
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

1 6 7-9 ccp>

FORMULA ALGOL MANUAL

by

Jay Earley

Carnegie-Mellon University
Pittsburgh, Pennsylvania

June 26, 1967

Sid. not

Mb1

This work was supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (SD-146)
and is monitored by the Air Force Office of Scientific Research.

r

ABSTRACT

Formula Algol is an extension of Algol 60 [l] incorporating formula
manipulation and list processing.

This manual describes the use of the version of Formula Algol which
is presently running at Carnegie-Mellon University.

LIBRARIES
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH. PENNSYLVANIA 15213

TABLE OF CONTENTS

Title Page i
Abstract ii
Table of Contents iii
Chapter I - Introduction 1

General Description of Formula Algol .1
History and Implementation 2
Acknowledgments 2
Introduction to the Manual 3
Introduction of Formula Algol Programming 3

Chapter II - Numeric Processing 13
Symbols .13
Decimal Constants 14
Octal Constants ,14
Identifiers 16
Variables 17
Logic Expressions
The Precedence of Operators and Relations
In Formula Algol 20
Standard Functions . . 21
Assignment Statements 21
Conditional Statements 21
Labels and GO TO Statements 22
FOR Statements 22
Arrays 23
Procedures and Block Structure 23

Chapter III - Formula Manipulation 25
FORM Variables 25
FORM Arrays 25
Formula Expressions 26
Formal Definition of VAL (E) 27

Evaluation of Formulae 32
Formula Patterns . 3 7
Transformed Formulae 43
Precedence of Formula Operators 47
Special Functions .47

Chapter IV - List Processing 49
SYMBOL Variables 49
SYMBOL Arrays 49
Symbolic Expressions. 49
Lists 51
Assignment Statements. 52
Description Lists . .53
Selection Expressions 55
List Patterns .58
Class Tests 61
Push Down and Pop U p Statements 61
Additional FOR Statements. . . .62
Editing Statements. 64
Special Functions 66

Appendix I - Revised Report on the Algorithmic
Language ALGOL 60 69

Summary 69
Contents 69
Introduction 70
Description of the Reference Language 71
Alphabetic Index of Defin tions of Concepts
and Syntactic Units. . 84

Appendix 2 - Current System Limits 87
Appendix 3 - Debug Snapshots 89
Appendix 4 - Error Messages. 93

Syntax Errors 93
Semantic Errors 96
Run Errors 99

Appendix V - Input-Output • • . . 105
Appendix VI - Syntax Index 109

Syntax Classes 109
Reserved Words Ill

Appendix VII - Complete Examples 113
I. Markov Algorithm Solution. . . 113

II. Recursive Solution 114
III. Iterative Solution 114
IV. Comparison of the Three Solutions 115

Sample Program. .117
Appendix VIII - Current System Bugs. 121
References 125

0
V

t

CHAPTER I

INTRODUCTION

GENERAL DESCRIPTION OF FORMULA ALGOL

Formula Algol is an extension of Algol 60 [l] incorporating formula mani

pulation and list processing. The extension is accomplished by adding two new

types of data structures: formulae and list structures, with an appropriate

set of processes to manipulate them. The control structure of Algol 60 is

inherited and also extended.

Algorithms may construct formulae and list structures at run time. Opera

tions are available which alter or combine formulae and list structures, and

which access arbitrary subexpressions. Formulae may be evaluated, substitut

ing numerical or logical values for occurrences of variables contained within.

They may be subjected to substitution processes causing the replacement of

occurrences of variables by designated formulae. They may be subjected to

transformations defined by Bets of rules akin to Markov algorithms. Predicates

are available to determine precisely the structure and composition of any for

mula or list structure, and mechanisms are provided to extract subexpressions

of a formula, or sublists of a list, provided its structure is known.

Numerical, logical, and formula values may be stored as elements in list

structures, and retrieval meichanisms exist to select them for use as con

stituents in other processes . Description lists composed of attributes with

associated value-lists may be attached to list structures, and processes exist

for retrieving value* lists aiad for creating, altering, and deleting attribute-

value list pairs. Push down stacks of arbitrary depth are available for the

storage of all types of data structures and generators are provided in the

form of new types of FOR statements which assign to control variables the

elements of a single list structure, or alternatively, of several list struc

tures in parallel, for use in an arbitrary process. Finally, both arrays

and procedures may be defined having formulae or list structures as values.

HISTORY AND IMPLEMENTATION

The Formula Algol language has been designed by Dr. Alan J. Perlis,

Renato Iturriaga, and Thomas A. Standish. It was initiated at Carnegie-Mellon

in January, 1963, and has undergone continual evolution and expansion since

that date. In August, 1963 an interpretive version was running and was re

ported at the Working Conference on Mechanical Language Structures in Princeton,

New Jersey. [2] .

The version reported in this manual has been implemented as a compiler

on the CDC G - 2 1 computer at Carnegie-Mellon University by Renato

Iturriaga, Thomas A. Standish, Rudolph A. Krutar and Jay Earley. A discussion

of the compiling techniques used was presented at AFIPS 1966 [6] . For those

interested in the details of the compiler, a more complete document exists [4] .

ACKNOWLEDGMENTS

A large part of Chapters III and IV is based on "A Definition of

Formula Algol" [7] , and much of Chapter II is based on the Algol -20 manual [3] .

Special thanks goes to Gail Jaffre, Dr. David C. Cooper, and the implementers

of the language for their help in preparing the manual.

INTRODUCTION TO THE MANUAL

This manual describes the use of the version of Formula Algol which is

presently running at Carnegie-Mel Ion University. It is called by writing

'FORML 1 in the language field of a job card.

It is assumed in this manual that the reader is familiar with Algol 60.

Since Algol 60 is not described, the Revised Report is included in the appen

dix. Below is an introduction to Formula Algol programming, which is intended

for those who are familiar with programming, but not with this language.

Chapters II, III, and IV describe the mechanisms available in Formula Algol

and how they are to be used. All the mechanisms described in this part of

the manual may not be working perfectly at a given time. They are, however,

a short range goal at which the Formula Algol maintenance group will aim.

A list of current system bugs and problems, which should be updated frequently,

is included in the appendix. Operations which are illegal and therefore

produce errors are not mentioned specifically in the manual except in the

list of errors. It should be assumed that any operation or instance of an

operation which is not mentioned as being legal in the manual will produce

an error.

INTRODUCTION OF FORMULA ALGOL PROGRAMMING

This chapter is designed to introduce a programmer who is familiar with

Algol to the mechanisms available in Formula Algol, and to give an idea how

they may be used to do formula manipulation and list processing. No attempt

has been made to be complete or rigorous. The individual mechanisms available

are discussed more fully in Chapters III and IV.

Formula Manipulation

Suppose that we would like to write a procedure which takes as input

a formula and differentiates it with respect to X, We first need some way of

representing such a formula in our programming language.. Algol is inconvenient

for this because when an arithmetic expression is written in Algol, it is al

ways to be evaluated, never to be kept around and examined. This forces the

use of indirect representations.

For this purpose we have FORM variables. When a variable declared of type

FORM is used in an expression, it indicates that a formula is to be constructed

representing the expression. These formulae may be thought of as trees. Thus,

3*XTZ + 4/X would cause the contruction of the following tree:

The normal ALgd precedence of operators determines the form of the tree. If we

assign the above expression to a FORM variable F. we can then access it later

by referring to F.

We now have a way of inputting the expression to be differentiated.

Next we need to be able to examine its structure.

For this, the language provides formula patterns. Thus we can write

The "==" is to be read "is an instance of." It tests whether a formula stored

in F consists of any two subformulae connected by a multiplication sign. A

formula pattern is a Boolean expression and can be used in an

IF ... THEN statement.

Now that we can test for the form of a formula we want to be able to alter

X Z

F == ANY*ANY

its form according to what we have found. To do this, we insert extractors into

the pattern. An extractor is a formula variable followed by a colon. The pat

tern then looks like

F==LEFT: ANY*RIGHT: ANY

If the pattern matches, then the subformula which matched the left operand gets

stored into LEFT and the subformula which matched the right operand gets stored

into RIGHT. Thus if we executed this pattern on 3 * X, after it matched, LEFT

would contain 3 and RIGHT would contain X.

We can now write one rule of our differentiation program

IF F==LEFT: ANY * RIGHT: ANY THEN

DERV <- LEFT * DERV (RIGHT) + RIGHT * DERV(LEFT) ;

Assuming the DERV is the procedure we are writing to take the derivative, we are

using it recursively here to find derivatives of expressions containing "*".

ANY is not the only word we can use in a pattern. We may use any

declared type words to test for a subformula of certain type. An arithmetic

or formula expression may also be used; these cause exact equality tests. Thus

we may implement the "standard 1 1 derivative formula by

IF F== XtN: REAL THEN

DERV 4- N * Xt (N-1)

However, suppose we want this transformation to apply only if N > 1.

We can implement this by declaring a Boolean procedure to make this test.

BOOLEAN PROCEDURE GR1 (I); VALUE I; FORM I;

GR1 <-IF I •=== REAL THEN I > 1 ELSE FALSE;

Then we use the following pattern:

F==XtN: OF (GR1)

and it will make the appropriate test for us.

Suppose in the derivative routine we would like to test whether the formula

is a single unit (number, variable) or a binary combination (A + B) . We may

use the word ATOM, which yields true for number, FORM variables, etc.

IF F==ATOM THEN DERV<- IF F==X THEN 1 ELSE 0.

We may search the formula to see if any of its subexpressions match a

pattern instead of testing only the main expression. This is done by using

f l » l f in place of "==". The f^>>" patterns are otherwise exactly the same.

Now, suppose that we have finished calculating the derivative of F and

have stored it back into F. We may now want to substitute a number for X and

evaluate the resulting expression. This is done by the EVAL operator:

EVAL (X) F (3)

This substitutes 3 for all occurrences of X in F and calculates the result. If

this substitution removes all formulae from F, then a number will result. How

ever, if some are left, it will remain a formula, though it will probably be

somewhat simplified. If we had wanted only to substitute 3 for X and not eval

uate, we would have used "SUBS" in place of "EVAL". For a third possibility,

we may want to replace X in the formula by whatever is the current value of X

as a form variable. (Remember that the name X now appears in the formula, not

its value.) This is done by REPLACE(F)

which replaces all form variables in F by their current values, and then evalu

ates the resulting expression. Let's now suppose that instead of differentiating

a formula we would like to make some simplifications in it. One thing we might

like to do is apply the distributive law:

IF F==A: ANY * (B: ANY + C: ANY) THEN

F « - A * B + A * C ;

This works well, but this law is commutative, so we need a second rule for the

case when A is to the right of B and C. We also need another law for subtraction.

This expands our distributive law to four statements. We would like to contract

them into one.

This is done by using operator classes. We will use one symbol to stand

for plus or minus. For this we use a variable of type symbol, so that we can

attach a description list to it (pg. 53). Let's call the symbol ADDOP. Then

we execute

ADDOP «- / [OPERATOR: +, -]

We can now write the pattern as

F == A: ANY * (B: ANY |ADDOP| C: ANY)

and it will apply for both + and We can also use this mechanism to change F.

If the above pattern matches, the operator which matched ADDOP will be stored as

its value. Then we can write F <- A * B |<ADDOP>| A * C

to change F to the correct form.

Now we want to take care of the commutative instances of the distributive

law. For this we declare an operator class for f t* f , and label it commutative:

TIMES <- /[OPERATOR: *] [COMM: TRUE]

Now, by using (TIMES) in place of "*", the test will also match an instance of

(B: ANY |ADDOP) C: ANY) * A: ANY.

One final construction may be used to abbreviate some sequences of actions

which might otherwise be quite long. Suppose we would like to write a routine

to clear fractions. One transformation in it would be:

if F==A: ANY - B: ANY / C: ANY THEN

F<- (A * C - B) / C;

We would need to write a sequence of these IF ... THEN statements plus proper

circling back to the beginning to make sure that we have gotten all of the

formula. This can be shortened by the use of productions. The production which

corresponds to the above rule is:

A: any -B: any / C: any ->(.A * .C - ,B) / .C

The exact reason for the dots can be found by reading chapter 3 on formula

manipulations. When this production is applied to a formula, it will have the

same effect as the above IF ... THEN statement. However, we would like to apply

a sequence of such productions in order to clear fractions, so we store a list

of these productions by a list assignment statement (pg. 52). If the left

formulae are L^ and the right are R^, this will look like:

CLEAR <- [L-^ R., L 0->R 0, L -> R] ;
1 1 L z n n

This now gives CLEAR the semantics represented by these productions. Then if

we apply this schema to a formula in F by the expression

F I CLEAR,

F will be treated in the following way:

L^ will be tested against F and then each of its subformulae, then will be,

and so on. When a match is found, the corresponding transformation R^ is applied

and control returns to L^ again.

The complete schema for clearing fractions is on page 46.

List Processing

Suppose we :7ant to write a program to play Solitaire. We can do this in

the list processing part of Formula ALGOL, First we need to represent the cards

of the deck. Let's make each card a variable of type SYMBOL, so the ace of

spades is SPADEA and the 3 of clubs is CLUB3. We can represent the deck as

a list which is the contents of the symbol DECK. So to initiate the deck we

execute the assignment statement

DECK <- [SPADEA, SPADE2, SPADE3, .. .] ;

where we string out all 52 cards.

Now we need to be able to deal out the cards into the seven solitaire

piles. Let's make these a symbol array called PILE:

SYMBOL ARRAY PILE [l: 7] .

In order to deal we need to be able to select cards from one list (DECK) and in

sert them into another. To select an element from a list we use a selector which

refers to the position of the element in the list by number. Since we want the

top element of the deck we use the expression

FIRST OF DECK

Since we will be putting cards on the top of the piles we use the statement

INSERT FIRST OF DECK BEFORE FIRST OF PILE[I];

We need to show that the card has been removed from the deck. This is done by

DELETE FIRST OF DECK.

Now this should do the dealing:

FOR J<-1 STEP 1 UNTIL 7 DO

FOR I<-J STEP 1 UNTIL 7 DO

BEGIN

INSERT FIRST OF DECK BEFORE FIRST OF PILE[I]:

DELETE FIRST OF DECK;

END;

We would like to be able to compare the suits and numbers of various cards

to tell whether they can be placed on each other. For this our symbol names are

inadequate. We need to be able to associate properties of the cards with them.

This is done by using description lists. We should assign a description list to

each card with a statement such as:

SPADE4<-/[SUIT: SPADES] [DENOM: 4] ;

In this statement, SUIT and DENOM are attributes, and SPADES and 4 are their

respective values. However, we have to test mainly the color of the cards for

solitaire, so let's add that attribute to our description list, too:

THE COLOR OF SPADE4 IS BLACK;

Note that COLOR, BLACK, SUIT, etc., are all symbol variables.

We may retrieve the value of an attribute by a statement such as:

THE SUIT OF SPADE4

or SUIT(SPADE4)

Using this we could write a routine to add the color attribute to all the

cards. For each card we would write

IF SUIT(CARD) = SPADES V SUIT(CARD) = CLUBS

THEN THE COLOR OF CARD IS BLACK

ELSE THE COLOR OF CARD IS RED;

To iterate through the deck we use a new type of for-statement which iterates

on the elements of a list. Using this plus a standard Algol abbreviation for the

IF ... THEN statement we have

FOR CARD <- ELEMENTS OF DECK DO

THE COLOR OF CARD IS

IF SUIT (CARD) = SPADES V SUIT (CARD) = CLUBS

THEN BLACK ELSE RED;

There is an alternative to this course of action. Instead of storing the

attribute color with each card, we can test each card to see if it is a spade or

club each time in the program that we need to know its color. However, we don't

want to have to write:

IF SUIT (CARD) = SPADES V SUIT (CARD) = CLUBS THEN

every time we want to test a card.

Therefore we use a class test:

LET (|BLACK|) = [X | SUIT (X) = SPADES V «SUIT (X) = CLUBS];

This establishes a test for the class of black cards. We can now write

IF CARD == (|BLACK|) THEN

and the test will be performed for us.

We can now write a routine to test whether one card can be placed on another

or not.

Let's use color as an attribute and store JACK, QUEEN, and KING as 11, 12, 13.

Since we can store numbers directly as values, or in fact as elements of a list,

we can do just an arithmetic check on the value of DENOM in our routine. The

following routine tests whether CI can be placed on C2.

BOOLEAN PROCEDURE PLACEON(Cl, C2); VALUE CI, C2; SYMBOL CI, C2;

PLACEON <-COLOR(Cl) ± COLOR(C2)

A DENOM(Cl) + 1 = DENOM(C2) ;

Now let's switch from Solitaire to natural language processing.

Assume we have the words of a paragraph stored in a list called PARA. We

want to search it for the words "THERE ARE 1 1 followed by a number and then a

plural noun, i.e., "THERE ARE 20 BUILDINGS." We then want to put the number

as the value of NUMBER on the description list of the noun. We have a list

of the plural nouns stored in NOUN.

To do this we need some new constructions:

(1) COUNT(L) produces an integer value corresponding to the number

of elements in list L.

(2) AMONG(X, L) is TRUE if X is an element of list L.

(3) As with formula patterns, we may test to see if an element is of

a particular type using "==".

The routine is

FOR I<- 1 STEP 1 UNTIL COUNT (PARA) -3 DO

IF I TH OF PARA = THERE A

(I + 1) TH OF PARA = ARE A

(I 4- 2) TH OF PARA == INTEGER A

AMONG ((I 4- 3) TH OF PARA, NOUN) THEN

THE NUMBER OF (I + 3) TH OF PARA IS (1 + 2) TH OF PARA;

This is a lot of writing, so we would like to be able to use some of

the mechanisms of COMIT [5] to make this test. Let's first construct a class

name for nouns.

LET (|N0UN|) = [X| AMONG (X, NOUN)]

We can now use a list pattern to make the test

IF PARA == [$, THERE, ARE, INTEGER, ((NOUN)), $] THEN

$ stands for an arbitrary number of elements. This pattern is tested

against the list PARA for any match. After the match, however, we want to

be able to perform the description list store. For this we need to be able

to extract elements of PARA according to the part of the patterns they

match. This is done by writing a symbol variable and a colon in front of

an element of the pattern. Then if the pattern matches, the element that

matched the pattern element is stored into the extractor variable.

The routine now becomes:

IF PARA == [$, THERE, ARE, N: INTEGER, OBJECTS: (JNOUN|), $]

THEN THE NUMBER OF OBJECTS IS N:

CHAPTER II

NUMERIC PROCESSING

Although Formula Algol is an extension to Algol 60, there are certain

restrictions on this reference language which have been made due to character

set limitations and implementation. There are also some added features of

Formula Algol over Algol 60 aside from the formula and list processing features,

These are explained in this chapter.

SYMBOLS

Formula Algol accepts all of the special symbols of ALGOL-60 except for

those shown in the following table:

ALGOL-60

3 ("implies")

= ("is equivalent")

X (multiplication)

(string quotes)

Use "-> "

Use "="

Use "*"

Not available, but entier may be
used with "/" with the same effect.

Use "A>"

Use % < "

Not available

DECIMAL CONSTANTS

A number, N, in a Formula Algol program must be zero (which may be punched

with or without a decimal point) or else its absolute value N must satisfy:

1 .275 1 0-57 £ N £ 3.450 1 o+69

Because of the nature of the G-21 computer, the distinction between real

and integer numbers is unimportant. The programmer may write an integer-valued
*

constant with or without a decimal point (e.g., "34", " 3 4 . o r M34.0 f l) without

changing the type of arithmetic performed on the constant.

Numbers are represented in the G-21 in "floating point 1 1 form with a maximum

of 42 binary digits of mantissa, corresponding to approximately 12 decimal digits

of precision. If more than 12 digits are written, the extra (least significant)

digits will be ignored. (The number is rounded at the 14th octal digit.)

The last character of a real number may be a decimal point; thus, the

number "6." is legal. Note: In Formula Algol is sometimes used as an

operator. In these cases it should not be placed adjacent to a numerical con

stant so that these uses are not confused with its use as a decimal point.

OCTAL CONSTANTS

An octal (base 8) constant may be used in any context in Formula Algol

where a decimal number is allowed; i.e., as a primary in any arithmetic or logic

expression. Octal constants have the following syntax:

syntax:

<octal digit> : : = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

<octalian> ::=<octal digit> | <octalianXoctal digit>

<signed octalian> ::= <octalian> | -Koctaltan> | -<octalian>

<left-justified octal constant> :: = 8L<octalian>

<right-justified octal constants ::= 8R<octalian>

<floctalian> : := <octalian> | <octalian>.<octalian> | <octalian>. | .<octalian>

<power of 8> ::= i0<signed octalian>

<floating octal constants ::= 8F<floctalian> | 8F<power of 8>

8F<floctalianXpower of 8>

<logical octal constant> ::= <left-justified octal constants |

<right-justified octal constants

<octal constants ::= <floating octal constants | <logic octal constants

Despite this syntax, the translator does not treat the digits 8 and 9 in octal

constants as erroneous but will intepret them as 10)g and 11)g> respectively.

Thus 8R495 will be interpreted as 8R515.

Local octal constants (8L and 8R) are considered to be of type LOGIC and

so are always accessed in logic mode. Floating octal constants (8F) are con

sidered to be of arithmetic type, and are always accessed in arithmetic mode.

The character-pairs 8L, 8R and 8F are treated by the translator as single

entities and must be punched in adjacent columns of the same card, without in

tervening blanks.

The value of a floating octal constant is determined by concatenating the

octalian as an octal number and multiplying it by the appropriate power of 8,

treating the number which follows the 1 0 as an octal integer. For example:

8F l o10 = 8t8

8Fll 1 0-5 s 9*8t-5

The value of a left (right) justified octal constant is determined by

prefixing (suffixing) to the octalian enough zeros to give eleven octal digits.

This number is then concatenated and stored as a 32-bit logic word. Since eleven

octal digits require thirty-three bits for representation, the leftmost bit of

the leftmost octal digit is lost. Thus, 8L4=0 and 8L7=8L3.

IDENTIFIERS

Only upper case (capital) letters are available in Formula Algol. Neither

spaces nor any operator may appear within an identifier (including , l . n) . All

identifiers must be separated from adjacent identifiers by at least one space to

prevent the two from being interpreted as a single identifier.

Certain identifiers have special meanings in Formula Algol and are therefore

reserved. The programmer may not use these identifiers for any purpose other

than that of their reserved meanings. The reserved words in Formula Algol are

T

ABS CONT EXP LAST SIGN

AFTER COPY FALSE LET SIN

ALL COS FIRST LIM SQRT

ALSO COUNT FOR LN ST

ALTER CREATE FORM LOGIC STEP

AMONG DELETE GC ND STRING

AND DERV GO NIL SUBLIST

ANY DL GOTO NOT SUBS

ARCTAN DO HALF OF SWITCH

ARRAY ELEMENTS HAS OPERATOR SYMBOL

ATOM ELSE IF OWN TEXT

ATTRIBUTES EMPTY IN PARALLEL TH

BEFORE END INDEX PRINT THE

BEGIN ENTIER INF I PROCEDURE THEN

BETWEEN ERADL INSERT RD TO

BOOLEAN EVAL INTEGER REAL TRUE

CELLS EX3 IS RECU UNTIL

COMM EX4 JUMP REDUCE VALUE

COMMENT EX5 LABEL REPLACE WHILE

VARIABLES

Formula Algol allows both simple and subscripted variables of type HALF,

LOGIC, FORM and SYMBOL as well as REAL, INTEGER, and BOOLEAN.

REAL variables are stored in the G-21 with a precision of 42 binary digits,

requiring two successive memory cells per variable. HALF variables are stored

^ with a precision of only 21 binary digits (about 6 significant decimal digits)

and occupy only a single location, but otherwise act as REAL variables. There-

fore, the programmer may use HALF variables to gain memory space at the expense

of precision.

The value of a REAL or HALF variable must either be zero or lie within the

range given below:

REAL: l.27510-57 £ abs(R) ^ 3.450 1 o+69

HALF: 1 .275 1 0-57 £ abs(H) £ 1 .64510+63

INTEGER variables will always take on integer values in the range

-2097152 < I < 2097152 (= 2 2 1) .

LOGIC variables are always positive. If used as strings, they are four or less

characters in length, ,and if used as numeric quantitites they are restricted to

0 £ L < 42949 67296 (= 2 3 2) .

The values of BOOLEAN variables must be either TRUE or FALSE.

The G-21 replaces by zero any non-zero arithmetic result which is smaller

than 1 .275 1 0-57 in magnitude; this situation is called an underflow. An inter

mediate arithmetic result which is greater than 3.450 1 o+69, the largest number

representable in the G-21, is called an overflow, and causes an error to be

recorded. Executing an assignment to a half variable of intermediate results

which exceed the bound of the variable causes an overflow. On the other hand,

assignments to integer variables are truncated modulo their upper bound, and

assignments to logic variables are truncated modulo their upper bound and made

positive. In these two cases, no error occurs.

LOGIC EXPRESSIONS

In addition to arithmetic, Boolean, and designational expressions, Formula

Algol syntax includes "logic expressions 1 1 which perform bit-by-bit logic opera

tions on 32-bit G-21 logic words. A logic expression may include any of the

following operands:

1. Logic constant: octal constant or string constant

2. Variable, simple or subscripted, of type LOGIC

3. Function designator of type LOGIC

4. Boolean primary (and, therefore, any Boolean expression in parentheses)

5. Arithmetic primary (and, therefore, any arithmetic expression in paren

theses)

A Boolean primary used as a logic operand is interpreted as one of the two

32-bit logic words:

8R 37777777777 m 32 one bits for TRUE, or

8R' 0 = 3 2 zero bits for FALSE.

Each kind of logical operand (except number 5 above, arithmetic primary)

will always be fetched from memory with a "logic access", rather than a "numer

ic access"; for example, a CAL command will be used to fetch a logic variable

into the accumulator. When a logic variable or function designator forms the

left-part of an assignment statement, then an STL command will perform the as

signment. Therefore, an assignment statement of the form

<logic variable> <-<arithmetic expression>
32

will truncate the absolute value of the expression modulo 2 • An STL command

is also used for any temporary store of a logical subexpression (except an

arithmetic primary) within a complete logical expression.

Any of the following three logical operators may appear in a logic ex

pression:

—i (complement logic: unary)

A (extract logic: binary)

V (unite logic: binary)

Each of these voperators performs the same operation simultaneously and

independently in each of the 32-bit positions of its operand(s). If a bit = 1

represents the Boolean value true and a bit = 0 represents false, then the logic

operators —i, A , and V can be considered to perform the Boolean operations

—i, A , and V respectively, in each bit position.

The operators + , - , * , and / may also appear in a logic expression. Each

of these operates in the usual way, considering its logical operands (except

for arithmetic primaries) as 32-bit integers.

syntax:

<logic constant> ::= <string constant> | <logic octal constant>

<logic primary> ::= <logic constant> | <logic variable> | <logic function>

<Boolean primary> | (<logic expression>) |

<arithmetic primary>

<logic factor> : := <logic primary> | -i <logic primary>

<logic term> : := <logic factor> | <logic term> A <logic factor>

<simple logic expression> ::=<logic term> | <simple logic expression> V

<logic term>

<logic expression> ::= <simple logic expression> | <if clause>

<simple logic expression> ELSE <logic expression>

THE PRECEDENCE OF OPERATORS AND RELATIONS IN FORMULA ALGOL

t (done first)

- + (unary operators)

/ *
- + (binary operators)

—i

A

V

(done last)

In cases of equal precedence, association to the left is used.

STANDARD FUNCTIONS

Formula Algol contains

These are

ABS

SIGN

SQRT

ASSIGNMENT STATEMENTS

In Formula Algol, 'V1' must be used instead of It has the same mean-

ing except when storing a non-integer into an integer variable. In this case,

the non-integer is truncated, not rounded.

In multiple assignment statements, the "left-part 1 1 variables need not all be

of the same type. In fact, an assignment statement in Formula Algol may be treat

ed as an expression whose value is the value which is assigned in the assignment

statement. Thus

I « - 3 * K + (J«- 7-K) / 2;

is a legal statement. To insure that "<-*' is given the proper precedence, the

assignment statement should be enclosed in parentheses.

CONDITIONAL STATEMENTS

In Formula Algol, unlike Algol 60, the construction

IF ... THEN

FOR ... DO <unconditioned statement>

ELSE <statement>

is legal and will be recognized correctly.

all the recommended standard functions of Algol 60.

SIN LN

COS EXP

ARCTAN ENTIER

LABELS AND GO TO STATEMENTS

Only identifiers may be used as labels in Formula Algol;integer labels

are not permitted.

In Formula Algol,

GO TO Label

GOTO Label

are equivalent and permissible.

FOR STATEMENTS

The value of the controlled variable is not undefined upon normal exit

from a Formula Algol FOR statement. It is, in general, just what would be ob

tained if the equivalent basic programs (section 4.6.4 of the Algol 60 report)

were substituted for the FOR statement. Thus, upon exit from an UNTIL or WHILE

form of FOR list element, the FOR variable has the first value for which the

final test failed.

Another form of FOR list element is permitted in Formula Algol,

FOR V f-E 1 STEP E 2 WHILE B DO S;

where E^ and are arithmetic expressions, B is a Boolean expression, and S is

any statement. This is equivalent to the simple program:

V «-E 1 ;

LOOP: IF B THEN

BEGIN

S ;

V <-V + E 2 ; GO TO LOOP

END ;

ARRAYS

Formula Algol arrays may be of type INTEGER, REAL, BOOLEAN, HALF, LOGIC,

FORM, or SYMBOL,

A non-integer value of a subscript expression in Formula Algol is not

rounded, only truncated. This may lead to hard-to-detect errors. For example,

suppose that the result computed for a subscript expression is 3.9999... instead

of 4, because of round-off error, this value will be truncated to 3, referring

to the wrong element of the array.

Run-time tests are made with each array access so that an access which is

out-of-bounds will produce an error. OWN arrays may not be used in Formula Algol.

PROCEDURES AND BLOCK STRUCTURE

All formal parameters in a Formula Algol procedure declaration must be

specified. The following is a list of current restrictions on the use of

procedures and blocks.

1. Switches and strings may not be passed as parameters.

2. Arrays may not be called by value.

D

CHAPTER III

FORMULA MANIPULATION

FORM VARIABLES

Variables may be declared of type FORM indicating that their values are

to be formulae. With each FORM variable there is associated a data item called

an atomic formula, which may form part of a formula expression. When a FORM

variable F is declared, its value is initialized to be the atomic formula of

F. Also, a description list is associated with F, into which attributes and

values may be entered and retrieved in exactly the same way as with SYMBOL

variables (pg. 53) except that a description list may be associated only

with a FORM variable, not with a sub formula.

FORM ARRAYS

Arrays may be declared of type FORM in which case their elements may be

formulae. These are accessed in the same way as other arrays. Unlike simple

FORM variables, array elements are not initialized, and therefore should not

be accessed before they have been stored into.

FORMULA EXPRESSIONS

Syntax:

<formula expression> ::= <arithmetic expression> |

<Boolean expression> | <an arithmetic expression (Boolean expression)

in which some of the primaries (Boolean primaries) have been

replaced by formula primaries and in which some operators have

been prefixed with a dot> t | <assignment formula> |

<formula expression> ff| " [<identifier>]

"I" <formula expression>

<formula primary> ::= <array formula> | <procedure formula>|

transformed formula> | <evaluated formula> | ,<identifier> |

<conditional formula> | (<formula expression>)

<array formula> ::= <array identifier> . [<subscript list>]

<procedure formula> ::= <procedure identifier> . <actual parameter part>

Conditional formula ::- . IF <formula expression> THEN

<formula expression> ELSE <formula expression>

<assignment formula> ::= <variable> . <- <formula expression>

Semantics:

A formula is a piece of Algol text which is to be stored for testing,

manipulation, and possibly execution later on. An Algol expression is to be

treated as a formula when either of its operands is a form variable or is

already a formula. A dot preceding a variable is used to indicate the atomic

formula of that variable.

The process by which the value of a formula expression is obtained will be

explained by means of a recursively defined function called VAL. This function

t This is a short description of what could be a formal syntactic statement.

does not appear explicitly in the syntax of the source language; rather, it is

executed implicitly at run time whenever the value of an expression is needed.

In subsequent definitions quoted strings represent formulae. Such formulae are

represented within the machine as trees, with operators at their nodes, atomic

formulae at their leaves, and each branch representing a subformula. Thus

1 a + 3 * Y ' i s represented

The normal precedence of Algol operators is used to determine how the tree will

that of "-J1 (pg. 47) .

These formulae may be assigned to FORM variables, which may then be evalu

ated or used in other formula expressions. In fact, any type of Formula Algol

expression may be assigned to a FORM variable except one of type SYMBOL.

Formula Algol is a strict extension of Algol 60 with regard to values and

types. Exactly as in Algol 60 each value has an associated type. In the ex

planation of the function VAL below, the association of a type with a value is

given explicitly by an ordered pair of the form (TYPE, VALUE).

FORMAL DEFINITION OF VAL (E):

1. E is a constant which is either a <number> or a <logical value>.

TYPE (E) = INTEGER if VALUE(E) is an integer, REAL if VALUE(E) is a

floating point number, and BOOLEAN if E is a <logical value>.

VALUE (E) = the conventional value of a number or a logical value (identi

cal to that given by the Algol Report).

be constructed. In addition, the " |[] | f l construction has precedence just above

2. E is .a9 where a is an <identifier> declared of type FORM,

TYPE (E) = FORM

VALUE (E) • the atomic formula of a*

3. E is a variable - simple or subscripted.

TYPE (E) = the type of the most recently assigned value of E, taken as

a constant.

VALUE (E) = the most recently assigned value of E.

4. E is a function designator, say P(X^,...,X^)

TYPE (E) = the declared type of P.

VALUE (E) • the value produced by executing the procedure P as defined

in the Algol report.

5. E is a binary expression A oj B where A and B are expressions and

! » : : - + | - | * l / | t | < h < | > h > | - | ^ | V | A | - »

TYPE (E) is defined by the following table

TYPE (B)

TYPE (A 5 \ . REAL INTEGER BOOLEAN FORM

REAL Tl Tl error T4

INTEGER Tl T2 error T4

BOOLEAN error error T3 T5

FORM T4 T4 T5 FORM

where:

if 0) is a numeric operator

if u) is a numeric operator

otherwise

if to is a numeric operator other than /

if a) is /

if a) is a relational operator
otherwise

if u) is a logical connective
otherwise

if a) is either a numeric or relational operator
otherwise

if a) is a logical connective

otherwise

if TYPE (E) = REAL, INTEGER or BOOLEAN then

VALUE (E) = the number or logical value obtained by carrying out

the operation u) with arguments VALUE (A) and VALUE (B) .

If TYPE (E) = FORM then VALUE (E) = \y U) 3 1 where a is VALUE (A) and &

is VALUE (B),

E is A| [T]|B where T is an operator class name.

TYPE E = FORM

VALUE (E) = fo/ a) 3 1 where ^ = the operator most recently assigned to

T by a pattern or assignment statement (pg. 37), and a = VALUE (A)

and g = VALUE (B) .

E is a unary expression ^ A where A is an expression and od t r =—i

or E is of the form cd (A) where (d:: =

SIN|COS1 EXP|LN|SQRT|ARCTAN!SIGNIENTIERJ ABS

TYPE (E) is defined by the following table:

REAL
Tl = BOOLEAN

error

INTEGER

T2 = REAL
BOOLEAN
error

T3 =

T4 =

T5

BOOLEAN
error

FORM
error

FORM
error

O)

TYPE (A>
SIN,COS,EXP
LN^SQRT

SIGN
ENTIER

ABS
±

REAL REAL INTEGER REAL error

INTEGER REAL INTEGER INTEGER error

BOOLEAN error error error BOOLEAN

FORM FORM FORM FORM FORM

If TYPE (E) = REAL, INTEGER or BOOLEAN then VALUE (E) = the number or

logical value obtained by carrying out the operation u) with argument VALUE (A)

If TYPE (E) = FORM then VALUE (E) = the expression 'co a 1 where a = VALUE (A).

Examples

Suppose that at a certain point in some program R and G have been declared

of type FORM, X and Y have been declared of type REAL, X has been assigned the

value 3.2, Y has been assigned the value 2, F has been assigned the value f G / 5 f ,

and G has as its value the atomic formula of G. Consider the following sequence

of assignment statements:

(a) X «- (X + Y) t 2; .

(b) F f - 3 * SIN(G) + (F + X) f Y;

(c) F <r- SQRT(F) ;

In statement (a) all variables are numeric. Thus the arithmetic expression

(X + Y) t 2 is evaluated numerically using the current values of X and Y and

the result (27.04) is stored as the value of X. In statement (b) the value of

F becomes the formula expression !3 * ^IN(G) + (G/5 4- 27.04) t 2 f . Finally,

statement (c) replaces the value of F by the formula

1SQRT (3 * SIN(G) + (G/5 +27.04) t 2) 1 .

All arithmetic operators are treated as binary operators (even those which

are associative and commutative) with association to the left. This is

illustrated by the following examples:

(d) F + (X + Y) produces fG/5 + 5.2 1

but (e) F + X + Y is equivalent to fG/5 + 3 . 2 + 2 '

8. E is a conditional formula

.IF B THEN A ELSE C, where A, B, and C are expressions and B is of type

FORM or BOOLEAN.

TYPE (E) = FORM

VALUE (E) = 1 IF 3 THEN a ELSE y1

where B = VALUE (B) , a = VALUE (A) and y • VALUE (C)

9. E is a procedure formula

E = tf.(X^, X 2 , ..., X^) where a is the name of a declared procedure, and

X-, X 0 , X are expressions.
1 I n

TYPE (E) = FORM

VALUE (E) = 'cKNj, N 2 , ... N n) 1 where N £ = VALUE (X ^ .

Note: The formal parameters of any procedure which is used as a pro

cedure formula must all be of TYPE FORM,

10. E is an array formula

A.fX-, X 0, X] where A is the name of a declared array, and X,, X 0 ,
u 1 Z n-* l z

...,.X are formula expressions.

TYPE (E) = FORM

VALUE (E) = 'Aft^, N 2 , NJ % where N £ - VALUE (X^

An important application of array formulae is the generation of names

dynamically at run-time. Upon entrance to a block containing the declaration

FORM ARRAY A[l:N], N array elements are created whose names may be used in

the construction of formulae even without any values having been stored into

them. Thus the name of the fifth of these is flA. [5] 1 1. Later, values may be

assigned to these elements and the formulae may then be evaluated, if desired.

1. E is an assignment formula

a B where a is a variable and B is an expression

TYPE (E) = FORM

VALUE (E) = •QT <-p f where p - VALUE (B)

Evaluated and transformed formulae will be explained in succeeding

sections.

EVALUATION OF FORMULAE

Syntax:

<evaluated formula> ::= EVAL <variable> |

EVAL (Substitution list>) <formula expression> (Substitution list>) |

SUBS (<substitution list>) <formula expression> (Substitution list>) |

REPLACE (<formula expression>)

<substitution list> : := <formula expression list> | [<variable>]

<formula expression list> : := <formula expression> | <formula expression list>,

<formula expression>

Semantics:

At some point in the execution of a program, we may wish to carry out

completely or partially the computation represented by a formula. To do this,

we could substitute values for all occurrences of some of the variables appear

ing in a formula, and combine these values according to the computation expressed

by the formula. In order to accomplish the above we have the EVAL operator.

This is in some sense the inverse of the f t. f f operator. The dot postpones the

action of certain Algol expressions by making them formulae, while EVAL causes

the evaluation and/or execution of formulae.

If we have a formula consisting of names of formula variables joined by

arithmetic operators, then if we assign each of the formula variables a numer

ical value, the result of the evaluation of the formula will be a number. Analo

gously, substitution of Boolean values for formula variables in a Boolean formula

produces a Boolean value.

On the other hand, we need not substitute arithmetic or Boolean values for

formula variables, but rather, we can substitute other formulae. Thus, in this

case, evaluation of the formula, instead of producing a single value, creates

a new formula. Hence, EVAL may be used to construct formulae.

A third use of EVAL is that of producing trivial simplifications in a

formula without altering its value and without substitution. This is done

according to the following table:

Simplifications of EVAL

A t 0 -> 1 A * 0 -» 0

A t U A A * 1 -> A commutative
A t - U l/A

A t -n -> l/Atn

A * - 1 -A

A * -n -» - (A * n)

A / 1 -> A A + 0 -» A

A /<-l) ->-A

A /(-n) ->-(A/n)

0 / A -> 0

(-n) / A -> - (n/A)

A + (-n) -> A -n

A -

0 + A -> A

(-n) + A -> A - n

0 -> A

A - (-n) -> A + n

- A -> -A

(-n) - A -> -(n + A)

X V true -> true ^

X A true -> X

) commutative
X V false -> X

X A false -» false

Whenever an expression contains two numeric (Boolean) arguments joined by

an arithmetic (Boolean) operator, it is replaced by its value. Similarly, the

truth values of relations are obtained if both arguments are numeric.

A final use of EVAL is to execute the Algol code which is represented by an

array, procedure, conditional, or assignment formula.

These uses of EVAL are usually combined; thus evaluation of a formula may

produce partial expansion and some trivial simplification.

In order to define the EVAL operator we will first define the operator SUBS,

which performs part of the operation of EVAL and may also be evoked in the source

language.

Consider a statement of the form

D *- SUBS (X 1, X 2 , X m) F (Y r Y 2 , Y r) (1)

where N ^ 1 and m ^ 1 (normally n ~ m) .

If F is a formula expression then

(a) If TYPE (F) is numeric or BOOLEAN or if VALUE (F) is a number or Boolean

constant then the effect of (1) is precisely that of D f- F.

(b) If TYPE (F) = FORM and VALUE (F) is a formula, then D will have the

value obtained by substituting VALUE (Y^ for each occurrence of

VALUE (X t) in a copy of VALUE (F) for all i £ min (m,n) for which

VALUE (X p is an atomic formula. If m / n, any extras on either side

are ignored.

Now we define the EVAL operator:

Consider a statement of the following form:

D <- EVAL (X ^ X 2 , X m) F (Y p Y 2 , Y n)

First the rules for SUBS are applied. Then the formula is evaluated by

a recursive process which starts at the top of the tree and is applied succes

sively to each subformula as follows:

(1) If the formula is a constant or atomic formula, it is left unchanged.

(2) If the formula is a binary formula, its operands are evaluated from

right to left. If they reduce to numbers or logical values, then

the operation indicated by the operator is carried out and the re

sult replaces the formula. Also, if any of the simplifications

listed previously applies, it is carried out. A similar process

is carried ©ut for unary formulae.

(3) If it is a procedure formula, the parameters are evaluated from left

to right and then the procedure call is executed and its value re

places the formula. Note: Since the procedure call is made regard

less of collapsing of formulae, all its arguments must be of the

right type to correspond to their actual parameters (e.g., a par

tially collapsed formula can't be passed as a real).

(4) If it is an assignment formula the expression to be assigned is evalu

ated, the assignment statement is executed, and the formula is replaced

by the assigned value.

(5) If it is an array formula, the subscript expressions are evaluated

from left to right and if all reduce to numbers, the array access is

carried out and its value replaces the formula.

(6) If it is a conditional formula, the IF formula is evaluated and if it

reduces to a logical value, then the corresponding THEN or ELSE for

mula is evaluated and replaces the conditional formula.

In the above cases if the operands of the formula do not reduce properly,

the formula is left as simplified as the above transformations provide.

EVAL and SUBS may also use [T] in place of either list of formulae where

T must be a symbol which has been previously assigned a list of formula. This

list is then used as has been explained in the operation of EVAL.

The function REPLACE:

The function designator REPLACE (F) where F is a formula expression pro

duces a formula which is obtained from F by replacing every atomic variable by

the current value of its associated FORM variable and evaluating the result as

in EVAL. The atomic variables used in the formula F must be declared either

locally or globally to the block in which REPLACE (F) is executed.

Examples: All variables are of type FORM.

Initially F <- X + Y * Z;

Y <- 1 ; Z f-2;

Executing SUBS (Y, Z) F (3, 4)

however, will produce 'X + 12 1

and REPLACE (F)

will produce fX + 2 1

Let F be [IF B THEN P(X) ELSE A [Y + Z] '

Executing EVAL (B) F (TRUE)

will yield fR f where R is the result of calling procedure P with the Formula X

as a parameter

EVAL (B, Z) F (FALSE, 2)

will yield f A [Y + 2] 1. Since the subscript did not reduce to an integer, the

access was not carried out.

FORMULA PATTERNS

Syntax:

<formula pattern> : := <formula expression> — <formula pattern structure> |

<formula expression> » <formula pattern structured |

<extractor> <fortnula expression> » <extractor> <formula pattern structure>

<extractor> ::= <variable> :

<formula pattern structure> ::= <a formula expression in which some of the

primaries may have been replaced by pattern primaries and some of the

operators may have been replaced by operator classes> t

<formula pattern primary> ::= <type> | ATOM | ANY | OF (<variable>) |

OF (<procedure identifier>) | (<formula pattern structure>) |

<extractor> <formula pattern primary>

<operator class> : := 1 1 j 1 1 <bperator class name> ff| 11

<operator class name> : := <variable>

<bperator class assignment> ::= <bperator class name> <-

/[operator: <operator list>} <comm segment> <index segment>

<bperator list> : := <operator> | <operator list>, <bperator>

<comm segment> : := <empty> | fCQMM: <logical value list>)

<index segment> : := <empty> | [INDEX: <variable>)

<logical value list> ::= TRUE | FALSE | <logical value list>, TRUE |

<logical value list>, FALSE

Semantics:

A mechanism is needed to determine precisely the structure of any formula.

Formula patterns are used for this purpose; they constitute a set of predicates

over the class of formula data structures. These formula patterns are sufficient

in the sense that whatever constructions are used to create a formula, the pro-

t This is a short description of what could be a formal syntactic statement.

cess may be reversed by the choice of a sequence of predicates. Furthermore,

a given formula pattern may be used to represent a class of possible formulae,

and any formula may be tested for membership in this class.

In the definition of a formula, a formula expression F is compared with

a formula pattern structure P to determine one of two things: (1) correspond

ing to the construction F==P, whether the expression F is an exact instance of

the formula pattern structure P or, (2) corresponding to the construction

F » P , whether the formula expression F. contains as a subexpression an instance

of the formula pattern structure P. Both consturctions F»«P and F » P are

Boolean expressions yielding values TRUE or FALSE.

The Construction P==P. The formula expression F is defined recursively to be

an exact instance of the formula pattern structure P as follows:

1. If P is an atomic formula then F==P is true if and only if F is the

same atomic formula.

2. If P is a type name REAL, INTEGER, BOOLEAN, or FORM, then F==P is

TRUE if and only if the value of F is a real number, an integer, a

logical value, or a formula, respectively. (Note that numbers and

logical values are not of type FORM.)

3. If P is the reserved word ATOM then F==P is TRUE if and only if the

value of F is either a number, a logical value, or an atomic formula.

4. If P is the reserved word ANY then F=«P is always TRUE.

5. If P is the construction OF (S), where S is a symbol which has been

assigned a list of formula pattern structures, say [p^, P^],

then F==P is TRUE if and only if F==P V F==P 2 V...V F = = p
n
 i s TRUE.

S may optionally be given the special attribute INDEX; see Operator

Classes.

6. If P is the construction OF (<procedure identifier>) where the pro

cedure identifier names a Boolean procedure with one formal parameter

specified of type FORM, (for example, BOOLEAN PROCEDURE B(X); FORM X;

<procedure body>) then P==P is TRUE if and only if the procedure call

B(F) yields the value TRUE.

7. If P is Al ^ B p then F==P is TRUE if and only if (a) F is &2 ®2 B2*

(b) ^ — A p (c) B 2 " B j , and (d) is u) 2, where cô and («2 are binary

operators. Similarly, for unary operators, if P is u>̂ B^ then B ^ P

is TRUE if and only if (a) F is u) 2 B 2 and conditions (c) and (d)

above are true. For the case where u)^ is an operator class, see the

next section.

8. If P is

(a) A. [s^, S 2,...S n] where A is an array identifier

(b) A. (S^, S 2,..., S R) where A is a procedure identifier

(c) V. <- Sj where V is a variable

or (d) .IF Sj THEN S 2 ELSE S 3

where S-, S 0,... S are formula pattern structures, then F"»P if and 1 z n

only if, respectively:

(a) F = ' k [T v T 2,..., T j f

(b) F = f A (T x , T 2,..., T n)

(c) F =* 1V T^ 1

or (d) F - 'IF Tj THEN T ? ELSE Tg 1 respectively

where T ^ 3 " ^ ' 1 £ i £ n.

Operator Classes. Before an operator class is used in a formula pattern, it

must be defined. The definition is accomplished by an operator class assign

ment, which assigns to a variable of type SYMBOL an operator description list.

Suppose R is a variable declared of type SYMBOL for which the following operator

class assignment has been executed:

R «-/ [OPERATOR: +, /] fCQMM: TRVE, FALSE, FALSE] flNDEX: j]

where J must be a variable declared of type INTEGER and where OPERATOR, COMM,

and INDEX are reserved words used for special attributes. Let P be a formula

structure having the form

A 1 | R | B x

Then F*=P is true if and only if (a) F is of the form f A 2 m B ^ and (b) one of

the two following conditions holds:

(i) A ^ A p B ^ B p and a) is a member of the operator value list found

on the description list of R. In the specific case above, this list

is [+,-,/].

(ii) B 2«=A^, A ^ ^ B ^ , and a) is a member of the list of operators whose

corresponding member of the COMM list is TRUE. (In this specific

case, this must be +) . (Note that [COMM: TRUE, FALSE, FALSE] need

not appear on the description list of R at all in which case no

commutative instances of any operator will be considered.)

If F==P is true the integer variable used as a value of the attribute INDEX

will be set to an integer denoting the position of U) in the operator value

list. (In the specific case above, J is set to 1, 2, or 3 according to whether

U) was +, or / respectively). The operator co is stored as the value of R.

Later the construction | <R> | can be used in an expression

in place of an operator, and the operator a) extracted during the previous

matching will be used in the construction of the formula data structure that

the expression represents. Alternatively, R may be assigned any operator

by the assignment statement R <- <operator> and | <R> | may be used in the

same fashion.

Extractors. Wherever an extractor is used in a formula pattern preceding a

formula pattern primary the subexpression in F which matches that formula

pattern primary is assigned as the value of the variable found to the left

of the colon in the extractor. This variable must be of type FORM. This

assignment is made as soon as the pattern primary is matched. Therefore,

even though a pattern may fail as a whole, some of its extractors may have

been assigned values. When f l:" is used in this context it binds more closely

than any other formula operator.

The Construction F>>P. The formula pattern F » P is TRUE if F contains a
m m m m m m m m m m m m t m m , m m m m — f

subexpression, say S (which may be equal to F itself) such that S==P is

TRUE. A recursive process is used to sequence through the set of subexpres

sions of F for successive testing against the formula pattern structure P.

The sequencing has the properties that if two subexpressions and are

both instances of P, then if S 2 is nested inside Sj, Sj will match P first,

and if neither is nested inside the other, then the one on the right in a

linearized written form of S, is recognized first.

The formula pattern A:E>>B:P, in which extractors precede the right

and left hand sides of the formula pattern, has the following meaning:

First F » P is tested. If the result is true then (a) the subexpression of

F which matches P is stored as the value of B, and (b) a formula is con*-

structed consisting of F with the subexpression matching P replaced by the

previous value of B (the value B had before the assignment described in (a)

took place). This formula is stored as the value of A.

Examples

Example 1. Let A,B,X,Y, and Z be declared of type FORM, let R be

declared of type REAL, and let all form variables have their atomic formulae

as values. Suppose that the statement

X <- 3 * jvIN(Y) 4 - (Y - Z) / R + 2 * R ;

has been executed. Consider the statement:

IF X » A: INTEGER * B: SIN (FORM) THEN Z <- 2 * B + A

Since the pattern X » A : INTEGER * B: SIN (FORM) is TRUE, the assignment

Z <r- 2 * B 4- A will be executed assigning as the value of Z the formula

2 * SIN (Y) 4- 3 because A has the value 3 and B has the value SIN (Y).

Example 2. Let X be of type SYMBOL, A, B, Y, M, T, G, and P be of type

FORM, and D be of type BOOLEAN. Then executing the statements: X «- [REAL,

INTEGER, BOOLEAN] ; G Y + 8 * (M - T) ; P FORM 4- A : OF (X) * B: FORM;

D <-G==P; causes D to be set to TRUE because the pattern G ^ P is TRUE, and

causes A to be set to 8 and B to be set to M - T,

Example 3. Suppose we execute the statements F <- 2 * (SIN(X t 2 4- Y t 2)

4 COS (X t 2 - Y t 2)) / 5; T <- .T; G <- SIN (FORM) + COS (FORM) ;

where all variables used are of type FORM. Then A: E » T : G is a pattern

with value TRUE. T gets assigned SIN (X t 2 + T t 2) + COS (X t 2 - Y t 2)

the subpattern of F which matched G. A gets assigned 2 * T/5, a copy of F

with the matched subpattern replaced by the previous value of F.

Example 4. Assume all variables in the following sequence of declara

tions and statements are of type FORM.

BOOLEAN PROCEDURE HASX(F) ; VALUE F ; FORM F ; HASX <- F » X ;

G f- (X t 2 4-3) t 2 * (Y -1) : F f- A : O F (HASX) * B: (ANY -1) : T <- G==F ;

Then T is set to TRUE, A is set to (X t 2 + 3) t 2 and B is set to Y - 1.

Here we use HASX to find any formula which is a function of X.

TRANSFORMED FORMULAE

Syntax:

transformed formula> ::= <formula expresslon> A <schema variable>

<schema variable> ::= <variable>

<8chema assignment> : := <schema variable> <- [<schema>]

<schema> ::= <schema element> | <schema>, <schema element>

<schema element> : := <variable> | <single production> |

<parallel production>

<single productiorO ::= <formula pattern structure> -><formula expression> |

<formula pattern structure> . -> <formula expression>

<parallel productiori> ::= [<parallel elements>]

<parallel elementa> ::= <variable> | <single production> |

<parallel elements>, <variable> |

<parallel elements>, <single production>

The following is an additional restriction on the Syntax:

If any schema element has an extractor as its left-most member,

then the whole element must be enclosed in parentheses.

Semantics:

Let F and G be formulae, and let P be a formula pattern. The applica

tion of the production P-> G to the formula F is defined as follows:

1. If F==P is FALSE then the application is said to fail.

2. If F==P is TRUE then the application is said to succeed, and F is

changed according to G as follows: If P contains extractors,

subexpressions of F matching corresponding parts of P are assigned

as values of the extractors. Now in order to rearrange F according

to the structure of the extractor variables in G, we change the

subformula of F which matched P into REPLACE(G). This

substitutes the extracted subexpressions for their extractor

variables in G causing the desired rearrangement.

For example, the distributive law of multiplication over addition may be

executed as a transformation by applying the production

A: ANY * (B: ANY + C: ANY) -» .A * .B + .A * ,C (1)

to a given formula. Suppose that F contains X t 2 * (Y + SIN (Z)). Then

applying the production (1) to F will result in the extraction of the sub

expressions X t 2, Y, and SIN (Z) into the variables A, B, and C respec

tively, and will cause the replacement of the atomic formulae A, B, and C

occurring on the right hand side of (1) with these subexpressions, resulting

in the transformation of the value of F into the formula X t 2 * Y + X t 2

* sin (Z).

A schema is a list of transformation rules. Each rule is either a

single production or a list of single productions defining a parallel

production. Variables occurring in a schema must have single productions

as values. Expressions of the form F. i S, where F is a formula and S a

list, are formula primaries, and thus may be used as constituents in the

construction of formulae. The value of such a formula primary is a

formula which results from applying the productions of the schema S to

to the formula F according to one of the two possible sequencing modes

explained as follows: Sequencing modes give the order in which productions

of a given schema S are applied to a given formula F and to its subexpressions.

The two sequencing modes differ in the order in which a given production

will be applied to different subexpressions of F, and in the conditions

defining when to stop.

r

One-by-one Sequencing:

One by one sequencing corresponds to a syntactic construction of the

form S [Pj, P 2, . . . , P j . For j <-1 step 1 until n, production P^ Is

applied to F. If the application of P succeeds, P^'s transformation is

applied to F and the whole process (starting at P p is reapplied to the

result. If Pj fails to apply to F, it is applied recursively to each

subexpression of F. Therefore, production P^ is applied to F if and only

if production P^ ^ is not applicable either to F itself or to any sub

expression of F. This sequencing will stop either when no production can

be applied to F or any of its subexpressions or when a production contain

ing has been executed.

Parallel Sequencing

Parallel sequencing corresponds to a syntactic construction of the

form <- [[P^, Pj, PJ] or any form in which the brackets are nested at

a depth of two. Here j is initially set to 1. when a production P^ is

applied to F, if it succeeds, we apply its transformation and return to the

beginning as with one-by-one sequencing. If the application P^ fails,

production Pj+^ *-s applied to F, and so on up to P^. ' If all single pro

ductions of a parallel production fail at the topmost level of F, then

the whole sequence is applied recursively to the next lowest subexpressions

of F. Thus in parallel sequencing each one of the productions is applied

at level k of the formula F only if all productions have failed at level

k-1. The termination condition is reached when all productions fail at

the bottom level of F or when a production containing has been executed.

In general a schema may have a combination of both sequencing modes,

such as S <- [p , P 2, In this case P
V

P 9, the parallel

sequence, and are treated one-by-one. When the sequence [P^, P^, P,.]

is reached in this schema, it is treated in parallel. Any number of these

parallel schema may be used at the same level, but none may be nested at a

depth greater than two.

The schema varaible S has to be declared of type SYMBOL. Optionally,

a description list may be associated with S. If the special attribute

INDEX occurs in the description list of S then, when the transformation has

been completed, the value of an INTEGER variable used as the value of the

attribute INDEX is set to 0 if no transformation took place, i.e., no

production was applicable to F. The variable is set to 1 if at least one

transformation took place and exit occurred because no further production

of S was applicable. Finally, the variable is set to 2 if a production

containing .-> was applicable. The following complete example of a schema

clears fractions in arithmetic expressions.

BEGIN FORM F.X.A.B.C; SYMBOL S.P.T;

A <- A: ANY: B<- B: ANY; C<- C: ANY;

P <- / [OPERATOR: +] [COMM: TRUE] ; T <- / [OPERATOR: *] [COMM: TRUE] ;

S *- [A t (-B) .At . B,

A |P| (B/C) -> (.A * .C + .B) /.C,

A |T| (B/C) -> (.A * .B) / .C,

A -B/C -» (.A * .C -.B) / .C,

B/C - A -> (.B -.A * .C) / .C,

A/ (B/C) -» (.A * ..C) / .B,

(B/C) /A .B/ (.C * .A),

(B/A) t C - » , B t .C / .A t .c] ;

F «- (X + 3/X) t 2 / (X -l/X) ;

PRINT (F. i S) END

The above program will print X * (X t 2 + 3) t 2/ (X t2 * (X t 2 - 1)) .

PRECEDENCE OF FORMULA OPERATORS

Now that all the formula expressions have been explained, we present

the precedence of formula operators in both expressions and patterns:

: (done first)

t

- + (unary)

/ *
- + (binary)

= ± >< -> -<

-n

A

V

II or |< >|

• I (done last)

In cases of equal precedence, association to the left is used.

SPECIAL FUNCTIONS

The following functions are built into Formula Algol:
DERV (F,X) A FORM function designator whose value is the derivative

of F with respect to X.

CELLS An INTEGER function designator whose value is the number

of cells remaining on the available space list [see 4] .

3

f

CHAPTER IV

LIST PROCESSING

SYMBOL VARIABLES

Variables may be declared of type SYMBOL, indicating that their values

are to be list structures. In addition to this function, they may also serve

as data to be manipulated and stored in list structures. In this context they

are called atomic symbols. When a symbol S is declared, as with a form variable,

its value is initialized to the atomic symbol S and a description list is associ

ated with it.

SYMBOL ARRAYS

Arrays may be declared of type SYMBOL whose elements may be list structures.

Again like form arrays, they are accessed in the normal manner and they are not

initialized.

SYMBOLIC EXPRESSIONS

Syntax:

<symbolic expression> ::= .<identifier> |

<variable>|<function designator>|

<value retrieval expression> |<selection expression>|

<symbolic e x p r e s s i o n ^ " | NIL

Semantics:

A symbolic expression has as its value either an atomic symbol or a list

according to the following rules:

1 • If it is a symbol variable preceded by a dot, its value is the atomic

symbol represented by the variable.
2. If it is a symbol variable S, its value is the contents of S. The

contents of a symbol may be modified by assignment statements

(pg. 52), push and pop statements (pg. 61), and extractors (pg. 58).

3. If it is a function designator resulting from the declaration of

a symbol procedure, its value is that assigned to the procedure

identifier by executing the body of the procedure using actual para

meters given in the function designator call.

4. Selection expressions are explained on page 55.

5. Value retrieval expressions are explained on page 53.

6. If it is of the form<E>, where T is a symbolic expression, the

value of T is first computed and must result in an atomic symbol.

The value of the symbolic expression is then the contents of that

atomic symbol. The angular brackets may be nested arbitrarily ^

many times to provide many levels of indirect access.

7. NIL is a special symbol with no contents or description list which

may be treated as an atomic symbol. It acts as an identity element

under concatenation of list elements (pg. 51).

LISTS

Syntax:

<list> ::= <list element>|<list>,<list element>

<list element> ::= <expression>|<list expressionXdescription list>|

<symbolic expressionXdescription list>|<llst pattern primary>

<list expression> ::= [<list>]

<expression> ::= <arithmentic expression>|<Boolean expression>|

<formula expression>|<formula pattern structure>|

<symbolic expression>|<list expressiori>|<list expressiori>

Semantics:

Symbols may be concatenated into a list by writing them one after another,

separating them with commas, and enclosing them in brackets. In addition to

symbol variables, any expression except a designational expression may be

written as an element of a list and its value will be entered. For example,

let X. Y, and Z be formula variables, let A, B, and C be Boolean variables,

let U, V, and W be real variables, and let R, S, and T be symbol variables.

Then the value of

[x* SIN(Y), 3 + 2 * U, IF B THEN R ELSE T, [R,T,R] , -3$

is obtained by causing each expression on the right to be evaluated, and

their results concatenated. If one of the results is NIL, the element

disappears completely from the list. Automatic data term conversion results

from using non-symbolic values in lists. The second from the last item in

the above list is the quantity [R,T,R] , which becomes a sublist of the list.

Hence, the expression, in reality, is a list structure. It is further

possible for certain of the elements of a list to bear local description

lists (pg.53).

It should be noted that one-element lists and single values are

treated identically when appearing as the contents of a symbol. Thus

S <- 3 and S <- [3] are the same when S is a symbol variable. If we wished

to make the contents of S a list with one number, 3 , we would execute

S < - [[3]] .

List pattern primaries may be stored in lists so that the list may

later be used in a list pattern (pg. 58) .

ASSIGNMENT STATEMENTS

Syntax:

We may extend the Algol 60 syntax as follows:

<assignment statement> ::=... |

<symbolic expression> <expression>|

<symbolic expression> ^description list>|

<veriable> <-<description list>

Semantics:

When a symbolic expression (other than a variable) appears on the left

hand side of an assignment statement, it is first evaluated and must result

in an atomic symbol. The value of the expression on the right then becomes

its contents, or the description list on the right replaces its description

list. Thus any symbolic expression, unlike those of other variables, is

allowed on the left side of an assignment. In the case that a symbol variable

appears on the left by itself, the right side expression replaces the contents

of the variable mentioned, instead of the contents of its value. Description

lists may also be assigned to variables of type FORM.

DESCRIPTION LISTS

Syntax:

description list> ::= /<attribute-value list>

<attribute value list> :: = <attribute value segment>|

<attribute value listXattribute value segment>

<attribute value segment> ::= [<attribute>:<list>]|

[<attribute> : <empty>]

<value retrieval expression> ::= <identifier> (<form or symh>)|

THE <attribute> OF <form or symh>

<form or symh> ::= <symbolic expression>|<formula expression>

<attribute> ::= <symbolic expression>

Semantics:

A description list is a sequence of associated attributes and value-lists.

An attribute must be a symbolic expression which results in an atomic symbol.

Each attribute is followed by its value-list which is of the same form as an

ordinary list. It may contain more than one member, it may contain only one

member, or it may be empty. A description list may be attached to one of three

types of objects:

1. A variable declared of type SYMBOL for which there are two cases

(a) global attachment, and (b) local attachment.

2. A variable declared of type FORM.

3. A sublist of a list.

To describe these uses, consider these examples: Assuming that all variables

involved have been declared of type SYMBOL, the statements

S <7[TYPES: MU,PI,RHO][ANCESTORS: 0RTH0L,PARA5][COLOR: GREEN]; (1)

T <-[F,A/[NUM: 1],B,C,A/[NUM: 2],D,E]; (2)

assign respectively a description list to S and a list as the contents of T. The

description list attached to S is globally attached, meaning that it is perma

nently bound to S for the lifetime of the variable S. In the list assigned as

the value of T, the symbol A occurs twice - in the second and fourth positions.

The description lists attached to these two separate occurrences of A are attached

locally, meaning that the separate occurrences of a given atomic symbol within a

list have been given descriptions which interfere neither with each other nor

with the global description list attached to A if such should occur. The

attributes and values of a given local description list are accessible only by

means of symbolic expressions accessing that particular occurrence of the symbol

to which the given local description list attached.

Thus, if one desired to access the global description list of that copy of

A, he would remove it from the list T, destroying its local description list and

then perform the value retrieval. E.g., Tl <-2 ND OF T; then use NUM OF Tl.

In the following examples suppose F is a variable declared of type FORM

and that all other variables involved are variables declared of type SYMBOL.

F <- /[PROPERTIES: CONTINUOUS, DIFFERENTIABLE] ; (3)

V 4- [A, [B,C]/[PROCESSED: TRUE) , A, [B,C] /[PROCESSED: FALSE], A] ; (4)

In example (3) a description list is attached to a formula. In example (4) the

list assigned to be the contents of V has two identical sublists [B,C] in the

second and fourth positions having different local description lists.

Value lists stored in description lists are retrieved by means of value

retrieval expressions. To accomplish retrieval, two arguments must be supplied:

(1) an attribute consisting of an atomic symbol and (2) the atomic symbol or

formula having the description list. The attribute is then located on the de

scription list and its associated value list becomes the value of the retrieval

expression. If there is no description list, or if there is a description list

but the attribute does not appear on it, or if the attribute does appear on it

but has an empty value list, then the value of the retrieval expression is the

symbol NIL. Thus in examples (1) and (2) above, the value retrieval expressions

COLOR(.S), NUM(2ND OF T) , and NUM(3RD OF T) have the values GREEN, 1, and NIL

respectively. If in a value retrieval expression either the description list

or the attribute is missing, it is added with a value of NIL. The construction,

THE COLOR OF .S, accomplishes the same function as COLOR(.S) but is slightly

more versatile in that any symbolic or formula expression may be used to

calculate the attribute whereas only identifiers may be used for the attribute

in the form <identifier> (<symbolic expression>) .

SELECTION EXPRESSIONS

Syntax:

<selection expression>::= <selector> OF < symbolic expression >

<ordinal suffix>::= ST | ND | RD | TH

<ordinal selector>::= <arithmetic primaryXordinal suffix>|LAST|FIRST

<elementary position>::= <ordinal selector>|

<ordinal selector> <kind> |

<ordinal selector> INTEGER <arithmetic primary>

<kind>: := <augmented type> | <expression> | <class name>

<po8ition>::= <elementary position> | <arithmetic primary>

<ordinal suffix> BEFORE <elementary position> |

<arithmetic primary Xordinal suffix AFTER <elementary position>

<selector>: := BETWEEN<po8itiori>AND<po8ition>[ALL AFTER<position>|

ALL BEFORE<positlon>|FIRST<arithmetic primary>|

LAST<arithmetic primary>[<positlon>|ALL<kind>|

<augmented type>::= REAL| INTEGER | BOOLE AN | FORM| SYMBOL | SUBLIST| ATOM] ANY

Semantics:

Selection expressions are formed by composing selector operators with

symbolic expressions. A symbolic expression is first evaluated producing

a symbolic data structure as a value. A selector operator is then applied

to the resulting symbolic data structure to gain access to a part of it.

Assume first that the symbolic data structure S on which a selector operates

is a simple list. Then

^n ordinal selector refers to an element of this list either by

numerical position, or by designating the last element.

E.g. 3 RD OF S, LAST OF S.

2. An elementary position refers to an element of this list by

designating it (a) as the N TH or LAST instance of an augmented

type, e.g. N TH REAL, LAST SUBLIST, where N is an expression

whose value is an integer, (b) as the N TH or LAST instance of

the value of an expression, e.g. N TH (F+G), LAST [A,B ,c] ,

(c) as the N TH or LAST instance of a member of a class (pg.61),

e.g. 5TH (|TRIGFUNCTION|), LAST (|VOWEL|), (d) or by ordinal

selection.

3* A position refers to an element of this list either by designating

its elementary position or by designating it as the N TH BEFORE

or in the N TH AFTER some elementary position.

A selector refers to an element by its position or else designates

one of the following sublists of the list

(a) The sublist between two positions not including either

position named, e.g. BETWEEN 3 RD and 7TH OF S produces

a list consisting of the 4th, 5th, and 6th.

(b) The sublist consisting of all elements before or after a

given position, e.g. ALL AFTER 3 RD SYMBOL OF S, ALL

BEFORE LAST REAL OF S.

(c) The sublists consisting of the first n elements or the

last n elements, e.g. FIRST 3 OF S, LAST K OF S.

(d) The sublists composed by selecting and then concatenating

(i) all instances of a given expression, e.g. ALL F OF S,

(ii) all instances of a given augmented type, e.g. ALL

REAL OF S, (iii) all instances of elements which are members

of a given class, e.g. ALL (|TRIGFUNCTION|) OF S. These

elements are concatenated in the same order that they

occur in the list from which they are selected.

Selectors may be compounded to access sublists and their elements. Suppose

the statement S [X,X, [A, A [, X] ,A] has been executed. Then the expression

2 ND OF S is a list valued symbolic expression with the list [x,X, [A,A], X]

as value, whereas the expression 3RD OF 2 ND OF S has the list [A,A] as value,

and the expression LAST OF 3 RD OF 2 ND OF S has the single atomic symbol A

as value.

If a selector refers to an element of a list which doesn't exist

because the list is of insufficient length (e.g. the 5th of a 3-element list),

then the value of the expression is NIL, and the extra NIL 1s are added to the

structure to make it the right length.

Note that there could be an ambiguity with the statement FIRST 3 OF S.

It could mean the first 3 elements of S or the first integer f 3 ! in S, We

have chosen to use the former interpretation and to require one to write

FIRST INTEGER 3 OF S if he desires the latter.

LIST PATTERNS

Syntax:

<list pattern>::= <symb or list> == <symb or list>|

<symbolic expresslon> == <kind>|

<symb or list> = <symb or list>

<symb or list>::= <symbolic expressiori>|<list expressiori>

<list pattern primary>::= $ | $<arithmetic primary>|

<kind>|<extractorXlist element>

<extractor>: := <variable>:

Semantics:

List patterns are predictates for determining the structure of lists.

They use mechanisms like those found in CGMIT [5] to test whether a list is

an instance of a certain linear pattern. The construction to the left of

the == is the list structure being tested according to the pattern on the

right. This pattern will consist of a sequence of list pattern primaries

(possibly one), some of which may be ordinary list elements. In order for

the list to match the pattern, the entire list must match the pattern, not

just a subpart of it as in COMIT.

The elements of the list pattern evoke tests as follows:

The normal list elements are evaluated as in ordinary lists. If they

result in atomic constructions, these are used in direct equality tests. If

they result in lists, then each element of the list is treated as another

list pattern primary. The one exception to this is if the element is actually

a sublist (is enclosed in brackets). This will only match the list pattern

primaries of the pattern sublist. This feature allows patterns to test whole

list structures.

The other list pattern primaries are matched in the following ways:

(1) An augmented type will match an element which is of that type

as defined for formula patterns. (Page 37). In addition

SYMBOL will match only atomic symbols and SUBLIST naturally

matches sublists.

(2) A class name will match an element which satisfied its class test

(pg. 61).

(3) $n will match any n consecutive elements, where n is an expression

whose value is a positive integer.

(4) $ will match an arbitrary number of elements, including 0. However,

there is a limitation on this which can be explained by giving a

brief idea of the scanning algorithm for $.

When a $ is encountered in the pattern, we first pair it with no elements

and then try to match the rest of the pattern. This failing, we pair it with

one element and try again. We keep increasing the scope of the $ until a

match is found or we run over the end of the list. However, once we have

matched the pattern primaries to the right of a $ up to the next $, we consider

the first $ fixed and we do not try to enlarge its scope any more. If we meet

failure in matching the second dollar sign, the pattern fails. We do not back

up to the first. (E.g. [l,A,2,B,A,2,B,c] == [$,A,$,B,$l] is false since after

matching the B after the second $, we will not back up to find new matches for

the $'s.)

A. It should be noted that testing for the type or class of a single

element is nothing more than a list pattern in which the right side

is a single list pattern primary. Thus we may write:

3 rd OF S == INTEGER

THE A OF B == (| NOUN |)

Like formula patterns, list patterns are boolean primaries and

thus may be combined with other booleans using logical connectives

or may be used in IF - THEN statements.

As an example, consider the list

S <- [A, 1, B, C , A, A, C] ;

S == [A, INTEGER, $, A, $2] is TRUE.

As with the formula pattern structures, list patterns may function not only

as predicates but also as selectors. The same mechanism is used to accomplish

this. If any list pattern primary in a list pattern structure is preceded

by a variable declared of type SYMBOL followed by a colon, then in the event

that there is a match, the element which matches the list pattern primary

becomes the value of the symbol variable. It may then be accessed at any

later point in the program. In the case that there is only a partial match,

however, some of the extractors may be assigned values anyway.

Suppose the statement S <- [A , B , C , D] has been executed where all variables

are symbols and where A, B, C , and D have as values their atomic symbols.

Then, executing the statement

IF S == [T:$2, V:$2] THEN S [V,T] ;

changes the contents of S to be the list [C,D,A,B] . This is because the

contents of T is the list [A,B] , and V has as its value the list [C,D] .

Two list structures may be tested for exact equality by means of a

single =. This is necessary above the == predicate only in that it permits

testing of stored list patterns. Thus we may store a pattern containing

\ : \ REAL, •$', etc., and then later test it for exact form using those

symbols in the patterns. For example, "== REAL" will match any real number;

while "= REAL" will match only the element "REAL".

CLASS TESTS

Syntax:

<cla8s name> ::= (f,|'^symbolic expres8ion> M|")

<class definition> ::= Let <class name = [<formal parameter> H | n <Boolean

expression>]

Semantics:

Sets may be defined by means of class definition. For example, suppose

the statement V «- [A,E,I,0,U] has been executed. Then the statement LET

(|VOWEL|) = [X | AMONG(X,V)] ; defines the set of all vowels where AMONG(P,Q)

is a Boolean procedure which is TRUE if P is an element of the list contained

in Q, and FALSE otherwise. Suppose that having previously executed the

statement S <- [A,B,C] , we execute the statement

IF 1 ST OF S == (|VOWEL|) THEN <statement>

The list pattern 1 ST OF S == (|VOWEL|) will be evaluated by first computing

the value of the expression 1ST OF S, which is the symbol A, and second by

substituting A for the formal parameter X in the class definition of (JVOWELJ).

This results in the execution of procedure AMONG (A, V) which produces the value

TRUE. Thus, A is a member of the class (|VOWEL|), and the list pattern

1ST OF S == (|VOWEL|) is TRUE, causing the <statement> to be executed.

Any arbitrary Boolean expression, including a Boolean procedure call,

may be used to define a class. Thus the full generality of Boolean procedures

is obtained.

PUSH DOWN AND POP UP STATEMENTS

Syntax:

<push down operator> ::= i|<push down operator> 4

<pop up operator> ::= t|<pop up operator> t

<push down statement> ::= <push down operator> <symbolic expression>

<pop up statement> ::= <pop up operator> <symbolic expression>

Semantics:

The contents of any variable declared of type SYMBOL is a push down stack.

The contents of the variable consists of the current topmost level of the push

down stack. Applying a single push down operator I to such a variable pushes

down each level of the stack making the topmost level (level 0) empty and

replacing the contents stored at level k with the contents stored previously

at level k-1. The empty topmost level may then acquire a value as its con

tents by means of the execution of an appropriate assignment statement. A

lower level of the push' down stack is not accessible to the operation of

extracting contents until the execution of a pop up statement restores it to

the topmost level. Applying a single pop up operator t to the name of a

variable destroys the contents of the topmost level and replaces the contents

stored at level k with the contents previously at level k + 1. A push down

operator (pop up operator) consisting of n consecutive occurrences of a single

push down operator (pop up operator) has the same effect as n consecutive

applications of a single push down operator (pop up operator). A push down

operator (pop up operator) is applied to a symbolic expression by evaluating

the symbolic expression and, if it results in an atomic symbol, the operator

is applied to the push down stack which is 'the contents of the atomic symbol

as described above. Any structure which occupies the contents of a symbol

variable S may become the contents of a lower level of the push down stack

in S by application to the push down operator S. In particular, list struc

tures may be stored in the push down stack in S.

ADDITIONAL FOR STATEMENTS

Syntax:

<for list> : := ... |

ELEMENTS OF <symbolic expression> |

ATTRIBUTES OF <symbolic expression>

<for clause> ::= ... | FOR <symbollc expression> <-<for list> DO |

PARALLEL FOR <symb or list> <-

ELEMENTS OF <symb or list> DO

Semantics:

We may wish to generate the element of a list or the attributes of a

description list one by one in order to assign them to the controlled variable

in a FOR statement. Attributes on the description list of the value of S,

which must be atomic symbols, are generated in the order that they occur by

"ATTRIBUTES OF S", and "ELEMENTS OF S" generates the successive elements

of the list which is of the value of S. In the former case S must be any

symbolic expression with an atomic symbol as value because the attributes

from its description list will be generate. In the latter case S may be any

list valued symbolic expression. Successive elements generated are assigned

to the control variable given in the FOR clause. In either case, the lists

of.values to be assigned to the control variable are fixed upon initial entry

to the FOR statement, and any changes to them in the body of the FOR state

ment will not be reflected.

Parallel generation is also permissible. Here the expression to the

left of the "f-" is a list of n atomic symbols and the expression on its right

is a list of n lists or n symbols containing lists. For example: if S <- [A,B ,c] ,

T <- [D,E] , and U [F, G, H, M] have been executed where the variables A

througjh I have as values their atomic symbols then executing the statement

PARALLEL FOR [I,J,K] <- ELEMENTS OF [[s] , [T] , [u]] DO L <- [L , I , J , K] ;

causes the following to happen. First, all first elements of the lists

contained in S, T, U, respectively are generated and placed in the contents

of the controlled variables I, J, and K, respectively. Control then passes

to the body of the parallel FOR statement and returns when finished with its

execution. On the second cycle, all second elements of S, T, and U are gen

erated and placed in the controlled variables I, J and K, respectively.

Control then passes the statement following the DO and returns. On the third

cycle, all third elements are generated, on the fourth cycle all fourth

elements are generated, and so on. If any list runs out of elements before

any of its neighbors, the symbol NIL continues to be generated. The parallel

generation stops just before the symbol NIL would have been generated from

all lists.

List valued symbolic expressions may be used to supply lists of control

variables and lists of lists to generate in parallel, as, for example, in the

construction

PARALLEL FOR V <- ELEMENTS OF W DO L f - [L, I, J, K] ;

where the statements V <- [l,J,K] and W <- [[s] , [T] , [u]] have been executed

previously. At the end L should contain [L, A,D,F,B,E,G,C,H,l] .

EDITING STATEMENTS

Syntax:

<editing statement> ::= INSERT <symb or list> <insertion locator list>

<symbolic expression> | < DELETE <selector list> <symbolic expression> |

DELETE <symbolic expression> | ALTER <selector list> <symbolic> TO

<expression> | <description list editing statements

<insertion locator> :: = BEFORE <position> OF | AFTER <position> OF

<insertion locator list> ::= <insertion locator> |

<insertion locator list>, <insertion locator>

<selector list> ::= <selector> OF | <selector list>, <selector> OF

<description list editing statement^ ::= THE <symbolic expression> OF

<symbolic expression> <is phrase> <expression>

<is phrase> ::= IS | IS NOT | IS ALSO

Semantics:

Editing statements are used to transform, permute, alter, and delete

elements of lists. The INSERT construction causes a list structure to be

inserted at each of the places given by an insertion locator list. The list

on which insertion is to be performed is obtained by evaluating the symbolic

expression which occurs last in the statement. The expression to be inserted

is then evaluated, and if it produces a list, each element of the list is

inserted as an element of the list being altered. To insert a sublist in a

list it must be surrounded by two sets of brackets. Thus, if S [A,B,C,l] ;

INSERT [X,Y] BEFORE 2ND OF, AFTER LAST OF S causes S to be [A,X,Y,C, 1,X,Y]

but INSERT [[X,Y]] BEFORE 2ND OF, AFTER LAST OF S causes S to be

[A, [X,Y] ,C, 1, [x,Y]] . All the insertions take place simultaneously.

The first DELETE construction above performs simultaneous deletions of

parts of a list. The list of parts to be deleted is specified by the

selector list in accord with the semantics of selectors. Thus, DELETE 2ND

BEFORE FIRST INTEGER OF S will cause our original list S to be [A,C,l] . The

second delete construction removes the value of the symbolic expression from

the list structure in which it resides according to the form of the symbolic

expression. Thus, DELETE THE COLOR OF APPLE removes the value-list of this

attribute. DELETE . S is meaningless.

The ALTER construction is equivalent to a series of deletions followed

by insertions at each point where something was deleted.

ALTER ALL SYMBOL OF S TO [3,4] changes S to [3,4,3,4,3,4, l] .

Whenever an assignment is made of a list structure, the entire structure

is copied and the copy becomes the contents at the left-side variables. Thus

editing statements should be used instead of assignment statements if a copy

is not needed when altering a list. For example:

D INSERT A AFTER LAST OF S

is more efficient than

s <- [S,A]

Description List, Editing Statements. Description list editing statements

add or delete values on description lists. They supplement the role per

formed by assignment statements in this regard. Suppose that

S <- / [THPE: MU, PI, RHO] [COLOR: RED] has been executed. Then, if the

statement THE COLOR OF S IS GREEN; is executed, the value of the attribute

COLOR on the descriptidn list of S is replaced with the new value GREEN.

This yields the altered description list / [TYPE: MU, PI, RHO] [COLOR: GREEN]

as a result. On the other hand, the statement: THE COLOR OF S IS ALSO GREEN;

could be executed. Instead of replacing the color RED with the value GREEN

the latter statement appends the value GREEN to the value list following the

attribute COLOR. This yields the description list / [TYPE: MU, PI, RHO]

[COLOR: RED, GREEN] as a result. Finally, description list editing statements

may be used to delete values from value lists of a specific attribute.

Executing the statement: THE TYPE OF S JES NOT PI; alters the above descrip

tion list to / [TYPE: MU, RHO] [COLOR: GREEN] .

SPECIAL FUNCTIONS

CREATE(N) A SYMBOL function designator whose value is a list of N

created atomic symbols. CREATE = CREATE (1).

ERADL(S) A statement which erases the description list attached to

the symbol S.

COUNT(L) An INTEGER function designator having as value the number

of elements in the list which is the value of L.

EMPTY (S) A BOOLEAN function designator which is true if S contains

^ no elements. It is false if the structure contains

anything including NIL.

AMONG(S,L) A BOOLEAN function designator which is TRUE if S is a

member of the list L and FALSE otherwise.

3

3

APPENDIX I

Revised Report on the Algorithmic Language
ALGOL 60
Peter Naur (Editor)

J. W . Backus C. Katz H. Rutishauser
F. L. Bauer J. McCarthy K. Samelson
J. Green A. J. Perlis B. Vauquois

J. H. Wegstein
A. van Wijngaarden
M . Woodger

Dedicated to the Memory of William Turanski

S U M M A R Y C O N T E N T S

The report gives a complete defining description of the
international algorithmic language A L G O L 60. This is
a language suitable for expressing a large class of nu
merical processes in a form sufficiently concise for direct
automatic translation into the language of programmed
automatic computers.
The introduction contains an account of the preparatory

work leading up to the final conference, where the language
was defined. In addition, the notions, reference language,
publication language and hardware representations are
explained.
In the first chapter, a survey of the basic constituents

and features of the language is given, and the formal
notation, by which the syntactic structure is defined, is
explained.
The second chapter lists all the basic symbols, and the

syntactic units known as identifiers, numbers and strings
are defined. Further, some important notions such as
quantity and value are defined.
The third chapter explains the rules for forming ex

pressions and the meaning of these expressions. Three
different types of expressions exist: arithmetic, Boolean
(logical) and dcsignational.
The fourth chapter describes the operational units of

the language, known as statements. The basic statements
are: assignment statements (evaluation of a formula),
go to statements (explicit break of the sequence of ex
ecution of statements), dummy statements, and pro
cedure statements (call for execution of a closed process,
defined by a procedure declaration). The formation of
more complex structures, having statement character, is
explained. These include: conditional statements, for
statements, compound statements, and blocks.
In the fifth chapter, the units known as declarations,

serving for defining permanent properties of the units
entering into a process described in the language, are
defined.
The report ends with two detailed examples of the use

of the language and an alphabetic index of definitions.

I n t r o d u c t i o n
1. S t r u c t u r e o f t h e L a n g u a g e

1.1. Formalism for syntactic description
2. B a s i c S y m b o l s , I d e n t i f i e r s , N u m b e r s , a n d S t r i n g s .

B a s i c C o n c e p t s .
2.1. Letters

Digits. Logical values.
Delimiters
Identifiers
Numbers
Strings
Quantities, kinds and scopes
Values and types

E x p r e s s i o n s
3.1. Variables

Function designators
Arithmetic expressions
Boolean expressions
Designational expressions

S t a t e m e n t s
4.1. Compound statements and blocks

Assignment statements
Go to statements
Dummy statements
Conditional statements
For statements
Procedure statements

5. D e c l a r a t i o n s
5.1. Type declaration?
5.2. Array declarations
5.3. Switch declarations
5.4. Procedure declarations

E x a m p l e s o f P r o c e d u r e D e c l a r a t i o n s
A l p h a b e t i c I n d e x o f D e f i n i t i o n s o f C o n c e p t s a n d

S y n t a c t i c U n i t s

2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.

3.2.
3.3.
3.4.
3.5.

4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

This report was published simul
taneously in the Communications
of the ACM, 6, No. 1 (1963), 1-17,
the Numerische Mathematik, and the
Computer Journal.

REVISED ALGOL 60
I N T R O D U C T I O N

B a c k g r o u n d

After the publication of a preliminary report on the
algorithmic language Algol , 1 , 2 as prepared at a conference
in Zurich in 1958, much interest in the Algol language
developed.

As a result of an informal meeting held at Mainz in
November 1958, about forty interested persons from
several European countries held an Algol implementa
tion conference in Copenhagen in February 1959. A
"hardware group" was formed for working cooperatively
right down to the level of the paper tape code. This
conference also led to the publication by Regnecentralen,
Copenhagen, of an ALGOL Bulletin, edited by Peter
Naur , which served as a forum for further discussion.
During the June 1959 I C I P Conference in Paris several
meetings, both formal and informal ones, were held.
These meetings revealed some misunderstandings as
to'the intent of the group which was primarily responsible
for the formulation of the language, but at the same time
made it clear that there exists a wide appreciation of the
effort involved. As a result of the discussions it was de
cided to hold an international meeting in January 1900
for improving the Algol language and preparing a final
report. A t a European Algol Conference in Paris in
November 1959 which was attended by about fifty people,
seven European representatives were selected to attend
the January 1960 Conference, and they represent the
following organizations: Association Francaise de Calcul,
British Computer Society, Gesellschaft fiir Angewandte
Mathematik und Mechanik, and Nederlands Reken-
machine Genootschap. The seven representatives held a
final preparatory meeting at Mainz in December 1959.

Meanwhile, in the United States, anyone who wished to
suggest changes or corrections to Algol was requested to
send his comments to the Communications of the ACM,
where they were published. These comments then became
the basis of consideration for changes in the Algol lan
guage. Both the Share and U S E organizations estab
lished Algol working groups, and both organizations
were represented on the A C M Committee on Program
ming Languages. The A C M Committee met in Washing
ton in November 1959 and considered all comments on
Algol that had been sent to the A C M Communications.
Also, seven representatives were selected to attend the
January 1960 international conference. These seven
representatives held a final preparatory meeting in Boston
in December 1959.

J a n u a r y 1960 Conference

The thirteen representatives,3 from Denmark, England,
France, Germany, Holland, Switzerland, and the United
States, conferred in Paris from January 11 to 16, 1960.

Prior to this meeting a completely new draft report was
worked out from the preliminary report and the recom
mendations of the preparatory meetings by Peter Naur

and the conference adopted this new form as the basis for
its report. The Conference then proceeded to work for
agreement on each item of the report. The present report
represents the union of the Committee's concepts and the
intersection of its agreements.

A p r i l 1962 Conference [Edited by M . Woodger]

A meeting of some of the authors of Algol (JO was held
on Apr i l 2-3, 1962 in Rome, I taly , through the facilities
and courtesy of the International Computation Centre.
The following were present:
Authors Advisers Observer

F. L. Bauer M. Paul W. L. van der Poel
J . Green It. Franciotti (Chairman, 1FIP
C. Katz P. Z. Ingerman T C 2.1 Working
R. Kogon Group ALGOL)

(representing J . W.
Backus)

P. Naur
K. Samelson G. Seegmuller
J . H. Wegstein It. E. Utman
A. van Wijngaarden
M. Woodger P. Landin

The purpose of the meeting was to correct known
errors in, attempt to eliminate apparent ambiguities in ,
and otherwise clarify the Algol 60 Report. Extensions
to the language were not considered at the meeting.
Various proposals for correction and clarification that
were submitted by interested parties in response to the
Questionnaire in AWOL Bulletin No . 14 were used as a
guide.

Th is report* constitutes a supplement to the Algol 60
Report which should resolve a number of difficulties
therein. N o t all of the questions raised concerning the
original report could be resolved. Rather than risk hastily
drawn conclusions on a number of subtle points, which
might create new ambiguities, the committee decided to
report only those points which they unanimously felt
could be stated in clear and unambiguous fashion.

Questions concerned with the following areas are left
for further consideration by Working Group 2.1 of I F I P ,
in the expectation that current work on advanced pro-
* [E d i t o r ' s N o t e . The present edition follows the text which

was approved by the Council of IFIP. Although it is not clour from
the Introduction,'the present version is the original report of the
January 1900 conference modified according to the agreements
reached during the April 1902 conference. Thus the report men
tioned here is incorporated in the present version. The modifica
tions touch the original report in the following sections: Changes .
of text: 1 with footnote; 2.1 footnote; 2.3; 2.7; 3.3.3; 3.3.4.2; 4.1.3;
4.2.3; 4.2.4; 4.3.4; 4.7.3; 4.7.3.1; 4.7.3.3; 4.7.5.1; 4.7.5.4; 4.7.6;
5; 5.3.3; 5.3.5; 5.4.3; 5.4.4; 5.4.5. Changes of syntax: 3.4.1; 4.1.1;
4.2.1; 4.5.1.]

1 Preliminary report—International Algebraic Language.
Comm. ACM 1, 12 (1958), 8.

2 Report on the Algorithmic Language ALGOL by the ACM
Committee on Programming Languages and the GAMM Com
mittee on Programming, edited by A. J . Perlis and K. Samelson.
Num. Math. 1 (1959), 41-60.

* William Turanski of the American group was killed by an
automobile just prior to the January 1960 Conference.

gramming languages will lead to better resolution:
1. Side effects of functions
2. T h e call by name concept
3. o w n : static or dynamic
4. For statement: static or dynamic
5. Conflict between specification and declaration
The authors of the Algol 00 Report present at the

Rome Conference, l>eing aware of the formation of a
Working Group on Algol by I F I P , accepted that any
collective responsibility which they might have with
respect to the development, specification and refinement
of the Algol language will from now on be transferred to
that body.

This report has been reviewed by I F I P T C 2 on Pro
gramming Languages in August 1902 and has been ap
proved by the Council of the International Federation
for Information Processing.

As with the preliminary Algol report, three different
levels, of language are recognized, namely a Reference
Language, a Publication Language and several Hardware
Representations.

Reference Language
1. I t is the working language of the committee.
2. I t is the defining language.
3. T h e characters are determined by ease of mutual

understanding and not by any computer limitations,
coders notation, or pure mathematical notation.

4. I t is the basic reference and guide for compiler
builders.

5. I t is the guide for all hardware representations.
0. I t is the guide for transliterating from publication

language to any locally appropriate hardware representa
tions.

D E S C R I P T I O N O F T H E

1. S t r u c t u r e o f t h e L a n g u a g e

As stated in the introduction, the algorithmic language
has three different kinds of representations—reference,
hardware, and publication—and the development de
scribed in the sequel is in terms of the reference repre
sentation. This means that all objects defined within the
language are represented by a given set of symbols—and
it is only in the choice of symbols that the other two
representations may differ. Structure and content must
be the same for all representations.

The purpose of the algorithmic language is to describe
computational processes. The basic concept used for the
description of calculating rules is the well-known arith
metic expression containing as constituents numbers, var i
ables, and functions. From such exprcasions are com
pounded, by applying rules of arithmetic composition,

R E V I S E D A L G O L 6 0

7. The main publications of the Algol language itself
will use the reference representation.

Publication Language
1. The publication language admits variations of the

reference language according to usage of printing and hand
writing (e.g., subscripts, spaces, exponents, Greek letters).

2. I t is used for stating and communicating processes.
3. The characters to be used may be different in

different countries, but univocal correspondence with
reference representation must be secured.

Hardware Reprenentations
1. Each one of these is a condensation of the reference

language enforced by the limited number of characters on
standard input equipment.

2. Each one of these uses the character set of a particu
lar computer and is the language accepted by a translator
for that computer.

3. Each one of these must be accompanied by a special
set of rules for transliterating from Publication or Refer
ence language.

For transliteration between the reference language and
a language suitable for publications, among others, the
following rules are recommended.

Reference Language Publication language
Subscript bracket (! Lowering of the line between the

brackets and removal of the
brackets

Exponentiation] Raising of the exponent
Parentheses () Any form of parentheses, brackets,

braces
Basis of ten i o Raising of the ten and of the follow

ing integral number, inserting of
the intended multiplication sign

R E F E R E N C E L A N G U A G E
W a s rich u b e r h a u p t s a g e n Iftsst, l a s s t
s i c h k l a r s a g e n ; u n d w o v o n m a n n i c h t
r e d e n k a n n , d a r u b e r m u s s m a n s c h w e i g e n .

L d d w i o W i t t g e n s t e i n .

self-contained units of the language—explicit formulae
—cal led assignment statements.

T o show the flow of computational processes, certain
nonarithmetic statements and statement clauses are
added which may describe, e.g., alternatives, or iterative
repetitions of computing statements. Since it is necessary
for the function of these statements that one statement
refer to another, statements may be provided with labels.
A sequence of statements may be enclosed between the
statement brackets beg in and e n d to form a compound
statement.

Statements are supported by declarations which are not
themselves computing instructions but inform the trans
lator of the existence and certain properties of objects
appearing in statements, such as the class of numbers
taken on as values by a variable, the dimension of an

REVISED ALGOL 60
array of numbers, or even the set of rules defining a func
tion. A sequence of declarations followed by a sequence of
statements and enclosed between begin and end con
stitutes a block. Eve ry declaration appears in a block in
this way and is valid only for that block.

A program is a block or compound statement which is
not contained within another statement and which makes
no use of other statements not contained within it.

I n the sequel the syntax and semantics of the language
will be given. 4

1.1. Formalism for Syntactic Description
The syntax will be described with the aid of metalin

guistic formulae.8 Thei r interpretation is best explained
by an example

<ab> ::- (| [| <ob> (| <ab)(d>
Sequences of characters enclosed in the brackets () repre
sent metalinguistic variables whoso values are sequences
of symbols. The marks : : = and | (the latter with the
meaning of o r) are metalinguistic connectives. A n y mark
in a formula, which is not a variable or a connective,
denotes itself (or the class of marks which are similar to i t) .
Juxtaposition of marks and/or variables in a formula
signifies juxtaposition of the sequences denoted. Thus the
formula above gives a recursive rule for the formation of
values of the variable (ab). I t indicates that (ab) may
have the value (or [or that given some legitimate value
of (ab), another may be formed by following it with the
character (or by following it with some value of the var i
able (d) . I f the values of (d) are the decimal digits, some
values of (ab) are:

l(((K37((12345(((([86
I n order to facilitate the study, the symbols used for
distinguishing the metalinguistic variables (i.e. the se
quences of characters appearing within the brackets ()
as ab in the above example) have l>een chosen to be words
describing approximately the nature of the corresponding
variable. Where words which have appeared in this manner
are used elsewhere in the text they will refer to the corre
sponding syntactic definition. I n addition some formulae
have been given in more than one place.

Definition:
(empty) ::-
(i.e. the null string of symbols).

4 Whenever the precision of arithmetic is stated as being in general not specified, or the outcome of a certain process is left undefined or said to be undefined, this is to be interpreted in the sense that a program only fully defines a computational process if the accompanying information specifies the precision assumed, the kind of arithmetic assumed, and the course of action to be taken in all such cases as may occur during the execution of the computation. 6 Cf. J. W. Backus, The syntax and semantics of the proposed international algebraic language of the Zurich ACM-GAMM conference. Proc. lntcrnat. Conf. Inf. Proc, UNESCO, Paris, June 1059.

2. Basic Symbols, Identifiers, Numbers, and
Strings. Basic Concepts.
The reference language is built up from the following

basic symbols:

(basic symbol) ::- (letter)|(digit)|(logical value)){delimiter)
2.1. Letters

(letter) o|b|e|d|«l/l9l*l*Î UIm|fi|o|p|9|r|<|<|tt|ir|iii|z|y|i|
A\n\C\D\E\F\G\H\I\J\K\L\M\N\()\P^

This alphabet may arbitrarily be restricted, or extended
with any other distinctive character (i.e. character not
coinciding with any digit, logical value or delimiter).

Letters do not have individual meaning. They are
used for forming identifiers and strings6 (cf. sections 2.4.
Identifiers, 2.6. Strings).

2.2.1. Digits
(digit) 0|1|2|3|4|5|6!7|8|9

Digits are used for forming numbers, identifiers, and
strings.

2.2.2. Logical Values
(logical value) ::= truejfalse

T h e logical values have a fixed obvious meaning.

2.3. Delimiters
(delimiter) :: = (operator)| (separator)| (bracket)| (declarator)| (specificator) (operator) ::= (arithmetic operator)| (relational operator)| (logical operator)|(sequential operator) (arithmetic operator) ::=» +1-|X |/| + IT (relational operator) ::= <|̂ |«|̂ |>|̂ (logical operator) ::= ~|3|VlA|-i (sequential operator) ::= go toJif|thcn|clse|for|do7

(separator) ::== .|.|io|:|;|: = |u|8tep|until|while|comment (bracket) ::= (|)|U]|T|be*in|end (declarator) ::= own|Boolean|integer|real|array|8witch| procedure (specificator) ::= Htring|label|vuluc
Delimiters have a fixed meaning which for the most part

is obvious or else will be given at the appropriate place
in the sequel.

Typographical features such as blank space or change
to a new line have no significance in the reference language.
T h e y may, however, be used freely for facilitating reading.

For the purpose of including text among the symbols of

• It should be particularly noted that throughout the reference language underlining [in typewritten copy; boldface type in printed copy—Ed.) is used for defining independent basic symbols (see sections 2.2.2 and 2.3). These are understood to have no relation to the individual letters of which they are composed. Within the present report [not including headings—Kd.J, boldface will be used for no other purpose. 7 do is used in for statements. It has no relation whatsoever to the do of the preliminary report, which is not included in ALGOL 60.

a program the following "comment" conventions hold:

The sequence of basic symbols: is equivalent to
; comment (any sequence not containing ;); ;
begin comment (any sequence not containing ;); begin
end (any sequence not containing end or ; or else) end
B y equivalence is here meant that any of the three struc
tures shown in the left-hand column may be replaced, in
any occurrence outside of strings, by the symbol shown on
the same line in the right-hand column without any
effect on the action of the program. I t is further understood
that the comment structure encountered first in the text
when reading from left to right has precedence in being
replaced over later structures contained in the sequence.

2.4. Identifiers
2.4.1. Syntax

(identifier) (letter)|(identifier)(letter)|(identifier)(digit)

2.4.2. Examples

7
Soup
Vila

aUkTMNs
MARILYN

2.4.3. Semantics
Identifiers have no inherent meaning, but serve for the

identification of simple variables, arrays, labels, switches,
and procedures. T h e y may be chosen freely (cf., however,
section 3.2.4. Standard Functions).

The same identifier cannot be used to denote two
different quantities except when these quantities have
disjoint scopes as defined by the declarations of the pro
gram (cf. section 2.7. Quantities, Kinds and Scopes, and
section 5. Declarations).

2.5. Numbers
2.5.1. Syntax

(unsigned integer) ::• (digit)|(unsigned integer)(digit)
(integer) ::*» (unsigned integer)|+ (unsigned integer)|

— (unsigned integer)
(decimal fraction) ::» .(unsigned integer)
(exponent part) to (integer)
(decimal number) ::- (unsigned integer)|(decimal fraction)!

(unsigned integer)(decimal fraction)
(unsigned number) ::- (decimal number)|(exponent part))

(decimal number)(exponent part)
(number) ::=» (unsigned number))-}-(unsigned number)|

— (unsigned number)
2.5.2. Examples

0 -200.O84 -.083io-02
177 +07.43w8 -io7
.5384 9.34w+10 i « - 4

+0.7300 2-io4 +io+5

2.5.3. Semantics
Decimal numbers have their conventional meaning.

The exponent part is a scale factor expressed as an integral
power of 10.

REVt?€D ALGOL 60
2.5.4. Types
Integers are of type integer. A l l other numbers are of

type real (cf. section 5.1. T y p e Declarations).

2.6. Strings
2.6.1. Syntax

(proper string) ::«» (any sequence of basic symbols not containing
' or ')|(empty)

(open string) (proper string)|'(open string)'|
(open string)(open string)

(string) '(open string)'
2.6.2. Examples

'5kM-'[[[yW:'Tt"
'.. This u is u a u 'string"

2.6.3. Semantics
I n order to enable the language to handle arbitrary

sequences of basic symbols the string quotes ' and * are
introduced. The symbol u denotes a space. I t has no
significance outside strings.

Strings are used as actual parameters of procedures
(cf. sections 3.2. Function Designators and 4.7. Procedure
Statements).

2.7. Quantities, Kinds and Scopes
The following kinds of quantities are distinguished:

simple variables, arrays, labels, switches, and procedures.
The scope of a quantity is the set of statements and

expressions in which the declaration of the identifier asso
ciated with that quantity is valid. For labels see section
4.1.3.

2.8. Values and Types
A value is an ordered set of numbers (special case: a

single number), an ordered set of logical values (special
case: a single logical value), or a label.

Certain of the syntactic units are said to possess values.
These values wil l in general change during the execution
of the program. The values of expressions and their con
stituents are defined in section 3. The value of an array
identifier is the ordered set of values of the corresponding
array of subscripted variables (cf. section 3.1.4.1).

The various " types" (integer, real, Boolean) basically
denote properties of values. The types associated with
syntactic units refer to the values of these units.

3. Expressions
I n the language the primary constituents of the pro

grams describing algorithmic processes are arithmetic.
Boolean, and designational expressions. Constituents of
these expressions, except for certain delimiters, are logical
values, numbers, variables, function designators, and
elementary arithmetic, relational, logical, and sequential
operators. Since the syntactic definition of both variables
and function designators contains expressions, the defini
tion of expressions, and their constituents, is necessarily
recursive.

(expression) (arithmetic expression)!(Boolean expression))
(designational expression)

R E V I S E D A L G O L 6 0

3.1. V a r i a b l e s
3.1.1. Syntax

(v a r i a b l e i d e n t i f i e r) (i d e n t i f i e r)
(s i m p l e v a r i a b l e) (v a r i a b l e i d e n t i f i e r)
(s u b s c r i p t e x p r e s s i o n) (a r i t h m e t i c e x p r e s s i o n)
(s u b s c r i p t l i s t) : : = (s u b s c r i p t e x p r e s s i o n) ! (s u b s c r i p t

(s u b s c r i p t e x p r e s s i o n)
(a r r a y i d e n t i f i e r) (i d e n t i f i e r)
(s u b s c r i p t e d v a r i a b l e) (a r r a y i d e n t i f i e r) [(s u b s c r i p t
(v a r i a b l e) :: = (s i m p l e v a r i a b l e) | (s u b s c r i p t e d v a r i a b l e)

l i s t) ,

l i s t)]

3.1.2. Examples

ep8ilon
detA
o l 7
Q [7 , 2]
x[8in(nXpi/2),Q[d,n,4]]

3.1.3. Semantics
A variable is a designation given to a single value. Th is

value may be used in expressions for forming other values
and may be changed at wil l by means of assignment state
ments (section 4.2). The type of the value of a particular
variable is denned in the declaration for the variable
itself (cf. section 5.1. T y p e Declarations) or for the corre
sponding array identifier (cf. section 5.2. Ar ray Declara
tions).

3.1.4. Subscripts
3.1.4.1. Subscripted variables designate values which

are components of multidimensional arrays (cf. section
5.2. A r ray Declarations). Each arithmetic expression of
the subscript list occupies one subscript position of
the subscripted variable, and is called a subscript. The
complete list of subscripts is enclosed in the subscript
brackets []. The array component referred to by a sub
scripted variable is specified by the actual numerical value
of its subscripts (cf. section 3.3. Arithmetic Expressions).

3.1.4.2. Each subscript position acts like a variable of
type in teger and the evaluation of the subscript is under
stood to be equivalent to an assignment to this fictitious
variable (cf. section 4.2.4). The value of the subscripted
variable is defined only if the value of the subscript ex
pression is within the subscript bounds of the array (cf.
section 5.2. Ar ray Declarations).

3.2. F u n c t i o n D e s i g n a t o r s
3.2.1. Syntax

(p r o c e d u r e i d e n t i f i e r) (i d e n t i f i e r)
(a c t u a l p a r a m e t e r) : : = (s t r i n g) ! (e x p r e s s i o n) ! (a r r a y i d e n t i f i e r) !

(s w i t c h i d e n t i f i e r) | (p r o c e d u r e i d e n t i f i e r)
(l e t t e r s t r i n g) (l e t t e r) ! (l e t t e r s t r i n g) (l e t t e r)
(p a r a m e t e r d e l i m i t e r) , \) (l e t t e r s t r i n g) : (
(a c t u a l p a r a m e t e r l i s t) : : = (a c t u a l p a r a m e t e r) !

(a c t u a l p a r a m e t e r l i s t) (p a r a m e t e r d e l i m i t e r)
(a c t u a l p a r a m e t e r)

(a c t u a l p a r a m e t e r p a r t) : : » (e m p t y) | ((a c t u a l p a r a m e t e r l i s t))
(f u n c t i o n d e s i g n a t o r) (p r o c e d u r e i d e n t i f i e r)

(a c t u a l p a r a m e t e r p a r t)

3.2.2. Examples

ain(a—b)
J(v+8,n)
R
S (a - 5) T e m p e r a t u r e : (T) P r e s s u r e : (P)
Compile^ :* ') S t a c k r (Q)

3.2.3. Semantics
Function designators define single numerical or logical

values, which result through the application of given sets
of rules defined by a procedure declaration (cf. section 5.4.
Procedure Declarations) to fixed sets of actual param
eters. The rules governing specification of actual param
eters are given in section 4.7. Procedure Statements. N o t
every procedure declaration defines the value of a function
designator.

3.2.4. Standard functions
Certain identifiers should be reserved for the standard

functions of analysis, which will be expressed as procedures.
I t is recommended that this reserved list should contain:

f o r t h e m o d u l u s (a b s o l u t e v a l u e) o f t h e v a l u e o f t h e
e x p r e s s i o n E

f o r t h e s i g n o f t h e v a l u e o f E (+ l f o r E > 0 , 0 f o r E « 0 ,
- l f o r E < 0)

f o r t h e s q u a r e r o o t o f t h e v a l u e o f E
f o r t h e s i n e o f t h e v a l u e o f E
f o r t h e c o s i n e o f t h e v a l u e o f E
f o r t h e p r i n c i p a l v a l u e o f t h e a r c t a n g e n t o f t h e v a l u e

o f E
f o r t h e n a t u r a l l o g a r i t h m o f t h e v a l u e o f E
f o r t h e e x p o n e n t i a l f u n c t i o n o f t h e v a l u e o f E (e E) .

a f e s (E)

8ign(E)

sqrt(E)
sin(E)
c o s (E)
arctan(E)

ln(E)
exp(E)

These functions are all understood to operate indifferently
on arguments both of type real and integer . T h e y will
all yield values of type real , except for sign(E) which will
have values of type in teger . I n a particular representa
tion these functions may be available without explicit
declarations (cf. section 5. Declarations).

3.2.5. Transfer functions
I t is understood that transfer functions between any

pair of quantities and expressions may be defined. Among
the standard functions it is recommended that there be
one, namely,

entier(E),
which "transfers" an expression of real type to one of
integer type, and assigns to it the value which is the
largest integer not greater than the value of E.

3.3. A r i t h m e t i c E x p r e s s i o n s
3.3.1. Syntax

(a d d i n g o p e r a t o r) 4 - | —
(m u l t i p l y i n g o p e r a t o r) : : = * X | / | - s -
(p r i m a r y) :: = (u n s i g n e d n u m b e r) | (v a r i a b l e) |

(f u n c t i o n d e s i g n a t o r) ! ((a r i t h m e t i c e x p r e s s i o n))
(f a c t o r) : : = (p r i m a r y) | (f a c t o r) | (p r i m a r y)
(t e r m) : : = = (f a c t o r)) (t e r m) (m u l t i p l y i n g o p e r a t o r) (f a c t o r)
(s i m p l e a r i t h m e t i c e x p r e s s i o n) (t e r m) J

(a d d i n g o p e r a t o r) (t e r m) | (s i m p l e a r i t h m e t i c e x p r e s s i o n)
(a d d i n g o p e r a t o r) (t e r m)

(i f c l a u s e) : : = « i f (B o o l e a n e x p r e s s i o n) t h e n
(a r i t h m e t i c e x p r e s s i o n) (s i m p l e a r i t h m e t i c e x p r e s s i o n) !

(i f c l a u s e) (s i m p l e a r i t h m e t i c e x p r e s s i o n) e l s e
(a r i t h m e t i c e x p r e s s i o n)

3.3.2. Examples
Primaries:

7.394io-8
sum ti>li+2,8]
cos{y+zX$)

(o-3/j,+t»«t8)
Factors:

omega
8um\cos{y+zXS)

7.394io-8Tw{t+2,8]f(a-3/y+tmt8)
Terms:

U
omegaX8um\cos (y+2X3)/7.394io-8tw[i-f 2,8]t

(a-3/y+vu]S)
Simple arithmetic expression:

. U-Yu+omegaX8umU<>8{y+zX3)/73M -8tti>[t+2f8]t (o-3/y+imT8)
Arithmetic expressions:

wXu-Q(S+Cu)]2
if g>0 then S+3XQM else 2XS+3X? if o<0 then U+V else if oX6>17 then U/V else if k*y then F/f7 else 0
aX8tn(omegaXt) Ô iô XoliVxCiV-l)̂ , 0] (AXarctan(y)+Z)T(7+Q) if 9 then n— 1 else n if a<0 then A/B else if 6=0 then B/A else z

3.3.3. Semantics
A n arithmetic expression is a rule for computing a

numerical value. I n case of simple arithmetic expressions
this value is obtained by executing the indicated arith
metic operations on the actual numerical values of the
primaries of the expression, as explained in detail in
section 3.3.4 below. The actual numerical value of a
primary is obvious in the case of numbers. For variables
it is the current value (assigned last in the dynamic sense),
and for function designators it is the value arising from
the computing rules defining the procedure (cf. section
5.4.4. Values of Function Designators) when applied to
the current values of the procedure parameters given in
the expression. Final ly, for arithmetic expressions en
closed in parentheses the value must through a recursive
analysis be expressed in terms of the values of primaries
of the other three kinds.

I n the more general arithmetic expressions, which in
clude if clauses, one out of several simple arithmetic ex
pressions is selected on the basis of the actual values of the
Boolean expressions (cf. section 3.4. Boolean Expressions).
Th is selection is made as follows: The Boolean expressions
of the if clauses are evaluated one by one in sequence from
left to right until one having the value true is found. The
value of the arithmetic expression is then the value of
the first arithmetic expression following this Boolean
(the largest arithmetic expression found in this position

REVISED ALGOL 60
is understood). The construction:

else (simple arithmetic expression)
is equivalent to the construction:

else if true then (simple arithmetic expression)
3.3.4. Operators and types
Apart from the Boolean expressions of if clauses, the

constituents of simple arithmetic expressions must be of
types real or integer (cf. section 5.1. T y p e Declarations).
The meaning of the basic operators and the types of the
expressions to which they lead are given by the following
rules:

3.3.4.1. The operators + , — , and X have the conven
tional meaning (addition, subtraction, and multiplication).
The type of the expression will be integer if both of the
operands are of integer type, otherwise real.

3.3.4.2. The operations (term)/(factor) and (term) -f-
(factor) both denote division, to be understood as a multi
plication of the term by the reciprocal of the factor with
due regard to the rules of precedence (cf. section 3.3.5).
Thus for example

a/bX7/(p-q)Xv/s

means

((((oX (6"1))X7)X «p-q)-*))Xv)X Or1)
The operator / is defined for all four combinations of
types real and integer and wil l yield results of real type
in any case. The operator -5- is defined only for two
operands both of type integer and will yield a result of
type integer, mathematically defined as follows:

a+6-» sign {a/b)Xentier(abs(a/b))

(cf. sections 3.2.4 and 3.2.5).
3.3.4.3. The operation (factor)!(primary) denotes ex

ponentiation, where the factor is the base and the primary
is the exponent. Thus, for example,

2\n}k means (2")*
while

2](n]m) means 2(B",)

Writing i for a number of integer type, r for a number of
real type, and a for a number of either integer or real
type, the result is given by the following rules:

aft If *>0, aXaX . . . Xo (i times), of the same type as a. If t—0, if â O, 1, of the same type as a. if a-0, undefined. If t<0, if ô O, l/(oXaX . . . Xa) (the denominator has —i factors), of type real, if a=»0, undefined, ofr If o>0, exp(rXMa)), of type real. If a-0, if r>0, 0.0, of type real. if rgO, undefined. If o<0, always undefined.
3.3.5. Precedence of operators
The sequence of operations within one expression is

R E V I S E D A L G O L 6 0

generally from left to r ight, with the following additional
rules:

3.3.5.1. According to the syntax given in section 3.3.1
the following rules of precedence hold:

first: T
s e c o n d : X / +
t h i r d : + -

3.3.5.2. The expression between a left parenthesis and
the matching right parenthesis is evaluated b y itself and
this value is used in subsequent calculations. Consequently
the desired order of execution of operations within an
expression can always be arranged by appropriate posi
tioning of parentheses.

3.3.6. Arithmetics of real.quantities
Numbers and variables of type real must be interpreted

in the sense of numerical analysis, i.e. as entities defined
inherently with only a finite accuracy. Similarly, the
possibility of the occurrence of a finfte deviation from the
mathematically defined result in any arithmetic expression
is explicitly understood. N o exact arithmetic wil l be
specified, however, and it is indeed understood that
different hardware representations may evaluate arith
metic expressions differently. The control of the possible
consequences of such differences must be carried out by
the methods of numerical analysis. This control must be
considered a part of the process to be described, and wil l
therefore be expressed in terms of the language itself.

3.4. B o o l e a n E x p r e s s i o n s
3.4.1. Syntax

(r e l a t i o n a l o p e r a t o r) :: - < | £ | -1 ;> | > |
(r e l a t i o n) : : « (s i m p l e a r i t h m e t i c e x p r e s s i o n)

(r e l a t i o n a l o p e r a t o r) (s i m p l e a r i t h m e t i c e x p r e s s i o n)
(B o o l e a n p r i m a r y) ::- (l o g i c a l v a l u e) | (v a r i a b l e) |

(f u n c t i o n d e s i g n a t o r) | (r e l a t i o n) | ((B o o l e a n e x p r e s s i o n))
(B o o l e a n s e c o n d a r y) : : « (B o o l e a n p r i m a r y) | - i (B o o l e a n p r i m a r y)
(B o o l e a n f a c t o r) (B o o l e a n s e c o n d a r y) !

' (B o o l e a n f a c t o r) A (B o o l e a n s e c o n d a r y)
(B o o l e a n t e r m) : : » (B o o l e a n f a c t o r) ! (B o o l e a n t e r m)

V (B o o l e a n f a c t o r)
(i m p l i c a t i o n) :: « * (B o o l e a n t e r m) | (i m p l i c a t i o n) 3 (B o o l e a n t e r m)
(s i m p l e B o o l e a n) : : « (i m p l i c a t i o n) !

(s i m p l e B o o l e a n) a (i m p l i c a t i o n)
(B o o l e a n e x p r e s s i o n) : : » • (s i m p l e B o o l e a n) !

(i f c l a u s e) (s i m p l e B o o l e a n) e l s e (B o o l e a n e x p r e s s i o n)

3.4.2. Examples

x - - 2
Y>Vyz<q
a + b > - 5 A « - d > g ! 2
pAq V x*v 0«-,aA&A-i cVdVe3 - i /
I f k<\ t h e n a>w e l s e a ^ c
i f i f i f a t h e n 6 e l s e c t h e n d e l s e / t h e n g e l s e h<k

3.4.3. Semantics
A Boolean expression is a rule for computing a logical

value. The principles of evaluation are entirely analogous
to those given for arithmetic expressions in section 3.3.3.

3.4.4. Types
Variables and function designators entered as Boolean

primaries must be declared Boolean (cf. section 5.1.
T y p e Declarations and section 5.4.4. Values of Function
Designators).

3.4.5. The operators
Relations take on the value true whenever the corre

sponding relation is satisfied for the expressions involved,
otherwise false.

The meaning of the logical operators-i (not), A (and),
V (or) , 3 (implies), and m (equivalent), is given by the
following function table.

b l f a l s e f a l s e t r u e t r u e
b 2 f a l s e t r u e f a l s e t r u e
— i b l t r u e t r u e f a l s e f a l s e
b l A h 2 f a l s e f a l s e f a l s e t r u e
b l \ / b 2 f a l s e t r u e t r u e t r u e
b l 3 b 2 t r u e t r u e f a l s e t r u e
b l « b 2 t r u e f a l s e f a l s e t r u e

3.4.6. Precedence of operators
The sequence of operations within one expression is

generally from left to right, with the following additional
rules:

3.4.6.1. According to the syntax given in section 3.4.1
the following rules of precedence hold:

first: a r i t h m e t i c e x p r e s s i o n s a c c o r d i n g t o s e c t i o n 3 . 3 . 5 .
s e c o n d : < £ — ^ > ^
t h i r d : - i
f o u r t h : A
fifth: V
s i x t h : 3
s e v e n t h : m

3.4.6.2. The use of parentheses wil l be interpreted in
the sense given in section 3.3.5.2.

3.5. D e s i g n a t i o n a l E x p r e s s i o n s
3.5.1. Syntax

(l a b e l) : : - » (i d e n t i f i e r)] (u n s i g n e d i n t e g e r)
(s w i t c h i d e n t i f i e r) ::— (i d e n t i f i e r)
(s w i t c h d e s i g n a t o r) :: — (s w i t c h i d e n t i f i e r) ! (s u b s c r i p t e x p r e s s i o n)]
(s i m p l e d e s i g n a t i o n a l e x p r e s s i o n) :: - (l a b e l) | (s w i t c h d e s i g n a t o r) |

((d e s i g n a t i o n a l e x p r e s s i o n))
(d e s i g n a t i o n a l e x p r e s s i o n) ::- (s i m p l e d e s i g n a t i o n a l e x p r e s s i o n))

(if c l a u s e) (s i m p l e d e s i g n a t i o n a l e x p r e s s i o n) e l s e
(d e s i g n a t i o n a l e x p r e s s i o n)

3.5.2. Examples

1 7
p 9
Choo*e[n~-1]
7 W n [i f y < 0 t h e n N e l s e N+l]
i f Ab<c t h e n 1 7 e l s e q[if w£0 t h e n 2 e l s e n]

3.5.3. Semantics
A designational expression is a rule for obtaining a label

of a statement (cf. section 4. Statements). Again the
principle of the evaluation is entirely analogous to that of
arithmetic expressions (section 3.3.3). I n the general case
the Boolean expressions of the if clauses will select a
simple designational expression. I f this is a label the
desired result is already found. A switch designator refers
to the corresponding switch declaration (cf. section 5.3.

Switch Declarations) and by the actual numerical value
of its subscript expression selects one of the designational
expressions listed in the switch declaration by counting
these from left to right. Since the designational expression
thus selected may again be a switch designator this evalua
tion is obviously a recursive process.

3.5.4. The subscript expression
The evaluation of the subscript expression is analogous

to that of subscripted variables (cf. section 3.1.4.2). The
value of a switch designator is defined only if the subscript
expression assumes one of the positive values 1, 2,3, . . . , n ,
where n is the number of entries in the switch list.

3.5.5. Unsigned integers as labels
Unsigned integers used as labels have the property that

leading zeros do not affect their meaning, e.g. 00217
denotes the same label as 217.

4. S tatements

The units of operation within the language are called
statements. They will normally be executed consecutively
as written. However, this sequence of operations may be
broken by go to statements, which define their successor
explicitly, and shortened by conditional statements,
which may cause certain statements to be skipped.

I n order to make it possible to define a specific dynamic
succession, statements may be provided with labels.

Since sequences of statements may be grouped together
into compound statements and blocks the definition of
statement must necessarily be recursive. Also since decla
rations, described in section 5, enter fundamentally into
the syntactic structure, the syntactic definition of state
ments must suppose declarations to be already defined.

4.1. Compound Statements and Blocks
4.1.1. Syntax

(unlabelled basic statement) ::= (assignment statement)! (go to statement) j (dummy statement) | (procedure statement) (basic statement) (unlabelled basic statement){(label): (basic statement) (unconditional statement) ::» (basic statement)! (compound statement)| (block) (statement) (unconditional statement)! (conditional statement)!(for statement) (compound tail) ::=» (statement) end |(statement) ; (compound tail) (blockhead) begin (declaration)! (block head) ; (declaration) (unlabelled compound) begin (compound tail) (unlabelled block) ::«= (block head) ; (compound tail) (compound statement) (unlabelled compound)! (label): (compound statement) (block) ::= (unlabelled block)!(label):(block) (program) ::= (block){(compound statement)
This syntax may be illustrated as follows: Denoting arbi
trary statements, declarations, and labels, by the letters
5, D , and L, respectively, the basic syntactic units take
the forms:

Block:

L: L: ... begin D S end D

REVISED ALGOL 60

...S
I t should be kept in mind that each of the statements S
may again be a complete compound statement or block.

4.1.2. Examples

Basic statements:

a := p+q
go to Naples

START: CONTINUE: W : =

Compound statement:

7.993

Compound statement:

L: L: ... begin S ; S ... S S end

begin x :=» 0 ; for y 1 step 1 until n do
x :» x+Afyl ;

if x>q then go to STOP else if x>w-2 then go to S ;
Aw: Si: W :» x+bob end

Block: Q: begin integer t, * ; real w ; for i :•» 1 step 1 until m do for k i+l step 1 until m do begin w A[i, k) ;
A[i,k] : - A [Ml J
A[k, i] w end for i and k end block Q

4.1.3. Semantics
Eve ry block automatically introduces a new level of

nomenclature. This is realized as follows: A n y identifier
occurring within the block may through a suitable declara
tion (cf. section 5. Declarations) be specified to be local
to the block in question. This means (a) that the entity
represented by this identifier inside the block has no
existence outside i t , and (b) that any entity represented
by this identifier outside the block is completely inacces
sible inside the block.

Identifiers (except those representing labels) occurring
within a block and not being declared to this block will be
nonlocal to it , i.e. wil l represent the same entity inside
the block and in the level immediately outside it . A label
separated by a colon from a statement, i.e. labelling that
statement, behaves as though declared in the head of the
smallest embracing block, i.e. the smallest block whose
brackets beg in and end enclose that statement. I n this
context a procedure body must be considered as if i t were
enclosed by beg in and e n d and treated as a block.

Since a statement of a block may again itself be a block
the concepts local and nonlocal to a block must be under
stood recursively. Thus an identifier, which is nonlocal
to a block A , may or may not be nonlocal to the block B
in which A is one statement.

4.2. Assignment Statements
4.2.1. Syntax

(left part) ::*» (variable) {(procedure identifier) . (left part list) ::=• (left part)|(left part list)(left part) (assignment statement)::— (left part list) (arithmetic expression)| (left part list)(Boolean expression)

REVISED ALGOL 60
4.2.2. Examples

8 :« p[01 :*=.n n+l+s
n n+1
A B/C-v-qXS
S\vjk+2\ :» 3-arctan(«X*eto) F Q> YAZ

4.2.3. Semantics
Assignment statements serve for assigning the value of

an expression to one or several variables or procedure
identifiers. Assignment to a procedure identifier may only
occur within the body of a procedure defining the value of
a function designator (cf. section 5.4.4). The process will
in the general case be understood to take place in three
steps as follows:

4.2.3.1.,Any subscript expressions occurring in the left
part variables are evaluated in sequence from left to right.

4.2.3.2. The expression of the statement is evaluated.
4.2.3.3. The value of the expression is assigned to all

the left part variables, with any subscript expressions
having values as evaluated in step 4.2.3.1.

4.2.4. Types
The type associated with all variables and procedure

identifiers of a left part list must be the same. I f this type
is Boo lean , the expression must likewise be Boo lean .
I f the type is real or integer* the expression must be
arithmetic. I f the type of the arithmetic expression differs
from that associated with the variables and procedure
identifiers, appropriate transfer functions are understood
to be automatically invoked. For transfer from real to
in teger type, the transfer function is understood to
yield a result equivalent to

entier(E+0 5)

where E is the value of the expression. The type asso
ciated with a procedure identifier is given by the declarator
which appears as the first symbol of the corresponding
procedure declaration (cf. section 5.4.4).

4.3. G o T o Statements
4.3.1. Syntax

(go to statement) go to (designational expression)
4.3.2. Examples

go to 8
go to exit [n+11 go to Town[it y<0 then N else JV+U go to if Ab<c then 17 else q[if w<0 then 2 else n]

4.3.3. Semantics
A go to statement interrupts the normal sequence of

operations, denned by the write-up of statements, by
denning its successor explicitly by the value of a designa
tional expression. Thus the next statement to be executed
wil l be the one having this value as its label.

4.3.4. Restriction
Since labels are inherently local, no go to statement can

lead from outside into a block. A go to statement may,
however, lead from outside into a compound statement.

4.3.5. G o to an undefined switch designator
A go to statement is equivalent to a dummy statement

if the designational expression is a switch designator whose
value is undefined.

4.4. Dummy Statements
4.4.1. Syntax

(dummy statement) (empty)
4.4.2. Examples

L:

begin ... ; John: end
4.4.3. Semantics
A dummy statement executes no operation. I t may

serve to place a label.

4.5. Conditional Statements
4.5.1. Syntax

(if clause) :: — if (Boolean expression) then (unconditional statement) ::*» (basic statement)! (compound statement)| (block) (if statement) (if clause) (unconditional statement) (conditional statement) ::=» (if statement)!(if statement) else (statement)!(if clause)(for statement)! (label) : (conditional statement)
4.5.2. Examples

if x>0 then n :» n+1 if v>u then V: q n+m else go to R if 8<Q\/P£Q then AA: begin if q<v then a v/s else y 2Xo end else if v>s then a :•» v—q else if v>8 — 1 then go to S
4.5.3. Semantics
Conditional statements cause certain statements to be

executed or skipped depending on the running values of
specified Boolean expressions.

4.5.3.1. I f statement. T h e unconditional statement of
an if statement will be executed if the Boolean expression
of the if clause is true. Otherwise it will be skipped and
the operation will be continued with the next statement.

4.5.3.2. Conditional statement. According to the syn
tax two different forms of conditional statements are
possible. These may be illustrated as follows:

if Bl then 81 else if B2 then S2 else S3 ; 84
and

if Bl then 81 else if B2 then 82 else if B3 then S3 ; 84
Here B l to B3 are Boolean expressions, while S I to S3

are unconditional statements. S4 is the statement following
the complete conditional statement.

The execution of a conditional statement may be de
scribed as follows: The Boolean expression of the if clauses
are evaluated one after the other in sequence from left to
right until one yielding the value t r u e is found. Then the
unconditional statement following this Boolean is exe
cuted. Unless this statement defines its successor explicitly
the next statement to be executed will be S4, i.e. the state-

ment following the complete conditional statement. Thus
the effect of the delimiter else may be described by saying
that it defines the successor of the statement i t follows to
be the statement following the complete conditional
statement.

The construction

else (unconditional statement)
is equivalent to

else if true then (unconditional statement)
I f none of the Boolean expressions of the if clauses is

true, the effect of the whole conditional statement wil l be
equivalent to that of a dummy statement.

For further explanation the following picture may be
useful:

f f"""l
if Bl then SI else if B2 then S2 else S3 ; S4

L JL J
Bl false B2 false

4.5.4. G o to into a conditional statement
The effect of a go to statement leading into a conditional

statement follows directly from the above explanation of
the effect of else.

4.6. For Statements
4.6.1. Syntax (for list element) ::** (arithmetic expression)! (arithmetic expression) step (arithmetic expression) until (arithmetic expression){(arithmetic expression) while (Boolean expression) (for list) ::- (for list element)|(for list) , (for list element) (for clause) ::** for (variable) :*» (for list) do (for statement) (for clause)(statement)| (label): (for statement)
4.6.2. Examples

for q :*» 1 step 8 until n do A[q] B[q] for k 1, V1X2 while VKN do for j J+G, L, 1 step 1 until N, C+D do
AIM B[k,j]

4.6.3. Semantics
A for clause causes the statement S which it precedes to

be repeatedly executed zero or more times. I n addition i t
performs a sequence of assignments to its controlled
variable. The process may be visualized by means of the
following picture:

r T i
Initialize ; test ; statement S ; advance ; successor

I - I
for list exhausted

I n this picture the word initialize means: perform the first
assignment of the for clause. Advance means: perform the
next assignment of the for clause. Test determines if the
last assignment has been done. I f so, the execution con-

REVISED ALGOL 60
tinues with the successor of the for statement. I f not, the
statement following the for clause is executed.

4.6.4. The for list elements
The for list gives a rule for obtaining the values which

are consecutively assigned, to the controlled variable. This
sequence of values is obtained from the for list elements
by taking these one by one in the order in which they are
written. The sequence of values generated by each of the
three species of for list elements and the corresponding
execution of the statement S are given by the following
rules:

4.6.4.1. Arithmetic expression. This element gives rise
to one value, namely the value of the given arithmetic
expression as calculated immediately before the corre
sponding execution of the statement S.

4.6.4.2. Step-until-element. A n element of the form
A step B u n t i l C , where A , B , and C , are arithmetic ex
pressions, gives rise to an execution which may be de
scribed most concisely in terms of additional Algol
statements as follows:

V A ; LI: if (V-C)X sign(B)>0 then go to element exhausted; statement S ; V :« V+B ; go to LI ;
where V is the controlled variable of the for clause and
element exhausted points to the evaluation according to
the next element in the for list, or if the step-until-element
is the last of the list, to the next statement in the program.

4.6.4.3. While-element. The execution governed b y a
for list element of the form E w h i l e F, where E is an
arithmetic and F a Boolean expression, is most concisely
described in terms of additional Algol statements as
follows:

L3:V:-E ; if ~iF then go to element exhausted ; Statement S ; go to L3 ;
where the notation is the same as in 4.6.4.2 above.

4.6.5. The value of the controlled variable upon exit
Ufcxm exit out of the statement S (supposed to be com

pound) through a go to statement the value of the con
trolled variable wil l be the same as it was immediately
preceding the execution of the go to statement.

I f the exit is due to exhaustion of the for list, on the
other hand, the value of the controlled variable is unde
fined after the exit.

4.6.6. G o to leading into a for statement
The effect of a go to statement, outside a for statement,

which refers to a label within the for statement, is unde
fined.

4.7. Procedure Statements
4.7.1. Syntax

(actual parameter) ::=» (string)[(expression){(array identifier){ (switch identifier)|(procedure identifier) (letter string) (letter){(letter string)(letter)

REVISED ALGOL 60
(parameter delimiter) ::=» ,|)(letter string):((actual parameter list) (actual parameter)! (actual parameter list)(parameter delimiter) (actual parameter) (actual parameter part) (empty)! ((actual parameter list)) (procedure statement) (procedure identifier) (actual parameter part)

4.7.2. Examples

Spur (A)Order: (7)Itesult to: (V)
Transpose (Wtv+1)
AbsmaxU ,N,M, YytI,K)
I?inerproducl(A[t,P,u]tB[P],lOtPtY)

These examples correspond to examples given in section
5.4.2.

4.7.3. Semantics
A procedure statement serves to invoke (call for) the

execution of a procedure body (cf. section 5.4. Procedure
Declarations). Where the procedure body is a statement
written in Algol the effect of this execution wil l be
equivalent to the effect of performing the following opera
tions on the program at the time of execution of the pro
cedure statement:

4.7.3.1. Value assignment (call by value)
A l l formal parameters quoted in the value part of the

procedure declaration heading are assigned the values
(cf. section 2.8. Values and Types) of the corresponding
actual parameters, these assignments being considered as
being performed explicitly before entering the procedure
body. The effect is as though an additional block embrac
ing the procedure body were created in which these assign
ments were made to variables local to this fictitious block
wi th types as given in the corresponding specifications
(cf. section 5.4.5). As a consequence, variables called by
value are to be considered as nonlocal to the body of the
procedure, but local to the fictitious block (cf. section
5.4.3).

4.7.3.2. Name replacement (call by name)
A n y formal parameter not quoted in the value list is

replaced, throughout the procedure body, by the corre
sponding actual parameter, after enclosing this latter in
parentheses wherever syntactically possible. Possible
conflicts between identifiers inserted through this process
and other identifiers already present within the procedure
body wil l be avoided by suitable systematic changes of the
formal or local identifiers involved.

4.7.3.3. Body replacement and execution
Final ly the procedure body, modified as above, is

inserted in place of the procedure statement and executed.
I f the procedure is called from a place outside the scope
of any nonlocal quantity of the procedure body the con
flicts between the identifiers inserted through this process
of body replacement and the identifiers whose declarations
are valid at the place of the procedure statement or func
tion designator wil l be avoided through suitable systematic
changes of the latter identifiers.

4.7.4. Actual-formal correspondence
The correspondence between the actual parameters of

the procedure statement and the formal parameters of the
procedure heading is established as follows: The actual
parameter list of the procedure statement must have the
same number of entries as the formal parameter list of the
procedure declaration heading. The correspondence is
obtained by taking the entries of these two lists in the
same order.

4.7.5. Restrictions
Fo r a procedure statement to be defined it is evidently

necessary that the operations on the procedure body de
fined in sections 4.7.3.1 and 4.7.3.2 lead to a correct Algol
statement.

Th is imposes the restriction on any procedure statement
that the kind and type of each actual parameter be com
patible with the kind and type of the corresponding formal
parameter. Some important particular cases of this gen
eral rule are the following:

4.7.5.1. I f a string is supplied as an actual parameter in
a procedure statement or function designator, whose
defining procedure body is an Algol 60 statement (as
opposed to non-ALGOL code, cf. section 4.7.8), then this
string can only be used within the procedure body as an
actual parameter in further procedure calls. Ultimately it
can only be used by a procedure body expressed in non-
Algol code.

4.7.5.2. A formal parameter which occurs as a left part
variable in an assignment statement within the procedure
body and which is not called by value can only correspond
to an actual parameter which is a variable (special case of
expression).

4.7.5.3. A formal parameter which is used within the
procedure body as an array identifier can only corre
spond to an actual parameter which is an array identifier
of an array of the same dimensions. I n addition if the
formal parameter is called b y value the local array created
during the call wil l have the same subscript bounds as
the actual array.

4.7.5.4. A formal parameter which is called by value
cannot in general correspond to a switch identifier or a
procedure identifier or a string, because these latter do not
possess values (the exception is the procedure identifier of
a procedure declaration which has an empty formal
parameter part (cf. section 5.4.1) and which defines the
value of a function designator (cf. section 5.4.4). Th is pro
cedure identifier is in itself a complete expression).

4.7.5.5. A n y formal parameter may have restrictions
on the type of the corresponding actual parameter asso
ciated with it (these restrictions may, or may not, be
given through specifications in the procedure heading).
I n the procedure statement such restrictions must evi
dently be observed.

4.7.6. Deleted.
4.7.7. Parameter delimiters
A l l parameter delimiters are understood to be equiva

lent. N o correspondence between the parameter delimiters
used in a procedure statement and those used in the pro
cedure heading is expected beyond their number being the

same. Thus the information conveyed by using the elabo
rate ones is entirely optional.

4.7.8. Procedure body expressed in code
The restrictions imposed on a procedure statement

calling a procedure having its body expressed in non-
Algol code evidently can only be derived from the charac
teristics of the code used and the intent of the user and
thus fall outside the scope of the reference language.

5. Dec larat ions

Declarations serve to define certain properties of the
quantities used in the program, and to associate them with
identifiers. A declaration of an identifier is valid for one
block. Outside this block the particular identifier may be
used for other purposes (cf. section 4.1.3).

Dynamically this implies the following: at the time of an
entry into a block (through the b e g i n , since the labels
inside are local and therefore inaccessible from outside)
all identifiers declared for the block assume the signifi
cance implied by the nature of the declarations given.
I f these identifiers had already been defined by other
declarations outside they are for the time being given a
new significance. Identifiers which are not declared for the
block, on the other hand, retain their old meaning.

A t the time of an exit from a block (through e n d , or by
a go to statement) all identifiers which are declared for
the block lose their local significance.

A declaration may be marked with the additional
declarator o w n . This has the following effect: upon a re
entry into the block, the values of own quantities will be
unchanged from their values at the last exit, while the
values of declared variables which are not marked as own
are undefined. Apart from labels and formal parameters
of procedure declarations and with the possible exception
of those for standard functions (cf. sections 3.2.4 and
3.2.5), all identifiers of a program must be declared. N o
identifier may be declared more than once in any one
block head.

Syntax.

(declaration) ::— (type declaration)!(array declaration)!
(switch declaration)I (procedure declaration)

5.1. Type Declarations
5.1.1. Syntax

(type list) : := (simple variable)!
(simple variable) , (type list)

(type) : : = real I integer | Boolean
(local or own type) (type)|own (type)
(type declaration) : := (local or own type)(type list)

5.1.2. Examples

integer pfq,s
own Boolean Acryl,n

5.1.3. Semantics
T y p e declarations serve to declare certain identifiers to

represent simple variables of a given type. Real declared
variables may only assume positive or negative values

REVISED ALGOL 60
including zero. Integer declared variables may only assume
positive and negative integral values including zero.
Boolean declared variables may only assume the values
t r u e and false.

I n arithmetic expressions any position which can be
occupied by a real declared variable may be occupied by
an integer declared variable.

For the semantics of o w n , see the fourth paragraph of
section 5 above.

5.2. Array Declarations
5.2.1. Syntax

(lower bound) (arithmetic expression)
(upper bound) ::=» (arithmetic expression)
(bound pair) (lower bound): (upper bound)
(bound pair list) :: — (bound pair)| (bound pair list), (bound pair)
(array segment) (array identifier)!(bound pair list)]J

(array identifier),(array segment)
(array list) (array segment)!(array list),(array segment)
(array declaration) :: — array (array list)|(local or own type)

array (array list)

5.2.2. Examples
array o, b, c[7:n,2:m], s[-2:10|
own integer array A [if c<0 then 2 else 1:20]
real array q[—7:—1]

5.2.3. Semantics
A n array declaration declares one or several identifiers

to represent multidimensional arrays of subscripted
variables and gives the dimensions of the arrays, the
bounds of the subscripts and the types of the variables.

5.2.3.1. Subscript bounds. The subscript bounds for
any array are given in the first subscript bracket following
the identifier of this array in the form of a bound pair list.
Each item of this list gives the lower and upper bound of a
subscript in the form of two arithmetic expressions sepa
rated by the delimiter : T h e bound pair list gives the
bounds of all subscripts taken in order from left to r ight.

5.2.3.2. Dimensions. The dimensions are given as the
number of entries in the bound pair lists.

5.2.3.3. Types. A l l arrays declared in one declaration
are of the same quoted type. I f no type declarator is
given the type real is understood.

5.2.4. Lower upper bound expressions
5.2.4.1 The expressions wil l be evaluated in the same

way as subscript expressions (cf. section 3.1.4.2).
5.2.4.2. The expressions can only depend on variables

and procedures which are nonlocal to the block for which
the array declaration is valid. Consequently in the outer-.
most block of a program only array declarations with
constant bounds may be declared.

5.2.4.3. A n array is defined only when the values of all
upper subscript bounds are not smaller than those of the
corresponding lower bounds.

5.2.4.4. The expressions wil l be evaluated once at each
entrance into the block.

5.2.5. The identity of subscripted variables
The identity of a subscripted variable is not related to

the subscript bounds given in the array declaration. How-

REVISED ALGOL 60

ever, even if an array is declared o w n the values of the
corresponding subscripted variables wil l , at any time, be
defined only for those of these variables which have sub
scripts within the most recently calculated subscript
bounds.

5.3. S W I T C H D E C L A R A T I O N S
5.3.1. Syntax

(switch list) ::=* (designational expression)!
(switch list),(designational expression)

(switchdeclaration) : := switch (switch identifier) := (switch list)

5.3.2. Examples

switch S := Sl,£2,0(m], i f v>-5 then S3 else S4
switch Q : = pl,w

5.3.3. Semantics
A switch declaration defines the set of values of the

corresponding switch designators. These values are given
one by one as the values of the designational expressions
entered in the switch list. Wi th each of these designational
expressions there is associated a positive integer, 1, 2, ... ,
obtained by counting the items in the list from left to
right. The value of the switch designator corresponding to
a given value of the subscript expression (cf. section 3.5.
Designational Expressions) is the value of the designa
tional expression in the switch list having this given value
as its associated integer.

5.3.4. Evaluation of expressions in the switch list
A n expression in the switch list wil l be evaluated every

time the item of the list in which the expression occurs is
referred to, using the current values of all variables
involved.

5.3.5. Influence of scopes
I f a switch designator occurs outside the scope of a

quantity entering into a designational expression in the
switch list, and an evaluation of this switch designator
selects this designational expression, then the conflicts
belween the identifiers for the quantities in this expres
sion and the identifiers whose declarations are valid at the
place of the switch designator will be avoided through
suitable systematic changes of the latter identifiers.

5.4. P R O C E D U R E D E C L A R A T I O N S
5.4.1. Syntax

(formal parameter) ::•» (identifier)
(formal parameter list) ::— (formal parameter)!

(formal parameter list)(parameter delimiter)
(formal parameter)

(formal parameter part) ::=» (empty)|((formal parameter list))
(identifier list) ::=» (identifier)!(identifier list),(identifier)
(value part) value (identifier list) ; ((empty)
(specifier) string|(type)|array((type)array|label|switch|

procedure! (type)procedure
(specification part) : := (empty)[(specifier)(identifier list) ; |

(specification part)(specifier)(identifier list) ;
(procedure heading) (procedure identifier)

(formal parameter part) ; (value part)(specification part)
(procedure body) : : » (statement) | (code)
(procedure declaration) =

procedure (procedure heading > (procedure body)|
(type) procedure (procedure heading)(procedure body)

5.4.2. Examples (see also the examples at the end of
the report)

procedure Spur (a) Order :(n) Result:(«) ; value n ;
array a ; integer n ; real 8 ;
begin integer k ;
* := 0 ;
for k :== 1 step 1 unt i l n do s :=» 8+a[k,k]
end

procedure Transpose (a)Order:(n) ; value n ;
array a ; integer n ;
begin real w ; integer i, k ;
for i := 1 step 1 unt i l n do

for k := 1+i step 1 unt i l n do
begin w := a[i,k] ;

a[i,k] a[k,i) ;
a[k,i] :« w

end
end Transpose

integer procedure Step (u) ; real u ;
Step := i f OgttAw^l then 1 else 0

procedure A6smax(a)size:(n,w)Result:(y)Subscripts:(ijk);
comment The absolute greatest element of the matrix o,

of size n by m is transferred to y, and the subscripts of this
element to i and k ;

array a ; integer n, m, i, k ; real y ;
begin integer p, q ;
V : « 0 ;
for p := 1 step 1 unt i l n do for q :=* 1 step 1 unt i l m do
i f abs(a\p,q])>y then begin y : « ab8(a[p,q]) ; i :« p ;

k := q
end end Absmax

procedure Innerproduct(af6)Order:(fcfp)Result:(y) ; value & ;
integer k,p ; real y,atb ;
begin real s ;
8 0 ;
for p : « 1 step 1 unt i l k do 8 :« 8-foX6 ;
y : « 8
end Innerproduct

5.4.3. Semantics
A procedure declaration serves to define the procedure

associated with a procedure identifier. T h e principal con
stituent of a procedure declaration is a statement or a
piece of code, the procedure body, which through the use
of procedure statements and/or function designators may
be activated from other parts of the block in the head of
which the procedure declaration appears. Associated with
the body is a heading, which specifies certain identifiers
occurring within the body to represent formal parameters.
Formal parameters in the procedure body wi l l , whenever
the procedure is activated (cf. section 3.2. Function
Designators and section 4.7. Procedure Statements)
be assigned the values of or replaced by actual parameters.
Identifiers in the procedure body which are not formal
wil l be either local or nonlocal to the body depending on
whether they are declared within the body or not. Those
of them which are nonlocal to the body may well be local
to the block in the head of which the procedure declara
tion appears. The procedure body always acts like a

block, whether it has the form of one or not. Consequently
the scope of any label labelling a statement within the
body or the body itself can never extend beyond the pro
cedure body. I n addition, if the identifier of a formal
parameter is declared anew within the procedure body
(including the case of its use as a label as in section 4.1.3),
i t is thereby given a local significance and actual param
eters which correspond to it are inaccessible throughout
the scope of this inner local quantity.

5.4.4. Values of function designators
For a procedure declaration to define the value of a

function designator there must, within the procedure
body, occur one or more explicit assignment statements
with the procedure identifier in a left part ; at least one of
these must be executed, and the type associated with the
procedure identifier must be declared through the appear
ance of a type declarator as the very first symbol of the
procedure declaration. The last value so assigned is used
to continue the evaluation of the expression in which the
function designator occurs. A n y occurrence of the pro
cedure identifier within the body of the procedure other
than in a left part in an assignment statement denotes
activation of the procedure.

5.4.5. Specifications
I n the heading a specification part, giving information

about the kinds and types of the formal parameters by
means of an obvious notation, may be included. I n this
part no formal parameter may occur more than once.
Specifications of formal parameters called by value (cf.
section 4.7.3.1) must be supplied and specifications of
formal parameters called by name (cf. section 4.7.3.2)
may be omitted.

5.4.6. Code as procedure body
I t is understood that the procedure body may be ex

pressed in n o n -ALGOL language. Since i t is intended that
the use of this feature should be entirely a question of
hardware representation, no further rules concerning
this code language can be given within the reference
language

E X A M P L E S O F P R O C E D U R E D E C L A R A T I O N S :

E X A M P L E 1.

PROCEDURE euler (Jet, sum, eps, tim) ; VALUE eps, tim ;
INTEGER tim ; REAL PROCEDURE jet ; REAL sum, eps ;
C O M M E N T euler COMPUTES THE S U M OF jct(i) FOR i FROM ZERO UP TO
INFINITY B Y MEANS OF A SUITABLEY REFINED EULER TRANSFORMATION. T H E
SUMMATION IS STOPPED AS SOON AS tim TIMES IN SUCCESSION THE ABSO
LUTE VALUE OF THE TERMS OF THE TRANSFORMED SERIES ARE FOUND TO BE
LESS THAN eps. HENCE, ONE SHOULD PROVIDE A FUNCTION jet WITH ONE
INTEGER ARGUMENT, AN UPPER BOUND eps, AND AN INTEGER tim. T H E
OUTPUT IS THE S U M sum. euler IS PARTICULARLY EFFICIENT IN THE CASE
OF A SLOWLY CONVERGENT OR DIVERGENT ALTERNATING SERIES ;
BEGIN INTEGER I, k, n, t ; ARRAY M[0:15] ; REAL mn, mp, ds ;
i := n := t := 0 ; M[0] := jct(0) ; sum := M[0]/2 ;
nextterm: i I-F-1 ; mn := jct(i) ;

FOR k := 0 STEP 1 UNTIL N D O
BEGIN mp := (mn+m[k])/2 ; m[k) :=» mn ;

mn := mp E N D MEANS ;

REVISED ALGOL 60

IF (abs(mn)<abs(m[n]))A(n<15) T H E N
BEGIN ds := mn/2 ; N :=* N + 1 ; m[n]

mn E N D ACCEPT
ELSE ds := M N ;
sum :=* sum + ds ;
IF ab8(d8)<eps T H E N t J+L ELSE t :« 0 ;
IF t<tim T H E N GO TO nextterm

E N D euler

E X A M P L E 2.8

PROCEDURE RK(x}y,n,FKT,eps,etajcE,yE,ji) ; VALUE x,y ;
INTEGER N ; BOOLEAN ji ; REAL x.eps,etajc.E ; ARRAY
y,yE ; PROCEDURE FKT ;
C O M M E N T : RK INTEGRATES THE SYSTEM T/*'=/*(X,I/I , ... , Y»)
(k — 1,2, ... ,N) OF DIFFERENTIAL EQUATIONS WITH THE METHOD OF RUNGE-
KUTTA WITH AUTOMATIC SEARCH FOR APPROPRIATE LENGTH OF INTEGRATION
STEP. PARAMETERS ARE: T H E INITIAL VALUES x AND y[k] FOR x AND THE UN
KNOWN FUNCTIONS Y*(X). T H E ORDER N OF THE SYSTEM. T H E PROCEDURE
FKT(x,y,n#) WHICH REPRESENTS THE SYSTEM TO BE INTEGRATED, I.E.
THE SET OF FUNCTIONS /* . T H E TOLERANCE VALUES eps AND eta WHICH
GOVERN THE ACCURACY OF THE NUMERICAL INTEGRATION. T H E END OF THE
INTEGRATION INTERVAL xE. T H E OUTPUT PARAMETER yE WHICH REPRE
SENTS THE SOLUTION AT x*=xE. T H E BOOLEAN VARIABLE ,/£, WHICH MUST
ALWAYS BE GIVEN THE VALUE TRUE FOR AN ISOLATED OR FIRST ENTRY INTO
RK. IF HOWEVER THE FUNCTIONS y MUST BE AVAILABLE AT SEVERAL MESH-
POINTS xo, xi, ... , xn , THEN THE PROCEDURE MUST BE CALLED REPEAT
EDLY (WITH x—Xk , xE*=xt+i, FOR fc=0, 1, ... , N — 1) AND THEN THE
LATER CALLS M A Y OCCUR WITHAL—FALSE WHICH SAVES COMPUTING TIME.
T H E INPUT PARAMETERS OF FKT MUST BE x,y,n, THE OUTPUT PARAMETER
z REPRESENTS THE SET OF DERIVATIVES z[k\=*jk(x,y[l], y[2], ... , y[n])
FOR x AND THE ACTUAL Y'S. A PROCEDURE comp ENTERS AS A NONLOCAL
IDENTIFIER ;
BEGIN

ARRAY z,yl,y2,y3[l:n] ; REAL XL^R2^R3^T ; BOOLEAN out ;
INTEGER k,j ; O W N REAL sfls ;
PROCEDURE RKlST(x,yJijce,ye) ; REAL xjh&e ; ARRAY

y,ye ;
C O M M E N T : RKIST INTEGRATES ONE SINGLE R U N G E - K U T T A

WITH INITIAL VALUES x,y[k] WHICH YIELDS THE OUTPUT
PARAMETERS xe^x-\-h AND ye[k], THE LATTER BEING THE
SOLUTION AT xt. IMPORTANT: THE PARAMETERS N, FKTt z
ENTER RKIST AS NONLOCAL ENTITIES ;

BEGIN
ARRAY IO[L:N], A[L:5] ; INTEGER k,j ;
A[LJ :- A[2] := A[5] h/2 ; A[3] :- AFEL := h ;
xe :— X ;
FOR k :— 1 STEP 1 UNTIL N D O ye[k) := w\k) :*- y[k] ;
FOR / :-» 1 STEP 1 UNTIL 4 D O
BEGIN

FKT{xe}w,n,z) ;
xe := X-FAOL ;
FOR k := 1 STEP 1 UNTIL n D O
BEGIN

w[k] := y[k]+a[j)Xz[k) ;
ye[k\ ye[k) + a[j+l)Xz[k]/S

8 THIS RK-PROGRAM CONTAINS SOME N E W IDEAS WHICH ARE RELATED
TO IDEAS OF S. G i l l , A PROCESS FOR THE STEP-BY-STEP INTEGRATION OF
DIFFERENTIAL EQUATIONS IN AN AUTOMATIC COMPUTING MACHINE,
[Proc. Camb. Phil. Soc. 47 (1951), 96]; AND E . F r G b e r g , O N THE
SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS WITH DIGITAL COMPUTING
MACHINES, [Fysiograj. Sallsk. Lund, Forhd. 20, 11 (1950), .136-1521.
IT MUST BE CLEAR, HOWEVER, THAT WITH RESPECT TO COMPUTING TIME
AND ROUND-OFF ERRORS IT M A Y NOT BE OPTIMAL, NOR HAS IT ACTUALLY
BEEN TESTED ON A COMPUTER.

R E V I S E D A L G O L 6 0

e n d k
e n d j

e n d RKIST ;
Begin of program:

iffi t h e n b e g i n H xE—x ; 8 0 e n d e l s e H :» Ha ;
o u l : = f a l s e ;

AA: i f (x - f 2 . 0 1 X W - x ^ > 0) = (f f > 0) t h e n
b e g i n Ha :=* H ; o u < : = » t r u e ; J 7 : « = (xE-x)/2

e n d i f ;

flKLsr (*,y,2x//,zi,i/i) ;
BB: RKIST {x,yfl&,tf) ; RKIST\x2iV2fl>3,y3) ;

f o r k : = 1 s t e p 1 u n t i l ft d o
i f c o m p (y l [f c] , y 3 [A ;] , e t a) > e p s t h e n g o t o CC ;

c o m m e n t : comp(a,bc,) i s a f u n c t i o n d e s i g n a t o r , t h e v a l u e
o f w h i c h i s t h e a b s o l u t e v a l u e o f t h e d i f f e r e n c e o f t h e
m a n t i s 8 a e o f a a n d 6 , a f t e r t h e e x p o n e n t s o f t h e s e q u a n
t i t i e s h a v e b e e n m a d e e q u a l t o t h e l a r g e s t o f t h e e x p o n e n t s
o f t h e o r i g i n a l l y g i v e n p a r a m e t e r s a . 6 , c ;

x : = x 3 ; if out t h e n . g o t o DD ;
f o r k : = 1 s t e p 1 u n t i l n d o y[k] :» yZ[k] ;
i f 8 = 5 t h e n b e g i n a : = 0 ; H : = » 2 X # e n d i f ;
s : « 8 + 1 ; g o t o AA ;

CC: H : = 0.5XH ; o u * :- f a l s e ; xl * 2 ;
f o r A; 1 s t e p 1 u n t i l n d o yl[k\ : = j , 2 [* l ;
g o t o BB ;

DD: tor k : = 1 s t e p 1 u n t i l n d o yE[k] : = j/3[fc]
e n d RK

A L P H A B E T I C I N D E X O F D E F I N I T I O N S O F C O N C E P T S A N D S Y N T A C T I C U N I T S

A l l r e f e r e n c e s a r e g i v e n t h r o u g h s e c t i o n n u m b e r s . T h e r e f e r e n c e s a r e g i v e n i n t h r e e g r o u p s :
d e f F o l l o w i n g t h e a b b r e v i a t i o n " d e f r e f e r e n c e t o t h e s y n t a c t i c d e f i n i t i o n (i f a n y) i s g i v e n ,
s y n t F o l l o w i n g t h e a b b r e v j a t i o n " s y n t " , r e f e r e n c e s t o t h e o c c u r r e n c e s i n m e t a l i n g u i s t i c f o r m u l a e a r e g i v e n . R e f e r

e n c e s a l r e a d y q u o t e d i n t h e d e f - g r o u p a r e n o t r e p e a t e d ,
t e x t F o l l o w i n g t h e w o r d " t e x t " , t h e r e f e r e n c e s t o d e f i n i t i o n s g i v e n i n t h e t e x t a r e g i v e n .

T h e b a s i c s y m b o l s r e p r e s e n t e d b y s i g n s o t h e r t h a n u n d e r l i n e d w o r d s [i n t y p e w r i t t e n c o p y ; b o l d f a c e i n p r i n t e d c o p y — E d . l
h a v e b e e n c o l l e c t e d a t t h e b e g i n n i n g .

T h e e x a m p l e s h a v e b e e n i g n o r e d i n c o m p i l i n g t h e i n d e x .

+ , s e e : p l u s
— , s e e : m i n u s
X , s e e : m u l t i p l y
/, + , s e e : d i v i d e
t , s e e : e x p o n e n t i a t i o n
< , ^ , « , ̂ , > , 7 ^ , s e e : (r e l a t i o n a l o p e r a t o r)
m, I D , V» A , - i , s e e : (l o g i c a l o p e r a t o r)

s e e : c o m m a
., s e e : d e c i m a l p o i n t
io, s e e : t e n
:, s e e : c o l o n
;, s e e : s e m i c o l o n
:—, s e e : c o l o n e q u a l
u , s e e : s p a c e
() , s e e : p a r e n t h e s e s
[] , s e e : s u b s c r i p t b r a c k e t s
' f

t s e e : s t r i n g q u o t e s

(a c t u a l p a r a m e t e r) , d e f 3 . 2 . 1 , 4 . 7 . 1
(a c t u a l p a r a m e t e r l i s t) , d e f 3 . 2 . 1 , 4 . 7 . 1
(a c t u a l p a r a m e t e r p a r t) , d e f 3 . 2 . 1 , 4 . 7 . 1
(a d d i n g o p e r a t o r) , d e f 3 . 3 . 1
a l p h a b e t , t e x t 2 . 1
a r i t h m e t i c , t e x t 3 . 3 . 6

(a r i t h m e t i c e x p r e s s i o n) , d e f 3 . 3 . 1 s y n t 3 , 3 . 1 . 1 , 3 . 3 . 1 , 3 . 4 . 1 , 4 . 2 . 1 ,
4 . 6 . 1 , 5 . 2 . 1 t e x t 3 . 3 . 3

(a r i t h m e t i c o p e r a t o r) , d e f 2 . 3 t e x t 3 . 3 . 4
a r r a y , s y n t 2 . 3 , 5 . 2 . 1 , 5 . 4 . 1
a r r a y , t e x t 3 . 1 . 4 . 1

(a r r a y d e c l a r a t i o n) , d e f 5 . 2 . 1 s y n t 5 t e x t 5 . 2 . 3
(a r r a y i d e n t i f i e r) , d e f 3 . 1 . 1 s y n t 3 . 2 . 1 , 4 . 7 . 1 , 5 . 2 . 1 t e x t 2 . 8
(a r r a y l i s t) , d e f 5 . 2 . 1
(a r r a y s e g m e n t) , d e f 5 . 2 . 1
(a s s i g n m e n t s t a t e m e n t) , d e f 4 . 2 . 1 s y n t 4 . 1 . 1 t e x t 1 , 4 . 2 . 3

(b a s i c s t a t e m e n t) , d e f 4 . 1 . 1 s y n t 4 . 5 . 1
(b a s i c s y m b o l) , d e f 2
b e g i n , s y n t 2 . 3 , 4 . 1 . 1

(b l o c k) , d e f 4 . 1 . 1 s y n t 4 . 5 . 1 t e x t 1 , 4 . 1 . 3 , 5
(b l o c k h e a d) , d e f 4 . 1 . 1
B o o l e a n , s y n t 2 . 3 , 5 . 1 . 1 t e x t 5 . 1 . 3

(B o o l e a n e x p r e s s i o n) , d e f 3 . 4 . 1 s y n t 3 , 3 . 3 . 1 , 4 . 2 . 1 , 4 . 5 . 1 , 4 . 6 . 1 t e x t
3 . 4 . 3

(B o o l e a n f a c t o r) , d e f 3 . 4 . 1
(B o o l e a n p r i m a r y) , d e f 3 . 4 . 1
(B o o l e a n s e c o n d a r y) , d e f 3 . 4 . 1
(B o o l e a n t e r m) , d e f 3 . 4 . 1
(b o u n d p a i r) , d e f 5 . 2 . 1
(b o u n d p a i r l i s t) , d e f 5 . 2 . 1
(b r a c k e t) , d e f 2 . 3

(c o d e) , s y n t 5 . 4 . 1 t e x t 4 . 7 . 8 , 5 . 4 . 6
c o l o n :, s y n t 2 . 3 , 3 . 2 . 1 , 4 . 1 . 1 , 4 . 5 . 1 , 4 . 6 . 1 , 4 . 7 . 1 , 5 . 2 . 1
c o l o n e q u a l : » , s y n t 2 . 3 , 4 . 2 . 1 , 4 . 6 . 1 , 5 . 3 . 1
c o m m a , , s y n t 2 . 3 , 3 . 1 . 1 , 3 . 2 . 1 , 4 . 6 . 1 , 4 . 7 . 1 , 5 . 1 . 1 , 5 . 2 . 1 , 5 . 3 . 1 , 5 . 4 . 1
c o m m e n t , s y n t 2 . 3
c o m m e n t c o n v e n t i o n , t e x t 2 . 3

(c o m p o u n d s t a t e m e n t) , d e f 4 . 1 . 1 s y n t 4 . 5 . 1 t e x t 1
(c o m p o u n d t a i l) , d e f 4 . 1 . 1
(c o n d i t i o n a l s t a t e m e n t) , d e f 4 . 5 . 1 s y n t 4 . 1 . 1 t e x t 4 . 5 . 3

(d e c i m a l f r a c t i o n) , d e f 2 . 5 . 1
(d e c i m a l n u m b e r) , d e f 2 . 5 . 1 t e x t 2 . 5 . 3
d e c i m a l p o i n t ., s y n t 2 . 3 , 2 . 5 . 1

(d e c l a r a t i o n) , d e f 5 s y n t 4 . 1 . 1 t e x t 1 , 5 (c o m p l e t e s e c t i o n)
(d e c l a r a t o r) , d e f 2 . 3
(d e l i m i t e r) , d e f 2 . 3 s y n t 2
(d e s i g n a t i o n a l e x p r e s s i o n) , d e f 3 . 5 . 1 s y n t 3 , 4 . 3 . 1 . , 5 . 3 . 1 t e x t 3 . 5 . 3
(d i g i t) , d e f 2 . 2 . 1 s y n t 2 , 2 . 4 . 1 , 2 . 5 . 1
d i m e n s i o n , t e x t 5 . 2 . 3 . 2
d i v i d e / s y n t 2 . 3 , 3 . 3 . 1 t e x t 3 . 3 . 4 . 2
d o , s y n t 2 . 3 , 4 . 6 . 1

(d u m m y s t a t e m e n t) , d e f 4 . 4 . 1 s y n t 4 . 1 . 1 t e x t 4 . 4 . 3

e l s e , s y n t 2 . 3 , 3 . 3 . 1 , 3 . 4 . 1 , 3 . 5 . 1 , 4 . 5 . 1 t e x t 4 . 5 . 3 . 2
(e m p t y) , d e f 1 . 1 s y n t 2 . 6 . 1 , 3 . 2 . 1 , 4 . 4 . 1 , 4 . 7 . 1 , 5 . 4 . 1
e n d , s y n t 2 . 3 , 4 . 1 . 1
entier, t e x t 3 . 2 . 5
e x p o n e n t i a t i o n |, s y n t 2 . 3 , 3 . 3 . 1 t e x t 3 . 3 . 4 . 3

(e x p o n e n t p a r t) , d e f 2 . 5 . 1 t e x t 2 . 5 . 3
(e x p r e s s i o n) , d e f 3 s y n t 3 . 2 . 1 , 4 . 7 . 1 t e x t 3 (c o m p l e t e s e c t i o n)

(FACTOR), DEF 3.3.1
FALSE, SYNT 2.2.2
FOR, SYNT 2.3, 4.6.1
(FOR CLAUSE), DEF 4.6.1 TEXT 4.6.3
(FOR LIST), DEF 4.6.1 TEXT 4.6.4
(FOR LIST ELEMENT), DEF 4.6.1 TEXT 4.6.4.1, 4.6.4.2, 4.6.4.3
(FORMAL PARAMETER), DEF 5.4.1 TEXT 5.4.3
(FORMAL PARAMETER LIST), DEF 5.4.1
(FORMAL PARAMETER PART), DEF 5.4.1
(FOR STATEMENT), DEF 4.6.1 SYNT 4.1.1, 4.5.1 TEXT 4.6 (COMPLETE

SECTION)

(FUNCTION DESIGNATOR), DEF 3.2.1 SYNT 3.3.1, 3.4.1 TEXT 3.2.3, 5.4.4

GO TO, SYNT 2.3, 4.3.1
(GO TO STATEMENT), DEF 4.3.1 SYNT 4.1.1 TEXT 4.3.3
(IDENTIFIER), DEF 2.4.1 SYNT 3.1.1, 3.2.1, 3.5.1, 5.4.1 TEXT 2.4.3
(IDENTIFIER LIST), DEF 5.4.1
IF, SYNT 2.3; 3.3.1,4.5.1
(IF CLAUSE), DEF 3.3.1, 4.5.1 SYNT 3.4.1, 3.5.1 TEXT 3.3.3, 4.5.3.2
(IF STATEMENT), DEF 4.5.1 TEXT 4.5.3.1
(IMPLICATION), DEF 3.4.1
INTEGER, SYNT 2.3, 5.1.1 TEXT 5.1.3
(INTEGER), DEF 2.5.1 TEXT 2.5.4

LABEL, SYNT 2.3, 5.4.1
(LABEL), DEF 3.5.1 SYNT 4.1.1, 4.5.1, 4.6.1 TEXT 1, 4.1.3
(LEFT PART), DEF 4.2.1
(LEFT PART LIST), DEF 4.2.1
(LETTER), DEF 2.1 SYNT 2, 2.4.1, 3.2.1, 4.7.1
(LETTER STRING), DEF 3.2.1, 4.7.1
LOCAL, TEXT 4.1.3
(LOCAL OR OWN TYPE), DEF 5.1.1 SYNT 5.2.1
(LOGICAL OPERATOR), DEF 2.3 SYNT 3.4.1 TEXT 3.4.5
(LOGICAL VALUE), DEF 2.2.2 SYNT 2, 3.4.1
(LOWER BOUND), DEF 5.2.1 TEXT 5.2.4

MINUS - , SYNT 2.3, 2.5.1, 3.3.1 TEXT 3.3.4.1
MULTIPLY X , SYNT 2.3, 3.3.1 TEXT 3.3.4.1
(MULTIPLYING OPERATOR), DEF 3.3.1

NONLOCAL, TEXT 4.1.3
(NUMBER), DEF 2.5.1 TEXT 2.5.3, 2.5.4

(OPEN STRING), DEF 2.6.1
(OPERATOR), DEF 2.3
O W N , SYNT 2.3, 5.1.1 TEXT 5, 5.2.5

(PARAMETER DELIMITER), DEF 3.2.1, 4.7.1 SYNT 5.4.1 TEXT 4.7.7
PARENTHESES (), SYNT 2.3, 3.2.1, 3.3.1, 3.4.1, 3.5.1, 4.7.1, 5.4.1

TEXT 3.3.6.2
PLUS + , SYNT 2.3, 2.5.1, 3.3.1 TEXT 3.3.4.1
(PRIMARY), DEF 3.3.1
PROCEDURE, SYNT 2.3, 5.4.1
(PROCEDURE BODY), DEF 5.4.1
(PROCEDURE DECLARATION), DEF 5.4.1 SYNT 5 TEXT 5.4.3
(PROCEDURE HEADING), DEF 5.4.1 TEXT 5.4.3
(PROCEDURE IDENTIFIER) DEF 3.2.1 SYNT 3.2.1, 4.7.1, 5.4.1 TEXT 4.7.5.4
(PROCEDURE STATEMENT), DEF 4.7.1 SYNT 4.1.1 TEXT 4.7.3
(PROGRAM), DEF 4.1.1 TEXT 1
(PROPER BTRING), DEF 2.6.1

QUANTITY, TEXT 2.7

REVISED ALGOL 60

REAL, SYNT 2.3, 5.1.1 TEXT 5.1.3
(RELATION), DEF 3.4.1 TEXT 3.4.5
(RELATIONAL OPERATOR), DEF 2.3, 3.4.1

SCOPE, TEXT 2.7
SEMICOLON SYNT 2.3, 4.1.1, 5.4.1
(SEPARATOR), DEF 2.3
(SEQUENTIAL OPERATOR), DEF 2.3
(SIMPLE ARITHMETIC EXPRESSION), DEF 3.3.1 TEXT 3.3.3
(SIMPLE BOOLEAN), DEF 3.4.1
(SIMPLE DESIGNATIONAL EXPRESSION), DEF 3.5.1
(SIMPLE VARIABLE), DEF 3.1.1 SYNT 5.1.1 TEXT 2.4.3
SPACE U, SYNT 2.3 TEXT 2.3, 2.6.3
(SPECIFICATION PART), DEF 5.4.1 TEXT 5.4.5
(SPECIFICATOR), DEF 2.3
(SPECIFIER), DEF 5.4.1
STANDARD FUNCTION, TEXT 3.2.4, 3.2.5
(STATEMENT), DEF 4.1.1, SYNT 4.5.1, 4.6.1, 5.4.1 TEXT 4 (COMPLETE

SECTION)
STATEMENT BRACKET, SEE: BEGIN E N D
STEP, SYNT 2.3, 4.6.1 TEXT 4.6.4.2
STRING, SYNT 2.3, 5.4.1
(STRING), DEF 2.6.1 SYNT 3.2.1, 4.7.1 TEXT 2.6.3
STRING QUOTES ' SYNT 2.3, 2.6.1, TEXT 2.6.3
SUBSCRIPT, TEXT 3.1.4.1
SUBSCRIPT BOUND, TEXT 5.2.3.1
SUBSCRIPT BRACKETS [J, SYNT 2.3, 3.1.1, 3.5.1, 5.2.1
(SUBSCRIPTED VARIABLE), DEF 3.1.1 TEXT 3.1.4.1
(SUBSCRIPT EXPRESSION), DEF 3.1.1 SYNT 3.5.1
(SUBSCRIPT LIST), DEF 3.1.1
SUCCESSOR, TEXT 4
SWITCH, SYNT 2.3, 5.3.1, 5.4.1
(SWITCH DECLARATION), DEF 6.3.1 SYNT 5 TEXT 5.3.3
(SWITCH DESIGNATOR), DEF 3.5.1 TEXT 3.5.3
(SWITCH IDENTIFIER), DEF 3.5.1 SYNT 3.2.1, 4.7.1, 5.3.1
(SWITCH LIST), DEF 5.3.1

(TERM), DEF 3.3.1
TEN TO, SYNT 2.3, 2.5.1
THEN, SYNT 2.3, 3.3.1, 4.5.1
TRANSFER FUNCTION, TEXT 3.2.5
TRUE, SYNT 2.2.2
(TYPE), DEF 5.1.1 SYNT 5.4.1 TEXT 2.8
(TYPE DECLARATION), DEF 6.1.1 SYNT 5 TEXT 5.1.3
(TYPE LIST), DEF 5.1.1

(UNCONDITIONAL STATEMENT), DEF 4.1 .1, 4.5.1
(UNLABELLED BASIC STATEMENT), DEF 4.1.1
(UNLABELLED BLOCK), DEF 4.1.1
(UNLABELLED COMPOUND), DEF 4.1.1
(UNSIGNED INTEGER), DEF 2.5.1, 3.5.1
(UNSIGNED NUMBER), DEF 2.5.1 SYNT 3.3.1
UNTIL, SYNT 2.3, 4.6.1 TEXT 4.6.4.2
(UPPER BOUND), DEF 5.2.1 TEXT 5.2.4

VALUE, SYNT'2.3, 5.4.1
VALUE, TEXT 2.8, 3.3.3
(VALUE PART), DEF 5.4.1 TEXT 4.7.3.1
(VARIABLE), DEF 3.1.1 SYNT 3.3.1, 3.4.1, 4.2.1, 4.6.1 TEXT 3.1.3
(VARIABLE IDENTIFIER), DEF 3.1.1

WHILE, SYNT 2.3, 4.6.1 TEXT 4.6.4.3
E N D O F T H E R E P O R T

APPENDIX 2

CURRENT SYSTEM LIMITS

May 1, 1967

The following are a list of limits on the numbers of objects available

the system:

(a) The maximum number of distinct identifiers and labels allowable

is 100 where print names of 6 characters or less count one and

print names of 7 or more characters count 1 for the first six and

1 for each 4 or fraction of 4 characters. Note that any 2

identifiers which have the same first six characters may be

treated as the same name (including reserved words). This re

striction does not affect the internal working of the program.

It means only that when an identifier overflows and the table is

printed, what is printed is unpredictable.

*(b) The maximum number of declared objects (variables, arrays, etc.)

plus block entries is 300.

(c) The maximum number of nested dynamic blocks is 180.

(d) The maximum number of dynamically defined (e.g., by recursion) FORM

and SYMBOL variables is 832.

(e) The maximum number of words of code produced by the compiler is

/21000.

(f) The maximum number of words for variables and array storage is

/11600.

(g) Available space is constructed from the unused part of (e) and

(f). This gives roughly 6800 cells for small programs.

*(h) The maximum number of procedure declarations and labels at one

level is 24.

For a rough estimate, each element of a list and operand or operator

a formula takes up two words of available jspace.

* It is possible to extend the maximums in these cases. See the user con

sultant.

3

r

APENDIX 3

DEBUG SNAPSHOTS

The following is a list of snapshots which may be inserted between lines

of a Formula Algol program. They provide special commands to the compiler for

printing, corrections, and debugging. The Format is "SN" in columns 1 and 2,

the name of the snapshot starting in column 10, and two optional parameters in

columns 15 and 25. Teletype tabs will give the correct columns. Most of them

have effects at compile time; the ones which don't are so indicated.

In the following explanations whenever a snapshot may have a parameter

of either 0 or 1, it will be denoted "0,1". It is to be understood that for

all these snapshots, the 1 turns on a certain action and the 0 turns it off.

Only the action will be described.

Some of these snapshots require a more detailed knowledge of the system.

In these cases see [4] or the user consultant.

SN ^jAND The And system is entered at compile time.

SN AND The And system is entered at run time.

SN BKPT 0,1 At the end of each line a transfer to

a closed subroutine is compiled. At

routine, this subroutine prints the

location of the line of code to which

control has arrived. (It is, in effect,

a logical trace of the program's ex

ecution.)

SN CDLC 0,1 At the end of each line a command is

compiled to load the current location

of compiled code into an index register,

This feature is normally on.

SN $ CMPL <VAL> <VAL> is compiled as a machine command

APPENDIX 3 (continued)

SN CODE

SN COR

SN DEES

SN DUMP

SN ENTR

SN EXEC

SN IXRS

SN LINE

SN LOOK

SN PAGE

SN Ql

SN REMO

0,1

<LOC> <VAL>

0,1

0,1

<NUM>

0,1

0,1

directly into the current location

for compiled code.

Code is printed as it is compiled.

This can be used to change the

contents of locations at compile time.

First <XOC>, its contents, and <VAL>

are printed. The VAL replaces the

contents of <LOC>.

This prints out a series of critical

entry points of the compiler.

This causes the compiled code and the

generated abcons to be printed after the

compilation of the program and before it

is run.

A trace of all table entries is printed.

This prints a trace of the calls on the

semantic routines with parameters.

This prints the index registers /30-/77

at compile time.

This upspaces <NUM> lines at compile time.

A trace of all table look-ups is printed.

The printer is upspaced to the next page.

This allows the action of SN DUMP to be

printed on TTY.

The program prints on the teletype.

APPENDIX 3 (continued)

SN RCOR <LOC> <VAL>

SN RTRC <NUM> <LOC>

SN -RUN

SN SCAN 0,1

SN STAC

SN STOP

SN TRAC <NUM> <LOC>

SN == 0,1

Program output will print if REMD

is 1 at the end of compilation.

At run time <VAL> replaces the

contents of <LOC>.

This has the same effect as SN TRAC,

except at run-time.

The program will be terminated after

compilation.

Characters of the input string are

printed as they are read by subscan.

At compile time, the semantic stack is

printed.

Halts compilation immediately.

At compile time, commands flags are put

on <NUM> words starting at location <LOC>.

When these words are executed Monitor

trace routines will print them.

A trace of the syntax analyzer is

printed. When an attempt is made to

match a production, the top of the

stack and the production are printed.

D

APPENDIX 4

ERROR MESSAGES

There are three kinds of errors in Formula Algol: Syntax errors,

semantic errors, and run errors. The first two kinds of errors occur

at compile time, and the third at run time. Some of these messages re

quire a more detailed knowledge of the system. In these cases see [4]

or the User Consultant.

SYNTAX ERRORS

These are of the form

ERROR XXX

0 Program does not start with •BEGIN 1

1 Statement does not begin with legal character

2 Statement starts with identifier not followed by legal character

3 First character of an expression expected but not found

4 Expression formed but not followed by legal character

5 is not preceded by a legal construct

6 Array element not found in legal context

7 f : 1 not preceded by a legal construct

8 '<-' not preceded by a legal construct

9 ') ' not preceded by a legal construct

10 ',' not preceded by a legal construct

11 'THEN 1 not preceded by a legal construct

12 'ELSE' not preceded by a legal construct

13 Illegal statement construction

14 Impossible error, system error

17 'STEP 1 not preceded by a legal construct

18 'UNTIL 1 not preceded by a legal construction

19 'WHILE' not preceded by a legal construction

20 'DO' not preceded by a legal construction

21 'GO' not followed by a legal construction

22 'GO TO IF...THEN..,' not followed by 'ELSE'

24 Obscure error in GO TO statement

25 '|-*' not in stack after scanning 'BEGIN'

28 Too many 'END's within a procedure

38 Illegal construction within an IF...THEN.statement

39 More than one subscript in a switch call

42 Array declaration does not contain bounds expression

44 System error in GO TO statement

62 Attempt to 'ALTER1 a non-symbol

75 'PRINT' not followed by '('

76 Function designator not followed by legal character

77 '.' not followed by legal character

78 Class operator not formed correctly

80 A value of 'OPERATOR 1 was not an operator

81 Improper description list construction

85 Operator expected and not found

98 ' |->' not in stack at beginning of statement

99 System error

100 Illegal operator or control character scanned

101 ABCON table full

102 Number incorrectly formed (while scanning '.')

103 Number incorrectly formed (while scanning '=;')

104 Impossible error, system error

r

105 Illegal bar variable

106 Illegal SY card

108 Impossible error, system error

109 An insertion locator was expected but not found

110 An expression has been found in an illegal context

111 A selector was expected but not found

112 A selector is not followed by 'PFf

113 / not followed by [

115 Improper 1INDEX 1 construction

116 Improper 'PARALLEL FOR 1 construction

117 DOT not followed by identifier in text

118 Class Name improperly formed

144 Variable declaration does not terminate properly or f [f missing

144 In array declaration

145 Array declaration does not terminate properly

163 Procedure head is incorrectly formed

164 Value or specifier part is incorrectly formed

171 Specifier list not initiated properly

174 Declaration does not begin with a legal construction

190 Identifier not found in identifier list

194 missing in formal parameter list

195 Value list not terminated properly

196 Specifier list not terminated properly

200 Formal parameter list for EVAL does not contain all identifiers

201 EVAL statement not formed correctly

250 Switch declaration improperly initiated

251 Missing delimiter in switch declaration

999 Impossible error, system error

SEMANTIC ERRORS

These are of the form

FAULT XXX

2 Procedure not declared as such

5 An identifier in a value list is not a formal parameter

6 An identifier in a specifier list is not a formal parameter

7 An identifier is not declared or

7 A procedure is used where a function is expected or

7 An array identifier is used where a simple variable is expected or

7 A switch identifier is used where a simple variable is expected

12 An identifier as an actual parameter has not been declared

15 In fG0 TO S[...]', S is not a switch

16 In an array access the identifier is not an array

20 Function has not yet been declared

21 Function designator not declared

22 Identifier of a class operator is not a variable

27 Boolean expression expected in 'WHILE 1 clause, and not found

30 In 'IF B THEN....' B is not of type Boolean

44 Switch identifier is used without parameter

47 Expression in ordinal selector is not of type integer

59 Improper editing statement construction

61 System error

63 Attempt to apply selector to non-symbol

69 A value of 'OPERATOR' is not an operator

70 In 'EVAL F 1, F is not a formula or symbol

72 In fEVAL(...)F(...)', F is not formula or symbol

75 A class operator is not a symbol

76 System error processing extractor which is array element

77 System error in class operators

78 Attempt to erase description list of non-symbol

83 System error in pattern construction with types as primaries

85 In'F = = P f or in F is not a formula

87 A label in a pattern is not of type form

88 In fIF B THEN... 1 B is not Boolean or formula

91 A label is used twice in the same block

94 In a DOT array the identifier is not an array

97 Expression in < > is not a symbol

98 The second parameter of fDERV f is not a formula

99 System error in print routine

100 In a binary arithmetic expression one of the operands is of illegal

type

103 Attempt to add local description list to non-symbol

105 In a binary Boolean expression one of the operands is of illegal

type

106 Attempt to access non-symbolic attribute

107 Parameter of a function designator is not numeric or formula

108 Attempt to access description list of non-symbol or non-formula

109 Improper value entry construction

112 Attempt to store into illegal entity or legal entity of wrong type

116 *—i* is not followed by Boolean or logic expression

155 Boolean procedure or pattern list expected and not found

175 Attempt to construct non-symbolic attribute

176 Attempt to store list or do value entry with non-symbol

D
179 Value of index is not declared integer

183 Attempt to test non-symbol against symbolic pattern

184 Expression following $ is not of type integer

186 Non-symbolic label in list pattern

189 Identifier in description list expression is not formula

190 Impossible error, system error

191 An identifier is not declared

192 Form or symbol variable expected and not found

198 Designatiorfal expression is used as actual parameter

203 Attempt to count non-symbol

213 Non-symbol in symbolic 'FOR' statement

214 Argument of 'ATTRIBUTES OF' other than symbol

229 Expression preceding ordinal selector is not of type integer

230 Argument of ERADL other than symbol

235 Second parameter to AMONG is not of type symbol

239 Parameter of 'EMPTY' is not a symbol

315 Switch not declared

391 Obscure error in procedure calls

512 Attempt to store non-numeric expression into a numeric variable

612 Attempt to store non-Boolean expression into Boolean variable

712 Attempt to store into a constant

912 System error

990 Impossible error, system error

998 System error

999 System error in 'STEP' statement

4L01 Improper left side of DOT assignment

RUN ERRORS

Run Errors in Formula Manipulation

These are of the form:

RUN ERROR NNN AFTER LOCATION XXXXX

LLLLL

where NNN refers to the list below, XXXXX indicates the line in which the

error occurred and LLLLL is the location of the error routine.

* 1 Attempt to eval an expression containing -» , • , :, or | |.

6 Attempt to eval an expression containing +, -, x, /, or t in

which one of the operands is neither a formula nor a number.

10 In eval ~ x, x is not logic, boolean, or formula.

* 20 Error when printing, a formula.

21 In eval xAy or xVy one of the operands is not logic, boolean,

or formula.

22 In eval xAy or xvy, there is a mixture of types logic and boolean.

25 Recursion stack overflow.

27 Run-time symbol table overflow.

* 30 Error when printing a chain.

* 31 Attempt to find an attribute on an ill-formed chain.

3 7 Too many subscripts in an array element.

38 Subscript in an array element is too small.

39 Subscript in an array element is too large.

40 Not enough subscripts in an array element.

46 Too many block entries.

48 Subscript in a switch designator is out of bounds.

50 Available space is empty.

56 In derv(f,x), f is not a number or a formula.

57 A boolean data term was expected and not found.

63 Obscure error when storing a chain into a symbol.

* 79 In f . 1 s, s has no contents attribute.

82 In f . I s, s has a parallel production within a parallel

production.

83 In f , 1 s, s has a formula which is not a production.

85 A malformed formula (system error), or

A class operator encountered within a formula to which a pro

duction is to be applied, or

In a dot array (production), a subscript (parameter) is not

of type form.

100 Attempt to eval In(-infi) or sqrt(-infi).

141 In EVAL (x <r> y) where r is >,<,-n <, or -n >, one of the

operands is either undefined, a symbol chain, or of type

Boolean.

* 182 Variable of interpretive store has undefined type.

183 Interpretive store of undefined mixture of variable types, or

interpretive store into a symbol is not implemented.

271 In eval of A.[si, sn], some subscript si is not a formula

or a number.

325 In eval . if B then B is neither a boolean or a formula.

600 In F = = P, F is the pattern of() .

601 In F = = P, F is a symbol.

602 Obscure error in F = = P, probably an attempt to test a pattern

against another pattern.

603 In F = = P, P has a class operator which has no attribute 'operator

701 Attempt to compute 0 t -number.

702 Attempt to compute X t A where x<] and A Is not an integer.

703 Attempt to compute X t A where A*ln(x) > 160.117.

711 Attempt to compute 1n(X) where X < 0.

721 Attempt to compute E^P(x) where ^ is out of range.

731 Attempt to compute sin(X) where X is out of range.

751 Attempt to compute sqrt(X) where X < 0.

5501 Attempt to eval the pattern 'of(B) 1.

5502 Attempt tb compute replace(F) where F » A:atorn.

6702 A class operator or extractor encountered in a formula to which

a production is to be applied.

*7701 Attempt to create A |[T]| B where T has no contents attribute.

7702 Attempt to create A |[T]| B where [T] is empty.

7703 Attempt to create A |[T]| B where [T] is unary.

7704 Attempt to create |[T]| B where [T] is binary.

9009 Attempt to EVAL (0t0).

9011 Attempt to EVAL (ANY/0).

denotes a system error.

Run Errors in Symbol Manipulation

The following messages are printed:

Recoverable Errors

Not enough chain operands cf. p. 1

Unless store into unused chain

Attempt to store into open chain

Attempt to get interior of empty clsd ch

Attempt to discard nil

First element of plural list uncarried

Attempt to select non-existant referent

Class name undefined

Non-Recoverable Errors

Parity of chainacc destroyed

Negative chainacc

Attempt to store in non-symbol

Malformed chain

Chainacc exceeded

Plural list used where symbol needed

Attempt at VR from non-symbol

Attempt at VR without attribute

Empty list used where symbol needed

Attempt to generate ATRS. of non-chain

System Error

Illegal selector

Non->primitive for ID. routine

For attempts to generate non-list

P-for control variable non-symbol

No.contrl.var = no. of lists in P-for

Malformed pattern

Non-numeric data term used as number

Available space exhausted

Improper symbol array access

Value of symbol array el.no exst.

Illegal transfer function

Run Errors in Recursitm

These are of the form:

XXXX MM:SS:ss

<octal dump of index registers /50,...,/77 >

XXXX is the name of the error.

MM:SS:ss is the running time in sixtieths of a second.

<octal dump> indicates the state of the program.

* CLOB System error indicating that the historian has been clobbered,

STOR Variable stack overflow.

HIST Historian stack overflow.

* PROC Obscure error related to procedure names as actual parameters.

* LINK Premature or illegal attempt to leave a codepiece.

LABL Attempt to goto an undefined label or to call an undefined

procedure or switch.

^o64K Request for extra memory was refused

indicates a system error.

http://el.no

APPENDIX 5

INPUT - OUTPUT

Formual A l g o l has no read s t a t e m e n t s .

At the p r e s e n t t i m e , Formula A l g o l c o n t a i n s a p r i m i t i v e p r i n t s ta tement

of the form PRINT(X), where X i s a l i s t o f any o f the f o l l o w i n g p o s s i b l e

o b j e c t s :

(a) The name o f any d e c l a r e d v a r i a b l e , i n which c a s e the v a l u e o f

t h a t v a r i a b l e w i l l be p r i n t e d .

(b) Any a r i t h m e t i c , Boolean or Formula e x p r e s s i o n , i n which c a s e

the v a l u e of the e x p r e s s i o n w i l l be p r i n t e d .

(c) Any symbol ic e x p r e s s i o n prov ided a s w i t c h i s s e t a s i n d i c a t e d

be low.

For example:

FORM F, G; REAL A,B; BOOLEAN C; SYMBOL S;

LOGIC L; HALF H;

F «-F + G; A «- 3 . 5 ; B <- 2 x A; C < - B < A ;

S <- [F , A] ; L «- 10; H *- 2 . 8 ;

PRINT(F,G,A,B,C,S,L,H, 1 1 1 , G+A);

This c a u s e s the f o l l o w i n g t o be p r i n t e d :

F + G

G

.35000000000 l o +01

.70000000000 T O +01

FALS

/[CONT: F+3, (.35000000000,0 +01)][NAME:S]

00000000012

. 2 8 0 0 0 0 0 0 0 0 0 w +01

111

G+ (.35000000000,0 +01)

L i s t s may be p r i n t e d i n t h r e e s t y l e s : s t y l e 0 , s t y l e 1 , and s t y l e 2 . S t y l e 0

i s i n the sys tem t o b e g i n w i th and c a u s e s d e s c r i p t i o n l i s t s t o be p r i n t e d .

S t y l e 1 p r i n t s l i s t s and s u b l i s t s w i t h square b r a c k e t s [,] and commas s e p a r a t

ing the e l e m e n t s , each s u b l i s t b e i n g d e l i m i t e d by a p a i r o f square b r a c k e t s .

S t y l e 2 p r i n t s l i s t s w i t h o u t square b r a c k e t s and commas by c o n c a t e n a t i n g the

e l e m e n t s d i r e c t l y i n t o the p r i n t l i n e .

For example:

SYMBOL S, ADJ, EC, TIVE, A ,B ,C, COLOR, APPLE,RED;

APPLE «- /[COLOR: RED];

S - [A , A , [B , B , [C , C , C] , B] , A] ;

A t-[ADJ,EC,TIVE];

In S t y l e 0 the s t a t e m e n t PRINT(APPLE, S, A) g i v e s :

/[CONT: APPLE][COLOR:RED][NAME:APPLE];

/[CONT: A,A, /[CONT:B,B, /[CONT:C,C,C][NAME:],B][NAME:],

A][NAME:S]

/[CONT: ADJ, EC, TIVE][NAME:A]

In S t y l e 1 the same p r i n t s t a t e m e n t g i v e s :

[APPLE]

[A , A , [B , B , [C , C , C] , B] , A]

[ADJ, EC, TIVE]

In Style 2 the same print statement gives:

APPLE

AABBCCCBA

ADJECTIVE

Thus, Style 0 is used to print description lists, Style 1 is used to print

lists and sublists, and Style 2 is used to print compacted lists. Executing

the following snapshot correction changes the style switch.

SN RCOR 55212 1 sets Style to 1

SN RCOR 55212 2 sets Style to 2

SN RCOR 55212 0 sets Style to 0

This snapshot follows the same conventions as other debug snapshots (see

Appendix 3) .

3

O

FORMULA ALGOL FORM AL-3-109

APPENDIX 6

SYNTAX INDEX

SYNTAX CLASSES

<Array Formula> - Chapter III f Page 26
<Asslgnment Formula> - Chapter III, Page 26
<Assignment Statements - Chapter IV, Page 52
<Augmented Type> - Chapter IV, Page 55

<Boolean Expresslon> - Chapter III, Page 26

<Class DefinitiorO - Chapter IV, Page 61
<Class Name> - Chapter IV, Page 61
<Comm Segment> - Chapter III, Page 37
Conditional Formula - Chapter III, Page 26

description List> - Chapter IV, Page 53
description List Editing Statement^ - Chapter IV, Page 64

<Editing Statement> - Chapter IV, Page 64
<Elementary Positiori> - Chapter IV, Page 55
<Evaluate Formula»- Chapter III, Page 32
<Extractor> - Chapter III, Page 37; Chapter IV, Page 58
<Expressiori> - Chapter IV, Page 51

<For Clause> - Chapter IV, Page 63
<For List> - Chapter IV, Page 62
<Formula Expression> - Chapter III, Page 26
<Formula Expression List> - Chapter III, Page 32
<Formula Patterri> - Chapter III, Page 37
<Formula Pattern Primary> - Chapter III, Page 37
<Formula Pattern Structure> - Chapter III, Page 37
<Formula Primary> - Chapter III, Page 26

<Locator List> - Chapter IV, Page 64
<Insertion Locator> - Chapter IV, Page 64
<Index Segment> - Chapter III, Page 37
<Is Phrase> - Chapter IV, Page 65

<Kind> - Chapter IV, Page 55

<List> - Chapter IV, Page 51
<LJ.st ElemenO - Chapter IV, Page 51
<List Expressiori> - Chapter IV, Page 51
<List PatterrO - Chapter IV, Page 58
<List Pattern Primary> - Chapter IV r Page 58
<Logical Value List> - Chapter III, Page 37

<Operator C las s> - Chapter I I I , Page 37
<Dperator C l a s s Assignment> - Chapter I I I , Page 37
<Operator C l a s s Name> - Chapter I I I , Page 37
<Operator L i s t > - Chapter I I I , Page 37
<Ordinal S e l e c t o r > - Chapter IV, Page 55
<Drdinal S u f f i x > - Chapter IV, Page 55

< P a r a l l e l Elements> - Chapter I I I , Page 43
< P a r a l l e l Product iorO - Chapter I I I , Page 43
<Pop Up Operatot> - Chapter IV, Page 61
<Pop Up Statement> - Chapter IV, Page 62
< P o s i t i o n > - Chapter IV, Page 55
<Procedure Formula> - Chapter I I I , Page 26
<Push Down Operator> - Chapter IV, Page 61
<Push Down S t a t e m e n t s - Chapter IV, Page 61

<Schema> - Chapter I I I , Page 43
<Schema Ass ignments - Chapter I I I , Page 43
<Schema Elements - Chapter I I I , Page 43
<Schema V a r i a b l e > - Chapter I I I , Page 43
< S e l e c t l o n Expres s lon> - Chapter IV, Page 55
< S e l e c t o r > - Chapter IV, Page 55
< S e l e c t o r L i s t > - Chapter IV, Page 43
< S i n g l e Product lon> - Chapter I I I , Page 43
S u b s t i t u t i o n L i s t > - Chapter I I I , Page 32
<Symb or L l s t > - Chapter IV, Page 58
<Symbol ic Expressiori> - Chapter IV, Page 49

t r a n s f o r m e d Formula> - Chapter I I I , Page 43

RESERVED WORDS

ANY - Chapter III, Page 36, Page 42 (appears thrice)

ATOM - Chapter III, Page 36

COMM - Chapter IIJ, Page 36

ELSE - Chapter III, Page 25

EVAL - Chapter III, Page 31 (appears twice)

FALSE - Chapter III, Page 36 (appears twice), Page 42

IF - Chapter III, Page 25

INDEX - Chapter III, Page 36

OF - Chapter III, Page 36 (appears twice)

REPLACE - Chapter III, Page 31, Page 42

SUBS - Chapter III, Page 31

THEN - Chapter III, Page 25

TRUE - Chapter III, Page 36 (appears twice), Page 42

AFTER - Chapter IV, Page 53, Page 62

ALL - Chapter IV, Page 53 (appears twice)

ALSO - Chapter IV, Page 62

ALTER - Chapter IV, Page 62

AND - Chapter IV, Page 53

ANY - Chapter IV, Page 53

ATOM - Chapter IV, Page 53

ATTRIBUTES - Chapter IV, Page 60

BEFORE - Chapter IV, Page 53 (appears twice), Page 62

BETWEEN - Chapter IV, Page 53

BOOLEAN - Chapter IV, Page 53

FORM AL-3-U2 FORMULA ALGOL

DELETE - Chapter IV Page 62 (appears twice)

ELEMENTS - Chapter IV, Page 60 (appears twice)

FIRST - Chapter IV, Page 53 (appears twice)

FOR - Chapter IV, Page 60

FORM - Chapter IV, Page 53

INSERT - Chapter IV, Page 62

INTEGER - Chapter IV, Page 53 (appears twice)

IS - Chapter IV, Page 62 (appears twice)

LAST - Chapter IV, Page 53 (appears twice)

ND - Chapter IV, Page 53

NIL - Chapter IV, Page 47

NOT - Chapter IV, Page 62

OF - Chapter IV, Page 51, Page 53, Page 60 (appears thrice), Page 62 (appe

5 times)

PARALLEL - Chapter IV, Page 60

RD - Chapter IV, Page 53

REAL - Chapter IV, Page 53

ST - Chapter IV, Page 53

SUBLIST - Chapter IV, Page 53

SYMBOL - Chapter IV, Page 53

TH - Chapter IV, Page 53

THE - Chapter IV, Page 51, Page 62

TO - Chapter IV, Page 62

APPENDIX 7

COMPLETE EXAMPLES

The attached photocopies of computer output present three ways that

Formula Algol can be used to solve an algebraic equation for the single oc

currence of the variable X. These three solutions are by Markov Algorithms,

by recursion, and by iteration. Formula Algol is well suited to programming

this problem because its data structures and source language instructions were

chosen to be well adapted to problems in formal algebraic manipulation. It

can be seen from the attached programs that the Formula Algol programmer has

detailed control over the specification of formula manipulation algorithms

and that,at the same time, abbreviation devices, such as the Markov Algorithm,

make it convenient to write them. Brief explanations of the three solutions

are as follows.

I. MARKOV ALGORITHM SOLUTION

Lines 12 to 29 define a Markov Algorithm which gives the rules of trans

formation by which equations are to be solved for X. The equation to be solved

for X is stored as the value of the variable E in line 30, and line 31 prints

both E and E. IS the result of applying the Markov Algorithm S to E, which re

sult is the solved equation. In lines 10 and 11, plus and times are defined

to be operators with commutative properties so that in lines 14 and 15 commuta

tive instances of A*B and A+B will be considered. Lines 7,8, and 9 define A

to be a formula pattern which will match any subexpression of a formula con

taining an occurrence of X, and B and C to be formula patterns which will

match any arbitrary subexpression of a formula. The A's, B f s , and C's are

used in the construction of the left hand sides of the transformations in the

Markov Algorithm and stand for patterns with these properties. On the right

hand sides of the transformations the .A's, .B's, and ,C's are objects which

are replaced by the subexpressions which match the A f s , B f s , and C f s when

given transformation applies to an input equation.

II. RECURSIVE SOLUTION

Lines 4, 5, and 9 define patterns A, B, and C with the same properties

as in the Markov Algorithm solution. The recursive procedure SOLVE(LHS,RHS)

given in lines 8 to 28 analyzes the form of the left hand side of the equation,

LHS, which is assumed to contain X, and recursively calls SOLVE with that sub

expression of LHS containing X as its new first parameter, and an appropriate

inverse expression composed of an appropriate inverse operator applied to RHS

and a subexpression of LHS not containing X as its new second parameter. The

procedure Answer(E) given in lines 30 to 34 analyzes the input equation E to

see which side contains X and passes the side containing X as the left hand

side and the side not containing X as the right hand side to SOLVE which de

livers the answer to the problem. An equation is assigned to E in line 36

and both E and Answer(E) are printed in line 37. The printed solution is the

same as that given in the first and third solutions.

III. ITERATIVE SOLUTION

Lines 6 and 7 define two operator classes OP1 and OP2 consisting respec

tively of the binary operators to be used in input equations and the unary

operators to be used in input equations. An integer variable I is attached

to the definition of each operator class as an "Index". In lines 12 and 13

the input equation G is compared with two patterns. The first pattern matches

if the left hand side of G contains a binary operator in the class OPl and the

index vari le I is set to contain an integer denoting the ordinal position of

this operator in the list of operators given on line 6. Similarly, the second

pattern matches if G f s left hand side is of the form <unary operator>(<expressiori>)

and the index I is set to the ordinal position of the unary operator in the

list of unary operators in line 7. The integer value of this index I is used

in a designational expression containing a switch to transfer control to an

appropriate statement to perform the required transformation of the equation.

These transformations are given in lines 15 to 27. The iteration is under

the control of a FOR-WHILE statement and halts when the equation G has X as

its left hand side. The printed solution is the same as that for solutions

I and II.

IV. COMPARISON OF THE THREE SOLUTIONS

Markov Algorithm Recursion

seconds required 5 + 1 4 + 1

cells required 232 471

code required 771 826

The times given here are not measured as precisely as they

truly useful comparison.

Iteration

3 + 1

183

595

should be for a

O

A (PER, VL02 24
993 4CG52C62

OCT 66 22:23:34 ANO PAGES:
CC303011403* TS01 50 TIME: 3

STATUS MAR. 25,1966:EXPERIMENTAL SYSTEM.
C02:
C03:
004:
005:
COS:
007:
cos:
009:
01Cs
011:
012:
013:
011:
015:
016:
017:
01 Gs
0193
02C:
021:
022:
023:
024:
025?
026:
027:
02 8:
0292
03C3
031:
032:
033:

ERR03S

11C02
11020
11037
11051
11060
11072
11103
11114
11144
11174

11177
11243
11310
11353
11416
11461
11524
11574
11643
11677
11733
11767
12026
12073
12152
12231
12263
12370
12400
12403

AL BEGIN
F03M E,K,M,H,N,P;
FORM A„D,C,X5 SYOOL PLUS, TIMES, S;
OOOLEAN R0CEDU2E HASX<F); VALUE F; FORM
HASX *- F >> X;
A«-A:OF(HASX>;
B«-D?Ari/;
C*C:ANY;
PLUS«-/[G?EnATOa:+] CCOMM: TRUE);
TIMES«-/CO?ERATOR:*] (COMM: TRUE];
S - t
t
CA| TIMES |D)
(A|PLUS |D>
A
0
A
0
A
D

/
/
t
t

EXP<A>
LN<A)

SC3KA)
ARCTAN(A)

SIN(A)
CCS(A)

X
E «-Kt2 +
PRINTC E,

C
c
c
c
c
c
c
c
c
c
c
c
c
c
c

= c
LNCM
E.*S

RINTCCELLS):
END;

+ SINC

.A = .C / .8,
•As «C *6,
•A = .C + .B,
•A = »B - .C,
•A s X * .0,
.A = .0 / .C t

.A = .C t <1/.B>,
•A s LNCOTLNCJB),
•A = -.C,
.A = LNC.C),
•A = exp<.c>,
•A = «C t 2,
•A = SIKCO/COSCC)*
.A = ARCTANC.C/Se3T<1-.Ct2»t

.A = ARCTAN(SC3T<1-.Ct2>/.C>,
•X = .C 3 1;
(X t3-K) /< H>4) *Mt5)tN - K)*M = P;

BEGIN EXECUTION 22:28:53; „06423 AVAILABLE CELLS
Kt2 + LF1CM + SINCCXT3 - K)/(H + 4>*M?5>fN - K)*M=P
X=CAttCKCEXP«P - Kt2)/M) +K - M)t<1/N)/5QRT<1 - <EXP«P
- K?2)/M) + K - M)t(1/N)t2»/Mt5*(H + 4) + K)t<
.333333333330+C3>
6191

m i USED: 03:00:36 PAGES: 3
22:33:20 EKD

12404 22:28:59 0 284 3 0 0 0 0 0 46 0

993 20050002 00003011403*
FORM AL-3-118

TS01 16:0

STATUS MAR
2 .
3 .
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

0 ERRORS

. 25,1966:EXPERIMENTAL SYSTEM.
11002 BEGIN FORM E,K,M,N,H ,P ,F,G ,X;
11026 SYMBOL PLUStTlMES;
11033 BOOLEAN PROCEDURE HASX(F); VALUE F; FORM F; HASX*f»X;
11053 PLUS*-/tOPERATORSHCOMM: TRUE); Tl MES*/[0P£RAT0R:*UC0MM: TRUE1;

BEGIN
11132 FORM PROCEDURE S0LVE(LHŜ HS); FORM LHŜ HS;
11137 BEGIN FORM A£ ,C;A*A:OFCHASX);B«e;ANY;C«-C:ANY;
11201 IF LHS == <A|PLUS|B) THEN S0LVE*«0LVECA,RHS-B);
11243 IF LHS == (A|TIMES|B) THEN SOLVÊSOLVECA ftHS/B);
11305 IF LHS == A-B THEN SOLVE «-SOLVECA.RHS+B);
11345 IF LHS == B-A THEN SOLVE S0LVECA£-RHS>;
11405 IF LHS == A/B THEN SOLVE «- SOLVEC A ftHS16);
11445 IF LHS == B/A THEN SOLVE *• S0LVE(A£/RHS)|
11505 IF LHS == A1B THEN SOLVE «-SOLVECÂ HStO/B)>;
11554 IF LHS == B1A THEN SOLVE «- SOLVECA ,L NCR HS)/LNCB));
11622 IF LHS == -A THEN SOLVE - SOLVEC A,-ft HS>;
11656 IF LHS == EXPCA) THEN SOLVE «- SOLVECA ,LNCRHS»;
11712 IF LHS == LN(A) THEN SOLVE «- SOLVECA,EXP(RHS));
11746 IF LHS == SQRT(A) THEN SOLVE «- SOLVECA J? HS12);
12005 IF LHS == ARCTANCA) THEN SOLVE - SOLVECA£INCRHSVCOSCRHS));
12053 IF LHS == SINCA) THEN
12071 SOLVE «- SOLVECA/RCTANCRHS/SQRTC1-RHS12)));
12134 IF LHS == COSCA) THEN
12152 SOLVE «- SOLVECA/RCTANCSQRTC1-RHS12 VRHS»;
12215 IF LHS == X THEN SOLVE «- X = RHSj
12241 END;

12244 FORM PROCEDURE ANSWERCE); FORM E;
12247 BEGIN FORM F,G;
12256 IF E == G:ANY=F:ANY THEN BEGIN IF F»X THEN
12323 ANSWER*€OLVECF,G) ELSE ANSWER *SOLVECG,F) END ELSE
12344 ANSWER*-.NOEQUAT I ON; ENO;
12352 E «- K12 + LNCM + S INCCXt3-K >/CH+4)*Mt5>tN-K >*M =P;
12457 PR INTCE,ANSWERCE)); PRINTCCELLS);
12472 ENO;ENO;

BEGIN EXECUTION 16:20:24; „06418 AVAILABLE CELLS
K12 + LNCM + SINCCXt3 - K)/CH + 4)*Mt5)tN - K)*M=P
X=CARCTCCEXPCCP - K12)/M) + K - M)tC1/N)/SQRTC1 - CEXPCCP
- K12VM) + K - M)tC1/N)t2))/Mt5*CH + 4) + K)tC1/3)
5947

TIME USED: 00:00:32 PAGES: 2 12474 16:20:28 0 0 0 0 0 0 0 0 50 0

OUTPUT
TIKE USED: GOiGOite PAGE52 3

A OPER. SH02 25 OCT 66 (70200236
993 0OC32OS2 00003011003

TS01 GO / 0 32

FORMULA ALGOL

12120 00:01:17 0 0 0 0 0 0 0 0 '15 0
AMD PAGES: 50 TfT'ts 3

TS01

9456 3

FORM AL-3-119

WW

00? 3

STATUS MAR. 25,1966:EXPERIMENTAL SYSTEM.
BEGUN

11002 FORM G9fC,M»Hf)NflP» A, B,C,XjSYT.SOL 0P1,0P2?
1103') INTEGER 85 SV/ITCH t*- t1,L2,L3,U,L5?
1.1G32 S7ITCH Q «- Q1902{)Q3,0')oQ5s>Q60Q7;
11073 GP1>/fOPERATORs*,*,-,/t?l[INDEX: M?
11105 OP2>/COPERATOn8-»EXPpLNfSQRTtARCTAN9S»H,C0SlCIMOEXtll|
11233 G«-:C?2 •MJHCTM̂IMC <Xt3HO/{ttfrWft5)?IWO*K=Pi

Ui#2
C038
000 2
CC3s
OOSs
0072
eoas
CC92
0102
0113
0122
013s
0102
0152
0152
0172
010:
0192
0202
0212
G222
023:
02 02
023s
026 s
0272
020 2
0292
0302
031:
0322

ERRORS

11300
11363
11033
11076
11503
11537
11573
11627
11663
11731
11733
11705
11757
11771
12005
12030
12052

12110

12116
12123

FOR G «- G millE -»(G == X=ANY > DO
DEC IN
IF G == <AsAMY|0P1|B«ANY>=C*ANY THEN GO TO tflj?

IF G == H0P2J A«ANY>=CsANY THEN GO TO QUI ;
PRINT<J!3EQtJATIGN>? GO TO CONTINUE?
UsGHF
t22Ĝ -BF
t32G<HF
UsGHF
LSsGHF

GO TO
Q1sG»-A=-C

A»X
A»»X
A»X
A»X
A»X

THEM A=C/B EtSE D=C/Aj GO 70 CONTINUE
THEN A=C-0 EtSE D-C-A? GO 70 CONTINUE
TtJEM A=C*3 EtSE B=A«C; GO TO CONTINUE
THEN A=C=:3 EtSE B=A/C? GO TO CONTINUE
THEN A=Ct(1/B) EtSE B=tN(C)>LN(A>?

CONTINUE!
: GO TO CONTINUE?

Q22G<-A=LMCC>5 GO TO CONTINUES
Q3sG>A=EXP(C)s GO TO CONTINUE?
Q0sG«-A=C?2$ GO TO CONTINUE?
Q52G>A=SIN(C)yC0SCC); GO TO CONTINUE?
Q6sG<-A=ARCTAN(C/SQRT<1-C?2»? GO TO CONTINUE?
Q72G«~A=ARC7AN(SQRT(1-Cf2>/C>? GO TO CONTINUE?
CONTINUE: ?
ENO?

PRINT(G)5 PRINT(CEttS)?
END?

BEGIN EXECUTION 00:01:15? 005529 AVAItABtE CEttS
X=(ARCT«EXP«P - Kt2)/M) -f K - M>t(1/N)/SQRT(1 - (EXP«P
- K?2)/?.1> + K - M>tCl/N>t2»/Mt5*(H + 0) + K)?<1/3)
6306

TIME USED: 00200202 PAGESs 3
G0305321 END

12120 00:01:17 0 0 0 0 0 0 0 0 ^ 0

o

o

APPENDIX 8

CURRENT SYSTEM BUGS

May 1, 1967

The following is a list of constructions which are currently not

functioning in Formula Algol:

1. Attempting to access a switch with an index which is out of

bounds. Gives a run error instead of returning as defined in

Algol 60.

2. Recursive class names.

3. A selector using itself within itself through a class name (i.e.,

3RD (|V0WEL|) where the code for VOWEL uses the "nTH" selector).

4. "Own 1 1 variables.

5. The l ^ » " predicate will not test for subformulae of subscripts

to an array formula or parameters to a procedure formula; schema

will, however.

6. "SUBS 1 1 in either array, procedure, assignment or conditional

formula.

7. A construction of the form:

E»...0F(B)...

where B is of the form:

BOOLEAN PROCEDURE B: FORM X:

G » . . . 0F(B)....

8. Cannot pass switches as parameters.

9. Real arrays are not stored into properly if the right hand side

is only a variable, not an expression.

e.g. A[I] <-X; does not work (stores logic)

A[l] <-X+0; works

10. Logic Arrays are always accessed arithmetically.

11. A procedure which has the form of a compound statement is

treated as a block in the declaration of labels.

12. Switches may neither be forward referenced nor recursively

referenced.

13. Print routine will not print incomplete chain.

PROCEDURE P(...,L), SYMBOL L; f L f is called by name

P R I N T (. . [. ,L]) ; <- incomplete chain

Inasmuch as this Is now a nonrecoverable error, caution should

be exercised to avoid using this construction.

14. In the EVAL operation, the formulae which are substituted are

not evaluated in themselves, but only in combination with the

rest of the formula. Thus, if , 3 + 4 l is one of the substituted

values, it will not be reduced.

15. The identity of atomic formulae does not follow the outlines of

block structure. They act as though they were all declared

globally.

16. A multiple assignment statement for a description list is not

allowed.

17. In a procedure, A t B does not work unless A and B are either

not local to any procedures or local to the same procedure.

18. SYMBOL and FORM variables which are formal parameters of a

procedure cannot .be dotted.

19. The construction

S <- (if B then C else D) + E

will not work if C is an arithmetic expression, but D is a

number which is to be extracted from a list or formula

structure. Reversing C and D fails also.

The construction

FOR I 1 STEP 1 UNTIL EVAL F DO S;

fails for the same reasons.

REFERENCES

[l] Naur, P. et.al., "Revised Report on Algorithmic Language ALGOL 60,"
Communications of the ACM, Vol. , p. 1-17, (January 1963).

[2] Perlis, A. J. and Iturriaga, R., "An Extension to ALGOL for
Manipulating Formulae," Communications of the ACM, Vol. 7, p. 127,

*\ (February 1964).

[3] Fierst, J. W., Ed., Algol-20, A Language Manual, Carnegie Institute
of Technology, 1965.

[4l Iturriaga, R., Standish, T. A., Krutar, R. A., Earley, J. C , The
Implementation of Formula Algol in FSL, Carnegie Institute of
Technology, 1965.

[5] Yngve, V. H., COMIT Programmers Reference Manual, The M. I.T. Press,
(September 196TT

[6] Iturriaga, R., Standish, T. A., Krutar, R. A., and Earley, J. C ,
"Techniques and Advantages of Using the Formal Compiler Writing
System FSL to Implement a Formula Algol Compiler," Proceedings
Spring Joint Computer Conference 1966, Spartan Books,

[7] Perlis, A, J., Iturriaga, R., and Standish, T. A., A Definition of
Formula Algol, Carnegie Institute of Technology, 1966.

r

