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Abstract: This paper explores the use of abstract data types as a modularization and 

structuring technique in the design of programs. The concepts of type, and type 

definition are discussed. Some data structuring mechanisms are generalized and 

several simple examples are presented. The examples increase in complexity and 

conclude with the design of a directory system, illustrating the power of data types as 

a design tool. 
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Introduction 

This paper explores the use of abstract data types as a modularizstion and 

structuring technique in the design of programs, particularly larger programs including 

compilers and operating systems. The emphasis is on design. The particular language 

in which the program will be coded should be of relatively little importance in the 

design process. We are interested in a technique for constructing specifications which 

can be converted at another time (and possibly by others) into an implementation. 

Programming languages which provide data type facilities to varying degrees have 

been in existence since about 1967 when SIMULA-67 [1] appeared. Since then, there 

has been an ever increasing number of such languages, notably ALGOL-68 [71 

PASCAL [8], and ELI [6]. There are more advanced languages currently under 

development or proposed, including ALPHARD [9], CLU [3], and PASQUAL[51 A 

useful bibliography of papers concerned with data types and programming languages 

may be found in [5]. 

Abstraction refers to the mental process which, when confronted with a set of 

objects, can distinguish some objects from others on the basis of what they have in 

common. What is "abstracted out" is a unifying theme, called the type of those objects. 

To pick a conventional example, the set { 7, 1.35, -6, 'A', 0.3E6 } contains three types 

of entities: integers, reals, and characters. These are types which jus.t about every 

programming language provides. More abstractly, the set contains only two types: 

numbers and characters. Even more abstractly, it contains only one type - constant. 

When we prefix "data type" with "abstract" we mean an arbitrarily complex type which 

characterizes a certain kind of behavior. 

The concept of using abstractions in programs to control complexity is certainly 
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not a new one. For very small programs it is sufficient to use a straightforward 

control flow through the program statements. Slightly larger to medium sized 

programs require the use of procedures to group individual statements in a logical 

manner, while a main program directs the flow of control among the various top-level 

procedures. When dealing with large programs it becomes necessary to group the 

individual procedures into modules. The process by which this should be done is not 

yet universally understood. This paper expresses the view that the use of data types 

as a modularization principle is the right approach. 

We will begin by discussing what it means to define a new data type and will 

describe some basic data structuring mechanisms. Numerous examples are given to 

familiarize the reader with the notation, building up to the final example involving the 

design of a directory system. 

1) Type Definitions 

A type definition has two basic attributes: 

1) functional specification: the behavior of a particular class of objects as 
seen by users of that class. 

2) algorithmic specification: the means by which that behavior is 
accomplished. 

The distinction between functional and algorithmic specification is most 

important. First, it allows programmers to construct implementations in parallel with 

one another without any more information in common than their mutual interfaces. 

Second, it ensures that a change in data structure or algorithm is localized as long as 
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the functional specifications remain unchanged. A type definition is really a module in 

the sense of the information boundaries discussed by Parnas [4]. It provides a clear 

design procedure for the modularization of a large program or system, where one has 

been previously lacking. 

Language defined types such as integer, real, and boolean are called 

scalar types. The term scalar is intended to signify that values of such a type are 

considered to be indivisible. The scalar type integer characterizes single values taken 

from the range {-n,...,n}, in conjunction with a set of operations which may be applied 

to integers, such as addition, subtraction, multiplication, etc. As far as a user of type 

integer is concerned, he should not know about, and more importantly not rely on, the 

way in which integers are represented or the particular algorithms which implement 

integer arithmetic on his computer. Adhering to this principle makes program 

portability possible, since different machines may use different algorithms. We 

generalize these notions to abstract data types and say that a type definition consists 

of: 

1) a representation for objects of the type, known only to the definition  
itself (algorithmic specification). 

2) a set of operations which manipulate this representation, the names 
and calling sequences of which are known to users of the type 
(functional specification), but the algorithms of which are known only 
to the definition itself (algorithmic specification). 

The binding of operations to particular types is vital to the description of 

behavior. It is not enough to present a picture of a control block as the description of 

a "process" in an operating system. What is necessary is an explanation of exactly 
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what can be done to a process, and specifically not how it is done. In fact control 

block formats should not be disseminated at all; rather only a description of valid 

operations which can be used on that data structure should be provided to users. One 

of the most important things gained from this is the "sanctity" of a data structure. 

Every data structure may be viewed as having an invariant relation which it is 

characterized by (e.g. the mathematical notions of "list" and "tree"). It is easier to 

ver i fy the invariance of this relation if the relevant changes to the structure are made 

by a small number of "privileged" procedures. If you parcel out a data structure 

address and the right to modify arbitrary fields in arbitrary ways, it is possible (likely, 

in a brand new program) to find inconsistencies in the structure due to program bugs 

anywhere in the entire system. If all the information that is distributed is operation 

names, the scope of possible sources of error is greatly reduced to the implementation 

of those ve ry operations. 

The next sections present a set of tools useful for the description of data 

abstractions, and introduce some relatively intuitive syntax. 

2) Enumeration Types 

Often in the course of writing a program in a standard language, a programmer 

will find the heed to express values of scalar types which are not provided by the 

language. For example/ one might find an inventory program which, in order to 

identify the color of an object, uses integers to represent r e d - l , yel low-2, etc. When 

designing this program, it is not relevant to define the mapping between colors and 

integers, since this is merely an implementation detail. A mechanism is needed for 

defining a new type by exhibiting the set of constants which comprise its values. A 



6 

type so defined is called an enumeration type, the concept having been taken from 

PASCAL An example of the definition of enumeration types might be: 

type color • {red,yellow,blue,green} end; 

type weekday = {monday.tuesday.wednesday.thursday.friday} end; 

In order to declare variables as instances of particular types, we will use syntax 

of the form: 

declare payday,dayoff:weekday, shadexolor; 

The declaration states that payday and dayoff are variables which may only 

possess values appropriate to type weekday, and that shade can only possess a value 

appropriate to type color. These variables behave as do more common scalar variables 

with respect to their appropriate constants. For example, 

payday «- Wednesday; 

would be valid, but 

payday «- red; 

would be meaningless. Operations are defined for enumeration types as for example, 
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type color • {red,yellow,blue,green} 

op complement(c:color):color • 
case c of 

begin 
red: green; 
yellow: blue; 
green: red; 
blue: yellow 
end 

The operations provided by a type are declared inside the scope of the 

definition in order to exhibit modularity. The brackets type and end delimit the 

definition. To use one of these operations in a program description, it is necessary to 

prefix the operation name with the type name in order to permit several types to have 

operations with the same name (and for readability). The complement operation takes 

a single parameter of type color and returns a value of the same type. For example, if 

the statements 

shade«-green; 
shade«-color.complement(shade); 

were executed, shade would obtain the value red. Even though in most languages an 

implementation of these types will require the use of integers, nevertheless the 

irrelevance of the mapping may be preserved by declaring macros (or variables) for 

use in place of the integer constants. 
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3) Composite Types 

Given the ability to define new scalar types, we must now be able to build upon 

those definitions to define more interesting types. 

Consider as an example the definition of the type complex. We wish to 

represent numbers in the complex plane and provide arithmetic operations on them. 

We need to specify to users that the operations 

add(w,z:complex):complex 

mul(w,z:complex):complex 

create(a,b:real):complex 

will be available. Add will take two complex values and produce the complex sum. Mul 

will behave analogously. Create will form a new complex value equal to a+bi. In terms 

of algorithmic specification, we can represent a complex value by its real and imaginary 

parts. Consider the following definition: 

type complex = 
declare r,i:real; 

op add(w,z:complex):complex -
begin 
declare sumxomplex; 

sum.rf-w.r+z.r; 
sum.i«-w.i+z.i; 
return sum 
end; 
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op mul(w,z:complex):complex = 
begin 
declare prodxomplex; 

prod.r«-w.r*z.r-w.i*z.i; 
prod.i<-w.r*z.i+w.i*z.r; 
return prod 
end; 

op create(a,b:real):complex = 
begin 
declare cxomplex; 

c.r<-a; c.i<-b 
return c 
end 

end; 

The body of the definition contains some variable declarations (r and i) and some 

operation definitions (add, mul, and create). When a variable of type complex is 

declared, e.g. 

declare x.complex; 

or dynamically allocated, e.g. 

complex.create(l,2) 

the variables inside the definition of complex are allocated, just as when an integer 

variable is declared the bit string by which it is represented is allocated. From outside 

the definition it appears that x is an atomic entity to be used with the operations 

provided, e.g. 

complex.add(x.y). 
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From inside the type definition, as within, say, the microcode which implements integer 

arithmetic, the structure of x is visible. In this case the structure consists of the 

variables r and i. To access a particular structure, it is necessary to specify which 

structure by prefixing the variables with the name of a complex variable. For example, 

the use of w.r in the body of the add operation refers to the r part of the complex 

object w which was passed in as a parameter. The use of sum.i refers to the i part of 

the locally declared complex object sum. An implementation of this type in a language 

with dynamic storage allocation will be straightforward, i.e. it will be possible to return 

a pointer to a newly allocated structure representing the result of an operation. In 

other languages it may be necessary to write the operations as subroutines, passing 

the destination variable as an output parameter. In FORTRAN, storage allocation could 

be simulated by declaring an array of pairs, each index into the array representing a 

single complex value. The informal language in which these examples are presented 

assumes that functions can return values of arbitrary types. 

An example of the use of type complex might be: 

declare xxomplex; 

x<-complex.add( complex.create(l,-2), complex.create(2,3) ); 

which would result in x acquiring the value 3+i. 

Note that we were not forced to represent complex values in terms of their real 

and imaginary parts. We are free to re-design the type definition as long as we 

conform to the stated specifications of the operations. For example, we might decide 

to use polar coordinates to represent a complex value, if that made the operations 

more efficient. Although the create operation is still specified to produce the value 



a+bi from parameters a and b, there is nothing to prevent it from internally converting 

to any other representation, and there is certainly nothing to prevent us from writing 

a different create operation which expects arguments with a new significance, e.g. 

type complex -
declare r,theta:real; 

op create(a,b:real):complex = 
begin 
declare cxomplex; 

c.r«-sqrt(a*a+b*b); 
c.theta<-arcsin(b/c.r); 
re\um c 
end 

end; 

In addition to the allocation of the structure variables, when a variable of type 

complex (or any type) is declared, the create operation is implicitly invoked. This is 

important in order to allow the data structure invariant relation (if there is one) to be 

established. Although in this simple example this is unnecessary, it will become 

necessary later on.' 

4) Data Structuring 

A comprehensive presentation of data structuring methods in relation to types 

may be found in [2]. We will discuss briefly some structuring mechanisms in order to 

have some syntactic base upon which to build. 
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4.1) Arrays 

In the past, an array has generally been thought of as a table indexed by 

integers, as is the case with a matrix. A matrix, however, is a type, having certain 

operations such as multiplication and inversion defined for it. An array is only a 

structuring* mechanism and might as well be generalized to a more powerful mapping 

than is possible with just integer domains. Think of the array as a mapping from any 

finite scalar type to any type at all. For example, 

declare A:array[color] of integer; 

declares a vector which is indexed by objects of type color and whose individual 

elements are integers. We could use such an array to represent the frequencies of 

the various colors of light, e.g. A[red] = 6485. 

A two dimensional array can be modeled as a vector of vectors, e.g. 

declare A.array [1:10] of array[l:5] of real; 

so that A[ i ] denotes a row (or column, depending upon the interpretation). 

4.2) Records 

Another means of grouping values is the record structure. The local data of any 

type declaration can be thought of as a record. The variable names of the local data 

denote the fields of the record. These fields are accessed as previously noted, by 

prefixing the field name by the name of the complete object. While arrays are used to 
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group values of the same type, records are used to group values of potentially 

differing type. Often records are used to structure data in a hierarchical manner, as in 

PL/I or COBOL. For this facility we will use the notation 

declare nrecord 01:t j,f2:*2*—^n:*n^5 

to declare a variable r which has n subfields (r.fj,r.f2,...,r.fn) of types (tj,t2,...,t n) 

respectively. The tj can be arbitrary, including other records. For example, 

declare person.record (name.string, 
age.integer, 
salary:record (regulanreal, 

overtime.real)); 

The subfields of this variable are person.name, person.age, person.salary.regular, 

and person.salary.overtime. It is possible to declare a table as an array of records, 

e.g. 

declare T:array[ 1:100] of record (height,weight:integer)j 

in which case the fields would be accessed as T[i].height and T[i].weight. In general, 

however, if a record is to be used in any non-trivial way, it should be embedded in a 

type declaration, e.g. 

declare T:array[ 1:100] of medicalrec; 

where medicalrec defines the fields of the record as local data and provides operations 

on that data. Since it is not unlikely that the structure of medicalrec will change at 
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some point during system development, in this way we anticipate modifications by 

restricting their scope. 

4.3) References 

A reference value is a pointer to an object, with the restriction that reference 

variables can only reference objects of a single type. Typeless pointer variables are 

the cause of many program bugs since they are free to point to arbitrary addresses. 

References are much safer to use and make programs less devious in their logic. The 

reference concept is important with regard to the use of a dynamic storage allocation 

mechanism. We postulate the operations new and free for every data type, but make 

them available for use only inside of a type definition. This is because of the need for 

initialization of the data structure invariant relation discussed in section 1. From 

outside of a type definition, the create operation must be used. 

If c is a reference to complex, i.e. 

declare c.ref complex; 

then, inside of type complex, the statement 

c<-new complex; 

causes the dynamic allocation of a complex object, and assigns a reference to that new 

object to c. The statement 

free c; 
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results in the storage referenced by c being released. All that we can do with the 

value of c is to assign it to other ref complex variables or pass it as a procedure 

argument, since as yet we have not defined any operations for reference types. In 

particular, we will not allow statements such as 

c«-c+2; 

which are likely to introduce errors. More importantly, these statements violate the 

notion of type, since if the address contained in c is incremented by 2 it probably no 

longer is the address of a complex variable. We will define an operator for references 

called dereferencing, which converts a reference into the object it references. If c 

contains a valid reference, then ct is of type complex. For example, ct.r is the r field 

of the complex object referenced by c It is not legal to write c r , since c is not of 

type complex. This imposes more structure on the program specifications and prevents 

many possible bugs. Our examples assume that T applies to the reference immediately 

to its left. We will use the. reference value null to indicate that no object is currently 

being referenced. 

5) A Small Abstraction 

With the tools just presented, we can begin to describe some simple abstract 

objects. Suppose we would like to model the concept of a "bag" full of data, in the 

sense that once a datum is inserted in the bag, it can only be removed by trial and 

error , since "reaching your hand" into the bag is done blindly. Assume that the bag is 

to hold integers. 

We need to provide certain key operations, namely: 
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empty(b:bag):boolean 
put(b:bag,i:integer) 
take(b:bag):integer 

and we would like to guarantee to the external world that a "taken" element is chosen 

at random. There are several ways to specify this type. One way is to use a vector 

to represent the state of the bag, although we have to place an upper limit on the size 

of the bag. Consider: 

type bag « 
declare A:array[ 1:100] of integer, 

top.integer; 

op create:bag = 
begin 
declare b:ref bag; 

b«-new bag; 
bT.top<-0; 
return bt 
end; 

So far we have specified that a bag will consist of a vector of length 100 (A), 

and an integer (top) which we will use to indicate the current size. We have specified 

the create operation, since here it is necessary to perform initialization. The invariant 

relation of a bag is "the bag contains (top) elements" so we must set top to zero 

whenever a bag is created. If we had allowed the new operation to be used outside of 

:he type definition, top could remain unitialized. 

We can specify the empty and put operations easily: 
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op empty(b:bag):boolean » return (b.tOp=0); 

op put(b:bag,integer) = 
if b»top=100 then error comment overflow; 
else 

begin 
b.top<-b.top+l; 
b.A[top]«-i 
end; 

Assuming a uniform random number generator, take can be specified as: 

op take(b:bag):integer = 
if b.top=0 then error comment underflow; 
else 

begin 
declare k,i:integer; 

M-randint(l,b.top); 
i<-b.A[k]; 
b.A[k>-b.A[top]; comment fill in gap; 
b.top<-b.top-l; 
return i 
end 

end of type bag; 

If we desire to remove the restriction on the size of a bag, we can store the 

bag contents in a list. To define a list of integers, we need to define each node in the 

list and the rules for connecting them. We will first specify type node, so that we can 

use its general purpose operations to manage a list: 
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type node = 
declare val.integer, 

next.ref node; 

op create(i:integer):node = 
begin 
declare n:ref node; 

n<-new node; 
nT.val<-i; 
nt.nextf-null; 
return nt 
end; 

op destrby(n.node) • free n; 

The operation called follow causes nodel to point at node2: 

op follow(nodel,node2:node) • nodel.next<-node2; 

Operation successor returns the current next value of nodel: 

op successor(nodel:node):node - return nodel.nextt; 

and operation value returns the current integer value of nodel: 

op value(nodel:node):integer = return nodel.val 

end of type node; 

A useful type of list for the purpose of defining type bag is a circular list, so 

that a random choice from a bag is accomplished by "spinning" the list before deletion. 

A circular list of integers defined using type node could be: 



type clist = 
declare current:ref node, 

size:integer; 

op createxlist = 
begin 
declare c:ref clist; 

c<-new clist; 
ct.current*-null; 
cT.size«-0; 
return ct 
end; 

The insert operation maintains the proper circularity: 

op insert(i:integer,c:clist) = 
begin 
declare t,n:ref node; 

c.size<-c.size+l; 
n«-node.create(i); 
if c.size=0 then 

begin 
c.current«-nj 
node.follow(c.currentT,c.currentt) 
end 

else 
begin 
t<-node.successor(c.currentT); 
node.follow(c.currentT,nt); 
node.follow(nt,tt) 
end 

end; 

The circular list spin operation can be defined as: 



op spin(cxlist) • 
begin 
declare n.integer; 

n<-randint(0,c.size); 
for i from 1 to n do 

c.current*-node.successor(c.current?) 
end; 

and the remove operation (which deletes the element after current) 

op remove(c:clist):integer = 
begin 
declare href node, 

k.integer; 

if c.size=0 then error comment underflow; 
else if c.size»l then 

begin 
M-node.value(cxurrentt); 
node.destroy(cxurrentt); 
cxurrent*-null; 
return k 
end 

else 
begin 
t*-node.successor(cxurrentf); 
node.follow(cxurrentt,node.successor(tt)); 
k«-node.value(tt); 
node.destroy(t1>, 
return k 
end 

end; 

One more useful operation will tell us if the list is empty: 

op empty(c:clist):boolean » return (c.size-0) 

end of type clist; 

Now type bag can be simply defined as: 
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type bag = 
declare cxlist; 

comment the create operation for a clist performs the 
necessary initialization for a bag; 

op empty(b:bag):boo|ean) • return clist.empty(b.c); 

op put(b:bag,i:integer) = clist.insert(i,b.c); 

Op take(b:bag):integer -
begin 
clist.spin(b.c); 
return clist.remove(b.c) 
end 

end of type bag; 

Note that we have completely re-designed the algorithmic specification of type 

bag, but left the functional specifications unchanged. Any user of type bag would not 

have had his programs affected (except for the size restriction having been removed). 

Note also that the intermediate types node and clist can be re-used in the specification 

of other list structures or more abstract types such as bag without the need for 

duplication of code or effort. In addition, the three types make up three modules 

suitable for independent programmer work assignments. 

6) Parameterization 

As we mentioned in the introduction, abstraction involves the noticing of 

similarities. This requires that things which may be potentially dissimilar among a 

group of objects have a wide range of freedom of variation. The use of parameters to 

procedures is necessary to convey the notion of abstract operation. The "square" 

operation gains its usefulness because it will square any number. When types are 

given parameters, they acquire much wider applicability in a similar way. 
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A parameterized type is called a type constructor^ since the types resulting from 

different parameter values may be widely differing. Consider the definition of type 

string in terms of the primitive type character: 

type string(n:integer) = 
declare A:array[l:n] of character, 

len:integer initially n; 

op concat(s,t.string):string * 
begin 
declare r:string(s.len+t.len); 

for i from 1 to s.len do r.A[i>-s.A[i]; 
for i from 1 to t.len do r.A[s.len+i>-t.A[i]; . 
return r 
end 

etc. 

end; 

A type constructor may be thought of as a macro. When its actual parameters 

are specified, it completely defines a new type. In the declaration of r in string.concat, 

the parameter to its type is given as (s.len+t.len). A vector of this length (A) is 

allocated, along with a word (len) containing this value. If not for the ability to 

parameterize a type definition, we would have to define a new type string for every 

possible string length! 

Even more important is the ability to use type names as parameters to type 

definitions. In our previous example, we made the unfortunate (and irrelevant) 

committment that the objects contained in a bag must be integers. If, however, we had 

written the definition of bag as: 
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type bag -

declare cxlist(integer); 

etc. 

end; 

we would be using a much more general notion of list. In fact, there is no reason to 

restrict a bag to only integers: 

type bag(t:type) = 
declare cxlist(t); 

etc. 

end; 

with t replacing all occurrences of integer. Type clrst would be defined in the same 

way as before, except that the type of the variable called current would be 

determined from a parameter, as would the type of the variable called val in type 

node. 

It would not be hard to implement the notions of bag and clist in a language with 

dynamic allocation and pointer facilities. In other languages it might be necessary to 

re-implement them for every different parameter value (e.g. using arrays), but at least 

the specifications do not have to be re-done. 

In general, parameterization gives us the ability to precisely describe such 

concepts as stack, queue, tree, etc., without tying down the types of values which are 

not important to the structure of the data. 
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7) A Larger Design Example 

A data type having many applications in systems programming is the hash table. 

For this discussion, we characterize a hash table by the type of object used to index 

the table, by the type of object stored in the table, and by the number of buckets 

provided: 

type hashtable(buckets:integer,index,result:type) • 

Each bucket contains a list of elements with the same hash value. Each element is an 

(index.result) value pair. Assuming a type pair which we can use to group two values 

of arbitrary type: 

type pair(left,right:type) • 
declare Ivahleft, 

rvahright; 

op leftval(p:pair):left = return p.lval; 

op rightval(p:pair):right - return p.rval; 

op create(l:left,r:right):pair(left,right) « 
begin 
declare p:ref pair; 

p*-new pair; 
pT. lvaM; 
pT.rval«-r; 
return p t 
end 

end; 

and assuming a definition for,type list similar to LISP: 
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type list(t.type) -
declare p:ref pair(t,list(t»; 

op head(l : l ist(t) ) : treturn pair.leftval(l.pt); 
comment LISP car; 

op tail(l:list(t)):list(t) = return pair.rightval(l.pT); 
comment LISP cdr; 

op cons(tv:t,lv:list(t)):list(t) = 
begin 
declare q:ref list(t); 

qHist.create; 
q.p«-pair.create(tv,lv); 
return qt 
end; 

op create.list(t) = 
begin 
declare href list(t); 

l<-new list; 
IT.pf-null; 
return It 
end; 

op empty(l:list):boolean = return (l.p=null) 

end; 

we can specify the structure of a hashtable as: 

declare A:array[l:buckets] of list(pair(index,result)); 

In order to find a result value given an index value, the appropriate array 

element must be found using a hash function. Then the list must be searched for the 

index value. Since the hash table module knows nothing about the representation of 

values of type index, it is up to index itself to provide that hash function. For example, 
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9 

op find(h:hashtable,i:index):result -
return search(i,h.A[l+(index.hash(i) mod upperbound(h.A))]); 

where search is a procedure (local to type hashtable only) to scan the list: 

procedure search(i:index,l:list(pair(index,result))):result • 
begin 
declare p:list(pair(index,result)); 

p H ; 
while not list.empty(p) do 

if pair.leftval(list.head(p)H then 
return pair.rightval(list.head(p)) 

else pHist.tail(p); 

return result.undefined 
end; 

Note that if the search procedure does not find the index on the list, it returns 

the undefined value of type result - a convenient way to indicate an error to the 

caller. This of course assumes an operation called "undefined" for type result. 

It now remains to be able to insert values into the hash table. The insert 

function must search the appropriate list and only add to the list if the value is not 

already there: 

in the case of indexing by strings, we would expect to find the operation string.hash 

defined. We can then define the hashtable.find operation as: 
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op insert(h:hashtable,i:index,r:result):boolean = 
begin 
declare n:integer; 

n<-l+(index.hash(i) mod upperbound(h.A)); 

if search(i,h.A[n])=result.undefined then 
begin 
A[n]Hist.cons(pair.create(i,r),A[n]); 
return true 
end 

else return false 
end; 

Finally, the creation of a new hashtable requires some initialization: 

op create.hashtable = 
begin 

declare h:ref hashtable(buckets,index,result); 

h«-new hashtable; 
for i from 1 to upperbound(ht.A) do 

ht.A[i>-null; 
return ht 
end 

end of type hashtable; 

8) A Directory System 

To illustrate the power of systems design using data types, we have chosen as 

our final example a hypothetical directory system as might be found in an operating 

system. 

The directory system to be designed will be a hierarchical one, in which a node 

name consists of a path through the directory structure to the appropriate descriptor. 



28 

For example, the name A.B.C refers to directory A, subdirectory B, descriptor C. There 

should be no a priori bound on the number of directories, nor on the depth of the 

hierarchy. We will not restrict the definition to that of file directory, since the notion 

of file is not relevant to the structure. The purpose of the directory is to associate an 

object of type descriptor (maybe filedescriptor) with one of type path. The operations 

provided for directories should include lookup and insertion functions. If we think of a 

path name as a list of strings, we can define type path as: 

type path « 

declare l:list(string); 

op first(p:path):string = return list.head(p.l); 

op rest(p.path):path = return list.tail(p.l); 

op empty(p:path):boolean • return list.empty(p.l); 

op terminal(p:path):boolean = return path.empty(path.rest(p)) 
end; 

The directory itself will contain objects which will either be descriptors or sub ­

directories. We will call this type direntry for directory entry. The structure of a 

directory, then, will be a hashtable (as previously described) which is indexed by a 

string and which contains direntry objects: 

type directory(descriptor.type) -
declare H:hashtable( 100,string,direntry(descriptor)); 

The hashtable will have 100 buckets, but we could have left that as a parameter 

to directory. 



29 

In order to look up a path in a directory, we must first find the direntry 

corresponding to the path header (via hashtable.find) and then look up the rest of the 

path through the direntry: 

op lookup(p:path,d:directory:descriptor) • 
begin 
declare t:ref direntry; 

t<-hashtable.find(d.H,path.first(p)); 

if tt=direntry.undefined then 
return descriptor.undefined 

else return direntry.lookup(path.rest(p),tf) 
end; 

Insertion in a directory may require the creation of a direntry and its insertion in 

the hashtable, or simply insertion in an existing direntry: 

op insert(p:path,d:directory,r:descriptor):boolean • 
begin 
declare href direntry; 

t«-hashtable.find(d.H,path.first(p)); 

if tt=direntry.undefined then 
begin 
t<-direntry.create(p,r); 
return hashtable.insert(d.H,path.first(p),r) 
end 

else return direntry.insert(path.rest(p),tt,r) 
end; 

Finally, the creation of a directory is accomplished by: 
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op create.directory(descriptor) -
(now directory(descriptor))T 

end of type directory; 

Having finished the definition of type directory, we must now tackle the 

definition of type direntry. A direntry has a name (part of a path) and either indicates 

a descriptor or a sub-directory: 
• 

type direntry(descriptor:type) * 
declare name.string, 

node:boolean, 
value:ref descriptor, 
subdir:ref directory(descriptor); 

To look up a path in a direntry which is a node requires checking that the path 

terminates at that point. If the direntry refers to a sub-directory, then the 

directory.lookup operation is recursively applied: 

op lookup(p:path,d:direntry):descriptor = 
if d.node then 

if path.empty(p) then return d.valuet 
else return descriptor.undefined 

else return descriptor.lookup(p,d.subdirt); 

To insert a descriptor in an existing direntry, we must do the insertion in the 

sub-directory (if there is one): 

op insert(p:path,d:direntry,r:descriptor):boolean « 
if d.node or path.empty(p) then return false 
else return directory.insert(p,d.subdirT,r); 
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Creation of a new direntry (as required by the directory.insert operation) is 

straightforward when the path is a terminal. When it is not, creation of the direntry 

requires creation of a sub-directory: 

op create.(p:path,r:descriptor):direntry(descriptor) = 
begin 
declare d:ref direntry(descriptor); 

d«-new direntry; 
if path.terminal(p) then 

begin 
d?.name«-path.first(p); 
dT.node<-true; 
dt.subdir<-null; 
dT.value«-r 
end 

else 
begin 
dt.name<-path.first(p); 
dt.node<-false; 
dT.value«-null; 
dt.subdir«-directory(descriptor).create; 
directory.insert(path.rest(p),dt.subdirt,r) 
end; 

return dt 
end; 

In the end we have a precise description of the concept of directory. This 

directory system may be used in conjunction with a file system (note that there is a 

difference between a file system and the directory structure it uses, as we have just 

shown). It may also be used to store objects in a protection system, or for any of a 

number of other applications. Each of the types directory, direntry, hashtable, etc. may 

be viewed as a module suitable for a programmer work assignment. 
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Summary 

There is much confusion in the programming community today over such 

concepts as modularity, structured programming, specifications, etc. What w e have 

presented here is a technique for employing all of these tools in unified form - i.e. data 

types. We have, of course, omitted discussion of many topics associated with data 

types, but have done so on the grounds that we are concerned with design and 

specification, and not coding. The freedom to use a specification language without 

constraints of particular syntax is very important. 

The use of data types as a modularization principle views a module as being 

responsible for the maintenance of some invariance. The explicit advantage of this is 

that system verification may be done selectively by module. An implication of this is 

that most changes to the system will be restricted to a small number of modules, if not 

a single one. 
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