on) the end-effector and (b) the properties of the
(non-linear) quadratic mapping between the rates-of-changes of the joint variables and the acceleration of the
end-effector. We then show how these mappings can be combined to obtain useful acceleration sets - for example
the acceleration set corresponding to any point in the workspace of the manipulator - as well as the properties of
these sets.



1 Introduction
An important issue in designing manipulators for dynamic performance is the determination of the

acceleration properties of (some reference-point on) the end-effector of the manipulator. Given the dynamical
equations of the planar two degree-of-freedom manipulator and a set of constraints on the actuator torques and on
the rates-of-changes of the joint variables, we systematically develop (a) the properties of the linear mapping
between the actuator torques and the acceleration of (some reference-point on) the end-effector and (b) the
properties of the (non-linear) quadratic mapping between the rates-of-changes of the joint variables and the
acceleration of the end-effector. We then show how these mappings can be combined to obtain useful acceleration
sets - for example the acceleration set corresponding to any point in the workspace of the manipulator - as well as
the properties of these sets.

It is useful to briefly mention the work done by others on related problems. Khatib [1,2] sets up an
optimization problem to improve the acceleration of the end-effector; however the non-linear terms in the dynamical
equations are accounted for in somewhat ad-hoc fashion (by taking certain "high" and "low" values of these terms).
Graettinger and Krogh [3] use semi-infinite programming to obtain the "acceleration-radius" (or "isotropic
acceleration") of a manipulator. In contrast to our approach, both the above-mentioned approaches do not yield the
acceleration sets of the manipulators (defined in section 2) or the properties of these sets or show how the properties
of the sets are related to the geometric and dynamical parameters of the manipulator.

The report is organized as follows: The problem and the variables of interest (in the problem) are defined in
section 2. In the next section, we describe certain decompositions of the manipulator Jacobians which are useful in
deriving certain properties of the linear and (non-linear) quadratic mappings. The properties of the linear mapping
and the quadratic mapping, respectively, are derived in section 4 and 5. In section 6, we show how these maps can
be combined to obtained the acceleration set corresponding to any point in the state space; we then determine the
properties of this set Similarly, section 7 is devoted to determining the acceleration set (and its properties)
corresponding to any configuration (or "position") in the workspace of the manipulator. In the final section, using
the example of the planar manipulator in our laboratory, we address the computation of the acceleration sets and
their properties.



2 Definition of the Problem
In this section, using a simple two degree-of-freedom manipulator, we define the problem to understand the

dynamic performance of manipulators.

First, we define manipulator variables in subsection 2.1. In the following subsection, we express the
manipulator acceleration in terms of the variables. In subsection 2.3, we define the problem to characterize the
manipulator performance with end-effector acceleration.

2.1 Definition of the manipulator variables
Consider the serial two degree-of-freedom manipulator with two involute joints shown in Figure 1. The

manipulator is assumed to be rigid with negligible joint friction.

Figure 1: A two degree-of-freedom manipulator

^ denote the length of link l,a, tte distance from joint axis 1 to the center of mass of link Urn! the mass
of link 1 and It tte principal moment of inertia of link 1 with respect to its center of mass about an axis
perpendicular to tte plane of tte motion. Similarly, let l^ a^ m̂ , and \ denote the corresponding properties of link
2 (See Figure 1). We call these quantities design variables.

xt and ~2 denote die joint torques, respectively, at joints 1 and 2 and

x = ft, T /
denotes the vector of joint torque vectors. Let

denote the constraints on the actuator torques at joints 1 and 2. We define

T - {T I |T,.| £ X^,

to be the set of allowable toques.

(1)

(2)

(3)

Let (XJ^CJ) denote (he coordinates, in a reference frame fixed to the base, of a reference point P on link 2 (See



Figure 1) and define

x = [xx x£T (4)
to be the vector of task coordinates in task space. Let q{ and q2 denote the generalized coordinates of the
manipulates (See Figure 1), qx being the joint variable at joint 1 and q2 the joint variable at joint 2. Define

q = fai qj? (5)
to be the vector of joint variables in joint space. If

<fo < qt < qiV, i = U (6)
denotes the constraint on joint variable i, then we can define the workspace w of a manipulator as

W = {q I qiL < q{ < qiZJy i = U } (7)

Let qj and q2 denote the joint velocities (the rates of change of the joint variables) q{ and q2, respectively.
Define

q = &! q2]
T (8)

to be the vector of joint velocities. If

\'qi\ <; fa i » U (9)
denotes the constraints on the rates of changes of the joint variables, then we can define

F = {q I I9.-I ^ hi* ^ W } (10)
to be the set of all possible joint velocity vectors.

Define the state vector

u = (q q) = [qx q% qx q2f ( 1 1 )

to represent the dynamic state of a manipulator in the state-space.

The acceleration space or acceleration plane, A, of the manipulator is the set of all possible accelerations,

x * [ x'j X2 ] r , whae x t and x^ ̂ ^ Tes^ numbers.

More formally we can define

A = {X I X€R2} (12)

where R2 is the real Euclidean plane.

1 2 Manipulator acceleration
In this subsection, we derive an expression for the acceleration [41,

of the reforeoce-point P on the end-effector, since this quantity plays an important role in our analysis.

The relationship between the velocity, k, of point P, and the "joint velocity" vector q is well known:

i * Jq (14)
where J is a (2x2) matrix called die manipulator Jacobian. The detailed expression of Jacobtan matrix is shown in
Appendix.



The dynamic behavior of the two degree-of-freedom manipulator is described by the following equations:

2 ^ 2 > + Pl(<0 " x i

Defining

D(q2) :=

V«fe) :=

p(q)

q =

and

1

r o
i
L . K?2)

- 6>,(q) P2(*f

q2 •= t?i2 (<?i+^2)2-?i2]r

the dynamic equations (IS) mid (16) become,

" X2

where flie coefficients d^qj), (ij=l,2), v(q2>» PffaX (i = 1,2 ) are given in Appendix; note mat coefficients d,y (ij
=1,2), v ^ ) are functions of only joint variable %.

1
I (17)

^22 -L

1
I (18)
J,

(19)

(20)

(21)

D(<?2)€J + VG72){q}2 + p(q) = t (22)

The matrix DCq^ is the mass matrix of the manipulator and the vector p(q) denotes the gravitational terms
influencing the dynamic behavior.

A crucial step in the acceleration analysis is the definition of die skew-symmetric matrix V(q2) and the vector

{q}2, which allows all the non-linear terms (often called Coriolis and centrifugal) to be written as the product of

Y(q2j and {q}2. The notation { } 2 is used to draw attention to the fact that the elements of the vector {q}2 are

quadratic in die rates-of- changes qx and q2, respectively, of the joint variables q̂  and q2. Note that (q}2 is not

equal to q ^ 2 - ^ 2 .

To obtain tte eaqwesdon fm tte acceteniHi x of the point P, we differentiate (14) to obtain

x * Jq + Ik (23)

In Appendix, we A m i » t the second torn in (23), J q, can be writtm in the form

Jfe . -£(q>{q}2 (24)

Ccn^inng (23) and (24) we cbLain

(26)



B(q) = -A(q)V<q) - E(q). (27)

c(q) = -A(q)p(q), (28)

it is easy to verify that the expression for the acceleration x of the point P, obtained by combining equation (22) with
equations (25) through (28), is given by

x = A(q)t + B{q}2 + c(q). (29)

Note that A(q), B(q) and c(q) are position dependent, the expressions for the coefficients of which are given
in Appendix.

If the manipulator operates in a (horizontal) plane perpendicular to gravity, then c(q) = 0 and (29) becomes

x = A(q)x + B{q}2. (30)

In this paper, we will study manipulators, moving in horizontal planes, whose acceleration properties are
described by equation (30).

Defining

a , •= [a l t a ^ f •= A(q)x (31)
,and

f (32)
equation (30) can be written as

x » a , + a^ (33)

It is convenient to think of ou as the contribution of the torques to the acceleration of the reference point P and
a* as the contribution of the joint-rates to the acceleration of P, the sum of these two quantities giving us the
acceleration of P as expressed by equation (33).

Equation (31) can be viewed as a linear, position-dependent, mapping between the torque vector x and its
contribution a , to the acceleration of P. Similarly equation (32) can be viewed as a quadratic, position-dependent,

mapping between the joint rate vector q and its contribution a* to the acceleration of P.

2 3 Definition of the problem

The acceleration x of the reference point P of a manipulator, specified by its design variables, constraints on
the torques as given by (2) or (3), constramts on the pint variables as given by (6) or (7) and constraints on the pint
velocities as given by (9) or (10), will be a subset of the acceleration plane A of equation (12). In otter words, the
acceleration set for a combination of the above constraints can represent the dynamic performance of manipulators.
To characterize the manipulator dynamic performance, we generate- four acceleration sets as follows:

First, we consider the manipulator acceleration set when the joint velocity is zero. Physically, the set
represents the manipulator dynamics when a manipulator starts to move. For the given set T of allowable actuator
torques described by (3), we define the set of all allowable o^ as

s t - fa, ! OTCTXO, » At)) (34)



' Next, when the actuator torque vanishes during the operation of a manipulator, the subsequent motion of a

manipulator is also critical in manipulator dynamics. For the given (constraint) set F of allowable rates-of-change,

described by (10), we define the set S-q of all allowable cĉ  as

S-q = {c^ I (3q€FX<^ = B{q}2)} (35)

Finally, when a manipulator is in motion, we consider two acceleration sets in the following. The acceleration

of the reference point P corresponding to a specified state-vector u = [ q1§ q2, qlf q2 ]T in the state-space will be

denoted by a,,. From equation (30), we write

o^ = A(q)x + B(q){q}2 (36)

If we define a constant vector k,

k(u) = k(q,q) = [Jk1§ * / = OjjCq̂ q) = B(q){q}2, (37)

then (36) can be written as

o^ = A(q)x + k(u) . (38)

We TOW define the acceleration set, Su, at a specified point o in the state space as follows: For a given set T of

allowable actuator torques described by (3), the acceleration set Su at a point u = [ q, q ]T in the state - space is

grvenby

So(q.q) = {a, I (n=(q,q)X (3i€ T)(xll=A(q)x+k(ii))} (39)

Thus Sa is the image of the set T under the mapping (38).

Finally, at a given position q » [ q l t q2 ]
T in the workspace of the manipulator, we can define two sets

(40)

The supremiim of (S£)l mil be give us the magnitude of the maximum acceleration (in some direction ) of the
reference point Pat a giver: position ( q ! , q 2 ) of the manipulator.

The iafimum of ( S ^ will give us the magnitude of the maximum acceleration of the reference point P
available in all direction al a given position of the manipulator. The infimum of (SL)2 is called the isotropic
acceleration in Kfaatib [1] and tte local acceleration radius in Kim [5].

Based on Lhe above defiridons, Lhe manipulator problem cm be written as follows;

L Tc charac^nze four acceleration sets, S v S ,̂ 3U, SL, with their shape and supremum and infimum.

In Sectio© 4 mi 5»i^ieaivdy* weas ty the properties of the linear mapping described by equation (31) and
the properties erf the a » 4 » e a r napping described by equation (32). Ttm acceleration properties of P, obtained by
zzrr.birar<z ixm two rriaps, is discussed :n Section 6. In the next section we present a decomposition of the Jacobian
%h:ch m hzlpM m t.z mxif erf teifiomBemJoned larar and noo-ltoear maps.



3 Decomposition of the manipulator jacobian
In this section, we derive some little known decompositions of the manipulator Jacobians. These

decompositions facilitate the derivation of the properties of the acceleration properties in Sections 4 and 5. Let v
denote the velocity of point P in a reference frame fixed to the base N, (iij B^) be a set of dextral orthogonal unit
vectors fixed in N, (ax a^ a set of dextral orthogonal unit vectors fixed in A, and (bj b2) a set of dextral
orthogonal vectors fixed in B (see Figure 2).

a

Figure 2: Description of the velocity vector.

We pick n, so that it points in the direction of the positive xx axis and pick n 2
 s o ^ ** points in the direction of the

positive x2 axis (Figure 2).

Defining,

r cos*?,.

L
and referring to Figure 2, we obtain,

* ! bjJ7"

Tte velocity of the reference points, in the rrfereice frame N is given by

(42)

(43)

(44)

(45)

equatkn (45), we obtain



(46)

<47)

Note that v • bj and v • b2 are simply the bx and b2 measure numbers of the velocity of P in N. Using equations
(42), equations (46) and (47) can be rewritten in the matrix form,

Ulsinq2 0 1 f^l (48)

l2
Defining,

f lxsinq2 0 1
:= I | (49)

L /1cos^2+/2 /2 I
and using (5), equation (48) becomes

/ = M(?2) q. (50)

Rearing again to the geometry of Figure 2, we can write,
7 f (51)

(52)

Equation (51) simply relates the b2 and b2 measure numbers of v to the ^ and ^ measure numbers of v;
similarly (52) relates the a} and a2 measure numbers of v to the n1 and n2 measure numbers of v.

Combining equations (50) through (52) we obtain

R(q2) M(q2) q (53)

If x is the positiOT vectOT of P with respect to the fixed point pivot O, then finom equation (4) and the choice of
the directions of n, and n2 (see Figure 2), we can write

x m xtnt + x^ (54)

and*

(55)

From (55), die a, and n2nieasiire numbers of v are given by

N i rm/ * ^ '^f (56)

Combining (53) and (56) we obtain,

(57)

ring «pa^c»K (57) ani (14), we obtain

J(q) - R(9i) R(9^ M(?2) (5g)
Note thai me have decomposed the JmxiAm matrix, J(q), imo the product of ttaee matrices which depend other on
qt or q2 bin not both % «!!%. R(%) and R(c^ are simpk atbogmal malric^ aiid N(q2) i^pr^OTB il» Mi



coupling between the two links. In a similar fashion, we can show that the matrix E(q) in equation (24) can be
written as

E(q) = R(qx) R(q2) N(?2) (59)

where

f llcosq2+t2 h 1
N(q2) := | I (60)

L -lls\nq2 0 J.
Equations (58) and (59) are very useful in deriving the properties of the acceleration maps in section 4 and 5.
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4 Linear mapping

D

p

•-20

^20

A

R

(a)

Figures: Linear Mapping

For the given set T of allowable actuator torques described by (3) and represented by ( the interior and the

boundary of) the rectangle ABGD shown in Figure 3-a, we defined the set of all allowable o^ in section 2 as

sT = {a, I (3x6 TXa, = At)}.

In this section, we simply state that ST is the parallelogram A B C ' D ' shown in Figure 3-b and we will derive

three properties of the set S r The first property determines the "size" of Sv as characterized by its infimum,

sepremum, aiKi its area, The second property expresses the qx invariance of S r The third property expresses the q2

dependency of S r

The decomposition, expressed by equation (58), of the manipulator Jacobian is extremely useful in the

denvaiion of the properties of Lhe set S r Combining equation (58) and (26) we obtain

Defining a matrix PCch) ̂ s

we ran rewrte (61) as

Mote thai we imm decomposed A(q) into an orthogonal matrix R(qj). depending only on q : and a matrix P q2:

deper^ding only m %* T t e deccmposlaon facilitates the derivation of the properties below. The (i j ) element of A

a i l P wil bedonott4 i^cc t ipdy , fry a^ aai p^,

lMA\B\c\Df

C(-t |g.

, fcsi»ctivdy» tt© pewits in tfae o^ - plane into which the points A(xlo, jJ

Then it is -easy ID voify that the coordinates of A\ B\ C\ D# in tte
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plane are given by

A (aUXlo+a\2*2o a21Xl*+a22t2o) (64)

B (auxl{ranx2o atf^-atf^) (65)

C (rauxl<ranx2o -a^io^hi^ (66)
D' ( -^1^1^12^ ^ll\o'¥<h2X2o>' (67)

Since (31) is a linear mapping, A'B'C'D' is a parallelogram; the equations of the sides A'B', BC\ CD' and DA' are
readily obtained as

AB - U l x - ±^x + ( " T ^ r ^ = °' < f l i i x i ^ i 2 ^ a i T * « i i * i * « i 2 ^ («)a\2 *22 a\2 an

BC -UlT - i ^ T + (-^Sf^t^ = 0, {-auxlo^aX2z2o<au<auzloHinx2^ (69)

CD - U l T - JLa^ - ( i i i t o = 0, (ranxl^anx2o<alz<-anzl^al2x2o) (70)

D'A' T

•Property 1: The set Sx is a parallelogram whose supremum, infimum and area are given by

= max[ V ( p 1 1
2 + p 2 1 ^ a

2 ^ 1 2
2 + p ^ 2 ) t 2 o

2 ± 2 ( p n p 1 2 + p 2 1 p ^ l o ^ ]. (72)

inf ( s j = mint

yPi22+
IlI7sinq2

(/+^^X^H^O^/^^^in2^/2

•Proof:

' B\ C') , C^O'D') denote, respectively, the distances of the vertices A', B \ C', and D' fix>m
the origin O, then the supremum of ST is given by

sup(ST) = max[o(OA\ cKOi?'), cxCO'C), a(0D)] (75)

Since A' and C are equidistant from the origin O' and since B' and D' are also equidistant from the origin, (
observation (1) above ),

sup(Sj = max[a(CM'), O(0'B')]= imax[G(AC'\ O(B'D')1 (76)

where a(A'c') and CCB'D') denote the lengths of the diagonals A'c' and B'D'. Combining equations (64) - (67), (63)
and (42), <J(A'C') and a(BD) are given by

(77)

O(B'D) m V(>11
2+/»21

2)T1<,^+<Pi2
2+p22

2)t2<,2-2(PijP124p2i/»22)t loX2<, (78)

= max[ V(p l l
24^1

2)x1 /+(po
2+|72 2

2)i2^2±2(p ! lpn ]. (79)

If p(O'A\ P(O'B'), p(O'C#), p(O'D') <tow«c» K^c^tively, the distances fiora O# to A'B'f B'C', C#D#
t D*A't then
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the infimum of S t is given by

infCS,) » min[p(0A'), p(Ofl'), p(O'c'), p(0£>')] (80)

Since AB' and CD' are equidistant from O' and since BC' and DA' are also equidistant from o', (observation (2)
above)

mf(Sj = min[p(A'fl'), p(BCf)] (81)

The distance p from the origin to a general line a x + Py + % = 0inthexy- plane is given by

p = l x l . (82)
Va2 + p 2

Substituting appropriate values of a, p\ and % from equations (68) and (69) into equation (82) and using equations
(63) and (42), we obtain

, . y , KP11P22P12P21) l J l ( ? 2 ) | l o
p{AB) = ^ = — (83)

Substituting (83) and (84) into (81), we obtain

vanishes at q2=0,Jc Therefore inf(st) = 0 at q2=0,JL

Since the area transformed by the linear mapping A is

(86)

ttie area of the parallelogram is obtained as

det(A) [ t ^ g i tvC-^o)]
» det(R(?i)) det^ft)) dec(M(«)) detO)"1^)) ^ t ^ (88)

1^!)) 4 * , ^ (89)

•Property2: qj -dependenceof S t

The supiemum, infimum, and area of the set ST is independent of the joint variable qv For two manipulator
positions (q^

•Proof:

S x is a linear mapped set between actuator torques and the end-effector accelerations. So, property 2 is proved
if the vertices of S^qj+^q^ are the simple rotation of S^qj.q^. Components of vertex A are

(92)
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= sinql(pnzlo'¥pnx2o)'H:osql(p21xlo^p722o) (93)

Rewriting equations (92) and (93),

Similarly, other vertices of S(q1+<j>, q2) can be shown as a product of R(<)>) and Sr(ql9 q2). Therefore,

•Property 3:q2 - dependence of Sx

The supremum, inj&mum, and area of the set Sx depends only on the joint variable q2.

We merely state this property to emphasize that the size of ST depends only on q2, a property which is to be
expected since, everything else being the same, two positions for which q2 is identical [i.e. (q1? q2) and (q1', q2)] are
equivalent from a kinematic and dynamic standpoint. The property follows obviously from the equations (72)-(74)
which depend only on q^
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5 Quadratic mapping
For the given (constraint) set F of allowable rates-of-change, described by (10)and represented by (the interior

and the boundary of) the rectangle E1F1E2F2 shown in Figure 6-a, we defined the set S^ of all allowable a- in
section 2 as

Sj = {a-q I <3qeFXaj = B(q}2)}
As in the previous section, the following questions are important

1. How is S^ described?

2. What is the size of S- ? Specifically, what is its infimum and supremum ?

3. How does S-q depend on the joint-variables qx and q2.

5.1 Description of Sjj
If we define a vector

y - Oi y2f •* \ki (q^2)2^x2f (95)
then equation (32) can be expressed as

<^ = B(q) y (96)

Therefore the mapping (32) can be viewed as the product of the quadratic mapping (95) from the q - plane to y -
plane followed by the linear mapping (96) from the y - plane to the cc- plane.

The quadratic mapping (95) maps the constraint set F in the q - plane into a set in the y - plane which we denote by
S r Then the linear mapping (96) maps this set Sy into a set in the o^ plane which is simply the set Sq defined in
(35).

We will therefore first obtain the set Sy from the constraint set F under the quadratic mapping (95). S- is thai
determined from s y undo- the linear mapping (96).

5.1.1 The quadratic map and the description of S
Formally, we define Sy as follows:

Sy = (7 i (3q€F)(y = {q}2 )} (97)

Using equation (21) we can write (95) explicitly as

Vl * ki2 ' (98)

y2 - ( > H 2

We now have to toamk» the mapping of (the interior and the bounday oi) the q - plane rectangle E J F ^ F J into
the j - plane as detennined by (98) and (99).

Xt -> X (100)

wil be wed to icamt tte fact that the point Xj to the q - plsne maps into the point X in the y - plane, Le. X is the
Image of X r
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F1

H 2

E
2

1

%

E,

H ,

F
2

Figure 4: an available joint velocity set

From equations (98) and (99) we use that the pair of points Xx(ql9 q

same image X( qx
2, ( ^ - K ^ ) 2 - ^ 2 ) in the y - plane, Le.

in the q - plane both have the

(101)

Consider the rectangle E1F1E2F2 in Figure 4. A consequence of (101) is that the quadrants O1H1E1G1 and
of EjFjl-y^ both map into the same region of the y - plane; Similarly the quadrants O1G1F1H2 and
( ° ^ E1F1E2F2) both map into the same region of the y - plane. Therefore we only need to determine the

region of the y - plane into which the ttupper-halT H j E ^ H ^ (of the rectangle E J F J E ^ ) niaps. Formally
HJEJFJH^ is described:

F) (q2 >- 0)} (102)

The required set Sy is therefore the image of F ' imder the quadratic mapping (98) and (99). To determine S we first
need to establish the following:

1. the image of the points Oj, H l t E l f G l t F l f and H2 undo- the mapping (98) and (99).

2. the image of a line

q2 - mqx

of slope m passing through the origin O r

If O, H, E, G, F doK^ cbe image of points O | t H l t Ep Gv m& Ft» then from (98) and (99) we am write

<?! ( 0, 0 ) - • 0 ( 0, 0 )

>• H2 ( -*!•• 0 o , 0

(103)

(104)

(105)
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(106)

Gx ( 0, ^ ) -> G ( 0, ^

(107)

(108)

Note that the points Ht and Hj have the same image as is to be expected from (101). Also, the origin Ox of the q -
plane maps into the origin 0 of the y - plane. Using (98) and (99), the line (103) in the y - plane maps into the set of
points

y* = Q.} (109)

(110)

(HI)

y2 = &1+m^1)2-^i2 = ^ ( w 2 + 2m)

Equations (109) and (110) are the parametric equations of the straight line

y2
+ 2m) yv

Therefore a line passing through the origin and of slope m in the q - plane maps into a line passing through the
origin and of slope (m 2 + 2 m ) i n t h e y - plane.

To obtain the image in the y - plane of the rectangle HJEJFJI^, it is convenient to divide H j E ^ I ^ into four
triangular sections OJHJE^ OJEJGJ, OjGjFp and OJFJH^ and separately determine the image set for each of these
sections. The required image set is simply the union of the four image sets.

In order to determine its image set, it is convenient to think of each triangular section as composed of line
segments passing through the origin. This will enable us to readily determine the interior of the image set.

Image set of O . H ^ :

Figure 5: Image set of O ^ E j
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' Let (Sy)1 denote the image set of the triangle Ox HJEJ (see Figure 5-a ). Since a line passing through the

origin Ox in the q plane maps into a line passing through the origin of the y - plane described by equation (103), the
image of the generic line segment OJPJ of slope m passing through Ox, shown in Figure 5-a, will be a line segment
of slope (m2 + 2m) passing through the origin O in the y - plane. We now only need to determine the images of the

end points Ox ( 0,0 ) and Px (q l a , q2 ) of the OXP|. The image of O t, is of course, (see equation (104). ), the origin
O of the y - plane. Let P denote the image of Pj. Then the line segment OlPl maps into the line segment OP with
one end-point at the origin O of the y - plane. All we need to do now is to determine the locus of P as Px moves
along the line segment KXEV Using equations (98) and (99), the image of the line segment R{EX described by the
quations

qx = qlo, ( 0 <; q2 < q^ )
is the line segment HE, described by the equation

(112)

yx = qlo\ ( 0 < y2 <; G ^ ^ T i * 2 )• ("3)
Furthermore the images H and E, respectively, of points Hx and Ex are given by equations (105) and (106).

Therefore
1. the locus of P in the y - plane is the line segment HE,

2. the several line OJPJ of slope m maps into the line OP passing through the origin O whose equation is
given by (111) and whose end-point P lies on the line segment and

3. any point on OJPJ maps into a point on OP.

Therefore the image (Sy)l of the (interior and boundary of the) OJHJEJ is the (interior and boundary of the)
triangle OHE, shown in Figure 5-b whose vertices O, H, E are given, respectively, by equations (104), (105), and
(106). (O is of course the origin of the y - plane!).

Image-Set of Ofi^

( a ) (b )

figure 6: Image set of OjE XG t
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' Let (Sy)2 denote the image-set of the triangle OJEJGJ, shown in Figure 6-a. Using similar arguments as
above, the generic line segment O ^ of slope m, shown in Figure 6-a map into a line segment of slope (m 2 + 2m) .
If P denotes the image of Plf then the image (Sy)2

 n o w reduces to obtaining the locus of P as Px moves along GJEJ
in Figure 6-a.

From equations (98) and (99) the image of the line segment G1E1 described by the equation

is the parabolic segment GE in the y - plane described by the equation,

and shown in Figure 6-b.

(114)

(115)

Therefore the locus of P in the y - plane is the parabolic segment GE, the coordinates of whose end points G
and E are given by equations (108) and (106).

The image (Sy)2 of the (interior and boundary of the) triangle OJEJGJ is the region OEG shown in Figure 6-b,
whose vertices O, E and G are given, respectively, by equations (104), (106), and (108); EG is a parabolic segment
described by equation (115).

Tlte Image-Set of O1G1F1

(a)

Figure 7: Image set of O ^ G j

Let (Sy)3 denote the image-set erf O1GlF1.

As before the pneric4iiie OjPt Incise O1G!F! (see Figure 7-a. ) maps into the line segment OP, where P is
theiflmgeofPj.
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' In this case, we have to find the locus of P as P t moves along GjFj.

Using equations (98) and (99), the image of the line segment GJFJ , described by the equation.

is the parabolic segment GF in the y - plane described by the equations,

(116)

. 2 * 3>2 2S ^ 2 ). (117)
Therefore the locus of P in the y - plane is the parabolic segment GF, the coordinates of whose end-points G and F
are given by equations (108) and (107).

The image (S )3 of the (interior and boundary of the) triangular segment OJGJFJ is the region OGF shown in
Figure 7-b, whose vertices O, G, and F are given, respectively, by equations (104), (108) and (107). Note that (sy)3

is not convex.

Image-Set of O ^ E ^

H

(a) ( b )

H

Figure 8: Image set of O ^ H j

Let (Sy)4 denote the image-set of the triangle O ^ f ^ in Figure 10-a.

Then the procedure for finding (Sy)4 of the (interior and boundary of the) triangle OJFJH^ (shown in Figure
8-a) is the triangle OFH, shown in Figure 8-b> whose vertices O, F, and H are given by equations (104), (107) and
(105).

Image-Set of HJ

The image-set Sy of the rectangle H t

Sy is shown in Figure 9.

» given by

(118)

Tte image-s^ S- o€F is tbe QaMenac and bomday of die) regioii OGEF, shown in Figure 11, whose vertices
O, G, E awl F are given* respectively, by equations (104), (108)f (106) and (107). The boundaries of OGEF are die
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H

u

Figure 9: Image set Su

Ike segments OG, OF, and FE and the parabolic segment GE whose equations ire as follows:

OG 0, y2 (119)

OF y, (120)

FE (121)

GE (y2 - q ^ - 4 ^ , ( 0 S yt £ qj ). (122)
Urns OGEF is completely determined. The region OGEF is convex, even though (Sy) 3 is non-convex. This is a
consequence of the fact thai the non-convex boundary of(Sy)3 lies in the interior of Sy.

It will be useM in sacncn 7 to a^rcxnnate me parabolic segment EG by a straight line; consequently the
region QGEF ( i ^ Sy is afptmmaied 1^ a qiMiril^raal). Two appmximatioiis, diown in Figure 12, which are of
interest in the sequel are the following:

L the panbotic segment EG is appmiiiaSDd by the straight Ene segmen: EG joining E and G; the
qiadrilaiGra! OGEF which is the corresponding appoximation to Ite regicm OGEF, (sy), will be caltel
the ioner ap proximadon to S,..

2. tie r^abchc ^giw»l EG is apprcx^aied by î e Ike segment El which is tangait to the parabolic
segment ai E and which tmeiseas the y2 - axis at L TTK cpaadribtand OEF which is the corresponding
appraximaiiQii :c tte region OGEF. (Sjv wil be ai,ted ±e outer approximation to Sy

TT« cwwij«e of I «c givea by



21

Figure 10: Approximation of Image set

0, 2 (123)

5.1*2 The linear mapping (96) and the determination of S-q

From equation (35), the desired image set S- is the image of Sy under the linear mapping (96). The matrix
B(q) which characterize the linear mapping (96) is given by equation (27). Combining equations (26) and (27) and
using the decompositions of the J(q) and E(q) matrices given, respectively, in equations (58) and (59), we can write
B(q)as

B(q) - R(q{) R(fe) { -M(fc) D " 1 ^ V(?2) - N(q£ }. (124)
Defining the matrix Siq^,

}, (125)

we can write B(q) as

B(q) -
Therefc»e B(q) can be

(126)

as die product of a matrix S whkh is a function of q2 only and a simple orthogonal

matrix which depends on ql only.

i, j) dement of die matrices S(%) Mid B(q) wiH be ctenmal, respectively, by s » and b^.

If O\ G\ E', F\ and f denote* r^5ectively, die imag^ in die J^ - plane of O, G, E, F, and I, then using (96)
we can write die following:
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(127)

0 ( 0, 0 ) -> 0' ( 0, 0 ) (129)

G ( 0, ^ ) -» G' ( ft^2, &22?2o2 ) (130)

The images E'F', O'E', O F , and OG' of the linesegments EF, OE, OF, and OG are line segments described by the
following equations:

a,

EF • - i

0E • -

(*

OF • -

it

O'G' • -

The parabolic segment EG maps into a parabolic segmentGE.

a.

(131)

(132)

(133)

(134)

We can therefore write: The image set S^ of the set F is the (interior and boundary ) of the region EFOG,
shown in Figure 11, whose vertices E\ F-, O\ and G' are given, respectively, by equations (127), (128), (130), and
(129). The segments E'F\ O'E', O ' F \ and O'G' are given, respectively, by equations (131), (132), (133), and (134).
Thus S- is completely determined.

Figure II: Image .seiS-



23

52 Properties of S^
In this section, we derive expressions for the supremum and infimum of S^.

5.2.1 Furthest vertex of S^

We first show that the furthest vertex of S- is E'. Inspection of equations (119) through (122) shows that the

furthest vertex of the set Sy is E. Since the set S • is the image of Sy under a linear mapping, the furthest vertex of S-

is the image of the furthest vertex, E, of S . Therefore E' is the furthest vertex of S -.

5.2.2 Supremum of S •

The supremum of S- is the distance of the furthest vertex E from the origin. Using equation (127), we obtain

sup(S^) =

K5ir*l2)2H*2r522>^ (135)

5.2J Infimum of S-

! Since the origin O ( 0,0) is one of the vertices of S-q, the infimum of S^ is zero:

=0 (136)
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6 The state acceleration set, Su

We defined the acceleration set, Su, at a specified point u in the state space as follows:

Definition of Su(q,q): For a given set T of allowable actuator torques described by

the acceleration set Su at apoint u = [ q, q ]Tin the state - space is given by

Su(q,q) = K I (n=(q,q)), (3te

Thus Su is the image of the set T under the mapping (38).

6.1 Determination of S u

Inspection of equation (31) and (38) reveals that

(137)

where a ^ q . x ) €ES^q.xJanda^q.q ,

From (137), we see that

a

Defining,

I :=

and

then

and

a,

.(q, q=0, X) = (X.O

r i
I o .

„ = o.(q, q=0, t)

„ = I Ojtq, T)

„ = a, + k(q^|).

Ifwe define a set "sa,

s,. - {o_ 1 (3a.€ s.

T) 6 Su(q,

1, t).

0

1

Mi = 1

q,t).

1
1

a,)},

(138)

(139)

(140)

(141)

(142)

, , , (143)

then Stt is the image in the A^ - plane of the set ST in the \ - plane under the identity mapping (139). From (142)

the desired acceleration set S a at a specified point a = [ q, q ]T in the state space is the sot obtained by translating su

by the (constant) displacement vector k (q, q ) . This process of generating Su is shown in Figure 12-a, b, and a

We a n write Sm in tbe foltowkg equivalait fcmn:

su - K I (ax.es,) (o » a, + k)} (144)

Since Sx is a pwltetopiin A'B#C'D'9 S B and Sa are a to praHdo-grams congruent to ST hi t lying in the ^ - pteie.

TT« CMitfoid erf the set Sm has coordinates ( o ^ , a ^ ) as shown in Figure 12-c. Loosely speaking, we can say that

Sm h obtained by tra^MHig S t by (o^j , a^) from the cxigin.
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(c)

Figure 12: A state acceleration set

If A", B", C", and D" denote, respectively, the images in the A,, - plane of points A', B', C', and D' in the A, -
plane (Figure 3-a), then from equations (137) and (64) through (67), we obtain

\ A(.kl+anxlo+aux2o, f^+^^^+a^x^ (145)

B\k1+anxlo-anx2o, k^^x^-a^x^J (146)

~* C>'

Su is the (interior and boundary ) of the parallelogram A"B"C"D". The sides A"B", B"C", C"D", and D"A" of the
parallelogram are obtained by (137) and equations (68) through (71),

L

CD

DA

1

(r-U-±) = 0

= 0
n

) = o

o.

(149)

(150)

(151)

(152)

62 Supremum of Su

The supremum of Su is a measure of the largest acceleration available (in some direction) at a specified point
in the state-space. In a similar manner to that of S t , the supremum of Su is obtained as the distance of the furthest
vertex of the parallelogram A"B"CD" from the origin O" of the A,, plane.

If /( O"A"), /( O"B" ), /( O"C"), and /( O"D") denote, respectively, the distances of the vertices A", B \ C", and
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D" from the origin O", thai from (145) through (148) we obtain

KO'C") m V(k l^ |t1^12T2tf)
2+(fcr

<I21tl«-«22t2«)2

KO'D) = Ak^tf^
The supremum of Su is given by

sup(Su) » max[ 1(0"A), 1(0"B\ KOC\ 1(0 D) ]

(153)

(154)

(155)

(156)

(157)

6 3 Infimum of S u

The infimum is the maximum isotropic acceleration for a certain manipulator position in the workspace.

To obtain the infimum we must consider three cases

(a) (b) and (c) (d)

Figure 13: the relative location of a parallelogram to the origin

1. The origin O" lies outside the parallelogram A"B"C"D" and O" does not lie between either pair of
parallel lines (Figure 13-a) comprising the sides of the parallelogram.

2. The origin O" lies outside the parallelogram A"B"C"D" and 0" lies between A"B" and C"D" (Figure
13-b).

3. The origin O" lies outside the parallelogram A 'B'C'D* and O" lies between B"c" and D"A" (Figure
13-c).

4. The origin O* lies inside the parallelogram A"B"C"D" (Figure 13-d).

Using well-known results from analytic geometry, Die condition for O" to lie between the parallel lines A"B" and
C"D' is obtained from (149) and (151) as

condition 1:
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the condition for O" to lie between the parallel lines B"C" and D"A is obtained firom (150) and (152) as

condition 2:

(̂ 1̂ )2 * £^\* (159)

Using the above two conditions, the three cases can easily be identified from the following rules:

• case 1: both conditions 1 and 2 are false.

• case 2: condition 1 is false and condition 2 is true.

• case 3: condition 1 is true and condition 2 is false.

• case 4: both conditions 1 and 2 are true.
The infimum for the three cases is obtained as follows:

case l:(Figure 13-a)

In this case, the infimum is the distance of the closest vertex of A"B"CWD" from the origin O*\ Therefore

inf(Sy) = min[ /(OY), 1(O"B\ KCf<?\ l(O*D) ] (160)

case 2:(Figure 13-b)

In this case the infimum is the distance from the origin to the nearest side, which is either A^B" or C D .

let d( A*!!") and d( C^D*) be, respectively, the distances from O" to sides A ' B " and C " D \

B )id(C D ) =

In a manner similar to obtaining the infimum of S^ the infimum of Su is obtained from equations (161) as

inf(Su) = min[ d{AB\ d(C"D) ] (162)

case 3:(Figure 13-c)

The nearest side is either B^C* or D*A\ let d( B*C") and d( D"AW ) be, respectively, the distances from O" to sides

( l 6 3 )

The infimum of su is obtained from equations (163) as

min[ d(£C*), Ot/f^) ] (164)

case 4: (Figure 13-d) The infimum is the distance from the origin to the nearest side which could be either
A*B\B*C\C*Dw,orD*A\ These distances were computed for cases 2 and 3 above. Therefore,

= min[ d(AmB\ d(B*C\ d(C**D™, d(p"An) ] (165)



28

To summarize the results of this section we can state the following lemma.

Lemma: The acceleration set Su at a point u in the state-space of the manipulator is a parallelogram with
centroid located at the point ( k lf kj ) defined by equations (37); the supremum of Su is given by (157) and the
infimum of Su is given by one of equations (160), (162), (164), and (165). The supremum and infimum of Su is
independent of the joint angle qv

7 Local acceleration sets
At a given position q = [ q l t q2 ]

T in the workspace of the manipulator, we could define two sets in section 2

( I > 2 q«E F ! ! ^

The supremum of ( S ^ will be give us the magnitude of the maximum acceleration (in some direction ) of the

reference point P at a given position (qx, q2) of the manipulator.

The infimum of ( S ^ wttl g*ve us the magnitude of the maximum acceleration of the reference point P
available in all direction at a given position of the manipulator. The infimum of ( S ^ i s called the isotropic
acceleration in Khatib [1] and the local acceleration radius Kim [5].

7.1 Determination of (SL)1

The generic member s t t of the set ( S ^ was described in section 6 and is shown in Figure 9. As q is varied,

Sj_ is a parallelogram which moves parallel to itself. The locus of the centroid, ( k j , l^ ), of the parallelogram as q is

varied is simply the boundary O G ' E Y of the set S^ shown in Figure 11. Therefore we can describe (Sl)l as

follows: The local acceleration set (S^j is the region swept out by the parallelogram Su as its vertex moves along

the boundary O 'G 'E 'F ' . This is shown in Figure 14.

12 Supremum of ( S ^

The sapremum of (S!)l is simply the distance of the origin from the furthest point of ( S ^ .

To determine the furthest point of (SL) t T ail we need to do is to determine

1. die furthest vertex of O'G'E'f\

2. ±eparalk!ogTEm at the furthest venex, and

3. Lhefiiruhestvene-KcfLhis parallelogram

In section 5f we showed thai E' is the farthest veitex of O ' G W , The distances d( O ' A ' ^ ), d( O ' B ' ^ ) , d( O'C'£-), d(

OI)g ) erf the vertices of the praUetogiwa with centroid E# are given by (153) through (156). The supremura of
(3L}: h mm readily obtained as

* max[
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Figure 14: Determination of (SI)l

Figure 15: A local supremum

13 Determination of {S{)2

Using reasoning similar to that in the above section we can describe ( S ^ as follows: The local acceleration
set (SL)2 is the largest region common to all the parallelograms generated by moving the generic parallelogram Su

along the the boundary O'G'Ey.



30

Figure 16: ( S ^ a ^ a lc*al infimum

7*4 Infimum of ( S L ) 2

The infimum of ( S ^ is the maximum distance to the origin from the boundary o

To determine the infimum of ^
consequently the boundary O G E F ' ) are useful.

a u t e r approximation of the set S- in section 5 (and

The problem of determining the infimum corresponding to an approximating quadrilateral reduces to
examining the parallelograms with centroids at the vertices of the approximating quadrilateral since these represent
the extreme parallelograms.

The procedure for finding the infimum, r, corresponding to an approximate quadrilateral (inner or outer) is as
follows:

1. Construct the parallelogram at each of the four vertices O', G', E', F' or O', f, E', F' of the quadrilateral
Lei ?>5(i = 1,13,4) denote these four parallelograms.

2. Check if each parallelogram P- satisfies the two conditions (158) and (159). If all the parallelograms

satisfy these conditions, then an infimum ousts.

3. For each parallelogram, P4-t determine the minimum distance, df, from the origin to the four sides of P^

4. Them the infimum, r, of (SL)2 for the approximation is given by
r = infls^ m mnid^lZZA) (167)

Let r̂  and r2 denote, ieq)eclively, tbe infimum coir^ponding to the inner approximation OGEF and OIEF.

We now need to distinguish 3 cases.
• case 1: r2 * min (d., i = 1$ 29 3,4) was obtained from the parallelogram with vertex I. In this case rj and
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' r2 are different and

rx < mt{Sj)2 < r2 (168)

• case 2: rt = min (dit i = 1, 2, 3, 4) was obtained from the parallelogram with vertex G. In this case rx

and r2 are different and

< r2 (169)

• case 3: rx is not obtained from the parallelogram with vertex G and r2 is not obtained from the
parallelogram with vertex I. In this case rx and r2 are both obtained from one of the other three vertices
and therefore rj = r2 and

infCS^ = rx = r2 (170)

Therefore we either obtain the inf (SL)2 exactly as in equation (170) or with tight bounds as in equations (168) or

(169).
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S Example
In this section, we will illustrate the manipulator dynamic properties obtained in section 4 through 7 using a

two degree-of-fireedom manipulator. First, we show the state accelerations at the vertices of joint velocity
contribution quadrilateral in section 6. The contribution, o^, of actuator torques in section 4 is the local acceleration
set with the zero joint velocity vector. Then, using the state supremum and infimum in section 6, we illustrate the
manipulator state performance. Finally, the local supremum and infimum in section 7 is calculated.

To provide an experimental test-bed, we have built a two degree-of-freedom planar revolute-jointed
manipulator, shown schematically in Figure 1. The design variables of the manipulator consist of

/1= 0.303 m /2= 0.254 m
a ^ 0.196 m a ^ 0.0941m
mx= 2.26 kg m2= 0.177 kg
I t= 0.129 kg m2 1̂ = 2.77xl<r3 kg m2

The actuator torque set is

T = ( T l | t | l < 30. Nmy i=

the joint-velocity set is

V »• {q I |9; | * 1.0 rad/sec,
and the workspace is

W « (q I 1. £ q2 < % rod}.

We choose the manipulator position as q = [ 0, %fl ] T . Our first step is to calculate the elements of matrices
A, B for the manipulator position as follows;

a n = 0.000 a12= -58.666 a

bn=-0.007 b12= -0.000 1^=-0.247

Using equation (157), the state supremum at point O' of section 6 are calculated as 1761.73 m/sec2. Since the
parallelogram of section 4 is the stale acceleration at point O', the supremum of the contribution, ou of actuator
torques in section 4 is also 176 L73 m/sec2.

To obtain the state infimum, two conditions (158) and (159) are tested. Two conditions for our manipulator
ane both positive, ami equation (165) for case 4 is used to calculate the state infimum for [0, 1.57, 0, 0 ]T . The
wEmm for [ 0,1.57,0,0 f h 3932 m/sec2.

The local supremum is the supremum of the state acceleration located at point O' in Figure 17. From equation
(166), the soprerBuin of position {0,137 ] r is obtained as 1761.78 m/sec2. To calculate the local infimum, two sets
of state accelerations should be considered as in section 7. The infimums for the state acceleration sets at point O'*

potato pointF pdntE pointG point I

1761.73 i ^ e c 2 176L73 iii^ec2 1761.78 m/sec2 1761.74 m/sec2 1761.74 m/sec2

Among ffacse kfimiiiis* tte wmmim k Ait Mwmm as m equaticm (170). So, the local infimum for [ 0, LS717 is
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-2,000

1,000-

-1,000 -

1,000 2,600

Figure 17: The acceleration set for a dynamic state O

1,000-

-2,000 1.000 2,000

-1,000 _

Figure 18: The local acceleration set
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I. Equations of motion for a two-degree-of-freedom planar manipulator
1. Jacobian matrix

The Jacobian matrix J has die following components:

j l i=-/2sin(q1+q2)

j21=/1cos qj

When this relationship is differentiated with respect to the time, we obtain the following equation.

x = Jq + 3q=Jq-E{q} 2

where E is a (2x2) matrix which has the following elements:

e21=/1sinq1+/2sin(q1+q2)

2. Dynamic equation

The dynamics of a two-degree-of-freedom planar manipulator is described by the following equation:

D q + V{q}2 + p = t

D is a (2x2) matrix and the components are as follows:

V is also a (2x2) matrix and has a following components:

v n = 0

where

p=[p1p23Tisawctorwiththerank2.

whae g is a gravitational constant

3. Acceleration equation
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The expression of the acceleration of the end-effector consists of three components as follows:

where

B = - A V - E
c=-Ap

A is a (2x2) matrix and has the following components:
a11=A(j11d22-j12d12)

a12=A(-J 1 ld12+J I2dl l)

a22=A(-j21d12+j22d11)
where

A=[dud22-<112
2]-1

B is also a (2x2) matrix and the elements are as follows:
bn=-va1 2-en

b12=va i re12 .

b21=~va22~e21

c = [Cj c ^ i s a vector with the rank 2.
cl=allPl+a12p2

c2=a2lPl+a22P2
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