
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

fri- / 3 6 >

Mach and Matchmaker:
Kernel and Language Support for

Object-Oriented Distributed Systems

Michael B. Jones
Richard F . Rashid

September 1986

Technical Report CMU-CS-87-150^

Department of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Abstract

Mach, a multiprocessor operating system kernel providing capability-based interprocess communication, and
Matchmaker, a language for specifying and automating the generation of multi-lingual interprocess communication
interfaces, are presented. Their usage together providing a heterogeneous, distributed, object-oriented programming
environment is described. Performance and usage statistics are presented. Comparisons are made between the
Mach/Matchmakcr environment and other related systems. Possible future directions are examined:

Keywords

Object-Oriented Systems, Object-Oriented Languages, Object Capabilities, Multi-Processor Operating System,
Interprocess Communication, Remote Procedure Call, Multi-Targeted Compiler, Interface Specification Language,
Distributed Systems.

This paper also appears in the Proceedings of the 1st Annual ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), September, 1986.

Copyright© 1986 ACM

THIS RESEARCH WAS SPONSORED BY THE DEFENSE ADVANCED RESEARCH PROJECTS AGENCY, DEPARTMENT OF
DEFENSE, ARPA ORDER 3597, MONITORED BY THE AIR FORCE AVIONICS LABORATORY UNDER CONTRACT F33615-81-
K-1539.

THE VIEWS AND CONCLUSIONS CONTAINED IN THIS DOCUMENT ARE THOSE OF THE AUTHORS AND SHOULD NOT BE
INTERPRETED AS REPRESENTING THE OFFICIAL POLICIES, EITHER EXPRESSED OR IMPLIED, OF THE DEFENSE ADVANCED
RESEARCH PROJECTS AGENCY OR THE U.S. GOVERNMENT.

Table of Contents
1. Introduction
2. Mach discussion

2.1. Mach: An extensible object-oriented kernel
2.2. Kernel abstractions and operations on objects
2.3. Extending object primitives to a network environment

3. Matchmaker discussion
3.1. Matchmaker: Language support for distributed object interfaces
3.3. Matchmaker computational model
3.2. Matchmaker background
3.4. Matchmaker features

4. Handling heterogeneity
4.1. Programming language diversity
4.2. Data representation issues
4.5. Handling diverse user interfaces
4.3. Operating system diversity

5. The Sapphire window manager: Using the advantages of object capabilities
4.4. Multiprocessor differences
6.2. Future directions

6. Status and future directions
6.1. Status

I. Example Matchmaker interface specification
7. Conclusions
II. Example client code for the example specification
III. Example server code for the example specification

i

Mach and Matchmaker:

Kernel and Language Support for
Object-Oriented Distributed Systems

Michael B. Jones
Richard F. Rashid

Department of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Abstract

Mach, a multiprocessor operating system kernel providing
capability-based interprocess communication, and
Matchmaker, a language for specifying and automating the
generation of multi-lingual interprocess communication
interfaces, are presented. Their usage together providing a
heterogeneous, distributed, object-oriented programming
environment is described. Performance and usage statistics
are presented. Comparisons are made between the
Mach/Matchmaker environment and other related systems.
Possible future directions are examined.

Keywords

Object-Oriented Systems, Object-Oriented Languages,
Object Capabilities, Multi-Processor Operating System.
Interprocess Communication, Remote Procedure Call,
Multi-Targeted Compiler, Interface Specification Language,
Distributed Systems.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1986 ACM 0-89791-204-7/86/0900-0067

1. Introduction
Many different object-oriented systems have been built

and proposed. Some are inapplicable to distributed
environments. Design and implementation considerations
have often been driven by abstract issues rather than the
concrete requirements of a distributed system. Many
systems assume that all code will be written in a single
programming language, ignoring the diversity of existing
applications and programming tools already available. Some
do provide multiple languages, but allow inter-language and
inter-machine interfaces to be coded by hand in an ad-hoc
manner. Many systems ignore protection issues, particularly
for distributed applications. Others fail to provide efficient
mechanisms for passing objects, and invoking operations.
Finally, while an object-oriented programming style is
supported for "applications code," the operating system
itself is often not extensible, or implemented using the same
abstractions.

Mach [1] [2] [3] is a multiprocessor operating system
currently under development at Carnegie Mellon University.
Mach provides

• a uniform object reference mechanism,
• protected object capabilities,
• efficient cross-domain object communication, and
• efficient cross-domain object operation invocations.

Matchmaker [13] is an interface specification language and
compiler used in the Mach environment, providing
programming language support for distributed, object-

1

oriented programming. Specifically, it provides

• support for multiple, existing programming languages,
• language support for object references,
• language interfaces for object operations,
• language and machine independent operation interface

specifications, and
• automated interface code generation from interface

specifications.

Mach and Matchmaker do not provide a "pure" object-
oriented environment; not every piece of data is an object,
unlike systems such as ECL [6] and Smalltalk [11] (9]. The
only true objects present in the Mach/Matchmaker world
are ports (and other types defined as ports). Both "normal"
data and object references are supported. Many other
object-oriented systems have taken this approach. For
example, Simula [22] provides both Algol types and Classes,
the Lisp Flavors [14] system allows both normal Lisp values
and flavors, and Hydra [28] objects contained both
capabilities and data.

Neither Mach or Matchmaker explicitly provide for
inheritance of operations between "related objects," as do
many object-oriented systems such as the Lisp Flavors
system. Nonetheless, some servers do provide for
inheritance. For example, the Remote Method Invocation
mechanism of the Flamingo [23] window manager provides
for "method" operations to be inherited by derived objects.
Hence, related objects can still share common operations
(and even share pieces of their implementations when
appropriate) within the Mach environment. In this respect,
Mach took the same decisions as did other systems such as
Demos [5], StarOS [12] and iMAX [10].

Mach is currently being used by a number of research
projects at CMU, and is being run on machines ranging from
personal workstations to multiprocessors. The Matchmaker
language has been in use for several years as the normal
means of defining and generating interprocess interfaces for
code within the Accent 1 [17]network operating system
environment, and is now being used for Mach.

In this paper, we will discuss both the Mach operating
system and the Matchmaker language. A brief description of
their features will be presented, including some examples of
their use. These examples serve to illustrate the object

Accent is a trademark of Carnegie Mellon University

oriented nature of the features available and demonstrate the
flexibility of the resultant system.

2. M a c h discussion

2.1. Mach: An extensible object-oriented kernel
Mach is a multiprocessor operating system kernel

currently under development at Carnegie Mellon University.
The design of Macir draws heavily on CMU's previous
experience with the Accent network operating system.
Important aspects of the Mach design are

• kernel objects are referenced via object capabilities,

• all system services are provided via a capability-based
interprocess communication mechanism,

• all systems abstractions allow extensibility to
multiprocessors and networks of uniprocessor or
multiprocessor nodes,

• the underlying mechanism for communication provides
support for protection as well as network transparency,

• access to virtual memory is simple with no arbitrary
restrictions on allocation, deallocation and virtual copy
operations and yet allows both copy-on-write and read-
write sharing, and

• any support for parallelism allows for a wide range of
tightly coupled and loosely coupled multiprocessors.

In addition to satisfying these goals, Mach provides
compatibility with existing environments at CMU. It is
binary compatible with Berkeley 4.3 bsd, and is source
compatible with existing Accent code. This allows existing
program development tools and programming environments
to continue being used, while also providing appropriate
support for distributed, object-oriented systems.

Mach was conceived in 1985 as an Accent-like operating
system which would provide complete UNIX
[18] compatibility. Experience with Accent showed that a
message and capability based network operating system,
properly designed, can compete with more traditional
operating system organizations. The advantages of this

\ | N I X is a trademark of AT&T Bell Laboratories

2

approach are system extensibility, protection and network
transparency. It was also designed to better accommodate
the general purpose shared-memory multiprocessors which
appear to be succeeding traditional general purpose
uniprocessor workstations and timesharing systems.

As of June 1986, Mach currently runs on most VAX
architecture machines (VAX 11/750, 11/780, 11/785, 8600,
/A VAX I, and /iVAX II) and the IBM RT PC 4 . In addition,
Mach runs on a four (11/780 or 11/785) processor VAX
11/784 with 8 MB of shared memory. Mach is currendy in
production use by CMU researchers including projects for
multiprocessor speech recognition and building parallel
production systems. The same binary kernel image runs on
all VAX uniprocessors and multiprocessors. Ports are in
progress to the Sun-3, and the Encore MultiMax
multiprocessor, with other ports in the works.

2.2. Kernel abstractions and operations on objects
The Mach kernel supports five basic abstractions:

1. A port is a communication channel - logically a queue for
messages protected by the kernel. Ports are used as
protected capabilities for all objects within the Mach
environment. Ports are the reference objects of the Mach
design.

2. A message is a typed collection of data objects used in
communication between threads. Messages may be of any
size and may contain pointers and typed capabilities for
ports. All message data other than ports is passed by
value.

3. A task is an execution environment in which threads may
run. It is the basic unit of resource allocation. A task
includes a paged virtual address space and protected
access to system resources (such as processors, port
capabilities and virtual memory). The UNIX notion of a
process is, in Mach, represented by a task with a single
thread of control.

4. A thread is the basic unit of CPU utilization. It is roughly
equivalent to an independent program counter operating
within a task. All threads within a task share access to all
task resources.

VAX is a trademark of Digital Equipment Corporation

^RT PC is a trademark of International Business Machines Corporation

5. A memory object is a unit of virtual memory which may be
mapped into the address space of a task.

Send and Receive are the only primitive operations.
Operations on all objects other than messages are performed
by sending messages to ports which are used to represent
them.

A message is sent by a thread to a port in order to cause an
operation to be performed on the object represented by that
por t The receiving thread will determine the object
represented by the port, and perform the proper operation,
depending on the object type, the message type and the
parameters contained in it. It may also send a reply message
containing results from the operation performed. Thus,
messages sent to ports may be correctly viewed as object
operation invocations.

An example from the Mach kernel serves to illustrate the
use of ports as object references, and messages as operation
invocations. The act of creating a task or thread returns
access rights to the port representing the created object This
port can be used to manipulate the created object Messages
representing such operations as Suspend, Resume and
Terminate can be sent to the port, causing Mach to perform
the requested operation upon the task or thread, and to send
a reply message containing results from the operation.

Many different types of objects can share common
operations. Suspend is meaningful for both tasks and
threads, and potentially other types of objects as well. While
both objects in the example were provided by the kernel,
they could equally well have been provided by distinct
servers.

2.3. Extending object primitives to a network environment
The majority of message communication occurs between

entities running on the same machine. This "normal" case is
illustrated in figure 2-1. Nonetheless, messages can be sent
to processes on remote machines in the Mach environment.

3

Figure 2-1: Local Message Communication

By the nature of the port and message abstractions, it is
possible to insert transparent intermediary process between a
pair of communicating processes which forward messages
between the processes. Yet this level of indirection is
undetectable by either party, since the processes with access
to a port cannot be determined from the por t

Transparent network interprocess communication with
preservation of capability protection across network
boundaries is provided by a "message server" [19] running
on each machine. Message servers extend the local port
name space into a network global port space by representing
each relevant remote port with a local port held by the local
message server.

Likewise, the message servers provide the ability to
transparently send messages to remote ports. For each
remote port known on the local machine, the local message
server actually holds a local port which is used locally as a
surrogate for the remote por t

When a message server receives a message on a port
representing a remote port, the message is encapsulated into
a network message representation, and transmitted to the
remote message server. The remote server then reconstitutes
the message received over the net, and sends it to its
intended destination on behalf of the original machine. The
"remote" case is illustrated in figure 2-2.

Network Message Protocol

Figure 2-2: Transparent Network Message Communication

Port deallocation, and all port capabilities (Send, Receive,
and Ownership) are correctly handled by the message
servers. Data will be encrypted over the net when necessary
[20]. Thus, the full Mach object semantics are transparently
preserved across the network.

3. Matchmaker discussion

3.1. Matchmaker: Language support for distributed object
interfaces

A variety of languages for distributed programming have
been developed, such as PL1TS [7] and Argus [15]. Likewise,
a number of object-oriented languages such as Smalltalk
[11] and the Lisp Flavors [14] system have come into use.
Rather than being another new "distributed" or "object
oriented" programming language, Matchmaker is an
interface specification language for use with existing

4

programming languages. Matchmaker is a product of
experience gained building the Accent environment during
the CMU SPICE [25] project. It provides

• a language for specifying object-oriented remote
procedure call (RPC) and asynchronous interfaces
between communication processes, and

• a multi-targeted compiler which translates these
specifications into interface code for each of the major
languages used within the Mach environment, including
C, COMMON LISP [26] and PERQ Pascal 5 [4].

Matchmaker allows interfaces between cooperating
computing entities to be specified and maintained
independent of specific languages or machine architectures.
The Matchmaker code provides communication, runtime
support for type-checking, type conversions, synchronization
and exception handling.

3.2. Matchmaker background
Matchmaker was started in 1981 as part of the SPICE

project It was built to automate some of the coding for the
Accent operating system kernel [17] message interface. It has
since evolved significantly in its syntax, data representation
semantics and communication semantics. At each point of
change, decisions about Matchmaker design and
implementation were driven by specific requirements of the
SPICE and Mach environments.

Over the years, Matchmaker has proven to be a valuable
tool. It has

• eased implementation and improved the reliability of
distributed programs by detaching the programmer from
concerns about message data formats, operating system
peculiarities and specific synchronization details,

• improved cooperation between system programmers
working in different languages,

• enhanced system standardization by providing a uniform
message level interface between processes,

• provided a language rich enough to express any data
structure which can both be efficiently represented in
messages, and reasonably represented in all target

PERQ is a trademark of Perq Systems Corporation

languages, and

• reduced the cost of reprogramming interfaces in multiple
languages whenever a program interface is changed.

Today, Matchmaker interfaces define the vast majority of
interprocess communication in the SPICE and Mach
environments, including the kernel interfaces. To date,
Matchmaker has been used as the distributed programming
support environment for over 500,000 lines of code written
in four major, languages. Matchmaker has evolved from a
simple programming aid into the effective definition of
interprocess communication within the SPICE and Mach
environments.

3.3. Matchmaker computational model
Matchmaker builds upon the facilities provided by Mach.

Objects are still represented by ports, and object operations
are still invoked via messages. With Matchmaker though,
the programmer no longer programs using messages.
Matchmaker hides the underlying message passing
mechanisms.

The Matchmaker language is used to specify procedural
interfaces for sets of operations upon objects. Instead of
requiring programmers to invoke object operations via
message sends and receives involving parameter
manipulations only slightly less intricate than assembly
language, Matchmaker allows programmers to invoke (and
receive invocations of) operations via corresponding
procedure calls.

Each declared operation contains an object port
parameter, and a list of in and out operation parameters.
The object port parameter is used to pass the object on
which the operation will be performed, and the operation
parameters are used to pass data specific to each operation
invocation. Parameters may themselves be other object
references. All parameters other than object references are
passed by value. Thus, the Matchmaker language also
provides object-oriented interfaces to services, but at a
higher level than bare Mach does.

3.4. Matchmaker features
The syntax of Matchmaker specifications is fairly close to

the Pascal or Ada syntax for the analogous objects.
Constants of various types can be declared, new data types
can be constructed from built-in types (within certain

5

constraints), and remote procedures can be declared with a
syntax fairly similar to Pascal procedures or functions. The
invocation of an operation on a port in a given target
language is usually represented as a procedure call in that
language, with the port as the first procedure parameter.

The built-in data types provided by Matchmaker are:
Boolean, Character, Signed and Unsigned Integers of various
bit sizes, Integer SubRanges, Strings, Communication Ports,
and Reals. New data types can also be constructed with
some restrictions. Type constructor functions supported are:
Records, fixed and variable-sized Arrays, Enumerations,
Pointers to the above types, and certain kinds of Unions.

Several semantically different kinds of remote procedure
call interactions can be specified in Matchmaker. The
process normally initiating an operation is called the client
process, and the process normally receiving requests is called
the server process. The RPC paradigms provided are:

• Remote.Procedure: Generates code for a client process to
send a request to a server, and to receive reply parameters
back from the server. Timeout values can be specified,
and the wait for the reply can be made asynchronous as
well.

• Message: Generates code for a client process to send a
single request message to a server without a reply.

• Server.Message: Generates code for a server process to
send a single message to a client process.

• Alternate.Reply: Generates code for a server process to
send a reply message back to a client process in response
to a Remote.Procedure which is different than the normal
reply message. Alternate.Reply messages are meant to be
used for signaling exception conditions which occurred
during execution.

Each of these varieties of calls except for Alternate.Reply
takes a port as a parameter to which the request is sent
Thus, "binding" is done dynamically on the basis of ports,
and not by using some compile-time or link-time discipline.
Or restated, each operation takes the object on which it is to
be performed as an explicit parameter.

4. Handling heterogeneity
There are many sources of heterogeneity which have had

to be confronted to make the Mach environment work.
Some specific sources are

• networks
• processor architectures
• multiprocessor architectures
• operating systems
• programming languages, and
• display devices and user interfaces.

4.1. Programming language diversity
The Mach environment currently supports four

programming languages - each with its own notions of
procedural invocation, data representation and exception
handling: COMMON LISP, C, Ada and Pascal. Both clients
and servers can be built in any of these languages.

The Matchmaker language is used to mask language
differences by compiling object-oriented interprocess
communication interface specifications into client and server
remote procedure call code implementing those interfaces
for each target language. Matchmaker handles differences in
language syntax, type representations, record field layout,
procedure call semantics, and exception handling semantics.

Certain semantic restrictions are placed upon the
Matchmaker data types to allow efficient passing of
arguments in messages. In particular, pointers, variable-
sized arrays and unions can only occur in top-level remote
procedure call declarations, and may not be used when
constructing other types.

4.2. Data representation issues
In the Mach environment, data representation issues take

several forms:

• byte ordering,

• hardware and languages differences in the packing of
simple data types into aggregates, and

• actual differences in the representation of simple data
types.

Differences in type representations by various
programming languages within each machine are handled by
Matchmaker. Data representation issues across machine

6

boundaries are handled through a different mechanism.

All inter-machine communication within the Mach
network is handled through message server [19] processes
which transparently forward messages between processors.
Messages consist of a standard format header with a variable
size body. All data passed in a message is typed. Pointers
may be passed, but all data is transferred by value and only
one level of indirection is permitted. Byte reordering and
machine specific conversions are performed by the message
servers with the responsibility for conversion always resting
with the receiving host

Using message servers for all network communication has
a second advantage. Since code other than the message
servers themselves use message passing for remote
communication rather than network interfaces, all
differences between various networks are hidden from
programs in the Mach environment

4.3. Operating system diversity
In most cases, Mach processes depend only on the Mach

interprocess communication facility (IPC) to communicate
with each other and perform their tasks as servers. The
Mach kernel specifically provides this facility as the basis for
building distributed, object-oriented applications.
Nevertheless, it is possible to implement the Mach IPC
facility as a service under other operating systems.

To date, we have taken advantage of this capability largely
as a way of integrating our Accent and Mach based
environment with various versions of VAX UNIX. Early in
19S0 support was provided for an Accent/Mach-style IPC
facility within VAX UNIX (32V). Currently message passing
is supported under Berkeley 4.1BSD and 4.2BSD. Remote
file access, name-lookup, remote process invocation and
process control operate between Accent Mach and UNIX
hosts allowing substantial interoperability.

4.4. Multiprocessor differences
The Mach task, thread and virtual memory mechanisms

were designed to allow for efficient implementation on a
wide class of tightly and loosely coupled shared-memory
multiprocessors. The thread mechanism should provide a
high processor utilization on multiprocessors by increasing
the number of schedulable computing entities available to
the kernel.

Another problem addressed by Mach is the differences
inherent between uniprocessor and multiprocessor
architectures. Mach was designed such that all systems
abstractions can be implemented on uniprocessors, as well as
allow extensibility to multiprocessors and networks of
uniprocessor or multiprocessor nodes. The success of this
approach is illustrated by the fact that all VAX family
processors, from /xVAXes to 8600s and a four processor
multiprocessor 780, run exactly the same kernel binary,
providing the same features.

4.5. Handling diverse user interfaces
One of the problems we have encountered has been a

proliferation of user interfaces both on Mach and UNIX
workstations. We are currently building a flexible, object-
oriented user interface facility called Flamingo [23] which
will allow many different windowing and management
paradigms to be in use on the same workstation's display,
potentially at the same time. Currently both the Accent
Sapphire [21] interface and ITCs (CMU Information
Technology Center) Andrew{16] interfaces are being
implemented using Flamingo.

5. The Sapphire window manager: Using the
advantages of object capabilities

One of the often cited advantages of oriented systems is
the ability to hide the implementation of an object from the
object clients. This allows the implementation of operations
on objects to be changed, either at compiletime, or even at
runtime, without effecting the client system. The Sapphire
[21] window manager developed under Accent and
emulated by Flamingo under Mach, utilizes these
advantages in its implementation.

In some respects Sapphire is a fairly traditional window
manager in the abstractions which it provides; Rectangles are
rectangular arrays of pixel memory, Viewports are
rectangular pixel arrays which may potentially be covered by
other viewports, and Windows are viewports with borders
and menus. Each Sapphire abstraction, however, is
represented by an object capability, similarly to the
Smalltalk window system [11]. A Matchmaker interface is
provided for each Sapphire abstraction, which makes the
object operations available to clients via procedure calls (and
calls the server operation implementations in a similar
fashion).

7

The viewport implementation takes advantage of the
ability to dynamically change the implementation of an
object in a capability based system. Ordinarily, viewports
are implemented by Pascal code which processes requests
received on the ports representing viewports. This code
remembers the ordering of viewports, determines clipping
boundaries, and performs microcoded raster operations for
each visible rectangular subregion of the viewport which
needs to be changed.

An important special case, however, is handled through a
completely different mechanism. When Sapphire
determines that a viewport is completely uncovered - that no
clipping within the viewport needs to be done, then the right
to receive operations on the viewport object is passed from
Sapphire to kernel driver code directly implementing
rectangle raster operations. The driver code operates many
times more efficiently than the corresponding Sapphire code
since it has far less to do. The application program is
unaware that the handler for the viewport capability has
been changed (unless, of course, timings are being done).

The Sapphire viewport example clearly shows the
advantages of being able to change the handler for
operations on an object The ability to dynamically provide

' a service via the "best" server available at that time allowed
for an end-to-end approach to be taken, instead of relying on
a stricdy layered implementation. Thus, an order of
magnitude efficiency gain was possible in an important
special case.

6. Status and future directions

6.1. Status
As of June, 1986, the only major feature of Mach not yet

fully implemented was the Mach thread facility. It is
expected that this will be completed by summer of 1986.

Matchmaker has been the primary definition of inter-
domain interfaces for SPICE since 1982. The current
Matchmaker implementation has been running since early
1985. It is used to specify and build all SPICE and Mach
interfaces on the PERQs, VAXes, and IBM RT PCs in C,
PERQ Pascal, COMMON LISP, and Ada. Work is currently
in progress allowing Matchmaker to better handle
differences in data structure layouts on different machines.

6.2. Future directions
Once the Mach thread implementation is completed many

of the system servers can be changed to take advantage of i t
One potential area of research is studying how much
parallelism is gained by having threads available. Another
area of upcoming work is the development and tuning of
pager and memory object manager processes which use an
object-based kernel message interface, rather than being
imbedded in the kernel.

Currendy, some small Matchmaker changes are in
progress which allow Matchmaker to handle some problems
of byte ordering within records which are not currently
handled by the message servers. These changes should be
complete by Fall of 1986.

In the longer term, research is underway to attempt to
generalize the existing Matchmaker work in several ways.
While Matchmaker is already a useful and fairly ambitious
tool, the current implementation suffers from the following
limitations and deficiencies:

• Knowledge about target programming languages is
scattered throughout code generator implementations,
rather than declared.

• Knowledge about target machines is scattered throughout
various pieces of code, rather than declared.

• Knowledge about message formats is scattered throughout
the Matchmaker front end, rather than declared.

• Knowledge that Accent/Mach messages are the
underlying communication mechanism is pervasive
throughout Matchmaker.

• Little flexibility is provided in type conversion choices for
target languages.

• All representation choices are made at compile-time; one
might want to be able to pass data via more than one
representation.

Many of these restrictions should be able to be removed if
the new tool is properly structured.

Possibly the most ambitious, but the most interesting of
the above issues is abstracting the object-oriented
Matchmaker specifications (and generated code) from
message passing as a transport mechanism. As we have
already seen, Matchmaker interface routines supplant

8

messages as the effective means of invoking object
operations. Thus for many interfaces it should be possible to
replace message passing as a transport medium with a
different transport medium, while preserving the same
interfaces. Even if this is not reasonable, it should still be
possible to build a tool capable of producing interface code
for a diversity of environments, from Mach to the Xerox
Courier data interchange standard [29], for example.

7. Conclusions
Mach and Matchmaker represent an object-oriented

programming environment real enough to serve as the basis
for a large body of research software development, including
the Sesame [27] distributed file system, the Flamingo
[23] window system, the TABS [24] distributed transaction
facility, as well as supporting existing UNIX applications. By
combining the notion of object references and invocation
with communication ports and message passing, Mach
allows for simple transparent extensions of the object
paradigm to a distributed environment. Matchmaker serves
to bridge the barriers between heterogeneous programming
environments and the Mach object facilities.

The granularity of Mach/Matchmaker object operations is
considerably coarser than "pure" object language systems
such as Smalltalk. Operations typically require on the order
of 2-5 milliseconds [13]. This has proven adequate, however,
for a range of systems tasks including transaction processing,
window management, and even speech recognition. Overall
performance of Accent, for example, is in the range of
comparable traditional operating systems such as UNIX [8].

By extending the object paradigm to the lowest levels of
the system and system services we have gained a uniform,
protected capability name space, efficient interprocess
message communication, an extensible, capability based
kernel, integrated interprocess communication and virtual
memory management, and transparent, protected extensions
of the system primitives to a network environment.
Matchmaker, likewise, not only has made using the Mach
object paradigm easier to use, but has done it so well that it
has become the working definition of object operation
interfaces in the Mach environment.

Through use in real object-oriented distributed systems,
Mach and Matchmaker have proven their worth as kernel
and programming language support for building object-
oriented applications in a very demanding distributed
environment

I. Example Matchmaker interface specification
The text which follows is a fictional Matchmaker interface

specification for a "display server" process.

I n t e r f a c e S c r e e n - 15000 ; I B a s e Msg ID 1s 16000

C o n s t a n t
MaxJ< - 1 3 2 ;
Max JT - 4 0 ;

I n v e r t e d • t r u e ;
Normal - n o t I n v e r t e d ; i A c o n s t a n t e x p r e s s i o n

Type

S c r e e n _ A r r a y • p a c k e d a r r a y [Max_X • M a x j f] o f C h a r a c t e r ;

C h a r J / e c t o r • t packed a r r a y [•] o f C h a r a c t e r ;

S c r e e n _ S t a t e • r e c o r d
x : b y t e ;
y : b y t e ;
R e v e r s e : b o o l e a n ;

end r e c o r d ;

S c r e e n - p o r t ; I P o r t o b j e c t r e f f o r e a c h s c r e e n

Message D 1 s p 1 a y C h a r s (
: S c r e e n ; t O b j e c t p a r a m e t e r

x : b y t e ;
y : b y t e ;
c h a r s [n u m] : Char V e c t o r ; t No te s i z e p a r a m e t e r
) : N o J / a l u e ;

Message P u t C h a r (: S c r e e n ; c : C h a r a c t e r) : N o J / a l u e ;

Message C l e a r S c r e e n (: S c r e e n) : N o J / a l u e ;

R e m o t e _ P r o c e d u r e 6 e t W h o l e S c r e e n (
: S c r e e n ; I O b j e c t p a r a m e t e r

o u t S c r e e n A r r a y : S c r e e n _ A r r a y ;
o u t C u r r e n t J (_ S 1 z e : b y t e ;
o u t C u r r e n t J T _ S 1 z e : b y t e ;

) : G R J / a l u e ;

R e m o t e . P r o c e d u r e S w a p S c r e e n S t a t e (
: S c r e e n ; ! O b j e c t p a r a m e t e r

1nout S t a t e : S c r e e n S t a t e ;
) : N o J / a l u e ;

A l t e r n a t e j l e p l y N o _ S u c h _ S c r e e n ;

End I n t e r f a c e

II . Example client code for the example specification
The following text is a fragment of a C program using the

example interface. It would be coded by the programmer
using the service, but it calls client interface code generated
by Matchmaker.

^ I n c l u d e < S c r e e n . h > / • G e t I n t e r f a c e t y p e d e f i n i t i o n s * /

s t a t i c S c r e e n m y s c r e e n ; / • H o l d s s c r e e n o b j e c t r e f e r e n c e •/

c l e a r J i e 1 1 o ()
/ • C l e a r m y s c r e e n and s a y h e l l o •/
{

r e g i s t e r 1n t 1 ;

9

s t a t i c h e l l o - " H e l l o l X n " ;

C l e a r S c r e e n (m y s c r e e n) : /• C a l l I n t e r f a c e r o u t i n e •/
f o r (1 • 0 ; h e l 1 o [1] ; 1++) { > / • G e t l e n g t h o f C s t r i n g •/
0 1 s p 1 a y C h a r s (m y s c r e e n , /• P a s s o b j e c t r e f e r e n c e •/

3 0 , 1 2 , h e l l o . 1) ; / • and p a r a m e t e r s •/

}

III. Example server code for the example specification
The following text is a fragment of a PERQ Pascal program

implementing the services described in the example
interface. It would be coded by the programmer
implementing the service, but would be called by the
Matchmaker generated interface code.

I m p o r t s S c r e e n D e f s f r o m S c r e e n D e f s ; { Type d e f i n i t i o n s }

p r o c e d u r e D 1 s p 1 a y C h a r s (
S c r e e j i P o r t : S c r e e n ;
x , y : b y t e ;
c h a r s : C h a r _ V e c t o r ;
num : l o n g) ;

v a r
1 : I n t e g e r ;
s c r : s c r e e n j > t r ;

b e g i n
{ R e s o l v e o b j e c t r e f e r e n c e t o d a t a s t r u c t u r e p t r }
s c r : • p o r t _ t o _ s c r e e n _ p t r (S c r e e n P o r t) ;
1f s c r • NIL t h e n e x 1 t (D 1 s p l a y C h a r s) ;

p o s 1 t 1 o n (s c r , x , y) ; { P o s i t i o n C u r s o r >
f o r 1 : • 0 t o num-1 do

d 1 s p 1 a y (s c r , c h a r s t [l]) ; { A c c e s s c h a r v e c t o r }
e n d ;

Acknowledgments

Mach was the brainchild of many including Avie
Tevanian, Mike Young, Bob Baron, and Rick Rashid. David
Golub and Bill Bolosky are also working on the
implementation. Matchmaker was the product of many
good people, among them Doug Philips, Mary Thompson,
Rob MacLachlin, Keith Wright and Mike Young, as well as
the authors. The network message server was originally
written by Rick Rashid, and is being rewritten for Mach by
Dan Julin, Robert Sansom and Ed Zayas.

This research was sponsored by the Defense Advanced
Research Projects Agency, Department of Defense, ARPA
Order 3597, monitored by the Air Force Avionics
Laboratory under contract F33615-81-K-1539.

The views and conclusions contained in this document are
those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the
U.S. Government

References

1. M. Accetta, R. Baron, D. Golub, R. Rashid, A. Tevanian,
and M. Young. Mach: A New Kernel Foundation for
UNIX Development. Proc. Summer 1986 USEN1X
Technical Conference and Exhibition, June, 1986.

2. Robert Baron, Richard Rashid, Eilen Siegel, Avadis
Tevanian and Michael Young. MACH-1: An Operating
System Environment for Large-Scale Multiprocessor
Applications. IEEE Software, IEEE, July, 1985.

3. Robert Baron, Richard Rashid, Ellen Siegel, Avadis
Tevanian and Michael Young. MACH-1: A Multiprocessor
Oriented Operating System and Environment. In New
Computing Environments: Parallel, Vector and Systolic,
Arthur Wouk, Ed., Siam, Philadelphia, PA, 1986. Also
available as at CMU CS technical report Department of
Computer Science, Carnegie-Mellon University, Pittsburgh,
PA, April, 1985.

4. Miles Bartel, Michael Kristofic. PERQ Pascal Extensions.
In PERQ Software Reference Manual, Three Rivers
Computer Corporation, 1982.

5. Forest Baskett, John H. Howard, John T. Montague.
Task Communication in DEMOS. Proc. 6th. Symposium of
Operating System Principles, ACM, November, 1977, pp.
16-18.

6. ECL Programmers Manual. Cambridge, MA, 1974.

7. Jerome A. Feldman. "High Level Programming for
Distributed Computing". Comm. of the ACM 22,6 (June
1979), 353-368.

8. R. P. Fitzgerald and R. F. Rashid. "The Integration of
Virtual Memory Management and Interprocess
Communication in Accent". ACM Transactions on
Computer Systems 4,2 (May 1986).

9. A. Goldberg, D. Robson. Smalltalk-80. Addison-
Wesley, Reading, MA, 1983.

10. Kahn, K.C. etal. iMAX: A Multiprocessor Operating
System for an Object-Based Computer. Proc. 8th
Symposium on Operating Systems Principles, ACM,
December, 1981, pp. 127-136.

11. Daniel. H. H. Ingalls. The Smalltalk-76 Programming
System Design and Implementation. Xerox Palo Alto
Research Center, Palo Alto, CA, 1980.

10

12. A. K. Jones, R. J Chansler, I. E. Durham, K. Schwans,
and S. Vegdahl. StarOS, a Multiprocessor Operating System
for the Support of Task Forces. Proc. 7th. Symposium of
Operating System Principles, ACM', December, 1979, pp.
117-129.

13. Michael B. Jones, Richard F. Rashid, Mary
R.Thompson. Matchmaker: An Interface Specification
Language for Distributed Processing. Proceedings of the
12th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, ACM, January, 1985. Also
available as Technical report CMU-CS-84-161, Department
of Computer Science, Carnegie-Mellon University,
Pittsburgh, PA, 1984.

14. Sonya E. Keene, David A. Moon. Flavors: Object-
oriented Programming on Symbolics Computers. Common
Lisp Conference, December, 1985.

15. Barbara Liskov. Overview of the Argus Language and
System. Programming Methodology Group Memo 40, MIT
Lab. for Computer Science, February, 1984.

16. J. H. Morris, M. Satyanarayanan, M. H, Conner,
J. H. Howard, D. S. H. Rosenthal, F . D. Smith. "Andrew: A
Distributed Personal Computing Environment".
Communications of the ACM 29,3 (March 1986), 184-201.

17. Rashid, R. F. and Robertson, G. Accent: A
Communication Oriented Network Operating System
Kernel. Proceedings of the 8th Symposium on Operating
Systems Principles, December, 1981, pp. 64-75.

18. D. Ritchie. "The Unix Time-Sharing System". CACM
/7 ,7 (July 1974), 365-375.

19. Robert D. Sansom, Daniel P. Julin and Richard
F. Rashid. Extending a Capability Based System into a
Network Environment. CMU Computer Science
Department, April, 1986.

20. Robert D. Sansom. Security in a Network Operating
System. Securicom 86 - 4th Worldwide Congress on
Computer and Communications Security and Protection,
March, 1986.

21. User's Guide to the Sapphire Window Manager. PERQ
Systems Corporation, 1984.

22. Dahl, O.-J. and K. Nygaard. "Simula - An Algol-Based
Simulation Language". Communications of the ACM 9> 9
(Sempember 1966).

23. E. T. Smith and D. B. Anderson. Flamingo: Object-
Oriented Abstractions for User Interface Management
Proceedings of the Winter 1986 USENIX Conference,
January, 1986, pp. 72-78.

24. Alfred Z. Spector, Jacob Butcher, Dean S. Daniels,
Daniel J. Duchamp, Jeffrey L. Eppinger, Charles
E. Fineman, Abdelsalam Heddaya, Peter M. Schwarz.
Support for Distributed Transactions in the TABS
Prototype. Proceedings of the 4th Symposium on Reliability
In Distributed Software and Database Systems, October,
1984. Also available as Carnegie-Mellon Report CMU-
CS-84-132, July 1984..

25. CMU Computer Science Department. Proposal for a
Joint Effort in Personal Scientific Computing. Carnegie-
Mellon University, August, 1979.

26. Guy L. Steele Jr.. COMMON LISP: The Language.
Digital Press, 1984.

27. Mary R. Thompson, Robert D Sansom, Michael
B. Jones, Richard F. Rashid. Sesame: The Spice File
System. CMU-CS-85-172, Carnegie-Mellon University,
December, 1985.

28. William A. Wulf, Roy Levin, Samuel P. Harbison.
HYDRA/C.mmp: An Experimental Computer System
McGraw-Hill Advanced Computer Science Series, 1981.

29. Courier: the remote procedure call protocol Xerox
Systems Integration Standard 038112, Xerox Corporation,
Stamford, Connecticut, 1981.

11

