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ABSTRACT 

Formula Algol is an extension of Algol 60 [l] incorporating formula 
manipulation and list processing. 

This manual describes the use of the version of Formula Algol which 
is presently running at Carnegie-Mellon University. 
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CHAPTER I 

INTRODUCTION 

GENERAL DESCRIPTION OF FORMULA ALGOL 

Formula Algol is an extension of Algol 60 [l] incorporating formula mani

pulation and list processing. The extension is accomplished by adding two new 

types of data structures: formulae and list structures, with an appropriate 

set of processes to manipulate them. The control structure of Algol 60 is 

inherited and also extended. 

Algorithms may construct formulae and list structures at run time. Opera

tions are available which alter or combine formulae and list structures, and 

which access arbitrary subexpressions. Formulae may be evaluated, substitut

ing numerical or logical values for occurrences of variables contained within. 

They may be subjected to substitution processes causing the replacement of 

occurrences of variables by designated formulae. They may be subjected to 

transformations defined by Bets of rules akin to Markov algorithms. Predicates 

are available to determine precisely the structure and composition of any for

mula or list structure, and mechanisms are provided to extract subexpressions 

of a formula, or sublists of a list, provided its structure is known. 

Numerical, logical, and formula values may be stored as elements in list 

structures, and retrieval meichanisms exist to select them for use as con

stituents in other processes . Description lists composed of attributes with 

associated value-lists may be attached to list structures, and processes exist 

for retrieving value* lists aiad for creating, altering, and deleting attribute-



value list pairs. Push down stacks of arbitrary depth are available for the 

storage of all types of data structures and generators are provided in the 

form of new types of FOR statements which assign to control variables the 

elements of a single list structure, or alternatively, of several list struc

tures in parallel, for use in an arbitrary process. Finally, both arrays 

and procedures may be defined having formulae or list structures as values. 

HISTORY AND IMPLEMENTATION 

The Formula Algol language has been designed by Dr. Alan J. Perlis, 

Renato Iturriaga, and Thomas A. Standish. It was initiated at Carnegie-Mellon 

in January, 1963, and has undergone continual evolution and expansion since 

that date. In August, 1963 an interpretive version was running and was re

ported at the Working Conference on Mechanical Language Structures in Princeton, 

New Jersey. [ 2 ] . 

The version reported in this manual has been implemented as a compiler 

on the CDC G - 2 1 computer at Carnegie-Mellon University by Renato 

Iturriaga, Thomas A. Standish, Rudolph A. Krutar and Jay Earley. A discussion 

of the compiling techniques used was presented at AFIPS 1966 [6] . For those 

interested in the details of the compiler, a more complete document exists [ 4 ] . 

ACKNOWLEDGMENTS 

A large part of Chapters III and IV is based on "A Definition of 

Formula Algol" [ 7 ] , and much of Chapter II is based on the Algol -20 manual [ 3 ] . 

Special thanks goes to Gail Jaffre, Dr. David C. Cooper, and the implementers 

of the language for their help in preparing the manual. 



INTRODUCTION TO THE MANUAL 

This manual describes the use of the version of Formula Algol which is 

presently running at Carnegie-Mel Ion University. It is called by writing 

'FORML 1 in the language field of a job card. 

It is assumed in this manual that the reader is familiar with Algol 60. 

Since Algol 60 is not described, the Revised Report is included in the appen

dix. Below is an introduction to Formula Algol programming, which is intended 

for those who are familiar with programming, but not with this language. 

Chapters II, III, and IV describe the mechanisms available in Formula Algol 

and how they are to be used. All the mechanisms described in this part of 

the manual may not be working perfectly at a given time. They are, however, 

a short range goal at which the Formula Algol maintenance group will aim. 

A list of current system bugs and problems, which should be updated frequently, 

is included in the appendix. Operations which are illegal and therefore 

produce errors are not mentioned specifically in the manual except in the 

list of errors. It should be assumed that any operation or instance of an 

operation which is not mentioned as being legal in the manual will produce 

an error. 

INTRODUCTION OF FORMULA ALGOL PROGRAMMING 

This chapter is designed to introduce a programmer who is familiar with 

Algol to the mechanisms available in Formula Algol, and to give an idea how 

they may be used to do formula manipulation and list processing. No attempt 

has been made to be complete or rigorous. The individual mechanisms available 

are discussed more fully in Chapters III and IV. 



Formula Manipulation 

Suppose that we would like to write a procedure which takes as input 

a formula and differentiates it with respect to X, We first need some way of 

representing such a formula in our programming language.. Algol is inconvenient 

for this because when an arithmetic expression is written in Algol, it is al

ways to be evaluated, never to be kept around and examined. This forces the 

use of indirect representations. 

For this purpose we have FORM variables. When a variable declared of type 

FORM is used in an expression, it indicates that a formula is to be constructed 

representing the expression. These formulae may be thought of as trees. Thus, 

3*XTZ + 4/X would cause the contruction of the following tree: 

The normal ALgd precedence of operators determines the form of the tree. If we 

assign the above expression to a FORM variable F. we can then access it later 

by referring to F. 

We now have a way of inputting the expression to be differentiated. 

Next we need to be able to examine its structure. 

For this, the language provides formula patterns. Thus we can write 

The "==" is to be read "is an instance of." It tests whether a formula stored 

in F consists of any two subformulae connected by a multiplication sign. A 

formula pattern is a Boolean expression and can be used in an 

IF ... THEN statement. 

Now that we can test for the form of a formula we want to be able to alter 

X Z 

F == ANY*ANY 



its form according to what we have found. To do this, we insert extractors into 

the pattern. An extractor is a formula variable followed by a colon. The pat

tern then looks like 

F==LEFT: ANY*RIGHT: ANY 

If the pattern matches, then the subformula which matched the left operand gets 

stored into LEFT and the subformula which matched the right operand gets stored 

into RIGHT. Thus if we executed this pattern on 3 * X, after it matched, LEFT 

would contain 3 and RIGHT would contain X. 

We can now write one rule of our differentiation program 

IF F==LEFT: ANY * RIGHT: ANY THEN 

DERV <- LEFT * DERV (RIGHT) + RIGHT * DERV(LEFT) ; 

Assuming the DERV is the procedure we are writing to take the derivative, we are 

using it recursively here to find derivatives of expressions containing "*". 

ANY is not the only word we can use in a pattern. We may use any 

declared type words to test for a subformula of certain type. An arithmetic 

or formula expression may also be used; these cause exact equality tests. Thus 

we may implement the "standard 1 1 derivative formula by 

IF F== XtN: REAL THEN 

DERV 4- N * Xt (N-1) 

However, suppose we want this transformation to apply only if N > 1. 

We can implement this by declaring a Boolean procedure to make this test. 

BOOLEAN PROCEDURE GR1 (I); VALUE I; FORM I; 

GR1 <-IF I •=== REAL THEN I > 1 ELSE FALSE; 

Then we use the following pattern: 

F==XtN: OF (GR1) 

and it will make the appropriate test for us. 

Suppose in the derivative routine we would like to test whether the formula 



is a single unit (number, variable) or a binary combination (A + B) . We may 

use the word ATOM, which yields true for number, FORM variables, etc. 

IF F==ATOM THEN DERV<- IF F==X THEN 1 ELSE 0. 

We may search the formula to see if any of its subexpressions match a 

pattern instead of testing only the main expression. This is done by using 

f l » l f in place of "==". The f^>>" patterns are otherwise exactly the same. 

Now, suppose that we have finished calculating the derivative of F and 

have stored it back into F. We may now want to substitute a number for X and 

evaluate the resulting expression. This is done by the EVAL operator: 

EVAL (X) F ( 3 ) 

This substitutes 3 for all occurrences of X in F and calculates the result. If 

this substitution removes all formulae from F, then a number will result. How

ever, if some are left, it will remain a formula, though it will probably be 

somewhat simplified. If we had wanted only to substitute 3 for X and not eval

uate, we would have used "SUBS" in place of "EVAL". For a third possibility, 

we may want to replace X in the formula by whatever is the current value of X 

as a form variable. (Remember that the name X now appears in the formula, not 

its value.) This is done by REPLACE(F) 

which replaces all form variables in F by their current values, and then evalu

ates the resulting expression. Let's now suppose that instead of differentiating 

a formula we would like to make some simplifications in it. One thing we might 

like to do is apply the distributive law: 

IF F==A: ANY * (B: ANY + C: ANY) THEN 

F « - A * B + A * C ; 

This works well, but this law is commutative, so we need a second rule for the 

case when A is to the right of B and C. We also need another law for subtraction. 

This expands our distributive law to four statements. We would like to contract 

them into one. 



This is done by using operator classes. We will use one symbol to stand 

for plus or minus. For this we use a variable of type symbol, so that we can 

attach a description list to it (pg. 53). Let's call the symbol ADDOP. Then 

we execute 

ADDOP «- / [OPERATOR: +, -] 

We can now write the pattern as 

F == A: ANY * (B: ANY |ADDOP| C: ANY) 

and it will apply for both + and We can also use this mechanism to change F. 

If the above pattern matches, the operator which matched ADDOP will be stored as 

its value. Then we can write F <- A * B |<ADDOP>| A * C 

to change F to the correct form. 

Now we want to take care of the commutative instances of the distributive 

law. For this we declare an operator class for f t* f , and label it commutative: 

TIMES <- /[ OPERATOR: *] [COMM: TRUE] 

Now, by using (TIMES) in place of "*", the test will also match an instance of 

(B: ANY |ADDOP) C: ANY) * A: ANY. 

One final construction may be used to abbreviate some sequences of actions 

which might otherwise be quite long. Suppose we would like to write a routine 

to clear fractions. One transformation in it would be: 

if F==A: ANY - B: ANY / C: ANY THEN 

F<- (A * C - B) / C; 

We would need to write a sequence of these IF ... THEN statements plus proper 

circling back to the beginning to make sure that we have gotten all of the 

formula. This can be shortened by the use of productions. The production which 

corresponds to the above rule is: 

A: any -B: any / C: any ->(.A * .C - ,B) / .C 

The exact reason for the dots can be found by reading chapter 3 on formula 

manipulations. When this production is applied to a formula, it will have the 

same effect as the above IF ... THEN statement. However, we would like to apply 



a sequence of such productions in order to clear fractions, so we store a list 

of these productions by a list assignment statement (pg. 52). If the left 

formulae are L^ and the right are R^, this will look like: 

CLEAR <- [ L-^ R., L 0->R 0, L -> R ] ; 
1 1 L z n n 

This now gives CLEAR the semantics represented by these productions. Then if 

we apply this schema to a formula in F by the expression 

F I CLEAR, 

F will be treated in the following way: 

L^ will be tested against F and then each of its subformulae, then will be, 

and so on. When a match is found, the corresponding transformation R^ is applied 

and control returns to L^ again. 

The complete schema for clearing fractions is on page 46. 

List Processing 

Suppose we :7ant to write a program to play Solitaire. We can do this in 

the list processing part of Formula ALGOL, First we need to represent the cards 

of the deck. Let's make each card a variable of type SYMBOL, so the ace of 

spades is SPADEA and the 3 of clubs is CLUB3. We can represent the deck as 

a list which is the contents of the symbol DECK. So to initiate the deck we 

execute the assignment statement 

DECK <- [ SPADEA, SPADE2, SPADE3, .. .] ; 

where we string out all 52 cards. 

Now we need to be able to deal out the cards into the seven solitaire 

piles. Let's make these a symbol array called PILE: 

SYMBOL ARRAY PILE [l: 7] . 

In order to deal we need to be able to select cards from one list (DECK) and in

sert them into another. To select an element from a list we use a selector which 

refers to the position of the element in the list by number. Since we want the 



top element of the deck we use the expression 

FIRST OF DECK 

Since we will be putting cards on the top of the piles we use the statement 

INSERT FIRST OF DECK BEFORE FIRST OF PILE[I]; 

We need to show that the card has been removed from the deck. This is done by 

DELETE FIRST OF DECK. 

Now this should do the dealing: 

FOR J<-1 STEP 1 UNTIL 7 DO 

FOR I<-J STEP 1 UNTIL 7 DO 

BEGIN 

INSERT FIRST OF DECK BEFORE FIRST OF PILE[I]: 

DELETE FIRST OF DECK; 

END; 

We would like to be able to compare the suits and numbers of various cards 

to tell whether they can be placed on each other. For this our symbol names are 

inadequate. We need to be able to associate properties of the cards with them. 

This is done by using description lists. We should assign a description list to 

each card with a statement such as: 

SPADE4<-/[SUIT: SPADES] [DENOM: 4 ] ; 

In this statement, SUIT and DENOM are attributes, and SPADES and 4 are their 

respective values. However, we have to test mainly the color of the cards for 

solitaire, so let's add that attribute to our description list, too: 

THE COLOR OF SPADE4 IS BLACK; 

Note that COLOR, BLACK, SUIT, etc., are all symbol variables. 

We may retrieve the value of an attribute by a statement such as: 

THE SUIT OF SPADE4 

or SUIT(SPADE4) 



Using this we could write a routine to add the color attribute to all the 

cards. For each card we would write 

IF SUIT(CARD) = SPADES V SUIT(CARD) = CLUBS 

THEN THE COLOR OF CARD IS BLACK 

ELSE THE COLOR OF CARD IS RED; 

To iterate through the deck we use a new type of for-statement which iterates 

on the elements of a list. Using this plus a standard Algol abbreviation for the 

IF ... THEN statement we have 

FOR CARD <- ELEMENTS OF DECK DO 

THE COLOR OF CARD IS 

IF SUIT (CARD) = SPADES V SUIT (CARD) = CLUBS 

THEN BLACK ELSE RED; 

There is an alternative to this course of action. Instead of storing the 

attribute color with each card, we can test each card to see if it is a spade or 

club each time in the program that we need to know its color. However, we don't 

want to have to write: 

IF SUIT (CARD) = SPADES V SUIT (CARD) = CLUBS THEN 

every time we want to test a card. 

Therefore we use a class test: 

LET (|BLACK|) = [X | SUIT (X) = SPADES V «SUIT (X) = CLUBS]; 

This establishes a test for the class of black cards. We can now write 

IF CARD == (|BLACK|) THEN 

and the test will be performed for us. 

We can now write a routine to test whether one card can be placed on another 

or not. 

Let's use color as an attribute and store JACK, QUEEN, and KING as 11, 12, 13. 

Since we can store numbers directly as values, or in fact as elements of a list, 

we can do just an arithmetic check on the value of DENOM in our routine. The 



following routine tests whether CI can be placed on C2. 

BOOLEAN PROCEDURE PLACEON(Cl, C2); VALUE CI, C2; SYMBOL CI, C2; 

PLACEON <-COLOR(Cl) ± COLOR(C2) 

A DENOM(Cl) + 1 = DENOM(C2) ; 

Now let's switch from Solitaire to natural language processing. 

Assume we have the words of a paragraph stored in a list called PARA. We 

want to search it for the words "THERE ARE 1 1 followed by a number and then a 

plural noun, i.e., "THERE ARE 20 BUILDINGS." We then want to put the number 

as the value of NUMBER on the description list of the noun. We have a list 

of the plural nouns stored in NOUN. 

To do this we need some new constructions: 

(1) COUNT(L) produces an integer value corresponding to the number 

of elements in list L. 

(2) AMONG(X, L) is TRUE if X is an element of list L. 

(3) As with formula patterns, we may test to see if an element is of 

a particular type using "==". 

The routine is 

FOR I<- 1 STEP 1 UNTIL COUNT (PARA) -3 DO 

IF I TH OF PARA = THERE A 

(I + 1) TH OF PARA = ARE A 

(I 4- 2) TH OF PARA == INTEGER A 

AMONG ((I 4- 3) TH OF PARA, NOUN) THEN  

THE NUMBER OF (I + 3) TH OF PARA IS (1 + 2) TH OF PARA; 

This is a lot of writing, so we would like to be able to use some of 

the mechanisms of COMIT [ 5 ] to make this test. Let's first construct a class 

name for nouns. 

LET (|N0UN|) = [X| AMONG (X, NOUN)] 



We can now use a list pattern to make the test 

IF PARA == [$, THERE, ARE, INTEGER, ((NOUN)), $] THEN 

$ stands for an arbitrary number of elements. This pattern is tested 

against the list PARA for any match. After the match, however, we want to 

be able to perform the description list store. For this we need to be able 

to extract elements of PARA according to the part of the patterns they 

match. This is done by writing a symbol variable and a colon in front of 

an element of the pattern. Then if the pattern matches, the element that 

matched the pattern element is stored into the extractor variable. 

The routine now becomes: 

IF PARA == [$, THERE, ARE, N: INTEGER, OBJECTS: (JNOUN|), $] 

THEN THE NUMBER OF OBJECTS IS N: 



CHAPTER II 

NUMERIC PROCESSING 

Although Formula Algol is an extension to Algol 60, there are certain 

restrictions on this reference language which have been made due to character 

set limitations and implementation. There are also some added features of 

Formula Algol over Algol 60 aside from the formula and list processing features, 

These are explained in this chapter. 

SYMBOLS 

Formula Algol accepts all of the special symbols of ALGOL-60 except for 

those shown in the following table: 

ALGOL-60 

3 ("implies") 

= ("is equivalent") 

X (multiplication) 

(string quotes) 

Use "-> " 

Use "=" 

Use "*" 

Not available, but entier may be 
used with "/" with the same effect. 

Use "A>" 

Use % < " 

Not available 



DECIMAL CONSTANTS 

A number, N, in a Formula Algol program must be zero (which may be punched 

with or without a decimal point) or else its absolute value N must satisfy: 

1 .275 1 0-57 £ N £ 3.450 1 o+69 

Because of the nature of the G-21 computer, the distinction between real 

and integer numbers is unimportant. The programmer may write an integer-valued 
* 

constant with or without a decimal point (e.g., "34", " 3 4 . o r M34.0 f l) without 

changing the type of arithmetic performed on the constant. 

Numbers are represented in the G-21 in "floating point 1 1 form with a maximum 

of 42 binary digits of mantissa, corresponding to approximately 12 decimal digits 

of precision. If more than 12 digits are written, the extra (least significant) 

digits will be ignored. (The number is rounded at the 14th octal digit.) 

The last character of a real number may be a decimal point; thus, the 

number "6." is legal. Note: In Formula Algol is sometimes used as an 

operator. In these cases it should not be placed adjacent to a numerical con

stant so that these uses are not confused with its use as a decimal point. 

OCTAL CONSTANTS 

An octal (base 8) constant may be used in any context in Formula Algol 

where a decimal number is allowed; i.e., as a primary in any arithmetic or logic 

expression. Octal constants have the following syntax: 



syntax: 

<octal digit> : : = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 

<octalian> ::=<octal digit> | <octalianXoctal digit> 

<signed octalian> ::= <octalian> | -Koctaltan> | -<octalian> 

<left-justified octal constant> :: = 8L<octalian> 

<right-justified octal constants ::= 8R<octalian> 

<floctalian> : := <octalian> | <octalian>.<octalian> | <octalian>. | .<octalian> 

<power of 8> ::= i0<signed octalian> 

<floating octal constants ::= 8F<floctalian> | 8F<power of 8> 

8F<floctalianXpower of 8> 

<logical octal constant> ::= <left-justified octal constants | 

<right-justified octal constants 

<octal constants ::= <floating octal constants | <logic octal constants 

Despite this syntax, the translator does not treat the digits 8 and 9 in octal 

constants as erroneous but will intepret them as 10)g and 11)g> respectively. 

Thus 8R495 will be interpreted as 8R515. 

Local octal constants (8L and 8R) are considered to be of type LOGIC and 

so are always accessed in logic mode. Floating octal constants (8F) are con

sidered to be of arithmetic type, and are always accessed in arithmetic mode. 

The character-pairs 8L, 8R and 8F are treated by the translator as single 

entities and must be punched in adjacent columns of the same card, without in

tervening blanks. 

The value of a floating octal constant is determined by concatenating the 

octalian as an octal number and multiplying it by the appropriate power of 8, 

treating the number which follows the 1 0 as an octal integer. For example: 

8F l o10 = 8t8 

8Fll 1 0-5 s 9*8t-5 



The value of a left (right) justified octal constant is determined by 

prefixing (suffixing) to the octalian enough zeros to give eleven octal digits. 

This number is then concatenated and stored as a 32-bit logic word. Since eleven 

octal digits require thirty-three bits for representation, the leftmost bit of 

the leftmost octal digit is lost. Thus, 8L4=0 and 8L7=8L3. 

IDENTIFIERS 

Only upper case (capital) letters are available in Formula Algol. Neither 

spaces nor any operator may appear within an identifier (including , l . n ) . All 

identifiers must be separated from adjacent identifiers by at least one space to 

prevent the two from being interpreted as a single identifier. 

Certain identifiers have special meanings in Formula Algol and are therefore 

reserved. The programmer may not use these identifiers for any purpose other 

than that of their reserved meanings. The reserved words in Formula Algol are 



T 

ABS CONT EXP LAST SIGN 

AFTER COPY FALSE LET SIN 

ALL COS FIRST LIM SQRT 

ALSO COUNT FOR LN ST 

ALTER CREATE FORM LOGIC STEP 

AMONG DELETE GC ND STRING 

AND DERV GO NIL SUBLIST 

ANY DL GOTO NOT SUBS 

ARCTAN DO HALF OF SWITCH 

ARRAY ELEMENTS HAS OPERATOR SYMBOL 

ATOM ELSE IF OWN TEXT 

ATTRIBUTES EMPTY IN PARALLEL TH 

BEFORE END INDEX PRINT THE 

BEGIN ENTIER INF I PROCEDURE THEN 

BETWEEN ERADL INSERT RD TO 

BOOLEAN EVAL INTEGER REAL TRUE 

CELLS EX3 IS RECU UNTIL 

COMM EX4 JUMP REDUCE VALUE 

COMMENT EX5 LABEL REPLACE WHILE 

VARIABLES 

Formula Algol allows both simple and subscripted variables of type HALF, 

LOGIC, FORM and SYMBOL as well as REAL, INTEGER, and BOOLEAN. 

REAL variables are stored in the G-21 with a precision of 42 binary digits, 

requiring two successive memory cells per variable. HALF variables are stored 

^ with a precision of only 21 binary digits (about 6 significant decimal digits) 

and occupy only a single location, but otherwise act as REAL variables. There-



fore, the programmer may use HALF variables to gain memory space at the expense 

of precision. 

The value of a REAL or HALF variable must either be zero or lie within the 

range given below: 

REAL: l.27510-57 £ abs(R) ^ 3.450 1 o+69 

HALF: 1 .275 1 0-57 £ abs(H) £ 1 .64510+63 

INTEGER variables will always take on integer values in the range 

-2097152 < I < 2097152 ( = 2 2 1 ) . 

LOGIC variables are always positive. If used as strings, they are four or less 

characters in length, ,and if used as numeric quantitites they are restricted to 

0 £ L < 42949 67296 ( = 2 3 2 ) . 

The values of BOOLEAN variables must be either TRUE or FALSE. 

The G-21 replaces by zero any non-zero arithmetic result which is smaller 

than 1 .275 1 0-57 in magnitude; this situation is called an underflow. An inter

mediate arithmetic result which is greater than 3.450 1 o+69, the largest number 

representable in the G-21, is called an overflow, and causes an error to be 

recorded. Executing an assignment to a half variable of intermediate results 

which exceed the bound of the variable causes an overflow. On the other hand, 

assignments to integer variables are truncated modulo their upper bound, and 

assignments to logic variables are truncated modulo their upper bound and made 

positive. In these two cases, no error occurs. 

LOGIC EXPRESSIONS 

In addition to arithmetic, Boolean, and designational expressions, Formula 

Algol syntax includes "logic expressions 1 1 which perform bit-by-bit logic opera

tions on 32-bit G-21 logic words. A logic expression may include any of the 

following operands: 



1. Logic constant: octal constant or string constant 

2. Variable, simple or subscripted, of type LOGIC 

3. Function designator of type LOGIC 

4. Boolean primary (and, therefore, any Boolean expression in parentheses) 

5. Arithmetic primary (and, therefore, any arithmetic expression in paren

theses) 

A Boolean primary used as a logic operand is interpreted as one of the two 

32-bit logic words: 

8R 37777777777 m 32 one bits for TRUE, or 

8R' 0 = 3 2 zero bits for FALSE. 

Each kind of logical operand (except number 5 above, arithmetic primary) 

will always be fetched from memory with a "logic access", rather than a "numer

ic access"; for example, a CAL command will be used to fetch a logic variable 

into the accumulator. When a logic variable or function designator forms the 

left-part of an assignment statement, then an STL command will perform the as

signment. Therefore, an assignment statement of the form 

<logic variable> <-<arithmetic expression> 
32 

will truncate the absolute value of the expression modulo 2 • An STL command 

is also used for any temporary store of a logical subexpression (except an 

arithmetic primary) within a complete logical expression. 

Any of the following three logical operators may appear in a logic ex

pression: 

—i (complement logic: unary) 

A (extract logic: binary) 

V (unite logic: binary) 

Each of these voperators performs the same operation simultaneously and 

independently in each of the 32-bit positions of its operand(s). If a bit = 1 

represents the Boolean value true and a bit = 0 represents false, then the logic 



operators —i, A , and V can be considered to perform the Boolean operations 

—i, A , and V respectively, in each bit position. 

The operators + , - , * , and / may also appear in a logic expression. Each 

of these operates in the usual way, considering its logical operands (except 

for arithmetic primaries) as 32-bit integers. 

syntax: 

<logic constant> ::= <string constant> | <logic octal constant> 

<logic primary> ::= <logic constant> | <logic variable> | <logic function> 

<Boolean primary> | (<logic expression>) | 

<arithmetic primary> 

<logic factor> : := <logic primary> | -i <logic primary> 

<logic term> : := <logic factor> | <logic term> A <logic factor> 

<simple logic expression> ::=<logic term> | <simple logic expression> V 

<logic term> 

<logic expression> ::= <simple logic expression> | <if clause> 

<simple logic expression> ELSE <logic expression> 

THE PRECEDENCE OF OPERATORS AND RELATIONS IN FORMULA ALGOL 

t (done first) 

- + (unary operators) 

/ * 
- + (binary operators) 

—i 

A 

V 

(done last) 

In cases of equal precedence, association to the left is used. 



STANDARD FUNCTIONS 

Formula Algol contains 

These are 

ABS  

SIGN  

SQRT 

ASSIGNMENT STATEMENTS 

In Formula Algol, 'V1' must be used instead of It has the same mean-

ing except when storing a non-integer into an integer variable. In this case, 

the non-integer is truncated, not rounded. 

In multiple assignment statements, the "left-part 1 1 variables need not all be 

of the same type. In fact, an assignment statement in Formula Algol may be treat

ed as an expression whose value is the value which is assigned in the assignment 

statement. Thus 

I « - 3 * K + (J«- 7-K) / 2; 

is a legal statement. To insure that "<-*' is given the proper precedence, the 

assignment statement should be enclosed in parentheses. 

CONDITIONAL STATEMENTS 

In Formula Algol, unlike Algol 60, the construction 

IF ... THEN 

FOR ... DO <unconditioned statement> 

ELSE <statement> 

is legal and will be recognized correctly. 

all the recommended standard functions of Algol 60. 

SIN LN 

COS EXP 

ARCTAN ENTIER 



LABELS AND GO TO STATEMENTS 

Only identifiers may be used as labels in Formula Algol;integer labels 

are not permitted. 

In Formula Algol, 

GO TO Label 

GOTO Label 

are equivalent and permissible. 

FOR STATEMENTS 

The value of the controlled variable is not undefined upon normal exit 

from a Formula Algol FOR statement. It is, in general, just what would be ob

tained if the equivalent basic programs (section 4.6.4 of the Algol 60 report) 

were substituted for the FOR statement. Thus, upon exit from an UNTIL or WHILE 

form of FOR list element, the FOR variable has the first value for which the 

final test failed. 

Another form of FOR list element is permitted in Formula Algol, 

FOR V f-E 1 STEP E 2 WHILE B DO S; 

where E^ and are arithmetic expressions, B is a Boolean expression, and S is 

any statement. This is equivalent to the simple program: 

V «-E 1 ; 

LOOP: IF B THEN  

BEGIN 

S ; 

V <-V + E 2 ; GO TO LOOP 

END ; 



ARRAYS 

Formula Algol arrays may be of type INTEGER, REAL, BOOLEAN, HALF, LOGIC, 

FORM, or SYMBOL, 

A non-integer value of a subscript expression in Formula Algol is not  

rounded, only truncated. This may lead to hard-to-detect errors. For example, 

suppose that the result computed for a subscript expression is 3.9999... instead 

of 4, because of round-off error, this value will be truncated to 3, referring 

to the wrong element of the array. 

Run-time tests are made with each array access so that an access which is 

out-of-bounds will produce an error. OWN arrays may not be used in Formula Algol. 

PROCEDURES AND BLOCK STRUCTURE 

All formal parameters in a Formula Algol procedure declaration must be 

specified. The following is a list of current restrictions on the use of 

procedures and blocks. 

1. Switches and strings may not be passed as parameters. 

2. Arrays may not be called by value. 



D 



CHAPTER III 

FORMULA MANIPULATION 

FORM VARIABLES 

Variables may be declared of type FORM indicating that their values are 

to be formulae. With each FORM variable there is associated a data item called 

an atomic formula, which may form part of a formula expression. When a FORM 

variable F is declared, its value is initialized to be the atomic formula of 

F. Also, a description list is associated with F, into which attributes and 

values may be entered and retrieved in exactly the same way as with SYMBOL 

variables (pg. 53) except that a description list may be associated only 

with a FORM variable, not with a sub formula. 

FORM ARRAYS 

Arrays may be declared of type FORM in which case their elements may be 

formulae. These are accessed in the same way as other arrays. Unlike simple 

FORM variables, array elements are not initialized, and therefore should not 

be accessed before they have been stored into. 



FORMULA EXPRESSIONS 

Syntax: 

<formula expression> ::= <arithmetic expression> | 

<Boolean expression> | <an arithmetic expression (Boolean expression) 

in which some of the primaries (Boolean primaries) have been 

replaced by formula primaries and in which some operators have 

been prefixed with a dot> t | <assignment formula> | 

<formula expression> ff| " [<identifier>] 

"I" <formula expression> 

<formula primary> ::= <array formula> | <procedure formula>| 

transformed formula> | <evaluated formula> | ,<identifier> | 

<conditional formula> | ( <formula expression> ) 

<array formula> ::= <array identifier> . [ <subscript list> ] 

<procedure formula> ::= <procedure identifier> . <actual parameter part> 

Conditional formula ::- . IF <formula expression> THEN 

<formula expression> ELSE <formula expression> 

<assignment formula> ::= <variable> . <- <formula expression> 

Semantics: 

A formula is a piece of Algol text which is to be stored for testing, 

manipulation, and possibly execution later on. An Algol expression is to be 

treated as a formula when either of its operands is a form variable or is 

already a formula. A dot preceding a variable is used to indicate the atomic 

formula of that variable. 

The process by which the value of a formula expression is obtained will be 

explained by means of a recursively defined function called VAL. This function 

t This is a short description of what could be a formal syntactic statement. 



does not appear explicitly in the syntax of the source language; rather, it is 

executed implicitly at run time whenever the value of an expression is needed. 

In subsequent definitions quoted strings represent formulae. Such formulae are 

represented within the machine as trees, with operators at their nodes, atomic 

formulae at their leaves, and each branch representing a subformula. Thus 

1 a + 3 * Y ' i s represented 

The normal precedence of Algol operators is used to determine how the tree will 

that of "-J1 (pg. 47) . 

These formulae may be assigned to FORM variables, which may then be evalu

ated or used in other formula expressions. In fact, any type of Formula Algol 

expression may be assigned to a FORM variable except one of type SYMBOL. 

Formula Algol is a strict extension of Algol 60 with regard to values and 

types. Exactly as in Algol 60 each value has an associated type. In the ex

planation of the function VAL below, the association of a type with a value is 

given explicitly by an ordered pair of the form (TYPE, VALUE). 

FORMAL DEFINITION OF VAL (E): 

1. E is a constant which is either a <number> or a <logical value>. 

TYPE (E) = INTEGER if VALUE(E) is an integer, REAL if VALUE(E) is a 

floating point number, and BOOLEAN if E is a <logical value>. 

VALUE (E) = the conventional value of a number or a logical value (identi

cal to that given by the Algol Report). 

be constructed. In addition, the " |[ ] | f l construction has precedence just above 



2. E is .a9 where a is an <identifier> declared of type FORM, 

TYPE (E) = FORM 

VALUE (E) • the atomic formula of a* 

3. E is a variable - simple or subscripted. 

TYPE (E) = the type of the most recently assigned value of E, taken as 

a constant. 

VALUE (E) = the most recently assigned value of E. 

4. E is a function designator, say P(X^,...,X^) 

TYPE (E) = the declared type of P. 

VALUE (E) • the value produced by executing the procedure P as defined 

in the Algol report. 

5. E is a binary expression A oj B where A and B are expressions and 

! » : : - + | - | * l / | t | < h < | > h > | - | ^ | V | A | - » 

TYPE (E) is defined by the following table 

TYPE (B) 

TYPE ( A 5 \ . REAL INTEGER BOOLEAN FORM 

REAL Tl Tl error T4 

INTEGER Tl T2 error T4 

BOOLEAN error error T3 T5 

FORM T4 T4 T5 FORM 

where: 



if 0) is a numeric operator 

if u) is a numeric operator 

otherwise 

if to is a numeric operator other than / 

if a) is / 

if a) is a relational operator 
otherwise 

if u) is a logical connective 
otherwise 

if a) is either a numeric or relational operator 
otherwise 

if a) is a logical connective 

otherwise 

if TYPE (E) = REAL, INTEGER or BOOLEAN then 

VALUE (E) = the number or logical value obtained by carrying out 

the operation u) with arguments VALUE (A) and VALUE (B) . 

If TYPE (E) = FORM then VALUE (E) = \y U) 3 1 where a is VALUE (A) and & 

is VALUE (B), 

E is A| [T]|B where T is an operator class name. 

TYPE E = FORM 

VALUE (E) = fo/ a) 3 1 where ^ = the operator most recently assigned to 

T by a pattern or assignment statement (pg. 37), and a = VALUE (A) 

and g = VALUE (B) . 

E is a unary expression ^ A where A is an expression and od t r =—i 

or E is of the form cd (A) where (d:: = 

SIN|COS1 EXP|LN|SQRT|ARCTAN!SIGNIENTIERJ ABS 

TYPE (E) is defined by the following table: 

REAL 
Tl = BOOLEAN 

error 

INTEGER 

T2 = REAL 
BOOLEAN 
error 

T3 = 

T4 = 

T5 

BOOLEAN 
error 

FORM 
error 

FORM 
error 



O) 

TYPE (A> 
SIN,COS,EXP 
LN^SQRT 

SIGN 
ENTIER 

ABS 
± 

REAL REAL INTEGER REAL error 

INTEGER REAL INTEGER INTEGER error 

BOOLEAN error error error BOOLEAN 

FORM FORM FORM FORM FORM 

If TYPE (E) = REAL, INTEGER or BOOLEAN then VALUE (E) = the number or 

logical value obtained by carrying out the operation u) with argument VALUE (A) 

If TYPE (E) = FORM then VALUE (E) = the expression 'co a 1 where a = VALUE (A). 

Examples 

Suppose that at a certain point in some program R and G have been declared 

of type FORM, X and Y have been declared of type REAL, X has been assigned the 

value 3.2, Y has been assigned the value 2, F has been assigned the value f G / 5 f , 

and G has as its value the atomic formula of G. Consider the following sequence 

of assignment statements: 

(a) X «- (X + Y) t 2; . 

(b) F f - 3 * SIN(G) + (F + X) f Y; 

(c) F <r- SQRT(F) ; 

In statement (a) all variables are numeric. Thus the arithmetic expression 

(X + Y) t 2 is evaluated numerically using the current values of X and Y and 

the result (27.04) is stored as the value of X. In statement (b) the value of 

F becomes the formula expression !3 * ^IN(G) + (G/5 4- 27.04) t 2 f . Finally, 

statement (c) replaces the value of F by the formula 

1SQRT (3 * SIN(G) + (G/5 +27.04) t 2 ) 1 . 

All arithmetic operators are treated as binary operators (even those which 

are associative and commutative) with association to the left. This is 



illustrated by the following examples: 

(d) F + (X + Y) produces fG/5 + 5.2 1 

but (e) F + X + Y is equivalent to fG/5 + 3 . 2 + 2 ' 

8. E is a conditional formula 

.IF B THEN A ELSE C, where A, B, and C are expressions and B is of type 

FORM or BOOLEAN. 

TYPE (E) = FORM 

VALUE (E) = 1 IF 3 THEN a ELSE y1 

where B = VALUE (B) , a = VALUE (A) and y • VALUE (C) 

9. E is a procedure formula 

E = tf.(X^, X 2 , ..., X^) where a is the name of a declared procedure, and 

X-, X 0 , X are expressions. 
1 I n 

TYPE (E) = FORM 

VALUE (E) = 'cKNj, N 2 , ... N n ) 1 where N £ = VALUE ( X ^ . 

Note: The formal parameters of any procedure which is used as a pro

cedure formula must all be of TYPE FORM, 

10. E is an array formula 

A.fX-, X 0, X ] where A is the name of a declared array, and X,, X 0 , 
u 1 Z n-* l z 

...,.X are formula expressions. 

TYPE (E) = FORM 

VALUE (E) = 'Aft^, N 2 , NJ % where N £ - VALUE (X^ 

An important application of array formulae is the generation of names 

dynamically at run-time. Upon entrance to a block containing the declaration 

FORM ARRAY A[l:N], N array elements are created whose names may be used in 

the construction of formulae even without any values having been stored into 

them. Thus the name of the fifth of these is flA. [5] 1 1. Later, values may be 

assigned to these elements and the formulae may then be evaluated, if desired. 



1. E is an assignment formula 

a B where a is a variable and B is an expression 

TYPE (E) = FORM 

VALUE (E) = •QT <-p f where p - VALUE (B) 

Evaluated and transformed formulae will be explained in succeeding 

sections. 

EVALUATION OF FORMULAE 

Syntax: 

<evaluated formula> ::= EVAL <variable> | 

EVAL (Substitution list>) <formula expression> (Substitution list>) | 

SUBS (<substitution list>) <formula expression> (Substitution list>) | 

REPLACE (<formula expression>) 

<substitution list> : := <formula expression list> | [<variable>] 

<formula expression list> : := <formula expression> | <formula expression list>, 

<formula expression> 

Semantics: 

At some point in the execution of a program, we may wish to carry out 

completely or partially the computation represented by a formula. To do this, 

we could substitute values for all occurrences of some of the variables appear

ing in a formula, and combine these values according to the computation expressed 

by the formula. In order to accomplish the above we have the EVAL operator. 

This is in some sense the inverse of the f t. f f operator. The dot postpones the 

action of certain Algol expressions by making them formulae, while EVAL causes 

the evaluation and/or execution of formulae. 



If we have a formula consisting of names of formula variables joined by 

arithmetic operators, then if we assign each of the formula variables a numer

ical value, the result of the evaluation of the formula will be a number. Analo

gously, substitution of Boolean values for formula variables in a Boolean formula 

produces a Boolean value. 

On the other hand, we need not substitute arithmetic or Boolean values for 

formula variables, but rather, we can substitute other formulae. Thus, in this 

case, evaluation of the formula, instead of producing a single value, creates 

a new formula. Hence, EVAL may be used to construct formulae. 

A third use of EVAL is that of producing trivial simplifications in a 

formula without altering its value and without substitution. This is done 

according to the following table: 

Simplifications of EVAL 

A t 0 -> 1 A * 0 -» 0 

A t U A A * 1 -> A commutative 
A t - U l/A 

A t -n -> l/Atn 

A * - 1 -A 

A * -n -» - (A * n) 

A / 1 -> A A + 0 -» A 

A /<-l) ->-A 

A /(-n) ->-(A/n) 

0 / A -> 0 

(-n) / A -> - (n/A) 

A + (-n) -> A -n 

A -

0 + A -> A 

(-n) + A -> A - n 

0 -> A 

A - (-n) -> A + n 

- A -> -A 

(-n) - A -> -(n + A) 



X V true -> true ^ 

X A true -> X 

) commutative 
X V false -> X 

X A false -» false 

Whenever an expression contains two numeric (Boolean) arguments joined by 

an arithmetic (Boolean) operator, it is replaced by its value. Similarly, the 

truth values of relations are obtained if both arguments are numeric. 

A final use of EVAL is to execute the Algol code which is represented by an 

array, procedure, conditional, or assignment formula. 

These uses of EVAL are usually combined; thus evaluation of a formula may 

produce partial expansion and some trivial simplification. 

In order to define the EVAL operator we will first define the operator SUBS, 

which performs part of the operation of EVAL and may also be evoked in the source 

language. 

Consider a statement of the form 

D *- SUBS (X 1, X 2 , X m ) F ( Y r Y 2 , Y r ) ( 1 ) 

where N ^ 1 and m ^ 1 (normally n ~ m) . 

If F is a formula expression then 

(a) If TYPE (F) is numeric or BOOLEAN or if VALUE (F) is a number or Boolean 

constant then the effect of ( 1 ) is precisely that of D f- F. 

(b) If TYPE (F) = FORM and VALUE (F) is a formula, then D will have the 

value obtained by substituting VALUE (Y^ for each occurrence of 

VALUE ( X t ) in a copy of VALUE (F) for all i £ min (m,n) for which 

VALUE ( X p is an atomic formula. If m / n, any extras on either side 

are ignored. 

Now we define the EVAL operator: 

Consider a statement of the following form: 

D <- EVAL ( X ^ X 2 , X m ) F ( Y p Y 2 , Y n ) 



First the rules for SUBS are applied. Then the formula is evaluated by 

a recursive process which starts at the top of the tree and is applied succes

sively to each subformula as follows: 

(1) If the formula is a constant or atomic formula, it is left unchanged. 

(2) If the formula is a binary formula, its operands are evaluated from 

right to left. If they reduce to numbers or logical values, then 

the operation indicated by the operator is carried out and the re

sult replaces the formula. Also, if any of the simplifications 

listed previously applies, it is carried out. A similar process 

is carried ©ut for unary formulae. 

(3) If it is a procedure formula, the parameters are evaluated from left 

to right and then the procedure call is executed and its value re

places the formula. Note: Since the procedure call is made regard

less of collapsing of formulae, all its arguments must be of the 

right type to correspond to their actual parameters (e.g., a par

tially collapsed formula can't be passed as a real). 

(4) If it is an assignment formula the expression to be assigned is evalu

ated, the assignment statement is executed, and the formula is replaced 

by the assigned value. 

(5) If it is an array formula, the subscript expressions are evaluated 

from left to right and if all reduce to numbers, the array access is 

carried out and its value replaces the formula. 

(6) If it is a conditional formula, the IF formula is evaluated and if it 

reduces to a logical value, then the corresponding THEN or ELSE for

mula is evaluated and replaces the conditional formula. 

In the above cases if the operands of the formula do not reduce properly, 

the formula is left as simplified as the above transformations provide. 



EVAL and SUBS may also use [T] in place of either list of formulae where 

T must be a symbol which has been previously assigned a list of formula. This 

list is then used as has been explained in the operation of EVAL. 

The function REPLACE: 

The function designator REPLACE (F) where F is a formula expression pro

duces a formula which is obtained from F by replacing every atomic variable by 

the current value of its associated FORM variable and evaluating the result as 

in EVAL. The atomic variables used in the formula F must be declared either 

locally or globally to the block in which REPLACE (F) is executed. 

Examples: All variables are of type FORM. 

Initially F <- X + Y * Z; 

Y <- 1 ; Z f-2; 

Executing SUBS (Y, Z) F (3, 4) 

however, will produce 'X + 12 1 

and REPLACE (F) 

will produce fX + 2 1 

Let F be [IF B THEN P(X) ELSE A [ Y + Z ] ' 

Executing EVAL (B) F (TRUE) 

will yield fR f where R is the result of calling procedure P with the Formula X 

as a parameter 

EVAL (B, Z) F (FALSE, 2) 

will yield f A [ Y + 2] 1. Since the subscript did not reduce to an integer, the 

access was not carried out. 



FORMULA PATTERNS 

Syntax: 

<formula pattern> : := <formula expression> — <formula pattern structure> | 

<formula expression> » <formula pattern structured | 

<extractor> <fortnula expression> » <extractor> <formula pattern structure> 

<extractor> ::= <variable> : 

<formula pattern structure> ::= <a formula expression in which some of the 

primaries may have been replaced by pattern primaries and some of the 

operators may have been replaced by operator classes> t 

<formula pattern primary> ::= <type> | ATOM | ANY | OF (<variable>) | 

OF (<procedure identifier>) | (<formula pattern structure>) | 

<extractor> <formula pattern primary> 

<operator class> : := 1 1 j 1 1 <bperator class name> ff| 11 

<operator class name> : := <variable> 

<bperator class assignment> ::= <bperator class name> <-

/[operator: <operator list>} <comm segment> <index segment> 

<bperator list> : := <operator> | <operator list>, <bperator> 

<comm segment> : := <empty> | fCQMM: <logical value list>) 

<index segment> : := <empty> | [INDEX: <variable>) 

<logical value list> ::= TRUE | FALSE | <logical value list>, TRUE | 

<logical value list>, FALSE 

Semantics: 

A mechanism is needed to determine precisely the structure of any formula. 

Formula patterns are used for this purpose; they constitute a set of predicates 

over the class of formula data structures. These formula patterns are sufficient 

in the sense that whatever constructions are used to create a formula, the pro-

t This is a short description of what could be a formal syntactic statement. 



cess may be reversed by the choice of a sequence of predicates. Furthermore, 

a given formula pattern may be used to represent a class of possible formulae, 

and any formula may be tested for membership in this class. 

In the definition of a formula, a formula expression F is compared with 

a formula pattern structure P to determine one of two things: (1) correspond

ing to the construction F==P, whether the expression F is an exact instance of 

the formula pattern structure P or, (2) corresponding to the construction 

F » P , whether the formula expression F. contains as a subexpression an instance 

of the formula pattern structure P. Both consturctions F»«P and F » P are 

Boolean expressions yielding values TRUE or FALSE. 

The Construction P==P. The formula expression F is defined recursively to be 

an exact instance of the formula pattern structure P as follows: 

1. If P is an atomic formula then F==P is true if and only if F is the 

same atomic formula. 

2. If P is a type name REAL, INTEGER, BOOLEAN, or FORM, then F==P is 

TRUE if and only if the value of F is a real number, an integer, a 

logical value, or a formula, respectively. (Note that numbers and 

logical values are not of type FORM.) 

3. If P is the reserved word ATOM then F==P is TRUE if and only if the 

value of F is either a number, a logical value, or an atomic formula. 

4. If P is the reserved word ANY then F=«P is always TRUE. 

5. If P is the construction OF (S), where S is a symbol which has been 

assigned a list of formula pattern structures, say [p^, P^], 

then F==P is TRUE if and only if F==P V F==P 2 V...V F = = p
n
 i s TRUE. 

S may optionally be given the special attribute INDEX; see Operator 

Classes. 



6. If P is the construction OF (<procedure identifier>) where the pro

cedure identifier names a Boolean procedure with one formal parameter 

specified of type FORM, (for example, BOOLEAN PROCEDURE B(X); FORM X; 

<procedure body>) then P==P is TRUE if and only if the procedure call 

B(F) yields the value TRUE. 

7. If P is Al ^ B p then F==P is TRUE if and only if (a) F is &2 ®2 B2* 

(b) ^ — A p (c) B 2 " B j , and (d) is u) 2, where cô  and («2 are binary 

operators. Similarly, for unary operators, if P is u>̂  B^ then B ^ P 

is TRUE if and only if (a) F is u) 2 B 2 and conditions (c) and (d) 

above are true. For the case where u)^ is an operator class, see the 

next section. 

8. If P is 

(a) A. [s^, S 2,...S n] where A is an array identifier 

(b) A. (S^, S 2,..., S R) where A is a procedure identifier 

(c) V. <- Sj where V is a variable 

or (d) .IF Sj THEN S 2 ELSE S 3 

where S-, S 0,... S are formula pattern structures, then F"»P if and 1 z n 

only if, respectively: 

(a) F = ' k [ T v T 2,..., T j f 

(b) F = f A ( T x , T 2,..., T n) 

(c) F =* 1V T^ 1 

or (d) F - 'IF Tj THEN T ? ELSE Tg 1 respectively 

where T ^ 3 " ^ ' 1 £ i £ n. 

Operator Classes. Before an operator class is used in a formula pattern, it 

must be defined. The definition is accomplished by an operator class assign

ment, which assigns to a variable of type SYMBOL an operator description list. 



Suppose R is a variable declared of type SYMBOL for which the following operator 

class assignment has been executed: 

R «-/ [OPERATOR: +, /] fCQMM: TRVE, FALSE, FALSE] flNDEX: j] 

where J must be a variable declared of type INTEGER and where OPERATOR, COMM, 

and INDEX are reserved words used for special attributes. Let P be a formula 

structure having the form 

A 1 | R | B x 

Then F*=P is true if and only if (a) F is of the form f A 2 m B ^ and (b) one of 

the two following conditions holds: 

(i) A ^ A p B ^ B p and a) is a member of the operator value list found 

on the description list of R. In the specific case above, this list 

is [+,-,/]. 

(ii) B 2«=A^, A ^ ^ B ^ , and a) is a member of the list of operators whose 

corresponding member of the COMM list is TRUE. (In this specific 

case, this must be + ) . (Note that [COMM: TRUE, FALSE, FALSE] need 

not appear on the description list of R at all in which case no 

commutative instances of any operator will be considered.) 

If F==P is true the integer variable used as a value of the attribute INDEX 

will be set to an integer denoting the position of U) in the operator value 

list. (In the specific case above, J is set to 1, 2, or 3 according to whether 

U) was +, or / respectively). The operator co is stored as the value of R. 

Later the construction | <R> | can be used in an expression 

in place of an operator, and the operator a) extracted during the previous 

matching will be used in the construction of the formula data structure that 

the expression represents. Alternatively, R may be assigned any operator 

by the assignment statement R <- <operator> and | <R> | may be used in the 

same fashion. 



Extractors. Wherever an extractor is used in a formula pattern preceding a 

formula pattern primary the subexpression in F which matches that formula 

pattern primary is assigned as the value of the variable found to the left 

of the colon in the extractor. This variable must be of type FORM. This 

assignment is made as soon as the pattern primary is matched. Therefore, 

even though a pattern may fail as a whole, some of its extractors may have 

been assigned values. When f l:" is used in this context it binds more closely 

than any other formula operator. 

The Construction F>>P. The formula pattern F » P is TRUE if F contains a 
m m m m m m m m m m m m t m m , m m m m — f 

subexpression, say S (which may be equal to F itself) such that S==P is 

TRUE. A recursive process is used to sequence through the set of subexpres

sions of F for successive testing against the formula pattern structure P. 

The sequencing has the properties that if two subexpressions and are 

both instances of P, then if S 2 is nested inside Sj, Sj will match P first, 

and if neither is nested inside the other, then the one on the right in a 

linearized written form of S, is recognized first. 

The formula pattern A:E>>B:P, in which extractors precede the right 

and left hand sides of the formula pattern, has the following meaning: 

First F » P is tested. If the result is true then (a) the subexpression of 

F which matches P is stored as the value of B, and (b) a formula is con*-

structed consisting of F with the subexpression matching P replaced by the 

previous value of B (the value B had before the assignment described in (a) 

took place). This formula is stored as the value of A. 

Examples 

Example 1. Let A,B,X,Y, and Z be declared of type FORM, let R be 



declared of type REAL, and let all form variables have their atomic formulae 

as values. Suppose that the statement 

X <- 3 * jvIN(Y) 4 - ( Y - Z ) / R + 2 * R ; 

has been executed. Consider the statement: 

IF X » A: INTEGER * B: SIN (FORM) THEN Z <- 2 * B + A 

Since the pattern X » A : INTEGER * B: SIN (FORM) is TRUE, the assignment 

Z <r- 2 * B 4- A will be executed assigning as the value of Z the formula 

2 * SIN (Y) 4- 3 because A has the value 3 and B has the value SIN (Y). 

Example 2. Let X be of type SYMBOL, A, B, Y, M, T, G, and P be of type 

FORM, and D be of type BOOLEAN. Then executing the statements: X «- [REAL, 

INTEGER, BOOLEAN] ; G Y + 8 * (M - T) ; P FORM 4- A : OF (X) * B: FORM; 

D <-G==P; causes D to be set to TRUE because the pattern G ^ P is TRUE, and 

causes A to be set to 8 and B to be set to M - T, 

Example 3. Suppose we execute the statements F <- 2 * (SIN(X t 2 4- Y t 2) 

4 COS (X t 2 - Y t 2) ) / 5; T <- .T; G <- SIN (FORM) + COS (FORM) ; 

where all variables used are of type FORM. Then A: E » T : G is a pattern 

with value TRUE. T gets assigned SIN (X t 2 + T t 2) + COS (X t 2 - Y t 2) 

the subpattern of F which matched G. A gets assigned 2 * T/5, a copy of F 

with the matched subpattern replaced by the previous value of F. 

Example 4. Assume all variables in the following sequence of declara

tions and statements are of type FORM. 

BOOLEAN PROCEDURE HASX(F) ; VALUE F ; FORM F ; HASX <- F » X ; 

G f- ( X t 2 4-3) t 2 * (Y -1) : F f- A : O F (HASX) * B: (ANY -1) : T <- G==F ; 

Then T is set to TRUE, A is set to (X t 2 + 3) t 2 and B is set to Y - 1. 

Here we use HASX to find any formula which is a function of X. 



TRANSFORMED FORMULAE 

Syntax: 

transformed formula> ::= <formula expresslon> A <schema variable> 

<schema variable> ::= <variable> 

<8chema assignment> : := <schema variable> <- [<schema>] 

<schema> ::= <schema element> | <schema>, <schema element> 

<schema element> : := <variable> | <single production> | 

<parallel production> 

<single productiorO ::= <formula pattern structure> -><formula expression> | 

<formula pattern structure> . -> <formula expression> 

<parallel productiori> ::= [<parallel elements>] 

<parallel elementa> ::= <variable> | <single production> | 

<parallel elements>, <variable> | 

<parallel elements>, <single production> 

The following is an additional restriction on the Syntax: 

If any schema element has an extractor as its left-most member, 

then the whole element must be enclosed in parentheses. 

Semantics: 

Let F and G be formulae, and let P be a formula pattern. The applica

tion of the production P-> G to the formula F is defined as follows: 

1. If F==P is FALSE then the application is said to fail. 

2. If F==P is TRUE then the application is said to succeed, and F is 

changed according to G as follows: If P contains extractors, 

subexpressions of F matching corresponding parts of P are assigned 

as values of the extractors. Now in order to rearrange F according 

to the structure of the extractor variables in G, we change the 



subformula of F which matched P into REPLACE(G). This 

substitutes the extracted subexpressions for their extractor 

variables in G causing the desired rearrangement. 

For example, the distributive law of multiplication over addition may be 

executed as a transformation by applying the production 

A: ANY * (B: ANY + C: ANY) -» .A * .B + .A * ,C (1) 

to a given formula. Suppose that F contains X t 2 * (Y + SIN (Z)). Then 

applying the production (1) to F will result in the extraction of the sub

expressions X t 2, Y, and SIN (Z) into the variables A, B, and C respec

tively, and will cause the replacement of the atomic formulae A, B, and C 

occurring on the right hand side of (1) with these subexpressions, resulting 

in the transformation of the value of F into the formula X t 2 * Y + X t 2 

* sin (Z). 

A schema is a list of transformation rules. Each rule is either a 

single production or a list of single productions defining a parallel 

production. Variables occurring in a schema must have single productions 

as values. Expressions of the form F. i S, where F is a formula and S a 

list, are formula primaries, and thus may be used as constituents in the 

construction of formulae. The value of such a formula primary is a 

formula which results from applying the productions of the schema S to 

to the formula F according to one of the two possible sequencing modes 

explained as follows: Sequencing modes give the order in which productions 

of a given schema S are applied to a given formula F and to its subexpressions. 

The two sequencing modes differ in the order in which a given production 

will be applied to different subexpressions of F, and in the conditions 

defining when to stop. 
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One-by-one Sequencing: 

One by one sequencing corresponds to a syntactic construction of the 

form S [Pj, P 2, . . . , P j . For j <-1 step 1 until n, production P^ Is 

applied to F. If the application of P succeeds, P^'s transformation is 

applied to F and the whole process (starting at P p is reapplied to the 

result. If Pj fails to apply to F, it is applied recursively to each 

subexpression of F. Therefore, production P^ is applied to F if and only 

if production P^ ^ is not applicable either to F itself or to any sub

expression of F. This sequencing will stop either when no production can 

be applied to F or any of its subexpressions or when a production contain

ing has been executed. 

Parallel Sequencing 

Parallel sequencing corresponds to a syntactic construction of the 

form <- [[P^, Pj, PJ] or any form in which the brackets are nested at 

a depth of two. Here j is initially set to 1. when a production P^ is 

applied to F, if it succeeds, we apply its transformation and return to the 

beginning as with one-by-one sequencing. If the application P^ fails, 

production Pj+^ *-s applied to F, and so on up to P^. ' If all single pro

ductions of a parallel production fail at the topmost level of F, then 

the whole sequence is applied recursively to the next lowest subexpressions 

of F. Thus in parallel sequencing each one of the productions is applied 

at level k of the formula F only if all productions have failed at level 

k-1. The termination condition is reached when all productions fail at 

the bottom level of F or when a production containing has been executed. 

In general a schema may have a combination of both sequencing modes, 

such as S <- [p , P 2, In this case P 
V 

P 9, the parallel 



sequence, and are treated one-by-one. When the sequence [P^, P^, P,.] 

is reached in this schema, it is treated in parallel. Any number of these 

parallel schema may be used at the same level, but none may be nested at a 

depth greater than two. 

The schema varaible S has to be declared of type SYMBOL. Optionally, 

a description list may be associated with S. If the special attribute 

INDEX occurs in the description list of S then, when the transformation has 

been completed, the value of an INTEGER variable used as the value of the 

attribute INDEX is set to 0 if no transformation took place, i.e., no 

production was applicable to F. The variable is set to 1 if at least one 

transformation took place and exit occurred because no further production 

of S was applicable. Finally, the variable is set to 2 if a production 

containing .-> was applicable. The following complete example of a schema 

clears fractions in arithmetic expressions. 

BEGIN FORM F.X.A.B.C; SYMBOL S.P.T; 

A <- A: ANY: B<- B: ANY; C<- C: ANY; 

P <- / [OPERATOR: +] [COMM: TRUE] ; T <- / [OPERATOR: * ] [COMM: TRUE] ; 

S *- [A t (-B) .At . B, 

A |P| (B/C) -> (.A * .C + .B) /.C, 

A |T| (B/C) -> (.A * .B) / .C, 

A -B/C -» (.A * .C -.B) / .C, 

B/C - A -> (.B -.A * .C) / .C, 

A/ (B/C) -» (.A * ..C) / .B, 

(B/C) /A .B/ (.C * .A), 

(B/A) t C - » , B t .C / .A t .c] ; 

F «- (X + 3/X) t 2 / (X -l/X) ; 



PRINT (F. i S) END 

The above program will print X * (X t 2 + 3 ) t 2/ (X t2 * (X t 2 - 1 ) ) . 

PRECEDENCE OF FORMULA OPERATORS 

Now that all the formula expressions have been explained, we present 

the precedence of formula operators in both expressions and patterns: 

: (done first) 

t 

- + (unary) 

/ * 
- + (binary) 

= ± >< -> -< 

-n 

A 

V 

II or |< >| 

• I (done last) 

In cases of equal precedence, association to the left is used. 

SPECIAL FUNCTIONS 

The following functions are built into Formula Algol: 
DERV (F,X) A FORM function designator whose value is the derivative 

of F with respect to X. 

CELLS An INTEGER function designator whose value is the number 

of cells remaining on the available space list [see 4] . 



3 



f 

CHAPTER IV 

LIST PROCESSING 

SYMBOL VARIABLES 

Variables may be declared of type SYMBOL, indicating that their values 

are to be list structures. In addition to this function, they may also serve 

as data to be manipulated and stored in list structures. In this context they 

are called atomic symbols. When a symbol S is declared, as with a form variable, 

its value is initialized to the atomic symbol S and a description list is associ

ated with it. 

SYMBOL ARRAYS 

Arrays may be declared of type SYMBOL whose elements may be list structures. 

Again like form arrays, they are accessed in the normal manner and they are not 

initialized. 

SYMBOLIC EXPRESSIONS 

Syntax: 

<symbolic expression> ::= .<identifier> | 

<variable>|<function designator>| 

<value retrieval expression> |<selection expression>| 

<symbolic e x p r e s s i o n ^ " | NIL 

Semantics: 

A symbolic expression has as its value either an atomic symbol or a list 

according to the following rules: 

1 • If it is a symbol variable preceded by a dot, its value is the atomic 



symbol represented by the variable. 
2. If it is a symbol variable S, its value is the contents of S. The 

contents of a symbol may be modified by assignment statements 

(pg. 52), push and pop statements (pg. 61), and extractors (pg. 58). 

3. If it is a function designator resulting from the declaration of 

a symbol procedure, its value is that assigned to the procedure 

identifier by executing the body of the procedure using actual para

meters given in the function designator call. 

4. Selection expressions are explained on page 55. 

5. Value retrieval expressions are explained on page 53. 

6. If it is of the form<E>, where T is a symbolic expression, the 

value of T is first computed and must result in an atomic symbol. 

The value of the symbolic expression is then the contents of that 

atomic symbol. The angular brackets may be nested arbitrarily ^ 

many times to provide many levels of indirect access. 

7. NIL is a special symbol with no contents or description list which 

may be treated as an atomic symbol. It acts as an identity element 

under concatenation of list elements (pg. 51). 



LISTS 

Syntax: 

<list> ::= <list element>|<list>,<list element> 

<list element> ::= <expression>|<list expressionXdescription list>| 

<symbolic expressionXdescription list>|<llst pattern primary> 

<list expression> ::= [<list>] 

<expression> ::= <arithmentic expression>|<Boolean expression>| 

<formula expression>|<formula pattern structure>| 

<symbolic expression>|<list expressiori>|<list expressiori> 

Semantics: 

Symbols may be concatenated into a list by writing them one after another, 

separating them with commas, and enclosing them in brackets. In addition to 

symbol variables, any expression except a designational expression may be 

written as an element of a list and its value will be entered. For example, 

let X. Y, and Z be formula variables, let A, B, and C be Boolean variables, 

let U, V, and W be real variables, and let R, S, and T be symbol variables. 

Then the value of 

[x* SIN(Y), 3 + 2 * U, IF B THEN R ELSE T, [R,T,R] , -3$ 

is obtained by causing each expression on the right to be evaluated, and 

their results concatenated. If one of the results is NIL, the element 

disappears completely from the list. Automatic data term conversion results 

from using non-symbolic values in lists. The second from the last item in 

the above list is the quantity [R,T,R] , which becomes a sublist of the list. 

Hence, the expression, in reality, is a list structure. It is further 

possible for certain of the elements of a list to bear local description 

lists (pg.53). 



It should be noted that one-element lists and single values are 

treated identically when appearing as the contents of a symbol. Thus 

S <- 3 and S <- [ 3 ] are the same when S is a symbol variable. If we wished 

to make the contents of S a list with one number, 3 , we would execute 

S < - [ [ 3 ] ] . 

List pattern primaries may be stored in lists so that the list may 

later be used in a list pattern (pg. 58) . 

ASSIGNMENT STATEMENTS 

Syntax: 

We may extend the Algol 60 syntax as follows: 

<assignment statement> ::=... | 

<symbolic expression> <expression>| 

<symbolic expression> ^description list>| 

<veriable> <-<description list> 

Semantics: 

When a symbolic expression (other than a variable) appears on the left 

hand side of an assignment statement, it is first evaluated and must result 

in an atomic symbol. The value of the expression on the right then becomes 

its contents, or the description list on the right replaces its description 

list. Thus any symbolic expression, unlike those of other variables, is 

allowed on the left side of an assignment. In the case that a symbol variable 

appears on the left by itself, the right side expression replaces the contents 

of the variable mentioned, instead of the contents of its value. Description 

lists may also be assigned to variables of type FORM. 



DESCRIPTION LISTS 

Syntax: 

description list> ::= /<attribute-value list> 

<attribute value list> :: = <attribute value segment>| 

<attribute value listXattribute value segment> 

<attribute value segment> ::= [<attribute>:<list>]| 

[<attribute> : <empty>] 

<value retrieval expression> ::= <identifier> ( <form or symh>)| 

THE <attribute> OF <form or symh> 

<form or symh> ::= <symbolic expression>|<formula expression> 

<attribute> ::= <symbolic expression> 

Semantics: 

A description list is a sequence of associated attributes and value-lists. 

An attribute must be a symbolic expression which results in an atomic symbol. 

Each attribute is followed by its value-list which is of the same form as an 

ordinary list. It may contain more than one member, it may contain only one 

member, or it may be empty. A description list may be attached to one of three 

types of objects: 

1. A variable declared of type SYMBOL for which there are two cases 

(a) global attachment, and (b) local attachment. 

2. A variable declared of type FORM. 

3. A sublist of a list. 

To describe these uses, consider these examples: Assuming that all variables 

involved have been declared of type SYMBOL, the statements 

S <7[TYPES: MU,PI,RHO][ANCESTORS: 0RTH0L,PARA5][COLOR: GREEN]; (1) 

T <-[F,A/[NUM: 1 ],B,C,A/[NUM: 2],D,E]; (2) 

assign respectively a description list to S and a list as the contents of T. The 



description list attached to S is globally attached, meaning that it is perma

nently bound to S for the lifetime of the variable S. In the list assigned as 

the value of T, the symbol A occurs twice - in the second and fourth positions. 

The description lists attached to these two separate occurrences of A are attached 

locally, meaning that the separate occurrences of a given atomic symbol within a 

list have been given descriptions which interfere neither with each other nor 

with the global description list attached to A if such should occur. The 

attributes and values of a given local description list are accessible only by 

means of symbolic expressions accessing that particular occurrence of the symbol 

to which the given local description list attached. 

Thus, if one desired to access the global description list of that copy of 

A, he would remove it from the list T, destroying its local description list and 

then perform the value retrieval. E.g., Tl <-2 ND OF T; then use NUM OF Tl. 

In the following examples suppose F is a variable declared of type FORM 

and that all other variables involved are variables declared of type SYMBOL. 

F <- /[PROPERTIES: CONTINUOUS, DIFFERENTIABLE] ; (3) 

V 4- [A, [B,C]/[PROCESSED: TRUE) , A, [B,C] /[PROCESSED: FALSE], A ] ; (4) 

In example (3) a description list is attached to a formula. In example (4) the 

list assigned to be the contents of V has two identical sublists [B,C] in the 

second and fourth positions having different local description lists. 

Value lists stored in description lists are retrieved by means of value 

retrieval expressions. To accomplish retrieval, two arguments must be supplied: 

(1) an attribute consisting of an atomic symbol and (2) the atomic symbol or 

formula having the description list. The attribute is then located on the de

scription list and its associated value list becomes the value of the retrieval 

expression. If there is no description list, or if there is a description list 

but the attribute does not appear on it, or if the attribute does appear on it 

but has an empty value list, then the value of the retrieval expression is the 



symbol NIL. Thus in examples (1) and (2) above, the value retrieval expressions 

COLOR(.S), NUM(2ND OF T ) , and NUM(3RD OF T) have the values GREEN, 1, and NIL 

respectively. If in a value retrieval expression either the description list 

or the attribute is missing, it is added with a value of NIL. The construction, 

THE COLOR OF .S, accomplishes the same function as COLOR(.S) but is slightly 

more versatile in that any symbolic or formula expression may be used to 

calculate the attribute whereas only identifiers may be used for the attribute 

in the form <identifier> ( <symbolic expression> ) . 

SELECTION EXPRESSIONS 

Syntax: 

<selection expression>::= <selector> OF < symbolic expression > 

<ordinal suffix>::= ST | ND | RD | TH 

<ordinal selector>::= <arithmetic primaryXordinal suffix>|LAST|FIRST 

<elementary position>::= <ordinal selector>| 

<ordinal selector> <kind> | 

<ordinal selector> INTEGER <arithmetic primary> 

<kind>: := <augmented type> | <expression> | <class name> 

<po8ition>::= <elementary position> | <arithmetic primary> 

<ordinal suffix> BEFORE <elementary position> | 

<arithmetic primary Xordinal suffix AFTER <elementary position> 

<selector>: := BETWEEN<po8itiori>AND<po8ition>[ ALL AFTER<position>| 

ALL BEFORE<positlon>|FIRST<arithmetic primary>| 

LAST<arithmetic primary>[<positlon>|ALL<kind>| 

<augmented type>::= REAL| INTEGER | BOOLE AN | FORM| SYMBOL | SUBLIST| ATOM] ANY 

Semantics: 

Selection expressions are formed by composing selector operators with 



symbolic expressions. A symbolic expression is first evaluated producing 

a symbolic data structure as a value. A selector operator is then applied 

to the resulting symbolic data structure to gain access to a part of it. 

Assume first that the symbolic data structure S on which a selector operates 

is a simple list. Then 

^n ordinal selector refers to an element of this list either by 

numerical position, or by designating the last element. 

E.g. 3 RD OF S, LAST OF S. 

2. An elementary position refers to an element of this list by 

designating it (a) as the N TH or LAST instance of an augmented 

type, e.g. N TH REAL, LAST SUBLIST, where N is an expression 

whose value is an integer, (b) as the N TH or LAST instance of 

the value of an expression, e.g. N TH (F+G), LAST [A,B ,c] , 

(c) as the N TH or LAST instance of a member of a class (pg.61), 

e.g. 5TH (|TRIGFUNCTION|), LAST (|VOWEL|), (d) or by ordinal 

selection. 

3* A position refers to an element of this list either by designating 

its elementary position or by designating it as the N TH BEFORE 

or in the N TH AFTER some elementary position. 

A selector refers to an element by its position or else designates 

one of the following sublists of the list 

(a) The sublist between two positions not including either 

position named, e.g. BETWEEN 3 RD and 7TH OF S produces 

a list consisting of the 4th, 5th, and 6th. 

(b) The sublist consisting of all elements before or after a 

given position, e.g. ALL AFTER 3 RD SYMBOL OF S, ALL 

BEFORE LAST REAL OF S. 



(c) The sublists consisting of the first n elements or the 

last n elements, e.g. FIRST 3 OF S, LAST K OF S. 

(d) The sublists composed by selecting and then concatenating 

(i) all instances of a given expression, e.g. ALL F OF S, 

(ii) all instances of a given augmented type, e.g. ALL  

REAL OF S, (iii) all instances of elements which are members 

of a given class, e.g. ALL (|TRIGFUNCTION|) OF S. These 

elements are concatenated in the same order that they 

occur in the list from which they are selected. 

Selectors may be compounded to access sublists and their elements. Suppose 

the statement S [X,X, [A, A [ , X ] ,A] has been executed. Then the expression 

2 ND OF S is a list valued symbolic expression with the list [x,X, [A,A], X] 

as value, whereas the expression 3RD OF 2 ND OF S has the list [A,A] as value, 

and the expression LAST OF 3 RD OF 2 ND OF S has the single atomic symbol A 

as value. 

If a selector refers to an element of a list which doesn't exist 

because the list is of insufficient length (e.g. the 5th of a 3-element list), 

then the value of the expression is NIL, and the extra NIL 1s are added to the 

structure to make it the right length. 

Note that there could be an ambiguity with the statement FIRST 3 OF S. 

It could mean the first 3 elements of S or the first integer f 3 ! in S, We 

have chosen to use the former interpretation and to require one to write 

FIRST INTEGER 3 OF S if he desires the latter. 



LIST PATTERNS 

Syntax: 

<list pattern>::= <symb or list> == <symb or list>| 

<symbolic expresslon> == <kind>| 

<symb or list> = <symb or list> 

<symb or list>::= <symbolic expressiori>|<list expressiori> 

<list pattern primary>::= $ | $<arithmetic primary>| 

<kind>|<extractorXlist element> 

<extractor>: := <variable>: 

Semantics: 

List patterns are predictates for determining the structure of lists. 

They use mechanisms like those found in CGMIT [5] to test whether a list is 

an instance of a certain linear pattern. The construction to the left of 

the == is the list structure being tested according to the pattern on the 

right. This pattern will consist of a sequence of list pattern primaries 

(possibly one), some of which may be ordinary list elements. In order for 

the list to match the pattern, the entire list must match the pattern, not 

just a subpart of it as in COMIT. 

The elements of the list pattern evoke tests as follows: 

The normal list elements are evaluated as in ordinary lists. If they 

result in atomic constructions, these are used in direct equality tests. If 

they result in lists, then each element of the list is treated as another 

list pattern primary. The one exception to this is if the element is actually 

a sublist (is enclosed in brackets). This will only match the list pattern 

primaries of the pattern sublist. This feature allows patterns to test whole 

list structures. 

The other list pattern primaries are matched in the following ways: 



(1) An augmented type will match an element which is of that type 

as defined for formula patterns. (Page 37). In addition 

SYMBOL will match only atomic symbols and SUBLIST naturally 

matches sublists. 

(2) A class name will match an element which satisfied its class test 

(pg. 61). 

(3) $n will match any n consecutive elements, where n is an expression 

whose value is a positive integer. 

(4) $ will match an arbitrary number of elements, including 0. However, 

there is a limitation on this which can be explained by giving a 

brief idea of the scanning algorithm for $. 

When a $ is encountered in the pattern, we first pair it with no elements 

and then try to match the rest of the pattern. This failing, we pair it with 

one element and try again. We keep increasing the scope of the $ until a 

match is found or we run over the end of the list. However, once we have 

matched the pattern primaries to the right of a $ up to the next $, we consider 

the first $ fixed and we do not try to enlarge its scope any more. If we meet 

failure in matching the second dollar sign, the pattern fails. We do not back 

up to the first. (E.g. [l,A,2,B,A,2,B,c] == [$,A,$,B,$l] is false since after 

matching the B after the second $, we will not back up to find new matches for 

the $'s.) 

A. It should be noted that testing for the type or class of a single 

element is nothing more than a list pattern in which the right side 

is a single list pattern primary. Thus we may write: 

3 rd OF S == INTEGER 

THE A OF B == (| NOUN |) 



Like formula patterns, list patterns are boolean primaries and 

thus may be combined with other booleans using logical connectives 

or may be used in IF - THEN statements. 

As an example, consider the list 

S <- [ A, 1, B, C , A, A, C ] ; 

S == [ A, INTEGER, $, A, $2 ] is TRUE. 

As with the formula pattern structures, list patterns may function not only 

as predicates but also as selectors. The same mechanism is used to accomplish 

this. If any list pattern primary in a list pattern structure is preceded 

by a variable declared of type SYMBOL followed by a colon, then in the event 

that there is a match, the element which matches the list pattern primary 

becomes the value of the symbol variable. It may then be accessed at any 

later point in the program. In the case that there is only a partial match, 

however, some of the extractors may be assigned values anyway. 

Suppose the statement S <- [ A , B , C , D ] has been executed where all variables 

are symbols and where A, B, C , and D have as values their atomic symbols. 

Then, executing the statement 

IF S == [T:$2, V:$2] THEN S [V,T] ; 

changes the contents of S to be the list [C,D,A,B] . This is because the 

contents of T is the list [A,B] , and V has as its value the list [C,D] . 

Two list structures may be tested for exact equality by means of a 

single =. This is necessary above the == predicate only in that it permits 

testing of stored list patterns. Thus we may store a pattern containing 

\ : \ REAL, •$', etc., and then later test it for exact form using those 

symbols in the patterns. For example, "== REAL" will match any real number; 

while "= REAL" will match only the element "REAL". 



CLASS TESTS 

Syntax: 

<cla8s name> ::= (f,|'^symbolic expres8ion> M|") 

<class definition> ::= Let <class name = [<formal parameter> H | n <Boolean 

expression>] 

Semantics: 

Sets may be defined by means of class definition. For example, suppose 

the statement V «- [A,E,I,0,U] has been executed. Then the statement LET 

(|VOWEL|) = [X | AMONG(X,V) ] ; defines the set of all vowels where AMONG(P,Q) 

is a Boolean procedure which is TRUE if P is an element of the list contained 

in Q, and FALSE otherwise. Suppose that having previously executed the 

statement S <- [A,B,C] , we execute the statement 

IF 1 ST OF S == (|VOWEL|) THEN <statement> 

The list pattern 1 ST OF S == (|VOWEL|) will be evaluated by first computing 

the value of the expression 1ST OF S, which is the symbol A, and second by 

substituting A for the formal parameter X in the class definition of (JVOWELJ). 

This results in the execution of procedure AMONG ( A, V) which produces the value 

TRUE. Thus, A is a member of the class (|VOWEL|), and the list pattern 

1ST OF S == (|VOWEL|) is TRUE, causing the <statement> to be executed. 

Any arbitrary Boolean expression, including a Boolean procedure call, 

may be used to define a class. Thus the full generality of Boolean procedures 

is obtained. 

PUSH DOWN AND POP UP STATEMENTS 

Syntax: 

<push down operator> ::= i|<push down operator> 4 

<pop up operator> ::= t|<pop up operator> t 

<push down statement> ::= <push down operator> <symbolic expression> 



<pop up statement> ::= <pop up operator> <symbolic expression> 

Semantics: 

The contents of any variable declared of type SYMBOL is a push down stack. 

The contents of the variable consists of the current topmost level of the push 

down stack. Applying a single push down operator I to such a variable pushes 

down each level of the stack making the topmost level (level 0) empty and 

replacing the contents stored at level k with the contents stored previously 

at level k-1. The empty topmost level may then acquire a value as its con

tents by means of the execution of an appropriate assignment statement. A 

lower level of the push' down stack is not accessible to the operation of 

extracting contents until the execution of a pop up statement restores it to 

the topmost level. Applying a single pop up operator t to the name of a 

variable destroys the contents of the topmost level and replaces the contents 

stored at level k with the contents previously at level k + 1. A push down 

operator (pop up operator) consisting of n consecutive occurrences of a single 

push down operator (pop up operator) has the same effect as n consecutive 

applications of a single push down operator (pop up operator). A push down 

operator (pop up operator) is applied to a symbolic expression by evaluating 

the symbolic expression and, if it results in an atomic symbol, the operator 

is applied to the push down stack which is 'the contents of the atomic symbol 

as described above. Any structure which occupies the contents of a symbol 

variable S may become the contents of a lower level of the push down stack 

in S by application to the push down operator S. In particular, list struc

tures may be stored in the push down stack in S. 

ADDITIONAL FOR STATEMENTS 

Syntax: 

<for list> : := ... | 



ELEMENTS OF <symbolic expression> | 

ATTRIBUTES OF <symbolic expression> 

<for clause> ::= ... | FOR <symbollc expression> <-<for list> DO | 

PARALLEL FOR <symb or list> <-

ELEMENTS OF <symb or list> DO 

Semantics: 

We may wish to generate the element of a list or the attributes of a 

description list one by one in order to assign them to the controlled variable 

in a FOR statement. Attributes on the description list of the value of S, 

which must be atomic symbols, are generated in the order that they occur by 

"ATTRIBUTES OF S", and "ELEMENTS OF S" generates the successive elements 

of the list which is of the value of S. In the former case S must be any 

symbolic expression with an atomic symbol as value because the attributes 

from its description list will be generate. In the latter case S may be any 

list valued symbolic expression. Successive elements generated are assigned 

to the control variable given in the FOR clause. In either case, the lists 

of.values to be assigned to the control variable are fixed upon initial entry 

to the FOR statement, and any changes to them in the body of the FOR state

ment will not be reflected. 

Parallel generation is also permissible. Here the expression to the 

left of the "f-" is a list of n atomic symbols and the expression on its right 

is a list of n lists or n symbols containing lists. For example: if S <- [A,B ,c] , 

T <- [D,E] , and U [F, G, H, M] have been executed where the variables A 

througjh I have as values their atomic symbols then executing the statement 

PARALLEL FOR [I,J,K] <- ELEMENTS OF [[s] , [T] , [u]] DO L <- [ L , I , J , K ] ; 

causes the following to happen. First, all first elements of the lists 

contained in S, T, U, respectively are generated and placed in the contents 



of the controlled variables I, J, and K, respectively. Control then passes 

to the body of the parallel FOR statement and returns when finished with its 

execution. On the second cycle, all second elements of S, T, and U are gen

erated and placed in the controlled variables I, J and K, respectively. 

Control then passes the statement following the DO and returns. On the third 

cycle, all third elements are generated, on the fourth cycle all fourth 

elements are generated, and so on. If any list runs out of elements before 

any of its neighbors, the symbol NIL continues to be generated. The parallel 

generation stops just before the symbol NIL would have been generated from 

all lists. 

List valued symbolic expressions may be used to supply lists of control 

variables and lists of lists to generate in parallel, as, for example, in the 

construction 

PARALLEL FOR V <- ELEMENTS OF W DO L f - [L, I, J, K] ; 

where the statements V <- [l,J,K] and W <- [[s] , [T] , [u]] have been executed 

previously. At the end L should contain [L, A,D,F,B,E,G,C,H,l] . 

EDITING STATEMENTS 

Syntax: 

<editing statement> ::= INSERT <symb or list> <insertion locator list> 

<symbolic expression> | < DELETE <selector list> <symbolic expression> | 

DELETE <symbolic expression> | ALTER <selector list> <symbolic> TO 

<expression> | <description list editing statements 

<insertion locator> :: = BEFORE <position> OF | AFTER <position> OF 

<insertion locator list> ::= <insertion locator> | 

<insertion locator list>, <insertion locator> 

<selector list> ::= <selector> OF | <selector list>, <selector> OF 

<description list editing statement^ ::= THE <symbolic expression> OF 

<symbolic expression> <is phrase> <expression> 



<is phrase> ::= IS | IS NOT | IS ALSO  

Semantics: 

Editing statements are used to transform, permute, alter, and delete 

elements of lists. The INSERT construction causes a list structure to be 

inserted at each of the places given by an insertion locator list. The list 

on which insertion is to be performed is obtained by evaluating the symbolic 

expression which occurs last in the statement. The expression to be inserted 

is then evaluated, and if it produces a list, each element of the list is 

inserted as an element of the list being altered. To insert a sublist in a 

list it must be surrounded by two sets of brackets. Thus, if S [A,B,C,l] ; 

INSERT [X,Y] BEFORE 2ND OF, AFTER LAST OF S causes S to be [A,X,Y,C, 1,X,Y] 

but INSERT [[X,Y]] BEFORE 2ND OF, AFTER LAST OF S causes S to be 

[A, [X,Y] ,C, 1, [x,Y]] . All the insertions take place simultaneously. 

The first DELETE construction above performs simultaneous deletions of 

parts of a list. The list of parts to be deleted is specified by the 

selector list in accord with the semantics of selectors. Thus, DELETE 2ND  

BEFORE FIRST INTEGER OF S will cause our original list S to be [A,C,l] . The 

second delete construction removes the value of the symbolic expression from 

the list structure in which it resides according to the form of the symbolic 

expression. Thus, DELETE THE COLOR OF APPLE removes the value-list of this 

attribute. DELETE . S is meaningless. 

The ALTER construction is equivalent to a series of deletions followed 

by insertions at each point where something was deleted. 

ALTER ALL SYMBOL OF S TO [3,4] changes S to [3,4,3,4,3,4, l] . 

Whenever an assignment is made of a list structure, the entire structure 

is copied and the copy becomes the contents at the left-side variables. Thus 

editing statements should be used instead of assignment statements if a copy 



is not needed when altering a list. For example: 

D INSERT A AFTER LAST OF S 

is more efficient than 

s <- [S,A] 

Description List, Editing Statements. Description list editing statements 

add or delete values on description lists. They supplement the role per

formed by assignment statements in this regard. Suppose that 

S <- / [THPE: MU, PI, RHO] [COLOR: RED] has been executed. Then, if the 

statement THE COLOR OF S IS GREEN; is executed, the value of the attribute 

COLOR on the descriptidn list of S is replaced with the new value GREEN. 

This yields the altered description list / [TYPE: MU, PI, RHO] [COLOR: GREEN] 

as a result. On the other hand, the statement: THE COLOR OF S IS ALSO GREEN; 

could be executed. Instead of replacing the color RED with the value GREEN 

the latter statement appends the value GREEN to the value list following the 

attribute COLOR. This yields the description list / [TYPE: MU, PI, RHO] 

[COLOR: RED, GREEN] as a result. Finally, description list editing statements 

may be used to delete values from value lists of a specific attribute. 

Executing the statement: THE TYPE OF S JES NOT PI; alters the above descrip

tion list to / [TYPE: MU, RHO] [COLOR: GREEN] . 

SPECIAL FUNCTIONS 

CREATE(N) A SYMBOL function designator whose value is a list of N 

created atomic symbols. CREATE = CREATE (1). 

ERADL(S) A statement which erases the description list attached to 

the symbol S. 

COUNT(L) An INTEGER function designator having as value the number 

of elements in the list which is the value of L. 

EMPTY (S) A BOOLEAN function designator which is true if S contains 



^ no elements. It is false if the structure contains 

anything including NIL. 

AMONG(S,L) A BOOLEAN function designator which is TRUE if S is a 

member of the list L and FALSE otherwise. 
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Dedicated to the Memory of William Turanski 

S U M M A R Y C O N T E N T S 

The report gives a complete defining description of the 
international algorithmic language A L G O L 60. This is 
a language suitable for expressing a large class of nu
merical processes in a form sufficiently concise for direct 
automatic translation into the language of programmed 
automatic computers. 
The introduction contains an account of the preparatory 

work leading up to the final conference, where the language 
was defined. In addition, the notions, reference language, 
publication language and hardware representations are 
explained. 
In the first chapter, a survey of the basic constituents 

and features of the language is given, and the formal 
notation, by which the syntactic structure is defined, is 
explained. 
The second chapter lists all the basic symbols, and the 

syntactic units known as identifiers, numbers and strings 
are defined. Further, some important notions such as 
quantity and value are defined. 
The third chapter explains the rules for forming ex

pressions and the meaning of these expressions. Three 
different types of expressions exist: arithmetic, Boolean 
(logical) and dcsignational. 
The fourth chapter describes the operational units of 

the language, known as statements. The basic statements 
are: assignment statements (evaluation of a formula), 
go to statements (explicit break of the sequence of ex
ecution of statements), dummy statements, and pro
cedure statements (call for execution of a closed process, 
defined by a procedure declaration). The formation of 
more complex structures, having statement character, is 
explained. These include: conditional statements, for 
statements, compound statements, and blocks. 
In the fifth chapter, the units known as declarations, 

serving for defining permanent properties of the units 
entering into a process described in the language, are 
defined. 
The report ends with two detailed examples of the use 

of the language and an alphabetic index of definitions. 

I n t r o d u c t i o n 
1. S t r u c t u r e o f t h e L a n g u a g e 

1.1. Formalism for syntactic description 
2. B a s i c S y m b o l s , I d e n t i f i e r s , N u m b e r s , a n d S t r i n g s . 

B a s i c C o n c e p t s . 
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Digits. Logical values. 
Delimiters 
Identifiers 
Numbers 
Strings 
Quantities, kinds and scopes 
Values and types 

E x p r e s s i o n s 
3.1. Variables 

Function designators 
Arithmetic expressions 
Boolean expressions 
Designational expressions 

S t a t e m e n t s 
4.1. Compound statements and blocks 

Assignment statements 
Go to statements 
Dummy statements 
Conditional statements 
For statements 
Procedure statements 

5. D e c l a r a t i o n s 
5.1. Type declaration? 
5.2. Array declarations 
5.3. Switch declarations 
5.4. Procedure declarations 
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2.2. 
2.3. 
2.4. 
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2.6. 
2.7. 
2.8. 
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3.3. 
3.4. 
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This report was published simul
taneously in the Communications 
of the ACM, 6, No. 1 (1963), 1-17, 
the Numerische Mathematik, and the 
Computer Journal. 



REVISED ALGOL 60 
I N T R O D U C T I O N 

B a c k g r o u n d 

After the publication of a preliminary report on the 
algorithmic language Algol , 1 , 2 as prepared at a conference 
in Zurich in 1958, much interest in the Algol language 
developed. 

As a result of an informal meeting held at Mainz in 
November 1958, about forty interested persons from 
several European countries held an Algol implementa
tion conference in Copenhagen in February 1959. A 
"hardware group" was formed for working cooperatively 
right down to the level of the paper tape code. This 
conference also led to the publication by Regnecentralen, 
Copenhagen, of an ALGOL Bulletin, edited by Peter 
Naur , which served as a forum for further discussion. 
During the June 1959 I C I P Conference in Paris several 
meetings, both formal and informal ones, were held. 
These meetings revealed some misunderstandings as 
to'the intent of the group which was primarily responsible 
for the formulation of the language, but at the same time 
made it clear that there exists a wide appreciation of the 
effort involved. As a result of the discussions it was de
cided to hold an international meeting in January 1900 
for improving the Algol language and preparing a final 
report. A t a European Algol Conference in Paris in 
November 1959 which was attended by about fifty people, 
seven European representatives were selected to attend 
the January 1960 Conference, and they represent the 
following organizations: Association Francaise de Calcul, 
British Computer Society, Gesellschaft fiir Angewandte 
Mathematik und Mechanik, and Nederlands Reken-
machine Genootschap. The seven representatives held a 
final preparatory meeting at Mainz in December 1959. 

Meanwhile, in the United States, anyone who wished to 
suggest changes or corrections to Algol was requested to 
send his comments to the Communications of the ACM, 
where they were published. These comments then became 
the basis of consideration for changes in the Algol lan
guage. Both the Share and U S E organizations estab
lished Algol working groups, and both organizations 
were represented on the A C M Committee on Program
ming Languages. The A C M Committee met in Washing
ton in November 1959 and considered all comments on 
Algol that had been sent to the A C M Communications. 
Also, seven representatives were selected to attend the 
January 1960 international conference. These seven 
representatives held a final preparatory meeting in Boston 
in December 1959. 

J a n u a r y 1960 Conference 

The thirteen representatives,3 from Denmark, England, 
France, Germany, Holland, Switzerland, and the United 
States, conferred in Paris from January 11 to 16, 1960. 

Prior to this meeting a completely new draft report was 
worked out from the preliminary report and the recom
mendations of the preparatory meetings by Peter Naur 

and the conference adopted this new form as the basis for 
its report. The Conference then proceeded to work for 
agreement on each item of the report. The present report 
represents the union of the Committee's concepts and the 
intersection of its agreements. 

A p r i l 1962 Conference [Edited by M . Woodger] 

A meeting of some of the authors of Algol (JO was held 
on Apr i l 2-3, 1962 in Rome, I taly , through the facilities 
and courtesy of the International Computation Centre. 
The following were present: 
Authors Advisers Observer 

F. L. Bauer M. Paul W. L. van der Poel 
J . Green It. Franciotti (Chairman, 1FIP 
C. Katz P. Z. Ingerman T C 2.1 Working 
R. Kogon Group ALGOL) 

(representing J . W. 
Backus) 

P. Naur 
K. Samelson G. Seegmuller 
J . H. Wegstein It. E. Utman 
A. van Wijngaarden 
M. Woodger P. Landin 

The purpose of the meeting was to correct known 
errors in, attempt to eliminate apparent ambiguities in , 
and otherwise clarify the Algol 60 Report. Extensions 
to the language were not considered at the meeting. 
Various proposals for correction and clarification that 
were submitted by interested parties in response to the 
Questionnaire in AWOL Bulletin No . 14 were used as a 
guide. 

Th is report* constitutes a supplement to the Algol 60 
Report which should resolve a number of difficulties 
therein. N o t all of the questions raised concerning the 
original report could be resolved. Rather than risk hastily 
drawn conclusions on a number of subtle points, which 
might create new ambiguities, the committee decided to 
report only those points which they unanimously felt 
could be stated in clear and unambiguous fashion. 

Questions concerned with the following areas are left 
for further consideration by Working Group 2.1 of I F I P , 
in the expectation that current work on advanced pro-
* [ E d i t o r ' s N o t e . The present edition follows the text which 

was approved by the Council of IFIP. Although it is not clour from 
the Introduction,'the present version is the original report of the 
January 1900 conference modified according to the agreements 
reached during the April 1902 conference. Thus the report men
tioned here is incorporated in the present version. The modifica
tions touch the original report in the following sections: Changes . 
of text: 1 with footnote; 2.1 footnote; 2.3; 2.7; 3.3.3; 3.3.4.2; 4.1.3; 
4.2.3; 4.2.4; 4.3.4; 4.7.3; 4.7.3.1; 4.7.3.3; 4.7.5.1; 4.7.5.4; 4.7.6; 
5; 5.3.3; 5.3.5; 5.4.3; 5.4.4; 5.4.5. Changes of syntax: 3.4.1; 4.1.1; 
4.2.1; 4.5.1.] 

1 Preliminary report—International Algebraic Language. 
Comm. ACM 1, 12 (1958), 8. 

2 Report on the Algorithmic Language ALGOL by the ACM 
Committee on Programming Languages and the GAMM Com
mittee on Programming, edited by A. J . Perlis and K. Samelson. 
Num. Math. 1 (1959), 41-60. 

* William Turanski of the American group was killed by an 
automobile just prior to the January 1960 Conference. 



gramming languages will lead to better resolution: 
1. Side effects of functions 
2. T h e call by name concept 
3. o w n : static or dynamic 
4. For statement: static or dynamic 
5. Conflict between specification and declaration 
The authors of the Algol 00 Report present at the 

Rome Conference, l>eing aware of the formation of a 
Working Group on Algol by I F I P , accepted that any 
collective responsibility which they might have with 
respect to the development, specification and refinement 
of the Algol language will from now on be transferred to 
that body. 

This report has been reviewed by I F I P T C 2 on Pro
gramming Languages in August 1902 and has been ap
proved by the Council of the International Federation 
for Information Processing. 

As with the preliminary Algol report, three different 
levels, of language are recognized, namely a Reference 
Language, a Publication Language and several Hardware 
Representations. 

Reference Language 
1. I t is the working language of the committee. 
2. I t is the defining language. 
3. T h e characters are determined by ease of mutual 

understanding and not by any computer limitations, 
coders notation, or pure mathematical notation. 

4. I t is the basic reference and guide for compiler 
builders. 

5. I t is the guide for all hardware representations. 
0. I t is the guide for transliterating from publication 

language to any locally appropriate hardware representa
tions. 

D E S C R I P T I O N O F T H E 

1. S t r u c t u r e o f t h e L a n g u a g e 

As stated in the introduction, the algorithmic language 
has three different kinds of representations—reference, 
hardware, and publication—and the development de
scribed in the sequel is in terms of the reference repre
sentation. This means that all objects defined within the 
language are represented by a given set of symbols—and 
it is only in the choice of symbols that the other two 
representations may differ. Structure and content must 
be the same for all representations. 

The purpose of the algorithmic language is to describe 
computational processes. The basic concept used for the 
description of calculating rules is the well-known arith
metic expression containing as constituents numbers, var i 
ables, and functions. From such exprcasions are com
pounded, by applying rules of arithmetic composition, 

R E V I S E D A L G O L 6 0 

7. The main publications of the Algol language itself 
will use the reference representation. 

Publication Language 
1. The publication language admits variations of the 

reference language according to usage of printing and hand
writing (e.g., subscripts, spaces, exponents, Greek letters). 

2. I t is used for stating and communicating processes. 
3. The characters to be used may be different in 

different countries, but univocal correspondence with 
reference representation must be secured. 

Hardware Reprenentations 
1. Each one of these is a condensation of the reference 

language enforced by the limited number of characters on 
standard input equipment. 

2. Each one of these uses the character set of a particu
lar computer and is the language accepted by a translator 
for that computer. 

3. Each one of these must be accompanied by a special 
set of rules for transliterating from Publication or Refer
ence language. 

For transliteration between the reference language and 
a language suitable for publications, among others, the 
following rules are recommended. 

Reference Language Publication language 
Subscript bracket ( ! Lowering of the line between the 

brackets and removal of the 
brackets 

Exponentiation ] Raising of the exponent 
Parentheses ( ) Any form of parentheses, brackets, 

braces 
Basis of ten i o Raising of the ten and of the follow

ing integral number, inserting of 
the intended multiplication sign 

R E F E R E N C E L A N G U A G E 
W a s rich u b e r h a u p t s a g e n Iftsst, l a s s t 
s i c h k l a r s a g e n ; u n d w o v o n m a n n i c h t 
r e d e n k a n n , d a r u b e r m u s s m a n s c h w e i g e n . 

L d d w i o W i t t g e n s t e i n . 

self-contained units of the language—explicit formulae 
—cal led assignment statements. 

T o show the flow of computational processes, certain 
nonarithmetic statements and statement clauses are 
added which may describe, e.g., alternatives, or iterative 
repetitions of computing statements. Since it is necessary 
for the function of these statements that one statement 
refer to another, statements may be provided with labels. 
A sequence of statements may be enclosed between the 
statement brackets beg in and e n d to form a compound 
statement. 

Statements are supported by declarations which are not 
themselves computing instructions but inform the trans
lator of the existence and certain properties of objects 
appearing in statements, such as the class of numbers 
taken on as values by a variable, the dimension of an 



REVISED ALGOL 60 
array of numbers, or even the set of rules defining a func
tion. A sequence of declarations followed by a sequence of 
statements and enclosed between begin and end con
stitutes a block. Eve ry declaration appears in a block in 
this way and is valid only for that block. 

A program is a block or compound statement which is 
not contained within another statement and which makes 
no use of other statements not contained within it. 

I n the sequel the syntax and semantics of the language 
will be given. 4 

1.1. Formalism for Syntactic Description 
The syntax will be described with the aid of metalin

guistic formulae.8 Thei r interpretation is best explained 
by an example 

<ab> ::- ( | [ | <ob> ( | <ab)(d> 
Sequences of characters enclosed in the brackets ( ) repre
sent metalinguistic variables whoso values are sequences 
of symbols. The marks : : = and | (the latter with the 
meaning of o r ) are metalinguistic connectives. A n y mark 
in a formula, which is not a variable or a connective, 
denotes itself (or the class of marks which are similar to i t ) . 
Juxtaposition of marks and/or variables in a formula 
signifies juxtaposition of the sequences denoted. Thus the 
formula above gives a recursive rule for the formation of 
values of the variable (ab). I t indicates that (ab) may 
have the value ( or [ or that given some legitimate value 
of (ab), another may be formed by following it with the 
character ( or by following it with some value of the var i 
able (d) . I f the values of (d) are the decimal digits, some 
values of (ab) are: 

l(((K37( (12345( ((( [86 
I n order to facilitate the study, the symbols used for 
distinguishing the metalinguistic variables (i.e. the se
quences of characters appearing within the brackets ( ) 
as ab in the above example) have l>een chosen to be words 
describing approximately the nature of the corresponding 
variable. Where words which have appeared in this manner 
are used elsewhere in the text they will refer to the corre
sponding syntactic definition. I n addition some formulae 
have been given in more than one place. 

Definition: 
(empty) ::-
(i.e. the null string of symbols). 

4 Whenever the precision of arithmetic is stated as being in general not specified, or the outcome of a certain process is left undefined or said to be undefined, this is to be interpreted in the sense that a program only fully defines a computational process if the accompanying information specifies the precision assumed, the kind of arithmetic assumed, and the course of action to be taken in all such cases as may occur during the execution of the computation. 6 Cf. J. W. Backus, The syntax and semantics of the proposed international algebraic language of the Zurich ACM-GAMM conference. Proc. lntcrnat. Conf. Inf. Proc, UNESCO, Paris, June 1059. 

2. Basic Symbols, Identifiers, Numbers, and 
Strings. Basic Concepts. 
The reference language is built up from the following 

basic symbols: 

(basic symbol) ::- (letter)|(digit)|(logical value)){delimiter) 
2.1. Letters 

(letter) o|b|e|d|«l/l9l*l*Î UIm|fi|o|p|9|r|<|<|tt|ir|iii|z|y|i| 
A\n\C\D\E\F\G\H\I\J\K\L\M\N\()\P^ 

This alphabet may arbitrarily be restricted, or extended 
with any other distinctive character (i.e. character not 
coinciding with any digit, logical value or delimiter). 

Letters do not have individual meaning. They are 
used for forming identifiers and strings6 (cf. sections 2.4. 
Identifiers, 2.6. Strings). 

2.2.1. Digits 
(digit) 0|1|2|3|4|5|6!7|8|9 

Digits are used for forming numbers, identifiers, and 
strings. 

2.2.2. Logical Values 
(logical value) ::= truejfalse 

T h e logical values have a fixed obvious meaning. 

2.3. Delimiters 
(delimiter) :: = (operator )| (separator )| (bracket )| (declarator )| (specificator) (operator) ::= (arithmetic operator )| (relational operator )| (logical operator)|(sequential operator) (arithmetic operator) ::=» +1-|X |/| + IT (relational operator) ::= <|̂ |«|̂ |>|̂  (logical operator) ::= ~|3|VlA|-i (sequential operator) ::= go toJif|thcn|clse|for|do7 

(separator) ::== .|.|io|:|;|: = |u|8tep|until|while|comment (bracket) ::= (|)|U]|T|be*in|end (declarator) ::= own|Boolean|integer|real|array|8witch| procedure (specificator) ::= Htring|label|vuluc 
Delimiters have a fixed meaning which for the most part 

is obvious or else will be given at the appropriate place 
in the sequel. 

Typographical features such as blank space or change 
to a new line have no significance in the reference language. 
T h e y may, however, be used freely for facilitating reading. 

For the purpose of including text among the symbols of 

• It should be particularly noted that throughout the reference language underlining [in typewritten copy; boldface type in printed copy—Ed.) is used for defining independent basic symbols (see sections 2.2.2 and 2.3). These are understood to have no relation to the individual letters of which they are composed. Within the present report [not including headings—Kd.J, boldface will be used for no other purpose. 7 do is used in for statements. It has no relation whatsoever to the do of the preliminary report, which is not included in ALGOL 60. 



a program the following "comment" conventions hold: 

The sequence of basic symbols: is equivalent to 
; comment (any sequence not containing ;); ; 
begin comment (any sequence not containing ;); begin 
end (any sequence not containing end or ; or else) end 
B y equivalence is here meant that any of the three struc
tures shown in the left-hand column may be replaced, in 
any occurrence outside of strings, by the symbol shown on 
the same line in the right-hand column without any 
effect on the action of the program. I t is further understood 
that the comment structure encountered first in the text 
when reading from left to right has precedence in being 
replaced over later structures contained in the sequence. 

2.4. Identifiers 
2.4.1. Syntax 

(identifier) (letter)|(identifier)(letter)|(identifier)(digit) 

2.4.2. Examples 

7 
Soup 
Vila 

aUkTMNs 
MARILYN 

2.4.3. Semantics 
Identifiers have no inherent meaning, but serve for the 

identification of simple variables, arrays, labels, switches, 
and procedures. T h e y may be chosen freely (cf., however, 
section 3.2.4. Standard Functions). 

The same identifier cannot be used to denote two 
different quantities except when these quantities have 
disjoint scopes as defined by the declarations of the pro
gram (cf. section 2.7. Quantities, Kinds and Scopes, and 
section 5. Declarations). 

2.5. Numbers 
2.5.1. Syntax 

(unsigned integer) ::• (digit)|(unsigned integer)(digit) 
(integer) ::*» (unsigned integer)|+ (unsigned integer)| 

— (unsigned integer) 
(decimal fraction) ::» .(unsigned integer) 
(exponent part) to (integer) 
(decimal number) ::- (unsigned integer)|(decimal fraction)! 

(unsigned integer)(decimal fraction) 
(unsigned number) ::- (decimal number)|(exponent part)) 

(decimal number)(exponent part) 
(number) ::=» (unsigned number))-}-(unsigned number)| 

— (unsigned number) 
2.5.2. Examples 

0 -200.O84 -.083io-02 
177 +07.43w8 -io7 
.5384 9.34w+10 i « - 4 

+0.7300 2-io4 +io+5 

2.5.3. Semantics 
Decimal numbers have their conventional meaning. 

The exponent part is a scale factor expressed as an integral 
power of 10. 
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2.5.4. Types 
Integers are of type integer. A l l other numbers are of 

type real (cf. section 5.1. T y p e Declarations). 

2.6. Strings 
2.6.1. Syntax 

(proper string) ::«» (any sequence of basic symbols not containing 
' or ')|(empty) 

(open string) (proper string)|'(open string)'| 
(open string)(open string) 

(string) '(open string)' 
2.6.2. Examples 

'5kM-'[[[yW:'Tt" 
'.. This u is u a u 'string" 

2.6.3. Semantics 
I n order to enable the language to handle arbitrary 

sequences of basic symbols the string quotes ' and * are 
introduced. The symbol u denotes a space. I t has no 
significance outside strings. 

Strings are used as actual parameters of procedures 
(cf. sections 3.2. Function Designators and 4.7. Procedure 
Statements). 

2.7. Quantities, Kinds and Scopes 
The following kinds of quantities are distinguished: 

simple variables, arrays, labels, switches, and procedures. 
The scope of a quantity is the set of statements and 

expressions in which the declaration of the identifier asso
ciated with that quantity is valid. For labels see section 
4.1.3. 

2.8. Values and Types 
A value is an ordered set of numbers (special case: a 

single number), an ordered set of logical values (special 
case: a single logical value), or a label. 

Certain of the syntactic units are said to possess values. 
These values wil l in general change during the execution 
of the program. The values of expressions and their con
stituents are defined in section 3. The value of an array 
identifier is the ordered set of values of the corresponding 
array of subscripted variables (cf. section 3.1.4.1). 

The various " types" (integer, real, Boolean) basically 
denote properties of values. The types associated with 
syntactic units refer to the values of these units. 

3. Expressions 
I n the language the primary constituents of the pro

grams describing algorithmic processes are arithmetic. 
Boolean, and designational expressions. Constituents of 
these expressions, except for certain delimiters, are logical 
values, numbers, variables, function designators, and 
elementary arithmetic, relational, logical, and sequential 
operators. Since the syntactic definition of both variables 
and function designators contains expressions, the defini
tion of expressions, and their constituents, is necessarily 
recursive. 

(expression) (arithmetic expression)!(Boolean expression)) 
(designational expression) 
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3.1. V a r i a b l e s 
3.1.1. Syntax 

( v a r i a b l e i d e n t i f i e r ) ( i d e n t i f i e r ) 
( s i m p l e v a r i a b l e ) ( v a r i a b l e i d e n t i f i e r ) 
( s u b s c r i p t e x p r e s s i o n ) ( a r i t h m e t i c e x p r e s s i o n ) 
( s u b s c r i p t l i s t ) : : = ( s u b s c r i p t e x p r e s s i o n ) ! ( s u b s c r i p t 

( s u b s c r i p t e x p r e s s i o n ) 
( a r r a y i d e n t i f i e r ) ( i d e n t i f i e r ) 
( s u b s c r i p t e d v a r i a b l e ) ( a r r a y i d e n t i f i e r ) [ ( s u b s c r i p t 
( v a r i a b l e ) :: = ( s i m p l e v a r i a b l e ) | ( s u b s c r i p t e d v a r i a b l e ) 

l i s t ) , 

l i s t ) ] 

3.1.2. Examples 

ep8ilon 
detA 
o l 7 
Q [ 7 , 2 ] 
x[8in(nXpi/2),Q[d,n,4]] 

3.1.3. Semantics 
A variable is a designation given to a single value. Th is 

value may be used in expressions for forming other values 
and may be changed at wil l by means of assignment state
ments (section 4.2). The type of the value of a particular 
variable is denned in the declaration for the variable 
itself (cf. section 5.1. T y p e Declarations) or for the corre
sponding array identifier (cf. section 5.2. Ar ray Declara
tions). 

3.1.4. Subscripts 
3.1.4.1. Subscripted variables designate values which 

are components of multidimensional arrays (cf. section 
5.2. A r ray Declarations). Each arithmetic expression of 
the subscript list occupies one subscript position of 
the subscripted variable, and is called a subscript. The 
complete list of subscripts is enclosed in the subscript 
brackets [ ]. The array component referred to by a sub
scripted variable is specified by the actual numerical value 
of its subscripts (cf. section 3.3. Arithmetic Expressions). 

3.1.4.2. Each subscript position acts like a variable of 
type in teger and the evaluation of the subscript is under
stood to be equivalent to an assignment to this fictitious 
variable (cf. section 4.2.4). The value of the subscripted 
variable is defined only if the value of the subscript ex
pression is within the subscript bounds of the array (cf. 
section 5.2. Ar ray Declarations). 

3.2. F u n c t i o n D e s i g n a t o r s 
3.2.1. Syntax 

( p r o c e d u r e i d e n t i f i e r ) ( i d e n t i f i e r ) 
( a c t u a l p a r a m e t e r ) : : = ( s t r i n g ) ! ( e x p r e s s i o n ) ! ( a r r a y i d e n t i f i e r ) ! 

( s w i t c h i d e n t i f i e r ) | ( p r o c e d u r e i d e n t i f i e r ) 
( l e t t e r s t r i n g ) ( l e t t e r ) ! ( l e t t e r s t r i n g ) ( l e t t e r ) 
( p a r a m e t e r d e l i m i t e r ) , \ ) ( l e t t e r s t r i n g ) : ( 
( a c t u a l p a r a m e t e r l i s t ) : : = ( a c t u a l p a r a m e t e r ) ! 

( a c t u a l p a r a m e t e r l i s t ) ( p a r a m e t e r d e l i m i t e r ) 
( a c t u a l p a r a m e t e r ) 

( a c t u a l p a r a m e t e r p a r t ) : : » ( e m p t y ) | ( ( a c t u a l p a r a m e t e r l i s t ) ) 
( f u n c t i o n d e s i g n a t o r ) ( p r o c e d u r e i d e n t i f i e r ) 

( a c t u a l p a r a m e t e r p a r t ) 

3.2.2. Examples 

ain(a—b) 
J(v+8,n) 
R 
S ( a - 5 ) T e m p e r a t u r e : (T) P r e s s u r e : (P) 
Compile^ :* ' ) S t a c k r ( Q ) 

3.2.3. Semantics 
Function designators define single numerical or logical 

values, which result through the application of given sets 
of rules defined by a procedure declaration (cf. section 5.4. 
Procedure Declarations) to fixed sets of actual param
eters. The rules governing specification of actual param
eters are given in section 4.7. Procedure Statements. N o t 
every procedure declaration defines the value of a function 
designator. 

3.2.4. Standard functions 
Certain identifiers should be reserved for the standard 

functions of analysis, which will be expressed as procedures. 
I t is recommended that this reserved list should contain: 

f o r t h e m o d u l u s ( a b s o l u t e v a l u e ) o f t h e v a l u e o f t h e 
e x p r e s s i o n E 

f o r t h e s i g n o f t h e v a l u e o f E ( + l f o r E > 0 , 0 f o r E « 0 , 
- l f o r E < 0 ) 

f o r t h e s q u a r e r o o t o f t h e v a l u e o f E 
f o r t h e s i n e o f t h e v a l u e o f E 
f o r t h e c o s i n e o f t h e v a l u e o f E 
f o r t h e p r i n c i p a l v a l u e o f t h e a r c t a n g e n t o f t h e v a l u e 

o f E 
f o r t h e n a t u r a l l o g a r i t h m o f t h e v a l u e o f E 
f o r t h e e x p o n e n t i a l f u n c t i o n o f t h e v a l u e o f E ( e E ) . 

a f e s ( E ) 

8ign(E) 

sqrt(E) 
sin(E) 
c o s ( E ) 
arctan(E) 

ln(E) 
exp(E) 

These functions are all understood to operate indifferently 
on arguments both of type real and integer . T h e y will 
all yield values of type real , except for sign(E) which will 
have values of type in teger . I n a particular representa
tion these functions may be available without explicit 
declarations (cf. section 5. Declarations). 

3.2.5. Transfer functions 
I t is understood that transfer functions between any 

pair of quantities and expressions may be defined. Among 
the standard functions it is recommended that there be 
one, namely, 

entier(E), 
which "transfers" an expression of real type to one of 
integer type, and assigns to it the value which is the 
largest integer not greater than the value of E. 

3.3. A r i t h m e t i c E x p r e s s i o n s 
3.3.1. Syntax 

( a d d i n g o p e r a t o r ) 4 - | — 
( m u l t i p l y i n g o p e r a t o r ) : : = * X | / | - s -
( p r i m a r y ) :: = ( u n s i g n e d n u m b e r ) | ( v a r i a b l e ) | 

( f u n c t i o n d e s i g n a t o r ) ! ( ( a r i t h m e t i c e x p r e s s i o n ) ) 
( f a c t o r ) : : = ( p r i m a r y ) | ( f a c t o r ) | ( p r i m a r y ) 
( t e r m ) : : = = ( f a c t o r ) ) ( t e r m ) ( m u l t i p l y i n g o p e r a t o r ) ( f a c t o r ) 
( s i m p l e a r i t h m e t i c e x p r e s s i o n ) ( t e r m ) J 

( a d d i n g o p e r a t o r ) ( t e r m ) | ( s i m p l e a r i t h m e t i c e x p r e s s i o n ) 
( a d d i n g o p e r a t o r ) ( t e r m ) 

( i f c l a u s e ) : : = « i f ( B o o l e a n e x p r e s s i o n ) t h e n 
( a r i t h m e t i c e x p r e s s i o n ) ( s i m p l e a r i t h m e t i c e x p r e s s i o n ) ! 

( i f c l a u s e ) ( s i m p l e a r i t h m e t i c e x p r e s s i o n ) e l s e 
( a r i t h m e t i c e x p r e s s i o n ) 



3.3.2. Examples 
Primaries: 

7.394io-8 
sum ti>li+2,8] 
cos{y+zX$) 

(o-3/j,+t»«t8) 
Factors: 

omega 
8um\cos{y+zXS) 

7.394io-8Tw{t+2,8]f(a-3/y+tmt8) 
Terms: 

U 
omegaX8um\cos (y+2X3)/7.394io-8tw[i-f 2,8]t 

(a-3/y+vu]S) 
Simple arithmetic expression: 

. U-Yu+omegaX8umU<>8{y+zX3)/73M -8tti>[t+2f8]t (o-3/y+imT8) 
Arithmetic expressions: 

wXu-Q(S+Cu)]2 
if g>0 then S+3XQM else 2XS+3X? if o<0 then U+V else if oX6>17 then U/V else if k*y then F/f7 else 0 
aX8tn(omegaXt) Ô iô XoliVxCiV-l)̂ , 0] (AXarctan(y)+Z)T(7+Q) if 9 then n— 1 else n if a<0 then A/B else if 6=0 then B/A else z 

3.3.3. Semantics 
A n arithmetic expression is a rule for computing a 

numerical value. I n case of simple arithmetic expressions 
this value is obtained by executing the indicated arith
metic operations on the actual numerical values of the 
primaries of the expression, as explained in detail in 
section 3.3.4 below. The actual numerical value of a 
primary is obvious in the case of numbers. For variables 
it is the current value (assigned last in the dynamic sense), 
and for function designators it is the value arising from 
the computing rules defining the procedure (cf. section 
5.4.4. Values of Function Designators) when applied to 
the current values of the procedure parameters given in 
the expression. Final ly, for arithmetic expressions en
closed in parentheses the value must through a recursive 
analysis be expressed in terms of the values of primaries 
of the other three kinds. 

I n the more general arithmetic expressions, which in 
clude if clauses, one out of several simple arithmetic ex
pressions is selected on the basis of the actual values of the 
Boolean expressions (cf. section 3.4. Boolean Expressions). 
Th is selection is made as follows: The Boolean expressions 
of the if clauses are evaluated one by one in sequence from 
left to right until one having the value true is found. The 
value of the arithmetic expression is then the value of 
the first arithmetic expression following this Boolean 
(the largest arithmetic expression found in this position 
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is understood). The construction: 

else (simple arithmetic expression) 
is equivalent to the construction: 

else if true then (simple arithmetic expression) 
3.3.4. Operators and types 
Apart from the Boolean expressions of if clauses, the 

constituents of simple arithmetic expressions must be of 
types real or integer (cf. section 5.1. T y p e Declarations). 
The meaning of the basic operators and the types of the 
expressions to which they lead are given by the following 
rules: 

3.3.4.1. The operators + , — , and X have the conven
tional meaning (addition, subtraction, and multiplication). 
The type of the expression will be integer if both of the 
operands are of integer type, otherwise real. 

3.3.4.2. The operations (term)/(factor) and (term) -f-
(factor) both denote division, to be understood as a multi 
plication of the term by the reciprocal of the factor with 
due regard to the rules of precedence (cf. section 3.3.5). 
Thus for example 

a/bX7/(p-q)Xv/s 

means 

((((oX (6"1))X7)X «p-q)-*))Xv)X Or1) 
The operator / is defined for all four combinations of 
types real and integer and wil l yield results of real type 
in any case. The operator -5- is defined only for two 
operands both of type integer and will yield a result of 
type integer, mathematically defined as follows: 

a+6-» sign {a/b)Xentier(abs(a/b)) 

(cf. sections 3.2.4 and 3.2.5). 
3.3.4.3. The operation (factor)!(primary) denotes ex

ponentiation, where the factor is the base and the primary 
is the exponent. Thus, for example, 

2\n}k means (2")* 
while 

2](n]m) means 2(B",) 

Writing i for a number of integer type, r for a number of 
real type, and a for a number of either integer or real 
type, the result is given by the following rules: 

aft If *>0, aXaX . . . Xo (i times), of the same type as a. If t—0, if â O, 1, of the same type as a. if a-0, undefined. If t<0, if ô O, l/(oXaX . . . Xa) (the denominator has —i factors), of type real, if a=»0, undefined, ofr If o>0, exp(rXMa)), of type real. If a-0, if r>0, 0.0, of type real. if rgO, undefined. If o<0, always undefined. 
3.3.5. Precedence of operators 
The sequence of operations within one expression is 
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generally from left to r ight, with the following additional 
rules: 

3.3.5.1. According to the syntax given in section 3.3.1 
the following rules of precedence hold: 

first: T 
s e c o n d : X / + 
t h i r d : + -

3.3.5.2. The expression between a left parenthesis and 
the matching right parenthesis is evaluated b y itself and 
this value is used in subsequent calculations. Consequently 
the desired order of execution of operations within an 
expression can always be arranged by appropriate posi
tioning of parentheses. 

3.3.6. Arithmetics of real.quantities 
Numbers and variables of type real must be interpreted 

in the sense of numerical analysis, i.e. as entities defined 
inherently with only a finite accuracy. Similarly, the 
possibility of the occurrence of a finfte deviation from the 
mathematically defined result in any arithmetic expression 
is explicitly understood. N o exact arithmetic wil l be 
specified, however, and it is indeed understood that 
different hardware representations may evaluate arith
metic expressions differently. The control of the possible 
consequences of such differences must be carried out by 
the methods of numerical analysis. This control must be 
considered a part of the process to be described, and wil l 
therefore be expressed in terms of the language itself. 

3.4. B o o l e a n E x p r e s s i o n s 
3.4.1. Syntax 

( r e l a t i o n a l o p e r a t o r ) :: - < | £ | -1 ;> | > | 
( r e l a t i o n ) : : « ( s i m p l e a r i t h m e t i c e x p r e s s i o n ) 

( r e l a t i o n a l o p e r a t o r ) ( s i m p l e a r i t h m e t i c e x p r e s s i o n ) 
( B o o l e a n p r i m a r y ) ::- ( l o g i c a l v a l u e ) | ( v a r i a b l e ) | 

( f u n c t i o n d e s i g n a t o r ) | ( r e l a t i o n ) | ( ( B o o l e a n e x p r e s s i o n ) ) 
( B o o l e a n s e c o n d a r y ) : : « ( B o o l e a n p r i m a r y ) | - i ( B o o l e a n p r i m a r y ) 
( B o o l e a n f a c t o r ) ( B o o l e a n s e c o n d a r y ) ! 

' ( B o o l e a n f a c t o r ) A ( B o o l e a n s e c o n d a r y ) 
( B o o l e a n t e r m ) : : » ( B o o l e a n f a c t o r ) ! ( B o o l e a n t e r m ) 

V ( B o o l e a n f a c t o r ) 
( i m p l i c a t i o n ) :: « * ( B o o l e a n t e r m ) | ( i m p l i c a t i o n ) 3 ( B o o l e a n t e r m ) 
( s i m p l e B o o l e a n ) : : « ( i m p l i c a t i o n ) ! 

( s i m p l e B o o l e a n ) a ( i m p l i c a t i o n ) 
( B o o l e a n e x p r e s s i o n ) : : » • ( s i m p l e B o o l e a n ) ! 

( i f c l a u s e ) ( s i m p l e B o o l e a n ) e l s e ( B o o l e a n e x p r e s s i o n ) 

3.4.2. Examples 

x - - 2 
Y>Vyz<q 
a + b > - 5 A « - d > g ! 2 
pAq V x*v 0«-,aA&A-i cVdVe3 - i / 
I f k<\ t h e n a>w e l s e a ^ c 
i f i f i f a t h e n 6 e l s e c t h e n d e l s e / t h e n g e l s e h<k 

3.4.3. Semantics 
A Boolean expression is a rule for computing a logical 

value. The principles of evaluation are entirely analogous 
to those given for arithmetic expressions in section 3.3.3. 

3.4.4. Types 
Variables and function designators entered as Boolean 

primaries must be declared Boolean (cf. section 5.1. 
T y p e Declarations and section 5.4.4. Values of Function 
Designators). 

3.4.5. The operators 
Relations take on the value true whenever the corre

sponding relation is satisfied for the expressions involved, 
otherwise false. 

The meaning of the logical operators-i (not), A (and), 
V (or) , 3 (implies), and m (equivalent), is given by the 
following function table. 

b l f a l s e f a l s e t r u e t r u e 
b 2 f a l s e t r u e f a l s e t r u e 
— i b l t r u e t r u e f a l s e f a l s e 
b l A h 2 f a l s e f a l s e f a l s e t r u e 
b l \ / b 2 f a l s e t r u e t r u e t r u e 
b l 3 b 2 t r u e t r u e f a l s e t r u e 
b l « b 2 t r u e f a l s e f a l s e t r u e 

3.4.6. Precedence of operators 
The sequence of operations within one expression is 

generally from left to right, with the following additional 
rules: 

3.4.6.1. According to the syntax given in section 3.4.1 
the following rules of precedence hold: 

first: a r i t h m e t i c e x p r e s s i o n s a c c o r d i n g t o s e c t i o n 3 . 3 . 5 . 
s e c o n d : < £ — ^ > ^ 
t h i r d : - i 
f o u r t h : A 
fifth: V 
s i x t h : 3 
s e v e n t h : m 

3.4.6.2. The use of parentheses wil l be interpreted in 
the sense given in section 3.3.5.2. 

3.5. D e s i g n a t i o n a l E x p r e s s i o n s 
3.5.1. Syntax 

( l a b e l ) : : - » ( i d e n t i f i e r ) ] ( u n s i g n e d i n t e g e r ) 
( s w i t c h i d e n t i f i e r ) ::— ( i d e n t i f i e r ) 
( s w i t c h d e s i g n a t o r ) :: — ( s w i t c h i d e n t i f i e r ) ! ( s u b s c r i p t e x p r e s s i o n ) ] 
( s i m p l e d e s i g n a t i o n a l e x p r e s s i o n ) :: - ( l a b e l ) | ( s w i t c h d e s i g n a t o r ) | 

( ( d e s i g n a t i o n a l e x p r e s s i o n ) ) 
( d e s i g n a t i o n a l e x p r e s s i o n ) ::- ( s i m p l e d e s i g n a t i o n a l e x p r e s s i o n ) ) 

(if c l a u s e ) ( s i m p l e d e s i g n a t i o n a l e x p r e s s i o n ) e l s e 
( d e s i g n a t i o n a l e x p r e s s i o n ) 

3.5.2. Examples 

1 7 
p 9 
Choo*e[n~-1] 
7 W n [ i f y < 0 t h e n N e l s e N+l] 
i f Ab<c t h e n 1 7 e l s e q[if w£0 t h e n 2 e l s e n] 

3.5.3. Semantics 
A designational expression is a rule for obtaining a label 

of a statement (cf. section 4. Statements). Again the 
principle of the evaluation is entirely analogous to that of 
arithmetic expressions (section 3.3.3). I n the general case 
the Boolean expressions of the if clauses will select a 
simple designational expression. I f this is a label the 
desired result is already found. A switch designator refers 
to the corresponding switch declaration (cf. section 5.3. 



Switch Declarations) and by the actual numerical value 
of its subscript expression selects one of the designational 
expressions listed in the switch declaration by counting 
these from left to right. Since the designational expression 
thus selected may again be a switch designator this evalua
tion is obviously a recursive process. 

3.5.4. The subscript expression 
The evaluation of the subscript expression is analogous 

to that of subscripted variables (cf. section 3.1.4.2). The 
value of a switch designator is defined only if the subscript 
expression assumes one of the positive values 1, 2,3, . . . , n , 
where n is the number of entries in the switch list. 

3.5.5. Unsigned integers as labels 
Unsigned integers used as labels have the property that 

leading zeros do not affect their meaning, e.g. 00217 
denotes the same label as 217. 

4. S tatements 

The units of operation within the language are called 
statements. They will normally be executed consecutively 
as written. However, this sequence of operations may be 
broken by go to statements, which define their successor 
explicitly, and shortened by conditional statements, 
which may cause certain statements to be skipped. 

I n order to make it possible to define a specific dynamic 
succession, statements may be provided with labels. 

Since sequences of statements may be grouped together 
into compound statements and blocks the definition of 
statement must necessarily be recursive. Also since decla
rations, described in section 5, enter fundamentally into 
the syntactic structure, the syntactic definition of state
ments must suppose declarations to be already defined. 

4.1. Compound Statements and Blocks 
4.1.1. Syntax 

(unlabelled basic statement) ::= (assignment statement)! (go to statement) j (dummy statement) | (procedure statement) (basic statement) (unlabelled basic statement){(label): (basic statement) (unconditional statement) ::» (basic statement)! (compound statement )| (block) (statement) (unconditional statement)! (conditional statement)!(for statement) (compound tail) ::=» (statement) end |(statement) ; (compound tail) (blockhead) begin (declaration)! (block head) ; (declaration) (unlabelled compound) begin (compound tail) (unlabelled block) ::«= (block head) ; (compound tail) (compound statement) (unlabelled compound)! (label): (compound statement) (block) ::= (unlabelled block)!(label):(block) (program) ::= (block){(compound statement) 
This syntax may be illustrated as follows: Denoting arbi
trary statements, declarations, and labels, by the letters 
5, D , and L, respectively, the basic syntactic units take 
the forms: 

Block: 

L: L: ... begin D S end D 
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...S 
I t should be kept in mind that each of the statements S 
may again be a complete compound statement or block. 

4.1.2. Examples 

Basic statements: 

a := p+q 
go to Naples 

START: CONTINUE: W : = 

Compound statement: 

7.993 

Compound statement: 

L: L: ... begin S ; S ... S S end 

begin x :=» 0 ; for y 1 step 1 until n do 
x :» x+Afyl ; 

if x>q then go to STOP else if x>w-2 then go to S ; 
Aw: Si: W :» x+bob end 

Block: Q: begin integer t, * ; real w ; for i :•» 1 step 1 until m do for k i+l step 1 until m do begin w A[i, k) ; 
A[i,k] : - A [Ml J 
A[k, i] w end for i and k end block Q 

4.1.3. Semantics 
Eve ry block automatically introduces a new level of 

nomenclature. This is realized as follows: A n y identifier 
occurring within the block may through a suitable declara
tion (cf. section 5. Declarations) be specified to be local 
to the block in question. This means (a) that the entity 
represented by this identifier inside the block has no 
existence outside i t , and (b) that any entity represented 
by this identifier outside the block is completely inacces
sible inside the block. 

Identifiers (except those representing labels) occurring 
within a block and not being declared to this block will be 
nonlocal to it , i.e. wil l represent the same entity inside 
the block and in the level immediately outside it . A label 
separated by a colon from a statement, i.e. labelling that 
statement, behaves as though declared in the head of the 
smallest embracing block, i.e. the smallest block whose 
brackets beg in and end enclose that statement. I n this 
context a procedure body must be considered as if i t were 
enclosed by beg in and e n d and treated as a block. 

Since a statement of a block may again itself be a block 
the concepts local and nonlocal to a block must be under
stood recursively. Thus an identifier, which is nonlocal 
to a block A , may or may not be nonlocal to the block B 
in which A is one statement. 

4.2. Assignment Statements 
4.2.1. Syntax 

(left part) ::*» (variable) {(procedure identifier) . (left part list) ::=• (left part)|(left part list)(left part) (assignment statement)::— (left part list) (arithmetic expression )| (left part list)(Boolean expression) 
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4.2.2. Examples 

8 :« p[01 :*=.n n+l+s 
n n+1 
A B/C-v-qXS 
S\vjk+2\ :» 3-arctan(«X*eto) F Q> YAZ 

4.2.3. Semantics 
Assignment statements serve for assigning the value of 

an expression to one or several variables or procedure 
identifiers. Assignment to a procedure identifier may only 
occur within the body of a procedure defining the value of 
a function designator (cf. section 5.4.4). The process will 
in the general case be understood to take place in three 
steps as follows: 

4.2.3.1.,Any subscript expressions occurring in the left 
part variables are evaluated in sequence from left to right. 

4.2.3.2. The expression of the statement is evaluated. 
4.2.3.3. The value of the expression is assigned to all 

the left part variables, with any subscript expressions 
having values as evaluated in step 4.2.3.1. 

4.2.4. Types 
The type associated with all variables and procedure 

identifiers of a left part list must be the same. I f this type 
is Boo lean , the expression must likewise be Boo lean . 
I f the type is real or integer* the expression must be 
arithmetic. I f the type of the arithmetic expression differs 
from that associated with the variables and procedure 
identifiers, appropriate transfer functions are understood 
to be automatically invoked. For transfer from real to 
in teger type, the transfer function is understood to 
yield a result equivalent to 

entier(E+0 5) 

where E is the value of the expression. The type asso
ciated with a procedure identifier is given by the declarator 
which appears as the first symbol of the corresponding 
procedure declaration (cf. section 5.4.4). 

4.3. G o T o Statements 
4.3.1. Syntax 

(go to statement) go to (designational expression) 
4.3.2. Examples 

go to 8 
go to exit [n+11 go to Town[it y<0 then N else JV+U go to if Ab<c then 17 else q[if w<0 then 2 else n] 

4.3.3. Semantics 
A go to statement interrupts the normal sequence of 

operations, denned by the write-up of statements, by 
denning its successor explicitly by the value of a designa
tional expression. Thus the next statement to be executed 
wil l be the one having this value as its label. 

4.3.4. Restriction 
Since labels are inherently local, no go to statement can 

lead from outside into a block. A go to statement may, 
however, lead from outside into a compound statement. 

4.3.5. G o to an undefined switch designator 
A go to statement is equivalent to a dummy statement 

if the designational expression is a switch designator whose 
value is undefined. 

4.4. Dummy Statements 
4.4.1. Syntax 

(dummy statement) (empty) 
4.4.2. Examples 

L: 

begin ... ; John: end 
4.4.3. Semantics 
A dummy statement executes no operation. I t may 

serve to place a label. 

4.5. Conditional Statements 
4.5.1. Syntax 

(if clause) :: — if (Boolean expression) then (unconditional statement) ::*» (basic statement)! (compound statement)| (block) (if statement) (if clause) (unconditional statement) (conditional statement) ::=» (if statement)!(if statement) else (statement)!(if clause)(for statement)! (label) : (conditional statement) 
4.5.2. Examples 

if x>0 then n :» n+1 if v>u then V: q n+m else go to R if 8<Q\/P£Q then AA: begin if q<v then a v/s else y 2Xo end else if v>s then a :•» v—q else if v>8 — 1 then go to S 
4.5.3. Semantics 
Conditional statements cause certain statements to be 

executed or skipped depending on the running values of 
specified Boolean expressions. 

4.5.3.1. I f statement. T h e unconditional statement of 
an if statement will be executed if the Boolean expression 
of the if clause is true. Otherwise it will be skipped and 
the operation will be continued with the next statement. 

4.5.3.2. Conditional statement. According to the syn
tax two different forms of conditional statements are 
possible. These may be illustrated as follows: 

if Bl then 81 else if B2 then S2 else S3 ; 84 
and 

if Bl then 81 else if B2 then 82 else if B3 then S3 ; 84 
Here B l to B3 are Boolean expressions, while S I to S3 

are unconditional statements. S4 is the statement following 
the complete conditional statement. 

The execution of a conditional statement may be de
scribed as follows: The Boolean expression of the if clauses 
are evaluated one after the other in sequence from left to 
right until one yielding the value t r u e is found. Then the 
unconditional statement following this Boolean is exe
cuted. Unless this statement defines its successor explicitly 
the next statement to be executed will be S4, i.e. the state-



ment following the complete conditional statement. Thus 
the effect of the delimiter else may be described by saying 
that it defines the successor of the statement i t follows to 
be the statement following the complete conditional 
statement. 

The construction 

else (unconditional statement) 
is equivalent to 

else if true then (unconditional statement) 
I f none of the Boolean expressions of the if clauses is 

true, the effect of the whole conditional statement wil l be 
equivalent to that of a dummy statement. 

For further explanation the following picture may be 
useful: 

f f"""l 
if Bl then SI else if B2 then S2 else S3 ; S4 

L JL J 
Bl false B2 false 

4.5.4. G o to into a conditional statement 
The effect of a go to statement leading into a conditional 

statement follows directly from the above explanation of 
the effect of else. 

4.6. For Statements 
4.6.1. Syntax (for list element) ::** (arithmetic expression)! (arithmetic expression) step (arithmetic expression) until (arithmetic expression){(arithmetic expression) while (Boolean expression) (for list) ::- (for list element)|(for list) , (for list element) (for clause) ::** for (variable) :*» (for list) do (for statement) (for clause)(statement)| (label): (for statement) 
4.6.2. Examples 

for q :*» 1 step 8 until n do A[q] B[q] for k 1, V1X2 while VKN do for j J+G, L, 1 step 1 until N, C+D do 
AIM B[k,j] 

4.6.3. Semantics 
A for clause causes the statement S which it precedes to 

be repeatedly executed zero or more times. I n addition i t 
performs a sequence of assignments to its controlled 
variable. The process may be visualized by means of the 
following picture: 

r T i 
Initialize ; test ; statement S ; advance ; successor 

I - I 
for list exhausted 

I n this picture the word initialize means: perform the first 
assignment of the for clause. Advance means: perform the 
next assignment of the for clause. Test determines if the 
last assignment has been done. I f so, the execution con-
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tinues with the successor of the for statement. I f not, the 
statement following the for clause is executed. 

4.6.4. The for list elements 
The for list gives a rule for obtaining the values which 

are consecutively assigned, to the controlled variable. This 
sequence of values is obtained from the for list elements 
by taking these one by one in the order in which they are 
written. The sequence of values generated by each of the 
three species of for list elements and the corresponding 
execution of the statement S are given by the following 
rules: 

4.6.4.1. Arithmetic expression. This element gives rise 
to one value, namely the value of the given arithmetic 
expression as calculated immediately before the corre
sponding execution of the statement S. 

4.6.4.2. Step-until-element. A n element of the form 
A step B u n t i l C , where A , B , and C , are arithmetic ex
pressions, gives rise to an execution which may be de
scribed most concisely in terms of additional Algol 
statements as follows: 

V A ; LI: if (V-C)X sign(B)>0 then go to element exhausted; statement S ; V :« V+B ; go to LI ; 
where V is the controlled variable of the for clause and 
element exhausted points to the evaluation according to 
the next element in the for list, or if the step-until-element 
is the last of the list, to the next statement in the program. 

4.6.4.3. While-element. The execution governed b y a 
for list element of the form E w h i l e F, where E is an 
arithmetic and F a Boolean expression, is most concisely 
described in terms of additional Algol statements as 
follows: 

L3:V:-E ; if ~iF then go to element exhausted ; Statement S ; go to L3 ; 
where the notation is the same as in 4.6.4.2 above. 

4.6.5. The value of the controlled variable upon exit 
Ufcxm exit out of the statement S (supposed to be com

pound) through a go to statement the value of the con
trolled variable wil l be the same as it was immediately 
preceding the execution of the go to statement. 

I f the exit is due to exhaustion of the for list, on the 
other hand, the value of the controlled variable is unde
fined after the exit. 

4.6.6. G o to leading into a for statement 
The effect of a go to statement, outside a for statement, 

which refers to a label within the for statement, is unde
fined. 

4.7. Procedure Statements 
4.7.1. Syntax 

(actual parameter) ::=» (string)[(expression){(array identifier){ (switch identifier)|(procedure identifier) (letter string) (letter){(letter string)(letter) 
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(parameter delimiter) ::=» ,|)(letter string):( (actual parameter list) (actual parameter)! (actual parameter list)(parameter delimiter) (actual parameter) (actual parameter part) (empty)! ((actual parameter list)) (procedure statement) (procedure identifier) (actual parameter part) 

4.7.2. Examples 

Spur (A)Order: (7)Itesult to: (V) 
Transpose (Wtv+1) 
AbsmaxU ,N,M, YytI,K) 
I?inerproducl(A[t,P,u]tB[P],lOtPtY) 

These examples correspond to examples given in section 
5.4.2. 

4.7.3. Semantics 
A procedure statement serves to invoke (call for) the 

execution of a procedure body (cf. section 5.4. Procedure 
Declarations). Where the procedure body is a statement 
written in Algol the effect of this execution wil l be 
equivalent to the effect of performing the following opera
tions on the program at the time of execution of the pro
cedure statement: 

4.7.3.1. Value assignment (call by value) 
A l l formal parameters quoted in the value part of the 

procedure declaration heading are assigned the values 
(cf. section 2.8. Values and Types) of the corresponding 
actual parameters, these assignments being considered as 
being performed explicitly before entering the procedure 
body. The effect is as though an additional block embrac
ing the procedure body were created in which these assign
ments were made to variables local to this fictitious block 
wi th types as given in the corresponding specifications 
(cf. section 5.4.5). As a consequence, variables called by 
value are to be considered as nonlocal to the body of the 
procedure, but local to the fictitious block (cf. section 
5.4.3). 

4.7.3.2. Name replacement (call by name) 
A n y formal parameter not quoted in the value list is 

replaced, throughout the procedure body, by the corre
sponding actual parameter, after enclosing this latter in 
parentheses wherever syntactically possible. Possible 
conflicts between identifiers inserted through this process 
and other identifiers already present within the procedure 
body wil l be avoided by suitable systematic changes of the 
formal or local identifiers involved. 

4.7.3.3. Body replacement and execution 
Final ly the procedure body, modified as above, is 

inserted in place of the procedure statement and executed. 
I f the procedure is called from a place outside the scope 
of any nonlocal quantity of the procedure body the con
flicts between the identifiers inserted through this process 
of body replacement and the identifiers whose declarations 
are valid at the place of the procedure statement or func
tion designator wil l be avoided through suitable systematic 
changes of the latter identifiers. 

4.7.4. Actual-formal correspondence 
The correspondence between the actual parameters of 

the procedure statement and the formal parameters of the 
procedure heading is established as follows: The actual 
parameter list of the procedure statement must have the 
same number of entries as the formal parameter list of the 
procedure declaration heading. The correspondence is 
obtained by taking the entries of these two lists in the 
same order. 

4.7.5. Restrictions 
Fo r a procedure statement to be defined it is evidently 

necessary that the operations on the procedure body de
fined in sections 4.7.3.1 and 4.7.3.2 lead to a correct Algol 
statement. 

Th is imposes the restriction on any procedure statement 
that the kind and type of each actual parameter be com
patible with the kind and type of the corresponding formal 
parameter. Some important particular cases of this gen
eral rule are the following: 

4.7.5.1. I f a string is supplied as an actual parameter in 
a procedure statement or function designator, whose 
defining procedure body is an Algol 60 statement (as 
opposed to non-ALGOL code, cf. section 4.7.8), then this 
string can only be used within the procedure body as an 
actual parameter in further procedure calls. Ultimately it 
can only be used by a procedure body expressed in non-
Algol code. 

4.7.5.2. A formal parameter which occurs as a left part 
variable in an assignment statement within the procedure 
body and which is not called by value can only correspond 
to an actual parameter which is a variable (special case of 
expression). 

4.7.5.3. A formal parameter which is used within the 
procedure body as an array identifier can only corre
spond to an actual parameter which is an array identifier 
of an array of the same dimensions. I n addition if the 
formal parameter is called b y value the local array created 
during the call wil l have the same subscript bounds as 
the actual array. 

4.7.5.4. A formal parameter which is called by value 
cannot in general correspond to a switch identifier or a 
procedure identifier or a string, because these latter do not 
possess values (the exception is the procedure identifier of 
a procedure declaration which has an empty formal 
parameter part (cf. section 5.4.1) and which defines the 
value of a function designator (cf. section 5.4.4). Th is pro
cedure identifier is in itself a complete expression). 

4.7.5.5. A n y formal parameter may have restrictions 
on the type of the corresponding actual parameter asso
ciated with it (these restrictions may, or may not, be 
given through specifications in the procedure heading). 
I n the procedure statement such restrictions must evi 
dently be observed. 

4.7.6. Deleted. 
4.7.7. Parameter delimiters 
A l l parameter delimiters are understood to be equiva

lent. N o correspondence between the parameter delimiters 
used in a procedure statement and those used in the pro
cedure heading is expected beyond their number being the 



same. Thus the information conveyed by using the elabo
rate ones is entirely optional. 

4.7.8. Procedure body expressed in code 
The restrictions imposed on a procedure statement 

calling a procedure having its body expressed in non-
Algol code evidently can only be derived from the charac
teristics of the code used and the intent of the user and 
thus fall outside the scope of the reference language. 

5. Dec larat ions 

Declarations serve to define certain properties of the 
quantities used in the program, and to associate them with 
identifiers. A declaration of an identifier is valid for one 
block. Outside this block the particular identifier may be 
used for other purposes (cf. section 4.1.3). 

Dynamically this implies the following: at the time of an 
entry into a block (through the b e g i n , since the labels 
inside are local and therefore inaccessible from outside) 
all identifiers declared for the block assume the signifi
cance implied by the nature of the declarations given. 
I f these identifiers had already been defined by other 
declarations outside they are for the time being given a 
new significance. Identifiers which are not declared for the 
block, on the other hand, retain their old meaning. 

A t the time of an exit from a block (through e n d , or by 
a go to statement) all identifiers which are declared for 
the block lose their local significance. 

A declaration may be marked with the additional 
declarator o w n . This has the following effect: upon a re
entry into the block, the values of own quantities will be 
unchanged from their values at the last exit, while the 
values of declared variables which are not marked as own 
are undefined. Apart from labels and formal parameters 
of procedure declarations and with the possible exception 
of those for standard functions (cf. sections 3.2.4 and 
3.2.5), all identifiers of a program must be declared. N o 
identifier may be declared more than once in any one 
block head. 

Syntax. 

(declaration) ::— (type declaration)!(array declaration)! 
(switch declaration)I (procedure declaration) 

5.1. Type Declarations 
5.1.1. Syntax 

(type list) : := (simple variable)! 
(simple variable) , (type list) 

(type) : : = real I integer | Boolean 
(local or own type) (type)|own (type) 
(type declaration) : := (local or own type)(type list) 

5.1.2. Examples 

integer pfq,s 
own Boolean Acryl,n 

5.1.3. Semantics 
T y p e declarations serve to declare certain identifiers to 

represent simple variables of a given type. Real declared 
variables may only assume positive or negative values 
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including zero. Integer declared variables may only assume 
positive and negative integral values including zero. 
Boolean declared variables may only assume the values 
t r u e and false. 

I n arithmetic expressions any position which can be 
occupied by a real declared variable may be occupied by 
an integer declared variable. 

For the semantics of o w n , see the fourth paragraph of 
section 5 above. 

5.2. Array Declarations 
5.2.1. Syntax 

(lower bound) (arithmetic expression) 
(upper bound) ::=» (arithmetic expression) 
(bound pair) (lower bound): (upper bound) 
(bound pair list) :: — (bound pair )| (bound pair list), (bound pair) 
(array segment) (array identifier)!(bound pair list)]J 

(array identifier),(array segment) 
(array list) (array segment)!(array list),(array segment) 
(array declaration) :: — array (array list)|(local or own type) 

array (array list) 

5.2.2. Examples 
array o, b, c[7:n,2:m], s[-2:10| 
own integer array A [if c<0 then 2 else 1:20] 
real array q[—7:—1] 

5.2.3. Semantics 
A n array declaration declares one or several identifiers 

to represent multidimensional arrays of subscripted 
variables and gives the dimensions of the arrays, the 
bounds of the subscripts and the types of the variables. 

5.2.3.1. Subscript bounds. The subscript bounds for 
any array are given in the first subscript bracket following 
the identifier of this array in the form of a bound pair list. 
Each item of this list gives the lower and upper bound of a 
subscript in the form of two arithmetic expressions sepa
rated by the delimiter : T h e bound pair list gives the 
bounds of all subscripts taken in order from left to r ight. 

5.2.3.2. Dimensions. The dimensions are given as the 
number of entries in the bound pair lists. 

5.2.3.3. Types. A l l arrays declared in one declaration 
are of the same quoted type. I f no type declarator is 
given the type real is understood. 

5.2.4. Lower upper bound expressions 
5.2.4.1 The expressions wil l be evaluated in the same 

way as subscript expressions (cf. section 3.1.4.2). 
5.2.4.2. The expressions can only depend on variables 

and procedures which are nonlocal to the block for which 
the array declaration is valid. Consequently in the outer-. 
most block of a program only array declarations with 
constant bounds may be declared. 

5.2.4.3. A n array is defined only when the values of all 
upper subscript bounds are not smaller than those of the 
corresponding lower bounds. 

5.2.4.4. The expressions wil l be evaluated once at each 
entrance into the block. 

5.2.5. The identity of subscripted variables 
The identity of a subscripted variable is not related to 

the subscript bounds given in the array declaration. How-
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ever, even if an array is declared o w n the values of the 
corresponding subscripted variables wil l , at any time, be 
defined only for those of these variables which have sub
scripts within the most recently calculated subscript 
bounds. 

5.3. S W I T C H D E C L A R A T I O N S 
5.3.1. Syntax 

(switch list) ::=* (designational expression)! 
(switch list),(designational expression) 

(switchdeclaration) : := switch (switch identifier ) := (switch list) 

5.3.2. Examples 

switch S := Sl,£2,0(m], i f v>-5 then S3 else S4 
switch Q : = pl,w 

5.3.3. Semantics 
A switch declaration defines the set of values of the 

corresponding switch designators. These values are given 
one by one as the values of the designational expressions 
entered in the switch list. Wi th each of these designational 
expressions there is associated a positive integer, 1, 2, ... , 
obtained by counting the items in the list from left to 
right. The value of the switch designator corresponding to 
a given value of the subscript expression (cf. section 3.5. 
Designational Expressions) is the value of the designa
tional expression in the switch list having this given value 
as its associated integer. 

5.3.4. Evaluation of expressions in the switch list 
A n expression in the switch list wil l be evaluated every 

time the item of the list in which the expression occurs is 
referred to, using the current values of all variables 
involved. 

5.3.5. Influence of scopes 
I f a switch designator occurs outside the scope of a 

quantity entering into a designational expression in the 
switch list, and an evaluation of this switch designator 
selects this designational expression, then the conflicts 
belween the identifiers for the quantities in this expres
sion and the identifiers whose declarations are valid at the 
place of the switch designator will be avoided through 
suitable systematic changes of the latter identifiers. 

5.4. P R O C E D U R E D E C L A R A T I O N S 
5.4.1. Syntax 

(formal parameter) ::•» (identifier) 
(formal parameter list) ::— (formal parameter)! 

(formal parameter list)(parameter delimiter) 
(formal parameter) 

(formal parameter part) ::=» (empty)|((formal parameter list)) 
(identifier list) ::=» (identifier)!(identifier list),(identifier) 
(value part) value (identifier list) ; ((empty) 
(specifier) string|(type)|array((type)array|label|switch| 

procedure! (type )procedure 
(specification part) : := (empty)[(specifier)(identifier list) ; | 

(specification part)(specifier)(identifier list) ; 
(procedure heading) (procedure identifier) 

(formal parameter part) ; (value part)(specification part) 
(procedure body ) : : » (statement) | (code) 
(procedure declaration) = 

procedure (procedure heading > (procedure body)| 
(type) procedure (procedure heading)(procedure body) 

5.4.2. Examples (see also the examples at the end of 
the report) 

procedure Spur (a) Order :(n) Result:(«) ; value n ; 
array a ; integer n ; real 8 ; 
begin integer k ; 
* := 0 ; 
for k :== 1 step 1 unt i l n do s :=» 8+a[k,k] 
end 

procedure Transpose (a)Order:(n) ; value n ; 
array a ; integer n ; 
begin real w ; integer i, k ; 
for i := 1 step 1 unt i l n do 

for k := 1+i step 1 unt i l n do 
begin w := a[i,k] ; 

a[i,k] a[k,i) ; 
a[k,i] :« w 

end 
end Transpose 

integer procedure Step (u) ; real u ; 
Step := i f OgttAw^l then 1 else 0 

procedure A6smax(a)size:(n,w)Result:(y)Subscripts:(ijk); 
comment The absolute greatest element of the matrix o, 

of size n by m is transferred to y, and the subscripts of this 
element to i and k ; 

array a ; integer n, m, i, k ; real y ; 
begin integer p, q ; 
V : « 0 ; 
for p := 1 step 1 unt i l n do for q :=* 1 step 1 unt i l m do 
i f abs(a\p,q])>y then begin y : « ab8(a[p,q]) ; i :« p ; 

k := q 
end end Absmax 

procedure Innerproduct(af6)Order:(fcfp)Result:(y) ; value & ; 
integer k,p ; real y,atb ; 
begin real s ; 
8 0 ; 
for p : « 1 step 1 unt i l k do 8 :« 8-foX6 ; 
y : « 8 
end Innerproduct 

5.4.3. Semantics 
A procedure declaration serves to define the procedure 

associated with a procedure identifier. T h e principal con
stituent of a procedure declaration is a statement or a 
piece of code, the procedure body, which through the use 
of procedure statements and/or function designators may 
be activated from other parts of the block in the head of 
which the procedure declaration appears. Associated with 
the body is a heading, which specifies certain identifiers 
occurring within the body to represent formal parameters. 
Formal parameters in the procedure body wi l l , whenever 
the procedure is activated (cf. section 3.2. Function 
Designators and section 4.7. Procedure Statements) 
be assigned the values of or replaced by actual parameters. 
Identifiers in the procedure body which are not formal 
wil l be either local or nonlocal to the body depending on 
whether they are declared within the body or not. Those 
of them which are nonlocal to the body may well be local 
to the block in the head of which the procedure declara
tion appears. The procedure body always acts like a 



block, whether it has the form of one or not. Consequently 
the scope of any label labelling a statement within the 
body or the body itself can never extend beyond the pro
cedure body. I n addition, if the identifier of a formal 
parameter is declared anew within the procedure body 
(including the case of its use as a label as in section 4.1.3), 
i t is thereby given a local significance and actual param
eters which correspond to it are inaccessible throughout 
the scope of this inner local quantity. 

5.4.4. Values of function designators 
For a procedure declaration to define the value of a 

function designator there must, within the procedure 
body, occur one or more explicit assignment statements 
with the procedure identifier in a left part ; at least one of 
these must be executed, and the type associated with the 
procedure identifier must be declared through the appear
ance of a type declarator as the very first symbol of the 
procedure declaration. The last value so assigned is used 
to continue the evaluation of the expression in which the 
function designator occurs. A n y occurrence of the pro
cedure identifier within the body of the procedure other 
than in a left part in an assignment statement denotes 
activation of the procedure. 

5.4.5. Specifications 
I n the heading a specification part, giving information 

about the kinds and types of the formal parameters by 
means of an obvious notation, may be included. I n this 
part no formal parameter may occur more than once. 
Specifications of formal parameters called by value (cf. 
section 4.7.3.1) must be supplied and specifications of 
formal parameters called by name (cf. section 4.7.3.2) 
may be omitted. 

5.4.6. Code as procedure body 
I t is understood that the procedure body may be ex

pressed in n o n -ALGOL language. Since i t is intended that 
the use of this feature should be entirely a question of 
hardware representation, no further rules concerning 
this code language can be given within the reference 
language 

E X A M P L E S O F P R O C E D U R E D E C L A R A T I O N S : 

E X A M P L E 1. 

PROCEDURE euler (Jet, sum, eps, tim) ; VALUE eps, tim ; 
INTEGER tim ; REAL PROCEDURE jet ; REAL sum, eps ; 
C O M M E N T euler COMPUTES THE S U M OF jct(i) FOR i FROM ZERO UP TO 
INFINITY B Y MEANS OF A SUITABLEY REFINED EULER TRANSFORMATION. T H E 
SUMMATION IS STOPPED AS SOON AS tim TIMES IN SUCCESSION THE ABSO
LUTE VALUE OF THE TERMS OF THE TRANSFORMED SERIES ARE FOUND TO BE 
LESS THAN eps. HENCE, ONE SHOULD PROVIDE A FUNCTION jet WITH ONE 
INTEGER ARGUMENT, AN UPPER BOUND eps, AND AN INTEGER tim. T H E 
OUTPUT IS THE S U M sum. euler IS PARTICULARLY EFFICIENT IN THE CASE 
OF A SLOWLY CONVERGENT OR DIVERGENT ALTERNATING SERIES ; 
BEGIN INTEGER I, k, n, t ; ARRAY M[0:15] ; REAL mn, mp, ds ; 
i := n := t := 0 ; M[0] := jct(0) ; sum := M[0]/2 ; 
nextterm: i I-F-1 ; mn := jct(i) ; 

FOR k := 0 STEP 1 UNTIL N D O 
BEGIN mp := (mn+m[k])/2 ; m[k) :=» mn ; 

mn := mp E N D MEANS ; 
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IF (abs(mn)<abs(m[n]))A(n<15) T H E N 
BEGIN ds := mn/2 ; N :=* N + 1 ; m[n] 

mn E N D ACCEPT 
ELSE ds := M N ; 
sum :=* sum + ds ; 
IF ab8(d8)<eps T H E N t J+L ELSE t :« 0 ; 
IF t<tim T H E N GO TO nextterm 

E N D euler 

E X A M P L E 2.8 

PROCEDURE RK(x}y,n,FKT,eps,etajcE,yE,ji) ; VALUE x,y ; 
INTEGER N ; BOOLEAN ji ; REAL x.eps,etajc.E ; ARRAY 
y,yE ; PROCEDURE FKT ; 
C O M M E N T : RK INTEGRATES THE SYSTEM T/*'=/*(X,I/I , ... , Y») 
(k — 1,2, ... ,N) OF DIFFERENTIAL EQUATIONS WITH THE METHOD OF RUNGE-
KUTTA WITH AUTOMATIC SEARCH FOR APPROPRIATE LENGTH OF INTEGRATION 
STEP. PARAMETERS ARE: T H E INITIAL VALUES x AND y[k] FOR x AND THE UN
KNOWN FUNCTIONS Y*(X). T H E ORDER N OF THE SYSTEM. T H E PROCEDURE 
FKT(x,y,n#) WHICH REPRESENTS THE SYSTEM TO BE INTEGRATED, I.E. 
THE SET OF FUNCTIONS /* . T H E TOLERANCE VALUES eps AND eta WHICH 
GOVERN THE ACCURACY OF THE NUMERICAL INTEGRATION. T H E END OF THE 
INTEGRATION INTERVAL xE. T H E OUTPUT PARAMETER yE WHICH REPRE
SENTS THE SOLUTION AT x*=xE. T H E BOOLEAN VARIABLE ,/£, WHICH MUST 
ALWAYS BE GIVEN THE VALUE TRUE FOR AN ISOLATED OR FIRST ENTRY INTO 
RK. IF HOWEVER THE FUNCTIONS y MUST BE AVAILABLE AT SEVERAL MESH-
POINTS xo, xi, ... , xn , THEN THE PROCEDURE MUST BE CALLED REPEAT
EDLY (WITH x—Xk , xE*=xt+i, FOR fc=0, 1, ... , N — 1 ) AND THEN THE 
LATER CALLS M A Y OCCUR WITHAL—FALSE WHICH SAVES COMPUTING TIME. 
T H E INPUT PARAMETERS OF FKT MUST BE x,y,n, THE OUTPUT PARAMETER 
z REPRESENTS THE SET OF DERIVATIVES z[k\=*jk(x,y[l], y[2], ... , y[n]) 
FOR x AND THE ACTUAL Y'S. A PROCEDURE comp ENTERS AS A NONLOCAL 
IDENTIFIER ; 
BEGIN 

ARRAY z,yl,y2,y3[l:n] ; REAL XL^R2^R3^T ; BOOLEAN out ; 
INTEGER k,j ; O W N REAL sfls ; 
PROCEDURE RKlST(x,yJijce,ye) ; REAL xjh&e ; ARRAY 

y,ye ; 
C O M M E N T : RKIST INTEGRATES ONE SINGLE R U N G E - K U T T A 

WITH INITIAL VALUES x,y[k] WHICH YIELDS THE OUTPUT 
PARAMETERS xe^x-\-h AND ye[k], THE LATTER BEING THE 
SOLUTION AT xt. IMPORTANT: THE PARAMETERS N, FKTt z 
ENTER RKIST AS NONLOCAL ENTITIES ; 

BEGIN 
ARRAY IO[L:N], A[L:5] ; INTEGER k,j ; 
A[LJ :- A[2] := A[5] h/2 ; A[3] :- AFEL := h ; 
xe :— X ; 
FOR k :— 1 STEP 1 UNTIL N D O ye[k) := w\k) :*- y[k] ; 
FOR / :-» 1 STEP 1 UNTIL 4 D O 
BEGIN 

FKT{xe}w,n,z) ; 
xe := X-FAOL ; 
FOR k := 1 STEP 1 UNTIL n D O 
BEGIN 

w[k] := y[k]+a[j)Xz[k) ; 
ye[k\ ye[k) + a[j+l)Xz[k]/S 

8 THIS RK-PROGRAM CONTAINS SOME N E W IDEAS WHICH ARE RELATED 
TO IDEAS OF S. G i l l , A PROCESS FOR THE STEP-BY-STEP INTEGRATION OF 
DIFFERENTIAL EQUATIONS IN AN AUTOMATIC COMPUTING MACHINE, 
[Proc. Camb. Phil. Soc. 47 (1951), 96]; AND E . F r G b e r g , O N THE 
SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS WITH DIGITAL COMPUTING 
MACHINES, [Fysiograj. Sallsk. Lund, Forhd. 20, 11 (1950), .136-1521. 
IT MUST BE CLEAR, HOWEVER, THAT WITH RESPECT TO COMPUTING TIME 
AND ROUND-OFF ERRORS IT M A Y NOT BE OPTIMAL, NOR HAS IT ACTUALLY 
BEEN TESTED ON A COMPUTER. 



R E V I S E D A L G O L 6 0 

e n d k 
e n d j 

e n d RKIST ; 
Begin of program: 

iffi t h e n b e g i n H xE—x ; 8 0 e n d e l s e H :» Ha ; 
o u l : = f a l s e ; 

AA: i f ( x - f 2 . 0 1 X W - x ^ > 0 ) = ( f f > 0 ) t h e n 
b e g i n Ha :=* H ; o u < : = » t r u e ; J 7 : « = (xE-x)/2 

e n d i f ; 

flKLsr (*,y,2x//,zi,i/i) ; 
BB: RKIST {x,yfl&,tf) ; RKIST\x2iV2fl>3,y3) ; 

f o r k : = 1 s t e p 1 u n t i l ft d o 
i f c o m p ( y l [ f c ] , y 3 [ A ; ] , e t a ) > e p s t h e n g o t o CC ; 

c o m m e n t : comp(a,bc,) i s a f u n c t i o n d e s i g n a t o r , t h e v a l u e 
o f w h i c h i s t h e a b s o l u t e v a l u e o f t h e d i f f e r e n c e o f t h e 
m a n t i s 8 a e o f a a n d 6 , a f t e r t h e e x p o n e n t s o f t h e s e q u a n 
t i t i e s h a v e b e e n m a d e e q u a l t o t h e l a r g e s t o f t h e e x p o n e n t s 
o f t h e o r i g i n a l l y g i v e n p a r a m e t e r s a . 6 , c ; 

x : = x 3 ; if out t h e n . g o t o DD ; 
f o r k : = 1 s t e p 1 u n t i l n d o y[k] :» yZ[k] ; 
i f 8 = 5 t h e n b e g i n a : = 0 ; H : = » 2 X # e n d i f ; 
s : « 8 + 1 ; g o t o AA ; 

CC: H : = 0.5XH ; o u * :- f a l s e ; xl * 2 ; 
f o r A; 1 s t e p 1 u n t i l n d o yl[k\ : = j , 2 [ * l ; 
g o t o BB ; 

DD: tor k : = 1 s t e p 1 u n t i l n d o yE[k] : = j/3[fc] 
e n d RK 
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( a c t u a l p a r a m e t e r l i s t ) , d e f 3 . 2 . 1 , 4 . 7 . 1 
( a c t u a l p a r a m e t e r p a r t ) , d e f 3 . 2 . 1 , 4 . 7 . 1 
( a d d i n g o p e r a t o r ) , d e f 3 . 3 . 1 
a l p h a b e t , t e x t 2 . 1 
a r i t h m e t i c , t e x t 3 . 3 . 6 
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b e g i n , s y n t 2 . 3 , 4 . 1 . 1 

( b l o c k ) , d e f 4 . 1 . 1 s y n t 4 . 5 . 1 t e x t 1 , 4 . 1 . 3 , 5 
( b l o c k h e a d ) , d e f 4 . 1 . 1 
B o o l e a n , s y n t 2 . 3 , 5 . 1 . 1 t e x t 5 . 1 . 3 

( B o o l e a n e x p r e s s i o n ) , d e f 3 . 4 . 1 s y n t 3 , 3 . 3 . 1 , 4 . 2 . 1 , 4 . 5 . 1 , 4 . 6 . 1 t e x t 
3 . 4 . 3 

( B o o l e a n f a c t o r ) , d e f 3 . 4 . 1 
( B o o l e a n p r i m a r y ) , d e f 3 . 4 . 1 
( B o o l e a n s e c o n d a r y ) , d e f 3 . 4 . 1 
( B o o l e a n t e r m ) , d e f 3 . 4 . 1 
( b o u n d p a i r ) , d e f 5 . 2 . 1 
( b o u n d p a i r l i s t ) , d e f 5 . 2 . 1 
( b r a c k e t ) , d e f 2 . 3 
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c o m m e n t , s y n t 2 . 3 
c o m m e n t c o n v e n t i o n , t e x t 2 . 3 

( c o m p o u n d s t a t e m e n t ) , d e f 4 . 1 . 1 s y n t 4 . 5 . 1 t e x t 1 
( c o m p o u n d t a i l ) , d e f 4 . 1 . 1 
( c o n d i t i o n a l s t a t e m e n t ) , d e f 4 . 5 . 1 s y n t 4 . 1 . 1 t e x t 4 . 5 . 3 

( d e c i m a l f r a c t i o n ) , d e f 2 . 5 . 1 
( d e c i m a l n u m b e r ) , d e f 2 . 5 . 1 t e x t 2 . 5 . 3 
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( d e l i m i t e r ) , d e f 2 . 3 s y n t 2 
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d o , s y n t 2 . 3 , 4 . 6 . 1 

( d u m m y s t a t e m e n t ) , d e f 4 . 4 . 1 s y n t 4 . 1 . 1 t e x t 4 . 4 . 3 

e l s e , s y n t 2 . 3 , 3 . 3 . 1 , 3 . 4 . 1 , 3 . 5 . 1 , 4 . 5 . 1 t e x t 4 . 5 . 3 . 2 
( e m p t y ) , d e f 1 . 1 s y n t 2 . 6 . 1 , 3 . 2 . 1 , 4 . 4 . 1 , 4 . 7 . 1 , 5 . 4 . 1 
e n d , s y n t 2 . 3 , 4 . 1 . 1 
entier, t e x t 3 . 2 . 5 
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(FACTOR), DEF 3.3.1 
FALSE, SYNT 2.2.2 
FOR, SYNT 2.3, 4.6.1 
(FOR CLAUSE), DEF 4.6.1 TEXT 4.6.3 
(FOR LIST), DEF 4.6.1 TEXT 4.6.4 
(FOR LIST ELEMENT), DEF 4.6.1 TEXT 4.6.4.1, 4.6.4.2, 4.6.4.3 
(FORMAL PARAMETER), DEF 5.4.1 TEXT 5.4.3 
(FORMAL PARAMETER LIST), DEF 5.4.1 
(FORMAL PARAMETER PART), DEF 5.4.1 
(FOR STATEMENT), DEF 4.6.1 SYNT 4.1.1, 4.5.1 TEXT 4.6 (COMPLETE 

SECTION) 

(FUNCTION DESIGNATOR), DEF 3.2.1 SYNT 3.3.1, 3.4.1 TEXT 3.2.3, 5.4.4 

GO TO, SYNT 2.3, 4.3.1 
(GO TO STATEMENT), DEF 4.3.1 SYNT 4.1.1 TEXT 4.3.3 
(IDENTIFIER), DEF 2.4.1 SYNT 3.1.1, 3.2.1, 3.5.1, 5.4.1 TEXT 2.4.3 
(IDENTIFIER LIST), DEF 5.4.1 
IF, SYNT 2.3; 3.3.1,4.5.1 
(IF CLAUSE), DEF 3.3.1, 4.5.1 SYNT 3.4.1, 3.5.1 TEXT 3.3.3, 4.5.3.2 
(IF STATEMENT), DEF 4.5.1 TEXT 4.5.3.1 
(IMPLICATION), DEF 3.4.1 
INTEGER, SYNT 2.3, 5.1.1 TEXT 5.1.3 
(INTEGER), DEF 2.5.1 TEXT 2.5.4 

LABEL, SYNT 2.3, 5.4.1 
(LABEL), DEF 3.5.1 SYNT 4.1.1, 4.5.1, 4.6.1 TEXT 1, 4.1.3 
(LEFT PART), DEF 4.2.1 
(LEFT PART LIST), DEF 4.2.1 
(LETTER), DEF 2.1 SYNT 2, 2.4.1, 3.2.1, 4.7.1 
(LETTER STRING), DEF 3.2.1, 4.7.1 
LOCAL, TEXT 4.1.3 
(LOCAL OR OWN TYPE), DEF 5.1.1 SYNT 5.2.1 
(LOGICAL OPERATOR), DEF 2.3 SYNT 3.4.1 TEXT 3.4.5 
(LOGICAL VALUE), DEF 2.2.2 SYNT 2, 3.4.1 
(LOWER BOUND), DEF 5.2.1 TEXT 5.2.4 

MINUS - , SYNT 2.3, 2.5.1, 3.3.1 TEXT 3.3.4.1 
MULTIPLY X , SYNT 2.3, 3.3.1 TEXT 3.3.4.1 
(MULTIPLYING OPERATOR), DEF 3.3.1 

NONLOCAL, TEXT 4.1.3 
(NUMBER), DEF 2.5.1 TEXT 2.5.3, 2.5.4 

(OPEN STRING), DEF 2.6.1 
(OPERATOR), DEF 2.3 
O W N , SYNT 2.3, 5.1.1 TEXT 5, 5.2.5 

(PARAMETER DELIMITER), DEF 3.2.1, 4.7.1 SYNT 5.4.1 TEXT 4.7.7 
PARENTHESES ( ), SYNT 2.3, 3.2.1, 3.3.1, 3.4.1, 3.5.1, 4.7.1, 5.4.1 

TEXT 3.3.6.2 
PLUS + , SYNT 2.3, 2.5.1, 3.3.1 TEXT 3.3.4.1 
(PRIMARY), DEF 3.3.1 
PROCEDURE, SYNT 2.3, 5.4.1 
(PROCEDURE BODY), DEF 5.4.1 
(PROCEDURE DECLARATION), DEF 5.4.1 SYNT 5 TEXT 5.4.3 
(PROCEDURE HEADING), DEF 5.4.1 TEXT 5.4.3 
(PROCEDURE IDENTIFIER) DEF 3.2.1 SYNT 3.2.1, 4.7.1, 5.4.1 TEXT 4.7.5.4 
(PROCEDURE STATEMENT), DEF 4.7.1 SYNT 4.1.1 TEXT 4.7.3 
(PROGRAM), DEF 4.1.1 TEXT 1 
(PROPER BTRING), DEF 2.6.1 

QUANTITY, TEXT 2.7 

REVISED ALGOL 60 

REAL, SYNT 2.3, 5.1.1 TEXT 5.1.3 
(RELATION), DEF 3.4.1 TEXT 3.4.5 
(RELATIONAL OPERATOR), DEF 2.3, 3.4.1 

SCOPE, TEXT 2.7 
SEMICOLON SYNT 2.3, 4.1.1, 5.4.1 
(SEPARATOR), DEF 2.3 
(SEQUENTIAL OPERATOR), DEF 2.3 
(SIMPLE ARITHMETIC EXPRESSION), DEF 3.3.1 TEXT 3.3.3 
(SIMPLE BOOLEAN), DEF 3.4.1 
(SIMPLE DESIGNATIONAL EXPRESSION), DEF 3.5.1 
(SIMPLE VARIABLE), DEF 3.1.1 SYNT 5.1.1 TEXT 2.4.3 
SPACE U, SYNT 2.3 TEXT 2.3, 2.6.3 
(SPECIFICATION PART), DEF 5.4.1 TEXT 5.4.5 
(SPECIFICATOR), DEF 2.3 
(SPECIFIER), DEF 5.4.1 
STANDARD FUNCTION, TEXT 3.2.4, 3.2.5 
(STATEMENT), DEF 4.1.1, SYNT 4.5.1, 4.6.1, 5.4.1 TEXT 4 (COMPLETE 

SECTION) 
STATEMENT BRACKET, SEE: BEGIN E N D 
STEP, SYNT 2.3, 4.6.1 TEXT 4.6.4.2 
STRING, SYNT 2.3, 5.4.1 
(STRING), DEF 2.6.1 SYNT 3.2.1, 4.7.1 TEXT 2.6.3 
STRING QUOTES ' SYNT 2.3, 2.6.1, TEXT 2.6.3 
SUBSCRIPT, TEXT 3.1.4.1 
SUBSCRIPT BOUND, TEXT 5.2.3.1 
SUBSCRIPT BRACKETS [ J, SYNT 2.3, 3.1.1, 3.5.1, 5.2.1 
(SUBSCRIPTED VARIABLE), DEF 3.1.1 TEXT 3.1.4.1 
(SUBSCRIPT EXPRESSION), DEF 3.1.1 SYNT 3.5.1 
(SUBSCRIPT LIST), DEF 3.1.1 
SUCCESSOR, TEXT 4 
SWITCH, SYNT 2.3, 5.3.1, 5.4.1 
(SWITCH DECLARATION), DEF 6.3.1 SYNT 5 TEXT 5.3.3 
(SWITCH DESIGNATOR), DEF 3.5.1 TEXT 3.5.3 
(SWITCH IDENTIFIER), DEF 3.5.1 SYNT 3.2.1, 4.7.1, 5.3.1 
(SWITCH LIST), DEF 5.3.1 

(TERM), DEF 3.3.1 
TEN TO, SYNT 2.3, 2.5.1 
THEN, SYNT 2.3, 3.3.1, 4.5.1 
TRANSFER FUNCTION, TEXT 3.2.5 
TRUE, SYNT 2.2.2 
(TYPE), DEF 5.1.1 SYNT 5.4.1 TEXT 2.8 
(TYPE DECLARATION), DEF 6.1.1 SYNT 5 TEXT 5.1.3 
(TYPE LIST), DEF 5.1.1 

(UNCONDITIONAL STATEMENT), DEF 4.1 .1, 4.5.1 
(UNLABELLED BASIC STATEMENT), DEF 4.1.1 
(UNLABELLED BLOCK), DEF 4.1.1 
(UNLABELLED COMPOUND), DEF 4.1.1 
(UNSIGNED INTEGER), DEF 2.5.1, 3.5.1 
(UNSIGNED NUMBER), DEF 2.5.1 SYNT 3.3.1 
UNTIL, SYNT 2.3, 4.6.1 TEXT 4.6.4.2 
(UPPER BOUND), DEF 5.2.1 TEXT 5.2.4 

VALUE, SYNT'2.3, 5.4.1 
VALUE, TEXT 2.8, 3.3.3 
(VALUE PART), DEF 5.4.1 TEXT 4.7.3.1 
(VARIABLE), DEF 3.1.1 SYNT 3.3.1, 3.4.1, 4.2.1, 4.6.1 TEXT 3.1.3 
(VARIABLE IDENTIFIER), DEF 3.1.1 

WHILE, SYNT 2.3, 4.6.1 TEXT 4.6.4.3 
E N D O F T H E R E P O R T 





APPENDIX 2 

CURRENT SYSTEM LIMITS 

May 1, 1967 

The following are a list of limits on the numbers of objects available 

the system: 

(a) The maximum number of distinct identifiers and labels allowable 

is 100 where print names of 6 characters or less count one and 

print names of 7 or more characters count 1 for the first six and 

1 for each 4 or fraction of 4 characters. Note that any 2 

identifiers which have the same first six characters may be 

treated as the same name (including reserved words). This re

striction does not affect the internal working of the program. 

It means only that when an identifier overflows and the table is 

printed, what is printed is unpredictable. 

*(b) The maximum number of declared objects (variables, arrays, etc.) 

plus block entries is 300. 

(c) The maximum number of nested dynamic blocks is 180. 

(d) The maximum number of dynamically defined (e.g., by recursion) FORM 

and SYMBOL variables is 832. 

(e) The maximum number of words of code produced by the compiler is 

/21000. 

(f) The maximum number of words for variables and array storage is 

/11600. 

(g) Available space is constructed from the unused part of (e) and 

(f). This gives roughly 6800 cells for small programs. 

*(h) The maximum number of procedure declarations and labels at one 



level is 24. 

For a rough estimate, each element of a list and operand or operator 

a formula takes up two words of available jspace. 

* It is possible to extend the maximums in these cases. See the user con

sultant. 
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APENDIX 3 

DEBUG SNAPSHOTS 

The following is a list of snapshots which may be inserted between lines 

of a Formula Algol program. They provide special commands to the compiler for 

printing, corrections, and debugging. The Format is "SN" in columns 1 and 2, 

the name of the snapshot starting in column 10, and two optional parameters in 

columns 15 and 25. Teletype tabs will give the correct columns. Most of them 

have effects at compile time; the ones which don't are so indicated. 

In the following explanations whenever a snapshot may have a parameter 

of either 0 or 1, it will be denoted "0,1". It is to be understood that for 

all these snapshots, the 1 turns on a certain action and the 0 turns it off. 

Only the action will be described. 

Some of these snapshots require a more detailed knowledge of the system. 

In these cases see [4] or the user consultant. 

SN ^jAND The And system is entered at compile time. 

SN AND The And system is entered at run time. 

SN BKPT 0,1 At the end of each line a transfer to 

a closed subroutine is compiled. At 

routine, this subroutine prints the 

location of the line of code to which 

control has arrived. (It is, in effect, 

a logical trace of the program's ex

ecution.) 

SN CDLC 0,1 At the end of each line a command is 

compiled to load the current location 

of compiled code into an index register, 

This feature is normally on. 

SN $ CMPL <VAL> <VAL> is compiled as a machine command 



APPENDIX 3 (continued) 

SN CODE 

SN COR 

SN DEES 

SN DUMP 

SN ENTR 

SN EXEC 

SN IXRS 

SN LINE 

SN LOOK 

SN PAGE 

SN Ql 

SN REMO 

0,1 

<LOC> <VAL> 

0,1 

0,1 

<NUM> 

0,1 

0,1 

directly into the current location 

for compiled code. 

Code is printed as it is compiled. 

This can be used to change the 

contents of locations at compile time. 

First <XOC>, its contents, and <VAL> 

are printed. The VAL replaces the 

contents of <LOC>. 

This prints out a series of critical 

entry points of the compiler. 

This causes the compiled code and the 

generated abcons to be printed after the 

compilation of the program and before it 

is run. 

A trace of all table entries is printed. 

This prints a trace of the calls on the 

semantic routines with parameters. 

This prints the index registers /30-/77 

at compile time. 

This upspaces <NUM> lines at compile time. 

A trace of all table look-ups is printed. 

The printer is upspaced to the next page. 

This allows the action of SN DUMP to be 

printed on TTY. 

The program prints on the teletype. 
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SN RCOR <LOC> <VAL> 

SN RTRC <NUM> <LOC> 

SN -RUN 

SN SCAN 0,1 

SN STAC 

SN STOP 

SN TRAC <NUM> <LOC> 

SN == 0,1 

Program output will print if REMD 

is 1 at the end of compilation. 

At run time <VAL> replaces the 

contents of <LOC>. 

This has the same effect as SN TRAC, 

except at run-time. 

The program will be terminated after 

compilation. 

Characters of the input string are 

printed as they are read by subscan. 

At compile time, the semantic stack is 

printed. 

Halts compilation immediately. 

At compile time, commands flags are put 

on <NUM> words starting at location <LOC>. 

When these words are executed Monitor 

trace routines will print them. 

A trace of the syntax analyzer is 

printed. When an attempt is made to 

match a production, the top of the 

stack and the production are printed. 
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APPENDIX 4 

ERROR MESSAGES 

There are three kinds of errors in Formula Algol: Syntax errors, 

semantic errors, and run errors. The first two kinds of errors occur 

at compile time, and the third at run time. Some of these messages re

quire a more detailed knowledge of the system. In these cases see [4] 

or the User Consultant. 

SYNTAX ERRORS 

These are of the form 

ERROR XXX 

0 Program does not start with •BEGIN 1 

1 Statement does not begin with legal character 

2 Statement starts with identifier not followed by legal character 

3 First character of an expression expected but not found 

4 Expression formed but not followed by legal character 

5 is not preceded by a legal construct 

6 Array element not found in legal context 

7 f : 1 not preceded by a legal construct 

8 '<-' not preceded by a legal construct 

9 ' ) ' not preceded by a legal construct 

10 ',' not preceded by a legal construct 

11 'THEN 1 not preceded by a legal construct 

12 'ELSE' not preceded by a legal construct 

13 Illegal statement construction 

14 Impossible error, system error 

17 'STEP 1 not preceded by a legal construct 



18 'UNTIL 1 not preceded by a legal construction 

19 'WHILE' not preceded by a legal construction 

20 'DO' not preceded by a legal construction 

21 'GO' not followed by a legal construction 

22 'GO TO IF...THEN..,' not followed by 'ELSE' 

24 Obscure error in GO TO statement 

25 '|-*' not in stack after scanning 'BEGIN' 

28 Too many 'END's within a procedure 

38 Illegal construction within an IF...THEN.statement 

39 More than one subscript in a switch call 

42 Array declaration does not contain bounds expression 

44 System error in GO TO statement 

62 Attempt to 'ALTER1 a non-symbol 

75 'PRINT' not followed by '(' 

76 Function designator not followed by legal character 

77 '.' not followed by legal character 

78 Class operator not formed correctly 

80 A value of 'OPERATOR 1 was not an operator 

81 Improper description list construction 

85 Operator expected and not found 

98 ' |->' not in stack at beginning of statement 

99 System error 

100 Illegal operator or control character scanned 

101 ABCON table full 

102 Number incorrectly formed (while scanning '.') 

103 Number incorrectly formed (while scanning '=;') 

104 Impossible error, system error 
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105 Illegal bar variable 

106 Illegal SY card 

108 Impossible error, system error 

109 An insertion locator was expected but not found 

110 An expression has been found in an illegal context 

111 A selector was expected but not found 

112 A selector is not followed by 'PFf 

113 / not followed by [ 

115 Improper 1INDEX 1 construction 

116 Improper 'PARALLEL FOR 1 construction 

117 DOT not followed by identifier in text 

118 Class Name improperly formed 

144 Variable declaration does not terminate properly or f [ f missing 

144 In array declaration 

145 Array declaration does not terminate properly 

163 Procedure head is incorrectly formed 

164 Value or specifier part is incorrectly formed 

171 Specifier list not initiated properly 

174 Declaration does not begin with a legal construction 

190 Identifier not found in identifier list 

194 missing in formal parameter list 

195 Value list not terminated properly 

196 Specifier list not terminated properly 

200 Formal parameter list for EVAL does not contain all identifiers 

201 EVAL statement not formed correctly 

250 Switch declaration improperly initiated 

251 Missing delimiter in switch declaration 

999 Impossible error, system error 



SEMANTIC ERRORS 

These are of the form 

FAULT XXX 

2 Procedure not declared as such 

5 An identifier in a value list is not a formal parameter 

6 An identifier in a specifier list is not a formal parameter 

7 An identifier is not declared or 

7 A procedure is used where a function is expected or 

7 An array identifier is used where a simple variable is expected or 

7 A switch identifier is used where a simple variable is expected 

12 An identifier as an actual parameter has not been declared 

15 In fG0 TO S[...]', S is not a switch 

16 In an array access the identifier is not an array 

20 Function has not yet been declared 

21 Function designator not declared 

22 Identifier of a class operator is not a variable 

27 Boolean expression expected in 'WHILE 1 clause, and not found 

30 In 'IF B THEN....' B is not of type Boolean 

44 Switch identifier is used without parameter 

47 Expression in ordinal selector is not of type integer 

59 Improper editing statement construction 

61 System error 

63 Attempt to apply selector to non-symbol 

69 A value of 'OPERATOR' is not an operator 

70 In 'EVAL F 1, F is not a formula or symbol 

72 In fEVAL(...)F(...)', F is not formula or symbol 



75 A class operator is not a symbol 

76 System error processing extractor which is array element 

77 System error in class operators 

78 Attempt to erase description list of non-symbol 

83 System error in pattern construction with types as primaries 

85 In'F = = P f or in F is not a formula 

87 A label in a pattern is not of type form 

88 In fIF B THEN... 1 B is not Boolean or formula 

91 A label is used twice in the same block 

94 In a DOT array the identifier is not an array 

97 Expression in < > is not a symbol 

98 The second parameter of fDERV f is not a formula 

99 System error in print routine 

100 In a binary arithmetic expression one of the operands is of illegal 

type 

103 Attempt to add local description list to non-symbol 

105 In a binary Boolean expression one of the operands is of illegal 

type 

106 Attempt to access non-symbolic attribute 

107 Parameter of a function designator is not numeric or formula 

108 Attempt to access description list of non-symbol or non-formula 

109 Improper value entry construction 

112 Attempt to store into illegal entity or legal entity of wrong type 

116 *—i* is not followed by Boolean or logic expression 

155 Boolean procedure or pattern list expected and not found 

175 Attempt to construct non-symbolic attribute 

176 Attempt to store list or do value entry with non-symbol 
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179 Value of index is not declared integer 

183 Attempt to test non-symbol against symbolic pattern 

184 Expression following $ is not of type integer 

186 Non-symbolic label in list pattern 

189 Identifier in description list expression is not formula 

190 Impossible error, system error 

191 An identifier is not declared 

192 Form or symbol variable expected and not found 

198 Designatiorfal expression is used as actual parameter 

203 Attempt to count non-symbol 

213 Non-symbol in symbolic 'FOR' statement 

214 Argument of 'ATTRIBUTES OF' other than symbol 

229 Expression preceding ordinal selector is not of type integer 

230 Argument of ERADL other than symbol 

235 Second parameter to AMONG is not of type symbol 

239 Parameter of 'EMPTY' is not a symbol 

315 Switch not declared 

391 Obscure error in procedure calls 

512 Attempt to store non-numeric expression into a numeric variable 

612 Attempt to store non-Boolean expression into Boolean variable 

712 Attempt to store into a constant 

912 System error 

990 Impossible error, system error 

998 System error 

999 System error in 'STEP' statement 

4L01 Improper left side of DOT assignment 



RUN ERRORS 

Run Errors in Formula Manipulation 

These are of the form: 

RUN ERROR NNN AFTER LOCATION XXXXX 

LLLLL 

where NNN refers to the list below, XXXXX indicates the line in which the 

error occurred and LLLLL is the location of the error routine. 

* 1 Attempt to eval an expression containing -» , • , :, or | |. 

6 Attempt to eval an expression containing +, -, x, /, or t in 

which one of the operands is neither a formula nor a number. 

10 In eval ~ x, x is not logic, boolean, or formula. 

* 20 Error when printing, a formula. 

21 In eval xAy or xVy one of the operands is not logic, boolean, 

or formula. 

22 In eval xAy or xvy, there is a mixture of types logic and boolean. 

25 Recursion stack overflow. 

27 Run-time symbol table overflow. 

* 30 Error when printing a chain. 

* 31 Attempt to find an attribute on an ill-formed chain. 

3 7 Too many subscripts in an array element. 

38 Subscript in an array element is too small. 

39 Subscript in an array element is too large. 

40 Not enough subscripts in an array element. 

46 Too many block entries. 

48 Subscript in a switch designator is out of bounds. 

50 Available space is empty. 



56 In derv(f,x), f is not a number or a formula. 

57 A boolean data term was expected and not found. 

63 Obscure error when storing a chain into a symbol. 

* 79 In f . 1 s, s has no contents attribute. 

82 In f . I s, s has a parallel production within a parallel 

production. 

83 In f , 1 s, s has a formula which is not a production. 

85 A malformed formula (system error), or 

A class operator encountered within a formula to which a pro

duction is to be applied, or 

In a dot array (production), a subscript (parameter) is not 

of type form. 

100 Attempt to eval In(-infi) or sqrt(-infi). 

141 In EVAL (x <r> y) where r is >,<,-n <, or -n >, one of the 

operands is either undefined, a symbol chain, or of type 

Boolean. 

* 182 Variable of interpretive store has undefined type. 

183 Interpretive store of undefined mixture of variable types, or 

interpretive store into a symbol is not implemented. 

271 In eval of A.[si, sn], some subscript si is not a formula 

or a number. 

325 In eval . if B then B is neither a boolean or a formula. 

600 In F = = P, F is the pattern of( ) . 

601 In F = = P, F is a symbol. 

602 Obscure error in F = = P, probably an attempt to test a pattern 

against another pattern. 

603 In F = = P, P has a class operator which has no attribute 'operator 



701 Attempt to compute 0 t -number. 

702 Attempt to compute X t A where x<] and A Is not an integer. 

703 Attempt to compute X t A where A*ln(x) > 160.117. 

711 Attempt to compute 1n(X) where X < 0. 

721 Attempt to compute E^P(x) where ^ is out of range. 

731 Attempt to compute sin(X) where X is out of range. 

751 Attempt to compute sqrt(X) where X < 0. 

5501 Attempt to eval the pattern 'of(B) 1. 

5502 Attempt tb compute replace(F) where F » A:atorn. 

6702 A class operator or extractor encountered in a formula to which 

a production is to be applied. 

*7701 Attempt to create A |[T]| B where T has no contents attribute. 

7702 Attempt to create A |[T]| B where [T] is empty. 

7703 Attempt to create A |[T]| B where [T] is unary. 

7704 Attempt to create |[T]| B where [T] is binary. 

9009 Attempt to EVAL (0t0). 

9011 Attempt to EVAL (ANY/0). 

denotes a system error. 



Run Errors in Symbol Manipulation 

The following messages are printed: 

Recoverable Errors 

Not enough chain operands cf. p. 1 

Unless store into unused chain 

Attempt to store into open chain 

Attempt to get interior of empty clsd ch 

Attempt to discard nil 

First element of plural list uncarried 

Attempt to select non-existant referent 

Class name undefined 

Non-Recoverable Errors 

Parity of chainacc destroyed 

Negative chainacc 

Attempt to store in non-symbol 

Malformed chain 

Chainacc exceeded 

Plural list used where symbol needed 

Attempt at VR from non-symbol 

Attempt at VR without attribute 

Empty list used where symbol needed 

Attempt to generate ATRS. of non-chain 

System Error 

Illegal selector 

Non->primitive for ID. routine 

For attempts to generate non-list 

P-for control variable non-symbol 



No.contrl.var = no. of lists in P-for 

Malformed pattern 

Non-numeric data term used as number 

Available space exhausted 

Improper symbol array access 

Value of symbol array el.no exst. 

Illegal transfer function 

Run Errors in Recursitm 

These are of the form: 

XXXX MM:SS:ss 

<octal dump of index registers /50,...,/77 > 

XXXX is the name of the error. 

MM:SS:ss is the running time in sixtieths of a second. 

<octal dump> indicates the state of the program. 

* CLOB System error indicating that the historian has been clobbered, 

STOR Variable stack overflow. 

HIST Historian stack overflow. 

* PROC Obscure error related to procedure names as actual parameters. 

* LINK Premature or illegal attempt to leave a codepiece. 

LABL Attempt to goto an undefined label or to call an undefined 

procedure or switch. 

^o64K Request for extra memory was refused 

indicates a system error. 

http://el.no




APPENDIX 5 

INPUT - OUTPUT 

Formual A l g o l has no read s t a t e m e n t s . 

At the p r e s e n t t i m e , Formula A l g o l c o n t a i n s a p r i m i t i v e p r i n t s ta tement 

of the form PRINT(X), where X i s a l i s t o f any o f the f o l l o w i n g p o s s i b l e 

o b j e c t s : 

( a ) The name o f any d e c l a r e d v a r i a b l e , i n which c a s e the v a l u e o f 

t h a t v a r i a b l e w i l l be p r i n t e d . 

(b) Any a r i t h m e t i c , Boolean or Formula e x p r e s s i o n , i n which c a s e 

the v a l u e of the e x p r e s s i o n w i l l be p r i n t e d . 

( c ) Any symbol ic e x p r e s s i o n prov ided a s w i t c h i s s e t a s i n d i c a t e d 

be low. 

For example: 

FORM F, G; REAL A,B; BOOLEAN C; SYMBOL S; 

LOGIC L; HALF H; 

F «-F + G; A «- 3 . 5 ; B <- 2 x A; C < - B < A ; 

S <- [ F , A ] ; L «- 10; H *- 2 . 8 ; 

PRINT(F,G,A,B,C,S,L,H, 1 1 1 , G+A); 

This c a u s e s the f o l l o w i n g t o be p r i n t e d : 

F + G 

G 

.35000000000 l o +01 

.70000000000 T O +01 

FALS 



/[CONT: F+3, (.35000000000,0 +01)][NAME:S] 

00000000012 

. 2 8 0 0 0 0 0 0 0 0 0 w +01 

111 

G+ (.35000000000,0 +01) 

L i s t s may be p r i n t e d i n t h r e e s t y l e s : s t y l e 0 , s t y l e 1 , and s t y l e 2 . S t y l e 0 

i s i n the sys tem t o b e g i n w i th and c a u s e s d e s c r i p t i o n l i s t s t o be p r i n t e d . 

S t y l e 1 p r i n t s l i s t s and s u b l i s t s w i t h square b r a c k e t s [ , ] and commas s e p a r a t 

ing the e l e m e n t s , each s u b l i s t b e i n g d e l i m i t e d by a p a i r o f square b r a c k e t s . 

S t y l e 2 p r i n t s l i s t s w i t h o u t square b r a c k e t s and commas by c o n c a t e n a t i n g the 

e l e m e n t s d i r e c t l y i n t o the p r i n t l i n e . 

For example: 

SYMBOL S, ADJ, EC, TIVE, A ,B ,C, COLOR, APPLE,RED; 

APPLE «- /[COLOR: RED]; 

S - [ A , A , [ B , B , [ C , C , C ] , B ] , A ] ; 

A t-[ADJ,EC,TIVE]; 

In S t y l e 0 the s t a t e m e n t PRINT(APPLE, S, A) g i v e s : 

/[CONT: APPLE][COLOR:RED][NAME:APPLE]; 

/[CONT: A,A, /[CONT:B,B, /[CONT:C,C,C][NAME:],B][NAME:], 

A][NAME:S] 

/[CONT: ADJ, EC, TIVE][NAME:A] 

In S t y l e 1 the same p r i n t s t a t e m e n t g i v e s : 

[APPLE] 

[ A , A , [ B , B , [ C , C , C ] , B ] , A ] 

[ADJ, EC, TIVE] 



In Style 2 the same print statement gives: 

APPLE 

AABBCCCBA 

ADJECTIVE 

Thus, Style 0 is used to print description lists, Style 1 is used to print 

lists and sublists, and Style 2 is used to print compacted lists. Executing 

the following snapshot correction changes the style switch. 

SN RCOR 55212 1 sets Style to 1 

SN RCOR 55212 2 sets Style to 2 

SN RCOR 55212 0 sets Style to 0 

This snapshot follows the same conventions as other debug snapshots (see 

Appendix 3 ) . 
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FORMULA ALGOL FORM AL-3-109 

APPENDIX 6 

SYNTAX INDEX 

SYNTAX CLASSES 

<Array Formula> - Chapter III f Page 26 
<Asslgnment Formula> - Chapter III, Page 26 
<Assignment Statements - Chapter IV, Page 52 
<Augmented Type> - Chapter IV, Page 55 

<Boolean Expresslon> - Chapter III, Page 26 

<Class DefinitiorO - Chapter IV, Page 61 
<Class Name> - Chapter IV, Page 61 
<Comm Segment> - Chapter III, Page 37 
Conditional Formula - Chapter III, Page 26 

description List> - Chapter IV, Page 53 
description List Editing Statement^ - Chapter IV, Page 64 

<Editing Statement> - Chapter IV, Page 64 
<Elementary Positiori> - Chapter IV, Page 55 
<Evaluate Formula»- Chapter III, Page 32 
<Extractor> - Chapter III, Page 37; Chapter IV, Page 58 
<Expressiori> - Chapter IV, Page 51 

<For Clause> - Chapter IV, Page 63 
<For List> - Chapter IV, Page 62 
<Formula Expression> - Chapter III, Page 26 
<Formula Expression List> - Chapter III, Page 32 
<Formula Patterri> - Chapter III, Page 37 
<Formula Pattern Primary> - Chapter III, Page 37 
<Formula Pattern Structure> - Chapter III, Page 37 
<Formula Primary> - Chapter III, Page 26 

<Locator List> - Chapter IV, Page 64 
<Insertion Locator> - Chapter IV, Page 64 
<Index Segment> - Chapter III, Page 37 
<Is Phrase> - Chapter IV, Page 65 

<Kind> - Chapter IV, Page 55 

<List> - Chapter IV, Page 51 
<LJ.st ElemenO - Chapter IV, Page 51 
<List Expressiori> - Chapter IV, Page 51 
<List PatterrO - Chapter IV, Page 58 
<List Pattern Primary> - Chapter IV r Page 58 
<Logical Value List> - Chapter III, Page 37 



<Operator C las s> - Chapter I I I , Page 37 
<Dperator C l a s s Assignment> - Chapter I I I , Page 37 
<Operator C l a s s Name> - Chapter I I I , Page 37 
<Operator L i s t > - Chapter I I I , Page 37 
<Ordinal S e l e c t o r > - Chapter IV, Page 55 
<Drdinal S u f f i x > - Chapter IV, Page 55 

< P a r a l l e l Elements> - Chapter I I I , Page 43 
< P a r a l l e l Product iorO - Chapter I I I , Page 43 
<Pop Up Operatot> - Chapter IV, Page 61 
<Pop Up Statement> - Chapter IV, Page 62 
< P o s i t i o n > - Chapter IV, Page 55 
<Procedure Formula> - Chapter I I I , Page 26 
<Push Down Operator> - Chapter IV, Page 61 
<Push Down S t a t e m e n t s - Chapter IV, Page 61 

<Schema> - Chapter I I I , Page 43 
<Schema Ass ignments - Chapter I I I , Page 43 
<Schema Elements - Chapter I I I , Page 43 
<Schema V a r i a b l e > - Chapter I I I , Page 43 
< S e l e c t l o n Expres s lon> - Chapter IV, Page 55 
< S e l e c t o r > - Chapter IV, Page 55 
< S e l e c t o r L i s t > - Chapter IV, Page 43 
< S i n g l e Product lon> - Chapter I I I , Page 43 
S u b s t i t u t i o n L i s t > - Chapter I I I , Page 32 
<Symb or L l s t > - Chapter IV, Page 58 
<Symbol ic Expressiori> - Chapter IV, Page 49 

t r a n s f o r m e d Formula> - Chapter I I I , Page 43 



RESERVED WORDS 

ANY - Chapter III, Page 36, Page 42 (appears thrice) 

ATOM - Chapter III, Page 36 

COMM - Chapter IIJ, Page 36 

ELSE - Chapter III, Page 25 

EVAL - Chapter III, Page 31 (appears twice) 

FALSE - Chapter III, Page 36 (appears twice), Page 42 

IF - Chapter III, Page 25 

INDEX - Chapter III, Page 36 

OF - Chapter III, Page 36 (appears twice) 

REPLACE - Chapter III, Page 31, Page 42 

SUBS - Chapter III, Page 31 

THEN - Chapter III, Page 25 

TRUE - Chapter III, Page 36 (appears twice), Page 42 

AFTER - Chapter IV, Page 53, Page 62 

ALL - Chapter IV, Page 53 (appears twice) 

ALSO - Chapter IV, Page 62 

ALTER - Chapter IV, Page 62 

AND - Chapter IV, Page 53 

ANY - Chapter IV, Page 53 

ATOM - Chapter IV, Page 53 

ATTRIBUTES - Chapter IV, Page 60 

BEFORE - Chapter IV, Page 53 (appears twice), Page 62 

BETWEEN - Chapter IV, Page 53 

BOOLEAN - Chapter IV, Page 53 



FORM AL-3-U2 FORMULA ALGOL 

DELETE - Chapter IV Page 62 (appears twice) 

ELEMENTS - Chapter IV, Page 60 (appears twice) 

FIRST - Chapter IV, Page 53 (appears twice) 

FOR - Chapter IV, Page 60 

FORM - Chapter IV, Page 53 

INSERT - Chapter IV, Page 62 

INTEGER - Chapter IV, Page 53 (appears twice) 

IS - Chapter IV, Page 62 (appears twice) 

LAST - Chapter IV, Page 53 (appears twice) 

ND - Chapter IV, Page 53 

NIL - Chapter IV, Page 47 

NOT - Chapter IV, Page 62 

OF - Chapter IV, Page 51, Page 53, Page 60 (appears thrice), Page 62 (appe 

5 times) 

PARALLEL - Chapter IV, Page 60 

RD - Chapter IV, Page 53 

REAL - Chapter IV, Page 53 

ST - Chapter IV, Page 53 

SUBLIST - Chapter IV, Page 53 

SYMBOL - Chapter IV, Page 53 

TH - Chapter IV, Page 53 

THE - Chapter IV, Page 51, Page 62 

TO - Chapter IV, Page 62 



APPENDIX 7 

COMPLETE EXAMPLES 

The attached photocopies of computer output present three ways that 

Formula Algol can be used to solve an algebraic equation for the single oc

currence of the variable X. These three solutions are by Markov Algorithms, 

by recursion, and by iteration. Formula Algol is well suited to programming 

this problem because its data structures and source language instructions were 

chosen to be well adapted to problems in formal algebraic manipulation. It 

can be seen from the attached programs that the Formula Algol programmer has 

detailed control over the specification of formula manipulation algorithms 

and that,at the same time, abbreviation devices, such as the Markov Algorithm, 

make it convenient to write them. Brief explanations of the three solutions 

are as follows. 

I. MARKOV ALGORITHM SOLUTION 

Lines 12 to 29 define a Markov Algorithm which gives the rules of trans

formation by which equations are to be solved for X. The equation to be solved 

for X is stored as the value of the variable E in line 30, and line 31 prints 

both E and E. IS the result of applying the Markov Algorithm S to E, which re

sult is the solved equation. In lines 10 and 11, plus and times are defined 

to be operators with commutative properties so that in lines 14 and 15 commuta

tive instances of A*B and A+B will be considered. Lines 7,8, and 9 define A 

to be a formula pattern which will match any subexpression of a formula con

taining an occurrence of X, and B and C to be formula patterns which will 

match any arbitrary subexpression of a formula. The A's, B f s , and C's are 

used in the construction of the left hand sides of the transformations in the 

Markov Algorithm and stand for patterns with these properties. On the right 



hand sides of the transformations the .A's, .B's, and ,C's are objects which 

are replaced by the subexpressions which match the A f s , B f s , and C f s when 

given transformation applies to an input equation. 

II. RECURSIVE SOLUTION 

Lines 4, 5, and 9 define patterns A, B, and C with the same properties 

as in the Markov Algorithm solution. The recursive procedure SOLVE(LHS,RHS) 

given in lines 8 to 28 analyzes the form of the left hand side of the equation, 

LHS, which is assumed to contain X, and recursively calls SOLVE with that sub

expression of LHS containing X as its new first parameter, and an appropriate 

inverse expression composed of an appropriate inverse operator applied to RHS 

and a subexpression of LHS not containing X as its new second parameter. The 

procedure Answer(E) given in lines 30 to 34 analyzes the input equation E to 

see which side contains X and passes the side containing X as the left hand 

side and the side not containing X as the right hand side to SOLVE which de

livers the answer to the problem. An equation is assigned to E in line 36 

and both E and Answer(E) are printed in line 37. The printed solution is the 

same as that given in the first and third solutions. 

III. ITERATIVE SOLUTION 

Lines 6 and 7 define two operator classes OP1 and OP2 consisting respec

tively of the binary operators to be used in input equations and the unary 

operators to be used in input equations. An integer variable I is attached 

to the definition of each operator class as an "Index". In lines 12 and 13 

the input equation G is compared with two patterns. The first pattern matches 

if the left hand side of G contains a binary operator in the class OPl and the 

index vari le I is set to contain an integer denoting the ordinal position of 

this operator in the list of operators given on line 6. Similarly, the second 

pattern matches if G f s left hand side is of the form <unary operator>(<expressiori>) 



and the index I is set to the ordinal position of the unary operator in the 

list of unary operators in line 7. The integer value of this index I is used 

in a designational expression containing a switch to transfer control to an 

appropriate statement to perform the required transformation of the equation. 

These transformations are given in lines 15 to 27. The iteration is under 

the control of a FOR-WHILE statement and halts when the equation G has X as 

its left hand side. The printed solution is the same as that for solutions 

I and II. 

IV. COMPARISON OF THE THREE SOLUTIONS 

Markov Algorithm Recursion 

seconds required 5 + 1 4 + 1 

cells required 232 471 

code required 771 826 

The times given here are not measured as precisely as they 

truly useful comparison. 

Iteration 

3 + 1 

183 

595 

should be for a 



O 



A (PER, VL02 24 
993 4CG52C62 

OCT 66 22:23:34 ANO PAGES: 
CC303011403* TS01 50 TIME: 3 

STATUS MAR. 25,1966:EXPERIMENTAL SYSTEM. 
C02: 
C03: 
004: 
005: 
COS: 
007: 
cos: 
009: 
01Cs 
011: 
012: 
013: 
011: 
015: 
016: 
017: 
01 Gs 
0193 
02C: 
021: 
022: 
023: 
024: 
025? 
026: 
027: 
02 8: 
0292 
03C3 
031: 
032: 
033: 

ERR03S 

11C02 
11020 
11037 
11051 
11060 
11072 
11103 
11114 
11144 
11174 

11177 
11243 
11310 
11353 
11416 
11461 
11524 
11574 
11643 
11677 
11733 
11767 
12026 
12073 
12152 
12231 
12263 
12370 
12400 
12403 

AL BEGIN 
F03M E,K,M,H,N,P; 
FORM A„D,C,X5 SYOOL PLUS, TIMES, S; 
OOOLEAN R0CEDU2E HASX<F); VALUE F; FORM 
HASX *- F >> X; 
A«-A:OF(HASX>; 
B«-D?Ari/; 
C*C:ANY; 
PLUS«-/[G?EnATOa:+] CCOMM: TRUE); 
TIMES«-/CO?ERATOR:*] (COMM: TRUE]; 
S - t 
t 
CA| TIMES |D) 
(A|PLUS |D> 
A 
0 
A 
0 
A 
D 

/ 
/ 
t 
t 

EXP<A> 
LN<A) 

SC3KA) 
ARCTAN(A) 

SIN(A) 
CCS(A) 

X 
E «-Kt2 + 
PRINTC E, 

C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

= c 
LNCM 
E.*S 

RINTCCELLS): 
END; 

+ SINC 

.A = .C / .8, 
•As «C *6, 
•A = .C + .B, 
•A = »B - .C, 
•A s X * .0, 
.A = .0 / .C t 

.A = .C t <1/.B>, 
•A s LNCOTLNCJB), 
•A = -.C, 
.A = LNC.C), 
•A = exp<.c>, 
•A = «C t 2, 
•A = SIKCO/COSCC)* 
.A = ARCTANC.C/Se3T<1-.Ct2»t 

.A = ARCTAN(SC3T<1-.Ct2>/.C>, 
•X = .C 3 1; 
( X t3-K) /< H>4) *Mt5 )tN - K)*M = P; 

BEGIN EXECUTION 22:28:53; „06423 AVAILABLE CELLS 
Kt2 + LF1CM + SINCCXT3 - K)/(H + 4>*M?5>fN - K)*M=P 
X=CAttCKCEXP«P - Kt2)/M) +K - M)t<1/N)/5QRT<1 - <EXP«P 
- K?2)/M) + K - M)t(1/N)t2»/Mt5*(H + 4) + K)t< 
.333333333330+C3> 
6191 

m i USED: 03:00:36 PAGES: 3 
22:33:20 EKD 

12404 22:28:59 0 284 3 0 0 0 0 0 46 0 



993 20050002 00003011403* 
FORM AL-3-118 

TS01 16:0 

STATUS MAR 
2 . 
3 . 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 

0 ERRORS 

. 25,1966:EXPERIMENTAL SYSTEM. 
11002 BEGIN FORM E,K,M,N,H ,P ,F,G ,X; 
11026 SYMBOL PLUStTlMES; 
11033 BOOLEAN PROCEDURE HASX(F); VALUE F; FORM F; HASX*f»X; 
11053 PLUS*-/tOPERATORSHCOMM: TRUE); Tl MES*/[0P£RAT0R:*UC0MM: TRUE1; 

BEGIN 
11132 FORM PROCEDURE S0LVE(LHŜ HS); FORM LHŜ HS; 
11137 BEGIN FORM A£ ,C;A*A:OFCHASX);B«e;ANY;C«-C:ANY; 
11201 IF LHS == <A|PLUS|B) THEN S0LVE*«0LVECA,RHS-B); 
11243 IF LHS == (A|TIMES|B) THEN SOLVÊSOLVECA ftHS/B ); 
11305 IF LHS == A-B THEN SOLVE «-SOLVECA.RHS+B); 
11345 IF LHS == B-A THEN SOLVE S0LVECA£-RHS>; 
11405 IF LHS == A/B THEN SOLVE «- SOLVEC A ftHS16 ); 
11445 IF LHS == B/A THEN SOLVE *• S0LVE(A£/RHS)| 
11505 IF LHS == A1B THEN SOLVE «-SOLVECÂ HStO/B )>; 
11554 IF LHS == B1A THEN SOLVE «- SOLVECA ,L NCR HS)/LNCB)); 
11622 IF LHS == -A THEN SOLVE - SOLVEC A,-ft HS>; 
11656 IF LHS == EXPCA) THEN SOLVE «- SOLVECA ,LNCRHS»; 
11712 IF LHS == LN(A) THEN SOLVE «- SOLVECA,EXP(RHS)); 
11746 IF LHS == SQRT(A) THEN SOLVE «- SOLVECA J? HS12 ); 
12005 IF LHS == ARCTANCA) THEN SOLVE - SOLVECA£INCRHSVCOSCRHS)); 
12053 IF LHS == SINCA) THEN 
12071 SOLVE «- SOLVECA/RCTANCRHS/SQRTC1-RHS12 ))); 
12134 IF LHS == COSCA) THEN 
12152 SOLVE «- SOLVECA/RCTANCSQRTC1-RHS12 VRHS»; 
12215 IF LHS == X THEN SOLVE «- X = RHSj 
12241 END; 

12244 FORM PROCEDURE ANSWERCE); FORM E; 
12247 BEGIN FORM F,G; 
12256 IF E == G:ANY=F:ANY THEN BEGIN IF F»X THEN 
12323 ANSWER*€OLVECF,G) ELSE ANSWER *SOLVECG,F) END ELSE 
12344 ANSWER*-.NOEQUAT I ON; ENO; 
12352 E «- K12 + LNCM + S INCCXt3-K >/CH+4)*Mt5>tN-K >*M =P; 
12457 PR INTCE,ANSWERCE)); PRINTCCELLS); 
12472 ENO;ENO; 

BEGIN EXECUTION 16:20:24; „06418 AVAILABLE CELLS 
K12 + LNCM + SINCCXt3 - K)/CH + 4)*Mt5)tN - K)*M=P 
X=CARCTCCEXPCCP - K12)/M) + K - M)tC1/N)/SQRTC1 - CEXPCCP 
- K12VM) + K - M)tC1/N)t2))/Mt5*CH + 4) + K)tC1/3) 
5947 

TIME USED: 00:00:32 PAGES: 2 12474 16:20:28 0 0 0 0 0 0 0 0 50 0 



OUTPUT 
TIKE USED: GOiGOite PAGE52 3 

A OPER. SH02 25 OCT 66 (70200236 
993 0OC32OS2 00003011003 

TS01 GO / 0 32 

FORMULA ALGOL 

12120 00:01:17 0 0 0 0 0 0 0 0 '15 0 
AMD PAGES: 50 TfT'ts 3 

TS01 

9456 3 

FORM AL-3-119 

WW 

00? 3 

STATUS MAR. 25,1966:EXPERIMENTAL SYSTEM. 
BEGUN 

11002 FORM G9fC,M»Hf)NflP» A, B,C,XjSYT.SOL 0P1,0P2? 
1103') INTEGER 85 SV/ITCH t*- t1,L2,L3,U,L5? 
1.1G32 S7ITCH Q «- Q1902{)Q3,0')oQ5s>Q60Q7; 
11073 GP1>/fOPERATORs*,*,-,/t?l[ INDEX: M? 
11105 OP2>/COPERATOn8-»EXPpLNfSQRTtARCTAN9S»H,C0SlCIMOEXtll| 
11233 G«-:C?2 •MJHCTM̂IMC <Xt3HO/{ttfrWft5)?IWO*K=Pi 

Ui#2 
C038 
000 2 
CC3s 
OOSs 
0072 
eoas 
CC92 
0102 
0113 
0122 
013s 
0102 
0152 
0152 
0172 
010: 
0192 
0202 
0212 
G222 
023: 
02 02 
023s 
026 s 
0272 
020 2 
0292 
0302 
031: 
0322 

ERRORS 

11300 
11363 
11033 
11076 
11503 
11537 
11573 
11627 
11663 
11731 
11733 
11705 
11757 
11771 
12005 
12030 
12052 

12110 

12116 
12123 

FOR G «- G millE -»(G == X=ANY > DO 
DEC IN 
IF G == <AsAMY|0P1|B«ANY>=C*ANY THEN GO TO tflj? 

IF G == H0P2J A«ANY>=CsANY THEN GO TO QUI ; 
PRINT<J!3EQtJATIGN>? GO TO CONTINUE? 
UsGHF 
t22Ĝ -BF 
t32G<HF 
UsGHF 
LSsGHF 

GO TO 
Q1sG»-A=-C 

A»X 
A»»X 
A»X 
A»X 
A»X 

THEM A=C/B EtSE D=C/Aj GO 70 CONTINUE 
THEN A=C-0 EtSE D-C-A? GO 70 CONTINUE 
TtJEM A=C*3 EtSE B=A«C; GO TO CONTINUE 
THEN A=C=:3 EtSE B=A/C? GO TO CONTINUE 
THEN A=Ct(1/B) EtSE B=tN(C)>LN(A>? 

CONTINUE! 
: GO TO CONTINUE? 

Q22G<-A=LMCC>5 GO TO CONTINUES 
Q3sG>A=EXP(C)s GO TO CONTINUE? 
Q0sG«-A=C?2$ GO TO CONTINUE? 
Q52G>A=SIN(C)yC0SCC); GO TO CONTINUE? 
Q6sG<-A=ARCTAN(C/SQRT<1-C?2»? GO TO CONTINUE? 
Q72G«~A=ARC7AN(SQRT(1-Cf2>/C>? GO TO CONTINUE? 
CONTINUE: ? 
ENO? 

PRINT(G)5 PRINT(CEttS)? 
END? 

BEGIN EXECUTION 00:01:15? 005529 AVAItABtE CEttS 
X=(ARCT«EXP«P - Kt2)/M) -f K - M>t(1/N)/SQRT(1 - (EXP«P 
- K?2)/?.1> + K - M>tCl/N>t2»/Mt5*(H + 0) + K)?<1/3) 
6306 

TIME USED: 00200202 PAGESs 3 
G0305321 END 

12120 00:01:17 0 0 0 0 0 0 0 0 ^ 0 



o 
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APPENDIX 8 

CURRENT SYSTEM BUGS 

May 1, 1967 

The following is a list of constructions which are currently not 

functioning in Formula Algol: 

1. Attempting to access a switch with an index which is out of 

bounds. Gives a run error instead of returning as defined in 

Algol 60. 

2. Recursive class names. 

3. A selector using itself within itself through a class name (i.e., 

3RD (|V0WEL|) where the code for VOWEL uses the "nTH" selector). 

4. "Own 1 1 variables. 

5. The l ^ » " predicate will not test for subformulae of subscripts 

to an array formula or parameters to a procedure formula; schema 

will, however. 

6. "SUBS 1 1 in either array, procedure, assignment or conditional 

formula. 

7. A construction of the form: 

E»...0F(B)... 

where B is of the form: 

BOOLEAN PROCEDURE B: FORM X: 

G » . . . 0F(B).... 

8. Cannot pass switches as parameters. 

9. Real arrays are not stored into properly if the right hand side 

is only a variable, not an expression. 

e.g. A[I] <-X; does not work (stores logic) 

A[l] <-X+0; works 



10. Logic Arrays are always accessed arithmetically. 

11. A procedure which has the form of a compound statement is 

treated as a block in the declaration of labels. 

12. Switches may neither be forward referenced nor recursively 

referenced. 

13. Print routine will not print incomplete chain. 

PROCEDURE P(...,L), SYMBOL L; f L f is called by name 

P R I N T ( . . [ . ,L]) ; <- incomplete chain 

Inasmuch as this Is now a nonrecoverable error, caution should 

be exercised to avoid using this construction. 

14. In the EVAL operation, the formulae which are substituted are 

not evaluated in themselves, but only in combination with the 

rest of the formula. Thus, if , 3 + 4 l is one of the substituted 

values, it will not be reduced. 

15. The identity of atomic formulae does not follow the outlines of 

block structure. They act as though they were all declared 

globally. 

16. A multiple assignment statement for a description list is not 

allowed. 

17. In a procedure, A t B does not work unless A and B are either 

not local to any procedures or local to the same procedure. 

18. SYMBOL and FORM variables which are formal parameters of a 

procedure cannot .be dotted. 

19. The construction 

S <- (if B then C else D) + E 

will not work if C is an arithmetic expression, but D is a 



number which is to be extracted from a list or formula 

structure. Reversing C and D fails also. 

The construction 

FOR I 1 STEP 1 UNTIL EVAL F DO S; 

fails for the same reasons. 
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