
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Mach Threads and the Unix Kernel:
The Battle for Control

Avadis Tevanian Jr., Richard F. Rashid, David B. Golub,
David L. Black, Eric Cooper and Michael W. Young

August 1987
CMU-CS-87-149*

ABSTRACT
This paper examines a kernel implementation lightweight process mechanism built for the Mach operating system.
The pros and cons of such a mechanism are discussed along with the problems encountered during its
implementation.

This research was sponsored by the Defense Avanced Research Projects Agency, Department of Defense, ARPA
Order 4976, Amendment 20, monitored by the Airforce Avionics Laboratory under contract F33615-87-C-1499.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied , of the Defense Advanced Research Projects Agency
or the U.S. Government \L

University L ibrar ies
Carnegie Mellon University
Pittsburgh PA 15213-3890

Mach Threads and the Unix Kernel:
The Battle for Control

Avadis Tevanian, Jr., Richard F. Rashid, David B. Golub,
David L. Black, Eric Cooper and Michael W. Young.

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, PA 15213

Abstract

This paper examines a kernel implemented lightweight process mechanism built for the Mach
operating system. The pros and cons of such a mechanism are discussed along with the problems
encountered during its implementation.

1. Introduction
The early Unix notion of process was based on the hardware abstraction of its day: a single CPU

executing within a memory address space. Even today, although, multiprocessors are becoming

increasingly common, neither Unix System V nor 4.3 BSD provide a way to manage more than

one thread of control within an address space.

The addition of lightweight processes to Unix would provide many advantages. In fact, the lack

of kernel support has caused Unix programmers to implement a variety of coroutine packages to

support multi-stack applications. Lightweight threads of control can allow a programmer to

encapsulate computations with their stack state and thus achieve greater modularity. Research

systems, such as THOTH [2] and its successor, Stanford's V Kernel [3], have shown that multiple

threads of control within a single process can be an especially important tool for writing server

applications. A thread package could provide an attractive way to take advantage of the

parallelism afforded by tightly-coupled shared memory multiprocessors.

This paper examines a kernel-implemented thread facility built for the Mach operating
system [1]. The pros and cons of such a mechanism are discussed along with the problems
encountered during its implementation.

2. Kernel Implemented Threads vs. Coroutines
Some of the advantages of lightweight processes can be achieved by out-of-kemel solutions, but

often at the expense of either preemption or parallelism. Two approaches are common: multi

process shared memory implementations and single process coroutines.

Parallel execution can be achieved with multiple processes in conjunction with some kind of

shared memory facility. For example, in Dynix [4] users can allocate a number of processes

equal to the number of processors and effectively manage shared computations through an

mmapcd region of shared memory. Similar tricks allow programmers to build multiprocessor

applications using Encore's UMAX [5] operating system. Typically such systems amount to a

second layer of scheduling similar to that used within the operating system itself.

A significant advantage of coroutine packages is that they can significantly reduce the costs of
multi-thread management or at least isolate them within a user process. Out-of-kemel coroutine
packages do, however, have many problems:

• Scheduling is very difficult to do. Most coroutine packages use non-preemptive
scheduling.

• It is impossible to have truly parallel execution in a pure coroutine package.

• If a coroutine takes a page fault or other type of trap that causes it to wait (e.g. for
disk I/O), then all other coroutines must wait.

• Only a single coroutine may be executing a system call. Therefore, if coroutine
executes a system call that blocks causes the entire set of coroutines to block.

The primary disadvantage of an in-kemel thread implementation is potential cost. In addition to
the cost of crossing the user process/kernel protection boundary with a trap or system call, there is
also the cost of thread data structures, which must be managed in kernel virtual address space,
and the cost of general purpose preemptive scheduling, which will typically be much higher than
those of a specialized coroutine package.

After considering the alternatives and their problems, it was decided that in Mach it would make
sense to provide primitive multi-threaded support within the kernel which would provide for both
parallelism and preemption. This support would then serve as the base upon which lightweight
process packages could be implemented.

3. Mach Task and Thread Primitives
Mach splits the Unix abstraction of process into two components: the task and the thread. A

Mach task consists of a collection of system resources, including an address space. It can be
thought of as that part of a Unix process consisting of its address space, file descriptors, resource
usage information, etc. In essence, a task is a process without a flow of control or register set
(hardware state).

A Mach thread is the basic unit of execution. A thread executes within the context of exactly

1

one task. However, any number of threads may execute within a single task. Threads execute in

pseudo-parallel on a uniprocessor. When running on a tightly coupled multiprocessor, multiple

threads may execute in parallel. A traditional BSD process is implemented in Mach as a task

with a single thread of control.

Appendices I and II list the operations supplied by Mach for creating, managing and destroying

tasks and threads. Note that all such operations are performed using object handles which are in

fact capabilities to communication channels (i.e., Mach ports).

4. User Level Thread Synchronization
At any given point in time, a thread can be in one of three states:

1. A thread that is in running state is either executing on some processor, or is eligible
for execution on a processor as far as the user is concerned. A thread may be in
running state yet blocked for some reason inside the kernel (perhaps waiting for a
page fault to be handled).

2. If a thread is in will-suspend state, then it can still execute on some processor until a
call to threadj^ait is invoked.

3. A thread that is in suspended state is not executing on processor. The thread will
not execute on any processor until it returns to running state.

Each of these states can also apply to a task. That is, a task may be in running, will-suspend or

suspended state. The state of a task will affect all threads executing within that task. For

example, a thread can be eligible for execution only if both it and its task are in the running or the

will-suspend state.

The Mach kernel does not enforce a synchronization model. Instead, it provides basic primitives

upon which different models of synchronization may be buil t One form such synchronization

could take would be the Mach IPC facility [1]. Should an application desire its own thread-level

synchronization, it can use the suspend, resume and wait primitives. For example, to implement

P and V style semaphores with shared memory, one could use:

2

P(semaphore)
{

lock(semaphore);
while (semaphore->inuse) {

thread_suspend(thread_sel£ ()) ;
enqueue(semaphore->queue, thread_sel£());
unlock(semaphore);
threadjwait(thread_self(), TRUE);
lock (semaphore);

>

semaphore->inuse = TRUE;
unlock(semaphore);

}

V(semaphore)
{

lock(semaphore);
semaphore->inuse = FALSE;
next = dequeue(semaphore->queue);
if (next != THREADJWULL)

thread_resume(next);
unlock(semaphore);

>

In this example, lock and unlock could be implemented as spin locks on shared memory. To
perform the P operation, the caller checks if the semaphore is in use. If so, it puts itself on a
queue of threads waiting for the semaphore and goes into a suspended state. When it is placed
back in running state it once again checks the semaphore, suspending itself again if necessary. To
perform the V operation, a thread checks for other waiting threads and places the first thread in
the semaphore queue into the running state.

Note that placing a thread into the suspended state is separated into a suspend operation
followed by a wait operation. If there were not such a separation, it would be impossible for an
application to correctly synchronize unless the kernel provided semaphores directly. If
suspend/wait were a single operation a thread would be forced to call it either before or after
unlocking the semaphore. If the thread made the call before unlocking the semaphore then the
application would deadlock because the semaphore was never unlocked. If the thread made the
call after unlocking the semaphore then it would be possible for the thread holding the semaphore
to perform its resume before the waiting thread is able to suspend itself. In this case, the thread
would suspend itself and never be resumed.

Of course, the kernel could implement semaphores directly (as does, for example, System V). It
was felt, however, that a semaphore package would only add yet another synchronization
mechanism to the kernel on top of that provided by the Mach IPC facility. The kernel would
inevitably implement only a small set of semaphore types and applications that wanted to use
different semaphore semantics would still be forced to use an extra layer of synchronization and
manage additional data structures.

3

5. The C-Threads Package
The exported thread primitives are intentionally low level to allow flexibility in dealing with a

variety of programming languages and architectures. By providing a minimal kernel interface, it

is possible to implement many different application or language interfaces to threads without

burdening some applications in favor of others. For example, a feature that provided dynamically

growing stacks might be useful for a naive C programmer, but it might be extra baggage for a

Lisp programmer.

Higher level interfaces to threads can be provided in the form of:

• run time libraries,

• new language constructs and/or

• home grown packages developed for specific applications.

One such high-level package for programming in C, called C-threads, has already been

implemented. It provides a high level C interface to the low level thread primitives along with a

collection of other mechanisms useful in various parallel programming paradigms (similar to

those available in languages such as Mesa [6]).

The C-Threads package provides
• multiple threads of control for parallelism,

• shared variables,

• mutual exclusion for critical sections and

• condition variables for synchronization of threads.

To provide multiple threads of control, the C-Threads interface defines cthread Jork for creating

new threads, cthread Jexit for exiting threads and cthread Join to wait for a particular thread to

finish.

Threads that wish to access shared data may use the mutual exclusion facilities provided by

C-Threads. In particular, mutexjilloc and mutex Jree allocate and deallocate mutex objects. The

mutex objects support the functions mutex Jock and mutexjinlock which correspond to typical P

and V operations.

Synchronization in C-Threads may also be accomplished with condition variables.
Condition JLIIOC and condition Jree allocate and free condition variables. When a thread wishes
to indicate that a condition is true, it uses condition_signal to awaken at least one of the threads
waiting for the condition. The condition J>roadcast primitive causes all threads waiting for a
condition to wake up. A thread may of course wait for a condition using condition jwaiu

There are, currently, three separate C-Threads implementations. The first implements threads as
coroutines in a single task. The second uses a separate task for each cthread, using inherited
shared memory to partially simulate the environment in which multiple threads run. The third

4

implementation uses the thread primitives provided by the kernel.

The coroutine version is generally easier to use for debugging since the order of context
switching is repeatable and the user need not worry about concurrent calls to C library routines.
However, the coroutine version can not exhibit parallelism as the other two versions do. The
multiple task version can be an effective way to achieve parallelism on architectures which do not
allow full, uniform access-delay sharing of memory.

6. The Effect of Threads on Unix Features
From a Unix programmer's perspective, the separation of the Unix protection domain from its

control abstraction has been accomplished at no apparent cost. Mach provides complete

emulation of 4.3BSD Unix, even for binaries on VAX machines. Overall system performance has

not been eroded.

However, should one desire to use a multithreaded task along with Unix features, there are many
potential pitfalls. Unix was not designed to work in a multithreaded environment Some of the
obvious problems are:

• The semantics of common functions (e.g. fork) are not well defined in the presence
of multiple threads.

• Many standard library routines return results in static areas.

• Most C compilers return structures in a static area.

• The definitions of static returned values such as errno are inappropriate for a
multithreaded environment

• Many library routines, never expected to be run in a multithreaded application, are
coded in non-reentrant ways. Many traditional Unix libraries would not even work if
a signal routine were to be called at the wrong time!

Where the semantics of Unix operations are not well defined in the presence of multiple threads,
it was necessary to determine some reasonable definition. Two examples of this are fork and
signals.

The Unix foik primitive raises the question: "When a thread in a task containing multiple
threads executes the fork system call, which threads does the child task contain?". There are two
possible answers:

1. The child task contains exactly one thread corresponding to the calling thread.

2. The child task contains the same number of threads as the parent. Each thread in
the child corresponds to a thread in the parent.

Mach implements the first choice, which is really the most logical when the properties of tasks
and threads are considered. Fork is largely an address space manipulation and corresponds very
closely to the taskjcreate operation. Unix process semantics dictate that the child must contain at

least one thread. The logical choice for this thread is a replica of the calling thread. This choice
also corresponds to the common case when a thread within a server task decides to foik to

5

perform an operation in a separate address space.

Signals present an interesting problem in the domain of multiple threads. Are signals sent to

tasks or threads? Considering that the logical equivalent of a Mach task is a Unix process, and

that signals are sent to processes, it is appropriate to define signals as being sent to a task.

Unfortunately, a task is not an executable unit and can therefore not handle a signal. To

overcome this problem, the Mach kernel chooses some thread within the task to handle the signal.

The actual thread that will handle the signal is not well-defined. In fact, the current

implementation causes the first thread to notice the signal to be the handler. This is clearly not an

optimal solution because it can seriously confuse a Unix programmer that wishes to use signals to

cause a stack unwinding operation such as longjmp. The better long term solution is to convert

signals into Mach IPC messages. Each task could then designate one or more threads that would

receive signals on a special signal port.

7. Implementation: Details, Problems and Issues
Within the Mach kernel, the task (sic) of incorporating threads exacted a significant toll on the

implementors. This was due to the fact that Mach currently provides for Unix compatibility

directly in the kernel. The 4.3 BSD kernel code was designed (presumably unintentionally) to

make a multiple thread per address space implementation very difficult. For example, both the

u-area and kernel stack reside in the user's address space and are even assumed to exist at the

same address for all processes. Unix process management is not restricted to a handful of

scheduling modules. Instead, it is spread throughout unrelated kernel code. A form of process

management can even been found in device drivers. The 4.3 BSD signal mechanism is neither

well defined nor even appropriate for such an environment.

Perhaps the most annoying problem was that of u-area management. There are literally

thousands of lines of kernel code that use u. to reference the u-area directly. This assumes that the

u-area is at the same address for all processes. Since threads must share an entire address space

and must each have their own u-like data structure, the traditional u-area cannot exist at a single,

unique address. In fact, the problem is even worse: some fields of the old u-area refer to data

which should be thread specific properties while other fields refer to task specific properties.

Therefore, within the BSD compatibility code, each u-area reference can no longer be a simple

memory reference to a fixed address. Instead, each u-area reference must be a pointer

dereference with the pointer depending on whether the desired field is a task or thread feature.

Rather than inspect and modify each of the thousands of lines of C code, a few tricks were played

with the C preprocessor. Two new structures, uthread and utask were defined to hold the thread

and task specific u-area information. For example:

6

struct uthread {
int uu_threadl;
int uu thread2;

};

struct utask {
int uu_taskl;
int uu task2;

};

uujhreadl, uu_thiead2,... corresponded to fields in the typical Unix u-area. Next, u itself was
defined as follows:

#define u (current_thread()->u_address)

with the u address field of the thread-Structure defined as:
struct thread {

struct u_address {
struct uthread *uthread;
struct utask *utask;

} u address;

};
Finally, each potential u-area field was defined as:

#de£ine u_threadl uthread->uu_threadl
•define u_thread2 uthread->uu thread2

#define u_taskl
#define u task2

utask->uu_taskl
utask->uu task2

When a task is created it is allocated a utask structure. When a thread is created it is allocated a
uthread structure. The pointer to this structure, along with the pointer to the task's utask
structure, are then saved in the u_address sub-structure of the thread structure.

The good news is that these definitions handle almost all uses of the u-area. The bad news is
that most u-area references change from one instruction to several. This increases both execution
time and code space. After some intense hacking, each u-area reference was reduced to only 3

7

VAX instructions. The first instruction fetches the current thread, the second instruction loads the

appropriate pointer (uthread or utask), and the third instruction performs the actual u-area

reference.

Even though each u-area reference is now significantly more expensive than in a standard Unix

system, the Mach kernel still performs better than a 4.3 kernel in measurements of overall

performance - largely due to improvements in Mach's handling of virtual memory. For example,

to compile all programs in /bin on a vanilla 4.3 system (using a CMU enhanced cc and cpp) takes

1017 seconds on a VAX 780 (with a Fujitsu Eagle disk drive). A Mach kernel without multiple

thread support and normal u-area references takes only 964 seconds. A Mach kernel with

multiple thread support and the expensive u-area references requires 986 seconds to complete the

test. Given that approximately 700 seconds is spent in user time, and since a Mach kernel can not

improve on the user time of existing binaries, it makes sense to factor that 700 seconds out of the

measurements. Therefore, we see that 4.3 is responsible for 1017 - 700 = 317 seconds. A

non-thread Mach kernel is responsible for 964 - 700 = 264 seconds. A thread Mach kernel is

responsible for 986 - 700 = 286 seconds. So, a non-thread Mach kernel is approximately

(317-264)/317 = 16.7% faster than 4.3. A thread Mach kernel is still (317-286)/317 = 9.7% faster

than 4.3.

It is expected that some improvement in the kernel supporting threads will be gained by

identifying u-area hotspots: those places in the kernel that make many references to the u-area.

Once identified, these sections of kernel code can be reworked to avoid using the u-area, or to use

it in a more efficient way.

8. Performance Issues
While an order of magnitude less expensive than the Unix fork/exit operations, threadjcreate

and threadjerminate are still moderately expensive operations as indicated in table 8-1. In

addition to the 0(1 millisecond) each operation takes on a Micro VAX n, there are also the

memory costs incurred by the thread data structures themselves and the necessity for a (pagable)

kernel stack for each thread which must be physically resident when the thread is runnable. For

this reason, an application that needs huge numbers of thread-like entities (perhaps millions)

would probably be best implemented as a hybrid of kernel-supplied threads and coroutines. That

is, a huge number of coroutines would map to a much smaller number of threads executing in a

single process. The number of threads used could correspond either to the number of available

processors or the number of concurrently executing system calls or traps.

Some of the costs of threads can be "optimized away". For example, the C-threads package

caches threads which have exited so they can be reused when a new cthread Jork is called. In a

multiprocessor with a sufficient number of processors, context switching is eliminated entirely.

On a single processor machine, however, many of the costs of scheduling Unix processes remain

in the scheduling of threads.

8

Fork/Exit vs. Thread Create/Terminate

Kernel operation VAX Instructions Executed
(typical case)

fork
wait3
exit
fork/wait3/exit (total)
thread create
thread~exit
threadlotal

3069
3440
916
7425
375
409
784

Table 8-1:

Number of VAX CPU instructions executed.
(Mach, Micro VAX H, 4K page size)

9. Conclusion and Status
The Mach thread implementation is running (April 1987) on multiprocessor and uniprocessor

VAX, Encore and Sequent machines within CMU. A version of Eric Cooper's C-Threads
package which uses threads is also working. Mach is being released externally to interested
researchers. The first release (Release 0) of Mach began in December of 1986.

10. Acknowledgements
The multiple thread kernel support was implemented by Avie Tevanian, David Golub and David

Black. Eric Cooper implemented the C-Thiead package and along with others had much input on

the final interface. No one in their right mind would claim credit for thinking up the u-area hacks.

9

I. Thread Operations
Following is a list of all kernel supported thread operations:

thxtad^crtitt (task, child, child__data)
taek_t task; /* parent task */
thMtdJb * child; /* new thread */
port_t *child_data; /* child data port */

Threadjcreate create a new thread in the specified task. Initially, the thread is in suspended state

and its registers contain undefined values.

thread_terminate (thread)
thread t thread; /* thread to terminate */

Threadjerminate destroys the specified thread.

thread_suspend (thread)
thread_t thread; /* thread to suspend */

The specified thread is placed in will-suspend state.

thread_resume (thread)
thread t thread; /* thread to resume */

The specified thread is placed in running state.

thread__wait (thread, wait)
thread_t thread; /* thread to cause to wait */
boolean_t wait; /* wait for it to stop? */

If the specified thread is in will-suspend state then threadj^ait will place it in suspended state.

If the wait parameter is TRUE, the calling thread will wait for the thread to come to a complete

stop.

thread_status (thread, status)
thread_t thread; /* thread to query */
thread statusjb * status; /* thread status information */

Threadjtatus returns the register state of the specified thread. The status parameter returns the

address of a machine-dependent status structure describing the register state for the machine type

the thread is executing on.

threadjnutate (thread, status)
thread t thread; /* thread to mutate */
thread_statua_t * status; /* status information to set */

Threadjnutate sets the register state of the specified thread. As in threadjtatus, the status

structure is machine-dependent.

10

II. Task Operations
Following is a list of all kernel support task operations:

task_create (parent, inherit, child, child_port)
taak_t parent; /* the parent task */
boolean_t inherit; /* pass VM to child? */
taak_t *child; /* new task */
port_t *child_port; /* new task's data port */

Task^create creates a new task. The child's address space is created using the parents inheritance
values if the inherit flag is TRUE. If the inherit flag is FALSE, the child is created with an empty
address space. Access to the child's task and data ports are returned in child and childjport
respectively.

task_tarminate (task)
t*«k_t task; /* task to terminate */

The specified task is destroyed.

task_suspend (task)
•**«*_t task; /* task, to suspend */

The specified task is placed in will-suspend state.

taskjcesuma (task)
t««k_t task; /* task to resume */

The specified task is placed in running state.

taak_wait(task, wait)
task; /* task to cause to wait */

boolsjanj; wait; /* wait for it to stop? */

If the specified task is in will-suspend state then task wait places it in suspended state. If the
wait flag is TRUE the calling thread will wait for all threads in the task to come to a complete
stop.

task_threada(task, list)
t m * k — t task; /* task to generate list for */
thread_t *list[]; /* list of threads */

Taskjhreads returns the list of all threads in a task.

task_ports(task, list)
taak_t task; /* task to generate list for */
P 0 3*.* *list[]; /* li«t of ports */

Taskjports returns the list of all ports the specified task has access to.

11

References

[1] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid, Avadis
Tevanian, Michael Young.
Mach: A New Kernel Foundation for UNIX Development.
In Proceedings of Summer Usenix. July, 1986.

[2] D. R. Cheriton, M. A. Malcolm, L. S. Melen, and G. R. Sager.
Thoth, a Portable Real-Time Operating System.
Communications of the ACM : 105-115, February, 1979.

[3] D. R. Cheriton and W. Zwaenepoel.
The Distributed V Kernel and its Performance for Diskless Workstations.
In Proceedings of the 9th Symposium on Operating System Principles, pages 128-139.

ACM, October, 1983.

[4] Sequent Computer Systems, Inc.
Dynix Programmer's Manual
Sequent Computer Systems, Inc., 1986.

[5] Encore Computer Corporation.
UMAX 4.2 Programmer's Reference Manual
Encore Computer Corporation, 1986.

[6] Lampson, B.W. and D.D. Redell.
Experience with Processes and Monitors in Mesa.
Communications of the ACM 23(2):105-113, February, 1980.

12

