NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

PATH EXPRESSIONS

A. N. Habermann
Carnegie-Mellon University
Pittsburgh, PA 15213

June 1975

Abstract. Traditionally, synchronization of concurrent processes is coded in line by
operations on semaphores or similar objects. ~Path expressions move the
responsibility of implementing such restrictions from the programmer to a compiler.
The prcérammer specifies as part of a type definition which execution sequences are
permitted. The advantage of using path expressions instead of P, V operations on
semaphores {or similar operations) is comparable to the advantage of using for- and
while-statements instead of JUMP or BRANCH instructions. In this paper the rules for
writing a path expression are described, parsing and implementation are discussed and

the use of path expressions is shown by a number of examples.

This work was supported in part by the Defense Advanced Research Projects
Agency under contract F44620-73-C-0074 monitored by the Air Force Office
of Scientific Research, and in part by the National Science Foundation
under grant DRC74-24573,

l. INTRODUCTION

The concept of subroutine was invented to save the programmer the unrewarding
task of rewriting the same lines of code several times. Presently, the significance of
procedures or functions goes far beyond the original subroutine idea. The procedure
declaration is an important program design tool. First, it allows the programmer to
~ split the programming task into several parts, where each part is significantly smalier
than the total program. Secondly, the procedure concept provides an important
abstraction tool. In a well-designed program, the implementation of a procedure is
irrelevant to the program environment in which the procedure is called. All that
matters at the call site is the functional specification of the procedure, ie. the

parameters it expects and its effect on the calling environment.

In large programs (such as a compiler or an operating system) the procedure
concept is useful but not sufficient to make the programming task simple enough.
Here the number of procedures rises to such a height that it becomes necessary to
partition the set of all procedures into meaningful subsets. The promising concept for
achieving such a meaningful partitioning is that of a "type definition” (or "class” in
SIMULA 67). A type definition describes the internal structure of a set of data
.Objects and all the procedures which define operations on these objects. E.g., applied
to compiler design, one finds type definitions for objects such as a hash table, a
symbol table, a lexeme, a syntax stack, etc. More detailed exlamples follow in

subsequent sections.

An operating system makes it possible that user programs share resources and
run in parallel. However, it is a well-known fact that user programs cannot .have

unrestricted access to shared objects {1} In many cases only one operation on a

1. INTRODUCTION

shared object may be executed at a time, though the order is immaterial. In other
cases operations must be executed in a given order (e.g. placing the first message in

a queue must precede taking a message out of the queue),

Until now, concurrency restrictions have been coded in line by inserting critical
regions and wait/signal operations in the programs [2} There has been an extensive
discussion about a variety of synchronization primitives. An analysis of their relative
power is found in [3]. Path expressions do not introduce yet another synchronization
primitive. A path expression relates to such primitiveé as a for- or while-statement of
an ALGOL-like language relates to a JUMP or BRANCH instruction in an Assembiy
language. A programmer specifies control by a while-statement; the stafement is
implemanted by test and branch instructions. Likewise, a programmer specifies
restrictions on the execution of operations on shared objects; the specified
restrictiohs are translated by a compiller into instructions which use synchronization
primitive;s. The purpose of writing path expressions is_to bring the design of
concurrency restrictions to a higher level in the same sense as eluded to by the

' phrase “higher level programming language”. Programmers ha.ve learned by

experience how important this is.

Concurrency restrictions apply to operations which access a shared object. Since

a shared object is completely described by a type definition, a path expression is

- placed in a type definition as part of the internat structure descripti'o.n {examples
follow in subsequent sections). A path expression describes the allowable seqﬁences
of executing operations on 2 shared object. In the common simple case, a path
expression is a regular expression from which all possible execution sequences can be

derived.

1. INTRODUCTION

Subsequent sections deal with simple path expressions, with conditional elements
and concatenation of path expressions, and with parsing and implementation of path
expressions. The use of path expressions is demonstrated by several examples, some

of which have been borrowed from the paper on Monitors [4],

2. ON WRITING PATH EXPRESSIONS

2.1 A path expression is delimited by the keywords path and end. Its operands are
function names. The operators are (in precedence order) %, 5, +. The precedence is
overruted by parentheses (). The operator ; is the sequencing operator. The
sequencing operator can be omitted (analogous to the multipiication operator in
arithmetic expressions). Eg.

path-a; b ; ¢ end or path a b ¢ end
means that the only permissible execution sequence is:abcabecab tcabcabea

b ¢ ----. An operand to which the sequencing operator applies is called a "factor".

The keywords path, end represent an implicit Kleene star, i.e. once the end of a
path is reached, the path can be entered again at the beginning. The operator ¢ also
represents the Kieene star. It is used as 2 unary postfix operator indicating that the
operand it modifies can be executed 2ero or more times before going on to the next.
Eg.,

pathp ;{g;ri% s end or path p (q r)x s end
means that an arbitrary number of sequences q; r {inciuding none) can be executed in

between an execution of P and the subsequent execution of s.

2 ON WRITING PATH EXPRESSIONS

The operator + represents exclusive selection, E.g.

path f ; (g + h); k end
means that either- a g or an h (but not both or none) must be executed between an
execution of f and the subsequent execution of k. An operand to which the operator

+ applies is called a "term”,

The operator ; is distributive with respect to the operator + Eg.,
path f (g + h) k end = path {fg + th) k end = path fgk + fhk end,
because in all cases an execution of K ié separated from the preceding execution of f

by an execution of either g or h.

The operator * is not distributive with. respect to either + or ;. Eg.
pathp;(g;r)* ;s end# path p ; {qx; r#); s end
because in the latter all g’s between a p and an s precede all r'’s between these two.
Also, ‘
path f (g + h)x k end # path { (g% + h#) k end
because the first path allows an arbitrary mixture of g’s and h’s between every pair
(f,k), whereas the second path allows either all g’s or all h's (but no mixture) between

an execution of f and a subsequent execution of k.

2.2. A path expression can easily be transiated into a graph model representing the
finite state machine defined by the regular expression. The arcs in the graph
represent the functions, the nodes represent the initial state, the final state and the
sequential states corresponding to the semicolons in the path expression. E.g.,

path f (gh + km#nXp + q) s end

is represented by the graph

2. ON WRITING PATH EXPRESSIONS

(The final state is identical to the initai state.)

The difference between path f (8 +h)t k end and path f (g2 + he) k end s

shown in the graphs below.

The first of these paths is called a "simple path". The second is not a simple path.
In terms of the graphs, a simple path has a graph in which no two‘arcs carry the same
name. In terms of finite state machines, an operand of a simple path has a unique
starting state and a unique resuit state. The result state is in general a function of
the current state and the executed fun.ction. However, the result state in g simplé
path expression is a function of the executed operation, but not of the current state,

It was shown in (5] that simple path expressions can be implemented by PV

operations on Boolean semaphores,

2. ON WRITING PATH EXPRESSIONS

2.3. In many cases in v(hich synchronization is necessary, simple‘paths are adequate.
E.g., a set of critical regions {a,b,c,d} is programmed by
patha+b+c+dend
because this path specifies that each time exactly one of the four functions can

execute,

If the execution of a function named in a path expression is attempted and the
current state of the path expression does not allow its immediate execution, the
program attempting the execution is suspended. When the state of the path
expression changes and some programs are waiting for a function which can be
executed in th.at state, the longest waiting program will be reactivated and will be
enabled to execute the requested function, In other words, the programs are
scheduled per state in first-come, first-serve order (FCFS). In Se_ct‘ion‘a we will see
how the order can be specified, up to a limited extent, by the programmer.

Example -1. A communciation between two processes is initiated by declaring a buffer
which can hold a message whose interpretation is known to both processes. Assuming
the existence of fhe type message, the buffer objects are defined by
type onesiotbuffer =
var mes = message
path deposit; remove end
let b = oﬁeslotbuffer, m = ref message in
op b.deposit{m) = mes € m
op b.remove(m) -.m « mes

end

2. ON WRITING PATH EXPRESSIONS

The type definition consists of two parts. The first part is a record describing the
internal structure of the objects of that type. The second part describes the
operations which can be performed on these objects. The let-clause specifies the
paramefers used in the operations. The prefix parameter of an operation is of the
same type as the type in which the operation is declared (SIMULA &7 laudatur),
Unprefixed fieldnames, such as “mes", in the body of an operation relate to the given

prefix parameter,

The internal structure defined in a type definition can be accessed in the programs
of the operations defined in that type. Outside the type definition, the operations can

be applied, but the internal structure is not accessible,

The path expression is part of the internal structure, i.e, every object declared of
type oneslotbuffer has its own path. A path is not defined for the collection of
objects of that type; on the contrary, a new instance of the path is created every time

a new object of that type is declared.

The path expression specifies that every deposit must be followed by a remove
action and every remove by a deposit. If a second remove is attempted, it will
automatically be delayed until another deposit has taken place. A second attempt to

deposit is likewise delayed until the first message has been removed.

Example 2. Some cases which an operating system must handle call for a
scheduling discipline different from the straightforward FCFS discipline postulated for
path expressions. An example is given in [4] suggested by A. Ballard and J. U

Horning.

2. ON WRITING PATH EXPRESSIONS

An alarm clock service must be designed which enables a cailing program to delay
_itself for a given number‘of time units, or "ticks". A program sets the alarm clock by
calling wakeme(n = integer). The programs must be awakened by smallest wékeup
time first and not in FCF_S order. Time is méasured by a hardware clock which

activates the alarm clock procedure “tick” every time unit.

The alarml clock feature is provided by a def;lnitiOn of "wakeuptime" and a
definition of "alarmclock”.
type wakeuﬁtime =
var wt = integer {o0) commént wt is initialized with the value o
path set; pass; wakeup end
lstu= wa'keupt'ime, n = integer in
op uset(n) = wt «n
op u.pass = wt « 0
op u-.wakeup =wteo
op u.val = rasuli integer; return wt

and

A type definition describes an object and its operations, but it does not declare
any objects of its type. If we wish to combine a type definition with the declaration

of one object of that type, we use the keyword decl instead of type..

The alarm clock maintains a list of wakeuptimes. A list w is declared by
var w = list <n> of <t>
where n is the number of initial elements and t the type of the list elements. The

current element of a list w is represented by .W. Relevant list operations are

2. ON WRITING PATH EXPRESSIONS

advance w current is set to the next element or to nil
if it is moved past the end of the list

reset w set current back to the first element

new .w a new list element is created and inserted preceding
the current. The current is set to the new element:

free .w the current element is deleted and current is advanced

Assuming that only one alarm clock is needed, the declaration of alarm clock is
decl alarmclock =
var wlist = list 1 of wakeuptime
comment the list is initialized with a permanent last element with value
var now = integer(0), first = integer{co)
path setalarm + tick end
let n = integer in
proc sétalarm(n) = resuit ret wakeuptime
begin cons t = n + now
reset wiist; while .wlist.wt <t do advance wlist od
comment termination is guaranteed by the fact that last element.wt = o
if .f'irst > t then first « t fi; new.wlist; .wlist.set(t)
return ref .wlist |
end

comment a proc is not available cutside a type definition

2. ON WRITING PATH EXPRESSIONS

op wakeme(n) =
begin var x = setalarm(n); x.wakeup end
op tick =
begin now « now + 1; reset wlist
while .wlist.wt < now do .wlist.pass; free .wlist od
end ‘

comment tick is activated at regular intervals by the hardware clock

A program calling wakeme adds a new element to the list of wakeuptimes which is
inserted such that the list is sorted by ascending wakeup times at ail times. The
program then applies wakeup to this element. The path expression in type
wakeuptime ensures that the wakeup operation is not scheduled until operation pass
has been applied to this element. The latter operation is performed by tick, but not

until "now" overtakes the stated wakeuptime.

This solution seems more complicated than the Monitor solution given in [4} This
is primarily due to explanation of the list operation, However, the given solution
deserves this title more than the Monitor solution. The latter has the drawback that
the program whose wakeuptime is the first is awakened every clock tick! (Imagine the
poor guy who wants to get up early in the marning at 5:30 am. and turns in early at
9:00 P.M. He is awakened after every time unit and he must inspect his watch every
time to see if it is time to get up.) A fair comparison cannot be made unless an

accurate Monitor solution is presented.

Example 3. The delay between two data transfers from {or to) a disk with a
moving head is proportional to the distance the head must travel. Therefore, the most

efficient schedule for processing disk requests is not FCFS, but “nearest track first",

10

2. ON WRITING PATH EXPRESSIONS

i.e, if a transfer invoiving track t is completed, the disk s;cheduler should pick as nekt
request the one asking for a track nearest to t. However, this scheduling discipliné
has the drawback of a potential starvation. It may happen that the scheduler picks
requests for tracks at one end of the disk all the time, neglecting requests for the
other end of the disk. This problem is solved by an "elevator schedule". The
scheduler will pick the nearest track, but it will move in one direction,‘either up or

down like an elevator, until there are no more requests for tracks in that direction.

A program activates the disk by plécing a command in its command buffer, We
assume the existence of type command, describing the internal structure of a disk
command. A disk device is represented by the definition
type DISKDEVICE(n,p = integer) =

array [1:n] of array [1:p] of storagecei!
var combuf = command

path aétivate; execute; release end

let D = DISKDEVICE, ¢ = command in

op D.activate(c) = combuf « ¢

op D.execute = <data transfer by device>

op D.reiease = combuf « nil

aend

The operation execute represents the action of the disk dsvice exec'uting the
command in its command buffer. The details of this action are not relevant here. The
path specifies that a program cannot execute release until the device has completed a
transfer. The action corresponds to the program detecting that the device is done.

Its occurrence in the path is more important than the action it performs. Instead of

11

2. ON WRITING PATH EXPRESSIONS

setting combuf to nil, the body could have been defined as a noop. Its position in the
path, however, guarantees that the next command cannot be placed in the command

buffer unless the completion of the current data transfer has been detected. -

Data transfer requests will be sorted by arrival time per track, ie. requests for
one track are treated FCFS. Grouping requests by track is made possible by
type track =
var com = command(nil)
path reserve ; val.; leave end
let t = track, ¢ = command in
op t.reserve(c} = com « ¢
op t.val = result command; return com

op t.leave = com « nil

. and

The operation leave plays a role similar to that of the operation release in type
DISKDEVICE. Its usefulness becomes clear in the definition of DISKSCHEDULER {see

the definition of access).

The direction. in which the head is traveling is represented by a "range type".
This is a type definition in which ail the constants of that type are listed by name (e.g.
raﬁga type color = red, orange, yellow, green, blue, violet end). The operation of type
direction allows us to change the direction.
range typ'e direction = {up,down}

let d = direction in
op dinvert = result direction; return if d = up then down efse up fi

and

2. ON WRITING PATH EXPRESSIONS

We are now ready for the DISKSCHEDULER. The scheduler keeps track of the first
request in both directions in the variables next[down) and next{up] It changes
direction w‘hen there are no more requests in that directioh. The scheduler makes
only one operation available to programs which want to use the DISK device controlied
by the scheduler. This operation is "access" and it requires a track number and a
command to be executed. The operation access uses the procedures "enter” and
"exit" {not available outside the scheduler) in which respectively a request is entered
and a next data transfer is scheduled (if any).
type DISKSCHEDULER(n,p = integer) =

array [1:n] of track; var D = DISKDEVICE(n,p)

var free = array [1:n] of Boolean{irue)

var dir = direction{down), k = integer(0); const Dsize = n

var next = array direction of integer(0,c)

path enter + exit end

let S = DISKSCHEDULER, i = index, ¢ = command in

proc S.enter(i) = '
if next[up] = 0 end next[down] = o then k « i; D.activate(S[klval)
else free[i] « false
if i = k then next[dir.invert] « i
olse if i < k and next[up] < i then next[up] « i
else if i > k and i < next[down] then next[down] « i fi

ki f

i3

2. ON WRITING PATH EXPRESSIONS

proc S.exit(i) =
begin var x = integer; if next{dir] = 0 or next[dir] = co then dir « dir.irfvert fi
if O < next{dir] < oo then
k « next[dir}; D.activate(S[k].vat)
if dir = down then
if some x in [k+1 : Dsize] sat not free[x]
then free[x] « true; next[down] « x else next[down] « co fi
else
if some x in - [1 : k-1] sat not free[x]
then free{x] « true; next{up] « x else next[up}'t-'o fi
fi fi
end
- op S.access(ic) =
begin S[ilreserve(c); enter(ic); Drelease; S[illeave; exit(i) end

end

The procedure enter immediately activates the requested data transfer if this is
the only request in existence. Otherwise, it updates the appropriate next pointer (if
necessary). The procedure exit changes the direction if there are no more requests
in the present direction. The variables next{up] and next[down] are primarily used
for improving the DISK utilization. Without them, procedure exit must search the
array of tracks for the next requested track before it can activate the DISK. The
variables next[up] and next[down] make it unnecessary that the search through the
array precedes the activation of the DISK. This saving of time is important, because,
if it is not activated within a critical time limit, the DISK cannot.operate at full speed.

(The problem can be solved in another way if the array is replaced by twao lists, one

14

2. ON WRITING PATH EXPRESSIONS

for the direction up and one for down. Type track mus't then be extended with an
- additional field "num" \}vhi_ch records the track number. The bulk of the work is now
performed in procedure enter. As before, it immediately activates the requést'ed
transfer if this is the first request. Otherwise, it places a new element in the
appropreate ilst {depending on i<k} such that the up-list is sarted by descendlng track
number and the down-list by ascending track number. Procedure exit reduces to a
change of direction if the list it is working on is empty and achvatmg the first element

of the list in the current direction.)

The search through the arra} of tracks cannot be omitted, but instead of
preceding the DISK activation, it is performed after the DISK has been activated. The
construct .

some <var> in {-}<range> sal <Boolean expr>
is equivalent to a logical predicate prefixed by the quantor 3. (The keyword sat reads
as "satisfies” or "satisfy".) If the range is empty or the Boolean expression is false far
all the range values, then the result is false and the variable is undefined. If there is
a value in the range which satisfies the Boolean expression, tHe result is true and.the
value of the variable is the leftmost range element for which the Boolean expression is
satisfied. The optional minus sign in front of the range means that the range is
traversed from right to left. In that case the rightmost range element is returned.
{The obvious compiement of this predicate is

all <var> in {-}<range> sat <Boolean expr>

which is short for not some <var> in {-}<range> sat not <Boolean expr>,)

The programs for enter and exit become substantiafly‘ shorter if the variables

next[up] and next[down) are deleted. Procedure enter reduces to an activation if the

15

2. ON WRITING PATH EXPRESSIONS

request is the first. Procedure exit amounts to the search for the next and its
activation (if one is found). However, it was noted that this may result in poor
performance of the DISK device. In this simplified form, the SCHEDULER is essentially

the same as the DISK MONITOR presented in [4]

3. CONDITIONALS, PRIORITY AND CONNECTED PATHS

3.1 In some cases the pro'grammer should be able to specify that an operation can be
executed only if a certain condition is true. For example, if the type stack is defined
with the operations push and pop, the former must not be executable when the stack
has reached its maximum height and the latter must not be executable when the stack

is empty.

A coﬁditional.element in a path expression has the form
[?cond.1>:<e|em.1>,<cond.2>:<eIem.2>,...,<cond.n>:<e|em.n>,{elem.(n+1)}]
The conditional element is equal to the leftmost element for which the preceding
condition is true. The optional {n+1)st element is the “otherwise". It represents the

conditional element if all conditions cond.l,..cond.n are false.

The conditions in & conditional element are severely restricted. The permitted
conditions are Boolean expressions in which the 0perénds are either constants.or
fieldnames of the type definition in which the path expression is defined. Moreover,
all operations which modify the operands of the conditions mﬁst occur in the path
expression of which the conditional element is a part. These restrictions- are

necessary to make sure that the evaluation of a condition does not conflict with other

16

3. CONDITIONALS, PRIORITY AND CONNECTED PATHS 17

operations on the operands used in that condition. Such a conflict is not possible if -
the operations which modify operands of a condition occur in the path, because

evaluation of the path and execution of one of its elements exclude one another,

Example 4. The operations on a stack are push and pop. The elements of a stack
can be of arbitrary type. However, we restrict ourselves to a stack of uniform type,
i.e. all the stack elements must be of the same type. When a stack is declared, its
maximum height must be specified.
type stack(n = integer, ‘t = type) =

array [1:n] of t
cons max = n; var top = integer(0)
path{top = O: push, top = max: pop, push + pop] end
tet st = stack, x = raf t in
op st.push(x) = begin top+1; st{top] « x end
op st.pc;p(x) = begin x « st[top}; top-1 end
end

The conditions in this path expression clearly satisfy the restrictions,

3.2. The normal scheduling discipline in a path expression is FCFS. However, there are
cases in which execution of two different functions is possible, but the execution of
'oné of .these two is more important than execution of the other. If such a fixed
priority relation exists between two elements p and q of a selective element p+q, the
priority can be indicated-in a path by one of the symbols > or <, These symbols ﬁavel
the same precedence as the operator +. Eg.,
path'f(g > h) k end

" means that after an execution of f either a B Or an h can be executed. However, 'if an

3. CONDITIONALS, PRIORITY AND CONNECTED PATHS ‘ 18

execution of both g and h is requested, g will be scheduled first.

Stating a fixed priority introdﬁces the problem of a potential starvation. If
executions of g are requested so frequently that another request for g has arrived by
the time f compiefes, then h will never be executed. Thus, the priority operator must
be applied with care. It can be used in cases in which starvation is not possible or in
cases where the starvation is allowed. (An example of the latter is the null operation

which is performed on an idling CPU.)

Example 5. The operating system maintains a pool.of storage blocks, equal in size,
which ¢an be allocated to user programs and will be released in due time. The
operations available to a user program are getspace and release. We postulate
the existence of a type baseaddress, which gives access to a block of storage. The
operating system maintains a stack of free blocks. (All free storage blocks are
identical,‘so a stack is as good as a queue.) If there is a state in which either gelspace
or release can be executed, there is a slight preference for executing release first.
This cannot lead to starvation, because there is a finite number of storage blocks in
the pool. The number of consecutive executions of release is limited by that number.
The type definition for the storage pool is, of course, very similar to the preceding
stack example because of our choice to record the free blocks in a stack.
decl POOL(n = integer) =

array [l:n] of baseaddress

cons max = n; var free = integer{n)

path[free = O: release, free = max: getspace, release > getspace] end

let b = baseaddress in

op release{b) = bagin free+1; POOL{free] « b end

3. CONDITIONALS, PRIORITY AND CONNECTED PATHS 19

op getspace(b) = begin b « POOL{free); free-1 end

end

3.3. It is allowed to define more than one path within a type definition. These paths
may be independent in the sense that none of the operands in one path occurs in the
other, or the paths may share some 'Operands. A multiple path construct can, for
instance, be used to express potential parallelism. E.g., the multiple path

eath p;rend '

path g ;r end
specifies that two subsequent p's are separated by an r, that two subsequent q’s are
separated by an r, and that two subsequent r’s are separated by ap and aq. But the
multlple path does not specify any ordering between p and q. Therefore, it does not

- matter in which order p and g are executed in between two subsequent t’s. The

executions of p and q may even overlap in time. HoWever, the next r canpot be

executed until both p and q have been completed.

A path expression allows the execution of only one of the functions named in that
path at a time. (In other words, the functions named in a path are automatically
embedded in a crltlcal region specific for that path.) The computation of the next state
in the path takes place in between two function executions and does not overtap with

the execution of one of the functions.

The functions in the multiple path of the preceding example are not necess@ri!y‘
mutually exclusive. In addition, the next state of one path may be evaluated while a
non-shared function in the other path is executing. We call such a muitiple path
structure a "parallel path", bacause there is an inherent perallelism in the execution of

non-shared functions.

3. CONDITIONALS, PRIORITY AND CONNECTED PATHS 20

A stronger connection between paths is obtained by concatenating several paths
into one path. The symbol & is used to represent concatenation. Eg.,

pathp;r &q;rend
is the concatenation of the paths path p ; r end and pethg;r end The
concatenated paths are treated as one. This means that only one function named in
the path can be executed at a time. In addition, the next state computation takes
~ place in between the execution of functions named in the path, so the next state
computation cannot overlap with the execution of 'Ione of the functions. Al the
function executions and the next state computation are mutually exclusive in this case.
We call this multiple path structure a "connected path". The given example states that
every execution of r must be preceded by an execution of p and an execution of a.
The order in which p and q are executed is not.specified. However, since p and q
occur in a connected path, it is not possible that p and q execute in parallel.
Therefore, every execution of r is preceded by either the sequence piq Of by the

sequence q;p.

The restrictions imposed upon conditional elements cause no problem in a
connectéd path. Ina péraliel path, however, the variable operands in a condition can
only be modified by operations in the path in which the condition occurs. Eg.,

path [s < t: pr) & [s <t:qr]end

path [s < t: p,r] end and path [s < t: qr] end
where p -s«-sl-,l,q=tt-t—1,r={se—s+1;t4—t+1<}. The connected path is
~correct, because all the operations on the variabie operands in the conditions oceur in
the path. The parallel plath violates the restrictions on the variable operands in the
conditions, because p in the. first path modifies a variable in the condition of the

secon'tl:i bath and g, in the second path, one in _the first path.

3. CONDITIONALS, PRIORITY AND CONNECTED PATHS | 21

Example 6. In the first paper on path expressions [5] we described how a
bounded buffer of n slots (n > 1) can be built from the types oneslotbuffer and
ringbuffer. The connected paths make it possible to define a ringbuffer which builds

directly on the type message without having to define an auxiliary type oneslotbutfer.

A bounded buffer (or ringbuffer) has a number of N siots which can hold a
message (N > 1). The programs which place a message in a slot are called the
“senders”, the programs which take a message out are called the “"receivers®. The _
constraint is that senders and receivers must not operate on a buffer slot at the same
time, This can, of course, be achieved by allowing only one sender or one receiver to
access the ringbuffer at a time, ie. by embedding deposit{(m=message) and
remove(m=message) in one critical region. However, we consider this solution as too
restrictive. It is perfectly alright that several senders and several receivers access
the ringbuffer at the same time if they access different slots. Thus, the restrictions
must be .imposed on finding a buffer slot in which a message can be placed or from

which a message can be taken,

A buffer slot can be in one of three states: empty, full or inuse. In the state
empty, the slot is available for placing a message. In the state full, a message can be
taken out. The state inuse indicates that this slot is momentarily not available,

because either a message is being placed in this slot, or a message is being taken out.

The type ringbuffer makes available two operations on a ringburrer:
deposit(m=message> and remove(m=message). It uses four internal procedl:lres:
searchslot, searchmes, addslot and addmes. The procedure searchsiot looks for a slot
in state empty and the procedure searchmes looks for a slot in state full. The

senders should not be able to execute searchslot if all the siots are full. The

3. CONDITIONALS, PRIORITY AND CONNECTED PATHS 22

receivers should not be able to execute searchmes if all the slots are empty. These
- constraints will be expressed in a path expression. The procedure addslot is
performed by a receiver when it is done taking out a message. A sender performs

addme_s-_when it is done placing a message in the f'ingbuffer.

The search process is slightly imp'roved'_by the use of two variables d (for deposit)
and r (for remove) which respectively point to the last fbun,d empty slot and the last
found _full slot. A search starts at d+1 or r+1 instead of always at lhe- fif;t buffer
siot. If the search always starts at the front, the probability of finding a slot in the
state we are Iooking for is smaller at the front than at the end. The variables d and r
let a search start at the slots which have been least recently inspected.
type ringbuffer(N=integer) =
| array [0 : N-1] of message; cons size = N

var mesnum = integer(0), slotnum = size, d,r = integer(-1)

range iype slotstate = {empty, inuse, fuli} end

var state = array [0 : size-1] of slotstate

path [mesnum > 0 : searchmes] + addmes & [slotnum > 0 : searchsiot] + addslot end
ot rb = ringbuffer;, m = message, k = index in

proc rb.searchmes = result integer

begin local x = r+l; while state[x] # full do x « {x+1) % size od
state[x] « inuse; mesnum & mespum = 1;r « x; returnr
end

comment the operator 7% stands for the remainder function

3. CONDITIONALS, PRIORITY AND CONNECTED PATHS 23

proc rb.searchslot = result integer

begin local y = d+1; while state[y] # empty do y «{y+1) 7 size od

state[y] « inuse; slotnum « slotnum - 1; d « y; refurn d

end
proc rb.addmes(k) = begin mesnum « mesnum + 1; state{k] « full end
pro¢ rb.addslot(k) = begin slotnum « slotnum + 1; state[k] « emp.ty end
op rb.deposit{m) = begin iocal y = searchslot; rb[y] « m; addmes(y) end
op rb.remove(m) = begin local x = searchmes; m « rb[x]; addslot(x) end

end

The path expression precludes the execution of deposit if there are no empty
slots available and it precludes the execution of remove if there are no messages in
the buffer. The path specifies that the search and add operations cannot overlap in
time. This guarantees that the elements of the state vector and the variables slotnum
and -mesﬁum have a meaningful value. The path does not specify that an execution of

~searchslot must be followed by an execution of addmes, nor does it require
searchrﬁes; addslot, Thig means that a number of senders and receivers can access

~ the ringbuffer at the same time, but only one at a time can search or add.

This solution differs from the éolutions given in [5 and 6) in that here several
- senders and several receivers can access the buffer, whereas the ofher solutions
allow only one sender and one receiver to acces§ the buffer simultanecuslty. R
However, P. Wodon showed that these solutions can be revised to handle several
senders and several receivers [7). The monitor solution given m [4] is very
restrictive. It allows only one user at a time, either a sender or a receiver, but not

both, It seems not hard to modify the buffer monitor such that it handles the search

3. CONDITIONALS, PRIORITY AND CONNECTED PATHS ‘ 24

and add procedures, but not the buffer operations. Then it also allows several

senders and several receivers to access the buffer simultaneously.

Example 7. Another problem that has frequently been discussed is the Readers-Writers
problem [8] A group of "readers" can "read" a data object which they share with a
group of "writers” who can "write” the data object. Reading can go on in paraliel, but
only one writer can write at a time. In addition, writing must not overlap in time with

reading.

Since the actions "read” and "write" are of no consequence to the solution of the
problem, we will not present a complete type definition for the data objects to be
read and written. We confine the solution to the path expressions which restricts the

executions of reading and writing.

A writer cannot start as long as reading is going on. It is therefore necessary to
distinguish between the states "reading is going on" and its negation. These states
and their transitions are easily implemented by counting the number of readers, r.
Let read be defined as { rinit ; actual reading ; rquit }, where |

procedure rinit =1 «r + 1
and

procedure rquit =r «r -1
If r is initialized at zero, the test r = 0 reveals whether writing can start or not. This
is expressed in the path expression

path [r=0: write, rquit] + rinit end
If r > 0, writing cannot start, but readers can start and leave. Thus, reading can go
on in parallel, If r = 0, either a reader or a writer can start. [f a writer starts, a

reader cannot start until the writer is done,

3. CONDITIONALS, PRIORITY AND CONNECTED PATHS : 25

This solution has a starvation problem. 1t is possible that the writers will never
get a chance if reading is gding on. By the time a reader quits, another reader may
have performed rinit. If this happens all the time, r will never reach the value zero

and writing is impossible.

Writers get a fair chance if no new readers could do rinit after a writer attempts
to start. Therefore, we introduce the procedure "writeattempt” and redefine write =
{writeattempt ; actual writing}. Reading will die out after a write attempt has
succeeded if we add

pa_nth rinit + (writeattempt ; write) end
to the path above.. The additional path does not allow another rinit to start if
writeattempt succeeded and r > 0, because the first path does not allow a write to
proceed. This means that the element (writeattempt ; write) cannot complete until r

= 0.

The first solution favors the readers and the second solution gives both writers
and readers a fair chance. The problem discussed most frequently is the one in which
the writers have a preferential status. le., as soon as a -wr‘iter attempts to write, no
new readers should be able to start reading. The solution of this problem is obtained
by a simple modification of the fdir solution. The selection operator + in the additional
path is replaced by the selection operator < which assigns priority to writing. The
path solution is then

path [r = O: write, rquit] + rinit end

path rinit < (writeattempt ; write) end
If a reader must wait because writing is going on and another writer arrives later than

this reader, the writer is selected when the second path becomes available. Only if

3. CONDITIONALS, PRIORITY AND CONNECTED PATHS 26

no other writer arrived before the last write operation.has been completed, then a
reader can perform rinit, The first path assures that writing will ;'\ot start until all

reading has teased.

The two paths of the last two solutions form a parallel path instead of a connected
path. This means that the non-shared operands rquit and writeattempt can be
executed in Aparal!el. It would not make much difference in this case if the paths were
connected, becaﬁse not much is gained' by the parallel execution of these two trivial

~ procedures.

4. PARSING AND IMPLEMENTING PATH EXPRESSIONS -

4.1 A path expression has an ambiguity if its graph has two arcs with the same name
leaving the same state, but resulting in different states. Eg., the'graphé of
path f(gh + gk}m end - and

path figh + g¢k)m end are

The programmer is allowed to write such ambiguities, because they can be resolved
when the path expression is compiled.. in the first case the two arcs are replaced by
one and the result states are merged into one. This means that the operand g in the
path expression is taken out as common factor. The result is

path fg(h + k}m end

4. PARSING AND IMPLEMENTING PATH EXPRESSIONS 27

If the ambiguity involves a repeated element, the triék is to replace this element,
g* say, by € + gg+ where ¢ means the empty action. The given example is then
transformed into

path f (gh + (¢ + gg+) k) m end =

path f (g (h + g*k) + k) m end
The last version is free of ambiguities. (If necessary, gt can be replaced by € + g(¢ +
glc..+ ggs)..). Applying this rule, path f (ggh + gtk) m end s transformed into
"path f (ggh + k + g (¢ + gg#)) m end which reduce; to path f (k + g (k + glh +
g*k})}) m end.)

A given path expression can be simplified in a manner similar to the simplification
of algebraic expressions. Common factors can he taken out not ohly from the left but
also from the right. Eg.

path (a+b)p + a(p+q) + b(p+q) end
can be Written as

path (a+b)p + (a+b)(p+q) end = path (a+b)p+p+q) end |
Since p+p = p, the path can be reduced to

path (a+b)p+q) end

It turns out that an unambiguous path expression can be reduced to a canonical
form. The proof is essentially the same as the one given for the state reduction of a
dete_'rministic finite state machine in [9] The proof and the algorithms for bringing a

given path expression in its canonical form will_ be discussed in a separate paper.

4.2 The graph of a non-simple path expression has several arcs which carry the same

name. Thus, an operand of a non-simple path may be executable in several states.

4. PARSING AND IMPLEMENTING PATH EXPRESSIONS

Let variable STATE indicate for a given path expression p thch functions can execute.
A function f in this path expression is programmed as

F = p.wait{f) f; p.signal{f)
The signal operation includes the computation of the next state which depends on the

current state and the executed function f.

If execution of f is requested and f is not included in the current state, the

28

execution of f is delayed and the process requesting the execution of f is put on a

waiting list. It is in principle possible to sort requests per state. However, this
means that a requesting process may have to be placed in several waiting lists, If
one of the states subsequently allows the execution of the requested function, the
process must be removed from several lists. We consider such an implementation as
teo cumbersome. Instead, a path expression has a single waiting list. If a process P.i
requests execution of a function f which cannot be executed right away, a new
element (i,f) is added rto the list, where i is the process index and f the requested
function. The element is appended fo the end of the list if no pricrity is indicated.

Otherwise, it is inserted such that the given priority is maintained.

After computing the next state, the signal operation scans the waiting Hst until it
finds an element which can go in this state (if any). If it finds one, this element is
removed from the list and the corresponding process is reactivated so that it can

execute the requested function.

Only one function named in a path expression can execute at a time. This implies
that a new request arriving while one of the functions is executing must be put on the
waiting list. If no function is executing, we say that the path is “idle". The

operations wait and signal can be programmed using P, V operations on a mutual

4. PARSING AND IMPLEMENTING PATH EXPRESSIONS 29

exclﬁsion semaphore "mutex” and a set of private semabhbres "psem[1:n]", one for
~each process. The prc;agrams are: |
p.wait{(f) =
Segin_ local x = {i,f)
| P(mutex)
if idle and x.f € STATE then idle « false; V(mutex)
else insert(x into waitinglisty; Vimutex); Plpsem{x.i]) fi
end
p.sighal(f) =
begin local x
P(mutex); STATE « next(STATE,f)
if some x in waitingiist sat x.f ¢ STATE then free X V(psem[x.i])
else idle « true fi |
V{mutex)

end

The subpaths of a connected path or a parallel path share one single mutual
exclusion semaphore so that only one path is tested at a time. A connected path
differs from a parallel path in that the former has one single variabie “idle", used by

all its subpaths, whereas each subpath k in the latter has its own variable "idle[k]".

In case of a connected path or a paratlel path the states of all the subpaths must
be tested in which the requested function occurs. The if clause in p.wait(f) is modified
for a connected path into _

idle and all k in {1 : np] sat x.f ¢ plk] = x.f € STATE[k]
where np is the number of subpaths of the connected path. The if-clause in p.wait{f)

for a parallel path is

4. PARSING AND IMPLEMENTING PATH EXPRESSIONS

all k i [1:np] sat x.f € p[k] = (idie[k] and x.t € STATE[K])
The moditications in the assignments to the variable idie and in the if-clause in p.signal

are self-evident.

The next state is derived from the parse tree which correspo'nds to the graph of
the path expression. In case of a simple path, the next state depends on the
executed function. In that case the next state function amounts to copying an
atiribute of the executed function. Otherwise, if all the operands of a selection are
single factors (e.g. (a+b+c)), then the next state onlyl‘depends on the current state.
In that case the next state function amounts to copying an attribute of the current
state. If a path expression does not belong to one of therse categories, a
caso-statement is attached to each state. The next state is now computed by
executing the case-statement attached to the current state. The value of the

case-clause depends on the executed function.

4.3. The use of path expressions does not exclude the possibility of staryation or
deadlock. E.g., the parallel path

“path a + ¢ end

pafﬁ b +cend .
may never schédule c if an execution of b is requested whi!e a is.being‘exeguted and
' vice-Qersa. The paralle! path
path f p g end
path g q p end

runs into a deadlock after the first execution of f and g.

30

4. PARSING AND IMPLEMENTING PATH EXPRESSIONS

31

Although starvation and deadlock are not impossible, it is easier to detect such

problems in a path structure than in programs which use P, V operations on

semaphores. In the latter case the problem must be derived from several piaces in
the code. In the introduction path expressions were compared to control structures
such as a while-statement. Control statements can be misused as much as path
expressions. If not programmed on purpose, a starvation problem in a parallel path is

comparable to prOgrarhming an infinite loop, a mistake which can very easily be made.

An additional advantage of path expressions over coding synchronization in line is
the detection of deadlocks at compile time. A paraliel path can easily be tested for
the presence of deadlocks and an error report can be given at compile time.
Unfortunately, only deadlocks in path expressions can be detected at compile time. [t
is still possible to cause deadlocks at run time. E.g. the paths

path f g end and

path p g end
could be used by two programs P.1 and P.2 such that P.l successively calls g;p and P.2
gif. This obviously leads to a deadlock. The best & compiler can do is spot the
polential deadlock state. The occurrence of function calis in conditional statements
make it impossible to find at compile time which functions will be executed. Thus,
path expressions make it easier for a programmer to avoid starvation and deadlock
 problems, but the responsibility for avoiding these problems is still up to the

programmer,

SUMMARY

~ SUMMARY

Path expressions make it possible to program the necessary synchronization at a
higher level than that of 'éssembly code. Simple path expressions are already
powerful tools which would be hard to code in line by P, V operations on semaphores
or similar primitive concepts. The examples show that the given rules for writing path

expressions are adequate to program useful operating system functions.

A path expression is a regular expression describing the allowable execution
sequences of its operands. Several path expressions can be concatenated into one
connected path or, by sharing operand names, into a parailel path. A path expression
may correspond to an undeterministic finite state machine. The ambiguities can easily
be removed by taking out common factors and rewriting repeated elements. The
programmer does not have fo- worry about writing unambiguous path expressions.
The ambiguities can be removed by a compiler. The fatter also can reduce a path

expression to its canonical form.

The testing in a non-simple path expression is slightly more elaborate than in a
simple path expression. Connected paths and paralie pat‘hs. add to the complexity of
the test. The programmer must still watch out for unwanted starvation and possible
deadlocks. The compiler is able to detect deadlocks present in a connected path or 2
parailel path. However, the order in which functions, named in a path expression, are

called may still cause deadlocks at run time.

The usefulness of path expressions will be demonstrated in the design of an
operating system family. Path expressions will be defined as an extension ot the
process and multiprogramming facilities. At the same time, a modifiable design
language is being developed in which path expressions are incorporated. The

reduction and compilation of path expressions is incorporated in a compiler for the

32

SUMMARY

design Ianguagg. More theoretical results about path expressions {and generalization
of bath expressions) will be presented in E. A Schneider’s thesis by the end of this

year.

ACKNOWLEDGMENT

I am grateful for the interesting discussions I had with Roy Campbell while | was in
Newcastle, England and while he visited me during the summer of 1974 at CMU. The
. many hours I spent with Ed Schneidef contributed eriormously to the development of

the path expressions,

33

REFERENCES

[1] Dijkstra, E. W. "Cooperating Sequential Processes”

[2] Brinch-Hansen, P.

[3] Lipton, R.

[4] Hoare, CAR. "Monitors:

In Programming Languages (ed. F. Genuys)
Academic Press, New York (1968}

"Structured Multiprogramming”
CACM 15,7 (uly 1972)

On Synchronization Primitive Systems
Thesis, Carnegie-Mellon University (1973)

An Operating Structuring Concept"
CACM 17,10 {October 1974)

[6] Campbell, R. H. and Habermann, A, N. "The specification of

[6] Habermann, A. N,

(71 Wodon, P.
[8] Courtois, P. J, Heymans,

Process Synchronization by Path Expressions”
Lecture Notes in Computer Science, Vol. 16
Springer Verlag, Heidelberg, Berlin, New York (1974)

"Synchronization of Communicating Processes”
CACM 15,3 (March 1972) :

Private Communication
F. and Parnas, D. L.

"concurrent Control with Readers and Writers"
CACM 14,10 {October 1971)

[9] Hopcroft, J. E. and Ullman, J. D.

Formal Languages and their Relation to Automata
Addison Wesley, Reading, Mass. (1969)

34

