
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Effective Parsing with Generalised
Phrase Structure Grammar

Allan Ramsay

Dgnitive Science Research Paper

-rial no: CSRP 037

le University of Sussex
sgnitive Studies Programme
Dhool of Social Sciences
aimer
righton BN1 9QN

Effective Parsing With Generalised Phrase Structure Grammar
Allan Ramsay

Cognitive Studies Program, University of Sussex
Brighton BN1 9QN, ENGLAND

Abstract
Generalised phrase structure grammars (GPSG's) appear to offer a means
by which the syntactic properties of natural languages may be very
concisely described. The main reason for this is that the GPSG frameworl
allows you to state a variety of meta-grammatical rules which generate
new rules from old ones, so that you can specify rules with a wide
variety of realisations via a very small number of explicit statements.
Unfortunately, trying to analyse a piece of text in terms of such rules
is a very awkward task, as even a small set of GPSG statements will
generate a large number of underlying rules.

This paper discusses some of the difficulties of parsing with GPSG's,
and presents a fairly straightforward bottom-up parser for them. This
parser is, in itself, no more than adequate - all its components are
implemented quite efficiently, but there is nothing tremendously clever
about how it searches the space of possible rules to find an analysis o
the text it is working on. Its power comes from the fact that it learns
from experience: not new rules, but how to recognise realisations of
complex combinations of its existing rules. The improvement in the
system's performance after even a few trials is dramatic. This is
brought about by a mechanism for recording the analysis of text
fragments. Such recordings may be used very effectively to guide the
subsequent analysis of similar pieces of text. Given such guidance it
becomes possible to deal even with text containing unknown or ambiguous
words with very little search.

Presented at European Conference on Computational Linguistics, Geneva
1985

GPSG -1-

liak/arsitv

I Generalised Phrase Structure Grammar

There has been considerable interest recently in a grammatical fi

known as "generalised phrase structure grammar" (GPSG). This frar

extends the expressive power of simple context free grammars (CFC

a number of ways which enable complex systems of regularities am

restrictions to be stated very easily. Advocates of GPSG claim t\

enables concise statements of general rules; and that it provide?

precise descriptions of the syntactic properties of strings of le

items. For the purpose of this paper I shall assume without furtl

discussion that these claims are true enough for GPSG's to be cor

interesting and potentially useful. The problem is that straight^

parsing algorithms for GPSG's can take a long time to run - the C

which you get by expanding out all the rules of a moderately comi

GPSG is so enormous that finding a set of rules which fits a give

string is a very time-consuming task. The aim of this paper is tc

how some of that time may be saved.

The GPSG framework has been described in detail in a number of ot

places. The discussion in this paper follows Gazdar and Pullum [G

& Pullum], [Gazdar et.al.], though as these authors point out a r

of the ideas they present have been discussed by other people as

For readers who are entirely unfamiliar with GPSG I shall briefly

outline enough of its most salient features to make the remainder

paper comprehensible - other readers should skip to the next sect

GPSG starts by taking simple CF rules and noting that they carry

sorts of information. The CF rule

(1) S — > NP VP

GPSG -2-

says that whenever you have the the symbol S you may rewrite it as NP

VP, i.e. as the set {NP, VP} with NP written before the VP. GPSG

separates out these facets of the rule, so that a grammar consisting of

the single CF rule given above would be written as

(2a) S — > NP, VP
(2b) NP « VP

i.e. as an "immediate dominance" (ID) rule, saying that the set of

symbols {S} may be replaced by the set of symbols {NP, VP}, and a

"linear precedence" (LP) rule which says that in any application of any

ID rule involving a NP and a VP, the NP must precede the VP. There is

some doubt as to whether LP rules are to be regarded as universal for a

given grammar, or whether they should be tied to specific groups of ID

rules. It makes little difference to the algorithms outlined here one

way or the other - for simplicity of exposition it will be assumed that

LP rules are universal.

In the trivial case cited here, the switch from a CFG to ID/LP format

has increased the number of rules required, but in more complicated

cases it generally decreases the number of statements needed in order t

specify the grammar.

ID/LP format allows you to specify large sets of CF rules in a few

statements. GPSG provides two further ways of extending the sets of CF

rules in your grammar. The first is to allow the elements of a rule to

be complex sets of feature/value pairs, rather than just allowing atomi

symbols. The rhs of rule 2a, for instance, refers to items which contai

the feature/value pairs [category NP] and [category VP] respectively,

with no explicit reference to other features or their expected values

(though there will generally be a number of implicit restrictions on

these, derived from t\\e specification of the features in the grammar an

GPSG -3-

their interactions). Thus 2a in fact specifies a whole family of CF ID

rules, namely the set {all possible combinations of feature/value pairs

which include [category NP]} X {all possible combinations of

feature/value pairs which include [category VP]}. In theory this set

could be expanded out, but it is not a tempting prospect - it would

simply take a lot of effort, waste a lot of space, and lose the

generalisation captured by 2a.

The other way of extending the grammar is to include metarules, i.e.

rules which say that if you have a rule that matches a given pattern,

you should also have another, derived, rule. For instance, the metarule

(3) VP --> ..., NP ==> VP [passive] — > ..., PP[by]

says that for any rule stating that a VP may be made up of some set of

items including a NP (the ... means any, possible empty, set of items),

you should have a rule which states that a passive VP may be made up of

the same set of items but with the NP replaced by a PP of type "by".

Metarules are applied until they close, i.e. whenever a metarule is

applied and produces a new rule, the entire set of metarules is scanned

to see if any of them can be applied to this new rule.

There are two further points about GPSG which are worth noting before w*

move on to see how to parse using the vast set of rules induced by a se1

of ID, LP and meta rules. Firstly, it is customary to include in the

feature set of each lexical item a list containing the names of all the

ID rules in which that item may take part. This induces a finer

classification of lexical items than the one implied by the simple

division into categories such as verb, noun, preposition, (this

classification is often referred to as "lexical subcategorisation", i.e.

splitting lexical items into subsets of the usual categories).

GPSG -4-

Secondly, the inheritance of features when several items are combined to

make a single more complex structure is governed by two rules, the "head

feature convention" (HFC) and the "foot feature principle" (FFP). Very

briefly: features are divided into "head features" and "foot features".

The HFC says that head features are inherited from the "head", i.e. that

substructure which has the same basic category (verb, noun, ...) as the

complex structure and which is of lowest degree out of all the

substructures of this type. The FFP says that foot features are

inherited by studying all the other, non-head, substructures and copying

those foot features on which they do not disagree (i.e. they need not

all include a value for each foot feature, but a foot feature will not

be copied if there are items which include different values for it).

The foregoing is very far from being a complete description of the GPSG

framework. It should be detailed enough to give an idea of how rules

are stated within the framework; and it should be detailed enough to

make the rest of the paper comprehensible.

2 Parsing With GPSG's

Parsing with a GPSG is essentially the same as parsing with any of the

other common grammatical systems. Given a string of lexical items, find

some sequence of rules from the grammar which will combine items from

the string together so that all that remains is a single structure,

labelled with the start symbol of the grammar and covering the whole of

the original text. The same decisions have to be made when designing a

parser for GPSG as for the design of any parser for a grammar specified

as a set of rewrite rules (this includes ATN's) - top down : bottom up,

left -> right : island building, depth first : breadth first : pseudo

parallel. With GPSG there is yet another question to be answered before

GPSG -5-

you can start to put your parser together: how far should the rule set

be expanded when the rules are read in ?

There are two extreme positions on this, (i) You could leave the rules

in the form in which they were stated, i.e. as a collection of ID rules

plus a set of metarules which will generate new rules from the base set

plus a set of LP rules which restrict the order in which constituents o

the rhs of a rule may appear, (ii) You could expand out the entire set

of CF rules, first comparing the ID rules with the metarules and

constructing new ID rules as appropriate until no new rules were

generated; then generating all the ordered permutations of rhs's allowe

by the LP rules; and finally expanding the specified feature sets which

make up each constituent of a rule in all possible ways.

Neither of these options is attractive. As Thompson has pointed out, (i

is untenable, since metarules can alter rules by adding or deleting

arbitrary elements [Thompson 82]. This means that if you were working

top down, you would not even know how the start symbol might be

rewritten without considering all the metarules that might expand the

basic ID rules which rewrite it; working bottom up would be no better,

since you would always have to worry about basic ID rules which might b

altered so they covered the case you were looking at. At every stage,

whether you are working down from the top or up from the bottom, the

rule you want may be one that is introduced by a metarule; you have no

way of knowing, and no easy way of selecting potentially relevant basic

rules and metarules.

On the other hand, expanding the grammar right out to the underlying CF

rules, as in (ii), looks as though it will introduce very large numbers

of rules which are only trivially distinct. It may conceivably be easie

GPSG -6-

to parse with families of fully instantiated rules than with rule

schemas with underdetermined feature sets, e.g with

(4a) S —> NP [num = sing], VP [num = sing]
(4b) S —> NP [num = plural], VP [num = plural]

rather than

(4c) S — > NP [num = NUM], VP [num = NUM]

However, complete expansion of this sort will definitely require order:

of magnitude more space - one simple item such as NP could easily

require 10 - 15 other features to be specified before it was fully

instantiated. The combinatorial potential of trying to find all

compatible sets of values for these features for each item in a rule,

and then all compatible combinations of these sets, is considerable, r

is unlikely that the possible gains in speed of parsing will be worth

the cost of constructing all these combinations a priori.

To a large extent, then, the choice of how far to expand the grammar

when the rules are first read is forced. We must expand the metarules J

far as we can; we would rather not expand underdetermined feature sets

into collections of fully determined ones. The remaining question is,

should we leave the rules which result from metarule application in

ID/LP format, or should we expand them into sets of CF rules where the

order in which items occur on the rhs of the rule specifies the order

they are to appear in the parse ? For top down analysis, it is likely

that CF rules should be generated immediately from the ID/LP basis,

since otherwise they will inevitably be generated every time the

potential expansions of a node are required. For bottom up analysis th

question is rather more open. It is, at the very least, worth keeping ;

index which links item descriptions to rules for which the items are

potential initial constituents; this index should clearly be pruned to

GPSG -7-

ensure that nothing is entered as a potential initial constituent if t

LP rules say that it cannot be.

We can summarise our discussion of how to parse using GPSG's as follow

(i) Metarules should be expanded out into sets of ID rules as soon as

the grammar is read in. (ii) It may also be worth expanding ID rules

into sets of rules where the order of the rhs is significant (iii) It

not a good idea to expand ID rules into families of CF rules with all

legal combinations of feature:value pairs made explicit. We also note

that if we are simply going to treat the rules as ways of describing

constituent structure then some sort of chart parser is likely to be t

most appropriate mechanism for finding out how these rules describe th

input text [Shieber 84].

These are all reasonable decisions. However once we come to work with

non-trivial GPSG grammars, it appears that general purpose parsing

algorithms, even efficient ones, do rather a lot of work. We need some

way of converting the declarative knowledge embodied in the rules of t

grammar into procedural knowledge about how to analyse text. The

approach described in this paper involves using two parsing algorithms

together. We have a standard bottom-up chart parser, which simply trie

out grammatical rules as best it can until it arrives at some

combination which fits the text it is working on; and a "direct

recogniser", which uses patterns of words which have previously been

analysed by the chart parser to suggest analyses directly.

There is not much to say about the chart parser. It uses the rules of

the grammar in a form where the metarules have been applied, but the

permutations implied by the LP rules have not been explicitly expanded

This means that we have fewer rules to worry about, but slightly more

GPSG -8-

work to do each time we apply one (since we have to check that we are

applying it in a way allowed by the LP rules). The extra work is

minimised by using the LP rules, at the time when the grammar is first

read in, to index ID rules by their possible legal initial

substructures. This prevents the parser trying out completely pointless

rules.

It is hard to see many ways in which this parser, considered as a

general purpose grammar applying algorithm, could be improved. And yet

it is nowhere near good enough. With a grammar consisting of about 120

rule schemas (which expands to about 300 schemas by the time the meta-

rules have been applied), it takes several thousand rule applications t

analyse a sentence like "I want to see you doing it". This is clearly

unsatisfactory.

To deal with this, we keep a record of text fragments that we have

previously managed to analyse. When we make an entry in this record, we

abstract away from the text the details of exactly which words were

present. What we want is a general description of them in terms of thej

lexical categories, features such as transitivity, and endings (e.g. "-

ing" or "-ed"). These abstracted word strings are akin to entries in

Becker's "phrasal lexicon" [Becker 75]. Alongside each of them we keep

an abstracted version of the structure that was found, i.e of the parse

tree that was constructed to represent the way we did the analysis.

Again the abstraction is produced by throwing away the details of the

actual words that were present, replacing them this time by indicators

saying where in the original text they appeared.

It is clearly very easy to compare such an abstracted text string with

piece of text, and to instantiate the associated structure if they are

GPSG -9-

found to match. However even if we throw away the details of the

particular words that were present in the original text, we are likely

to find that we have so many of these string:structure pairs that it

will take us just as long to do all the required comparisons as it wou

have done to use the basic chart parser with the original set of rules

To prevent this happening, we condense our set of recognised strings b

merging strings with common initial sequence, e.g. if we have two

recognised fragments like

(3) dett adj, adj, noun > NP(det = [1], adjlist = [2 3], n = [

(4) det, adj, noun > NP(det = [1], adjlist = [2], n = [3]

we take advantage of their shared structure to store them away like

adj, noun > NP(det = [1], adjlist = [2 3], n = [
(5) det, adj,

noun > NP(det = [1], adjlist = [2], n = [3]

Merging our recognised fragments into a network like this means that i

we have lexically unambiguous text we can find the longest known

fragment starting at any point in the text with very little effort

indeed - we simply follow the path through the network dictated by the

categories (and other features, which have been left out of (3), (4) a

(5) for simplicity) of the successive words in the text.

This "direct recognition" algorithm provides extremely rapid analyses

text which matches previously analysed input. It is not, however,

"complete" - it is a mechanism for rapid recognition of previously

encountered expansions of rules from the grammar, and it will not work

if what we have is something which is legal according to the grammar b

which the system has not previously encountered. The chart parser .is

complete in this sense. If the input string has a legal analysis then

the chart parser will - eventually - produce it.

For this reason we need to integrate the two mechanisms. This is a

GPSG -10-

surprisingly intricate task, largely because the chart parser assumes

that all rules which include completed substructures are initiated

together, even if some of them are not followed up immediately. This

assumption breaks down if we use our direct recogniser, since complete

structures will be entered into the chart without their components ever

being explicitly added. It is essential to be very careful integrating

the two systems if we want to benefit from the speed of the direct

recogniser without losing the completeness of the chart parser. Our

current solution is to start by running the direct recognition algorith

across the text, repeatedly taking the longest recognised substring,

adding all its known analyses to the chart, and then continuing from th

position immediately following this string. If we do not recognise

anything at a particular point, we simply make an entry in the chart fc

the current word and move on. When we have done this there will be a

number of complete edges in the chart, put there by the direct

recogniser, and a number of potential combinations to follow up. At thi

point we allow normal chart parsing to take place, hoping that the

recognised structures will turn out to be constituents of the final

analysis. If they are not, we have to go back and successively add

single word edges whereever we jumped in with a guess about what was

there.

3 Ambiguous And Unknown Words

The combination of chart parser and direct recogniser is sufficiently

effective that we can afford to use it on text that contains ambiguous

words without worrying about the extra work these will entail. This is

fortunate, given the number of words in English which are ambiguous as

to lexical category - "chart", "direct", "can", "use", "work" and

"entail" from the fir^t sentence of this paragraph alone!

GPSG -11-

Lexical ambiguity generally causes problems for bottom-up parsers

because each interpretation of a given word will tend to indicate the

presence of a different type of structure. It will often turn out that

when all the possibilities have been explored only one of the

interpretations actually contributed to a complete, consistent parse,

but it may take some time to check them all. By looking for structures

cued by strings of words we get a strong indication of which is the mos

promising interpretation - interpretations which are not going to be

part of the final analysis are not likely to appear inside substantial

recognised strings. To take a simple example, consider the two sentenc*

"I don't see the use" and "I will use it". In the first the

interpretation of "use" as a noun fits easily into wider patterns of tl

sort we will have stored away, such as {det, noun} -> NP or {verb, det

noun} -> VP, whereas its interpretation as a verb does not. In the

second the interpretation as a verb fits into plausible patterns like

{aux, verb} -> VSEQ or {aux, verb, pronoun} -> VP, while the

interpretation as a singular noun does not seem to fit well into any

surrounding patterns.

These cues are effective enough for us to be able to follow [Thorne et

al 68] in merging the "open" lexical categories, i.e. noun, verb, adj

and adv. In the vast majority of cases, the final analysis of the text

will tell us which of the various sub-classes of the category "open" a

particular instance of a given word must have belonged to. We do, of

course, make heavy use of the connections between these categories and

the suffix system - if a word has had "-ing" added to it, for instance

then it must be functioning as a verbal form. Not only does the final

analysis usually determine uniquely the interpretation for each open

category word in the input, the combined recogniser and parser produce

GPSG -12-

this final analysis with comparatively little search. We are thus able

to deal with input that contains ambiguous words just about as

effectively as with input that doesn't. The disambiguation is performed

largely by having the system recognise that it has never seen, say, an

open category word functioning as a verb surrounded by the current loca

configuration of words, whereas it has seen something in this context

which was eventually interpreted as a noun. This has the added advantag

of enabling us to produce a syntactic analysis of text containing

previously unknown words - they are immediately assigned to the open

category, and their particular function in the current context is

discovered at the end of the analysis. How you construct a meaning

representation from suph an analysis is another matter.

4 Conclusions

The parser and rule learner described above perform far far better than

the parser by itself -; on complex cases, the parser may find the correc

analysis several hundred times as quickly using learnt rules as it woul

have done with just the basic set. Experience with the system to date

indicates that the introduction of new rules does not slow down the

process of selecting relevant rules all that much, partly because the

indexing of patterns against initial elements cuts out quite a lot of

potentially pointless searching. It is conceivable that when the system

has been run on large numbers of examples, the gains introduced by

abstracting over long, unusual strings will be outweighed by the extra

effort involved in testing for them when they are not relevant. If so,

it may be a good idea to put a limit on the length of string for which

compound rules should be recorded. There is no indication as yet that

this will be necessary.

It is of interest that the compound rules the system creates are akin

the productions used in Marcus1 deterministic parser [Marcus] - patter

of descriptions of items which the parser is prepared to react to,

combined with packets of simple actions to be taken when a pattern is

recognised. There is no suggestion here that the system described abov

could ever be fully deterministic - there are just too many

possibilities to be explored for this to be likely - but it certainly

explores fewer dead ends with learnt compound rules than with the

initial basic ones.

Acknowledgments

My understanding of GPSG owes a great deal to discussions with Roger
Evans and Gerald Gazdar. The idea of using recognisable sequences of
categories to find shortcuts in the analysis arose partly out of
conversations some time ago with Aaron Sloman. Gerald Gazdar and Steve
Isard read and commented on this paper and an earlier, even more
misguided one. Steve Isard implemented the basic chart parser which wa
adapted for the work reported here. Any remaining errors, etc. are as
usual the author's responsibility.

References

Becker The Phrasal Lexicon TINLAP 1975

Gazdar G, Klein E, Pullum GK & Sag IA Generalised Phrase Structure
Grammar Blackwell, Oxford (in press - 1985)

Marcus M A Theory Of Natural Language Processing PhD thesis, MIT 1980

Shieber SM Direct Parsing OF ID/LP Grammars Linguistics & Philosophy
7/2, 1984

Thorne JP, Bratley P & Dewar H The Syntactic Analysis Of English By
Machine in Machine Intelligence 3, ed Michie, Edinburgh UP 1968

Thomson H Handling Metarules In A Parser For GPSG DAIRP 175, Univ. Of
Edinburgh, 1982

GPSG -14-

