
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Program Design With Abstract Data Types

Lawrence Flon

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pa. 15213

June 1975

This work was supported in part by the Defense Advance Research Projects Agency
under contract F44620-73-C-0074, and in part by the National Science Foundation
under grant DCR74-24573.

Abstract: This paper explores the use of abstract data types as a modularization and

structuring technique in the design of programs. The concepts of type, and type

definition are discussed. Some data structuring mechanisms are generalized and

several simple examples are presented. The examples increase in complexity and

conclude with the design of a directory system, illustrating the power of data types as

a design tool.

Keywords: Abstract data types, modularization, specification.

CR Categories: 4.10, 4.20, 4.30, 4.34

Contents

Introduction

1) Type Definitions

2) Enumeration Types

3) Composite Types

4) Data Structuring

4.1) Arrays

4.2) Records

4.3) References

5) A Small Abstraction

6) Parameterization

7) A Larger Design Example

8) A Directory System

Summary

Acknowledgement

2

Introduction

This paper explores the use of abstract data types as a modularizstion and

structuring technique in the design of programs, particularly larger programs including

compilers and operating systems. The emphasis is on design. The particular language

in which the program will be coded should be of relatively little importance in the

design process. We are interested in a technique for constructing specifications which

can be converted at another time (and possibly by others) into an implementation.

Programming languages which provide data type facilities to varying degrees have

been in existence since about 1967 when SIMULA-67 [1] appeared. Since then, there

has been an ever increasing number of such languages, notably ALGOL-68 [71

PASCAL [8], and ELI [6]. There are more advanced languages currently under

development or proposed, including ALPHARD [9], CLU [3], and PASQUAL[51 A

useful bibliography of papers concerned with data types and programming languages

may be found in [5].

Abstraction refers to the mental process which, when confronted with a set of

objects, can distinguish some objects from others on the basis of what they have in

common. What is "abstracted out" is a unifying theme, called the type of those objects.

To pick a conventional example, the set { 7, 1.35, -6, 'A', 0.3E6 } contains three types

of entities: integers, reals, and characters. These are types which jus.t about every

programming language provides. More abstractly, the set contains only two types:

numbers and characters. Even more abstractly, it contains only one type - constant.

When we prefix "data type" with "abstract" we mean an arbitrarily complex type which

characterizes a certain kind of behavior.

The concept of using abstractions in programs to control complexity is certainly

3

not a new one. For very small programs it is sufficient to use a straightforward

control flow through the program statements. Slightly larger to medium sized

programs require the use of procedures to group individual statements in a logical

manner, while a main program directs the flow of control among the various top-level

procedures. When dealing with large programs it becomes necessary to group the

individual procedures into modules. The process by which this should be done is not

yet universally understood. This paper expresses the view that the use of data types

as a modularization principle is the right approach.

We will begin by discussing what it means to define a new data type and will

describe some basic data structuring mechanisms. Numerous examples are given to

familiarize the reader with the notation, building up to the final example involving the

design of a directory system.

1) Type Definitions

A type definition has two basic attributes:

1) functional specification: the behavior of a particular class of objects as
seen by users of that class.

2) algorithmic specification: the means by which that behavior is
accomplished.

The distinction between functional and algorithmic specification is most

important. First, it allows programmers to construct implementations in parallel with

one another without any more information in common than their mutual interfaces.

Second, it ensures that a change in data structure or algorithm is localized as long as

4

the functional specifications remain unchanged. A type definition is really a module in

the sense of the information boundaries discussed by Parnas [4]. It provides a clear

design procedure for the modularization of a large program or system, where one has

been previously lacking.

Language defined types such as integer, real, and boolean are called

scalar types. The term scalar is intended to signify that values of such a type are

considered to be indivisible. The scalar type integer characterizes single values taken

from the range {-n,...,n}, in conjunction with a set of operations which may be applied

to integers, such as addition, subtraction, multiplication, etc. As far as a user of type

integer is concerned, he should not know about, and more importantly not rely on, the

way in which integers are represented or the particular algorithms which implement

integer arithmetic on his computer. Adhering to this principle makes program

portability possible, since different machines may use different algorithms. We

generalize these notions to abstract data types and say that a type definition consists

of:

1) a representation for objects of the type, known only to the definition
itself (algorithmic specification).

2) a set of operations which manipulate this representation, the names
and calling sequences of which are known to users of the type
(functional specification), but the algorithms of which are known only
to the definition itself (algorithmic specification).

The binding of operations to particular types is vital to the description of

behavior. It is not enough to present a picture of a control block as the description of

a "process" in an operating system. What is necessary is an explanation of exactly

5

what can be done to a process, and specifically not how it is done. In fact control

block formats should not be disseminated at all; rather only a description of valid

operations which can be used on that data structure should be provided to users. One

of the most important things gained from this is the "sanctity" of a data structure.

Every data structure may be viewed as having an invariant relation which it is

characterized by (e.g. the mathematical notions of "list" and "tree"). It is easier to

ver i fy the invariance of this relation if the relevant changes to the structure are made

by a small number of "privileged" procedures. If you parcel out a data structure

address and the right to modify arbitrary fields in arbitrary ways, it is possible (likely,

in a brand new program) to find inconsistencies in the structure due to program bugs

anywhere in the entire system. If all the information that is distributed is operation

names, the scope of possible sources of error is greatly reduced to the implementation

of those ve ry operations.

The next sections present a set of tools useful for the description of data

abstractions, and introduce some relatively intuitive syntax.

2) Enumeration Types

Often in the course of writing a program in a standard language, a programmer

will find the heed to express values of scalar types which are not provided by the

language. For example/ one might find an inventory program which, in order to

identify the color of an object, uses integers to represent r e d - l , yel low-2, etc. When

designing this program, it is not relevant to define the mapping between colors and

integers, since this is merely an implementation detail. A mechanism is needed for

defining a new type by exhibiting the set of constants which comprise its values. A

6

type so defined is called an enumeration type, the concept having been taken from

PASCAL An example of the definition of enumeration types might be:

type color • {red,yellow,blue,green} end;

type weekday = {monday.tuesday.wednesday.thursday.friday} end;

In order to declare variables as instances of particular types, we will use syntax

of the form:

declare payday,dayoff:weekday, shadexolor;

The declaration states that payday and dayoff are variables which may only

possess values appropriate to type weekday, and that shade can only possess a value

appropriate to type color. These variables behave as do more common scalar variables

with respect to their appropriate constants. For example,

payday «- Wednesday;

would be valid, but

payday «- red;

would be meaningless. Operations are defined for enumeration types as for example,

7

type color • {red,yellow,blue,green}

op complement(c:color):color •
case c of

begin
red: green;
yellow: blue;
green: red;
blue: yellow
end

The operations provided by a type are declared inside the scope of the

definition in order to exhibit modularity. The brackets type and end delimit the

definition. To use one of these operations in a program description, it is necessary to

prefix the operation name with the type name in order to permit several types to have

operations with the same name (and for readability). The complement operation takes

a single parameter of type color and returns a value of the same type. For example, if

the statements

shade«-green;
shade«-color.complement(shade);

were executed, shade would obtain the value red. Even though in most languages an

implementation of these types will require the use of integers, nevertheless the

irrelevance of the mapping may be preserved by declaring macros (or variables) for

use in place of the integer constants.

8

3) Composite Types

Given the ability to define new scalar types, we must now be able to build upon

those definitions to define more interesting types.

Consider as an example the definition of the type complex. We wish to

represent numbers in the complex plane and provide arithmetic operations on them.

We need to specify to users that the operations

add(w,z:complex):complex

mul(w,z:complex):complex

create(a,b:real):complex

will be available. Add will take two complex values and produce the complex sum. Mul

will behave analogously. Create will form a new complex value equal to a+bi. In terms

of algorithmic specification, we can represent a complex value by its real and imaginary

parts. Consider the following definition:

type complex =
declare r,i:real;

op add(w,z:complex):complex -
begin
declare sumxomplex;

sum.rf-w.r+z.r;
sum.i«-w.i+z.i;
return sum
end;

9

op mul(w,z:complex):complex =
begin
declare prodxomplex;

prod.r«-w.r*z.r-w.i*z.i;
prod.i<-w.r*z.i+w.i*z.r;
return prod
end;

op create(a,b:real):complex =
begin
declare cxomplex;

c.r<-a; c.i<-b
return c
end

end;

The body of the definition contains some variable declarations (r and i) and some

operation definitions (add, mul, and create). When a variable of type complex is

declared, e.g.

declare x.complex;

or dynamically allocated, e.g.

complex.create(l,2)

the variables inside the definition of complex are allocated, just as when an integer

variable is declared the bit string by which it is represented is allocated. From outside

the definition it appears that x is an atomic entity to be used with the operations

provided, e.g.

complex.add(x.y).

10

From inside the type definition, as within, say, the microcode which implements integer

arithmetic, the structure of x is visible. In this case the structure consists of the

variables r and i. To access a particular structure, it is necessary to specify which

structure by prefixing the variables with the name of a complex variable. For example,

the use of w.r in the body of the add operation refers to the r part of the complex

object w which was passed in as a parameter. The use of sum.i refers to the i part of

the locally declared complex object sum. An implementation of this type in a language

with dynamic storage allocation will be straightforward, i.e. it will be possible to return

a pointer to a newly allocated structure representing the result of an operation. In

other languages it may be necessary to write the operations as subroutines, passing

the destination variable as an output parameter. In FORTRAN, storage allocation could

be simulated by declaring an array of pairs, each index into the array representing a

single complex value. The informal language in which these examples are presented

assumes that functions can return values of arbitrary types.

An example of the use of type complex might be:

declare xxomplex;

x<-complex.add(complex.create(l,-2), complex.create(2,3));

which would result in x acquiring the value 3+i.

Note that we were not forced to represent complex values in terms of their real

and imaginary parts. We are free to re-design the type definition as long as we

conform to the stated specifications of the operations. For example, we might decide

to use polar coordinates to represent a complex value, if that made the operations

more efficient. Although the create operation is still specified to produce the value

a+bi from parameters a and b, there is nothing to prevent it from internally converting

to any other representation, and there is certainly nothing to prevent us from writing

a different create operation which expects arguments with a new significance, e.g.

type complex -
declare r,theta:real;

op create(a,b:real):complex =
begin
declare cxomplex;

c.r«-sqrt(a*a+b*b);
c.theta<-arcsin(b/c.r);
re\um c
end

end;

In addition to the allocation of the structure variables, when a variable of type

complex (or any type) is declared, the create operation is implicitly invoked. This is

important in order to allow the data structure invariant relation (if there is one) to be

established. Although in this simple example this is unnecessary, it will become

necessary later on.'

4) Data Structuring

A comprehensive presentation of data structuring methods in relation to types

may be found in [2]. We will discuss briefly some structuring mechanisms in order to

have some syntactic base upon which to build.

12

4.1) Arrays

In the past, an array has generally been thought of as a table indexed by

integers, as is the case with a matrix. A matrix, however, is a type, having certain

operations such as multiplication and inversion defined for it. An array is only a

structuring* mechanism and might as well be generalized to a more powerful mapping

than is possible with just integer domains. Think of the array as a mapping from any

finite scalar type to any type at all. For example,

declare A:array[color] of integer;

declares a vector which is indexed by objects of type color and whose individual

elements are integers. We could use such an array to represent the frequencies of

the various colors of light, e.g. A[red] = 6485.

A two dimensional array can be modeled as a vector of vectors, e.g.

declare A.array [1:10] of array[l:5] of real;

so that A[i] denotes a row (or column, depending upon the interpretation).

4.2) Records

Another means of grouping values is the record structure. The local data of any

type declaration can be thought of as a record. The variable names of the local data

denote the fields of the record. These fields are accessed as previously noted, by

prefixing the field name by the name of the complete object. While arrays are used to

13

group values of the same type, records are used to group values of potentially

differing type. Often records are used to structure data in a hierarchical manner, as in

PL/I or COBOL. For this facility we will use the notation

declare nrecord 01:t j,f2:*2*—^n:*n^5

to declare a variable r which has n subfields (r.fj,r.f2,...,r.fn) of types (tj,t2,...,t n)

respectively. The tj can be arbitrary, including other records. For example,

declare person.record (name.string,
age.integer,
salary:record (regulanreal,

overtime.real));

The subfields of this variable are person.name, person.age, person.salary.regular,

and person.salary.overtime. It is possible to declare a table as an array of records,

e.g.

declare T:array[1:100] of record (height,weight:integer)j

in which case the fields would be accessed as T[i].height and T[i].weight. In general,

however, if a record is to be used in any non-trivial way, it should be embedded in a

type declaration, e.g.

declare T:array[1:100] of medicalrec;

where medicalrec defines the fields of the record as local data and provides operations

on that data. Since it is not unlikely that the structure of medicalrec will change at

14

some point during system development, in this way we anticipate modifications by

restricting their scope.

4.3) References

A reference value is a pointer to an object, with the restriction that reference

variables can only reference objects of a single type. Typeless pointer variables are

the cause of many program bugs since they are free to point to arbitrary addresses.

References are much safer to use and make programs less devious in their logic. The

reference concept is important with regard to the use of a dynamic storage allocation

mechanism. We postulate the operations new and free for every data type, but make

them available for use only inside of a type definition. This is because of the need for

initialization of the data structure invariant relation discussed in section 1. From

outside of a type definition, the create operation must be used.

If c is a reference to complex, i.e.

declare c.ref complex;

then, inside of type complex, the statement

c<-new complex;

causes the dynamic allocation of a complex object, and assigns a reference to that new

object to c. The statement

free c;

15

results in the storage referenced by c being released. All that we can do with the

value of c is to assign it to other ref complex variables or pass it as a procedure

argument, since as yet we have not defined any operations for reference types. In

particular, we will not allow statements such as

c«-c+2;

which are likely to introduce errors. More importantly, these statements violate the

notion of type, since if the address contained in c is incremented by 2 it probably no

longer is the address of a complex variable. We will define an operator for references

called dereferencing, which converts a reference into the object it references. If c

contains a valid reference, then ct is of type complex. For example, ct.r is the r field

of the complex object referenced by c It is not legal to write c r , since c is not of

type complex. This imposes more structure on the program specifications and prevents

many possible bugs. Our examples assume that T applies to the reference immediately

to its left. We will use the. reference value null to indicate that no object is currently

being referenced.

5) A Small Abstraction

With the tools just presented, we can begin to describe some simple abstract

objects. Suppose we would like to model the concept of a "bag" full of data, in the

sense that once a datum is inserted in the bag, it can only be removed by trial and

error , since "reaching your hand" into the bag is done blindly. Assume that the bag is

to hold integers.

We need to provide certain key operations, namely:

16

empty(b:bag):boolean
put(b:bag,i:integer)
take(b:bag):integer

and we would like to guarantee to the external world that a "taken" element is chosen

at random. There are several ways to specify this type. One way is to use a vector

to represent the state of the bag, although we have to place an upper limit on the size

of the bag. Consider:

type bag «
declare A:array[1:100] of integer,

top.integer;

op create:bag =
begin
declare b:ref bag;

b«-new bag;
bT.top<-0;
return bt
end;

So far we have specified that a bag will consist of a vector of length 100 (A),

and an integer (top) which we will use to indicate the current size. We have specified

the create operation, since here it is necessary to perform initialization. The invariant

relation of a bag is "the bag contains (top) elements" so we must set top to zero

whenever a bag is created. If we had allowed the new operation to be used outside of

:he type definition, top could remain unitialized.

We can specify the empty and put operations easily:

17

op empty(b:bag):boolean » return (b.tOp=0);

op put(b:bag,integer) =
if b»top=100 then error comment overflow;
else

begin
b.top<-b.top+l;
b.A[top]«-i
end;

Assuming a uniform random number generator, take can be specified as:

op take(b:bag):integer =
if b.top=0 then error comment underflow;
else

begin
declare k,i:integer;

M-randint(l,b.top);
i<-b.A[k];
b.A[k>-b.A[top]; comment fill in gap;
b.top<-b.top-l;
return i
end

end of type bag;

If we desire to remove the restriction on the size of a bag, we can store the

bag contents in a list. To define a list of integers, we need to define each node in the

list and the rules for connecting them. We will first specify type node, so that we can

use its general purpose operations to manage a list:

18

type node =
declare val.integer,

next.ref node;

op create(i:integer):node =
begin
declare n:ref node;

n<-new node;
nT.val<-i;
nt.nextf-null;
return nt
end;

op destrby(n.node) • free n;

The operation called follow causes nodel to point at node2:

op follow(nodel,node2:node) • nodel.next<-node2;

Operation successor returns the current next value of nodel:

op successor(nodel:node):node - return nodel.nextt;

and operation value returns the current integer value of nodel:

op value(nodel:node):integer = return nodel.val

end of type node;

A useful type of list for the purpose of defining type bag is a circular list, so

that a random choice from a bag is accomplished by "spinning" the list before deletion.

A circular list of integers defined using type node could be:

type clist =
declare current:ref node,

size:integer;

op createxlist =
begin
declare c:ref clist;

c<-new clist;
ct.current*-null;
cT.size«-0;
return ct
end;

The insert operation maintains the proper circularity:

op insert(i:integer,c:clist) =
begin
declare t,n:ref node;

c.size<-c.size+l;
n«-node.create(i);
if c.size=0 then

begin
c.current«-nj
node.follow(c.currentT,c.currentt)
end

else
begin
t<-node.successor(c.currentT);
node.follow(c.currentT,nt);
node.follow(nt,tt)
end

end;

The circular list spin operation can be defined as:

op spin(cxlist) •
begin
declare n.integer;

n<-randint(0,c.size);
for i from 1 to n do

c.current*-node.successor(c.current?)
end;

and the remove operation (which deletes the element after current)

op remove(c:clist):integer =
begin
declare href node,

k.integer;

if c.size=0 then error comment underflow;
else if c.size»l then

begin
M-node.value(cxurrentt);
node.destroy(cxurrentt);
cxurrent*-null;
return k
end

else
begin
t*-node.successor(cxurrentf);
node.follow(cxurrentt,node.successor(tt));
k«-node.value(tt);
node.destroy(t1>,
return k
end

end;

One more useful operation will tell us if the list is empty:

op empty(c:clist):boolean » return (c.size-0)

end of type clist;

Now type bag can be simply defined as:

21

type bag =
declare cxlist;

comment the create operation for a clist performs the
necessary initialization for a bag;

op empty(b:bag):boo|ean) • return clist.empty(b.c);

op put(b:bag,i:integer) = clist.insert(i,b.c);

Op take(b:bag):integer -
begin
clist.spin(b.c);
return clist.remove(b.c)
end

end of type bag;

Note that we have completely re-designed the algorithmic specification of type

bag, but left the functional specifications unchanged. Any user of type bag would not

have had his programs affected (except for the size restriction having been removed).

Note also that the intermediate types node and clist can be re-used in the specification

of other list structures or more abstract types such as bag without the need for

duplication of code or effort. In addition, the three types make up three modules

suitable for independent programmer work assignments.

6) Parameterization

As we mentioned in the introduction, abstraction involves the noticing of

similarities. This requires that things which may be potentially dissimilar among a

group of objects have a wide range of freedom of variation. The use of parameters to

procedures is necessary to convey the notion of abstract operation. The "square"

operation gains its usefulness because it will square any number. When types are

given parameters, they acquire much wider applicability in a similar way.

22

A parameterized type is called a type constructor^ since the types resulting from

different parameter values may be widely differing. Consider the definition of type

string in terms of the primitive type character:

type string(n:integer) =
declare A:array[l:n] of character,

len:integer initially n;

op concat(s,t.string):string *
begin
declare r:string(s.len+t.len);

for i from 1 to s.len do r.A[i>-s.A[i];
for i from 1 to t.len do r.A[s.len+i>-t.A[i]; .
return r
end

etc.

end;

A type constructor may be thought of as a macro. When its actual parameters

are specified, it completely defines a new type. In the declaration of r in string.concat,

the parameter to its type is given as (s.len+t.len). A vector of this length (A) is

allocated, along with a word (len) containing this value. If not for the ability to

parameterize a type definition, we would have to define a new type string for every

possible string length!

Even more important is the ability to use type names as parameters to type

definitions. In our previous example, we made the unfortunate (and irrelevant)

committment that the objects contained in a bag must be integers. If, however, we had

written the definition of bag as:

23

type bag -

declare cxlist(integer);

etc.

end;

we would be using a much more general notion of list. In fact, there is no reason to

restrict a bag to only integers:

type bag(t:type) =
declare cxlist(t);

etc.

end;

with t replacing all occurrences of integer. Type clrst would be defined in the same

way as before, except that the type of the variable called current would be

determined from a parameter, as would the type of the variable called val in type

node.

It would not be hard to implement the notions of bag and clist in a language with

dynamic allocation and pointer facilities. In other languages it might be necessary to

re-implement them for every different parameter value (e.g. using arrays), but at least

the specifications do not have to be re-done.

In general, parameterization gives us the ability to precisely describe such

concepts as stack, queue, tree, etc., without tying down the types of values which are

not important to the structure of the data.

24

7) A Larger Design Example

A data type having many applications in systems programming is the hash table.

For this discussion, we characterize a hash table by the type of object used to index

the table, by the type of object stored in the table, and by the number of buckets

provided:

type hashtable(buckets:integer,index,result:type) •

Each bucket contains a list of elements with the same hash value. Each element is an

(index.result) value pair. Assuming a type pair which we can use to group two values

of arbitrary type:

type pair(left,right:type) •
declare Ivahleft,

rvahright;

op leftval(p:pair):left = return p.lval;

op rightval(p:pair):right - return p.rval;

op create(l:left,r:right):pair(left,right) «
begin
declare p:ref pair;

p*-new pair;
pT. lvaM;
pT.rval«-r;
return p t
end

end;

and assuming a definition for,type list similar to LISP:

25

type list(t.type) -
declare p:ref pair(t,list(t»;

op head(l : l ist(t)) : treturn pair.leftval(l.pt);
comment LISP car;

op tail(l:list(t)):list(t) = return pair.rightval(l.pT);
comment LISP cdr;

op cons(tv:t,lv:list(t)):list(t) =
begin
declare q:ref list(t);

qHist.create;
q.p«-pair.create(tv,lv);
return qt
end;

op create.list(t) =
begin
declare href list(t);

l<-new list;
IT.pf-null;
return It
end;

op empty(l:list):boolean = return (l.p=null)

end;

we can specify the structure of a hashtable as:

declare A:array[l:buckets] of list(pair(index,result));

In order to find a result value given an index value, the appropriate array

element must be found using a hash function. Then the list must be searched for the

index value. Since the hash table module knows nothing about the representation of

values of type index, it is up to index itself to provide that hash function. For example,

26

9

op find(h:hashtable,i:index):result -
return search(i,h.A[l+(index.hash(i) mod upperbound(h.A))]);

where search is a procedure (local to type hashtable only) to scan the list:

procedure search(i:index,l:list(pair(index,result))):result •
begin
declare p:list(pair(index,result));

p H ;
while not list.empty(p) do

if pair.leftval(list.head(p)H then
return pair.rightval(list.head(p))

else pHist.tail(p);

return result.undefined
end;

Note that if the search procedure does not find the index on the list, it returns

the undefined value of type result - a convenient way to indicate an error to the

caller. This of course assumes an operation called "undefined" for type result.

It now remains to be able to insert values into the hash table. The insert

function must search the appropriate list and only add to the list if the value is not

already there:

in the case of indexing by strings, we would expect to find the operation string.hash

defined. We can then define the hashtable.find operation as:

27

op insert(h:hashtable,i:index,r:result):boolean =
begin
declare n:integer;

n<-l+(index.hash(i) mod upperbound(h.A));

if search(i,h.A[n])=result.undefined then
begin
A[n]Hist.cons(pair.create(i,r),A[n]);
return true
end

else return false
end;

Finally, the creation of a new hashtable requires some initialization:

op create.hashtable =
begin

declare h:ref hashtable(buckets,index,result);

h«-new hashtable;
for i from 1 to upperbound(ht.A) do

ht.A[i>-null;
return ht
end

end of type hashtable;

8) A Directory System

To illustrate the power of systems design using data types, we have chosen as

our final example a hypothetical directory system as might be found in an operating

system.

The directory system to be designed will be a hierarchical one, in which a node

name consists of a path through the directory structure to the appropriate descriptor.

28

For example, the name A.B.C refers to directory A, subdirectory B, descriptor C. There

should be no a priori bound on the number of directories, nor on the depth of the

hierarchy. We will not restrict the definition to that of file directory, since the notion

of file is not relevant to the structure. The purpose of the directory is to associate an

object of type descriptor (maybe filedescriptor) with one of type path. The operations

provided for directories should include lookup and insertion functions. If we think of a

path name as a list of strings, we can define type path as:

type path «

declare l:list(string);

op first(p:path):string = return list.head(p.l);

op rest(p.path):path = return list.tail(p.l);

op empty(p:path):boolean • return list.empty(p.l);

op terminal(p:path):boolean = return path.empty(path.rest(p))
end;

The directory itself will contain objects which will either be descriptors or sub ­

directories. We will call this type direntry for directory entry. The structure of a

directory, then, will be a hashtable (as previously described) which is indexed by a

string and which contains direntry objects:

type directory(descriptor.type) -
declare H:hashtable(100,string,direntry(descriptor));

The hashtable will have 100 buckets, but we could have left that as a parameter

to directory.

29

In order to look up a path in a directory, we must first find the direntry

corresponding to the path header (via hashtable.find) and then look up the rest of the

path through the direntry:

op lookup(p:path,d:directory:descriptor) •
begin
declare t:ref direntry;

t<-hashtable.find(d.H,path.first(p));

if tt=direntry.undefined then
return descriptor.undefined

else return direntry.lookup(path.rest(p),tf)
end;

Insertion in a directory may require the creation of a direntry and its insertion in

the hashtable, or simply insertion in an existing direntry:

op insert(p:path,d:directory,r:descriptor):boolean •
begin
declare href direntry;

t«-hashtable.find(d.H,path.first(p));

if tt=direntry.undefined then
begin
t<-direntry.create(p,r);
return hashtable.insert(d.H,path.first(p),r)
end

else return direntry.insert(path.rest(p),tt,r)
end;

Finally, the creation of a directory is accomplished by:

30

op create.directory(descriptor) -
(now directory(descriptor))T

end of type directory;

Having finished the definition of type directory, we must now tackle the

definition of type direntry. A direntry has a name (part of a path) and either indicates

a descriptor or a sub-directory:
•

type direntry(descriptor:type) *
declare name.string,

node:boolean,
value:ref descriptor,
subdir:ref directory(descriptor);

To look up a path in a direntry which is a node requires checking that the path

terminates at that point. If the direntry refers to a sub-directory, then the

directory.lookup operation is recursively applied:

op lookup(p:path,d:direntry):descriptor =
if d.node then

if path.empty(p) then return d.valuet
else return descriptor.undefined

else return descriptor.lookup(p,d.subdirt);

To insert a descriptor in an existing direntry, we must do the insertion in the

sub-directory (if there is one):

op insert(p:path,d:direntry,r:descriptor):boolean «
if d.node or path.empty(p) then return false
else return directory.insert(p,d.subdirT,r);

31

Creation of a new direntry (as required by the directory.insert operation) is

straightforward when the path is a terminal. When it is not, creation of the direntry

requires creation of a sub-directory:

op create.(p:path,r:descriptor):direntry(descriptor) =
begin
declare d:ref direntry(descriptor);

d«-new direntry;
if path.terminal(p) then

begin
d?.name«-path.first(p);
dT.node<-true;
dt.subdir<-null;
dT.value«-r
end

else
begin
dt.name<-path.first(p);
dt.node<-false;
dT.value«-null;
dt.subdir«-directory(descriptor).create;
directory.insert(path.rest(p),dt.subdirt,r)
end;

return dt
end;

In the end we have a precise description of the concept of directory. This

directory system may be used in conjunction with a file system (note that there is a

difference between a file system and the directory structure it uses, as we have just

shown). It may also be used to store objects in a protection system, or for any of a

number of other applications. Each of the types directory, direntry, hashtable, etc. may

be viewed as a module suitable for a programmer work assignment.

32

Summary

There is much confusion in the programming community today over such

concepts as modularity, structured programming, specifications, etc. What w e have

presented here is a technique for employing all of these tools in unified form - i.e. data

types. We have, of course, omitted discussion of many topics associated with data

types, but have done so on the grounds that we are concerned with design and

specification, and not coding. The freedom to use a specification language without

constraints of particular syntax is very important.

The use of data types as a modularization principle views a module as being

responsible for the maintenance of some invariance. The explicit advantage of this is

that system verification may be done selectively by module. An implication of this is

that most changes to the system will be restricted to a small number of modules, if not

a single one.

Acknowledgement

I would like to thank Prof. A. N. Habermann for reading and commenting on the

various drafts and, more importantly, for encouraging my interest in this area.

33

REFERENCES

1 Dahl, 0. J . et al, "Simula 67 Common Base Language," Norwegian Computing Center,
Oslo (May 1968).

2 Hoare, C. A. R., "Notes on Data Structuring," in Structured Programming, Academic
Press, London (1972).

3 Liskov, B. and Zilles, S., "Programming With Abstract Data Types," SI GPL AN Notices
(April 1974) 50-59.

4 Parnas, D. L., "On the Criteria to be Used in Decomposing Systems into Modules,"
CACM 15,12 (Dec. 1972) 1053-1058.

5 Tennent, R. D., "PASQUAL: A Proposed Generalization of PASCAL," Department of
Computing and Information Science, Queens University, Kingston, Ont. (Feb.
1975).

6 Wegbreit, B., "The Treatment of Data Types in ELI ," CACM 17,5 (May 1974) 251-
264.

7 van Wijngaarden, A. (ed.), "Report on the Algorithmic Language ALGOL 68,"
Numerische Mathematik 14, 79-218 (1969).

8 Wirth, N., "The Programming Language PASCAL (Revised Report)," Berichte der
Fachgruppe Computer-Wissenschaften, EidgenossischeTechnische Hochschule,
Zurich (1972).

9 Wulf, W. A., "ALPHARD: Towards a Language to Support Structured Programs,"
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Pa.
(April 1974).

Contents

Introduction

1) Type Definitions

2) Enumeration Types

3) Composite Types

4) Data Structuring

4.1) Arrays

4.2) Records

4.3) References

5) A Small Abstraction

6) Parameterization

7) A Larger Design Example

8) A Directory System

Summary

Acknowledgement

