
NOTICE W A R N I N G CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

SEQUENTIAL EQUIVALENTS OF PARALLEL PROCESSES

BY

D. L. PARNAS

Carnegie Institute of Technology
Pittsburgh, Pennsylvania

February, 1967

This work was supported by the Advanced Research
Projects Agency of the Office of the Secretary of
Defense. This contract, SD-146, is monitored by
the Air Force Office of Scientific Research.

HINT LIBRARY
CARNEfilE-KLLBN UNIVERSITY

Sequential Equivalents of Parallel Processes

D. L. Parnas

ABSTRACT

This paper introduces the problem of finding a sequential process equiva­

lent to a system of interacting discrete parallel processes. Under the assump­

tion that the sequential process is to be composed exclusively of executions

of the individual "parallel" processes in a predetermined sequence, a method

of deriving optimal sequential processes is presented. Applications to the

design of simulation systems and picture processing programs are discussed.

Examples are taken from logic design and picture processing.

TABLE OF NOTATION

Symbol
A
6
2
a
a

U)

1

r

Y

31

A

v
G (v)

Interpretation
Set of processes in a network
Individual process in a network
Set of inputs to a process
Individual input to a process
Set of outputs of a process
Individual output of a process
Set of state variables in a process
Individual state variable in process
(examples only)
Algorithm describing a process
Set of inputs to a network
Individual input to a network
Set of interconnectors in a network
Individual interconnectors in a network
Set of rules describing the interconnections
in a network
a) -»y device output a) connected to inter-
connector y
a <-y =* device input <j connected to inter-
connector y

Set of auxiliary rules describing immediate
dependency of output values on input values
for a device.
Predicate denoting the simulation state of
some part of a network
Denotes the execution of an algorithm simulat­
ing behavior at time t
(!)«-• a => current value of u) depends on current
value of a
Denotes restoration of state variables after
simulation

Introduced on Page
6

5
5
5
5
5

5
5

5
6

6

6

6

6

6

6

11

12

12

12

15

A network 6

Simulation graph of a network 15

Simulation state in which all entries are marked true 17

Transitive closure of 21

References

[I] Knuth, D. E. and McNely, J. L., SOL - A Symbolic Language for General
Purpose Systems Simulation; IEEE Transactions on Electronic Computers,
August 1964.

[2] Knuth, D. E. and McNely, J. L., A Formal Definition of SOL; IEEE Trans­
actions on Electronic Computers, August 1964.

[3] IBM Corp., White Plains, N.Y., Introduction to General Purpose Systems
Simulator III.

[4] Marcovitz, A.M., Hauser, B., arid Karr, SIMSCRIPT - A Simulation Program­
ming Language; Prentice Hall, Inc., Englewood Cliffs, N.J., 1963.

[5] Dahl, O.J. and Nygaard, K., SIMULA - An ALGOL Based Simulation Language;
Comm ACM, September 1966, pp.670-678.

[6] Time Sequenced Logical Simulation Based on Circuit Delay and Selective
Tracing of Active Network Paths.

[7] Shalla, Leon, Automatic Analysis of Electronic Digital Circuits Using
List Processing; Comm ACM, May 1966.

[8] Parnas, D., Richardson, L.C, Kohl, W.H., Preliminary Version, An Intro­
duction to Boole-66; unpublished manual available from Computation Center,
Carnegie Institute of Technology.

[9] Parnas, D.L., System Function Description - Algol; Technical Report,
Carnegie Institute of Technology. (Computation Center).

[10] Parnas, D. L., A Language for Describing the Functions of Synchronous
Systems; Comm ACM, February 1966.

[II] Parnas, D. L., State Table Analysis of Programs in an Algol Like Language;
presented at the 21st Annual National ACM Conference and included in the
proceedings of the conference.

[12] Strauss, J.C., Basic Hytran Simulation Language; 1966 FJCC Proceedings.

[13] Rosenfeld, A., and Pfaltz, J. L., Sequential Operations in Picture Process­
ing; Journal ACM, October 1966, pp. 471-495.

[14] McCormick, Bruce, The Illinois Pattern Recognition Computer, Illiac III;
IRE Transactions on Electronic Computers, June 1963.

[15] Slotnick, Daniel, The Solomon Computer, 1962 FJCC Proceedings.

Sequential Equivalents of Parallel Processes

The design of general purpose simulation languages (e.g., SOL, SIMSCRIPT,

GPSS, SIMULA ([1], [2], [3], [4], [5])) , involves the development of a method

of simulating many simultaneous processes on a processor capable of performing

only one computation at a time. The event list techniques used to perform such

simulation are well known, and this paper will assume that the reader is famil­

iar with them. These techniques are quite suitable provided that two conditions

are met:

(1) The scattering of events over time in the individual processes

is sparse, i.e., it is not uncommon for long periods of time

to pass without an event of interest.

(2) The conflict produced by simultaneous events is either insignifi­

cant or can be resolved by programmer specified priorities.

The first condition will often guarantee the second, since simultaneous

events will be rare. If only the first condition is violated there is, at worst,

loss of efficiency. If the second condition does not hold, erroneous results

can be obtained from the simulation.^

This paper deals with the problem of conflict resolution. It presents two

formal characterizations of the problem which appear to be convenient and to

permit the algorithmic determination of a minimal cost sequence of individual

process simulations which will simulate the simultaneous occurrence of more

than one event in an interconnected structure. An algorithm for determining these

sequences is presented.

' The inability of these methods to deal adequately with simultaneous events
leads to the characterization of SIMULA processes as "quasi parallel". [5]

In the bulk of this paper it is assumed that all of the processes are

simulated whenever there might be activity in the system. Each process is

assumed to be described by an algorithm which describes the actions performed

by the process at such times. The presentation is done in these terms so as

not to confuse two essentially separate issues. In a later section of the paper

it will be shown that it is possible to approach the efficiency found in event

list simulators without loss of the conflict resolution technique developed in

this paper.

Example

Consider the following network:

There are three computing devices synchronously controlled by a master

clock. Each of the computing devices is fast relative to the minimum spacing

between clockpulses, and can, therefore, be considered as performing its compu­

tation "instantaneously".

The first device (1) has three outputs and two inputs. It (and all devices

in the network) has a memory or set of state variables. Its purpose is to pro­

duce on its output lines a set of values which are specified functions of the

values of the inputs and its past history as stored in the memory. The value

of output 1 is a function of input 3 and the state variables, but is independ­

ent of the values of inputs 1 and 2. The value of output 2 is a function of

the state variables and is independent of all input values. If we denote out­

puts by to, and inputs by a, and the state variables by ^ we may write:

- £1,1 f c1,3' M ' - 1 " 0)

«1.2 " £ 1 . 2 < * l < t - 1 » < 2)

The state variables are functions of all the inputs as well as their own

values at the last clockpulse

+ l<t> = f 1 , 0 ^ 1 , 1 ^ 1 , 2 ^ , 3 ^ 1 (t - 1) (3 >

Since the device is "fast" and the value of u)̂ ^ at a time t depends on

the value of a, at time t, equation (1) may be usefully interpreted as a

constraint on the values of a-j -j and uô 1 • A similar interpretation is pos­

sible for the other equations.

Device 2 and 3 can be described by the following equations using the nota­

tion just introduced.

Device 2

^2,1 = f2,1 f a2,r a2,2' * (t > 1) > (4)

^2,2 = f292<ovi^V) <5>

* 2 (t) = = f 2 , 0 < a 2 f T C J 2 f 2 » a 2 > 3 ' * 2 < t - 1))

Device 3

(6)

"3.1 = f
3 , 1 (* 3 (t - 1))

" 3 , 2 - V ^ r V ^ ^

* 3 (t) = f 3 f 0 < C T 3 , 1 ' a 3 , 2 ' * 3 (l > 1))

These devices are interconnected as shown in figure 1.

(7)

(8)

(9)

^ 3

^4

f l CT3

Y6

Figure 1

Input 3 to Device 1 is from some external source, and will be correct at the

time that the clockpulse occurs. At that time each computing device will read

its inputs, compute its state variables and outputs, but its speed is suffici­

ently great that it will be able to recompute these in the event that the in­

puts change during this time. After the correct values are determined (all

constraints satisfied) the system will be idle until the next clockpulse.

The problem considered by this paper is the simulation of this parallel

processing by a sequence of simulations of the individual devices. In other

words, given a set of three algorithms which will compute the functions de­

scribed above (and therefore simulate the devices), in what order should they

be executed in order to guarantee that the values computed will be the same

as those which would be computed by the actual system during one clockpulse?

Further, if there is more than one correct sequence, it is desirable to find

one which is, in some sense, minimal cost.

For the example shown a correct simulation sequence is:

Simulate Device 1 and restore its state variables to their old values

but pass its outputs on to Device 2; simulate Device 2 restoring its state

variables to their old values, passing the outputs on; simulate Device 3;

simulate Device 1; simulate Device 2.

There are other correct sequences.

The derivation of such sequences from descriptions of the network is best

described by the following development.

The Characterizations

General

It is assumed that it is convenient to represent a system of parallel

processes, by describing each process individually, and specifying the means

by which they communicate. Each process is to be described without reference

to other processes in the system. Each process has a specified set of inputs

and outputs. The communication of processes then described in terms of "inter­

connectors11. Each input or output is associated with one interconnector.

Each interconnector is associated with exactly one process output but may be

associated with any number of process inputs. This viewpoint seems most

natural in considering hardware systems. It is not, however, restricted to

such systems. Hardware devices would be described in terms of the algorithms

that they implement or execute. The "interconnectors" serve only to equate

the input to one such algorithm with the output of another. Any system may

be viewed in this way. The reader may choose to read "processor" or "device"

for "process" without loss of accuracy.

The two characterizations of the problem differ only in the way that the

processes are described. In the first characterization, processes are de­

scribed by a single algorithm, while in the second this algorithm is replaced

by two or more algorithms, one computing the internal state of the process,

the others computing the outputs. The first model is, in the opinion of the

author, more natural; however, the second permits a more efficient simulation

in many interesting cases. The difference between the two characterizations

will be discussed in more detail in a later section.

The First Characterization

1• Processes

Definition 1

A process 6, is a quadruple fe, Q9 Y, Y) where J is a set of input vari­

ables, Q is a set of output variables, Y is a set of internal state variables,

and Y is an effective algorithm such that each execution of Y will determine

new values for fi and Y based on the values of S and previously determined

values of ¥, Q f l S a f l f lY = E H Y = ^ (the empty set). We will denote a mem­

ber of J by a, a member of Q by U J, and a member of Y by ^.

The quadruple describes a process or device which operates in discrete

steps* The inputs are presumed to be determined externally to the process.

The outputs are calculated by the process as functions of the externally de­

termined inputs and the values of the state variables which were determined

during the previous event. The requirement that the intersection of 0 and Y

be null is for expositional clarity and is not essential.

2. The networks

Definition 2

A network, v9 is a quadruple (A, H, r > K) where A is a set of processes,

S is a set of input variables (variables *tose values are determined by pro­

cesses outside the network), r is a set of interconnector variables (variables

whose values are determined within the network), and 3 1 , a set of statements

about the network, is described below.

We denote a member of A by 5, a member of E by §, and a member of r b y y .

We write u) ->y ((u> -»y) € 3 0 where a> is an output of a process g , and y

is determined by the structure of the network to be equal to the value of w

This may be read "u) determines y". It is sometimes convenient to write 6 -»Y

where it is not necessary to indicate which output of 6 is involved.

We write a <-y ((a *~Y) € ^ 0 where a is an input of a process 6 and y is

an interconnector to indicate that the value of <j is determined by the structure

of the network to be the value of y. Again, for convenience, we may write

5 <-y to indicate that the process 6 has an input from the interconnector y

where the particular member of E need not be distinguished.

We will also write a ((a «-?) € 5 0 where a is a process input and

§ is a network input, to indicate that the value of a is determined by the

structure of the network to be equal to the value of The set of statements

just described constitutes JR.

The network is our means of describing the interconnection of the separate-
2

ly defined processes. The interconnection is delayless, "connected11 process

inputs and outputs are always equal.

This type of description of a system is termed "structural", and closely

corresponds to a "block diagram" picture of a system.

The following definition will be used later.

Definition 3

A network, v = (A» H> T, 30 is said to be complete if and only if:

1. For each process 6 = (S, Q, Y, Y) and for each cr e E there is one

and only one ye (E U T) such that (cr *-y) 6

This requires that each input to a process be connected to (or determined

by) one and only one interconnector or network input.

2. For each interconnector y in the network there is one and only one

process 6^ = (2^, Q^, Y^, Y^) and one and only one output u) e such that

(u) -»y) 6 9t.

This requires that each interconnector be connected to one and on ly

one output of a single process in the network.

If an input a to a process 6 is to be a function of two process outputs

o)^ and this can be achieved by the introduction of a delayless process with

a single output, the proper function of two inputs. The restriction that no

interconnector be connected to more than one process output and no process in­

put be connected to more than one interconnector, therefore, does not preclude

any useful systems. The reader will note that an interconnector may be used

as input to 0, 1, or more, processes in the network. Hereafter we shall assume

that all networks are complete and will not state this explicitly.

2
The set of interconnectors, r> may be thought of as a set of wires or patch
cords, the set of inputs are wires which originate outside of the system.
9t may be thought of as instructions for wiring the network connecting each
wire to the output of one device and (here the analogy is slightly strained)
to any number of device inputs, r is not strictly necessary to the develop­
ment that follows, but simplifies its presentation.

We shall assume that any process in the network can be simulated individ­

ually. The problem of simulating the network then is one of finding a sequence

of individual process simulations which will duplicate the behavior of the pro­

cesses functioning simultaneously. This sequence can then be executed once

for each event to be simulated. The sequence is clearly not arbitrary. For

example, if in some network v = (A» H, T9 30 !R contains 51 ->y^ and 6̂ «~Yi

then it would appear that 6̂ must be simulated before 5^. However, our def­

inition of network would also allow 6g ~*Y2 a n d 6-j <~Y2 t o b e i n This

seems to imply that 6^ must be simulated before 5 p an apparent contradiction.

While it would be quite convenient to rule networks containing loops

(such as the one above) out of the class of well-formed networks, to do so

would eliminate many useful structures. Feedback loops such as the one de­

scribed are essential.

In networks of delayless devices (devices in which an output at some time

T is a function of an input at time T) the presence of such a loop indicates

that the network is ill-formed and has defined behavior only in special cases.

In logic design such delayless loops are referred to as race conditions since

they,can result in instabilities. In the rare case where delayless loops do

not cause instability and can be used, they are known in the trade as "cheat

paths". In the sections immediately following it is assumed that delayless

loops are undesirable, and we require that well formed networks not have such

paths. In a later section there is a discussion of techniques that remove
3

this restriction for various classes of "cheat paths".

Multiple Simulations of a Process During an Event

Under the characterization of simulation problems that has been presented

it is sometimes necessary to simulate one or more processes more than once dur­

ing a simulated clockpulse. The following example is one such case.

"*In several years of advising students on the use of a logic simulator which
did not permit "races", the author was never shown a "race" with well defined
behavior which could not be replaced by a well formed network with lower cost.

D

Figure 2

Each element, D^, is a 1 unit delay device. Each has one input; one

state variable . and one output u).. The algorithm Y. can be written
1 1 1i=l,2

as follows:

C*-1 indicates an assignment
'i *~*ai in the usual sense)

If D.j were simulated first (by executing Y-j) the value of Y-j might be

incorrectly computed, since the value of u s e & a s the value cr-j might not be

the actual value of w^* A correct solution can be guaranteed by executing Y-j,
4

restoring ^ to its old value, executing Y2> a n c* then executing Y-j again.

Augmented Processor Descriptions

The quadruple description of processes (Definition 1) is complete in the

sense of completely defining the process. We shall, however, assume that this

description is augmented by certain declarations about the behavior of the pro­

cess. These declarations contain no information that was not already implied

by the quadruple; our insistence on a set of declarations frees us from the

potentially unsolvable task of determining these properties from the description

of the algorithm. ~*

The alert reader may have noted that this technique is not necessary for the
case noted and that a cheaper simulation is possible. This is the motivation
for the second problem characterization and will be discussed later.

The task is potentially unsolvable because the class of algorithms allowed
is unlimited and includes, for example, algorithms describing Turing Machines,etc.

The information in these declarations is information which is needed

before any device is simulated.

The behavior of a network with loops, cannot be determined without

further knowledge concerning the properties of the processes involved in

those loops. Figures 3 and 4 show simple networks with undefined behavior.

The network in Figure 3 has undefined behavior because there is no value which

satisfies the constraints; the network in Figure 4 has two possible solutions,

and, unlike the example in Figure 5, there is no way to discuss the initial

state, since there is no state variable. Figure 5 shows a network with a

structure identical to that of Figure 3, but its behavior is completely defined

(provided that the initial state of the device is specified). The difference

stems from the nature of the devices in each example. The delay introduced

by the device in Figure 5 is responsible for the networkfs behavior being

completely defined.

>
a s

delayless device such that CD <—i a
a), a Boolean variables

Figure 3

> C T 2

U)

s

U)

delayless device a) <-a-i + CJ
(Boolean "or")

Figure 4

simple delay unit
(described earlier)

Figure 5

These considerations motivate the following definitions:

Definition 4

An augmented process 6 is a 5-tuple (E, 0, Y, Y, A) where 2, Q, Y, Y

have the same interpretation that they had in Definition 1 and A is a set of

rules of the form u) a where co e 0 and a e E.

Definition 5

The state of an augmented process § = CE, Q, Y, Y, A) is a Boolean

vector with one entry associated with Y and one entry associated with each

member of Q,

Definition 6

The input state of a process is a Boolean vector with one entry associated

with each member of £.

The interpretation of these vectors is straightforward. At times during

a simulation some of the inputs, outputs, and state variables of the process

will be known to have correct values, while others may be either correct or

incorrect values, but cannot be guaranteed correct. The state vectors describes

this situation in detail.

Notation:

<j>t (a) is a predicate which is true if the entry in the state vector

associated with an input q is true for time t.

^ t (u)) is a predicate which is true if the entry in the state vector

corresponding to u> is true for time t.

<ft (Y) is a predicate which is true if the entry in the state vector

corresponding to Y is true for time t.

E t (Y) will denote the execution of Y using values of Y determined to

be correct at time, t-1.

t t (?) (where £ 6 E) = true.

The meaning of A is given by the following. We write «) <-»g as shorthand

for (a) <- #a) € A.

Definition 7

For an augmented process § = (£, Y, Y , A),A is a set of rules of the

form a) <- # cr. with the property that

V a) e N [[V a e £ [(a) a) * <ft (a)]] =» [E t (Y) => ^ (a))]]

This definition indicates that A is a set of rules of the form a) 4-»a such

that if the correct values of all cr such that u) <-*a are known for a time t

we can calculate the correct value of a) (at the same time) by executing Y (using

the values of Y computed for t-1).

Note that our definition allows A to contain more rules than necessary.

Finally, we define ^ t(Y) by the following:

[V a e S [f t (a)]] A E f c (Y) « ^ (Y)

In other words, correct values for the state variables can be determined

if and only if the process algorithm is executed with all input variables

known to be correct.

Example

Figure 1 shows a schematic diagram of the network described earlier. The

exact nature of the processes is irrelevant so Y and Y for each of the processes

U),

a.

is unspecified. In the figure a line within the block representing a process

and connecting an input to an output indicates a delayless dependency.

Figure 6 gives a description of this network and the processes in the

notation just introduced. It is suggested that the reader study the diagram

and description to become familiar with the notation.

v = (A, E , T , 3D

r = [y v y 2» y 3> y 4. y 5» y 6}
* - IS, - ° 1 3 . » i , i -*Yt ^ 1 > 2 ->Y3»

u2,l ^5' c« 2 > 2 ^ Y 2 » ">3,1 ^ V 6 » w 3,2 ^ Y 4 .
r1,1 ^ Y 2 > <*t,2 <-Y4» <T 2 > 1 < ~ Y r a 2 > 2 *~Y 3

CT2,3 *"Y 6. cr 3 j l ^ y 5 }

2 1 = f c r1,T CT1,2» CT1,35

Yj» Y 1 are unspecified

6 2 = (S2» Q 2» Y 2» Y 2» A 2)
5 2 = {CT2>1, CT2j2, a 2^ 3]
n 2 = » 2 , 2 }

^ 2 ' ^2 a r e u n sP e c*-f *-e(*
A 2 = K , 1 *-°2,V U)2,1 4-* c r2,2' ^2,2 ^ CT2,13

6̂ ~ > * ̂ 3 9 ^3 * ̂ 3^
5 3 = { a 3 J }
n 3 = { u) 3 J , u) 3 j 2}

Y^, ¥3 are unspecified
A3 = ^3,2 * - ^ 3 , l ^

Figure 6

It is now necessary to extend the concept of simulation state to the net­

work as a whole.

hmbihkum ummm

Definition 8

The simulation state of a complete network v = (A, E, r » S O is a Boolean

vector with one entry corresponding to each process in A and one entry corre­

sponding to each member of F. The predicate (|) is defined in a manner analogous

to the previous definition. The values of the entries in the state vector are

defined in the terms of the values of the individual process state vectors by

the following:

For any process 6» ^ (6) = $ (Y) where Y is the set of state variables

of 6-

For any interconnector y9 § (y) = (u)) where a) is the process output such

that a) -»Y» Note that § (y) is uniquely determined because of our assumption

of completeness (Definition 3) .

Finally, we can define the value of the input state vector of a process

in terms of the state vector for the network by the following:

V y e T [V 6 e A [v a e S [a *-y (a) = (y)]]]

Changes in the simulation state of a network are caused by executions of

process algorithms (simulation of the process). The change made by the exe­

cution of any process algorithm is defined above provided that each process is

executed while tyt 1 (Y). (This follows from the definition of E tGf)).

Figure 7 shows the state vector for the example of figures 1 and 6.

STATE VECTOR = (f(Y l>, f<Y2), t<Y3), <KY4>> <KY5)> • <Y6>* t<Y 2 >> ^ 3))

Figure 7

Definition 9

We shall define simulation sequence> by the following: (<A> denotes a

member pf A)*

<process reference> : := <£> | ~ <A>

<simulation sequenced ::=<process reference> |

<simulation sequence>, <process reference.

The interpretation of a simulation sequence is:

(1) Each process reference of the form <£> denotes the execution of

the algorithm of the process referenced.

(2) Each process reference of the form ~ <£> denotes the execution

of the algorithm of the process referenced followed by the restor­

ing of the values of Y e to the values they held before the execu-
o

tion (and the restoration of 4 (Y e) to false).
o — — —

(3) The sequence of process references is to be read from left to

right.

We are now in a position to restate the problem under consideration as:

Problem; Given a network v = (A, E, T, 90 and a set C of costs associ­

ated with the execution of each process algorithm, find a minimal cost simula­

tion state from all entries false to all entries true.

Solution: (1) Construct a simulation graph, G(v), by the following rules

(a) There is an initial node 0 labeled with the "false state" (all

entries false).

(b) From each node n labeled with simulation state $ draw an arc out­

ward for each 6 e A such that (j) (5) = false.

(c) Label the terminal node of each arc drawn in (b) with the simula­

tion state that would result from simulating the process 5 with

the network in simulation state $. This state, $ f, can be deter­

mined from definitions 5 - 8 . (All entries not true by those
6

definitions are false). If (p 1^) = true then label the arc 6

else label the arc ~ 6.

(^•(6) is the entry in $' corresponding to 6.

(d) If there already Is a node with label $' combine it with that

just produced.

(e) Continue the process (go to (b)) until there are no nodes which

have not been used in (b).

The above process must terminate since the number of possible nodes is

finite. Figure 8 shows the graph obtained by applying the above to the example

of Figure !• Node labels are given in Table 1.

FULL GRAPH G(v) for Example of Figure 6

0

Labels are given in Table 1 #

Figure 8

Table 1
Labels of Nodes in Figures 8 and 9

NODE LABEL

0 (f. f, f, f, f, f, f, f)
1 (t, f, t, f, f, f, f. f. f) eg (£. f, f, f, f, t, f. *t f)
3 (t. t, t, f, t, f, f, f, f)
4 (t, f, t, f, f, t, f, f, f)
5 (t. t, t, fc» ti t, f ? f, t)
6 (t, t, t, f, t, t, f. t,? f)
7 (t, t, t, t, t, t, t, *i t)
8 (t. fc» fci t» t, t, *» t. t)
* (t, ti fci ti t, t, t)

Note: the above vector is

t<Y,). <KY2>> t (v 3) . t<V 4). t<V 5). t<Y 6>. f C v ,) . <KY 2 >. t (Y 3 »

(2) We can now state several obvious theorems.

Theorem 1. If there exists a correct simulation sequence there will be a

node in the graph which we label * such that all entries of * are true.

Theorem 2« Any path from 0 to * represents a correct simulation sequence.

Theorem 3. If the length of each arc is the cost of performing the associ­

ated simulation then the shortest path from (|) to * represents a minimal

cost correct simulation sequence.

Proof: The theorems follow directly from the definitions.

It follows from the above, that the combination of a shortest path

algorithm with the graph generation algorithm described above would gen­

erate solutions to our problem. There are, however, several theorems

which allow the simplification of the graph and result in greater effici­

ency.

Theorem 4. No minimal path will contain an arc originating and terminat­

ing on the same node (loop).

Proof; One always obtains a shorter path by deleting the loop.

Lemma 1. If all loops are removed from G then G is not cyclic.

Proof: It follows from our definitions that the simulation of a process

never changes a true entry to false. If the state changes, at least one

entry is changed from false to true, and it is never possible to return

to the previous state.

Theorem 5. For any node in G from which originate two arcs labeled fi^ and

§2* 0) the node reached by the arc labeled 6̂ will have an arc labeled

62 originating there, and vice versa; (2) the node reached by taking the

arc labeled 6̂ and then the arc labeled 6 2 will be identical to the node

reached by taking the arc labeled 6^ and then the arc labeled 5^.

Proof: The existence of both arcs at the original node implies that all

inputs to both processes are marked true. Each process changes a fixed

set of entries in the state vector, and those sets are disjoint. The

prder of simulation is, therefore, irrelevant.

Corollary: If at the node described above, minimal path includes the arc

labeled 6^ followed by the arc labeled 82> t h e n there is another minimal

path using the arc labeled 6 2 followed by the arc labeled 6j.

Theorem 6. If a node n in G is on a minimal path from f to * and an arc

with a label of the form <£> passes through that node then there is a

minimal path which includes that arc.

Proof: By the previous theorem and corollary we need not consider any

other arcs with labels of the form <&>. Let us consider an arc labeled

6- and leading to node m, and an arc labeled ~ 6- and leading to node m 1.

It is clear that an arc labeled 6^ will originate at m 1, while an arc

labeled either 6 2 or ~ § 2 will originate at m. Let the first arc lead

to p', the second lead to p. It is clear every entry marked true in the

label of p 1 will also be marked true in the label of p since all entries

determined by 6-j will be true at both and at least as many of the entries

associated with gj.will be true at p (possibly more since some of the in­

puts of 6 2

 m a y have been determined by outputs of 6^). Let us call two

paths which have the same sequence of arc labels parallel. If there is

a minimal path leading through p f to * then there must be a parallel path

leading through p to *• The theorem now follows by noting that both paths

have the same length. Figure 9 illustrates the various arcs and nodes

mentioned in this proof.

Illustration for Proof of Theorem 6

n

Figure 9

Corollary: If we obtain from G a graph G f by (1) deleting all loops, and

(2) deleting all arcs except one with a label of the form <£> from nodes

which have an arc so labeled, the resulting graph will have a minimal

path no longer than the minimal path of G, and it will represent a correct

simulation sequence.

Figure 10 shows a reduced graph for the example of Figures 1 and 6.

Figure 11 shows correct simulation sequences for that example.

REDUCED GRAPH for Example of Figure 6

Labels are given in Table 1.

~ 5

Figure 10

Correct Simulation Sequences for Example of Figures 1, 6.

6 i >

5 r
6 3 , ~

^2* ^3* ̂ 1' ̂ 2

6j> &29 ^1

8j> &2> 63* 6-j

5-|> &2>

(not found in reduced graph)

Figure 11

It is of interest to define the class of networks for which the above

technique is useful. This is clearly the class of networks for which the graph

G contains a node * as defined earlier.

Definition 10

We shall write Y2

 i f t h e r e e x i s t s a process 6 with input or and out­

put u> such that cr <-y2'9
 0 0 *~* °* 0) . - > Y T

Example: In Figure 6 y^ Y3

Definition 11

We shall write y^ y if there is a sequence of interconnectors

YQ, Y T # # Y n
 s u c' 1 &iat YQ 8=8 Vi a n d Y n

 = Yj a n d Yi *~#Vji+i ^ o r 1 = 0»»»n-

This relation is clearly transitive.

Example: In Figure 6 Y4 < # Y3

Theorem 7« For any network y a (i f H, T f 3l)i there is no y in r such

that y <* y i f a n d only if the graph G(v) contains a node * as defined

earlier, and conversely.

Proof: If at node n, (j) (y) is true then, at the origin of all arcs

terminating at n, it is true that V y e T I Y ? < # Y ^ t ^ there

exists Y such that y < y then the node 0 had (|) (y), because the graph

was built by drawing nodes outward from 0 and is non cyclic. It follows

that the existence of the node * implies that there is no Y such that

Y <• Y # T o sh° w th e converse, we assume that there is no node * in G.

This implies that there is at least one Y such that there is no node where

(} (Y). This can only be so if there is some y 1 for which this is true

and for which Y y* If y' = y ^en we are done; if not, we repeat

the process finding still another y l l ?such that there is no node where

^(Y 1 1) and Y 1 y". Since there are only a finite number of elements

in r we must either find a Y previously found or one such that y <• y.

In either case we are done, having found a y such that y <• y.

The Second Characterization of the Problem

It is possible to substitute the following for Definition 1.

Definition la

A process 6, is a quintuple (2, Q, Y, YJ» Y 2) where 2 is a set of input

lines, 0 is a set of output lines, Y is a set of internal state variables,

Y-j is an algorithm such that each execution of Y-j will determine new values

for 0 based on the values of Y and E, and Y 2 i s a n algorithm such that each

execution of Y 2 determines new values for Y in terms of 2 and previously de­

termined values of Y.

In other words, we can decompose the algorithm Y into two algorithms, one

computing the output values of the device, the other computing its internal

state. If the costs of executing each of the sub-algorithms is not as high as

the cost of executing the whole algorithm (i.e., if the algorithm can be de­

composed in some meaningful way) then it is usually possible to find cheaper

simulation sequences because it is never necessary to evaluate the internal

state incorrectly and then restore it.

The reader should have no difficulty in extending the definitions and

techniques used in the first characterization to this second characterization

of the problem. It is still possible in this characterization for multiple

simulations of Y-j> the output algorithm, to be needed. The state graph tech­

nique is again applicable to finding minimal solutions and can, in fact, be

used to find minimal solutions for networks containing a mixture of devices

described both by single and double algorithms.

Other Characterizations

If there are separate algorithms for each device output, then each algor­

ithm could be evaluated once and only once. Each algorithm would be evaluated

once all the inputs on which it depended were determined. In other words the

more information about the internal structure of a process available, the more

efficient the simulation possible.

Efficient Handling of Idle and Waiting Devices

One of the soundest objections to the method of simulating parallel pro­

cessors described above, is that it is inherently more costly than the "pre­

dictive" methods used in such simulation systems as SIMSCRIPT, SOL, and GPSS.

Whereas the method described here executes each device at least once whenever

an event might occur, and often more than once, the other systems predict

future events and will often "skip" long periods of time during which the

devices in the system have been predicted to be inactive. This often results

in substantial economies. It is the purpose of this section to show that the

efficiency of such systems can be approached by combining event list techniques

with the method of this paper.

The methods used in the prediction based simulation systems do not resolve

the problem of simultaneous events. To assure proper simulation of networks

in which the effects discussed in this paper are important, a structural anal­

ysis such as is used here, is replaced by great effort on the programmer's part.

The ability to take advantage of inactive or waiting processes can be

added to the methods discussed in this paper. It must be remembered that the

processes themselves can be described in any language, including languages

which allow statements such as SOL fs wait and wait until. (SOL itself could

be used for description of processes within the network). This information

can be communicated to the structural analysis algorithm, which will respond

by using as the initial node in G(v) a node at which 6 and all its outputs are

marked true. The rest of the system can be simulated in an optimal manner. In

effect this process and its output will be considered external to the system.

If all the processes in a system are predicted to be inactive for a length of

time, the time can be skipped just as it is in the predictive systems. When-

ever these are simultaneous events, correct resolution of timing conflicts is

guaranteed*

Asynchronous Networks of Processes

In the discussion above it was assumed that all of the processes in the

network were synchronously controlled. Many systems of interest consist of

asynchronous processes. The simplest case, a process whose clock rate is low­

er than that of other devices in the network as a whole can be considered to

be inactive for certain clockpulses, and can be handled just as the "waiting11

devices discussed above. For more complex cases the following is relevant.

Time of Sequence Determination

The method of sequence determination developed in this paper is fairly

involved and could involve considerable computation for large highly connected

networks. It is usually desirable that the number of times that this is done

be minimized. In the simplest case, that in which every process must be simu­

lated at every clock pulse, the ordering can be just once at "compile" time.

In networks of processes that are controlled by individual clock rates as dis­

cussed above, it is possible to compute "activity patterns" at compile time

(i.e., before any simulation is performed) if the clock rates are fixed. In

such cases one can compile a set of simulation sequences, one for each activity

pattern, and execute them as the activity patterns occur. In networks where the

inactive periods of the processes are not constant, but the length of the in­

active period is determined at the start of the inactive period, the event list

techniques become appropriate. It will probably prove economical to compute a

simulation sequence as if all processes were active when simulating an event,

the inactive processes can be eliminated, and the simulation sequence simpli­

fied. The resulting sequence may not be optimal but the suboptimal solution

will often be preferable to the expensive search for an optimal solution wherever

simultaneous events occur. It is clear that the relative costs of such approach-

es depend on the nature of the network being simulated.

In the event that some devices in the network are inactive for indefinite

periods (i.e., until some external event occurs), the technique used to imple­

ment the wait until statement in SOL [3], [4] becomes necessary.

Dynamic Networks

Implicit in the above discussion has been the assumption that the number

of processes and their interconnection is fixed over time. Such an assump­

tion does not hold in languages such as SOL (or GPSS) where transactions may

enter or leave the system during a simulation. Further, one can conceive of

the interconnections changing in some systems being simulated. There is, how­

ever, no reason why the above conflict resolution technique cannot be applied

to such networks during the simulation provided that the necessary information

about the processes is available. An instantaneous view of a SOL simulated

system is a network as defined earlier. The active transactions and facilities

correspond to processes, the global variables to interconnectors.^

Resolution of "Race Conditions"

Figure 12 shows a simple example of a "cheat path" or permissable race

condition in a logic network. Inspection will show that y, <• ye a n < * Y<; Y A

"Y4 V 5

Figure 12

The network may not be complete, however; this is usually either easily cor­
rected or a programming error in the SOL program.

Although this is a race condition in the sense of the above discussion

(delayless loop) it does not result in undefined behavior because <* Y4

only if § 1 = 1 and y^ <y^ only if 5 ^ = 0 . For logic circuits it is possible

to derive the conditions on the immediate dependency rules, A, but in the more

general situation under disucssion this is not possible. If we are given con­

ditional statements as elements of A for each device, we can resolve the race

and produce a correct simulation sequence at run time. A restricted class of

networks (including the example) could be resolved at compile time by noting

that the conditions were mutually exclusive. Another example in which such

loops are dealt with is given later.

Implications to Logic Circuit Simulation

Two recent papers [6], [7] have discussed the simulation of logic net­

works described by structural descriptions similar to the network descriptions

used in this paper. It should be clear that such networks are a special case

of the networks discussed in this paper. Both papers referenced described

methods which involved considerable analysis of the structural description dur­

ing the running of the simulation. The first of these papers [6] is oriented

towards gaining efficiency by simulating only the active elements. The other

[7] gains efficiency by suppressing simulation of redundant logic. In both

cases the overhead involved in suppressing the unnecessary simulations is suf­

ficient to suggest that a cost analysis might disclose a wide class of net­

works in which it was more efficient to simulate every element every time.

However, by applying the results of this paper it is possible to achieve the

desired effects at a lower run time overhead than the methods described in

either paper. Both techniques perform much of the structural analysis at run

time. The nature of the logic elements is such that the multiple algorithm

representation of the devices is simple and natural. It is then quite easy,

at compile time, to derive a simulation sequence (on the assumption that all

devices are active) which involves execution of no algorithm twice. Further,

one can derive, for each output, the set of algorithms which use its value.

Compiled with each algorithm is a scheduling routine which enters the affect­

ed algorithms on the event list. For each event time the event list consists

of a Boolean vector with one entry for each algorithm, that entry indicating

that the corresponding algorithm is to be executed if true. Note that if times

when the network is completely inactive are rare, the event list should not be

a list at all but a table such as that used in [6], At each event one then

proceeds down the simulation sequence executing only those algorithms scheduled

for that time. This method involves no structural analysis of any sort during

the simulation run. Further, in such a system, it would be quite easy to pro­

vide an option allowing the user to select either selective simulation (simula­

tion of only elements which might change) or simulation of every element every

time according to the economies of the situation. It is conceivable that the

system might make such a choice on the basis of its experience with the circuit

being simulated. The time required to simulate every element every time is

easily calculated. If the average simulation time using selecting simulation

rises above this, the system reverts to the simpler method.

Compatability of Device Descriptions

Since the algorithm for determining proper simulation sequences is inde­

pendent of the language in which the processes are described (except for the

set A)> it is possible to simulate the interaction of processes which have been

described in different languages. We are currently developing a simulation

system, SODAS, in which it will be possible to describe processes in a version

of SOL, BOOLE [8], SFD-ALGOL, [9], [10], [11], a register transfer language for

computer description, a version of Continuous System Simulation Language [12],

and the SODAS language itself. Each of these languages has definite advantages

for certain types of systems, and we hope to make the features of all of them

available to those interested in describing and simulating systems containing

subsystems of more than one type.

An Example - Picture Processing

A recent paper by Rosenfeld and Pfaltz [13] discusses picture processing

by parallel and sequential computers. The authors are concerned with picture
8

transformations which can be performed by a large number of local operators.

These operators could conceivably be performed either in a definite sequence

by a conventional computer or in parallel by a network of parallel processors

(e.g., Solomon type units [15] or units such as PAU on ILLIAC III [14].

The authors point out that while picture processing work is often described

in terms of parallel local operations, much of the work is actually done by sim­

ulating the parallel computer systems by a sequence of local operations performed

on a sequential computer.

They go on to describe the method used to simulate a parallel computer on

a conventional machine. They then show sequential local operations which will

perform the same picture transformations much more efficiently than the simulat­

ed parallel method.

In the following we shall examine the distance transforms of [13] and it

will be shown that the method of this paper yield a method simulating the paral­

lel processing situation which is slightly more efficient than that invented by

the authors of [13]. The following quote from [13] describes the transform,

arid the method used in [13] to produce it.
1* "4.1 Distance

Let P and Q be any two distinct points in a digitized picture,
and let d*(P,Q) be the smallest positive integer such that there
exists a sequence of distinct points P = P^, P^, P n = Q with

g
A local operation is one which calculates a new element of a picture using
only the value of that element and the values of a small number of neighbors,

t Reprinted with the permission of ACM.

P t a neighbor of Pĵ , 1 | i § n, This d* is called the distance
from P to Q; if P ="Q, the distance between them is defined as
zero. The distance from P to a given subset S of the picture is
defined as the smallest of the distances from P to the points in
S.

Like connectivity, the distance concept is defined by iterat­
ing the property of being a neighbor. Here, however, the minimum
number of iterations required to •reach1 Q from P is of interest,
whereas in the case of connectivity, the question considered was
whether Q could be reached at all from P using only points in a
given subset as intermediate points. As was pointed out for con­
nectivity in Section 3.1, a distance can also be defined using
only horizontal and vertical neighbors as 'steps.1 If d(P,Q) is
the distance from P to Q using this more restricted definition, is
is clear that d ̂ d*. For simplicity, the restricted definition is
used in the remainder of this paper.

Evidently, d(P,Q) (and similarly for d*) has all the properties
of a metric^. It should be emphasized, however, that d is not even
approximately the Euclidean distance. In fact, the locus of points
at a given distance d > 0 from a given point P is a diagonally ori­
ented square of side D+1 centered at P, rather than a circle-*.
4.2 Distance transformation

Given a digitized picture whose elements have only the values
0 and 1, it is desired to construct a distance transform of the
picture in which each element has an integer value equal to its
distance from the set of O's. (It is assumed that the set of O's
is nonempty.) Thus in particular, the O's remain unchanged, since
they are at zero distance from themselves; the l's which are hori­
zontal or vertical neighbors of O's also remain unchanged; the l's
which are horizontal or vertical neighbors of such l's become 2's;
and so on.

This transform can be performed using just two sequentially
applied local operations as follows. Let

f l (a i , j) = 0 i f ai,j = 0

= min (a + 1, a l)if (i,'j) jt (1,1) and a. .= 1,
= m + n if (i,j) = (1,1) and ^ 1,

£ 2 (al,j> - m l n (a i , r ai+1,j + \ 3i,j+l + 1 } -
Since no two points of the picture can be distance m+n apart, we know
that a^ j is at a distance less than m+n from the set of O's, if this
set is nonempty; thus the final value of a^ - (or of any other element
labeled m+n by f^) will be the value assigned to it by f .

THEOREM. Let C = (c .) be the picture which results when f. is
applied to the picture A = ,^a i) in forward raster sequence, followed
by f 2 in reverse raster sequendd. Then C is the distance transform of I

PROOF. Note first that if a = 1 and a horizontal or vertical
i « 1

It is positive definite by definition, and is clearly symmetric (the
reversal of a sequence from P to Q is a sequence from Q to P and vice
versa). Moreover, jsince any two sequences from P to Q and Q to R,
respectively, can be put end to end to give a sequence from P to R,
it evidently satisfies the triangle inequality.
For the metric d*, the corresponding locus is an upright square of side
zcl+1 centered at P.

neighbor of a . is zero, evidently . » 1, and conversely. Sup­
pose now that , J c^ .is equal to the distance from the (i,j) element
to the closest zero'^lement in A for all (i,j) such that this distance
is less than k. Let B = (b^ .) be the picture which results from
applying f̂ in forward raste£Jsequence to A. If . = k, by the in­
duction hypothesis the distance from the (i,j) elemdtlt to the nearest
zero must be at least k. If it is greater than k, by definition of
distance it must be at least k for each of the (i,j) element's hori­
zontal and vertical neighbors. In particular, . and . +j
each are greater than or equal to k, so that c^ . implieSJ

b^ = k by definition of i^. But then b^ ^ . 6i? b^ . ̂ , say the
foraer, must be k-1 by definition of f^, so *t!hat
c. , . ̂ k-1; contradiction.

I — 1 1 C\
> J The distance transforms for a circle, two rectangles0 and regions

F, J and K of Figure 3 are shown as Figure 4. These transforms illus­
trate the output of an IBM 7090/94 program, written in FORTRAN, which
accepts input digital picture data as described in Section 3.3. For
simplicity, only the odd distance values are printed out modulo 10,
while the even values are left blank; the points with value zero are
printed as X's.
The two rectangles actually have the same proportions; the difference
between their shapes in the figure results from the unequal horizon­
tal and vertical size of a character space. The circle appears dis­
torted for the same reason."

The parallel computer in [13] is a set of devices each one of which is as­

sumed to introduce a one unit time delay between input (from neighboring points)

and output. Such a parallel computer requires m+n execution cycles to produce

the transform (m,n) are the dimensions of the picture). Under these conditions

a simulation of the parallel computer will require m-hi executions of a simula­

tion sequence which consists of one simulation of each of the mxn computing

elements. We can, however, assume that the computer consists of idealized

delayless devices defined by the following:

a 3

5 » fe, n , H9 Y, A)

2 = {o^* a 2* cr.j> o^}

0 - {»}

Y = {f} (initial value of picture) Y=0 or m+n+1

Y = a) <-min (ty, cjj+1, cr 2
+ 1 > C T 3 + 1 > <*4+1)

A * {u> ^ - r c F j , a) ^ , (1) (j 3 , to <-*a4}

Figure 13

It is clear that an array of such devices as described would not satisfy

the conditions of Theorem 7 because of "race41 conditions. We can, however,

attach "conditions" to the elements of A as follows:

A - {(i) < - « o y if o<i< o>* a) < j 2
 i f c r 2 < ® 9 0 0 *~*°3 i f a 3 < ^ 0 0 *~# °4 i f (J 4 < ̂ #

A typical element of the array would be connected as shown in Figure 14.

CD i j

A 7 v f
If |\ i j / ;

/

. J .

/

Figure 14

' i j+1 I

The conditions on a race involving the (i,j) element and the (i,j-1)

element would be

• i . j * - » i - i , j > V i . j

r a c e = fo^j « - » l t j > A (o ^ . - ^ j) - f a l s e

Similar arguments can be made for any pair of adjacent elements. There

remains the possibility of a delayless loop of greater length as sketched in

Figure 15 (double arrows indicate immediate dependence).

a m
q p — &

14$

4 7 3 = 4 8]

11

T T f a M6

Figure 15

Because <• is a transitive relation such a loop implies race conditions

between adjacent elements.

e.g., 6 1 2 <-6 g < 6 1 5 < * 6 1 6 => 6 1 2 < - 8 l 6 (by transitivity)

and 6 1 6
 < 6 i 2 # (directly from Figure 15)

Thus, we see that there are no race conditions in the network, If we were

to search for a simulation sequence at run time, when the picture values were

available and the members of A become unconditional the methods developed

earlier would apply directly. This is clearly not economical.

The alternative is to search, at compile time, for a procedure which will

guarantee correct simulation for any picture.

It is necessary to assume that there is at least one zero element in the

picture (as was done in [13]). the distance from the nearest zero element is

undefined where there is no such element.

The approach we shall take is to use the conditions on elements of A as

entries in the state vector. An entry in the state vector will no longer be

a Boolean value but a Boolean expression which would yield this value when

evaluated for any particular picture. Our assumption of at least one zero

allows us to obtain a state in which all entries must be true for any picture.

This will be used as the node * in G(v).

The conditions for a particular element's output are: The output of

u)̂ j is correct if

(1) the picture element (i,j) is 0

or (2) a neighboring element, e.g., {(i-1,j),(i+1,j),(i,j-1),(i,j+1)} is a

0 and the element (i,j) was simulated

or (3) a neighboring element

(a) had its correct value the last time that element (i,j) was

simulated, and

(b) that value was equal to the smallest input to (i,j).

Note that (2) is a special case of (3).

The conditions for any neighbor element e f being correct of course are

the same as those above. A correct neighbor e 1 will supply a minimal input

to element e if there exists a zero point,z,in the picture such that

(1) z is one of the closest zeroes to e 1

and (2) z is one of the closest zeroes to e

and (3) there exists a sequence E = (ei» e2 , e3 ••• e
n ^ o f P i c t u r e elements

such that

(a) all have correct values

(b)
e 4 - i-i i s a neighbor of e. for all i

(c) z is a neighbor of e^

(d) e is e 1

n

(e) (n-fl) is the distance from z to e.

The above considerations lead to the following:

(1) In an array of picture elements of size mxn the simulation state

vector will consist of nxn Boolean expressions, (one correspond­

ing to each element)

(2) the Boolean expression for each element will be the conjunction

mxn Boolean variables, (again, one for each element)

(3) each of the Boolean variables, z in Ei'j 1 will be true if the

element (i',jf) would be correct if the element (i,j) were the near­

est zero.

An element (i f,j f) will be considered unconditionally correct when all

the entries z3 . in E., ., are true since at least one element in the array

must be the nearest zero.

The network will be considered correctly simulated when all elements are

unconditionally correct.

The above procedure has a simple implementation on a binary digital computer.

The state vector consists of an mxn array V of vectors of m/n bits. Initially,

there is one bit "on" in V[I,J], that corresponds to element (i,j). For each

of the mxn elements there is a mask for each neighbor which contains a 1 cor­

responding to each point (ir,j') such that a minimal path from (i,j) to (i^j 1)
9

includes that neighbor . Simulation of the element (i,j) then is represented

by

V[I,J] <- (UP[I] A V[I-1,J]) V(DOWN[I] A V[I+1,J])

V(LEFT[J] A V[I,J-1] V (RT[J] A V[I,J+1]) V V[I,J]
o

inspection will show that there are only 2x(m+n) distinct masks

where UP, DOWN, LEFT, RT are the masks appropriate to each of (i,j)'s

four neighbors, and " v " and " A 1 1 are vector operators that perform

Boolean "or" and "and11 on corresponding components of vectors.

Using this method for computing the state vectors one can again generate

the graph G(v) as discussed earlier and find optimal simulation sequences.

The graph, however, is too large for practical considerations. It can be cut

down considerably by making use of symmetry within the array.

The results of this technique on very small pictures are quite good.

For a 3 x 3 array as shown in Figure 16.

1 2 3

4 5 6

7 8 9

Figure 16

The forward and backward raster sequence [13] requires 18 executions of

the functions defined in [13] or 16 executions of the functions given earlier

here. However, the sequence

2, 8, 5, 2, 4, 6, 8, 1, 3, 7, 9

requires only 11 applications of those same functions and guarantees correct

results.

Similarly, for a 4 x 4 picture (Figure 17)

l 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 17

A sequence of length 22 will replace the 32 operations required by the technique

in [13].

The advantage is less for larger pictures and in all likelihood the raster

sequences used in [13] are to be preferred since the sequencing control can

be executed more efficiently. As the picture gets larger, the number of ele­

ment simulations approaches the 2xmxn required by the double raster sequence.

For certain types of pictures there are enough "zeroes" that an approxi­

mation may be justified. This can be done by assuming that no point is more

than some fixed distance to a zero. To find an optimal sequence under this

approximation one need only choose the initial point in the graph G(v) so that

all points more than that distance away from (i,j) are already marked true in

the expression for (i,j).

The main limitations on this technique is that it is not as inventive as

the authors of [13]. It can find sequences of the functions used by the paral­

lel elements but cannot recognize situations where some other local operation

is appropriate. At best this technique can aid a human picture processor by

allowing him to confine his inventiveness to the design of parallel processes.

Conclusions

The aim of this work has been the development of an algorithm which will

derive an efficient sequential process equivalent to a given network of inter­

connected "truly parallel" processes. This has been accomplished for a class

of networks; those in which all rules indicating immediate dependency are un­

conditional and there are no delayless loops. The method can be extended to

a broader class of systems; those in which there are no delayless loops, but

the immediate dependency rules are conditional. In such cases it is necessary

to find a suitable condition which is always true; given this it is possible to

use the method derived for the first class by generalizing the notion of "state

vector" to allow the entries to be Boolean expressions.

It appears quite easy to generate networks in which the graph used in

searching for optimal solutions becomes too large even with the aid provided

by Theorems 4 to 7 and the corollaries. For such systems the methods of this

paper can provide both a means of verifying the correctness of simulation

sequences proposed elsewhere or a means of generating suboptimal correct se­

quences by making arbitrary or heuristic choices of processes to be simulated

in simulation states where several paths could be explored.

The fundamental weakness, if it can be called that, of the method lies in

our early assumption that the simulation sequence must consist of executions

of the individual process algorithms. Any equivalent sequential processes in­

volving the applications of other algorithms will not be considered. It appears

that attempts to correct this depend on further results in the area of "equiva­

lence of computations".

Considerable effort in this paper has been devoted to an application to

picture processing. Picture processing was not within the scope of the re­

search reported in this paper. The material included within this paper is in­

cluded as an illustration of method, not as a contribution to picture process-

ing. Although the simulation sequences which can be derived for the distance

transform considered, are theoretically better than those reported earlier,

it appears that this improvement will not be significant for a practical pic­

ture processing task. It does appear, however, that this paper offers a

methodology which should be considered by researchers doing further work along

the lines suggested by [13].

Acknowledgement

The author is indebted to his colleagues, A. Ginzburg, A. Newell, A. Perils,

Tim Standish, and Jon Strauss for their patient and helpful comments on early

drafts of this paper.

