NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CARKNEGLIE=MELLON UNI /e

_ - COMPUTER SCILENCE DES2
FANS
- 6 / - 9 COF. 9“ READING RCOM A
;,—-...' e e
a
'r
o FORMULA ALGOL MANUAL
by
Jay Earley
o

Carnegie-Mellon University

\ Pittsburgh, Pennsylvania
' June 26, 1967

510, 7309
CAE v
1967

Zﬁ%%f,i%.

This work was supported by the Advanced Research Projects
Coe Agency of the Office of the Secretary of Defense (SD-146)
and is monitored by the Air Force Office of Scientific Research,

-
.

— e

9 B0

ABSTRACT

Formula Algol is an extension of Algol 60 [l] incorporating formula
manipulation and list processing.

This manual describes the use of the version of Formula Algol which
is presently running at Carnegie-Mellon University.

ii

LIBRARIES
CARNEGIE-MEZLLON UNIVERSITY
PITTSBURGH, PENNSYLVANIA 15213

TABLE OF CONTENTS

Title Page. . . . « « v & « o o« v o o o v o o« . .1

Abstract. 4 e e e e e e e e e e e e e Al
Table of Contents. + « « « « « . . 1ii
Chapter I - Introduction.1
General Description of Formula Algol.1
History and Implementation. 2
Acknowledgments., & . . 4 4 .. .2
Introduction to the Manuwal, . . ., . . 3
Introduction of Formula Algol Programming. 3
Chapter II - Numeric Processing.13
Symbols. « « « + v v o e e13
Decimal Constants. « « « . . .14
Octal Constants, « . . . « + 4+ + + . . .14
Identifiers. « .« 4« . . o 4 . .. 1B
Variables, v 4 4 e v a e oo 1T
Logic Expressions.18
The Precedence of Operators and Relations
In Formula Algol.« 20
Standard Functions. + « « « .« . . 21
Assignment Statements.27
Conditional Statements. 21
Labels and GO TO Statements.22
FOR Statements. « « « « « o « & « + o . 22
ATTAYS. .+ v« v v v v 4 e e e e e e e e .. 23
Procedures and Block Structure. . , 23
Chapter III - Formula Manipulation. 25
FORM Variables,25
FORM Arrays. « « v o o 0 0. .. .25
Formula Expressions.26
Formal Definition of VAL (E). 27

iii

Evaluation of Formulae.

Formula Patterns. . ,

Transformed Formulae.

Precedence of Formula Operators.

Special Functions.

.

-

Chapter IV - List Processing.

SYMBOL Variables,
SYMBOL Arrays.
Symbolic Expressions.
Lists.
Assignment Statements:
Description Lists. . .
Selection Expressions.
List Patterns. . . .

Class Tests.

Push Down and Pop Up Statements.

.

+

.

-

+

Additional FOR Statements, . .

Editing Statements,.

Special Functions. . .

Appendix I - Revised Report on the Algorithmic

Language ALGOL 60.
Summary.
Contents.

Introduction.

Description of the Reference Language.

Alphabetic Index of Defin tions of Concepts

and Syntactic Units,

Appendix 2 - Current System Limits .

Appendix 3 - Debug Snapshots. .

Appendix 4 - Error Messages.

iv

.

32
37
43
.47
47

. 49

49
.49

49
.51
.52
.53
.55
.58
.61
.61
62

64
.66

.69
.69
69
70
.7

.84
.87

. 89

.93

Syntax Errors. . . . « . + + -« 4 4 .
Semantic Errors, « « « & o+ . o
Run Errors. ¢ & + ¢ o & 4 = «
Appendix V - Input-Output.
Appendix VI - Syntax Index.,
Syntax Classes. . . . « . & + + &+ « & &
Reserved Words. . . . « . « « « + + &
Appendix VII - Complete Examples.,
I. Markov Algorithm Solution. . ., . . .
II. Recursive Solution.
ITI, Iterative Solution. -
IV, Comparison of the Three Solutions. .

Sample Program. . . = « « « o + o o =

r-\
Appendix VIII - Current System Bugs. . . .
N References. « « « «+ + & « « 4
]
»
f\

()

LN

FORMULA ALGOL FORM AL-3-1

CHAPTER I

INTRODUCT ION

GENERAL DESCRIPTION OF FORMULA ALGOL

Formula Algol i{s an extension of Algol 60 [1] incorporating formula mani-
pulation and list processing. The extension is accomplished by adding two new
types of aata structures: formulae and list structures, with an appropriate
set of processes to manipulate them. The control structure of Algol 60 is
inherited and also extended.

Algorithms may construct formulae and list structures at run time. Opera-
tions are available which alter or combine formulae.and list structures, and
which access arbitrary subexpressions. Formulae may be evaluated, substitut-
ing numerical or logical values for occurrences of variables contained within.
They may be subjected to substitution processes causing the replacement of
occurrences of variables by designated formulae. Ihey may be subjected to
transformat fons defined by sets of rules akin to Markov algorithms., Predicates
are available to determine precisely the structure and composition of any for-
mula or list structure, and mechanisms are provided to extract subexpressions
of a formula, or sublists of a list, provided its structure 1s known.
Numerical, logical, and formula values may be stored as elements in list
structures, and retrieval mechanisms exist to select them for use as con-
stituents in other processes. Description lists composed of attributes with
associated value-lists may be attached to list structures, and processes exist

for retrieving value lists aind for creating, altering, and deleting attribute-

FORM AL-3-2 ¥ORMULA ALGOL

value list pairs., Push down stacks of arbitrary depth are available for the
storage of all types of data structures and generators are provided in the
form of new types of FOR statements which assign to control variables the
elements of a single list structure, or alternatively, of several list struc-
tures in parallel, for use in an arbitrary process. Finally, both arrays

and procedures may be defined having formulae or list structures as values,

HISTORY AND IMPLEMENTATION

The Formula Algol language has been designed by Dr. Alan J, Perlis,
Renato Iturriaga, and Fhomas A. Standish. It was initiated at Carmegie-Mellon
in January, 1963, and has undergone continual evolution and expansion since
that date. In August, 1963 an interpretive version was running and was re-
ported at the Working Conference on Mechanical Language Structures in Princeton,
New Jersey. [2] .

The version reported in this manual has been implemented as a compiler
on the CDC G-21 computer at Carnegie-Mellon University by Renato
Tturriaga, Thomas A. Standish, Rudolph A. Krutar and Jay Earley. A discussion
of the compiling techniques used was presented at AFIPS 1966 [6]. For those

interested in the details of the compiler, a more complete document exists [43.

ACKNOWLEDGMENTS

A large part of Chapters III and IV is based on "A Definition of
Formula Algol" [7], and much of Chapter II is based on the Algol-20 manual [3].
Special thanks goes to Gail Jaffre, Dr. David C. Cooper, and the implementers

of the language for their help in preparing the manual.

FORMULA ALGOL FORM AL-3-3

INTRODUCTION TC THE MANUAL

This manual describes the use of the version of Formula Algol which is
presently running at Carnegie-Mellon University. It is called by writing
'FORML' in the language field of a job card.

It is assumed in this manual that the reader is familiar with Algol 60,
Since Algol 60 is not described, the Revised Report is included in the appen-
dix., Below is an introduction to Formula Algol programming, which is intended
for those who are familiar with programming, but not with this language.
Chapters 1I, III, and IV describe the mechanisms available Iin Formula Algol
and how they are to be used. All the mechanisms described in this part of
the manual may not be working perfectly at a given time. They are, however,

a short range goal at which the Formula Algol maintenance group will aim.

A list of current system bugs and problems, which should be updated frequently,
1s included in the appendix. Operations which are illegal and therefore
produce errors are not mentioned specifically in the manual except in the

list of errors. It should be assumed that any operation or instance of an
operation which is not mentioned as being legal in the manual will produce

‘an error.

INTRODUCTION OF FORMULA ALGOL PROGRAMMING

This chapter is designed to introduce a programmer who is familiar with
Algol to the mechanisms available in Formula Algol, and to give an idea how
they may be used to do formula manipulation and list processing. No attempt
-has been made to be complete or rigorous. The individual mechanisms available

are discussed more fully in Chapters III and IV,

FORM AL-3-4 FORMULA ALGOL

Formula Manipulation

Suppose that we would like to write a procedure which takes as input
a formula and differentiates it with respect to X, We first need some way of
representing such a formula in our programming language. Algol is inconvenient
for this because when an arithmetic expression is written in Algol, it is al-
ways to be evaluated, never to be kept around and examined. This forces the
use of indirect representations.

For this purpose we have FORM variables. When a variable declared of type
FORM is used in an.expression, it indicates that a formula is to be constructed
representing the expression., These formulae may be thought of as trees. Thus,

3*XtZ + 4/X would cause the contruction of the following tree:

*’///+\\\\/
N N
/N

The normal Algl precedence of operators determines the form of the tree. If we
assign the above expression to a FORM variable F. we can then access it later
by referring to F.

We now have a way of inputting the expression to be differentiated.
Next we need to be able to examine its structure.

For this, the language provides formula patterns. Thus we can write

F oo ANY*ANY

The "==" is to be read "is an instance of." It tests whether a formula stored
in F consists of any two subformulae connected by a multiplication sign. A
formula pattern is a8 Boolean expression and can be used in an

IF ... THEN statement,

Now that we can test for the form of a formula we want to be able to alter

FORMULA ALGOL FORM AL-3.5

its form according to what we have found. To do this, we insert extractors into
the pattern. An extractor is a formula variable followed by a colon. The pat-
tern then looks like
F==LEFT: ANYXRIGHT: ANY
If the pattern matches, then the subformula which matched the left operand gets
stored into LEFT and the subformula which matched the right operand gets stored
into RIGHT, Thus if we executed this pattern on 3 * X, after it matched, LEFT
would contain 3 and RIGHT would contain X.
We can now write one rule of our differentiation program
IF F==LEFT: ANY * RIGHT: ANY THEN
DERV « LEFT * DERV(RIGHT) + RIGHT * DERV(LEFT);
Assuming the DERV is the procedure we are writing to take the derivative, we are
using it recursively here to find derivatives of expressions containing "*'.
ANY is not the only word we can use in a pattern. We may use any
declared type words to test for a subformula of certain type. An arithmetic
or.formula expression may also be used; these cause exact equality tests, Thus
we may implement the "standard" derivative formula by
IF F== XtN: REAL THEN
DERV « N * Xt (N-1)
However, suppose we want this transformation to apply only if N > 1,
We can implement this by declaring a Boolean procedure to make this test,
BOOLEAN PROCEDURE GR1 (I); VALUE I; FORM I,
GR1 « IF I == REAL THEN T > 1 ELSE FALSE;
Then we use the following pattern:
F==XtN: OF (GRL)
and it will make the appropriate test for us.

Suppose in the derivative routine we would like to test whether the formula

FORM AL-3-6 FORMULA ALGOL

is a single wnit (number, variable) or a binary combination (A + B). We may
use the word ATOM, which yields true for number, FORM variables, etc.
IF F==ATOM THEN DERV IF F==X THEN 1 ELSE O,

We may search the formula to see if any of its subexpressions match a
pattern instead of testing only the main expression. This is done by using
'"™>" in place of "==". The '">>" patterns are otherwise exactly the same.

Now, suppose that we have finished calculating the derivative of F and
have stored it back into F. We may now want to substitute a number for X and
evaluate the resulting expression. This is done by the EVAL operator:

EVAL (X) F (3)
This substitutes 3 for all occurrences of X in F and calculates the result. If
this substitution removes all formulae from F, then a number will result. How-
ever, if some are left, it will remain a formula, though it will probably be
somewhat simplified. If we had wanted only to substitute 3 for X and not eval-
uate, we would have used "SUBS" in place of "EVAL", For a third possibility,
we may want to replace X in the formula by whatever is the current value of X
as a form variable. (Remember that the name X now appears in the formula, not
its value,) This is done by REPLACE (F)
which replaces all form variables in F by their current values, and then evalu-
ates the resulting expression. Let's now suppose that instead of differentiating
a formula we would like to make some simplifications in it. One thing we might
like to do is apply the distributive law:

IF F==A: ANY * (B: ANY + C: ANY) THEN

FeA* B+ A* G,
This works well, but this law is commutative, so we need a second rule for the
case when A is to the right of B and C. We also need another law for subtraction.
This expands our distributive law to four statements. We would like to contract

them into one.

FORMULA ALGOL 7 FORM AL-3-7

This is done by using operator classes. We will use one symbol to stand
for plus or minus, For this we use a variable of type symbol, so that we can

attach a description 1list to it (pg. 53). Let's call the symbol ADDOP. Then

we eXecute
ADDOP / [OPERATOR: +, -]

We can now write the pattern as

F == A: ANY * (B: ANY |ADDOP| C: ANY)
and it will apply for both + and -, We can also use this mechanism to change F,
If the above pattern matches, the operator which matched ADDOP will be stored as
its value. Then we can write F «A* B |<ADDOP>| A * C
to change F to the correct form.

Now we want to take care of the commutative instances of the distributive

law. For this we declare an operator class for "*"' and label it commutative:
TIMES « /[OPERATOR: *) {[cOMM: TRUE)

Now, by using |TIMES| in place of "*", the test will also match an instance of
(B: ANY |ADDOP| C: ANY) * A: ANY.

One final construction may be used to abbreviate some sequences of actions
which might otherwise be quite long, Suppose we would like to write a routine
to clear fractions. One transformation in it would be:
1f F==A: ANY - B: ANY / C: ANY THEN

F—{(A*C-B) /C;
We would need to write a sequence of these IF ... THEN statements plus proper
circling back to the beginning to make sure that we have gotten all of the
formula. This can be shortened by the use of productiona. The production which
corresponds to the above rule is:
A: any -B: any / C: any 5(.A* ,C - ,B) / .C

The exact reason for the dots can be found by reading chapter 3 on .formula

manipulationa. When this production is applied to a formula, it will have the

same effect as the above IF .,. THEN statement. However, we would like to apply

FORM AL-3-8 FORMULA ALGOL

a sequence of such productions in order to clear fractions, =0 we store a list
of these productiong by a list assignment statement (pg. 52). If the left
formulae are I; and the right are Ry, this will look like:
cmmb[Hg%,%a%,m,%qgj;

This now gives CLEAR the semantics represented by these productions. Then if
we apply this schema to a formula in F by the expression

F | CLEAR,
F will be treated in the following way:
L1 will be tested against F and then each of its subformulae, then L2

and so on. When a match is found, the corresponding transformation Ri is applied

will be,

and control returns to Ll again.

The complete schema for clearing fractions is on page 46.

List Processing

Suppose we want to write a program to play Solitaire. We can do this in
the list processing paft of Formula ALGOL., First we need to represent the cards
of the deck. Let's make each card a variable of type SYMBOL, so the ace of
spades is SPADEA and the 3 of clubs is CLUB3. We can represent the deck as
a list which is the contents of the symbol DECK. 8o to initiate the deck we
execute the assignment statement

DECK &-[SPADEA, SPADE2, SPADE3, ...];
where we string out all 52 cards.

Now we need to be able to deal out the cards into the seven solitaire
piles. Let's make these a symbol array called PILE:

SYMBOL ARRAY PILE [1: 7).

In order to deal we need to be able to select cards from one list (DECK) and in-
sert them into another. To select an element from a list we use a selector which

refers to the position of the element in the list by number. Since we want the

FORMULA ALGOL FORM AL-3-9

top element of the deck we use the expression
FIRST OF DECK
Since we will be putting cards on the top of the piles we use the statement

INSERT FIRST OF DECK BEFORE FIRST OF PILE[I];

We need to show that the card has been removed from the deck. This is done by

DELETE FIRST OF DECK.

Now this should do the dealing:

FOR J<J STEP 1 UNTIL 7 DO

FOR IeJ STEP 1 UNTIL 7 DO

"~ BEGIN

INSERT FIRST OF DECK BEFORE FIRST OF PILE[I]:

DELETE FIRST OF DECK;

ERD;

We would like to be able to compare the suits and numbers of various cards
to tell whether they can be placed on each other. For this our symbol names are
inadequate. We need to be able tc assoclate properties of the cards with them.
This is done by using description lists. We should assign a description list to
each card with a statement such as:

SPADE4«/[SUIT: SPADES] [DENOM: 4];
In this statement, SULT and DENOM are attributes, and SPADES and & are their
respective values, However, we have to test mainly the color of the cards for
solitaire, so let's add that attribute to our description list, too:

THE COLOR OF SPADE4 IS BLACK;
Note that COLOR, BLACK,VSUIT, etc,, are all symbol variables.
We may retrieve the value of an attribute by a statement such as:

THE SUIT OF SPADE4

or SULIT(SPADE4)

FORM AL-3-10 FORMULA ALGOL

Using this we could write a routine to add the color attribute to all the
cards, For each card we would write.

IF SULIT(CARD) = SPADES v SUIT(CARD) = CLUBS
THEN THE COLOR OF CARD IS BLACK
ELSE THE COLOR OF CARD IS RED;

To iterate through the deck we use a new type of for-statement which iterates
on the elements of a list, Using this plus a standard Algol abbreviation for the
IF ... THEN statement we have

FOR CARD e—ELEMENTS OF DECK DO

THE COLOR OF CARD IS

IF SUIT (CARD) = SPADES v SUIT (CARD) = CLUBS

THEN BLACK ELSE RED;

There is an alternative to this course of action. Instead of storing the
attribute color with each card, we can test each card to see if it is a spade or
club each time in the program that we need to know its color. However, we don't
want to have to write:

IF SUIT (CARD) = SPADES V SULT (CARD) = CLUBS THEN
every time we want to test a card.
Therefore we use a class test:
LET (]ELACK[) = [X | SUIT (X) = SPADES v.SUIT (X) = CLUBS];
This establishes a test for the class of black cards. We can now write
IF CARD == (|BLACK|) THEN
and the test will be performed for us.

We can now write a routine to test whether one card can be placed on another

or not.
Let's use color as an attribute and store JACK, QUEEN, and KING as 11, 12, 13.
Since we can store numbers directly as values, or in fact as elements of a list,

we can do just an arithmetic check on the value of DENOM in our routine. The

FORMULA ALGOL FORM AL-3-11

following routine tests whether Cl can be placed on G2,

BOOLEAN PROCEDURE PLACEON(C1, C2); VALUE Cl, C2; SYMBOL Cl, C2;

PLACEON COLOR(Cl) # COLOR(C2)
A DENOM(C1l) + 1 - DENOM(C2):
Now let's switch from Solitaire to natural language processing,
Assume we have the words of a paragraph stored in a list called PARA, We
want to search it for the words "THERE ARE" followed by a number and then a
plural noun, i.e., "THERE ARE 20 BUILDINGS," We then want t¢ put the number
as the value of NUMBER on the description list of the noun. We have a list
of the plural nouns stored in NOUN.
To do this we need some new constructions:
(1) COUNT(L) produces an integer value corresponding to the number
of elements in list L,

(2) AMONG(X, L) is TRUE if X is an element of list L.

(3) As with formula patterns, we may test to see if an element is of
a particular type using ";=".

The routine 1is

FOR I~ 1 STEP 1 UNTIL COUNT{PARA) -3 DO

IF I TH OF PARA = THERE A
(I + 1) TH OF PARA = ARE A
(I + 2) TH OF PARA == INTEGER A
AMONG ((I + 3) TH OF PARA, NOUN) THEN
THE NUMBER OF (I + 3) TH OF PARA IS (I + 2) TH OF PARA;
This is a lot of writing, so we would like to be able to use some of
the mechanisms of COMIT [5] to make this test. Let's first construct a class
name for nouns.

LET (|NOUN|) = [X| AMONG (X, NOUN)]

FORM AL-3-12 FORMULA ALGOL

We can now use a list pattern to make the test
IF PARA -- [$§, THERE, ARE, INTEGER, (|NOUN|), $) THEN

$ stands for am arbitrary number of elements. This pattern is tested
against the list PARA for any match. After the match, however, we want to
be able to perform the description list store. For this we need to be able
to extract elements of PARA according to the part of the patterns they
match. This is done by writing a symbol variable and a colon in front of
an element of the pattern. Then if the pattern matches, the element that
matched the pattern element is stored into the extractor variable.

The routine now becomes:

IF PARA == [$, THERE, ARE, N: INTEGER, OBJECTS: (|NOUN[), ﬂ

THEN THE NUMBER OF OBJECTS IS N;

FORMULA AILGOL FORM AL-3-13

CHAPTER II

NUMERIC PROCESSING

Although Formula Algol is an extension to Algol 60, there are certain

restrictions on this reference language which have been made due to character

set limitations and implementation., There are also some added features of

Formula Algol over Algol 60 aside from the formula and list processing features.

These are explained in this chapter,

SYMBOLS

Formula Algol accepts all of the special symbols of ALGOL-60 except for

those shown in the following table:

ALGOL-60

=

l}

HA

v

("implies")
{"1s equivalent™)

(multiplication)

(string quotes)

Use " "
Use "=“
Use 1igetl

Not available, but entier may be
used with "/" with the same effect.

Use n_'1 >
Use ' <"
Use "t

Not available

FORM AL-3-14 FORMULA ALGOL .

DECIMAL CONSTANTS

A number, N, in a Formula Algol program must be zero (which may be punched

with or without a decimal point) or else its absolute value N must satisfy:
1.275,~57 = N = 3,450,469

Because of the nature of the G-21 computer, the distinction between real
and integer numbers is unimportant. The programmer may write an integer-valued
constant with or without a decimal point (e.g., "34", "34.,", or "34,0") without
changing the type of arithmetic performed on the constant,

Numbers are represented in the G-21 in '"floating point" form with a maximum
of 42 binary digits of mantissa, corresponding to approximately 12 decimal digits
of precision. If more than 12 digits are written, the extra (least significant)
digits will be ignored. (The number is rounded at the 14th octal digit.)

The last character of a real number may be a decimal point; thus, the
number '"6.," is legal, Note: In Formula Algel "." is sometimes used as an
operator, In these cases it should not be placed adjacent to a numerical con-

stant so that these uses are not confused with its use as a decimal point.

OCTAL CONSTANTS

An octal (base 8) constant may be used in any context in Formula Algol
where a decimal number is allowed; {.e., as a primary in any arithmetic or logic

expression, Octal constants have the following syntax:

()

()

FORMULA ALGOL FORM AL-3-15

syntax:

<octal digit> 2:= 0 | 1 |2 |3 |4 |5][6]7

<octalian> ::= <octal digit> | <octalian><octal digit>

<signed octalian> ::= <octalian> | 4<octalian> | -<octaliar>

<left-justified octal constant> ::= 8l<octalian>

<right-justified octal constant> t:= 8R<octalian>

<floctalian> ::= <octalian> | <octalian>.<octalian> | <octalian>. | .<octalian>

<power of HE L w(signed octalian>

<floating octal constant> ::= 8F<floctaliam> I 8F<power of &

8F<floctalian><power of &>

<logical octal constant> ::= <left-justified octal constant> |

<right-justified octal constant>

<octal constant> ::= <floating octal constant> | <logic octal constant>

Despite this syntax, the translator does not treat the digits 8 and 9 in octal
constants as erroneous but will intepret them as 10)8 and 11)8, respectively,
Thus 8R495 will be interpreted as 8R5135,

Local octal constants (8L and 8R) are considered to be of type LOGIC and
so are always accessed in logic mode, Floating octal constants (8F) are con-
sidered to be of arithmetic type, and are élways accessed in arithmetic mode.

The character-pairs 8L, 8R and 8F are treated by the translator as single
entities and must be punched in adjacent columms of the same card, without in-
tervening blanks,

The value of a floating octal constant is determined by concatenating the
octalian as an octal number and muitiplying it by the appropriate power of 8,
treating the number which follows the , as an octal integer. For example;

8F,10 = 818

8F‘|11o"5 = 9*81"'5

FORM AL-3-16 FORMULA ALGOL

The value of a left (right) justified octal constant is determined by
prefixing (suffixing) to the octalién encugh zeros to give eleven octal digits.
This number is then concatenated and stored as a 32-bit logic word., 8Since eleven
octal digits require thirty-three bits for representation, the leftmost bit of

the leftmost octal digit is lost, Thus, 8L4=0 and 8L7=8L3.
IDENTIFIERS

Only upper case (capital) letters are available in Formula Algol, Neither
spaces nor any oberator may appear within an identifier (including "."). All
identifiers must be separated from adjacent identifiers by at least one space to
prevent the two from being interpreted as a single identifier.

Certain identifiers have special meanings in Formula Algol and are therefore
reserved, The programmer may not use these identifiers for any purpose other

than that of their reserved meanings. The reserved words in Formula Algol are

ABS CONT
AFTER COPY
ALL €os
ALSO COUNT
ALTER CREATE
AMONG 'DELETE
AND DERV
ANY DL
ARCTAN DO
ARRAY ELEMENTS
ATOM ELSE
ATTRIBUTES EMPTY
BEFORE END
BEGIN ENTIER
BETWEEN ERADL
BOOLEAN EVAL
CELLS EX3
com EX4
COMMENT EX5
VARIABLES

FORMULA ALGOL

INSERT

INTEGER

LAST

LIM

}=

LOGIC

2

NIL

NOT

oF

OPERATOR
OWN
PARALLEL
PRINT
PROCEDURE
RD

REAL
RECU
REDUCE

REPLACE

SIGN

42]
-l
=

|

[#2]
v
-

|3

STEP

STRING

SUBLLST

SUBS
SWITCH
SYMBOL
TEXT
TH

THE
THEN
TO
TRUE
UNTIL
VALUE

WHILE

FORM AL-3-17

Formula Algol allows both simple and subscripted variables of type HALF,

LOGIC, FORM and SYMBOL as well as REAL, INTEGER, and BOOLEAN.

REAL variables are stored in the G-21 with a precision of 42 binary digits,

requiring two successive memory cells per variable.

HALF variables are stored

with a precision of only 21 binary digits (about 6 significant decimal digits)

and occupy only a single location, but otherwise act as REAL variables. There-

FORM AL-3-18 FORMULA ALGOL

fore, the programmer may use HALF variables to gain memory space at the expense
of precision,

The value of a REAL or HALF variable must either be zero or lie within the

range given below:

A

REAL: 1.275,,-57

1A

abs(R) = 3.450,4+69

1A

abs(H) = 1.645,,4+63

HALF: 1,275,457
INTEGER variables will always take on integer values in the range
2097152 < T < 2097152 (=22"),
LOGIC variables afe always positive, If used as strings, they are four or less
characters in length, ,and if used as numeric quantitites they are restricted to

32).

The values of BOOLEAN variables must be either TRUE or FALSE,

0 =L < 42949 67296 (=2

The G-21 replaces by zero any non-zero arithmetic result which is smaller
than 1,275,-57 in magnitude; this sfituation is called an underflow. An inter-
mediate arithmetic result which is greater thanm 3,450,469, the largest number
representable in the G-21, is called an overflow, and causes an error to be
recorded, Executing an assignment to a half variable of intermediate results
which exceed the bound of the variable causes an overflow. On the other hand,
assignments to integer variables are truncated modulc thelr upper bound, and
assignments to logic variables are truncated modulo their upper bound and made

positive, In these two cases, no error occurs,

LOGIC EXPRESSIONS

In addition to arithmetic, Boolean, and designational expressions, Formula
Algol syntax includes "logic expressions" which perform bit-by-bit logic opera-
tions on 32-bit G-21 logic words, A logic expression may include any of the

following operands:

FORMULA ALGOL FORM AL-3-19

1. Loglc constant: octal constant or string constant

2. Variable, simple or subscripted, of type LOGIC

3, Function designator of type LOGIC

4, Boolean primary (and, therefore, any Boolean expression in parentheses)

5. Arithmetic primary (and, therefaore, any arithmetic expression in paren-

theses)

A Boolean primary used as a logic operand is interpreted as one of the two
32-bit logic worda:

8R 37777777777 = 32 one bits for TRUE, or
8R' 0 = 32 zero bits for FALSE,.

Each kind of logical operand (except number 5 above, arithmetic primary)
will always be fetched from memory with a "logic access", rather than a "numer-
ic access"; for example, a CAL command will be used to fetch.a logic variable
into the accumulator, When a logic variable or function designator forms the
left-part of an assignment statement, then an STL command will perform the as-
gignment, Therefore, an assignment statement of the form.

<logic variable> « <arithmetic expression>
will truncate the absolute value cf the expression modulo 232. An STL command
is also used for any temporary store of a logical subexpression (except an
arithmetic primary) within a complete logical expression,

Any of the following three logical operators may appear in a logic ex-

pression:
- (complement logic: unary)
A (extract logic: binary)
\Y (unite logic: binary)

Each of these operators performs the same operation simultaneously and
independently in each of the 32-bit positions of its operand(s)., If a bit = 1

represents the Boolean value true and a bit = 0 represents false, then the logic

FORM AL-3-20 FORMULA ALGOL

operators —, A, and V can be considered to perform the Boolean operations
-, A, and VvV respectively, in each bit position.

The operators +, -, *, and / may also appear in a logic expression. Each
of these operates in the usual way, considering its logical operands (except

for arithmetic primaries) as 32-bit integers.

syntax:

<logic constant> ::;= <string constant> | <logic octal constant>

<logic primary> ::= <logic constant> ' <logic variable> | «<logic function> I
<Boolean primary> I {(<logic expression>) |

<arithmetic primary>

<logic factor> ::= <logic primary> l-ﬁ <logic primary>
<logic term> ::= <logic factor> | <logic term> A <logic factor>
<simple logic expression> ::= <logic term> ' <simple logic expression> V

<loglc term>
<logic expression> ::= <simple logic expression> | <if clause>

<simple logic expression> ELSE <logic expression>

THE PRECEDENCE OF OPERATORS AND RELATIONS IN FORMULA ALGOL

t (done first)

- + (unary operators)

/ *

-+ (binary operators)

— (done last)

In cases of equal precedence, association to the left is used.

FOERMULA ALGOL FORM AL-3-21

STANDARD FUNCTIONS

Formula Algol contains all the recommended standard functions of Algol 60,

These are
ABS sIN | 18
SIGN cos EXP
SQRT ARCTAN ENTIER

ASSIGNMENT STATEMENTS

In Formula Algol, "«!' must be used instead of ":=", It has the same mean-
ing except when storigg a non-integer into an integer variable., In this case,
the non-integer is truncated, not rounded,

In multiple assignment statements, the "left-part" variables need not all be
of the same type, 1In fact, an assignment statement in Formula Algol may be treat-
ed as an expression whose value is the value which is assigned in the assignment
statement. . Thus

I 3 %K+ J «7K) /2
is a legal statement, To insure that "' is given the proper precedence, the

assignment statement should be enclosed in parentheses,
CONDITIONAL STATEMENTS

In Formula Algol, unlike Algol 60, the comstruction
IF¥ ... THEN

FOR ... DO <unconditioned statement>

ELSE <statement>

is legal and will be recognized correctly,

FORM AL-3-22 FORMULA ALGOL

LABELS AND GO TQ STATEMENTS

Only identifiers may be used as labels in Formula Algol;integer labels
are not permitted.
In Formula Algol,
GO TO Label
GOTO Label

are equivalent and permissible.

FOR STATEMENTS

The value of the controlled variable is not undefined upon normal exit
from a Formula Algol FOR statement. It is, in general, just what would be ob-
tained if the equivalent basic programs (section 4.6.4 of the Algol 60 report)

were substituted for the FOR statement, Thus, upon exit from an UNTIL or WHILE

form of FOR list element, the FOR variable has the first value for which the
final test failed.

Another form of FOR list element is permitted in Formula Algol,

FOR V e—E1 STEP E2 WHILE B DO S;
where E1 and E2 are arithmetic expressions, B is a Boolean expression, and 8 is

any statement. This is equivalent to the simple program;

v e—E1 H

LOOP: IF B THEN

BEGIN
5 H
V <V +Ey, GO TO LOOP

END

FORMULA ALGOL FORM AL-3-23

ARRAYS

Formula Algol arrays may be of type INTEGER, REAL, BOOLEAN, HALF, LOGIC,

FORM, or SYMBOL.

A non-integer value of‘a subscript expression in Formula Algel is not
rounded, only truncated. This may lead to hard-to~detect errors. For example,
suppose that the result computed for a subscript expression is 3.9999... instead
of 4, because of round-off error, this value will be truncated to 3, referring
to the wrong element of the array.

Run-time tests are made with each array access so that an access which is

out-of-bounds will preduce an error. OWN arrays may not be used in Formula Algol.

PROCEDURES AND BLOCK STRUCTURE

All formal parameters in a Formula Algol procedure declaration must be
specified. The following is a list of current restrictions on the use of
procedures and blocks.

1. Switches and strings may not be passed as parameters.

2. Arrays may not be called by value.

FORM AL-3-24

FORMULA ALGOL

(-

W,

w

in

FORMULA ALGOL FORM AL-3-25

CHAPTER III

FORMULA MANIPULATION

FORM VARIABLES

Variables may be declared of type FORM indicating that their values are
to be formulae. With each FORM variable there is associated a data item called
an atomic formula, which may form part of a formula expression. When a FORM
variable F is declared, its value is initialized to be the atomic formula of
F. Also, a description list is associated with F, into which attributes and
values may be entered and retrieved in exactly the same way as with SYMBOL
variables (pg. 53) except that a description list may be associated only

with a FORM variable, not with a sub formula.

FORM ARRAYS

Arrays may be declared of type FORM in which case their elements may be
formulae. These are accessed in the same way as other arrays. Unlike simple
FORM variables, array elements are not initialized, and therefore should not

be accessed before they have been stored into.

R iy e s e e+ =

FORM AL-3-26 FORMULA ALGOL

FORMULA EXPRESSIONS

Syntax:
<formula expression> ::= <arithmetic expression> l
<Boolean expression> | <an arithmetic expression (Boolean expression)
in which some of the primaries (Boolean primaries) have been
replaced by formula primaries and in which some operators have
been prefixed with a dot> +t [<assignment formula>]
<formula expression> "," [<identifier>]
""" <formula expression>
<formula primary> ::= <array formula> | <procedure formila>|
<transformed formula> [<evaluated formula> , .<identifier> f
<conditional formula> | { <formula expression>)}
<array formula> ::= <array identifier> . [<subscript list>]
<procedure formula> ;:= <procedure identifier> . <actual parameter part>
<conditional formula ::= , IF <formula expression> THEN

<formula expression> ELSE <formula expression>

<assignment formula> ::= <variable> . « <formula expression>

Semantics:

A formula is a piece of Algol text which is to be stored for testing,
manipulation, and possibly execution later on. An Algol expression is to be
treated as a formula when either of its operands is a form variable or is
already a formula. A dot preceding a variable is used to indicate the atomic
formula of that variable.

The process by which the value of a formula expression is obtained will be

explained by means of a recursively defined function called VAL. This function

+ This is a short description of what could be a formal syntactic statement.

.

FORMULA ALGOL FORM AL-3-27

does not appear explicitly in the syntax of the source language; rather, it is

executed implicitly at run time whenever the value of an expression is needed.

In subsequent definitions quoted strings represent formulae, Such formulae are
represented within the machine as trees, with operators at their nodes, atomic

formulae at their leaves, and each branch representing a subformula, Thus

'"a+B *vy ' is represented
//////+
o \\\\\‘*
B/ \Y

The normal precedence of Algol operators is used to determine how the tree will
be constructed, In addition, the "|[]|" construction has precedenﬁe just above
that of "' (pg. 47).

These formulae may be assigned to FORM variables, which may then be evalu-
ated or used in other formula expressions. In fact, any type of Formula Algol
expression may be assigned to a FORM variable except one of type SYMBOL.

Formula Algol is a strict extension of Algol 60 with regard to values and
types. Exactly as in Algol 60 each value has an associated type. 1In the ex-
planation of the function VAL below, the association of a type with a value is

given explicitly by an ordered pair of the form (TYPE, VALUE).

' FORMAL DEFINITION OF VAL (E):

1. E is a constant which is either a <numbexr> or a <logical value>,
TYPE (E) = INTEGER if VALUE(E) is an integer, REAL if VALUE(E) is a

floating point number, and BOOLEAN 1f E is a <logical value>,

VALUE (E) = the conventional value of & number or a logical value (identi-

cal to that given by the Algol Report).

FORM AL-3-28 FORMULA ALGOL

2. E is .¢, where ¢ is an <identifier> declared of type FORM.
TYPE (E) = FORM
VALUE (E) = the atomic formula of ¢.
3. E is a variable - simple or subscripted.
TYPE (E) = the type of the most recently assigned v;lue of E, taken as
a constant.
VALUE (E) = the most recently assigned value of E.
4, E is a function designator, say'P(XI,...,Xn)
TYPE (E) = the declared type of P.
VALUE (E) = the value produéed by executing the procedure P as defined
| in the Algol report.
5. E is a binary expression A w B where A and B are expressions and
w =+ = [%| /1] <l <|> | > | =|#|V]A] -

TYPE (E) is.defined by the following table

TYPE (B)
TYPE (A) REAL INTEGER | BOOLEAN FORM
- REAL Tl Tl error T4
INTEGER T1 T2 error T4
BOOLEAN error error T3 TS5
FORM T4 T4 5 | FORM

where:

7.

Tl

T2

T3

T4

T5 =

if TYPE (E)

VALUE (E) =

FORMULA ALGOL FORM AL-3-29

REAL if w is a numeric operator

BOOLEAN if 4 is a numeric operator

error otherwise

INTEGER if » 1s a numeric operator other than /
REAL ifw is /

BOOLEAN if w is a relational operator

error otherwise

BOOLEAN if w is a logical connective

error otherwise

FORM if w is either a numeric or relational operator
error otherwise

FORM if w is & logical connective

error otherwise

= REAL, INTEGER or BOQLEAN then

the number or logical value obtained by carrying out

the operation o with arguments VALUE (A) and VALUE (B).

If TYPE (E)

= FORM then VALUE (E) = 'o B' where o is VALUE (A) and B

is VALUE (B).

E is Al ET]IB where T is an operator class name.

TYPE E = FORM

VALUE (E) =

' y B' where = the operator most recently assigned to

T by a pattern or assignment statement (pg. 37), and o = VALUE (A)

and 8 = VALUE (B).

E is a unary expression y, A where A is an expression and m::=ﬁ|+|—

or E is of the form w (A) where w::=

SIN|cos|EXP| LN| SQRT| ARCTAN| SIGN| ENTIER| ABS

TYPE (E) is

defined by the following table:

FORM AL-3-30 FORMULA ALGOL

w

SIN,COS ,EXP SIGN ABS
TYPE (A LN, SQRT ENTIER ? —
REAL REAL INTEGER REAL error
INTEGER REAL INTEGER INTEGER | error
BOOLEAN error error error . BOOLEAN
FORM FORM FORM FORM FORM

If TYPE (E) = REAL, INTEGER or BOOLEAN then VALUE (E) = the number or

logical value obtained by carrying out the operation w with argument VALUE (A).

If TYPE (E) = FORM then VALUE (E) = the expression 'y o' where ¢ = VALUE (A).

Examples

Suppose that at a certain point in some program R and G have been declared
of type FORM, X and Y have been declared of type REAL, X has been assigned the
value 3.2, Y has been assigned the value 2, F has been assigned the value 'G/5°,
and G has as its value the atomic formula of G. Consider the following sequence
of assignmeﬁt statements:

(a8) Xe (X+7Y) t 2;

(b)) F &« 3% BIN(G) + (F+X tY;

(e} F « SQRT(F) ;

In statement (a) all variables are numeric. Thus the arithmetic expression
(X + ¥Y) t 2 is evaluated numerically using the current values of X and Y and
the result (27.04) is stored as the value of X. 1In statement (b) the value of
F becomes the formula expression '3 * SIN(G) + (G/S + 27.04) t 2'. Finally,
statement {c) replaces the value of F by the formula
"SQRT (3 * SIN(G) + (G/5 + 27.04) t 2)°'.
All arithmetic operators are treated as binary operators (even those which

are associative and commutative) with association to the left. This is

FORMULA ALGOL FORM AL-3.31

illustrated by the following examples:
(d) F + (X + Y) produces 'G/5 + 5.2
but (e) F + X + Y is equivalent to 'G/5 + 3.2 + 2!
8. E is a conditional formula
.IF B THEN A ELSE C, where A, B, and C are expressioﬁs and B is of type

FORM or BOOLEAN,

TYPE (E) = FORM
VALUE (E) = 'IF B THEN o« ELSE vy'
where B = VALUE (B), o = VALUE (A) and y = VALUE (C)
9. E is a procedure formula

E= a.(Xl, XZ’ eees Xn) where ¢ is the name of a declared procedure, and

Xl, XZ’ ceny Xn are expressions,
TYPE (E) = FORM
VALUE (E) = 'a(Nl, Nz, ces Nh)' where Ni = VAIUE (Xi).
Note: The formal parameters of any procedure which is used as a pro-
cedure formula must all be of TYPE FORM.
10. E is an array formula

A.[Xl, X,y aosy Xn] where A is the name of a declared array, and Xl, X

2° 2°
oo X.n are formula expressions,
TYPE (E) = FORM

VALUE (E) = 'A[Nl, Ny eees Nn] ' where N, = VALUE (X,)

2’ i

An important application of array formulae is the generation of names
dynamically at run-time. Upon entrance to a block containing the declaration
FORM ARRAY A[1:N], N array elements are created whose names may be used in
the construction of formulae even without any values having been stored into

them. Thus the name of the fifth of these is "A.[5]". Later, values may be

assigned to these elements and the formulae may then be evaluated, if desired.

FORM AL-3-32 FORMULA ALGOL

1. E is an assignment formula
@ .«— B where ¢ is a variable and B is an expression

TYPE (E) = FORM

VALUE (E) = 'o « B' where p = VALUE (B)
Evaluated and transformed formulae will be explained in succeeding

sections.

EVALUATION OF FORMULAE

Syntax:

<evaluated formula> ::= EVAL <variable> |

EVAL (<substitution list>) <formula expression> (<substitution list>) |

SUBS (<substitution list>) <formu1§ expression> (<substitution list>) [

REPLACE (<formula expression>)

<substitution list> ::= <formula expression list> | [<variable>]

<formula gxpression list> ::= <formula expression>] <formula expression list>,

<formula expression>

Semantics:

At some point in the execution of a program, we may wish to carry out
completely or partially the computation represented by a formula. To do this,
we could substitute values for all occurrences of some of the variables appear-
ing in a formulé, and combine these wvalues according to the computation expressed
by the formula, In order to accomplish the above we have the EVAL operator. |
This is in some sense the invérse of the "." operator. The dot postpones the
action of certain Algol expressions by making them formulae, while EVAL causes

the evaluation and/or execution of formulae.

FORMULA ALGOL FORM AL-3-33

If we have a formula consisting of names of formula variables joined by
arithmetic operators, then if we assign each of the formula variables a numer-
ical value, the result of the evaluation of the formula will be a number. Analo-
gously, substitution of Boolean values for formula variables in a Boolean formula
produces a Boolean value,

On the other hand, we need not substitute arithmetic or Boolean values for
formula variables, but rather, we can substitute other formulae. Thus, in this
case, evaluation of the formula, instead of producing a single value, creates
a new formula. Hence, EVAL may be used to construct formulae.

A third use of EVAL is that of producing trivial simplifications in a
formula without altering its value and without substitution., This 1s done

according to the following table:

Simplifications of EVAL

At 0-1 A* 050 h
*
Atl-A A 1A P commutative
At -1 -51/A A* -1 -A
At -n - 1/Atn A* -n—-(A *n) |
A/ 1A A+ 0-A
A/(-1) - -A A+ (-n) > A -n
A /(-n) - -(a/n) 0+A A
0/ A>0 (-n) + A 5A -n

(-n) / A 5 -(n/a) A-0-oA
- A-(~n) -A+n
0- A -A

(-n) - A -5 -=(n + A)

FORM AL-3-34 FORMULA ALGOL

XV true — true
XA true —» X

conmutative
X v false - X

X A false — false

Whenever an expression contains two numeric (Boolean) arguments joined by
an arithmetic (Boolean) operator, it is replaced by its value. Similarly, the
truth values of relations are obtained if both arguments are numeric.

A final use of EVAL is to execute the Algol code which is represented by an
array, procedure, conditional, or assignment formula.

These uses of EVAL are usually combined; thus evaluation of a formula may
produce partial expansion and some trivial simplification.

In order to define the EVAL operator we will first define the operator SUBS,
which performs part of the operation of EVAL and may also be evoked in the source
language.

Consider a statement of the form

D « SUBS (Xl, X2, “ens Xm) F (Yl, Y2, caay Yh) | (1)

where N2> 1 and m 2 1 (normally n = m).

I{ F is a formula expression then

(a) If TYPE (F) is numeric or BOOLEAN or if VALUE (F) is a number or Boolean
constant then the effect of (1) is precisely that of D « F.

(by If TYPE (F) = FORM and VALUE (F) is a formula, then D will have the
value obtained by substituting VALUE (Yi) for each occurrence of
VALUE (Xi) in a copy of VALUE (F) for all i < min (m,n) for which
VALUE (Xi) is an atomic formula. If m # n, any extras on either side
are ignored.

Now we define the EVAL operator:

Consider a statement of the following form:

D < EVAL (X}, Xo, +uvy X)) F (¥g, Yy, «vus Y)

FORMULA ALGOL FORM AL-3-35

First the rules for SUBS are applied. Then the formula is evaluated by

a recursive process which starts at the top of the tree and is applied succes-

sively to each subformula as follows:

(D

(2)

(3)

(4)

(3)

(6)

If the formula is a constant or atomic formula, it 1s left unchanged.

If the formula is a binary formula, its operands are evaluated from
right to left. If they reduce to numbers or logical values, then
the operation indicated by the operator is carried out and the re-
sult replaces the formula., Also, if any of the simplifications
listed‘previously applies, it is carried out. A similar process

is carried oeut for unary formulae.

If it is a procedure formula, the parameters are evaluated from left
te right and then the procedure call is executed and its Qalue re-
places the formula. Note: Since the procedure call is made regard-
less of collapsing of formulae, all its arguments must be of the
right type to correspond to thelr actual parameters (e.g., a par-

tially collapsed formula can't be passed as a real).

If it is an assignment formula the expression to be assigned is evalu-
ated, the assignment statement is executed, and the formula is replaced

by the assigned value.

If it is an array formula, the subscript expressions are evaluated
from left to right and if all reduce to numbers, the array access is

carried out and its value replaces the formula.

If it is a conditional formula, the IF formula is evaluated and if it

reduces to a logical value, then the corresponding THEN or ELSE for-

mula is evaluated and replaces the conditional formula,

In the above cases if the operands of the formula do not reduce properly,

the formula is left as simplified as the above transformations provide.

FORM AL-3-36 FORMULA ALGOL

EVAL and SUBS may also use ET] in place of either list of formulae where

T must be a symbol which has been previously assigned a list of formula. This
list is then used as has been explained in the operation of EVAL.

The function REPLACE:

The function designator REPLACE (F) where F is a fbrmula expression pro-
duces a formula which is obtained from F by replacing every atomic variable by
the current value of its associated FORM variable and evaluating the result as
in EVAL. The atomic variables used in the formula F must be declared either

locally or glebally to the block in which REPLACE (F) is executed.

Examples: All variables are of type FORM.
Initially FeX+Y*2;
Yel; Z «2;
Executing SUBS (Y, Z) F (3, 4
however, will produce 'X + 12'
and REPLACE (F)
will prqduce 'X + 2°
Let F be 'IF B THEN P(X) ELSE A[(Y+2]'
Executing EVAL (B) F (TRUE)
will yield 'R' where R is the result of calling procedure P with the Formula X
as a pérameter
EVAL (B, Z) F (FALSE, 2)
will yield 'AEY + 2]'. Since the subscript did not reduce to an integer, the

access was not carried out.

FORMULA ALGOL FORM AL-3-37
FORMULA PATTERNS

Syntax:

<formula pattern> ::= <formula expression> == <formwula pattern structure>
<formula expression> >> <formula pattern structure> |
<extractor> <formula expression> >> <extractor> <formula pattern structure>

<extractor> ::= <variable> :

<formula pattern structure> ::= <a formula expression in which some of the
primaries may have been replaced by pattern primaries and some of the
operators m#y have been replaced by operator classes> +

<formula pattern primary> ::= <type> | ATOM | ANY | OF (<variable>) I
OF (<procedure identifier>) I (<formula pattern structure>) |
<extractor> <formula pattern primary>

<operator class> ::= "i" <pperator class name> "|"

<operator class name> ::= <yariable>

<operator class assignment> ::= <operator class name> <
/[bperator: <pperator 1ist>] <comm segment> <index segment>>

<operator list> ::= <pperator> ’ <operator list>, <operator>

<comm segment> ::= <empty> | [Eggg: <logical value 1ist>J

<index segment> ::= <empty> | [INDEX: <Variable>J

<logical value list> ::= TRUE I FALSE l <logical value list>, TRUE

<logical value list>, FALSE

Semantics:

A mechanism is needed to determine precisely the structure of any formula.
Formula patterns are used for this purpose; they constitute a set of predicates
over the class of formula data structures. These formula patterns are sufficient

in the sense that whatever constructions are used to create a formula, the pro-

+ This is a short description of what could be a formal syntactic statement,

FORM AL-3-38 FORMULA ALGOL

cess may be reversed by the choice of a sequence of predicates. Furthermore,
a given formula pattern may be used to represent a class of possible formulae,
and any formula may be tested for membership in this class,

In the definition of a formqla, a formula expression F is compared with
a formula pattern structure P to determine one of two things: (1) correspond-
ing to the construction F==P, whether the expression F is an exact instance of
the formula pattern structure P or, (2) corresponding to the construction
F>>P, whether the formula expression F. contains as a subexpression an Instance

of the formula pattern structure P, Both consturctions F==P and F>>P are

Boolean expressions yielding values TRUE or FALSE.

The Construction F==P. The formula expression F is defined recursively to be

an exact Instance of the formula pattern structure P as follows:

1. If P is an atomic formula then F==P is true if and only if F is the

same atomic formula,

2. If P is a type name REAL, INTEGER, BOOLEAN, or FORM, then F==P is

TRUE if and only if the value of F is a real number, an integer, a
logical value, or a formula, respectively. (Note that numbers and

logical values are not of type FORM,)

3. If P is the reserved word ATOM then F==P is TRUE if and only if the

value of F is either a number, a logical value, or an atomic formula.

4, If P 1s the reserved word ANY then F==P is always TRUE.

S. 1If P is the construction OF (S), where S is a symbol which has been
assigned a list of formula pattern structures, say [Pl’ P2, cees Pn]’
then F==P is TRUE if and only if F==P Vv F==P, V...v F==P_ is TRUE.

S may optionally be given the special attribute INDEX; see Operator

Classes.

FORMULA ALGOL FORM AL-3-39

6. If P is the construction OF (<procedure identifier>) where the pro-
cedure identifier names a Boolean procedure with one formal parameter

specified of type FORM, (for example, BOOLEAN PROCEDURE B(X): FORM X;

<procedure body>) then F==P is TRUE if and only if the procedure call

B(F} yields the value TRUE.

7. If P is Al 0y Bl’ then ¥==P is TRUE if and only if (a) F is A2 W BZ’
(b) A2==A1, (c) Bz==Bl, and (d) Wy is PP where wyg and w, are binary

operators, Similarly, for unary operators, if P is wy B1 then F==P

is TRUE if and only if (a) F is w, B, and conditions (c¢) and (d)

2
above are true. For the case where W, is an operator class, see the

next section.

8. If P is
(a) A. [sl, 32,...sn] where A is an array identifier
(b) A. (Sl’ 52,..., Sn) where A is a procedure identifier
(c) V. e—SI where V is a variable

or (d) .IF S, THEN S, ELSE S

1 2 3
5

where 8§ Sn are formula pattern structures, then F==P if and

1!
only if, respectively:

2,.--

(8) F= AT, T,,..., T]
(b) F = '"A(Ty, Tp,.nns Tp)

(¢) F="'V e—Tl'

1 THEN T2 ELSE T3' respectively

where Ti==si 1< 1= n.

or (d) F="IF T

Operator Classes, Before an operator class 1s used in a formula pattern, it

must be defined. The definition is accomplished by an operator class assign-

ment, which assigns to a variable of type SYMBOL an operator description list.

FORM AL-3-40 FORMULA ALGOL |

Suppose R is a variable declared of type SYMBOL for which the following operator

class assignment has been executed:

R « / [OPERATOR: +, -, /] [COMM: TRUE, FALSE, FAISE] [INDEX: J]

where J must be a variable declared of type INTEGER and where OPERATOR, COMM,

and INDEX are reserved words used for special attributes. Let P be a formula
structure having the form

Ay R By
Then F==P 18 true if and only i1if (a) F is of the form 'A2 W Bz' and (b) one of
the two following conditions holds:

(1) A2w=A1, B27=Bl, and is a member of the operator value list found
on the description list of R. 1In the specific case above, this iist
is [+,-,/].

(11) B2==A1, AZBHBI’ and @ is a member of the list of operators whose
corresponding member of the COMM 1ist is TRUE. (In this specific

case, this must be +). (Note that [COMM: TRUE, FALSE, FALSE]need ,

not appear on the description 1ist of R at all in which case no
commutative instances of any operator will be considered.)
If F==P 18 true the Integer variable used as a value of the attribute LEREE
will be set to an integer denoting the position of w in the operator value
list. (In the specific case above, J is sget to 1, 2, or 3 according to whether
w was +, -, or / respectively). The operator w is stored as the value of R.
Later the construction | <R | can be used in an expression
in place of an operator, and the operator w extracted during the previous
matching will be used in the construction of the formula data structure that
the expression represents. Alternatively, R may be assigned any operator
by the assignment statement R « <operator> and | <R> | may be used in the

same fashion. ' -

FORMULA ALGOL FORM AL-3-41

Extractors. Wherever an extractor is used in a formula pattern preceding a
formula pattern primary the subexpression in F which matches that formula
pattern primary is assigned as the value of the varfable found to the left
of the colon in the extractor. This variable must be of type FORM. This
assignment is made as soon as the pattern primary is matched. Therefore,
even though a pattern may fail as a whole, some of its extractors may have
been assigned values. When ":" is used in thils context it binds more closely

than any other formula operator,

The Construction F>>P, The formula pattern F>>P isg TRUE if F contains a

subexpression, say S (which may be equal to F itself) such that S==P is
TRUE. A recursive process is used to sequence through the set of subexpres-
sions of F for successive testing against the formula pattern structure P.
The sequencing has the properties that if two subexpressions S1 and 52 are
both instances of P, then if S2 is nested inside S], S] will match P first,
and if neither is nested inside the other, then the one on the right in a
linearized written form of S, is recognized first.

The formula pattern A:F>>B:P, in which extractors precede the right
and left hand sides of the formula pattern, has the following meaning:
First F>>P is tested. If the result is true then (a) the subexpression of
F which matches P is stored as the value of B, and (b) a formula is con-
structed consisting of F with the subexpression matching P replaced by the

previous value of B (the value B had before the assignment described in (a)

took place), This formula is stored as the value of A.

Examples

Example 1. ZLet A,B,X,Y, and Z be declared of type FORM, let R be

FORM AL-3-42 FORMULA ALGOL

declared of type REAL, and let all form variables have their atomic formulae
as values. Suppose that the statement

Xe 3*%SIN(Y) + (Y-2Z) /R+2*%R;
has been executed. Consider the statement:

IF X >> A: INTEGER * B: SIN (FORM) THEN Z « 2 * B + A

Since the pattern X>>A: INTEGER * B: SIN (Eggg) is TRUE, the assignment

Z~2%B+ Awill be executed assigning as the value of Z the formula

2 * SIN (Y) + 3 because A has the value 3 and B has the value SIN (Y).
Example 2, Lét X be of type SfMBOL, A, B, ¥, M, T, G, and P be of type

FORM, and D be of type BOOLEAN, Then executing the statements: X e—[ggég,

INTEGER, BOOLEAN]; G «-Y + 8 * (M - T); P « FORM + A: OF (X) * B: FORM;

D « G==P; causes D to be set to TRUE because the pattern G==P is TRUE, and
causes A to be set to 8 and B to be set to M - T,
Example 3. Suppose we execute the statements F « 2 * (SIN(Xt 2 +Y t 2)

+C0S (Xt 2-Y12) /5 Te.T; G SIN (FORM) + COS (FORM);

where all variables used are of type FORM., Then A: F>>T: G is a pattern
with value TRUE, T gets assigned SIN (X t+ 2 + T t 2) + COS Xt2-Y1t2
the subpattern of F which matched G. A gets assigned 2 * T/S, a copy of F
with the matched subpattern replaced by the previous value of F.

Example 4, Assume all variables in the following sequence of declara-
tions and statements are of type FORM.

BOOLEAN PROCEDURE HASX(F) ; VALUE F ; FORM F ; HASX F>>X ;

Ge (X1t 243t 2% (Y -1) : F « At OF {HASX) * B: (ANY -1) : T &« G==F ;
Then T is set to TRUE, A is set to (X t+ 2+ 3) t 2 and B is set to ¥ - 1.

Here we use HASX to find any formula which is a function of X.

FORMULA ALGOL FORM AL-3-43

TRANSFORMED FORMULAE

Syntax:

<transformed formuls> ;:= <formula expression> ,| <achema variable>
<schema variable> ::= <variable>
<schema a;signmenﬁ> ::= <schema variable> e—[<schemd>ﬂ
. <schema> ::= <schems element> | <schema>, <schema element>
<schema element> ::= <variable> | <single production> l
<parallel production>
<slngle production> ::= <formula pattern structure> -»<formula expression>
<formula pattern structure> . — <formula expression>
<parallel production> ::= E<par811e1 elements>ﬂ
<parallel elements> ::= <variable> | <single production> |
<parallel elements>, <variable> |
' <parallel elements>, <single production>
The following is an additional restriction on the Syntax:
If any schema element has an extractor as {ts left-most member,

then the whole element must be enclosed in parentheses.

Semantics:
Let F and G be formulae, and let P be a formula pattern, The Eglica-
tion of the production P G to the formula F is defined as follows:
‘1. 1f F==P 1s FALSE then the application is said to fail.
2, 1If F==P is TRUE then the application is said to succeed, and F 1is
changed according to G as follows: If P contains extractors,
subexpressions of F matching corresponding parts of P are assigned

as values of the extractors. Now in order to rearrange F according

to the structure of the .extractor variables in G, we change the

FORM AL-3-44 FORMULA ALGOL

subformila of F which matched P into REPLACE(G). This

substitutes the extracted subexpressions for their extractor

variables in G causing the desired rearrangement,
For example, the distributive law of multiplication over addition may be
executed as a transformation by applying the production

A: ANY * (B: ANY + C: ANY) - .A* B+ A% C (1)
to a given formula. Suppose that F contains X t 2 * (Y + SIN (Z)). Then
applying the production (1) to F will result in the extraction of the sub-
expressions X t 2, Y, and SIN (Z) into the variables A, B, and C respec-
tively, and will cause the replacement of the atomic formulae A, B, and C
occurring on the right hand side of (1) with these subexpressions, resulting
in the transformation of the value of F into the formula X t 2% Y + X t 2
* gin (Z). |

A schema is a list of transformation rules. Each rule is either a.

gingle production or a list of single productions defining a parallel
production. Variables occurring in a schema must have single productions
as values. Expressions of the form F. | S, where F is a formula and S a
list, are formula primaries, and thus may be used as constituents in the
construction of formulae. The value of such a formula primary is a
formula whiéh results from applying the productions of the schema S to
to the formula F according to one of the two possible sequencing modes
explained as follows: Sequencing modes give the order in which productions
of a given schema S are applied to a given formula F and to its subexpressions.
The two sequencing modes differ in the order im which a given preduction
will be applied to different subexpressions of F, and in the conditions

defining when to stop.

FORMULA ALGOL ' FORM- AL- 3-45

One-by-one Sequencing:

One by one sequencing corresponds to a syntactic construction of the

form S e-[Pl, Pz, ceey PEJ. For § « 1 step 1 until n, production Pj is

applied to F. If the application of P, succeeds, Pj's transformation 1is

]
applied to F and the whole process (starting at Pl) is reapplied to the

result, If Pj fails to apply to F, it 1s applied recursively to each

subexpression of F. Therefore, production Pk is applied to F Lif and only

if production P 1 is not applicable either to F itself or te any sub-

k
expression of F. This sequencing will stop either when no production can
be applied to F or any of its subexpressions or when a production contain-

ing .—» has been executed.

Parallel Sequencing

Parallel sequencing corresponds to a syntactic construction of the
form e—[[Pl, PZ’ cees Pﬁ]] or any form in which the brackets are nested at
a depth of two, Here j is initially set to 1, when a production Pj is
applied to F, if it succeeds, we apply its transformation and return to the
beginning as with one-by-one sequencing. If the application Pj fails,

production P is applied to F, and so on up to Pn' " 1f all single pro-

j+1
ductions of a parallel production fall at the topmost level of F, then
the whole sequence is applied recursively to the next lowest subexpressions
of F. Thus in parallel sequencing each one of the productions is applied
at level k of the formula F only 1f all productions have failed at level
k-1, The termination condition is reached when all productions fail at
the bottom level of F or when a production containing .- has been executed.
In general a schema may have a combination of both sequencing modes,

such as S e-(Pl, PZ’ [P3, P4, Ps], Pé]. In this case P the parallel

1’ Pp»

FORM AL-3-46 FORMULA ALGOL

sequence, and P6 are treated one-by-one. When the sequence [P3, P4, PS]
is rgached in this schema, it is treated in parallel. Any number of these
parallel schema may be used at tﬁe same level, but none may be nested at a
depth greater than two,

The schema varaible S has to be declared of type SYMBOL. Optionally,
a description 1ist may be associated with S. TIf the special attribute
INDEX occurs in the description list of S then, when the transformation has
been completed, the value of an INTEGER variable used as the value of the
attribute INDEX is set to O if no transformation took place, i.e., no
production was applicable to F. The variable 1s set to 1 {f at least one
transformation took place and exit occurred because no further production
of 85 was applicable. Finally, the variable is set to 2 if a production
containing .—» was applicable. The following complete example of a schema
clears fractions in arithmetic expressions.

BEGIN FORM F,X,A,B,C; SYMBOL S,P,T;

A« A: ANY: Be- B: ANY; Ce C: ANY;
P — / [oPERATOR: +) [coMM: TRUE); T « / [OPERATOR: *] [coMM: TRUE];

8 (At (-BY 1/ .At . B,

A |P| (B/C) » (LA % .Cc + .B) /.C,
AlT| (B/c) » (.A* .B) / .c,
A-B/C 5 (LA* .Cc-.B) /.C,

B/C - A (B -.A% .0 /.C,

A/ (B/c) » (.a* .C) / .B,

(8/c) /A .B/ (.C* .A),

(B/A) t C—».Bt .C/.At .C;

Fe(X+3/K12/(X-1/%;

FORMULA ALGOL FORM AL-3-47

PRINT (F. | S) END

The above program will print X * (Xt 2+ 3) t 2/ (X t2* (Xt 2 - 1)).
PRECEDENCE OF FORMULA OPERATORS

Now that all the formula expressions have been explained, we present
the precedence of formula operators in both expressions and patterns:
(done first)

T

« + (unary)
/ *
- + (binary)

=E > > =<
-

A

v

| or |<>|

-

. 4 {done last)

In cases of equal precedence, association to the left is used,

SPECIAL FUNCTIONS

The fellowing funct ions are bullt into Formula Algol:

DERV (F,X) A FORM function designator whose value is the derivative
of F with respect to X,

CELLS An INTEGER function designator whose value is the number

of cells remaining on the available space list [see 43.

FO
RM AL-3-48

U "

) FORMULA ALGOL FORM AL-3-49

[r CHAPTER IV

LIST PROCESSING

SYMBOL VARIABLES

T Variables may be declared of type SYMBOL, indicating that their values
are to be list structures, In addition to this function, they may also serve
as data to be manipulated and stored in list structures, In this context they
are called atomic symbols, When a symbol S is declared, as with a form variable,
its value is initialized to the atomic symbol S and a description list 18 associ-
ated with it,
SYMBOL ARRAYS
o~ T
Arrays may be declared of type SYMBOL whose elements may be list structures,
Again 1like form arrays, they are accessed in the normal manner and they are not
initialized,
SYMBOLIC EXPRESSIONS
Syntax:
<symbolic expression> ::= .<identifier>|
<variable>|<function designator>|
<value retrieval expression>|<selection expression>|
"<" <symbolic expression>'"| NIL
'Semanﬁics:
—~ A symbolic expression Thas as its value elther an atomic symbol or a list

according to the following rules:

1. If 4t is a symbol variable preceded by a dot, its value is the atomic

FORM AL-3-50 FORMULA ALGOL

symbol represented by the variable.
If it is a symbol variable S, its value is the contents of S. The

contents of a symbol may be modified by assignment statements

(pg. 52), push and pop statements {(pg. 61), and extractors (pg. 58).
If it is a function designator resulting from the declaration of

a symbol procedure, its value is that assigned to the procedure
identifier by executing the body of the procedure using actual para-
meters given in the function designator call.

Selection. expressions are explained on page 55.

Value retrieval expressions are explained on page 53.

If it is of the form<I>>, where T is a symbolic expression, the
value of T is first computed and must result in an atomic symbol.
The value of the symbolic expression is then the contents of that
atomic symbol. The angular brackets may be nested arbitrarily

many times to provide many levels of indirect access.

NIL is a special symbol with no contents or description list which
may be treated as an atomic symbol. It acts as an identity element

under concatenation of list elements (pg. 51).

)

O

FORMULA ALGOL FORM AL-3-51
LISTS

Syntax:
<list> ::= <list element>|<list>,<list element>

<list element> ::= <expressioﬁ>}<1ist expression><description list>|
<symbolic expression><description list>|<list pattern primary>

<list expression> ::= E<lisﬂﬂ

<expression> ::= <arithmentic expression>|<Boolean expression>|
<formula expression>|<formu1a pattern structure>|

<symbolic expression>|<list expressiod>|<list expression>

Semantics:

Symbols may be concatenated into a list by writing them one after another,
separating them with commas, and enclosing them in brackets. In addition to
symbol variables, any expression except a designational expression may be
written as an element of a list and its value will be entered, For example,
let X, Y, and Z be formula variables, let A, B, and € be Boolean variables,
let U, V, and W be real variables, and let R, S, and T be symbol variables.
Then the value of

[x* sIN(Y), 3+ 2 * u, IF B THEN R ELSE T, [R,T,R}, -3§
is obtained by causing each expression on the right to be evaluated, and
their results concatenated. 'If one of the results is NIL, the element
disappears completely from the list, Automatic data term conversion results
from using non-symbolic values in lists., The second from the last item in
the above list is the quantity [R,T,RJ, which becomes a sublist of the list,
Hence, the expression, in reality, 18 a list structure., It 1is further
possible for certain of the elements of a list to bear local description

lists (pg.53).

FORM AL-3-52 FORMULA ALGOL

It should be noted that one-element lists and single values are
treated identically when appearing as the contents of a symbol., Thus
5«3 and § e—[i] are the same when 5 18 a symbol variable. If we wished
to make the contents of S a list with one number, 3, we would execute
s « [[3]].

List pattern primaries may be stored in lists so that the list may

later be used in a list pattern (pg. 58).

ASSTGNMENT STATEMENTS

Syntax:

We may extend the Algol 60 syntax as follows:
<agsignment statement> ::= ... |
<symbolic expression> « <expression>|
<gsymbolic expression> «<description 1isﬁ>|

<veriable> < <description list>

Semantics:

When a symbolic expression (other than a variable) appears on the left
hand side of an assignment statement, it is first evaluated and must result
in an atomic symbol. The value of the expression on the right then becomes
its contents, or the description 1list on the right replaces its description
list. Thus any symbolic expression, unlike those of other variables, is
allowed on the left side of an assignment. In the case that a symbol variable
appears on the left by itself, the right side expression replaces the c0ntent§
of the variable mentioned, instead of the contents of its value. Description

lists may also be assigned to variables of type FORM,

FORMULA ALGOL FORM AL-3-53

— DESCRIPTION LISTS

Syntax:
<description list> ::= /<attribute-value list>

<attribute value list> ::= <attribute value segment>|
T <attribute value list><attribute value segment>
<attribute value segment> ::= [<attribute>:<list>]]
[<attribute> : <empty>) |
<value retrieval expression> :i= <identifier> (<form or symh>)|
THE <attribute> OF <form or symh>
<form or symb> ::= <symbolic expressiod>|<formu1a expression>

<attribute> ::- <symbolic expressiom>

P Semantics:
A description list is a sequence of associated attributes and value-lists,
' An attribute must be a symbolic expression which results in aﬁ atomic symbol.
Each attribute is followed by its value-list which is of the same form as an
ordinary list, It may.contain more than one member, it may contain only one
member, or it may be empty. A description list may be attached to one of three
types of objects:
1.7 A variable declared of type SYMBOL for which there are two cases
(a) global attachment, and (b) local attachment,
2. A variable declared of type FORM,
3. A sublist of a list,
To describe these uses, consider these examples: Assuming that alllvariables
— involved have been declared of type SYMBOL, the statements
S «/[TYPES: MU,PE,RHO][ANCESTORS: ORTHOL,PARA5][COLOR: GREEN]; (1)
T « [F,A/{NUM:1],B,C,A/[NUM: 2],D,E]; (2)

assign respectively a description list to S and a list as the contents of T. The

FORM AL-3-54 FORMULA ALGOL

description list attached to S is globally attached, meaning that it is perma-
nently bound to S for the lifetime of the variable S, In the list assigned as

the value of T, the aymbol A occurs twice - in the second and fourth positions,
The description lists attached to these two separate occﬁrrences of A are attached
locally, meaning that the separate occurrences of a given atomic symbol within a
list have been given descriptions which interfere neither with each other nor

with the global description list attached to A 1f such should occur. The
attributes and values of a given local description list are accessible only by
means of symbolic expressions acﬁessing that particular occurrence of the symbol
to which the given 1oc;1 description list attached.

Thus, if one desired to access the global description list of that copy of
A, he would remove it from the list T, destrdying its local description list and
then perform the value retrieval. E.g., Tl « 28D OF T; then use NUM OF Tl.

In the following examples suppose F is a variable declared of type FORM
and that all other variables involved are variables declared of type SYMBOL,

F « /[PROPERTIES: CONTINUOUS, DIFFERENTIABLE) ; (3)

v « (&, [B,c)/[PrOCESSED: TRUE],A, [B,c)/[PROCESSED: FALSE], Al; (4)
In example (3) a description list is attached to a formula. In example (4) the
list assigned to be the contents of V has two identical sublists [B,d] in the
second and fourth positions having different local description lists,

Value lists stored in description lists are retrieved by means of value
retrieval expressiﬁns. To accomplish retrieval, two arguments must be supplied:
(1) an attribute consisting of an atomic symbol and (2) the atomic symbol or
formula having the description list. The attribute is then located on the de-
scribtion list and its associated value list becomes the value of the retrieval
expression. If there is no description list, or if there is a descriptién list

but the attribute does not appear on it, or if the attribute does appear on it

but has an empty value list, then the value of the retrieval expression is the

FORMULA ALGOL FORM AL-3-55

symbol NIL, Thus in examples (1) and (2) above, the value retrieval expressions
COLOR(,.S), NUM(2ND OF T), and NUM(3RD OF T) have the values GREEN, 1, and NIL
respectively. If in a value retrieval expression either the description list

or the attribute 18 missing, it is added with a value of NIL. The construction,
THE COLOR OF .S, accomplishes the same function as COLOR(.S) but is slightly
more Qersatile in that any symbolic or formula expression may be used to
calculate the attribute whereas only identifiers may be used for the attribute

in the form <identifier> (<symbolic expression>).

SELECTION EXPRESSIONS

-ngtax:

<selection expregsion>::= <selector> OF < gymbolic expression >
<ordinal suffix>::= ST | ND | RD | TH
<ordinal selector>::= <arithmetic primary><ordinal suffix>|LAST|FIRST
<elementary positior>::= <ordinal selector>|
<ordinal selector> <kind> |
<ordinal selector> INTEGER <arithmetic primary>
<kind>::- <augmented type> | <expression> | <class name>
<position>::= <elementary position> | <arithmetic primary>
| <ordinal suffix> BEFORE <elementary position> |
<arithmetic primary ><ordinal suffix> AFTER <elementary position>
<selector>::= BETWEEN<position>AND<position>|ALL AFTER<position>|
ALL BEFORE<position>|FIRST<arithmetic primary>|
LAST<arithmetic primary>|<position>|ALL<kind>|

<augmented type>::= REAL|INTEGER|BOOLEAN| FORM|SYMBOL|SUBLIST | ATOM| ANY

Semantics:

Selection expressions are formed by composing selector operators with

FORM AL-3-56 FORMULA ALGOL

symbolic expressions. A symbolic expression is first evaluated producing

a symbolic data structure as & value. A selector operator is then applied
to the resulting symbolic data structure to gain access to a part of it.
Assume first that the symbolic data structure S on which a selector operates
is a simple list. Then

1. An ordinal selector refers to an element of this list either by

mumerical position, or by designating the last element.

E.g. 3 RD OF S, LAST OF S.

2. An elementary position refers to an element of this list by

designating it (a) as the N TH or LAST instance of an augmented

type, e.g. N TH REAL, LAST SUBLIST, where N 18 an expression

whose value is an integer, (b) as the N TH or LAST instance of
the value of an expression, e.g. N TH (F+G), LAST [A,B,d],

(c) as the N TH or LAST instance of a member of a class (pg.6l),
e.g. STH (|TRIGFUNCTION|), LAST (|VOWEL|), (d) or by ordinal

selection,

3. A position refers to an element of this list either by designating
its elementary position or by designating it as the N TH BEFORE

or in the N TH AFTER some elementary position.

4, A selector refers to an element by its position or else designates
one of the following sublists of the list
{a) The sublist between two positions not including either
position named, e.g. BETWEEN 3 RD and 7TH OF S produces

a list consisting of the 4th, 5th, and 6th.

{b) The sublist consisting of all elements before or after a

given position, e.g. ALL AFTER 3 RD SYMBOL OF S, ALL

BEFORE LAST REAL OF S,

FORMULA ALGOL FORM AL-3-57

(c) The sublists consisting of the first n elements or the

lagt n elements, e.g. FIRST 3 OF S, LAST K OF S.

(d) The sublists composed by selecting and then concatenating
(1) all instancesof a given expression, e.g. ALL F OF S,
(11) all instances of a given augmented type, e.g. ALL
REAL OF S, (i1i1) all instances of elements which are members
of a given class, e.g. ALL (|TRIGFUNCTION|) OF S. These
elements are concatenated in the same order that they

occur in the list from which they are selected.

Selectors may be compounded to access sublists and their elements. Suppose
the statement S (—[A, [X,X, [A, A[,X] ,A] has been executed. Then the expression
2 ND OF § is a list valued symbolic expression with the list [X,X, [A,A], X]
as value, whereas the expression 3RD OF 2 ND OF S has the list [A,A] as value,
and the expression LAST OF 3 RD OF 2 ND OF S has the single atomic symbol A
as value,

If a selector refers to an element of a list which doesn't exist
because the list is of insufficient length (e.g. the 5th of a 3-element list),
then the value of the expression is NIL, and the extra NIL's are added to the
structure to make it the right length.

Note that there could be an ambiguity with the statement FIRST 3 OF S.
It could mean the first 3 elements of S or the first integer '3' in S. We
have chosen to use the former Iinterpretation and to require one to write

FIRST INTEGER 3 OF S if he desires the latter.

FORM AL-3-58 FORMULA ALGOL

LIST PATTERNS

Syntax:
<list pattern>::= <symb or list> == <symb or list>|
<gymbolic expression> == <kind>| °
<symb or list> = <gymb or list>
<symb or list>::= <symbolic expressiod>|<list expression>
<list pattern primary>::= $ | $<arithmetic primary>|
<kind>|<extractor><list element>

<é§tractoﬁ>::= <variable>:

Semantics:

List patterns are predictates for determining the structure of lists,
They use mechanisms like those found in COMIT [3].to teat whether a list is
an instance of a certain linear pattern. The construction to the left of
the == is the list structure being tested according to the pattern on the
right, This pattern will consist of a sequence of list pattern primaries
(possibly one), some of which may be ordinary list elements. In order for
the list to match the pattern, the entire list must match the pattern, not
just a subpart of it as in COMIT,

The elements of the list pattern evoke tests as follows:

The normal list elements are evaluated as in ordinary lists. If they
result in atomic constructions, these are used in direct equality tests. If
they result in lists, then each element of the list is treated as another
list battern primary. The one exception to this is if the element is actually
a sublist (is enclosed in brackets). This will only match the list pattern
primaries of the pattern sublist. This feature allows patterns to test whole

list structures,

The other list pattern primaries are matched in the following ways:

FORMULA ALGOL FORM AL-3-59

(1) An augmented type will match an element which is of that type
as defined for formula patterns. (Page 37). In addition
SYMBOL will match only atomic symbols and SUBLIST naturally

matches sublists.

(2) A class name will match an element which satisfied its class test

(pg. 61).

(3) $n will match any n consecutive elements; where n is an expression

whose value is a positive integer.

(4) S will match an arbitrary number of elements, inciuding 0. However,
there 18 a limitation on this which can be explained by giving a

brief idea of the scanning algorithm for $.

When a § is encountered in the pattern, we first pair it with no elements
and then try to match the rest of the pattern. This failing, we pair it with
one element and try again. We keep increasing the scope of the $ until a
match is found or we run over the end of the list. However, once we have
matched the pattern primaries tc the right of a $ up to thg next $, we consider
the first $ fixed and we do not try to enlarge its scope any more. If we meet
failure in matching the second dollar sign, the pattern fails. We do not back
up to the first. (E.g. [1,4,2,8,4,2,8,C) == [$,A,$,B,$1) is false since after
matching the B after the second $, we will not back up to find new matches for
the $'s.)

A. It should be noted that testing for the type or class of a single
element 1s nothing more than a list pattern in which the right aide
is a single list pattern primary. - Thus we may writé:

3 rd OF 5 == INTEGER

‘IHE A OF B == (| NOUN |)

FORM AL-3-60 FORMULA ALGOL

Like formula patterns, list patterns are boolean primaries and
thus may be combined with other booleans using logical connectives
or may be used in IF - THEN statements.

As an example, consider the list
s[4 1,B,0¢ 44cC];

8 == [A, INTEGER, $, A, $2) is TRUE.

As with the formula pattern structures, list patterns may function not only

as predicates but also as selectors. The same mechanism is used to accomplish
this. If any list pattern primary in a list pattern structure is preceded

by a variable declared of type SYMBOL followed by a colon, then in the even£
that there 1s a match, the element which matches the list pattern primary
becomes the value of the symbol variable. It may then be accessed at any'
later point in the program. In the case that there is only a partial match,
however, some of the extractors may be assigned values anyway,

Suppose the statement S e—[A,B,C,Eﬂ has been executed where all varilables
are symbols and where A, B, C, and D have as values thelr atomic symbols.
Then, executing the statement

IF S == [T:$2, V:$2) THEN S « (v,T);
changes the contents of S to be the list [q,D,A,ﬂ]. Thias is because the
contents of T is the list'[A,ﬁ], and V has as its value the list [C,Eﬂ.

Two list structures may be tested for exact equality by means of a
single =, This is necessary above the == predicate only in that it.permits
testiﬁg of stored list pétterns. Thus we may store a pattern containing
':', REAL, '$', etc., and then later test it for exact form using those

symbols in the patterns, For example, "== REAL" will match any real number;

while "= REAL" will match only the element 'REAL".

FORMULA ALGOL FORM AL-3-61
CLASS TESTS

Syntax:
<class name> ::= ("|''<symbolic expression>"|")

<class definition> ::= Let <class name - {<formal parameter> "|" <Boolean

expression>a

Semantics:

Sets may be defined by means of class definition. For example, suppose
the statewment V eu[A,E,I,O,d] has been executed. Then therstatement LET
(JVOWEL|) = (x | AMONG(X,V)]; defines the set of all vowels where AMONG(P,Q)
'is a Boolean procedure.which is TRUE if P is an element of the list contained
in Q, and FALSE otherwise. Suppose that having previously executed the
statement S e—[A,B,d], we execute the statement

IF 1 ST OF S == (|VOWEL|) THEN <statement>
The list pattern 1 ST OF S == (|VOWEL|) will be evaluated by first computing
the value of the expression 1ST OF S, which is the symbol A, and second b&
substituting A for the formal parameter X in the class definition of (|VOWEL|).
This results in the execution of procedure AMONG(A,V) which produces the value
IRUE. Thus, A is 2 member of the class (|VOWEL|), and the list pattern
1ST OF 8 == (|VOWEi|) is TRUE, causing the <statement> to be executed.

Any arﬁitrary Boolean expression, inciuding a Boolean procedure call,
may be used to define a class. Thus the full generality of Boclean procédures

is obtained.

PUSH DOWN AND POP UP STATEMENTS

Syntax:

<push down operator> ::- }|<push down operator> }
<pop up operator> ::= t|<pop up operator> t

<push down statement> ::= <push down operator> <symbolic expression>

FORM AL-3-562 FORMULA ALGOL
<pop up statement> ::= <pop up operator> <symbolic expression>

Semantics:

The contents of any variable declared of type SYMBOL is a push down stack.
The contents of the variable consists of the current topmost level of the push
down stack. Applying a single push down operator | to such a variable pushes
down each level of the stack making the topmost level (level 0) empty and
replacing the contents stored at level k with the contents stored previously
at level k-1. Thé.empty topmost level may then acquire a value as its con-
tents by means of the execution of an approprilate assignment statement. A
lower level of the push down stack is not accessible to the operation of
extracting contents until the execution of a pop up statement restores it to
the topmost level. Applying a single pop up operator t to the name of a
variable destroys the contents df the topmost levél and replaces the contents
stored at level k with the contents previously at level k + 1. A push down
operator (pop up operator) consisting of n consecutive occurrences of a single
pugsh down operator (pop up operator) has the same effect as n consecutive
applications of a single push down operator (pop up operator). A push down
ogerafor {pop up operator) is applied to a symbolic expression by evaluating
the symbolic expression and, if it results in an atomic symbol, the operator
is applied to the push down stack which is ‘the contents of the atomic symbol
as described above, Any structure which occupies the contents of a symboi
variable S may become the contents of a lower level of the push down stack
in 5 by application to the push down operator S. In particular, list struc-

tures may be stored in the push down stack in S.

ADDITIONAL FOR STATEMENTS

Syntax:

<for list> ::= ...

FORMULA ALGOL FORM AL-3-63

ELEMENTS OF <symbolic expression> |
ATTRIBUTES OF <symbolic expression>
<for clause> ::= ... | FOR <symbolic expression> « <for list> DO

PARALLEL FOR <symb or list>

ELEMENTS OF <symb or list> DO

Semantics:

We may wish to generate the element of a list or the attributes of a
description list one by one in order to assign them to the controlled variable
in a FOR statement. Attributes on the description list of the value of S,
which must be atomic symbols, are generated in the order that they occur by

"ATTRIBUTES OF S", and "ELEMENTS OF S" generates the successive elements

of the list which is of the value of S. In the former case S must be any
symbolic expression with an atomic symbol as value because the attributes
from its description list will be generate. In the latter case S may be any
1ist valued symbolic expression. Successive elements generated are assigned
to the control variable given in the FOR clause. In either case, the lists
of values to be assigned to the control variable are fixed upon initial entry
to the FOR statement, and any changes to them in the body of the FOR state-

" ment will not be reflected.

Parallel generation is also permissible. Here the expression to the
left of the "' is a 1ist of n atomic symbols and the expression on its right
is a list of n lists or n symbols containing lists. For example: 1{if § b-[A,B,fﬂ,
T e—[D,Eﬂ, and U e-[F, G, H, &] have been executed where the variables A
through I have as values their atomic symbols then executing the statement

PARALLEL FOR [(1,7,8] — ELEments oF ((s], (1), (W] po L « (1,1,3,K;

causes the following to happen, First, all first elements of the lists

contained in S, T, U, respectively are generated and placed in the contents

FORM AL-3-64 FORMULA ALGOL

of the controlled variables I, J, and K, respectively. Control then passes
to the body of the parallel FOR statement and returns when finished with its
execution. On the second cycle, all second elements of S, T, and U are gen-
erated and placed in the controlled variables I, J and K, respectively.
Control then passes the statement following the DO and returns. On the third
cycle, all third elements are generated, on the fourth cycle all fourth
elements are generated, and so on. If any list runs out of elements before
any of its neighbors, the symbol NIL continues to be generated. The parallel
generation stops jﬁst before the symbol NIL would have been generated from
all lists,

List valued symbolic expressions may be used to supply lists of control
variables and lists of lists to generate in parallel, as, for example, in the
construction

PARALLEL FOR V « ELEMENTS OF W DO L « (L, I, J, K;

where the statements V « [I,J,K] and W « [[S], [T] R [U]] have been executed

previously. At the end L should contain [L,A,D,F,B,E,G,C,H,i].

EDITING STATEMENTS

Sigtax:

<editing statement> ::= INSERT <symb or list> <insertion locator list>
<symbolic expressiom> | < DELETE <selector list> <symbolic expression>
DELETE <symbolic expression> I ALTER <selector list> <symbolic> TO
<expression>] <description list editing statement>

<1nse¥tion locator> ::= BEFORE <position> OF |‘§EE§§ <position> OF

<insertion locator list> ::= <insertion locator> |
<insertion locator list>, <insertion locator>

<selector list> ::= <selector> OF | <selector list>, <selector> OF

<descri§tion list editing statement> ::= THE <symbolic expression> OF

<symbolic expression> <is phrase> <expression>

FORMULA ALGOL FORM AL-3-65
<is phrase> ::= IS | IS NOT | IS ALSO

Semantics:

Editing statements are used to transform, permute, alter, and delete
elements of lists., The INSERT construction causes a list structure to be
inserted at each of the places given by an insertion locator list. The list
on which insertion is to be performed is obtained by evaluating the symbolic
expression which occurs last in the statement. The expression to be inserted
is then evaluated, and {f it produces a list, each element of the list is
inserted as an element of the 1list being altered. To insert a sublist in a
list it must be surrounded by two sets of brackets. Thus, if S e-[A,B,C,ﬂ 3

INSERT (X,Y] BEFORE 2ND OF, AFTER LAST OF S causes S to be [A,X,Y,C,1,X,Y)

ey — ———— — —

[A,[X,f],C,l,[X,Yﬂ]. All the insertions take place simultaneously.

The first DELETE construction above performs simultaneous deletions of
parts of a list. The list of parts to be deleted is specified by the
selector list in accord with the semantics of selectors. Thus, DELETE 2ND

BEFORE FIRST INTEGER OF S will cause our original list S to be [A,C,1]. The

second delete construction removes the value of the symbolic expression from
the list structure in which it resides according to the form of the symbolic
expression. Thus, DELETE THE COLOR OF APPLE removes the value-list of this
attribute, DELETE , S is meaningless,

The ALTER construction is equivalent to a series of deletions followed

by insertions at each point where something was deleted.

ALTER ALL SYMBOL OF S TO (3,4) changes S to [3,4,3,4,3,4,1).
Whenever an assignment is made of a list structure, the entire structure
is copied and the copy becomes the contents at the left-side variables. Thus

editing statements should be used instead of assignment statements if a copy

FORM AL-3-66 FORMULA ALGOL

is not needed when altering a list. For example:
INSERT A AFTER LAST OF §
18 more efficient than

s « (5,4

Description List Editing Statements. Description list editing statements

add or delete values on description liasts., They supplement the role per-
formed by assignment statements in this regard. Suppose that

S e/ [THPE: MU, PI, RHQ] [COLOR: REﬁ] has been executed. Then, if the
statement'zgg COLOR OF 5 IS GREEN; is executed, the value of the attribute
COLOR on the descriptidn list of S is replaced with the new value GREEN,

This yields the altered description list / [TYPE: MU, PI, RHQ] [COLOR: GREEﬁ]
as a result. On the other hand, the statement: THE COLOR OF S IS ALSO GREEN;
could be executed. Instead of replacing the color RED with the value GREEN
the latter statement appends the value GREEN to the value list following the
attribute COLOR. This yields the description list / [TYPE: MU, PI, RHO)
[COLOR: RED, GREEﬁ] as a result, TFinally, description list editing statements
may be used to delete values from value lists of a specific attribﬁte.
Executing the statement: THE TYPE OF S IS NOT PI; alters the above descrip-

tion 1ist to / [TYPE: MU, RHO] [COLOR: GREEN] .

SPECIAL FUNCT IONS
CREATE (N) A SYMBOL function designator whose value 18 a list of N

created atomic symbols. CREATE = CREATE (1),

ERADL(S) A statement. which erases the description list attached to
the symbol 5.
COUNT (L) An INTEGER function designator having as value the number

of elements in the list which is the value of L.

EMPTY (S) A BOOLEAN function designator which {s true if S contains

Q-

()

A

FORMULA ALGOL FORM AL-3-67

no elements, It is false if the structure contains
anything including NIL,
AMONG(S, L) A BOOLEAN function designator which is TRUE if S is a

member of the list L and FALSE otherwise.

FORM AL-3-68

FORMULA ALGOL

WA

FORMULA ALGOL

APPENDIX I

Revised Report on the Algorlthmlc Language
ALGOL 60

Petrer Nauvr (Editor)

H. RUTISHAUSER
K. SaMELSON
B. Vauquols

J. H. WEGSTEIN
A. vAN WIINGAARDEN
M. WoopGER

Dedrcated to the Memory of WiLeiax Turanskr

J. W. Backus C. Katz

F. L. Bauer J. McCarruy

J. GREEN A. J. PERrus
SUMMARY

The report gives a complete defiming description of the
international algorithmic language ALGOL 60. This is
a language suitable for expressing & large class of nu-
merical processes in & form sufficiently concise for direct
automatic translation into the language of programmed
automatic computers,

The introduction contains an account of the preparatory
work leading up to the final conference, where the language
was defined. In addition, the notions, reference language,
publication language and hardware representations are
explained.

In the first chapter, a survey of the basic constituents
and features of the language is given, and the formal
notation, by which the syntactic structure is defined, is
explained.

The second chapter lists all the basic symbols, and the
syntactic units known as identifiers, numbers and strings
are defined. IFurther, some important notions such as
yuantity and value are defined.

The third chapter explains the rules for forming ex-
pressions and the meaning of these expressions. Three
different types of expressions exist: arithmetic, Boolean
{logical) and designational.

The fourth chapter describes the operational units of
the language, known as statements. The basic statements
are: assignment statements (evaluation of a formula),
go to statements (explicit break of the sequence of ex-
ecution of statements), dummy statements, and pro-
cedure statements (call for execution of a closed process,
defined by a procedure declaration). The formation of
more complex structures, having statement character, is
explained. These include: conditional statements, for
statements, compound statements, and blocks. -

In the fifth chapter, the units known as declarations,
serving for defining permanent properties of the units
entering into a process described in the language, are
defined.

The report ends with two detailed examples of the use
of the language and an alphabetic index of definitions.

CONTENTS

INTRODUCTION
1. STRUCTURE OF THE LANGUAOE
1.1. Formalism for syntactic deseription

2. Basic Sympois, IpentiFiers, NuMPERS, AND BTRINGS.

Basic Coxcepra.

2.1. Letters

2.2. Digits. Logical values.

2.3, Delimiters

2.4. Identifiers

2.5. Numbers

2.8. Strings

2.7. Quantitiea, kinds and acopes

2.8, Values and types
3. ExerEssioss

3.1. Variables

3.2. Function designators

1.3. Arithmetic expressions

3.4. Boolean expressions

3.5. Designationa! expressions
4. STATEMENTS

4.1. Compound statements and blocks

4.2. Assignment astatements

4.3. Go tu statements

4.4. Dummy statements

4.5. Conditional statements

46. For statements

4.7. Procedure statements
5. IXecuaraTions

5.1. Type declarations

5.2. Array declarations

5.3. Switch declarations

54. Procedure declarations
Examrres or ProcEpURE 1)ECLARATIONS
ALPHABETIC INDEX oF DEFINITIONS 0F CONCEPTS AND

BynracTic UniTs

FORM AL-3-69

This report was published simul-
taneously in the Communications
of the ACM, 6, No. 1 (1963), 1-17,
the Numerische Mathematik, and the
Computer Journal.

FORM AL-3-70

REVISED ALGOL 60

FORMULA ALGOL

INTRODUCTION

Background

After the publication of a preliminary report on the
algorithmic language ALGoL,'? as prepared at a conference
in Zirich in 1958, much interest in the ArcoL language
developed.

As a result of an informal meeting held at Mainz in
November 1958, ahout forty interested persons from
several Kuropean countries held an Arcou implementa-
tion eonferenee in Copenhagen in February 1959, A
“hardwarc group"” was formed for working cooperatively
right down to the level of the paper tape code. This
conference also led to the publication by Regnecentralen,
Copenhagen, of an ALGOL Buwlletin, cdited by Peter
Naur, which served as a forum for further discussion.
During the June 1959 ICIT Conference in Paris several
meetings, both formal and informal ones, were held.
These meetings revealed some misunderstandings as
to'the intent of the group which was primarily responsible
for the formulation of the language, but at the same time
made it clear that there exists a wide appreciation of the
effort involved. As a result of the discussions it was de-
cided to hold an international meeting in January 1960
for improving the Arcou language and preparing a final
report. At a Iluropean Arcor Conference in 1aris in
November 1959 which was attended by about fifty people,
seven lSuropean representatives were selected to attend
the January 1960 Conference, and they represcut the
following organizations; Association Francaise de Caleul,
British Computer Society, Gesellschaft fiir Angewandte
Mathematik und Mechanik, and Nederlands Reken-
machine Genootschap. The seven representatives held a
final preparatory meeting at Mainz in December 1959,

Meanwhile, in the United States, anvone who wished to
suggest changes or corrcctions to ALGoOL was requested to
send his comments to the Communicalions of the ACM,
whiere they were published. These comments then became
the basis of consideration for changes in the AvsoL lan-
guage. Both the Snake and USE organizations estab-
lished Ansor working groups, and both organizations
were represented on the ACM Committee on Program-
ming Languages. The ACM Committec met in Washing-
ton in November 1959 and considered all comments on
AvcoL that had been sent to the ACM Communications,
Also, seven representatives werce selected to attend the
January 1960 international confercnce. These seven
representatives held a final preparatory meeting in Boston
in December 1959.

Januarsr 1960 Conference

The thirteen representatives,® from Denmark, England,
France, Germany, Holland, Switzerland, and the United
States, conferred in Paris from January 11 to 16, 1960,

Prior to this meeting a completely new draft report was
worked out from the preliminary report and the recom-
mendations of the preparatory meetings by Peter Naur

and the conferenee sdopted this new form as the basis for
its report. The Conference then procceded to work for
agreement on each item of the report. The present report
represents the union of the Committee’s concepts and the
intersection of its agrecments,

April 1962 Conference [Fdited by M. Woodger]

A meeting of some of the anthors of Arcown 60 was held
on April 2-3, 1962 in Rome, Italy, through the facilitics
and courtesy of the International Computation Centre.
The following were present:

Anthars Advisers Observer
F. L. Bauer M. Paul W. L. van der Pocl
J. Green L. Franciotti (Chairman, IFIP
C. Katz P. %. Ingerman TC 2.1 Working
R. Kogon Group ALGOL)
(representing J. W.
Backus)
P. Naur
K. Samelsen G. Seegmiiller
J. H. Wegstein R. E. Utman
A. van Wijngaarden
M. Woodger P. Landin

The purpose of the meeting was to correct known
errors in, attempt to eliminate apparent ambiguities in,
and otherwise clarify the ALcoL 60 Report. Extensions
to the language were not considered at the meeting.
Various proposals for correction and clarification that
were submitted by interested parties in response to the
Questionnaire in ALGOL Bulletin No. 14 were used as 3
guide.

This report* constitutes a supplement to the Avcon 60
Report which should resolve a number of difficulties
therein. Not all of the questions raised concerning the
original report could be resolved. Rather than risk hastily
drawn conclusions on & number of subtle points, which
might create new ambiguities, the committee decided to
report only those points which they unanimously felt
could be stated in clear and unambiguous fashion.

Questions concerned with the following areas are left
for further consideration by Working Group 2.1 of IFIP,
in the expectation that current work on advaneced pro-

* |[Epttor's NoTe. The present edition follows the text which
was approved by the Council of IFIP. Although it iz not elear from
the Introduction, the present version is the original report of the
January 1960 eonference modified according to the ngreements
reached during the April 1%2 conference. Thus the report men-
tioned here is incorporated in the present version. The modifica-
tions touch the original report in the following sectiona: Changes .
of text: 1 with footnote; 2.1 footnote; 2.3;2.7: 3.3.3; 3.3.4.2; 4.1 .3,
4.23; 424; 43.4; 4.73; 4.7.3.1; 4733, 4.7.5.1; 4754, 1.76;
5;5.3.3; 5.3.5; 54.3; 54.4; 54.5. Changes of syntax: 3.4.1; 4.1.1;
4.2.1;45.1.]

! Preliminary report—International
Comm. ACM 1, 12 {1958), 8.

t Report on the Algorithmic Langunge ALGOL by the ACM
Committee on Programming langunges and the GAMM Com-
mittee on Programming, edited by A. J. Perlis and K. S8amelson.
Num, Math. 1 (10507, 41-60. .

1 William Turanski of the Ameriean group was killed hy an
antomobile just prior to the January 1960 Conferenee.

Algebraic Language.

FORMULA ALGOL

gramming languages will lead to better resolution:

1. Side cffects of functions

2. The call by name concept.

3. own: static or dynamic

4. For statement: static or dynamic
5. Conflict between specificetion and declaration

The authors of the ALcon G0 Report present at the
Rome Conference, being aware of the formation of a
Working Group on Ancon by IFIP, accepted that any
collective responsibility which they wmight have with
respect to the development, specification and refinement
of the Argon language will from how on be transferred to
that body.

This report has been reviewed by IFIP TC 2 on Pro-
gramming Languages in August 1962 and has been ap-
proved by the Council of the International Iederation
for Information Processing.

As with the preliminary AvLGor peport, three different
levels. of language are recognized, namely a Reference
Language, a Publication Language and several Hardware
Representations,

REFERENCE LANGUAGE

1. It is the working language of the committee.

2, It is the defining language.

3. The characters are determined by ease of mutual
understanding and not by any computer limitations,
coders notation, or pure mathematical notation.

4. It is the basic reference and guide for compiler
builders.

5. It is the guide for all hardware representations.

6. It is the guide for translitcrating from publication
language to any locally appropriate hardware representa-
tions.

REVISED ALGOL &0

7. The main publications of the Avcou language itself
will use the reference representation.

PupLicaTion LaNGuack

1. The publication language admits variations of the
reference language aceording to usage of printing and hand-
writing (e.g., subscripts, spaces, exponents, Greek letters).

2. It is used for stating and communicating processes.

3. The characters to be used may be different in
different countries, but univocal correspondence with
reference representation must he secured.

Harowarke REVRESENTATIONS

1. Kach one of these is a condensation of the referenee
language enforeed by the fimited number of characters on
standard input equipment.

2. Lach one of these uses the character set of a particu-
lar computer and is the language accepted by a translator
for that computer.

3. Each one of these must be accompanied by a special
set of rules for transliterating from PPublication or Refer-
ence language.

For transliteration between the reference language and
a language suitable for publications, among others, the
following rules are recommended.

Publication Languape

Lowering of the line hetween the
hrackets and removal of the
brackets

Raising of the exponent

Any form of parentheses, hrackels,
braces

Raising of the ten and of the follow-
ing integral number, inserting of
the intended multiplication sign

Reference Language
Subseript bracket [|

Exponentiation |
Parentheses ()

Basis of ten 1e

. DESCRIPTION OF THE REFERENCE LANGUAGE

1. Structure of the Language

As stated in the introduction, the algorithmic language
has three different kinds of representations—reference,
hardware, and publication—and the development de-
scribed in the sequel i3 in terms of the reference repre-
sentation. This means that all objects defined within the
language are represented by a given set of symbols—and
it is only in the choice of symbols that the other two
representations may differ. Structure and content must
be the rame for all representations,

The purpose of the algorithmic language is to describe
computational processes. The basic concept used for the
description of calculating rules is the well-known arith-
metic expression containing as constituents numbers, vari-
ables, and functions. From such expressions are com-
pounded, by applying rules of arithmetic composition,

Wan sich Oberbaupt segen Jast, Bt
gich kiar sgen; und wovon man nicht
reden kann, daritber muss man schweigen.
Lunwia Wrrroensrein.
self-contained units of the language—explicit formulae
—called assignment statements.

To show the flow of computational processes, certain
nonarithmetic statements and statement clauses are
added which may describe, e.g., alternatives, or iterative
repetitions of computing statements. Since it is necessary
for the function of these statements that one statement
refer to another, statements may be provided with labels.
A sequence of statements may be enclosed between the
statement brackets begin and end to form a compound
statement.

Statements are supported by declarations which are not
themselves computing instructions but inform the trans-
lator of the existence and certain properties of objects
appearing in statements, such as the class of numbers
taken on as values by a variable, the dimension of an

FORM AL-1.71

FORM AL-3-72

REVISED ALGOL 40

array of numbers, or even the sct of rules defining a func-
tion. A sequence of declarations followed by a sequence of
statements and enclosed between begin and end con-
stitutes a block. Every declaration appears in s block in
this way and is valid only for that block.

A program is a8 block or compound statement which is
not contained within another statement and which makes
no use of other statements not contained within it.

In the sequel the syntax and semantics of the language
will be given,

1.1. ForMaLisM FOR SYNTACTIC DESCRIPTION
The syntax will be deseribed with the aid of metalin-
guistic formulac.® Their interpretation is best explained
by an example
{ab) = ([[} {ab) (| (ab){d)

Sequences of characters enclosed in the brackets {) repre-
sent metalinguistic variables whose values are sequences
of symbols. The marks ::= and | (the latter with the
meaning of or) are metalinguistic connectives, Any mark
in a formula, which is not a variable or a connective,
denotes itself (or the class of marks which are similar to it).
Juxtaposition of marks and/or variables in a formula
signifies Juxtaposition of the sequences denoted. Thus the
formula above gives a recursive rule for the formation of
values of the variable (ab). It indicates that (ab) may
have the value (or | or that given some legitimate value
of {(ab), another may be formed by following it with the
character (or by following it with some value of the vari-
able {d). If the values of {d) are the decimal digits, some
values of (ab) are:

(137

(12345¢

((

86

It order to facilitate the study, the symbols used for
distinguishing the metalinguistic variables (i.e. the se-
quenees of characters appearing within the brackets {)
as ab in the above example) have been chosen to be words
deserthing approximately the nature of the corresponding
variable. Where words which have appeared in this manner
are used elsewhere in the text they will refer to the corre-
sponding syntactic definition, In addition some formulae
have been given in more than one place.
Definition:
{empty) 1=
(i.c. the null string of symbols),

{ Whenever the precision of arithmelic is siated as being in
goneral not speeificd, or the onteome of & certain process iy left
undefined or said to be undefined, this is to be interpreted in the
sense that a program only fully defines a computational process
if the aceompanying information specifies the precision assumed,
the kind of arithmetic assumed, and the course of action to he
taken in all such casea as may oceur during the execution of the
compuialion.

s (Y, J. W. Buckus, The syntax and semantiea of the proposed
internationnl algebraic language of the Zirich ACM-GAMM
eonference. Proe. Internat, Conf. Infl. Proe., UNESCQ, Paris,
June 1959,

FORMULA ALGOL

2. Basic Symbols, Identifiers,
Strings. Basic Concepts.

Numbers, and

The reference language is built up from the following
basic symbols:

(bagie symbol) 1= (etter)|(digit ¥} dogical value)l{delimitery
2.1. LrrTERS

(letter) = alblcldle|f|glhlilik i Iminloiplg)rlaitiulvlwizly|z|
ARICIDIEIFIGIH\IV|K\LIM N O|PIQIR\SIT|U |V WX Y%
This alphabet may arbitrarily be restricted, or extended
with any other distinctive character (i.e. character not

coinciding with any digit, logical value or delimiter).

Letters do not have individual meaning. They are
used for forming identifiers and strings® (ef. sections 2.4,
Identifiers, 2.6. Strings).

2.2.1. Dicits
fdigit) ::= 0]1[2/3|4]5/6/7|8|9

Digits are wsed for forming numbers, identifiers, and
strings.

2.2,2, Locican VALUES

(logical value) ::= trueifalse
The logical values have a fixed obvious meaning.
2.3. DELIMITERS

{delimiter} ::= {operator}|{separator}| {bracket)] {(declarator)!
{apecificator)

{operator} ::= (arithmetic operator}|{relatioonl
{logical operator)|{sequential operator}

{arithmetic operator} ;= +|—|X%{/|+]T

{relational operator) = <|5|=]Z|>|#

{logical operator) 1= =2 |V|Al-

{sequential operator) ;1= go 1o)ifjthen|clse|for|do’

{sepurator) = el = |ulstepluntiliwhilelcomment

(bracket) = (D]’ |beginlend

operatior}|

{deciuratory ::= own|Boclean|integerireal|urraylswitch!
procedure
{specifieatur) ;1= string|labeljvalue

Delimiters have a fixed meaning which for the most part
is obvious or else will be given at the appropriate place
in the sequel.

Typographical features such as blank space or change
to & new line have no significance in the reference language.
They may, however, be used freely for facilitating reading.

For the purpose of including text among. the symbols of

¢ It should be partieularly noted that thronghout the reference
language underlining [in typewritten enpy; holdface type in
printed copy—-13d.] is used for defining independent. basie symhbols
(see sections 2.2.2 and 2.3). There are nnderstoud to have neo rela-
tion o the individual letters of which they are composed. Within
the present report [not, ineluding henelings —Fd 1, boldinee will be
uaed for no other purpoge. .

7o ir used in for statements. It has no relation whatsoever
to the do of the preliminary report, which ia not inchuded in
ALGOL 60,

FORMULA ALGOL

a program the following “comment” conventions hold:

The sequence of basic symbola: is equivalent lo

; comment {(any sequence not containing ;); ;
begin comment (any sequence not containing ;}; begin
end (any sequence not containing end or ; or else)} end

By equivalence is here meant that any of the three strue-
turez shown in the left-hand column may be replaced, in
any occurrence outside of strings, by the symbol shown on
the same line in the right-hand column without any
effect on the action of the program. It is further understood
that the comment structure encountered first in the text
when reading from left to right has precedence in being
replaced over later structures contained in the sequence.

2.4, IDENTIFIERS
2.4.1. Syntax

¢identifier) ::= (letter)[{identifier){letter}| {identifier) (digit}

2.4.2. Examples

q

Sonp

Viie
a34kTMNe
MARILYN

2.4.3. Semantics

Identifiers have no inherent meaning, but serve for the
identification of simple variables, arrays, labels, switches,
and procedures. They may be chosen freely (cf., however,
section 3.2.4. Standard Functions).

The same identifier cannot be used to denote two
different quantities except when these quantities have
cisjoint scopes as defined by the declarations of the pro-
gram (ef. section 2.7. Quantities, Kinds and Scopes, and
section 5. Declarations).

2.5. NUMBERs
2.5.1. Syntax

{unsigned integer} ::= {digit}|{unsigned integer){digit)
{integer} ::= (unsigned integer}|+ (unsigned integer}|
— {unsigned integer}
{decimal fraction) ::= .(unsigned integer)
{exponent part} ::= w{integer)
{decimal number} ::;= {unsigned integer}|{decimal fraction}|
{unsigned integer)(decimal fraction}
{unsigned number) :;= (decimal number)|{exponent part}|
(decimal number){exponent part} :
(number} ::= {(unsigned number}|+ {unsigned number}|
— {(unsigned number}

2.5.2. Examples

0 —200.084 —.0831e—02
177 +07.43u8 -7
5384 9.34104-10 1w—4
+0.7300 2— 104 +utb

2.5.3. Semantics

Decimal numbers have their conventional meaning.
‘The exponent part is a scale factor expressed asanintegral
power of 10.

REVISED ALGOL 60

2.5.4. Types
Integers are of type integer, All other numbers are of
type real (cf. section 5.1, Type Declarations).

2.6. STriNGS
2.6.1. Syntax
{proper string) ::= {(any sequence of basic symbols not containing
‘or *){emply)
{open string) ::= {proper string}|*{open string)’|
{open atring){open string)
{string} ::= ‘{open string)’
2.6.2. Examples

Bk, —(l['A=/Tt"
‘.. This uis u a u ‘string’’
2.6.3. Semantics
In order to enable the language to handle arbitrary
sequences of basic symbols the string quotes ‘ and ' are
introduced. The symbol u denotes 8 space. It has no
significance outside strings.
Strings are used as actual parameters of procedures
(cf. sections 3.2. Function Designators and 4.7. Procedure
Statements).

2.7. QuanTrmies, Kinps anp Scopes

The following kinds of quantities are distinguished:
simple variables, arrays, labels, switches, and procedures.

The scope of a quantity is the set of statements and
expressions in which the declaration of the identifier asso-
ciated with that quantity is valid. For labels see section
4.1.3.

2.8, Varues aND TYPES

A value is an ordered set of numbers (special case: a
single number}, an ordered set of logical values (special
case: a single logical value}, or & label.

Certain of the syntactic units are said to possess values.
These values will in general change during the execution
of the program. The values of expressions and their con-
stituents are defined in section 3. The value of an array
identifier is the ordered set of values of the corresponding
array of subscripted variables (cf. section 3.1.4.1).

The various “types’’ (integer, real, Boolean) basically
denote properties of values., The types sssociated with
syntactic units refer to the values of these units.

3. Expressions

In the language the primary constituents of the pro-
grams describing algorithmic processes are arithmetic,
Boolean, and designational expressions. Constituents of
these expressions, except for certain delimiters, are logical
values, numbers, variables, function designators, and
elementary arithmetic, relational, logical, and sequential
operators. Since the syntactic definition of both variables
and function designators contains expressions, the defini-
tion of expressions, and their constituents, iz necessanly
recursive,

(expression) ::= (arithmetic expression} {Boolean exﬁresaiun}i
{designational expression)

FORM AL-3-73

FORM AL-~3-74

REVISED ALGOL 60

3.1. VARIABLES
3.1.1. Syntax

{varigble identifier) ::= (identifier)

{simple varisble) ::= {variable identifier}

(subscript expression) ::= (arithmetic expression)

(subseript list) ::= (subscript expression)|{subseript list},
{subseript expression)

(array identifier) ::= (identifier)

(subscripted varisble) ::= (array identifier}[{subseript list}]

(variable) ::= (simple variable}| (subseripted variable)

3.1.2. Examples

epsilon
detA
al?

Q2]
zlsin(nX pi/2),Q[3,n,4])

3.1.3. Semantics

A variable is a designation given to a single value. This
value may be used in expressions for forming other values
and may be changed at will by means of assignment state-
ments {section 4.2), The type of the value of a particular
variable is defined in the declaration for the variable
itself {cf. section 5.1. Type Declarations) or for the corre-
sponding array identifier (cf. section 5.2. Array Declara-
tions).

3.1.4, Subscripts

3.1.4.1. Subscripted variables designate values which
are components of multidimensional arrays (ef. section
5.2. Array Declarations). Each arithmetic expression of
the subscript list oceupies one subscript position of
the subscripted variable, and is ealled a subseript. The
complete list of subscripts is enclosed in the subscript
brackets []. The array component referred to by a sub-
scripted variable is specified by the actual numerieal value
of its subscripts {cf. section 3.3. Arithmetic Expressions).

3.1.4.2. Each subscript position acts like a variable of
type integer and the evaluation of the subscript is under-
stood to be equivalent to an assignment to this fictitious
variable (¢f. section 4.2.4), The value of the subseripted
variable is defined only if the value of the subscript ex-
pression is within the subscript bounds of the array (cf.
section 5.2, Array Declarations).

3.2. FunctioN DESIGNATORS
3.2.1. Syntax

{procedure identifier} ::= (identifier)
{actual parameter) ::= (atring)|{expression } {array identifier}|
(switeh identifier)| (procedure identifier} :
{letter string} ::= (letter)|(letter string) (letier}
{parameter delimiter} ::= ,|}{letter string) :{
{actusl parameter list} 1= (actual parameter}|
{actual parameter list) {parameter delimiter)
{actual parameter)
{actua! parameter part) ::= (empty}|({actual parameter list})
(function designator} ::= {precedure identifier)
(actual parameter part)

FORMULA ALGOL

3.2.2. Examples

ginla—b)
J{v+a,n)
k
8(s—8)Temperature:(T)Pressure:(P)
Compile(* ;= ")Stack:(Q)
3.2.3. Semantics
Funetion designators define single numerical or logical
values, which result through the application of given sets
of rules defined by a procedure declaration (cf. section 5.4
Procedure Declarations) to fixed sets of actual param-
eters. The rules governing specification of actual param-
etera are given in section 4.7. Procedure Statements. Not
every procedure declaration defines the value of a funection
designator.

3.2.4. Standard functions

Certain identifiers should he reserved for the standard
functions of analysis, which will be expressed as procedures.
It is recommended that this reserved list should contain:

abs(E) for the modulus (absolute value) of the value of the

expression E

sign(E) for the sign of the value of E(+1 for E>0, 0 for E={Q,
—1 for E<0)

sgri(E} for the square root of the value of E

sin(E) for the sine of the value of E

cos(E) for the cosine of the value of B

arctan{E) for the principal value of the arctangent of the value -
of E

n(E) for the natural logarithm of the value of E

exp(E) for the exponential function of the value of E (e®).

These functions are all understood to operate indifferently
on arguments both of type real and integer. They will
all yield values of type real, except for sign(E) which will
have values of type integer. In a particular representa-
tion these functions may be available without explicit
declarations {ci. section 5. Declarations).

3.2,5. Transfer functions

It is understood that transfer functions between any
pair of quantities and expressions may be defined. Among
the standard functions it is recommended that there be

one, namely,
entier(E),

which “transfers” an expression of real type to one of
integer type, and assigns to it the value which is the
largest integer not greater than the value of E.

3.3. ARITHMETIC EXPRESSIONS
3.3.1. Syntax

(adding operator) ::= +|—
(multiplying operator} ::= X|/|+
{primary) ::= {(unsigned number)|(variable)|
({function designator)|{{arithmetic expression})
{factor) ::= (primary}|{factor)}{primary}
{term) ::= (factor)|{term){multiplying operatar}{factor)
{simple arithmetic expression) ::= (term}|
{adding operator}{term)|{simple arithmetic expression}
{adding operator){term}
(if clause) ::= if (Boolean expression)then .
(arithmetic expression} ::= {gimple arithmetic expression})|
{if ctause}{simple arithmetic expression)else
{arithmetic expression}

FORMULA ALGOL

3.3.2. Examples
Primaries:

7.30410-8

sum

wli+42,8)
cos(y+zX3)
(a—3/y+rul8)

Factors:

omega
sumflcos(y+2zX3)
7.3%410—81wli+2,8]1 (a—3/y+rulB)

Terms:

U
omegaX sumleos(y+2X3)/7.30410—81wli+2,8]t
fa—3/y-+vulB)

Simple arithmetic expression:

. U—Yutomegad sumleon(y+2x3)/7.394 —8Twli+2,8]
(a—~3/y+vulB)

Arithmetic expressions:

wXu—Q(S+Cu)12

if >0 then S+3XQ/A elee 2X8+3Xq

if a<0 then U+V else if aXb>17 then U/V else if
k#y then V/U else 0

aX sin(omegaXt)

0.57012%alN X (N —1)/2, 0]

(AXarctan(y)+Z)1(74+Q)

if g then n—1 else n

if a<0 then A/B else {f b=0 then B/A else z

3.3.3. Semantics

An arithmetic expression is a rule for computing a
numerical value. In case of simple arithmetic expressions
this value is obtained by executing the indicated arith-
metic operations on the actual numerical values of the
primaries of the expression, as explained in detail in
section 3.3.4 below. The actual numerical value of a
primary 18 obvious in the case of numbers. For variables
it is the current value (assigned last in the dynamic sense),
and for function designators it is the value arising from
the computing tules defining the procedure (cf. section
54.4. Values of Function Designators) when applied to
the current values of the procedure parameters given in
the expression. Finally, for arithmetic expressions en-
closed in parentheses the value must through a recursive
analysis be expressed in terms of the values of primaries
of the other three kinds. '

In the more general arithmetic expressions, which in-
clude if clauses, one out of several simple arithmetic ex-
pressions is selected on the basis of the actual values of the
Boolean expressions (ef. section 3.4. Boolean Expressions).
This selection is made as follows: The Boolean expressions
of the if clauses are evaluated one by one in sequence from
left to right until one having the value true is found. The
value of the arithmetic expression is then the value of
the first arithmetic expression following this Boolean
(the largest arithmetic expression found in this position

REVISED ALGOL 40
i= understood). The construction:

else {(simple nrithmetie expression)
in equivalent to the construction:
else if true then {simple arithmetic expression}

3.3.4. Operators and types

Apart from the Boolean expressions of if clauses, the
constituents of simple arithmetic expressions must be of
types real or integer (cf. section 5.1. Type Declarations).
The meaning of the basic operators and the types of the
expressions to which they lead are given by the following
rules:

3.3.4.1. The operators 4+, —, and X have the conven-
tional meaning (addition, subtraction, and multiplication).
The type of the expression will be integer if both of the
operands are of integer type, otherwise real.

3.3.4.2. The operations (term)/{factor) and (term} <+
{factor) both denote division, to be understood as a multi-
plication of the term by the reciprocal of the factor with
due regard to the rules of precedence {cf. section 3.3.5).
Thus for example

a/bX7/(p—q)Xv/e
means
(({axX O)IX7IX ((p—g) D)Xy X (7Y)

The operator / is defined for all four combinations of
types real and integer and will yield results of real type
in any case. The operator + is defined only for two
operands both of type integer and will yield a result of
type integer, mathematically defined as follows:

a+b= sipn (a/b)Xentier(abs{a/b))

(cf. sections 3.2.4 and 3.2.5),

3.3.4.3. The operation {factor)!(primary) denctes ex-
ponentiation, where the factor is the base and the primary
is the exponent. Thus, for example,

2nlk means (2=

while

-
means Ll

2§ (ntm)

Writing ¢ for 2 number of integer type, r for & number of
real type, and a for a number of either integer or real
type, the result is given by the following rules:

afi I i>0,aXaX ... Xa (i times), of the same type as a.
If i=0, if a»0, 1, of the same type as a.
il a=0, undefined.
It 1 <0, if a##0, 1/{aXaX ... Xa) (the denominator has
—i factors), of type real. '
if a={, undefined.
afr If a>0, exp(rXin(a)), of type real.
If a=(, if r>0, 0.0, of type real.
if r50, undefined.
If a<0, always undefined.

3.3.5. Precedence of operators
The sequence of operations within one expression is

FORM AL-3-75

FORM AL-3-76

REVISED ALGOL 80
generally from left to right, with the following additional
rules: :

3.3.5.1. According to the syntax given in section 3.3.1
the following rules of precedence hold:

firat: 1
second: X /+
third: 4 -

3.3.5.2, The expression between a left parenthesis and
the matching right parenthesis is evaluated by itself and
this value is used in subsequent calculations. Consequently
the desired order of execution of operations within an
expression can always be arranged by appropriate posi-
tioning of parentheses.

3.3.6. Arithmetics of real quantities

Numbers and variables of type real must be interpreted
in the sense of numerical analysis, i.e. as entities defined
inherently with only a finite accuracy. Similarly, the
possibility of the occurrence of a fintte deviation from the
mathematically defined result in any arithmetic expreasion
iz explicitly understood. No exact arithmetic will be
specified, however, and it is indeed understood that
different hardware representations may evaluate arith-
metic expressions differently. The control of the possible
consequences of such differences must be carried out by
the methods of numerical analysis, This control must be
considered a part of the process to be described, and will
therefore be expressed in terms of the language itself.

3.4. BoorLEAN EXPRESsIONS
3.4.1. Syntax

{relational operator) ::= <|S|=|Z|>|#
{relation} ::= {(simple arithmetic expression)

(relational operator)(simple arithmetic expression}
(Boolean primary) ::= {logical value}|(varizble}]

{function designator}]{relation)|({Boolean expression)}
{Boolean secondary} ::= (Boolean primary)| - {Boolean primary)
(Boolean factor) ::= (Boolean secondary }

«{Boolean {actor }A (Boolean secondary)
{Boolean term} ::= {Boolean factor}| {Bcolean term)

Y {Boolean factor)
{implication) ::= {Boolean term }}{implication }>D{Boolean term})
{nimple Boolean) ::= {implication)|

{simple Boolean }= (implieation)
{Boolean expression} ::= (simple Boolean }{

(if clause }{simple Boolean} else {Booclean expression}

3.4.2. Examples

= —2

Y>VVai<q

atd > —5 A z-d > 12

pAL V THEy

p=aaAbA - eVdVeDd— f

if k<l then s>w else AZ¢

if if if @ then b else ¢ then d else [then ¢ clse A<k

3.4.3. Semantics

A Boolean expression is a rule for computing a logical
value. The principles of evaluation are entirely analogous
to those given for arithmetic expressions in section 3.3.3.

3.4.4. Types

Variables and function designators entered as Boolean

FORMULA ALGOL

primaries must be declared Boolean (cf. section 5.1,
Type Declarations and section 5.4.4. Values of Function
Designators).

3.4.5. The operators

Relations take on the value true whenever the corre-
sponding relation is satisfied for the expressions involved,
otherwise false.

The meaning of the logical operators— (not), /A (and),
V (or), O (implies), and = (equivalent), i given by the
following function table.

bl false false true true

bl Ab2
b1y/b2
bioh2
bimb3

3.4.6. Precedence of operators

The sequence of operations within one expression is
generally from left to right, with the following additional
rules:

3.4.6.1. According to the syntax given in section 3.4.1
the following rules of precedence hold:

first: arithmetic expressions according to section 3.3.5.

sepond: CSmE>p
third: -
fourth: A
fifth: vV
sixth: D
seventh: =

3.4.6.2. The use of parentheses will be interpreted in
the sense given in section 3.3.5.2.

3.5. DESIGNATIONAL EXPRESSIONS
3.5.1. Syntax ‘

(label) ::= {identifier}|{unsigned integer)

(awitch identifier) ::= (identifier)

{nwitch designator) ::= {switch identifier }| (subseript expression }]

{simple designational expression) ::= (label)| (switch designator}|
({designational expression))

(designational expression) ::= (simple designational expression}}
{if clause}{simple designational expression} elae
{designational expression}

3.5.2. Examples
17

g
Choosefn—1]

Town[if y<0 then N else N+41]

if Ab<e then 17 else glif 250 then 2 else n]

3.5.3. Semantics

A designationa] expression is a rule for obtaining a label
of a statement (cf. section 4. Statements). Agsin the
principle of the evaluation is entirely analogous to that of
arithmetic expressions (section 3.3.3). In the general case
the Boolean expressions of the if clauses will select a
simple designational expression. If this is a labél the
desired result is already found. A switch designator refers
to the corresponding switch declaration (cf. section 5.3.

FORMULA ALGOL

Switch Declarations) and by the actual numerical value
of its subscript expression selects one of the designational
expressions listed in the switch declaration by counting
these from left to right. Since the designational expression
thus seiceted may again be a switch designator this evalua-
tion is obviously a recursive process.

3.5.4. The subscript expression

The evaluation of the subscript expression is analogous
to that of subscripted variables (ef. section 3.1.4.2). The
value of a switch designator is defined only if the subscript
expression assumes one of the positive values 1, 2,3, ... ,n,
where n is the number of entries in the switch list.

3.5.5. Unsigned integers as labels

Unsigned integers used as labels have the property that
leading zeros do not affect their meaning, eg. 00217
denotes the same label as 217.

4. Statements

The units of operation within the language are called
statements, They will normally be executed consecutively
as written. However, this sequence of operations may be
broken by go to statements, which define their successor
explicitly, and shortened by conditional statements,
which may cause certain statements to be skipped.

In order to make it possible to define a specific dynamic
succession, statements may be provided with labels.

Since sequences of statements may be grouped together
into compound statements and blocks the definition of
statement must necessarily be recursive, Also since decla-
rations, described in section 5, enter fundamentally into
the syntactic structure, the syntactic definition of state-
ments must suppose declarations to be already defined.

4.1, CoMPOUND STATEMENTS AND BLOCKS
4.1.1. Syntax

{unlabelled basic statement) ::= ({(assignment statement)|
{go to statement }| {dummy statement }| {(procedure atatement)

{bdsic statement} ::= (unlsbelled basic siatement}|{label):
{bapsic statement)

{unconditional statement) ::= (basic statement)}|
{compound statement)} (block)

{statement} ::= {unconditional statement)|
{conditional statement)| {for atatement)

{eompound tail} ::= {statement) end |{statement) ;
{compound tail)

{block head) ::= begin {(deciaration}|{block head) ;
{declaration)

{unlabelled compound} ::= begin {(compound tail }

{unlabelled block) ::= (block head) ; {(compound tail}

{compound statement} ::= (unlabelled eompound }|
{label }: (compound statement)

{block) :;:= (unlabelled block}| {label }:{block}

{program} ::= (biock}}{compound statement}

This syntax may be illustrated as follows: Denoting arbi-
trary statements, declarations, and labels, by the letters
8, D, and L, respectively, the basic syntactic units take
the forms:

Compound statement:

L:L: ...begin8 ; & ; ..8 ; Send

REVISED ALGOL &0
Block:

L:L: ...begin D ; D ; . D ; B ; 8 ; .8 ;
8 end

It should be kept in mind that each of the statements 8
may again be & complete compound statement or block.
4.1.2. Examples

Basic statements:

a = ptq
go to Naplea
START: CONTINUE: W := 7903

Compound statement:

beginz := 0 ; fory := 1step | until n do
z = z+Aly] ;
if > q then go to STOP else if 2>w—2 then
gote S ;
Aw: St: W := z+bob end

Block:

Q: begin integer 1,k ; realw ;
for i := 1 atep 1 until m do
for k := i+1 step 1 until m do
begin w 1= A, k] ;
Ali, k] = Alk, 4] ;
Afk, 7] ;= wend for{ and &
end block ¢

4.1.3. Semantics

Every block automatically introduces a new level of
nomenclature., This is realized as follows: Any identifier
occurring within the block may through a suitable declara-
tion (cf. section 5. Declarations) be specified to be local
to the block in question. This means {a} that the entity
represented by this identifier inside the block has no
existence outside it, and (b) that any entity represented
by this identifier outside the block is completely inacces-
sible inside the block.

Identifiers {except those representing labels) occurring
within a block and not being declared to this block will be
nonlocal to it, i.e. will represent the same entity inside
the block and in the level immediately outside it. A label
separated by a colon from a statement, i.e. labelling that
statement, behaves as though declared in the head of the
smallest embracing block, i.e. the smallest block whose
brackets begin and end enclose that statement. In this
context & procedure body muat be considered as if it were
enclosed by begin and end and treated as a block.

Since a statement of a block may again itself be a block -
the concepts local and nonlocal to a bloek must be under-
stood recursively. Thus an identifier, which is nonlocal
to a block A, may or may not be nonlocal to the block B
in which A is one statement.

4.2, ASSIGNMENT STATEMENTS
4.2.1. Syntax

(left part) ::= {(variable) := |{procedtre identifier) := .

{left part list) ::= (left part}}{left part list){left part)

(assignment statement) ::= (left part list) {arithmetic expression)|
{teft part list) {Boolean expression}

FORM AL-3-77

FORM AL-3-78

REVISED ALGOL 40

4.2.2, Examples
2= pil] i=.n ;= ntlts
n = n+tl
A= B/C—v—gX8
Slv,k+2] := 3—arclan(sX zela)
Vi=m @sYAZ

4.2.3. Semantics

Assignment statements serve for assigning the value of
an expression to one or several variables or procedure
identifiers. Assignment to a procedure identifier may only
occur within the body of a procedure defining the value of
a function designator (cf. section 5.4.4). The process will
in the general case be understood to take place in three
steps as follows:

4.2.3.1. .,Any subscript expressions occurring in the left
part variables are evaluated in sequence from left to right.

4.2.3.2. The expression of the statement is evaluated,

4.2.3.3. The value of the expression is assigned to all
the left part variables, with any subscript expressions
having values us cvaluated in step 4.2.3.1.

4.2.4, Types

The type associated with all variables and procedure
identifiers of a left part list must be the same. If this type
iz Boolean, the expression must likewise be Boolean.
If the type is real or integer, the expression must be
arithmetic. If the type of the arithmetic expression differs
from that associated with the variables and procedure
identifiers, appropriate transfer functions are understood
to be sutomatically invoked. For transfer from real to
integer type, the transfer function is understood to
yield a result equivalent to

entier (E+0 6)

where E is the value of the expression. The type asso-
ciated with a procedure identifier is given by the declarator
which appears as the first symbol of the corresponding
procedure declaration (cf. section 5.4.4).

4.3. Go To STATEMENTS
4.3.1. Syntax

{go to statement) ::= go to (designational expression)

4.3.2. Examples

goto §

go to exil [n+1]

g0 to Tounlif y <0 then N else N+1]

go to if Ab<e¢ then 17 else glif w<0 then 2 else n]

4.3.3. Semantics

A go to statement interrupts the normal sequence of
operations, defined by the write-up of statements, by
defining its successor explicitly by the value of a designa-
tional expression. Thus the next statement to be executed
will be the one having this value as its label.

4.3.4. Restriction

Since labels are inherently local, no go to statement can
lead from outside into a block. A go to statement may,
however, lead from outside into a compound statement.

FORMULA ALGOL

4.3.5. Go to an undefined switch designator

A go to statement iy equivalent to a dummy statement
if the designational expression is a switch designator whose
value is undefined.

4.4. DuMMy STATEMENTS
4.4.1. Syntax

(dummy statement) :;= (empty}

4.4.2, Examples

L:
begin ... ; John: end

4.4.3. Semantics
A dummy statement executes no operation. It may
serve to place a label.

4.5. CONDITIONAL STATEMENTS
4.5.1. Syntax

{if clause) :;= {f {Boolean expression) then
(unconditional statement) ::= (basic statement}|
{compound statement }|{block}
{if statement) :;= {if clause) (unconditional statement)
{conditional statement) ::= (if statement)|{if statement) else
(statement }|{if clanee}(for statement)|
(label) : {(conditionsl statement)

4.5.2. Examples

if >0 then n 1= n+1
ifv>uthen V: g:= n+melse goto B
If s<0VFPSQ then AA: begin if g<v then ¢ := v/s2
eloe y = 2X 5 end
else if v> 8 then g := r—g else if v>35-1
then go 1o 8

4.5.3. Semantics)

Conditional statements cause certain statements to be
executed or skipped depending on the running values of
specified Boolean expressions.

4.5.3.1. Ii statement. The unconditional statement of
an if statement will be executed if the Boolean expression
of the if elause is true. Otherwise it will be skipped and
the operation will be continued with the next statement,

4.5.3.2. Conditional statement. According to the syn-
tax two different forms of conditional statements are
possible, These may be illustrated as follows:

if Bl then 81 elne il B2 the;t 82 else S3 : B4
and
if Bl then Bl else if B2 then S2 else if B3 then 83 ; B4

Here Bl to B3 are Boolean expressions, while 81 to S3
are unconditional statements. 54 is the statement following
the complete conditional statement.

The execution of a conditional statement may be de-
gcribed as follows: The Boolean expression of the if clauses
are evaluated one after the other in sequence from left to
right until one yielding the value true is found. Then the
unconditional statement following this Boolean is exe-
cuted. Unless this statement defines its successor explicitly
the next statement to be executed will be 84, i.e. the state-

FORMULA ALGOL

ment following the complete conditional statement, Thus
the effect of the delimiter else may be deseribed by saying
that it defines the successor of the statement it follows to
be the statement following the complete conditional
statement.

The construction

else (unconditional statement)

is equivalent to
else if true then {unconditional statement)

If none of the Boolean expressions of the if clauses is
true, the effect of the whole conditional statement will be
equivalent to that of a dummy statement,

For further explanation the following picture may be
useful;

if Bl'then Bl else if B2 then 82 else 83 ; 54

b T]

B2 false

4.5.4. Go to into & conditional statement

The effect of & go to statement leading into a conditional
statement follows directly from the above explanation of
the effect of else.

4.6. ForR STATEMENTS
4.6.1. Syntax

{for list element) ::= {arithmetic expreasion)|
{arithmetio expression) step {(arithmetio expression} until
{arithmetic expression)|{arithmetic expression) while
{Boolean expression)
{for list) :;= {for list element)|({for list} , {for list element)
{for clause) ::= for (variable) := (for list) do
{for statement} ::= (for clavse){statement}|
{label }: (for statement)

4.6.2. Examples

for ¢ := 1 step 2 until n do Alg] := Blgl
for k 1= 1, V1X2 while F1<N do
- forj = I4G, L, 1etep 1 until N, C+ D do
Alk,j] := Blk,j]

4.6.3. Semantics

A for clause causes the statement S which it precedes to
be repeatedly executed zero or more times. In addition it
performs & sequence of assignments to its controlled
variable. The process may be visualized by means of the
following picture:

Initialize ; test ; statement 8 ; advance ; successor

for list exhausted

In this picture the word initialize meaus: petform the first
assignment of the for clause. Advanee means: perform the
next assignment of the for clause, Test determines if the
last assignment has been done. If so0, the execution con-

REVISED ALGOL 60

tinues with the successor of the for statement. If not, the
statement following the for clause is executed.
4.6.4. The for list elements
The for list gives a rule for obtaining the values which
are consecutively assigned to the controlled variable. This
sequence of values is obtained from the for list elements
by taking these one by one in the order in which they are
written. The sequence of values generated by each of the
three species of for list elements and the corresponding
execution of the statement S are given by the following
rules:
4.6.4.1. Arithmetic expression. This element gives rise
to one value, namely the value of the given arithmetic
expression as caleulated immediately before the corre-
sponding execution of the statement 8.
4.6.4.2. Step-until-element. An element of the form
A step B until C, where A, B, and C, are arithmetic ex-
pressions, gives rise to an execution which may be de-
sctibed most concisely in terms of additional AvcoL
statements as follows:
Vi=A ;
L1: §f (V=C)X #ign(B)>0 then go to element exhausted;
statement § ;
V= V4B ;
go to LI

where V is the controlled variable of the for clause and
element exhausted points to the evaluation according to
the next element in the for list, or if the step-until-element
is the last of the list, to the next statement in the program.

4.6.4.3. While-element. The execution governed by a
for list element of the form E while F, where E is an
arithmetic and F a Boolean expression, is most concisely
described in terms of additional ALGon statements as
follows:
I3: V:= E ;

if - F then go to element exhausied |

Statement 8 ;
goto L3 ;

where the notation is the same as in-4.6.4.2 above.

4.6.5. The value of the conirolled variable upon exit

Ubon exit out of the statement 8 (supposed to be com-
pound) through a go to statement the value of the con-
trolled variable will be the same as it was immediately
preceding the execution of the go to statement.

If the exit is due to exhaustion of the for list, on the
other hand, the value of the econirolled variable is unde-
fined after the exit. ‘

4.6.6, Go to leading into a for statement

The effect of a go to statement, outside a for statement,
which refers to a label within the for statemeat, is unde-
fined.

4.7. PROCEDURE STATEMENTS
4.7.1. Syntax

{actua! parameter) ::= (atring)|(expression}|(array identifier)|
{switch identifier }| {procedure identifier}
{letter string) ::= (letter)| (letter string) (letter)

FORM AL-3-79

FORM AL-3-80

REVISED ALGOL 60

{parameter dclimiter) 1= [} {letter string)-(

{nctunl parameter list) ::= (actual parameter)|
{actual parameter list) {parameter delimiter}
{actual parameter)

(aetual parameter part) ;= (empty)|
({actual parameter list))

{procedure statement} ;;= (procedure identifier}
{actual parameter part)

4.7.2, Examples
Spur (A)Order: (7)Result to: (V)
Transpose (W, v+1)
Absmax(A N, M,Yy,I,K)
Innerproduct(Al, P,u],B[P],10,P,Y)

These examples correspond to examples given in section
542,

4.7.3. Semantics

A procedure statement serves to invoke (call for) the
execution of & procedure body (cf. section 5.4. Procedure
Declarations). Where the procedure body is a statement
written in ArncoL the effect of this execution will be
equivalent to the effect of performing the following opera-
tions on the program at the time of execution of the pro-
cedure statement :

4.7.3.1. Value assighment (call by value)

All formal parameters quoted in the value part of the
procedure declaration heading are assigned the values
(cf. section 2.8. Values and Types) of the corresponding
actual parameters, these assignments being considered as
being performed explicitly before entering the procedure
body. The effect is as though an additional block embrac-
ing the procedure body were created in which these assign-
ments were made to variables local to this fictitious block
with types as given in the corresponding specifications
{cf. section 5.4.5). As a consequence, variables called by
value are to be considered as nonlocal to the body of the
procedure, but local to the fictitious block (cf. section
5.4.3).

4.7.3.2. Name replacement (call by name)

Any formal parameter not guoted in the value list is
replaced, throughout the procedure body, by the corre-
-sponding actual parameter, after enclosing this laiter in
parentheses wherever syntactically possible, Possible
conflicts between identifiers inserted through this process
and other identifiers already present within the procedure
body will be avoided by suitable systematic changes of the
formal or local identifiers involved.

4.7.3.3. Body replacement and execution

Finally the procedure body, modified as above, is
inserted in place of the procedure statement and executed.
I the procedure is ealled from a place outside the scope
of any nenlocal quantity of the procedure body the con-
flicts between the identifiers inserted through this process
of body replacement and the identifiers whose declarations
are valid at the place of the procedure statement or func-
tion designator will be avoided through suitable systematic
changes of the latter identifiers.

4.7.4. Actual-formal correspondence

The correspondence between the actual parameters of

FORMULA ALGOL

the procedure statement and the formal parameters of the
procedure heading is established as follows: The actual
parameter list of the procedure statement must have the
same number of entries as the formal parameter list of the
procedure declaration heading, The correspondence is
obtained by taking the entrics of these two lists in the
same order.

4.7.5. Restrictions

For a procedure statement to be defined it is evidently
necessary that the operations on the procedure body de-
fined in sections 4.7.3.1 and 4.7.3.2 lead to a correct ALGOL
statement.

This imposes the restriction on any procedure statement
that the kind and type of each actual parameter be com-
patible with the kind and type of the corresponding formal
parameter. Some important particular cases of this gen-
eral rule are the following:

4.7.5.1, If a string is supplied as an actual parameter in
a procedure statement or function designator, whose
defining procedure body is sn Avcon 60 statement (as
opposed to non-ALgol code, cf. section 4.7.8), then this
string can only be used within the procedure body as an
actual parameter in further procedure ealls, Ultimately it
can only be used by a procedure body expressed in non-
Avcon code.

4.7.5.2. A formal parameter which occurs as a left part
variable in an assignment statement within the procedure
body and which is not called by value ean only correspond
to an actual parameter which is a variable (special case of
expression).

4.7.5.3. A formal parameter which is used within the
procedure body as an array identifier can only corre-
spond to an actual parameter which is an array identifier
of an array of the same dimensions. In addition if the
formal parameter is called by value the local array created
during the call will have the same subscript bounds as
the actual array.

4,7.5.4. A formal parameter which is called by value
cannot in general correspond to a switch identifier or a
procedure identifier or a string, because these latter do not
possess values (the exception is the procedure identifier of
a procedure declaration which has an empty formal
parameter part (c¢f. section 5.4.1) and which defines the
value of a function designator (cf. section 5.4.4). This pro-
cedure identifier is in itself a complete expression).

4.7.5.5. Any formal parameter may have restrietions
on the type of the corresponding actual parameter asso-
ciated with it (these restrictions may, or may not, be
given through specifications in the procedure heading).
In the procedure statement such restrictions must evi-
dently be observed.

4.7.6. Delcted,

4.7.7. Parameter delimiters

All parameter delimiters are understood to be equiva-
lent, No correspondence between the parameter delimiters
used in 8 procedure statoment and those used in the pro-
cedure heading is expected beyond their number being the

FORMULA ALCOL

same. Thus the information conveyed by using the elabo-
rate ones is entirely optional.

4.7.8. Procedure body expressed in code

The restrictions imposed on a procedure statement
calling & procedure having its body expressed in non-
AvrcoL code evidently ean only be derived from the charac-
teristics of the code used and the intent of the user and
thus fall outside the scope of the reference language.

5. Declarations

Declarations serve to define certain properties of the
quantities used in the program, and to associate them with
identifiers. A declaration of an identifier is valid for one
block. Qutside this block the particular identifier may be
used for other purposes (cf. section 4.1.3).

Dynamically this implies the following: at the time of an
entry into a block (through the begim, since the labels
inside are local and therefore inacgessible from outside)
a!l identifiers declared for the block assume the signifi-
cance implied by the nature of the declarations given.
If these identifiers had already been defined by other
declarations outside they are for the time being given a
new significance, Identifiers which are not declared for the
block, on the other hand, retain their old meaning.

At the time of an exit from a block (through end, or by
& go to statement) all identifiers which are declared for
the block lose their local significance.

A declaration may be marked with the additional
declarator own. This has the following effect: upon a re-
entry into the block, the values of own quantities will be
unchanged from their values at the last exit, while the
values of declared variables which are not marked as own
are undefined. Apart from labels and formal parameters
of procedure declarations and with the possible exception
of those for standard functions {cf. sections 3.2.4 and
3.2.5), all identifiers of a program must be declared. No
identifier may be declared more than once in any one
block head.

Syntax.

(declaration) ::= (type declaration}|{array declaration}|
{switch declaration}|{procedure declaration}

5.1. TyrE DECLARATIONS
5.1.1. Syntax

{type list} ::= {simple variable}|
{simple variable}, {type list}
(type) ::= real | integer | Boolean
{local or own type) ::= {type)lown {type)
{type declaration) ::= (local or own type){type list}

5.1.2, Examples

integer p,q,8
own Boolean Aderyl,n
5.1.3. Semantics
Type declarations serve to declare certain identifiers to
represent simple variables of a given type. Real declared
variables may only assume positive or negative values

REVISED ALGOL 40

including zero. Integer declared variables may only assume
positive and negative integral values including zero.
Boolean declared variables may only assume the values
true and false.

In arithmetic expressions any position which can be
occupied by a real declared variable may be occupied by
an integer declared variable,

For the semantics of own, see the fourth paragraph of
section 5 above.

5.2, ARRAY DECLARATIONS
5.2.1. Syntax
{lower bound) ::= {(arithmetic expression}
{upper bound) ::= {(arithmetic expression)
{bound pair} ::= (lower bound}: (upper bound)
{bound pairlist} ::= (bound pair}|{bound pair list}, (bound pair)
{array segment) ::= {array identifier)[{bound pair list}]|
{array identifier), (array segment)
{array list) ::= (array segment)|(array list}),{array segment)
{array declaration) ::= array {array list})|(local or own type)
array {array list)

5.2.2. Examples
array a, b, ¢(T:n,2:m], 5[-2:10]
own integer array A[if ¢<0 then 2 else 1:20]
real array g[—7:—1]

5.2.3. Semantics _

An array declaration declares one or several identifiers
to represent multidimensional arrays of subscripted
variables and gives the dimensions of the arrays, the
bounds of the subseripts and the types of the variables.

5.2.3.1. Subscript bounds. The subscript bounds for
any array are given in the first subscript bracket following
the identifier of this array in the form of a bound pair list.
Each item of this list gives the lower and upper bound of a
subscript in the form of two arithmetic expressions sepa-
rated by the delimiter : The bound pair list gives the
bounds of all subscripts taken in order from left to right.

5.2.3.2. Dimensions. The dimensions are given as the
number of entries in the bound pair lists.

5.2.3.3. Types. All arrays declared in one declaration
are of the same quoted type. If no type declarator is
given the type real is understood.

5.2.4. Lower upper bound expressions

5.2.4.1 The expressions will be evaluated in the same
way as subscript expressions (cf. section 3.1.4.2).

5.2.4.2. The expressions can only depend on variables
and procedures which are nonlocal to the block for which
the array declaration is valid. Consequently in the outer-.
most block of & program only array declarations with
constant bounds may be declared.

5.2.4.3. An array is defined only when the values of all
upper subscript bounds are not smaller than those of the
corresponding lower bounds.

5.2.4.4. The expressions will be evaluated once at each
entrance into the block.

5.2.5. The identity of subscripted variables

The identity of a subscripted variable is not related to
the subseript bounds given in the array declaration. How-

FORM AL-3-81

FORM AL-3-82 FORMULA ALGOL

REVISED ALGOL 40

ever, even if an array is declared own the values of the
corresponding subscripted variables will, at any time, be
defined onfy for those of these variables which have sub-
scripts within the most recently calculated subscript
bounds.

3.3. SwitcH DECLARATIONS
5.3.1. Syntax
{switch list) ::= (designational expression}|

(switch list), {designational expression}
{switch declaration) ::= switelh {switch identifier }:= (awitch list}

5.3.2. Examples

switch 8 := 31,520(m], if v>—5 then §3 clse S4
switch @ :=pl,w

5.3.3. Semantics

A switch declaration defines the set of values of the
corresponding switch designators. These values are given
one by one as the values of the desigrational expressions
entered in the switch list. With each of these designational
expressions there is associated a positive integer, 1, 2, ...,
obtained by counting the ifems in the list from left to
right. The value of the switch designator corresponding to
a given value of the subscript expression (cf. section 3.5.
Designational Expressions) is the value of the designa-
tional expression in the switch list having this given value
as its associated integer.

5.3.4. Evaluation of expressions in the switch list

An expression in the switch list will be evaluated every
time the itemn of the list in which the expression occurs is
referred to, using the current values of all wvariables
involved.

5.3.5. Influence of scopes

If a switch designator occurs outside the scope of a
quantity entering into a designational expression in the
switch list, and an evaluation of this switch designator
selects this designational expression, then the conflicts
between the identifiers for the quantities in this expres-
sion and the identifiers whose declarations are valid at the
place of the switch designator will be avoided through
suitable systematic changes of the latter identifiers.

5.4. PROCEDURE DECLARATIONS
5.4.1. Syntax

{formal parameter} ::= {identifier}
{formal parameter list) ::= {formal parameter }j
(formal parameter list){parameter delimiter)
{formal parameter)
(formal parameter part) ::= {(empty)|({formal parameter liat})
(identifier list} ::= (identifier)]({identifier list}, (identifier)
{value part) ::= value{identifier list} ; !{empty)
{specifier) :im ntring|(type)|array|(type)arrnyl]abgl[nwitch[
procedure|{type jprocedure
{specification part} 1= (empty }| (specifier} (identifier list} ; |
(specification part)(specifier} (identifier list} ;
{procedure heading) ::= (procedure identifier)
{formal parameter part) ; (value part){specification part)
{procedure body) ::= (statement)|{code)
" {procedure declaration) :;=
procedure (procedure heading) (procedure body)|
{type) procedure {procedure heading}(procedure body)

5.4.2. Examples (sce also the examples at the end of

the report)
procedure Spur(a}Order:(n)Result:(s} ; value n ;
arraya ; integern ; realsz ;
begin integer k& ; :
s:m0 ;
for k .= | step 1 until n do s := stalkk]
end

procedure T'ranapose(a)Order:(n)
array a¢ ; integer n ;
begin real w ; integeri, k ;
for i := 1 step 1 until » do
for k := 141 step 1 until n do
begin w := alt k] ;
als,k] ;= alk,d] ;
alki] 1= w

; valuen ;

end
end Transpose

integer procedure Step (u) ; realu ;
Step := if 02uAu=] then 1 else 0

procedure Absmaz(a)size:(n,m)Result:(y)Subscripts:(i k);

comment The absolute greatest element of the matrix a,
of size n by m is transferred to y, and the subseripts of this
element toiand B ;

array @ ; integern, m,i, k ; realy ;
begin integer p, ¢ ;
yi=0

for p := 1 step 1L until n do for ¢ := 1 step 1 until m do

if abs(alp,gl}>y then begin y = abslelpg]) ; © 1= p ;
k=g

end end Absmaz

procedure Innerproduct(a,b)Order:(k,p)Result:(y) ; valuek ;
integer k,p ; realyad ;

begin real s ;

2= Q

for p := 1 step 1 until k do 5 := staXb ;

yi=28

end Innerpreduct

5.4.3. Semantics

A procedure declaration serves to define the procedure
associated with a procedure identifier. The principal con-
stituent of a procedure declaration is a statement or a
piece of code, the procedure body, which through the use
of procedure statements and/or function designators may
be activated from other parts of the block in the head of
which the procedure declaration appears. Associated with
the boedy is a heading, which specifies certain identifiers
occurring within the body to represent formal parameters.
Formal parameters in the procedure body will, whenever
the procedure is activated (cf. section 3.2. TFunction
Designators and section 4.7. Procedure Statements)
be assigned the values of or replaced by actual parameters.
Identifiers in the procedure body which are net formal
will be either local or nonlocal to the body depending on
whether they are declared within the body or not. Those
of them which are nonloeal to the body may well be local
to the block in the head of which the procedure declara-
tion appears. The procedure body always scts like a

FORMULA ALGOL

block, whether it has the form of one or not. Consequently
the scope of any label labelling & statement within the
body or the body itself can never extend beyond the pro-
cedure body. In addition, if the identifier of a formal
parameter is declared anew within the procedure body
(including the case of its use as a label as in section 4.1.3),
it is thereby given a local significance and actual param-
eters which correspond to it are inaccessible throughout
the scope of this inner local quantity,

5.4.4. Values of function designators

For a procedure declaration to define the value of a
function designator there must, within the procedure
body, occur one or more explicit assignment statements
with the procedure identifier in a left part; at least one of
these must be executed, and the type associated with the
procedure identifier must be declared through the appear-
ance of a type declarator as the very first symbol of the
procedure declaration. The last value so assigned is used
to continue the evaluation of the expression in which the
function designator occurs. Any occurrence of the pro-
cedure identifier within the body of the procedure other
than in 8 left part in an assignment statement denotes
activation of the procedure.

5.4.5. Specifications

In the heading a specifieation part, giving information
about the kinds and types of the formal parameters by
means of an obvious notation, may be included. In this
part no formal parameter may occur more than once,
Specifications of formal parameters called by value (ef.
gection 4.7.3.1) must be supplied and specifications of
formal parameters called by name (cf. section 4.7.3.2)
may be omitted.

5.4.6, Code as procedure body

It is understood that the procedure body may be ex-
pressed in non-ALcoL language. Since it is intended that
the use of this feature should be entirely a question of
hardware representation, no further rules concerning
this code language can be given within the reference
language

Examples of Procedure Declarations:

ExameLE 1,

procedure euler (fc, sum, eps, itm) ; value eps, im ;
integer lim ; real procedure fef ; real sum, eps
comment exler compules the sum of fet(s) for ¢ from zero up to
infinity by means of a puitabley refined euler transformation. The
summation ia stopped a% soon as fim times in succession the abso-
lute value of the terms of the transformed series are found to be
less than eps. Hence, one should provide a function fct with one
integer argument, an upper bound eps, and an integer tim. The
cutput is the sum sum. euler is particularly efficient in the ease
of a slowly convergent or divergent alternating series
begin integer i, k, n,t ; array m(0:15] ;
fi=n:=1t:=0 ; m0]:=fei@) ;
nezilerm: 1 := i+1 ; mn = fei(i) ;
for k := 0 step 1 until n do
begin mp := (mntmED/2 ; mlk] = mn
mn = mp end means

H
real mn, mp,ds
sum := m[0]/2 ;

PEVISED ALGOL 40

if (abs(mn)<abs(m[n])IA(r<15) then
begin ds = mn/2 ; n = a4+l ; mn] =
mn end accept
else ds := mn ;
sum ;= gum + ds ;
if abe(ds)<eps then { := 41 elset := 0 ;
if i<iim then go to nextlerm
end euler

Examrre 2.2

procedure REK(zyn FKTepsetaaEYE fi)
integer n ; Boolean £ ; real
y.¥E ; procedure FKT ;
comment: RK integrates the system w/'=fe(zh,¥2, .., ¥}
{(k=1,2, ... n) of differential equations with the method of Runge-
Kutta with automatic search for appropriate length of integration
step. Parameters are: The initial values £ and y{k] for £ and the un-
known functions yi(z). The order n of the system. The procedure
FKT(rynz) which represents the aystem to be integrated, i.e.
the set of functions fi . The tolerance values eps and eta which
govern the accuracy of the numerical integration. The end of the
integration interval zE. The output parameter yE which repre-
sents the solution at z=zE. The Boolean variable i, which must
always be given the value true for an isolated or first entry into
RK. If however the functions y must be available at several mesh-
points 2o, %1, ... , Tn , then the procedure must be called repeat-
edly (with z=7z:, zE=xx,, for k=0, 1, ..., n—1} and then the
later calls may occur with fi=false which saves computing time.
The input parameters of FKT must be z,y,5, the output parameter
z represents the set of derivatives z[kl=fi(z.yf1], ¢(2], ..., yIn]
for z and the actual y’s. A procedure comp enters as s nonlocal
identifier
begin
array zyly233(l:m] ; real z12223H ; Boolean out ;
integer k,j ; own real s Hs ;
procedure RKIST(zyhxeye) ; real
yiye ;
comment: RK1ST integrates one single RUNGE-KUTTA
with initial values z,y[k] which yields the output
parameters ze=z+h and yelk], the latter being the
solution at z¢. Important: the parameters n, FKT, z
enter RK1ST as nonlocal entities ;

value zy ;
zepsetasE ; array

rhze ; array

begin
array w{l:n], a[1:5] ; integerk,; ;
a[l] := a[2] := a{5] ;= h/2 ; a[3] :m= al4] ;= A
e =T
fork .= 1 step 1 until n do yelk] := wfk) := yk] ;
for j := 1 atep 1 until 4 do
begin
FKT(zewnz) ;
ze = x+alj] ;
for k := 1 step 1 until % do
begin
wik] := ykl+ali)xz[k] ;
yelk] := yelk] + ali+11xz[k])/3

* This RK-program contains some new ideas which are related
to ideas of 8. GILL, A process for the step-by-step integration of
diffierential equations in an automatiec computing machine,
[Proc. Camb. Phil. Soc. 47 (1951), 96]; and E. Froserc, On the
solution of ordinary differential equations with digital computing
machines, [Fysiograf. Sillsk. Lund, Firhd. 20, 11 (1950}, 136-152}.
It must be clear, however, that with respect to computing time
and round-off errors it may not be optimal, nor has it actually
been tested on a computer.

FORM AL-3-83

FORM AL-3-84

REVISED ALGOL 40

end k
end)
end RK1ST ;
Begin of program:
ifithenbegin H :=zE—~z ; s3:=0endelse H := Hs ;
oul .= false ;
AA:if 24200 X H—zE>0)=(H>0) then
begin Hs := H ; out := true ; H := (zE-z)/2
end if ; ’
RKIST (xy2XHzxlyl)
BB: RKAST (zyHa2y2) ; RKIST(x2y2Hx333) ;
for k := 1 step 1 until n do
if comp(ylik)y3[kleta)>eps then go to CC ;

FORMULA ALGOL

comment: complabe,) is a function designator, the value
of which is the absoclute value of the difference of the
mantissae of g and b, after the exponents of these qguan-
tities have been made equal to the largest of the exponents
of the originally given parameters abc
z:=x3 ; if oul then.go to DD ;
for k ;= 1 step 1 until n do ylk} 1= y3lk] ;
if =6 then begin ¢ := 0 ; H := 2XHendif ;
s:=¢541 ; goto A4 ;
CC: H := 0.6XH ; out:= false ; z1 := 22 ;
for k := 1 step 1 until # do yl[k] := y2[k] ;
go to BB
DD: for k := 1 step 1 until n do yE[k) := y3lk}
end RK

ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS AND SYNTACTIC UNITS

All references are given through section numbers. The referencea are given in three groups:
def Following the abbreviation ‘‘def”’, reference to the syntactic definition (if any) is given.
synt Following the abbrevjation “synt”, references to the occurrences in metalinguistic formulae are given. Refer-
ences already quoted in the def-group are not repeated.
text Following the word “text”, the references to definitions given in the text are given.
The basic symbols represented by signs other than undertined worda [in typewritten copy; boldiace in printed copy—Ed.|

have beep collected at the beginning.

The examples have been ignored in compiling the index.

+, ses: plus

—, 8¢8: minus

X, see: multiply

/, +, see; divide

1, see: exponentiation

<, =, =,2, >, #, see: (relatiooal operator)
=, 3, \/, A, -, see: {logical operator)
s, BOE: COMmMA

., 8¢e: decimal point

n, 8ee: ten

:, see; colon

;s 8e8: semicolon

:= gee: colon equal

U, Bee: space

{), see: parentheses

[], see: subaeript brackets

' 7, see: string quotes

{actual parameter), def 3.2.1, 4.7.1

{actual parameter list), def 3.2.1, 4.7.1

{pctual parameter part), def 3.2.1, 4.7.1

{adding operator), def 3.3.1

alphabet, text 2.1

arithmetic, text 3.3.6

{arithmetic expression), def 3.3.1 synt 3, 3.1.1, 3.3.1, 3.4.1, 4.2.1,
4.6.1,52.1 text 3.3.3

{arithmetic operator}, def 2.3 text 3.3.4

array, synt 2.3, 5.2.1, 54.1

areay, text 3.1.4.1

{array declaration), def 5.2.1 aynt § text 5.2.3

{arrny identifier}, def 3.1.1 synt 3.2.1, 4.7.1, 5.2.1 text 2.8

{array list}, def 5.2.1

{array segment}, def 5.2.1

(assignment statement), def 4.2.1 aynt 4.1.1 text 1, 42.3

{basie statement}, def 4.1.1 synt 4.5.1
(basic eymbol), def 2

begin, synt 2.3, 4.1.1

(block), def 4.1.1 Bynt 4.5.1 text 1, 4.1.3, 5
{block head), def 4.1.1

Boolean, synt 2.3, 5.1.1 text 5.1.3

(Boolean expression), def 3.4.1 synt 3, 3.3.1, 4.2.1, 4.5.1, 4.6.1 text
343

{Boolean factor), def 3.4.1

{Boolean primary), def 3.4.1

{Boolean secondary}, def 3.4.1

{Boolean term}, def 3 4.1

{bound pair), def 5.2.1

{bound pair list}, def 5.2.1

{bracket), def 2.3

teode), synt 5.4.1 text 4.7.8, 5.4.6

colon :, synt 2.3, 3.21,4.1.1, 451, 46.1, 471,521

colon equal :=, synt 2.3, £.2.1, 4.6.1, 5.3.1

comma, ,synt 2.3,3.1.1,3.2.1, 468.1,47.1,5.1.1, 5.2.1,5.3.1,54.1
comment, synt 2.3

comment convention, text 2.3

{eompound statement), def 4.1.1 synt 4.5.1 text 1

{sompound tail), def 4.1.1

(conditional statement), def 4.5.1 aynt 4.1.1 text 463

(decimal fraction), def 2.5.1

{decimal number), def 2.5.1 text 2.5.3

decimal point ., synt 2.3, 2.5.1

{declaration), def 5 aynt 4.1.1 text 1, 5 (complete section)
{declarator), def 2.3

(delimiter), def 2.3 synt 2

{designational expression}, def 3.5.1 aynt 3, 4.3.1., 5.3.1 text 3.5.3
{digit), def 2.2.1 synt 2, 2.4.1, 2.5.1

dimension, text 5.2.3.2

divide / +, synt 2.3, 3.3.1 text 3.3.4.2

do, synt 2.3, 4.6.1

{dummy statement), def 4.4.1 synt 4.1.1 text 4.4.3

else, synt 2.3, 3.3.1, 3.4.1, 3.5.1, 4.5.1 text 4.53.2

{empty), def 1.1 synt 2.6.1, 3.2.1, 441,471, 5.4.1

end, synt 2.3, 4.1.1

entier, text 3.2.6

exponentiation {, synt 2.3, 3.3.1 text 3.3.4.3

{exponent part), def 2.5.1 text 2.5.3

{expression), def 3 synt 3.2.1, 4.7.1 text 3 (complete seetion)

FORMULA ALGOL

{factor}, def 3.3.1

false, synt 2.2.2

for, synt 2.3, 4.6.1

{for elause), def 4.6.1 text 4.6.3

{for list), def 4.6.1 text 4.6.4

{for list element), def 4.6.1 text 4.6.4.1, 4.6.4.2, 4.6.4.3

{formal parameter), def 5.4.1 text 5.4.3

{formal parameter lint), def 5.4.1

{formal parameter part), def 5.4.1

{for statement), def 4.6.1 synt 4.1.1, 4.5.1 text 4.6 (complete
section)

{function designator}, def 3.2.1 syat 3.3.1, 3.4.1 text 3.2.3, 544

go to, synt 2.3, 43.1
{go to statement), def 4.3.1 synt 4.1.1 text 4.3.3

{identifier), def 2.4.1 synt 3.1.1, 3.2.1, 3.5.1, 5.4.1 text 243
(identifier list), def 5.4.1 '

if, synt 2.3; 3.3.1, 4.5.1

{if clause), def 3.3.1, 4.5.1 synt 3.4.1, 3.5.1 text 3.3.3, 45632
{if atatement), def 4.5.1 text 4,6.3.1

{implication}, def 3.4.1

integer, synt 2.3, 5.1.1 text 6.1.3

{integer}, defl 2.5.1 text 2.6.4

label, synt 2.3, 5.4.1

(label}, def 3.6.1 synt 4.1.1, 4.5.1, 46.1 text 1, 4.1.3
{left part}, def 4.2.1

{left part list}, def 4.2.1 :

{letter), def 2.1 eynt 2, 2.4.1, 3.2.1, 4.7.1
(letter string), def 3.2.1, 4.7.1

local, text 4.1.3

(local or own type), def 5.1.1 synt 5.2.1
(logical operator), def 2.3 synt 3.4.1 text 3.4.5
{togical value}, def 2.2.2 synt 2, 3.4.1

{lower bound}, def 5.2.1 text 5.2.4

minys —, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1
multiply X, synt 2.3, 3.3.1 text 3.3.4.1
{multiplying operator}, def 3.3.1

nonlocal, text 4.1.3
{number}, def 2.5.1 text 2.5.3, 2.56.4

{open string), def 2.6.1
{operator}, def 2.3
own, synt 2.3, 5.1.1 text §, §.2.5

{parameter delimiter), def 3.2.1, 4.7.1 synt 5.4.1 text 4.7.7
parentheses (), synt 2.3, 3.2.1, 3.3.1, 34, 36,1, 471, 541
text 3.3.5.2
plus 4, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1
{primary), def 3.3.1
procedure, synt 2.3, 5.4.1
(procedure body)}, def 5.4.1
{procedure declaration}, def 6.4.1 synt & text 5.4.3
{procedure heading), def 5.4.1 text 5.4.3
{procedure identifier) def 3.2.1 synt 3.2.1, 4.7.1, 5.4.1 text 4.7.5.4
(procedure statement), def 4.7.1 synt 4.1.1 text 4.7.3
(program), def 4.1.1 text 1
{proper string), def 2.6.1

quantity, text 2.7

REVISED ALGOL 40

real, synt 2.3, 5.1.1 text 5.1.3
(relation)}, def 3.4,1 text 3.4.5
{relational operator}, def 2.3, 3.4.1

scope, text 2.7

semicolon ;, aynt 2.3, 41.1,'5.4.1

(separator), def 2.3

(sequential operator), def 2.3

{simple arithmetic expression), def 3.3.1 text 3.3.3

{simple Boolean), def 3.4.1

{simple designational expression}, def 3.5.1

{simple variable}, def 3.1.1 synt 5.1.1 text 2.4.3

space u, synt 2.3 text 2.3, 2.6.3

{specification part}, def 5.4.1 text 5.4.5

{specificator), def 2.3

{specifier), defl 5.4.1

standard function, text 3.2.4, 3.2.5

{statement), def 4.1.1, synt 4.5.1, 4.6.1, 5.4.1 text 4 (complete
section)}

statement bracket, see: begin end

step, Bynt 2.3, 4.8.1 text 4.6.4.2

string, synt 2.3, 5.4.1

{(string}, def 2.6.1 aynt 3.2.1, 47.1 text 2.6.3

string quotea ' ’, aynt 2.3, 2.6.1, text 2.6.3

subseript, text 3.1.4.1

subscript bound, text 5.2.3.1

subseript bracketa [], saynt 2.3, 3.1.1, 3.5.1, 5211

{subscripted variable}, def 3.1.1 text 3.1.4.1

{subscript expression), def 3.1.1 eynt 3.5.1

{subacript list), def 3.1.1 '

successor, text 4

awitch, synt 2.3, 5.3.1, 5.4.1

{switch declaration}, def 5.3.1 synt & text 5.3.3

{switch designator}, def 3.5.1 text 3.56.3

{awitch identifier), def 3.5.1 mynt 3.2.1, 4.7.1, $.3.1

{awitch liat), def 5.3.1

{term }, def 3.3.1

ten w, synt 2.3, 2.5.1

then, synt 2.3, 3.3.1, 4.5.1

tranafer function, text 3.2.5

true, synt 2.2.2

(type), def 5.1.1 synt 5.4.1 text 2.8

{type declaration}, def 5.1.1 synt 5 text 5.1.3
{type list}, def 5.1.1

{unconditional statement}, def 4.1 .1, 4.5.1
(unlabelled basic statement}, def £.1.1
{unlabelled block), def 4.1.1

(unlabelled compound), def 4.1.1
{unsigned integer}, def 2.5.1, 3.5.1
{unsigned number), def 2.5.1 synt 3.3.1
until, synt 2.3, 4.6.1 text 4.6.4.2

{upper bound), def 5.2.1 text 5.2.4

value, 8ynt'2.3, 5.4.1

value, text 2.8, 3.3.3

{value part), def 5.4.1 text 4.7.3.1

(variable), def 3.1.1 synt 3.3.1, 3.4.1, 4.2.1, 4.6.1 text 3.1.3
{variable identifier), def 3.1.1

while, synt 2.3, 4.6.1 text 46.4.3

END OF THE REPORT

FORM AL-3-85

FORM AL-3-86

FORMULA ALGOL

()

FORMULA ALGOL FORM AL-3-87

APPENDIX 2
CURRENT SYSTEM LIMITS

May 1, 1967

The following are a list of limits on the numbers of objects available

in the system:

(a) The maximum number of distinct identifiers and labels allowable
is 100 where print names of 6 characters or less count one and
print names of 7 or more characters count 1 for the first six and
1 for each 4 or fraction of &4 characters. Note that any 2
identifiers which have the same first six characters may bg
treated as the same name (including reserved words). This re~
striction does not affect the internal working of the program.

It means only that when an identifier overflows and the table is
printed, what is printed is unpredictable.

*(b) The maximum number of declared objects (variables, arrays, etc.)
plus block entries is 300.

(c) The maximum number of nested dynamic blocks is 180.

(d) The maximum number of dynamically defined (e.g., by recursion) FORM
and SYMBOL variables is 832.

(e) The maximum number of words of code produced by the compiler is
/21000.

(f) The maximum number of words for variables and array storage is
/11600.

(g) Available space is constructed from the unused part of (e) and
(f). This gives roughly 6800 cells for small programs.

%*(h) The maximum number of procedure declarations and labels at one

FORM AL-3-88 FORMULA ALGOL

level 1is 24.
For a rough estimate, each elemént of a list and operand or operator of
a formula takes up two words of available gpace.
* Tt is possible to extend the maximums in these cases. See the user con-

sultant.

)

FORMULA ALGOL FORM AL-3-89

APENDIX 3

DEBUG SNAPSHOTS

The following is a list of snapshots which may be inserted between lines
of a Formula Algel program. They provide special commands to the compiler for
printing, corrections, and debugging. The Format is "SN" in columns 1 and 2,
the name of the snapshot starting in column 10, and two optional parameters in
columns 1% and 25. Teletype tabs will give the correct columns. Most of them
have effects at compile time; the ones which don't are so indicated.

In the following explanations whenever a snapshot may have a parameter
‘'of either 0 or 1, it will be denoted "0,1". It is to be understood that for
all these snapshots, the 1 turns on a certain action and the 0 turns it off.
Only the action will be described.

Some of these snapshots require a more detailed knowledge of the system.

In these cases see [4] or the user consultant.

SN _AND The And system is entered at compile time.
SN AND The And system is entered at run time.
SN BKPT 0,1 At the end of each line a transfer to

a closed subroutine is compiled. At
routine, this subroutine prints the
location of the line of code to which
control has arrived. (It is, in effect,
a logical trace of the program's ex-
ecution.)

SN CDLC 0,1 At the end of each line a command is
compiled to load the current location
of compiled code into an index register.
This feature is normally on.

SN % CMPL <VAL> <VAL> is compiled as a machine command

FORM AL-3-90

SN CODE

5N COR

SN DEES

SK DUMP

SN ENTR

SN EXEC

SN IXRS

SN LINE
SN LOOK
SN PAGE

SN Q1

SN REMO

FORMULA ALGOL

APPENDIX 3 (continued)

0,1

<LOC> <VAL>

9,1

0,1

directly into the current location

for compiled code.

Code 1s printed as it is compiled.

This can be used to change the

contents of locations at compile time.
First <1L0C>, its contents, and <VAL>

are printed. The VAL replaces the
contents of <1LOC>.

This prints out a series of critical
entry points of the compiler.

This causes the compiled code and the
generated abcons to be printed after the
compilation of the program and before it
is run.

A trace of all table entries is printed.
This prints a trace of the-calls on the
semantic routines with parameters.

This prints the index registers /30-/77
at compile time.

This upspaces <NUM> lines at compile time.
A trace of all table look=-ups is printed.
The printer is upspaced to the next page.
This allows the action of SN DUMP to be
printed on TTY,

The program prints on the teletype.

SN

SN

SN

SN

SN

SN

SN

SN

RCOR

RIRC

-RUN

SCAN

STAC

STO?

TRAC

FORMULA ALGOL

APPENDIX 3 (continued)

<L0C> <VAL>

<NUM> <LOC>

0,1

<NUM> <1.0C>

0,1

Program output will print if REMD

is 1 at the end of compilation.

At run time <VAL> replaces the
contents of <LOC>.

This has the same effect as SN TRAC,
except at run-time.

The program will be terminated after
compilation.

Characters of the input string are
printed as they are read by subscan.
At compile time, the semantic stack is

printed.

Halts compilation immediately.

At compile time, commands flags are put

on <NUM> words starting at location <LOC>.

When these words are executed Monitor
trace routines will print them.

A trace of the syntax analyzer is
printed. When an attempt is made to
match a production, the top of the

stack and the production are printed.

FORM AL-3-91

FORM AL-3-92 FORMULA ALGOL

FORMULA ALGOL FORM AL-3-93

APPENDIX 4

ERROR MESSAGES

There are three kinds of errors in Formula Algol: Syntax errors,
gemantic errors, and run errors. The fifst two kinds of errors occur
at compile time, and the third at run time. Some of these messages re-
quire a more detailed knowledge of the system. In these cases see [4]

or the User Consultant,
SYNTAX ERRORS

These are of the form

ERROR XXX

0 Program does not start with 'BEGIN'

1 Statement does not begin with legal character

2 Statement starts with identifier not followed by legal character
3 First character of an expression expected but not found
4 Expression formed but not followed by legal character

5 ']' is not preceded by a legal construct

6 Array element not found in legal context

7 ':' not preceded by a legal comnstruct

8 '«' not preceded by a legal comstruct

9 ')! not preceded by a legal construct

10 '," not preceded by a legal construct

11 'THEN' not preceded by a legal construct

12 'ELSE' not preceded by a legal construct

13 Illegal statement construction

14 Impossible error, system error

17 'STEP' not preceded by a legal construct

FORM AL-3-94

18
i9
20
21
22
24
25
28
38
3s
42
44
62
75
76
77
78
80
81
85
98
99
100
101
102
103

104

FORMULA ALGOL

'UNTIL' not preceded by a legal construction
'"WHILE' not preceded by a legal construction

'DO' not preceded by a legal construction

'G0' not followed by a legal construction

'60 TO IF..,THEN...' not followed by 'ELSE'

Obscure error in GO TO statement |

']—¥ not in stack after scanning 'BEGIN'

Too many 'END's within a procedure

Illegal construction within an IF,..THEN,,..statement
More than one subscript in a switch call

Array declaration does not contain bounds expression
System error in GO TO statement

Attempt to 'ALTER' a non-symbol

'PRINT' not followed by '('

Function designator not followed by legal character
'." not followed by legal character

Class operator not formed correctly

A value of 'OPERATOR' was not an operator

Improper description list construction

Operator expected and not found

‘|-' not in stack at beginning of statement

System error

Illegal operator or control character scanned
ABCON table full

Number incorrectly formed (while scanning '.')
Number incorrectly formed (while scanning ‘'=')

Impossible error, system error

FORMULA ALGOL FORM AL-3-95

105 Illegal bar variable

106 Illegal SY card

108 Impossible error, system erxor

109 An insertion locator was expected but not found

110 An expression has been found in an illegal context
111 A selector was expected but not found

112 A selector is not followed by 'PF'

113 / not followed by [

115 Improper 'INDEX' construction

116 Improper 'PARALLEL FOR' construction

117 DOT not followed by identifier in text

118 Class Name improperly formed

144 Variable declaration does not terminate properly or '[' missing
144 ' In array declaration

145 Arfay declaration does not terminate properly

163 Procedure head is incorrectly formed

164 Value or specifier part is incorrectly formed

171 Specifier list not initiated properly

174 Declaration does not begin with a legal construction
190 Identifier not found in identifier list

194 ')' missing in formal parameter list

195 Value list not terminated properly

196 Specifier list not terminated properly

200 Formal parameter list for EVAL does not contain all identifiers
201 EVAL statement not formed correctly

250 Switch declaration improperly initiated

251 Missing delimiter in switch declaration

999 Impossible error, system error

FORM AL-3-96 FORMULA ALGOL

SEMANTIC ERRORS

These are of the form

FAULT XXX

2 Procedure not declared as such
5 An identifier in a value list is not a formal parameter
6 An identifier in a specifier list is not a formal parameter
7 An identifier is not declared or
7 A procedure is used where a function is expected or
7 An array ildentifier is used where a simple variable is expected or
7 A switch identifier is used where a simple variable is expected
12 An identifier as an actual parameter has not been declared
15 In "GO TO S[...]", S is not a switch
16 In an array access the identifier is not an array
20 Function has not yet been declared
21 Function designator not declared
22 Identifier of a class operator is not a variable
27 Boolean expression expected in 'WHILE' clause, and not found
30 In 'IF B THEN....' B is not of type Boolean
44 Switch identifier is used without parameter
47 Expression in ordinal selector is not of type integer
59 Improper editing statement_construction
61 System error
63 Attempt to apply selector to non-symbol
69 A value of 'OPERATOR' is not an operator
70 In 'EVAL F', F is not a formula or symbol

72 In '‘EVAL(...)F(,..)', F is not formula or symbol

75
76
77
78
83
85
87
88
91
94
97
98
99

100

103

105

106
107
108
109
112
116
155
175

176

FORMULA ALGOL FORM AL-3-97

A class operator is not a symbol

System error processing extractor which is array element

System error in class operators

Attempt to erase description list of non-symbol

System error in pattern construction with types as primaries
In'F = = P' or in 'F>>P' F is not a formula

A label in a pattern is not of type form

In 'IF B THEN.,.' B is not Boolean or formula

A label is used twice in the same block

In a DOT array the identifier is not an array

Expression in < > is not a symbol

The secoﬁd parameter of 'DERV' is not a formula

System error in print routine

In a binary arithmetic expression one of the operands is of illegal
type

Attempt to add local description list to non-symbol

In a binary Boolean expression one of the operands is of illegal
type

Attempt to access non-symbolic attribute

Parameter of a function designator is not numeric or formula
Attempt to access description list of non-symbol or non-formula
Improper value entry construction

Attempt to store into illegal entity or legal entity of wrong iLype
'~' is not followed by Boolean or logic expression

Boolean procedure or pattern list expected and not found
Attempt to construct non-symbolic attribute

Attempt to store list or do value entry with non-symbol

FORM AL-3-98 FORMULA ALGOL

179 Value of index is not declared integer

183 Attempt to test non-symbol against symbolic pattern

184 Expression following $ is not of type integer

186 Non-symbolic label in list pattern

189 Identifier in description list expression is not formula

190 Impossible error, system error

191 An ideptifier 1s not declared

192 Form or symbol variable expected and not found

198 Designational expression is used as actual parameter

203 Attempt to count non-symbol

213 Non-symbol in symbolic 'FOR' statement

214 Argument of 'ATTRIBUTES OF' other than éymbol

229 Expression preceding ordinal selector is not of type integer
230 Argument of ERADL other than symbol

235 Second parameter to AMONG is not of type symbol

239 Parameter of 'EMPTY' is not a symbol

315 Switch not declared

391 Obscure error in procedure calls

512 Attempt to store non-numeric expression into & numeric variable
612 Attempt to store non-Boolean expression into Boolean variable
712 Attempt to store into a constant

512 System error

990 Impossible error, system error

998 System error

999 System error in 'STEP' statement

4101 Improper left side of DOT assignment

W

FORMULA ALGOL FORM AL-3-99

RUN ERRORS

Run Errors in Formula Manipulation

These are of the form:

RUN ERROR NNN AFTER LOCATION XXXXX

LLLLL

where NNN refers to the list below, XXXXX indicates the line in which the

error occurred and LLLLL is the location of the error routine,

* 1 Attempt to eval an expression containing -», -—, &, or | |.
6 Attempt to eval an expression containing +, -, X, /, or t in
which one of the operands 1s neither a formula nor a number.
10 In eval ~ x, x i8 not logic, boolean, or formula.
% 20 Error when printing, a formula,
21 1In eval xAy or xVy one of the operands is not logic, boolean,
or formula,
22 1In eval xAy or xvy, there is a mixture of types logic.and boolean,
25 Recursion stack overflow.
27 Run-time symbol table overflow.
* 30 Error when printing a chain,
* 31 Attempt to find an attribute on an ill-formed chain.
37 Too many subscripts in an array element,
38 Subscript in an array element is too small.
39 Subscript in an array element is too large,
40 Not enough subscripts in an array element.
46 Too many block entries.
48 Subscript in a switch designator is out of bounds.

50 Available space is empty.

FORM AL-3-100

56
57

63

82

83

85

100

141

* 182

183

271

325

. 600

601

602

603

FORMULA ALGOL

In derv(f,x), f is not a number or a formula,

A boolean data term was expected and not found,

Obscure error when storing a chain into a symbol.

In £ .] s, s has no contents attribute,

In £ . | 8, s has a parallel production within a parallel

production.

In £f . | 8, s has a formula which is not a production,

A malformed formula (system error), or

A class operator encountered within a formula to which a pro-
duction is to be applied, or

In a dot array (production), a subscript (parameter) is not
of type form,

Attempt to eval In(-infi) or sqrt(-infi).

In EVAL (x <r> y) where r is >,<,~ <, or - >, one of the

operands is either undefined, a symbol chain, or of type

Boolean.

Variable of interpretive store has undefined type.

Interpretive store of undefined mixture of variable types, or

interpretive store into a symbol is not implemented.

In eval of A.[sl, ..., sn], some subscript si is not a formula

or a number.

In eval . if B then ..., B is neither a boolean or a formula.

In F = =P, F is the pattern of().
In F==P, F is a symbol.
Obscure error in F = = P, probably an attempt to test a pattern

against another pattern,

InF = = P, P has a class operator which has no attribute 'operator'

Y

701
702
703
711
721
731
751
5501
5502

6702

*7701
7702
7703
1704
9009

9011

Attempt
Attempt
Attempt
Attempt
Attempt
Attempt
Attempt
Attempt
Attempt

A class

to

to

to

to

to

to

to

to

td

FORMULA ALGOL FORM AL-3-101

compute 0 t -number.

compute X t+ A where x<] and A is not an integer,
compute X t A where A*In(x) > 160.117,

compute In(X) where X < 0,

compute EyP(x) where y is out of range.

compute sin(X) where X is out of range.

compute sqrt(X) where X < 0.

eval the pattern 'of(B)'.

compute replace(F) where F>> A:atom,

operdator or extractor encountered in a formula to which

a production is to be applied.

Attempt
Attempt
Attempt
Attempt
Attempt

Attempt

to

create A [[T]] B where T has no contents attribute,
create A [[T]I B where [T] is empty.

create A |[T]| B where [T] is unary.

create |[T]| B where [T] is binary.

EVAL (0t0).

EVAL (ANY/0).

denotes a system error,

FORM AL-3-102 FORMULA ALGOL

Run Errors in Symbol Manipulation

The following messages are printed:

Recoverable Errors

Not enough chain operands cf, p. 1
Unless store into unused chain

Attempt to store into open chain
Attempt to get interior of empty clsd ch
Attempt to discard nil

First element of plural list uncarried
Attempt to select non-existant referent

Class name undefined

Non-Recoverable Errors

Parity of chainacc destroyed
Negative chailnacc

Attempt to store in non-symbol
Malformed chain

Chainacc exceeded

Plurai list used where symbol needed
Attempt at VR from non-symbol
Attempt at VR without attribute
Empty list used where symbol needed
Attempt to generate ATRS. of non-chain
Syastem Error '

Illegal selector

Non-primitive for ID. routine

For atﬁempts to generate non-list

P-for control variable non-symbol

FORMULA ALGOL

No.contrl,var — = no. of lists in P-for
Malformed pattern

Non-numeric data term used as number
Available space exhausted

Improper symbol array access

Value of symbol array el.no exst.

Illegal transfer functien

 Run Errors in Recursion

These are of the form:

XXX MM:5S:ss8

<octal dump of index registers /50,...,/77 >

XX is the name of the error.

MM:S5:s8s is the running time in sixtieths of a second.

<octal dump> indicates the state of the program.

FORM AL-3-103

* CLOB System error indicating that the historian has been clobbered,

STOR Variable stack overflow.

HIST Historian stack overflow.

* PROC Obscure error related to procedure names as actual parameters.

* LINK Premature or illegal attempt to leave a codepiece,

LABL Attempt to goto an undefined label or to call an undefined

procedure or switch,

~64K Request for extra memory was refused

%
indicates a system error.

http://el.no

FORM AL-3-104 FORMULA ALGOL

o T———————— g

FORMULA ALGOL FORM AL-3-105

APPENDIX 5

INPUT - OUTPUT

"Formual Algol has no read statements.

At

the present time, Formula Algol contains a primitive print statement

of the form PRINT(X), where X is a list of any of the following posasible

objects:

(a)

(b)

(c)

The name of any declared variable, in which case the value of

that variable will be printed.

Any arithmetic, Boolean or Formula expression, in which case

the value of the expression will be printed.

Any symbolic expression provided a switch is set as indicated

below.

For example:

FORM F, G; REAL A,B; BOOLEAN C; SYMBOL S;

LOGIC L; HALF H;

F«F+G; Ac3.5; B«2xA; C«B<A;
S «[F, A]; L «10; H « 2.8;
EEIEI(F,G,A,B,C;S,L,H, 111, GHA);

This causes the following to be printed:
F+G

G

.35000000000,, +01

. 70000000000, +01

FALS

FORM AL-3-106 FORMULA ALGOL

/[CONT: ¥4G,(.35000000000, +01)][NAME:S]
00000000012

.28000000000,, +01

1

G+ (.35000000000,, +01)

Lists may be printed in three styles: style 0, style 1, and style 2. Style 0
is in the system to begin with and causes description lists to be printed.
Style 1 prints lists and sublists with square brackets [,] and commas separat-
ing the elements, each sublist being delimited by a pair of square brackets,
Style 2 prints lists without square brackets end commas by concatenating the

elements directly into the print line.

For example:
SYMBOL S, ADJ, EC, TIVE, A,B,C, COLOR, APPLE,RED;
APPLE « /[COLOR: RED];
S «[A,A,[B,B, [C,C,C],B],A];
A < [ADJ,EC,TIVE];
In Style 0 the statement PRINT(APPLE, S, A) gives:
/[CONT: APPLE][COLOR:RED][NAME:APPLE];
/[CONT: A,A, /[CONT:B,B, /[CONT:C,C,C][NAME:],B]J[NAME:],
A][NAME:S]
/ICONT: ADJ, EC, TIVE][NAME:A]
In Style 1 the same print statement gives:
- [APPLE]

[(A,A,[B,8,[C,C,C],B],A]

[ADJ, EC, TIVE]

FORMULA ALGOL FORM AL-3-107

In Style 2 the same print astatement gives:

APPLE
AABBCCCBA

ADJECTIVE

Thus, Style 0 is used to print description lists, Style 1 is used to print
lists and sublists, and Style 2 is used to print compacted lists, Executing

the following snapshot correction changes the style switch.

SN RCOR 55212) sets Style to 1
SN RCOR 55212 2 sets Style to 2

SN RCOR 55212 0 sets Style to 0

This snapshot follows the same conventions as other debug snapshots (see

Appendix 3).

AN

FORM AL-3-108

FORMULA ALGOL

O

FORMULA ALGOL FORM AL-3-109

APPENDIX 6

SYNTAX INDEX

SYNTAX CLASSES

<Array Formula> - Chapter III, Page 26
<Assignment Formula> - Chapter III, Page 26
<Assignment Statement> - Chapter IV, Page 52
<Augmented Type> - Chapter 1V, Page 55

<Boolean Expressiom> - Chapter III, Page 26

<Class Definition> - Chapter IV, Page 61
<Class Name> - Chapter IV, Page 61

<Comm Segment> - Chapter III, Page 37
<Conditional Formula> - Chapter III, Page 26

<Description List> - Chapter IV, Page 53
<Description List Editing Statement> - Chapter IV, Page 64

<Editing Statement> - Chapter IV, Page 64

<Elementary Position> - Chapter IV, Page 55

<Evaluate Formula> - Chapter IIE, Page 32

<Extractor> - Chapter III, Page 37; Chapter IV, Page 58
<Expression> - Chapter IV, Page 51

<For Clause> - Chapter IV, Page 63

<For List> - Chapter IV, Page 62

<Formula Expression> - Chapter IIIL, Page 26
<Formula Expression List> - Chapter III, Page 32
<Formula Pattern> - Chapter III, Page 37

<Formula Pattern Primary> - Chapter IIL, Page 37
<Formula Pattern Structure> - Chapter 111, Page 37
<Formula Primary> - Chapter III, Page 26

<Locator List> - Chapter IV, Page 64
<Insertion Locator> - Chapter IV, Page 64
<Index Segment> - Chapter III, Page 37
<Is Phrase> - Chapter IV, Page 65

<Kind> - Chapter IV, Page 55

<List> ~ Chapter IV, Page 51

<List Element> - Chapter IV, Page 51

<List Expression> - Chapter IV, Page 51
<List Pattern> - Chapter IV, Page 58

<List Pattern Primary> - Chapter IV, Page 58
<Logical Value List> - Chapter III, Page 37

FORM AL-3-110 FORMULA ALGOL

<Operator Class> - Chapter III, Page 37

<Operator Class Assignment> - Chapter I1I, Page 37
<Operator Class Name> - Chapter III, Page 37
<Operator List> - Chapter III, Page 37

<0Ordinal Selector> - Chapter 1V, Page 55

<Ordinal Suffix> -~ Chapter IV, Page 55

<Parallel Elements> - Chapter III, Page 43
<Parallel Production> - Chapter III, Page 43
<Pop Up Operator> - Chapter IV, Page 61
<Pop Up Statement> - Chapter IV, Page 62
<Position> - Chapter IV, Page 55

<Procedure Formula> - Chapter III, Page 26
<Push Down Operator> - Chapter IV, Page 61
<Push Down Statement> - Chapter IV, Page 61

<Schema> - Chapter III, Page 43

<Schema Assigmment™> - Chapter III, Page 43
¥Schema Element> - Chapter II1, Page 43
<Schema Variable> - Chapter III, Page 43
<Belection Expression> - Chapter IV, Page 55
<Selector> - Chapter IV, Page 55

<Selector List> - Chapter IV, Page 43
<Single Production> - Chapter III, Page 43
<Substitution List> - Chapter III, Page 32
<Symb or List> - Chapter IV, Page 58
<Symbolic Expression> - Chapter IV, Page 49

<Transformed Formula> - Chapter III, Page 43

FORMULA ALGOL

RESERVED WORDS

ANY - Chapter III, Page 36, Page 42 (appears thrice)

ATOM - Chapter III, Page 36

COMM - Chapter 1II, Page 36

ELSE - Chapter III, Page 25

EVAL - Chapter III, Page 31 (appears twice)

FALSE - Chapter IIT1, Page 36 (appears twice), Page 42
IF - Chapter 111, Page 25

INDEX - Chapter III, Page 36

' OF - Chapter IIT, Page 36 (appears twice)

REPLACE - Chaptef IIT, Page 31, Page 42

SUBS - Chapter III, Page 31

THEN - Chapter III, Page 25

TRUE - Chapter III, Page 36 (appears twice), Page 42

AFTER - Chapter IV, Page 53, Page 62

ALL - Chapter IV, Page 53 (appears twice)

ALSQO - Chapter IV, Page 62

ALTER - Chapter IV, Page 62

AND - Chapter IV, Page 53

ANY - Chapter IV, Page 53

ATOM - Chapter IV, Page 53

ATTRIBUTES - Chapter IV, Page 60

BEFORE - Chapter IV, Page 53 (appears twice), Page 62
BETWEEN - Chapter IV, Page 53

BOCLEAN - Chapter IV, Page 53

FORM A

FORM AL-3-112 FORMULA ALGOL

DELETE - Chapter IV Page 62 (appears twice)
ELEMENTS - Chapter 1V, Page 60 (apéears twice)
FIRST - Chapter IV, Page 53 (appears twice)
FOR - Chapter IV, Page 60

FORM - Chapter IV, Page 53

INSERT - Chapter IV, Page 62

INTEGER - Chapter IV, Page 53 (appears twice)
IS - Chapter IV, Page 62 (appears twice)

LAST - Chapter 1V, Page 53 (appears twice)

ND - Chapter IV, Page 53

NIL - Chapter IV, Page 47

NOT - Chapter IV, Page 62

OF - Chapter IV, Page 51, Page 53, Page 60 (appeatq thrice), Page 62 (appears
5 times)

PARALLEL - Chapter 1V, Page 60

RD - Chapter IV, Page 53

REAL - Chapter IV, Page 53

ST - Chapter fV, Page 53

SUBLIST - Chapter IV, Page 53

SYMBOL - Chapter IV, Page 53

TH - Chgpter IV, Page 53

THE - Chapter IV, Page 51, Pagé 62

T0 - Chapter IV, Page 62

FORMULA ALGOL FORM AL-3-113

APPENDIX 7

COMPLETE EXAMPLES

The attached photocopies of computer output presént three ways that
Formula Algol can be used to solve an algebraic equation for the single oc-
currence of the variable X, These three solutions are by Markov Algorithms,
by recursion, and by iteration. Formula Algol is well suited to programming
this p;oblem because its data structures and source language instructions were
chosen to be well adapted to problems in formal algebraic manipulation, It
can be seen from the'attached programs that the Formula Algol programmer has
detailed control over the specification of formula manipulation algorithms
and that,at the same time, abbreviation devices, such as the Markov Algorithm,
make it convenient to write them., Brief explanations of the three solutions

are as follows.

I. MARKOV ALGORITHM SOLUTION

Lines 12 to 29 define a Markov Algorithm which gives the rules of trans-
formation by which equations are to be solved for X. The equation to be solved
for X is stored as the value of the variable E in line 30, and line 31 prints
both E and E, |5 the result of applying the Markov Algorithm S to E, which re-

sult is the solved equation. In lines 10 and 11, plus and times are defined

to be operators with commutative properties so that in lines 14 and 15 commuta-
tive instances of AxB and A+B will be considered, Lines 7,8, and 9 define A
to be a2 formula pattern which will match any subexpression of a formula con-
taining an occurrence of X, and B and C to be formula patterns which will
match any arbitrary subexpression of a formula. The A's, B's, and C's are

used in the construction of the left hand sides of the transformations in the

Markov Algorithm and stand for patterns with these properties, On the right

FORM AL-3-114 FORMULA ALGOL .

hand sides of the transformations the ,A's, .B's, and .C's are objects which

()

are replaced by the subexpressions which match the A's, B's, and C's when

given transformation applies to an input equation.

II. RECURSIVE SOLUTION

| Lines 4, 5, and 9 define.pattqrns A, B, and C with the same prbpertigs
as in the Markov Algorithm sclution. The recursive procedure SOLVE (LHS,RHS)
given in lines 8 to 28 analyzes the form of the left hand side of the equationm,
LHS, which is assumed to contain X, and recursively calls SOLVE with that sub-
expression of LHS containing X as its new first parameter, and an appropriate
inverse expression ;omposed of an appropriate inverse operator applied to RHS
and a subexpression of LHS not containing X as its new second parameter, The
procedure Answer(E) given in lines 30 to 34 analyzes the input equation E to
sée which side contains X and passes the side containing X és the left hand ;:)
side and the aide not contalning X as the right hand side to SOLVE which de-
livers the answer to the problem. An equation is assigned to E in line 36 ‘

and both E and Answer(E) are printed in line 37. The printed solution is the

same as that given in the first and third soluticns,

I1I., ITERATIVE SOLUTION

Lines 6 and 7 define two operator classes OP1 and OP2 consisting respec-
tively of the binary operators to be used in input equations and the uhafy
operators to be used in input equations, An integer variable I is attached
to the definition of each operator class as an "Index". 1In lines 12 and 13 -
the input equation G is coﬁpared with two patterns. The first pattern matches
if the left hand side of G contains a binary operator in the class OP1 and the
index vari .le I is set to contain an integer denoting the ordinal poqition.of
this operator in the list of operators given on line 6. Similarly, the second

pattern matches 1if G's left hand side is of the form <unary operator>(<expression>)

FORMULA ALGOL FORM AL-3-113

and the index I is set to the ordipal position of the unary operator in the
list of unary operators in line 7. The integer value of this index I is used
in a designational expression containing a switch to transfer control to an
appropriate statement to perform the required transformation of the equation,
These transformations are given in lines 15 to 27, The iteration is under
the control of a FOR-WHILE statement and halts when the equation G has X as
its left hand side. The pripted solution 18 the same as that for solutionms

I and II.

“ IV, COMPARISON OF THE THREE SOLUTIONS

Markov Algorithm Recursion Iteraticn
seconds required 541 4+ 1 34+
cells required 232 471 183
code required m | 826 595

The times giveu here are not measured as precisely as they should be for a

truly useful comparison.

FORM AL-3-116

FORMULA ALGOL

)

-

FORMULA ALGOIL, FORM AL-3-117

A d"m. {202 24 OCT 66 22323338 AND PAGES: 50 TIME:s 3

" .93 BCI32062

C2030118053% 1501

STATUS MR, 25,19668 EXPERIENTAL SYSTEM,

€323
CO3s
Cohs
Cooe
D63
GaT:2
G382
£los
ok [074
o011
0122
013z
01%s
Gi5s
O1és
017
0162
0192
G2C:
213
G223
023s
(243
0253
(263
(27
282
29
03C2
0313
0323
0332

6 BMAS

11692
11020
1137
11031
11660
11072
11163
LRR kL
11144
11174

11177
11243
11310
11353
11416
11561
11524
11574
11643
11677
11733
11767
12026
12073
12152
12231
12263
12370
12400
12403

AL BEGIN
FORE E,K ,MyHy NP3
FOoR M Angc.x’ SYMBOL PLUS, TIMES, S;
DOOLEAN FROCEDURE HASX(F); V!LUE F3 FORM F3
HASX « F >»> X;
Ae-AOFCHASX);
BeDAliVs

‘ c«—CsMN'
PLUS«/{GPERATOR 2+) ICOMYs TRUED 3 H
TIMES«/[C0PERATCR2*) [COMMe TRUE] 3

!

CAITIMESIDY =€ -+ A= .0 7 .8,

(AIPLUS B) =C ~» A= C ~ B,

A - B=C =~ LJA=.+,B,

D - A - c - .A = .B - .c.

A / 080 =C = A= L %x,8,

0 / A=C =+ A= B/,

A t B=C - A= L t(1/.B),

i t A=C -+ A= LNLILNCD),
- A = C -» .A = -.C,
EXPCAY =¢€ - oA = LINC QC)'
LNCAY =C = A= BEP(L),

SCRTCA) =C -~ A =20 1t2,

ARCTANCAY =€ = A =2 SIR(LYA0SCL), .
SINKA) =C - A = IRCTARNC.C/SCATC1=-,C12)),
CGSCA) =C -+ A= ARCTAN(SQRT(1=.C12)/.0),

X 2L -~ X = L1 l'

«»e

E « {92 + LN(M + S0 (X?S-K)/(Ha-la)th N =K)xM = P
PRINTC E, EoiS)3 _
FRINTCCELLS) s

END3

BEGIN EXECUTION 222283533 06423 AVAILASLE CELLS

K12 & LI(M + SINCCXTI = K)/CH + 8)aMiS)th = K)xM=P
XHARCTCCEXP (P = Ke2)/M) + K = M1/ ASQRTCT = (EXPC(P
= K231 + K = MDH1/M 12) /M5%(H + &) + K)I#(
+33333333333p4C)

6191

TINE USEDs CO3CI236 PAGESS 3 12404 22:28:59 0284300000560
22333328 ©D

993 20050002

FORM AL-3-118

EMES
00003011403 TS0 1630 -

STATUS MAR . 25,19663 EXPERIMENTAL SYSTEM,

2.
Je
LD
5e
Ee
Te
Be
9.
10.
1.
12.
13.
14,
15,
16.
17.

18..

19.
20.
21,
22,
- 23.
2h,
25,
26.
27.
28,
29.
30.
3.
32
33.
34,
35.
36,
37
38.

0 ERRORS

11002
11026
11033
11053

11132
11137
11201
11243
11305
11345
11405
11445
11505
11554
1162
11656
11712
11746
12005
12053
12071
12134
12152
12215
122481

12244
12247
12256
12323
12344

12352
12457
12472

BEGIN FORM E K MyN,H P ,F,G,X3

SYMBOL PLUS,TIMES;

BOOLEAN PROCEDURE HASXCF); VALUE F3 FORM F3 HASXeF>>X;
PLUS/[OPERATOR:+] [COMMz RUE13 TI MES+{OPERATOR: #)[COMM: TRUE1s

BEGIN

FORM PROCEDURE SOLVE(LHS RHS); FORM LHS RHS3
BEGIN FORM A B ,C3AeAsOFCHASX)3B«B3ANYC+CSANYS
IF LHS == CA|PLUSIB) THEN SOLVE+SOLVECA RHS-B)3
IF LHS == CAITIMES|B) THEN SOLVE<SOLVECA RHS/B)3
IF LHS == A-B THEN SOLVE « SOLVECA RHS+B);
IF LHS == B-A THEN SOLVE + SOLVECA B-RHS)3
IF LHS == A/B THEN SOLVE « SOLVECA RHS#8)3
{F LHS == B/A THEN SOLVE « SOLVECA B/RHS)3
IF LHS == AB THEN SOLVE « SOLVECA RHS1(1/B))3
IF LHS == B THEN SOLVE +~ SOLVECA L NCRHS)/ULNCB)3
IF LHS == ~A THEN SOLVE « SOLVECA ,-RHS)s :
IF EHS == EXPCA) THEN SOLVE « SOLVECA,LNCRHS))3
IF LHS == LNCA) THEN SOLVE « SOLVECA ,EXPCRHS));
IF LHS == SQRTCA) THEN SOLVE « SOLVECA RHS12)%
IF LHS == ARCTANCA) THEN SOLVE + SOLVECA,S|NCRHS)/COSCRHS))3
IF LHS == SEINCA) THEN

SOLVE « SOLVECA ARC TANCRHS/SQRTC1-RHS 12)3
IF LHS == COSCA) THEN
SOLVE « SOLVE(CA ,ARCTAN(SQRT(1-RHS12 YRHS)

IF LHS == X THEN SOLVE « X = RHS3
END;

FORM PROCEDURE ANSWERCE); FORM E3
BEGIN FORM F,G3
IF £ == G:ANY=F:ANY THEN BEGIN IF F>>X THEN
ANSWER*SOLVECF,G) ELSE ANSWER<SOLVE(G,F) END ELSE

ANSWER -, NOEQUAT 10N ENDs

E + K12 + LNCM + SINCCX 13K)/CHE4)FME5 I TNK)M =P
PRINTCE ,ANSWERCED); PRINT(CELLS);
ENU'END;

BEGIN EXECUTION 163203243 06418 AVAILABLE CELLS

K2 + LNCM 4+ SINCCXTI = K)/CH + B)AM15) N = KIHM=P
X=CARCTCCEXPC(P = K12)/M) + K = MITC1/N)/SQRTCT = (EXP((P
- K2 W/M) + K = MITCI/NIT2))/MI5%(H + &) + KIX1/3)

5947

TIME USED: 00:00:32 PAGES: 2 12487 16320:28 00000000500

fane FORMULA ALGOL FORM AL-3-119

PV R

"’jn Uy

TINE USED2 GO2603h2 PAGES: 3 1292% 00241217 0000 O0NDQOONS 0 ASANY
A OPER, 8102 25 OCT 66 GC2n0C336 AND PAGESe 50 TiiZe 3
993 hG052C52 0506030451103 TS01 0023
CRo9 TS0 0/ b 32 956 3

STATUS MAR, 25,1966 EXPERIMINTAL SYSTEM,
Go2e BEGEN
¢232 11002 FORM Gy MNPy Ay By CoXaSYELOL 001,0“2°
Gy 11030 INVEGER 14 UJIICH Lﬁ-L1gL2 LI Le, 5
C53e 19032 SHTCH O ~ 07,02,03, OUQQJQQGQQT:
G238 G713 GPL’/EGPERAI97° oro=o/ o FILINDEX 21T
GO NIMNG P2 /EGPLRA?OQQ-DEHP,LN SORT, IRCTAN s ST, COSITINDEX21] s
2o0e 11233 Qo102 SLEIEMASIHIC GLe3=10) AT %)*H?S)?me)ﬂmZP;

£02a

0902 1130 FOR 6 « G THNLE <¢G == X=ANY) 03

2112 BeGiN

012¢e 11333 iv G == (h:ANYIOP1IB ANYI=CeANY TiiEN GO TO L[l];
0673 11435 IF 6 2= ¢»{oP2] AgANY)I=CeANY THEH GO TO QIt) o

01he 1IWT6 PRINTGUITOUATIONY: GO TO CONTIUZ g

0153 11503 Lteh=F fAnsX THEN A:C/B ELSE B:C/Ag GO TO CONTINUE s
152 V11537 L226+0F Aswil THEN A=C-D FLSE D=C=Ag GO VO CONTINUTS
0172 19573 L326~1F Aemit THEN A=C43 ELSE B-Arﬁ° GO TO CONTHNUT g
C0e 1627 LieGe=IF Nsnd VHEM A=C:3 ELSE B"A/C° GO TO COMTINUT e
0192 11663 L52GsIF NA>mX THEW A=Ce¢1/DB) ELSE thN(C)/LN(A);
G202 1731 GO TO COMTINGI

0212 11733 Q13G-Nz-Cg GO YO CONTINUEs

G223 117hS 0226+-A=LNCCYg 60 TO COHTINUEg

G233 11757 0326+A=ERP¢CYs GO TO COMTINUE .

G252 771 OfeG-A=Ce2g 60 YO CCHTINUE g

0252 12603 052Gz SIN(C)JCGS(C)“ GO TO CONTINUE g

026 12030 QG&G@A:ARCTAN(C/SQRT(?-C?Z)): GO TO CONTINUC:

G213 12052 07 28~N=ARCTAN (SORTC1=C+2)/C>3 GO TO CONTINUE g

0232 CONTIMUCZ: s

0292 12174 ENDg

QI3

031 12116 PRINT(G)3 PRINT(CELLS)S
0323 12123 END3
0 E£RO0NS

BEGIN EXECUTION COth12153 005529 AVAILABLE CELLS

R ARCTCEAP P = 122D + 1 = DS CI/N/SARTLL = (EXPCCP
- [2)AN 4 = Mt/ 223)/M850(H + 4) 4+ KT ¢I/3)

6345

TIME USEDe O0:00242 PAGES: 3 2925 00359217 0C 00000 0CNHS D
£3h5921 ElD

FORM AL-3-120 FORMULA ALGOL

FORMULA ALGOL FORM AL-3-121

APPENDIX 8
CURRENT SYSTEM BUGS

May 1, 1967

The folléwing is a list of constructions which are currently not

functioning in Formula Algol:

1. Attempting to access a switch with an index which is out of
bounds. Gives a run error instead of returning as defined in
Algol 60.

2. Recursive class names.

3. A selector using itself within itself through a class name {(i.e.,
3RD (|VOWEL|) where the code for VOWEL uses the "nTH" selector).

4. "Own" variables,

5. The "™>" predicate will not test for subformulae of subscripts
to an array formuls or parameters to a procedure formula; schema
will, however,

6. "SUBS"™ in either array, procedure, assignment or conditional
formula.

7. A construction of the form:

>, ,.0F(B)...
where B is of the form:

BOOLEAN PROCEDURE B: FORM X:

G>... OF(B)...
8. Cannot pass switches as parameters,
9. Real arrays are not stored into properly if the right hand side
is only a variable, not an expression.
e.g. A[i] « X; does not work (stores logic)

A[I] — X+0; works

FORM AL-3-122 FORMULA ALGOL

10. Logic Arrays are always accessed arithmetically,

11. A procedure which has the form of a compound statement is
treated as a block in the declaration of labels,

12, Switches may neither be forward referenced nor recursively
referenced,

13. Print routine will not print incomplete chain.

PROCEDURE P(...,L), SYMBOL L; 'L' is called by name

PRINT(...,[.,1}); « incomplete chain
Inasmuch a8 this 18 now a nonrecoverable error, caution should
be exercised to avoid using this construction,

14, 1In the EVAL operatién, the formulae which are substituted are
not evaluated in themselves, but only in combination with the
rest of the formula. Thus, if '3+4' is one of the substituted
values, it will not be reduced,

15. The identity of atomic formulase does not follow the outlines of
block structure, They act as though they were all declared
globally,

16, A multiple assignment statement for a description list 18 not
allowed.

17. In a procedure, A t B does not work unless A and B are either
not local to any procedures or_local to the same procedure,

18. SYMBOL and FORM variables which are formal parameters of a
procedure cannot .be dotted.

19. The construction

S « (if B then C else D) + E

will not work if C is an arithmetic expression, but D is a

FORMULA ALGOL FORM AL-3-123

number which is to be extracted from a list or formula
structure. Reversing C and D fails also.
The construction

FOR I 1 STEP 1 UNTIL EVAL F DO S;

fails for the same reasons.

FORM AL-3-124 FORMULA ALGOL

FORMULA ALGOL FORM AL-3-125

REFERENCES

[i] Naur, P. et.al., "Revised Report on Algorithmic Language ALGOL 60,"
Communications of the ACM, Vol. » p. 1-17, (January 1963).

[2] Perlis, A. J. and Iturriaga, R., "An Extension to ALGOL for
Manipulating Formulae," Communications of the ACM, Vol. 7, p. 127,
(February 1964).

[j} Fierst, J. W., Ed., Algol-20, A Language Manual, Carnegie Institute
of Technology, 1965.

[4} Iturriaga, R., Standish, T. A., Krutar, R. A., Earley, J. C., The
Implementation of Formula Algol in FSL, Carnegie Institute of
Technology, 1965.

[5] Yngve, V., H., COMIT Programmers Reference Manual, The M.I.T. Press,
(September 1961),

[Q} Iturriaga, R., Standish, T. A., Krutar, R. A., and Earley, J. C.,
"Techniques and Advantages of Using the Formal Compiler Writing
System FSL to Implement a Formula Algol Compiler," Proceedings
Spring Joint Computer Conference 1966, Spartan Books.

[7] Perlis, A. J., Tturriaga, R., and Standish, T. A., A Definition of
Formula Algol, Carnegie Institute of Technology, 1966.

