NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Semantic Models for Paralle! Systems

Eliis S. Cohen

Department of Computer Science
Carnegie Mellon University
January 1975

ABSTRACT

This paper presents a semantic model for parallel systems with a
schedul ing mechanism that is useful for expressing and proving a wider
range of properties than semantic models which do not consider
schedul ing.

We formally describe a number of properties related-to scheduling and
deadlock, including "Fairness" and "Fullness", and show that schedulers
With these properties behave in desireable ways.

Lastly, we prove and conjecture some proof rules for scheduled systems
and outline briefly the relation of this work to modelling protection in
parallel systems,

[}

This work was supported by the Advanced Research Projects
Agency of the Department of Defense under contract no.
F44628-73-C-8874 and monitored by the Air Force Office of
Scientific Research.

Semaﬁtic Models for Paraliel Systems

INTRODUCTION

Based on Scott’'s Mathematical Theory of Computation (Scott 72), Cadiou
& Levy ([Cadiou & Levy 73] and Milner [Milner 73] have introduced a modet
of parallel processes based on processes that communicate by sharing
memory, and have shown how to state and prove properties such as mutual
exclusion formally within the mechanizable LCF system.

They treat nondeterminism by introducing an oracle from the domain TTw
(sequence of truth values, see (Kahn 731}, The determination of which
process to execute next depends on an initial sequence of the oracle,
With the new oracle becoming the remainder.

In spite of the elegance of their system, they are unable to prove
certain properties of parallel systems that cne would expect to be trus,
Primarily this trouble stems from the difficulty of characterizing the
uel |-behavedness of their oracle. By using a model derived from
Lipton’s work [Lipton 73}, ue replace the oracle with a scheduler and
state a property of schedulers, fairness, which is shoun to be adequate
to prove a property of a particular parallel system that is difficult to
express in Cadiou & Levy's system,

We first present a variation of Cadiou & Levy’s model and note some of
its problems. We then introduce a model with a scheduling formalism
that solves, these difficulties. The remainder of the paper contains
properties and proofs using the schedul ing mode}, as well as additiona!
comments.

MODELS FOR PARALLEL PROCESSES

The models for parallel processes uwe uwiil invetigate in this paper
have 3 important features.

1) Processes - We wiil aluays consider a variable number of processes,
each of which may be in one of three states, runnable, blocked or
stopped.

2) Indivisibility - Processes are divided intc indivisible actions
{(instructions) called elementary processes or EP's. UWhen a process is
selected to run, it executes exactly one EP, after which a neu decision
is made about which process should be scheduled. Concurrent execution
of paraliel processes is modelled by sequential interleaving of actions
from the various processes.

3) Abstract Machine - Tuo main approaches have emerged for proving
general properties about programs (i.e. - Termination and Equivalence as
well as Correctness), the Functional approach {Scott & Strachey 73]
(related is the Relational approach, see [deBakker 74)) and the Abstract

1

Semantic Models for Paraliel Systenms

Machine approach [Wegner 72].

The Functional approach maps a program directly into a mathematical
function; the meaning of a program is then just the value of the
corresponding function, Not only is the technique elegant, but a formal
system, LCF (Logic for Computable Functions) {Milner 72] has been
developed and mechanized in which one can prove properties about
computable functions. Cadiou & Levy and Milner use such an approach in
their respective papers on semantics of parallel programs.

The Abstract Machine apptoach defines a programming system via a
formal definition of an abstract machine. The meaning of a program is
then the result of its execution on their abstract machine. Much of
HWhat might be considered inelegant about this technique is due to its
aukwardness in modelling the execution of statements witH complex
control structures.

However, in the parallel systems we will be describing, there is oniy
one |language construct, the EP. We are thus in the unusual position of
being able to produce an abstract machine definition that is as simple
and somewhat less opaque than the corresponding functional semantics.

Of course, one guestion remains - how to define the Abstract Machine.
We choose to define the machine interpreter as a computable function,
thus making the tools of LCF available for our proofs.

(As we note in the conclusion, we expect wark on semantics for
parallel systems to come full circle, that is, back to languages that
have the appropriate structures for paraiiei control. It is likely that
an Abstract Machine approach would then be unsuitable.)

A VARIANT DF CADIOU & LEVY'S MODEL

In producing an Abstract Machine version of Cadiou & Levy's model, we
divide the state of the model into 2 parts, S, the Data state and K, the
Control state,

The Control state, K, can be viewed as a binary process tree whose
teaf nodes represent processes. The interior nodes of the tree contain
either "//" which indicates parallel execution of its two subtrees or
"%" which indicates sequential execution, that is, no process in the
right subtree can run until all processes in the left subtree have

stopped. For example:

Semantic Models for Parallel Systems

A, B, D and E are runnable. C is blocked until both A & B stop. F is
blocked until E stops.

The Abstract Machine selects a leaf node representing a runnable
process. It executes a single EP which first modifies the state S, and
then producges a process tree which replaces the node selected, thus
becoming a subtree of K. The subtree may be simply a single node, uhich
can be used to represent the continuation of the same process, & "w"
construct, which can be used to represent the call of a subroutine, or a
"//" construct, which can be used to represent the spauning of a
subprocess. In addition, a node can be the element {STOP} which

indicates the process has stopped.

+

All processes execute the same program. We can view programs as
labelled floucharts, uwhere it is the EPs that are labeliled. For
example, the flouchart

----- > P(sefi} ~--—--> V{sem} ----—

can be represented by the following program Wwith [abels P & V.

P: sem > @ —--> (semesem -1 ==>V}, ==>P
Y: sem « sem + 1 ==> P

{Note: Read "==>" as "goto" and "a --> b, c" as "if a then b else c"}
The leaf nodes of K either contain STOP or the label aof the EP the

process was executing., So, the process tree for a system in which tuo
processes are executing the P/Y loop program above might be

The data state S contains an element sem.

In the formal model, the abstract machine, given S and K determines
the "Next" state of S and K by selecting a runnable node from K and

3

Semantic Models for Paralle! Systems

executing the EP it represents thus changing both S and K.

To select the runnable EP, we use an oracle, an infinite sequence of
truth values, UWe start at the root of K and work our way towards a leaf
node. Each time we encounter a "//" with runnable nodes (not (STOP}} in
each subtree, we pick off the first element of the oracie and use it to
decide which subtree to continue doun. In the formal model!, the "Next"
function implements the abstract machine as as recursive tree-walk.

FORMAL MODEL - Cadiou & Levy Adaptation
Primitive Domains

S - memory state
TT - truth value (eiements tt, ff and uu -

+ We also use "uu" to represent the least defined element of
any domain and let the user rely on context to determine the
appropriate domain)

LABEL ~ tabet

Constructed Domains

ORACLE = TTs (sequence of truth values)

EP = S --> K % §

K = {STOP} + LABEL + K x f%,//} x K
" PROG = LABEL --> EP

The "Next" function uses the oracle to pick a runnable EP from K,
returning the resulting process tree as well as the updated state and
the remainder of the oracie.

Semantic Models for Paraliel Systems

Next: K x S x DRACLE --> K x S x ORACLE
Next (k, s,ora) <==
Case k of
STOP --> <k, s,ora>,
‘g, /f,r> ——> | :
Stop(q) --> Nextir,s,oral,
Stop(r) --> Next{q,s,oral,

Md (ora) --> Mk(At.<t,//,r>, Next(q,s,Tl{ora)) },
Mk(At.<q,//,r>, Next(r,s,Tl{ora)) } 1},

<qy %, r> --> |
Stoplg) --> Next(r,s,oral,
Mk { At.<t,%,r>, Nextl(g,s,ora) }),
bl --> <Exec(ibl)(s).K, Exec{Ibl) (8).S, ora>.
(note that if AB = A x B, and ab: AB (ab is of type AB), then

Wwe use ab.A and ab.B to indicate the projections of ab onto it's
A and B components respectively)

The "Exec" function for a particular program Prog gets the EP labetled
by Ibl and executes it in state s to produce a new k and s.
Exec: LABEL —-> [S --> K x 5]

Exec(Ibl) {8} <== Progllibl) (s},

Mc: [K -->KJ x [KxS x ORACLE] ~-> [K x S x ORACLE]

Mk {fk, <k,s,ora>) <== <fk(k},s,ora>.

Hd: TTw ——>'TT and returns the first element of a sequence
Tle TT% ——> TTx and returns the remainder of a sequence

Stop: K --> TT and is defined so that .
Stop(uu) = uu, Stop{STOP) = tt, and for all other k,
Stop(k) = ff.

The result (final state) of running kB with an initial
state sB and oracte oraB is Mem(kB,sB,oraB), uhere Mem is

Semantic Models for Paralle! Systems

Mem(k, s,ora) <==
Stop(k} --> g,
Mem (Next {k,s,oral).

{An alternate model perhaps closer to current languages and systems
might use "&" instead of "//", uhere "&" spauns a totally independent
process., Thus in <<p,//,q>,%,r>, =~ can only execute after both.p and g
STOP. In <<p,&,g>,%,r> r can execute after p STOPs, regardless of what
happens to q. And, <<STOP,&,q>,%,r> would act like <r,&,q> if a
semantic description were to be given. However, we will not pursue it
further in this paper.)

The key departure from Cadiou & Levy is that K is represented by a
"syntactic" data structure rather than by being embedded in a purely
functional structure and "//" and "%" are used here as purely syntactic
entities rather than as instances of more general process combinators.
A number of other changes have been made to produce an Abstract Machine
model| from their functional model, but none significantly affect the
problems of the model.

The main advantage of the adaptation has been that ue have sepaéated
the selection of a process to be executed from its execution. This
suggests the substitution of a scheduler for the oracle.

FACTORS IN.CHUDSING A MODEL

There are three major concerns that have prompted the development of
the scheduling model that wiil be the focus of the rest of the paper.

1) 1t is difficutt (at best) to characterize anomalous gracles, since
anomaly depends so heavily on the changing nature of the state and
control. For example, in the 2 process P/Y foop example, Cadiou & Levy
are only able to prove that one or the other will run forever, uwhile
under a reasonably "fair" scheduler, we would expect both to run
forever. By providing a model with a scheduler, we can characterize the
scheduler in such a way that anomalous schedules can be avoided. Thus,
we Will replace the Oracle by a Scheduler which has access to the state
of the system and specifies a particular process to be run as uwell as
producing a new scheduler to schedule the next process (presumably by
modifying internal variables or queues).

2) We uish to model situations where one process may arbitrarily
start, stop or otherwise control another process. Thus, instead of K,
the model contains a multiplexor M, which may viewed as a vector of
processes. The Scheduler specifies a process to be run by supplying an
integer index into M., M is also more general than K in that for each
pProcess wWe associate not only a label indicating the current control

6

Semantic Models for Paratlel Systems

point, but a separate program as well,

3) We wish to characterize processes which are blocked, so that the
scheduler can choose not to attempt to run such a process. Thus,
following Lipton [Lipton 73], We provide each EP with a synchronization
part which can be used to determine which processes are blocked.

An EP consists of 3 parts, all executed indivisibly of course. The
firset part, (SYNCHFORM), represents a synchronization condition. If
the Scheduler schedules a process, and the synchronization condition of
its current EP is not met, no action is taken, and the Scheduler is
simply invoked to schedule again. 1f the synchronization condition is
met, the other 2 parts of the EP are executed. One part (STATEFORM)
changes the data state (S} of the system, and one part (CONTROLFORM)
changes the control state (M) of the system (specifying the label of the
next EP of the current process or starting, stopping or otheruise
controlling another process. There is one special labei, ST0P, which
denotes the compietion of a processl}.

Evaluation of "Next" proceeds in the fallowing way: First the
Scheduler produces an index into the Multipiexor {as uell as a new
Scheduler to schedule the next iteration), [f the labe! indexed is
"STOP", then no further action is taken this iteration. Otheruise, the
labelled EP is executed. First its synchronization condition is tested.
[f false, no further action takes place with the EP. Lf true though, the
rest of the EP is evaluated to update both the data state (S) and the
multiplexor (M).

THE FORMAL MODEL

Primitive Domains
TT - truth values
N - natural numbers
LABEL - labels, including the element STOP
ARG - functicn argument
NAME - names of functions
S - states

Semaﬁtic Models for Parallel Systems

Constructed Domains

SYNCHFORM = NAME x ARGS

STATEFORM = NAME x ARGS

CONTROLFORM = NAME x ARGS
= GYNCHFORM x STATEFORM x CONTROLFORM

M =N --> PROG x LABEL

PROG = LABEL --> EP

ARGS = {<>} + ARG x ARGS {le will use standard tuple notation
and thus represent <a,<b,<c,<>>>> as <a,b,c>)

St =5xM

The Scheduler

SCHED = S x M --> N »x SCHED

Primitive Functions

Synchfn: NAME --> [ARGS --> [§ --> TT])
Statefn: NAME --> [ARGS --> [§ -=> S x ARGS 1 1
Controlfn: NAME --> [ARGS --> [ARGS -~-> [M --> M1 11

For reasons discussed in the section on Scheduler Notes, we model the
various FORls as a function name and an argument iist. To evaluate the
function, we must provide a way of mapping the name of the function te
the function itseif, That is what the three primitive functions do.
Theg are also guaranteed to be total. It is left to the reader to
imagine how they can be extended reasonably to total functions in the
cases uwhere the name is undefined or the arguments are inappropriate. It
is important to note that arguments to Synchfn’'s and Statefn’s Wwill not
necessariiy be values but will more likely represent variable names used
to select a value from 8. Thus we are not providing an abstract model
of storage, but rather modeiling at a higher level of abstraction.

The Interpreter

Next: S x M x SCHED --> S x M x SCHED

Next (s,m, sched} <==
Let <n,sched’> be sched(s,m) in
m(n} .LABEL = STOP --> <s,m,sched’>,
Let <s’',m’> be Execin) (s,m) in <s',m’, sched's>.

(note that if AB = A x B, and ab: AB (ab is of type AB}, then
we use ab.A and ab.B to indicate the projections of ab onto rt s
A and B components respectively)

Semantic Models for Parailel Systems

Given an index into the multiplexor and a multiplexcf. Action pﬁoduces
the designated EP.

Action: N x M —-» EP

Action{(n) {m) <== (m(n).PROG} (m(n).LABEL).

Given an index into M, as weil as S 8 M, Exec executes the designated
EP to produce a new S & M, '

Exec: N --> [S x M -->5 xHM]

Execin) {s,m) <==
Let <syfrm,stfrm,cfrm> be Action(n}{m} in
Sunchfn (syfrm.NAME} {syfrm.ARGS) ts) -—> |
Let <s’,result> be Statefn{stfrm.NAME) (stfrm.ARGS) (8} in
<s',Control fn{cfrm.NAME) {cfrm.ARGS) (resul t) (m}>),
<s, N>,

The reader is encouraged to {ook ahead to the Applications section for
an example of how a particular system would be modelled.

In this model (as in actual systems), it is not eo clear when
computation stops (for example, an idle process may run in an Operating
system when nothing can otherwise be scheduied). Houwever, for
simplicity, we will assume a continuous predicate, Mstop.

Mstop: S x M x SCHED --> TT

For example, if the scheduler returns a zero index when there is
nothing to schedule, then ue could define Mstop ast

Mstop{s,m,sched) <== { sched{s,m}.N =8 1),

In any case, we can define the result {final state) of running m@ with
state sB and scheduler sched® as Mmem{s8,mB, schedd) where Mmem is
defined as .

Mmemis,m, sched) <==
Mstop(s,m,sched) -—> s,
Mmem (Next (s, m, sched)}.

Semantic Models for Parallel Systems

PROPERTIES OF SCHEDULERS

Treatment of schedulers in this paper will be independent of any
particular synchronization primitives (e.qg. P/V, P/VYchunk, up/doun} and
any particular implementation or internal structure of the scheduler
{e.g. FIFO queues, priority order), rather we simply express a number of
scheduler properties using the mode!. The properties described are
either ones that will be used later in the paper, or ones that have
appeared already in the literature. A comparison of these properties by
example can be found in the Applications section of this paper.

The properties as described are dependent heavily on S 8 M as uell as
the scheduier, wheras commoniy, ue are simply interested in a property
of a scheduler independent of uhat it schedules. The section of this
paper on Scheduler Notes indicates how this problem may be solved.

Notes: We will be using "process j" to indicate the continuing -
behavior of the contents of M(j).

We use the notation [to mean less defined than - also

= - Strong equivalence (a = b iff
alblb n bEa) '
L - Strictly less defined than (@a E b iff

atb A ~(asb))}
Note that sequénce domains (e.g. TT%} are ordered by

uu E act (a#b) and a=a# uu
where "#" is the concatenation operator.

1) Defined{sched) (s,m)

tte <== tt # ttw, {The symbol "tt%" is to be the least fixed
point of this equation - which can be seen to be the
infinite string of "tt"s.)

Def (s,m,sched) <== tt # Def(Next(s,m,sched)).

Defined{sched) (s,m} iff Defis,m, sched) = ttx

2} Full{sched) (s,m} - A scheduler is full if it does not schedule an
unrunnable process when a runnable process can be run.

Canrunik) (s, m) <==
m{k}.LABEL = STOP --> ¥f,
{ Let syn be Action(k) {m).SYNCHFORM in
Sunchfn (syn.NAME) (syn.ARGS) (s8)),

10

Semantic Models for Parallel Systems

Runnabliefj,k) (s, m, sched) <==
(j == sched(s,m}.N v Canruntj) (s,m) v -Canrunik) (s,m) }
Runnable(j,k) (Next{s,m,sched)),

Full(scheﬂl{s,m) iff (Vj,k)(Hunnable(}.kl(s,m,éched) E ttw)

3) Release(sched) (s,m) - A scheduler is a release scheduler [Lipton
73) if, when some action unblocks a set of processes, then some process
from that set Will be the next to run.

Unblock {k) (s, m, sched) <==
Let <8’',m’, sched’> be Nextl(s,m,sched} in
{ Canrunik) {s,m) --> tt,
Canrunik) (s’ ,m") -—> (
Let n* be sched’ (s',m*)}.N in
n* = k --> tt, ,
-Canrun{n’) (s,m) A Canrunin’)(s’,m'}],
tt)
Unblock{k) (s’ ,m',sched’).

Release(sched) (s,m) iff (Yk)(Unblock(k) (s, m,sched} € ttx)

4) Ready\Run({sched} (s,m) - A scheduler has the Ready Run property when
no process has to wait forever to run from the time it becomes
continuously capable of running. We actually state this in the logic as
- any process which is unable to run at most a finite number of times
must run infinitely often. Some thought should convince the®reader that
these are the same. '

Run{j) {s,m, sched) <==
+{ j = sched(s,m}.N A Canrun(j}(s,m})}
Run{j) (Next(s,m, sched)].

p) <== p --> tt, uu.

Cantrun(j} (g, m, sched) <==
? {(-Canrun{j) (s,m}) # Cantrun(j) (Next(s,m,sched)).

Readg\Run(éched)(s,m) iff :
(Vj} (Cantrun(j) (s,m, sched) E tt& > Run(j) (s,m,sched} = ttw)

5} Pointer\Bounded(sched} (s,m) - A scheduler is pointer bounded
[Lipton 731 when a process able to run infinitely often is scheduled
infinitely often. (He will see in the Application section that both
Ready\Run and Pointer\Bounded are too weak and that Fairness is a more
appropriate property)

11

Semantic Models for Paralle! Systems

Tried(k} (s,m, sched) <==
T{ k = seched(s,m}.N) # Tried(k) (Next (s, m, sched)]).

Infecan(k) (s, m, sched) <==
T(Eanrun(k)(s,m}) # Infcan(k) {Next{s,m, sched)).

Pointer\Bounded (sched) (s, m) iff

{(Vk) { Infcan(k) (s, m, sched) ttee > Tried(k} (s, m, sched) = ttx)

B) Fair(sched) (s,m} - A scheduler is fair if any process able to run
infinitely often, runs infinitely often at times that it canrun (is not
blocked or stop)

Fair (sched) (s,m) iff
(¥k} (Infcan{k) {s,m,sched) = ttx > Runlk) (s,m, sched) = tts)

7} We say a scheduler sched’ is an tdling extension of sched if

a) (schedis,m) = uu A (Vk) (~Canrunik} (s,m)) } -->
sched’ {s,m}.N = @,
sched’ {s,m}.N = schedf{s,m).N

b) sched’ (s,m).SCHED is an id)ing extension of sched(s,m).SCHED

This corresponds nicely with the example definition of Mstop in the
previous section. It is easily provable that every scheduler has an
idling extension, that Run(j)(s,m,sched) = Run(j) (s,m, sched’) and
Defined(sched’) (s,m). Also Full(sched) (s,m)} F Fulf(sched’) (s,m) and
similarlty for Fair.

Fairness is in genera! the weakest property (along With definedness)
that we would ever demand of a legitimate actual scheduler. Lucki ly,
fairness (with definedness) will be adequate for proving properties that
we are interested in. However, proving certain properties (in
particular, the examplte proven in the next section) given fairness alone
turns out to be somewhat difficuit., The key problem is knowing exactly

When a particular action will occur, even when it is known that it must
occur eventually. This problem often disappears if the scheduler is
full as well. So we Will show that to prove:

Al Defined(sched) {s,m), Fair (sched) {s,m), Q(j,s.mi +
Run{j}{s,m, sched) = ttx

it is sufficient to shou that
Bl Defined(sched) (s, m}, Fair (sched) (s,m}, Full{sched) {s,m), a(j,e,m F

Infcan(j} {a,m, sched} = ttx

12

Semantic Modeis for Parallel Systems

Proof:

Suppose there were a function Fullsched: SCHED --» SCHED s. t.
for any schedutler sched,

1) Full {Fullsched{sched)) (s,m)
2) Run(j) (s, m,FulIsched{sched}) = Runt{j) (s,m, sched)
3) Infcan(j) (s,m,Fullsched{sched)) k& Infcan(j) (8, m, sched}

Now, suppose Defined(sched) (s,m), Fair (sched} (s,m), Q(j,s,m),
but Run(j}(s,m,sched) E tt

Since Fair {sched) (s,m}, Infcan(j){s,m,sched) C ttx

Thus by (1), {(2) and (3),
Full {(Ful | sched (sched)) {s,m),
Run{j) (s, m,Fullsched{sched)) E ttx and
Infcan(j} (s,m,Ful lsched(sched)} & tt

Then trivially, Fair (Ful Vsched(sched)) (s,m), by defn of Fair

Now, let fsched be an idling extension of Fullsched(sched). Then
Defined{fsched) (s,m}, Fair(fsched)(s,m), Ful! (fsched) (s,m) and
Run(j) (s,m, fsched) E ttx _

If we can prove [Bl, then Infcan(j} (s,m, fsched) = ttw, and
by defn of.Fair, Run{j) {s,m, fsched} & ttx.

" Thus, we have a contradiction to

Run(j) {s,m, fsched} E ttx, and therefore the original
hypothesis that Runi(j) (s,m,sched) € ttx must be false. Since
it is easily shoun that Runtj}(s,m,sched} C ttw,

it must be the case that Run{j){s,m,sched) = tts and

{Al foliowus.

Definition of Fullsched and proofs of 1), 2] and 3) can be
found in the Appendix. :

APPLICATIONS

Some notion of the properties in the section above can be gained by
consideration of the example (adapted from [Lipton 721} of 3 processes,
each executing the loop:

Semantic Models for Parallel Systems

where the initial value of sem is 1.

{(We will describe execution sequence as a sequence of pi and vi,
i=1,2,3 to denote the execute of a P or V by the i’th process)

Under a scheduler that is merely defined and full, the execution could
simply be

pl vl pl vi pl vi pl vi ...
that is, processes 2 and 3 might never execute.

If the scheduier is additionaliy a Release scheduler, the
execution could be

pl vl p2 v2 pl vl p2 v2 pl vl p2 v2 ...

that is, vl releases P of processs 2 and v2 releases pl, but again
process 3 might never be executed.

If the scheduter additionaliy has the Ready\Run property, it helps
matters not at all, since process 3 is never continuously capable of
running. 1t is blocked each time process 1 or 2 executes a P, Likeuise
the Pointer\Bounded property does not help, since process 3 might only
be tried when it is blocked. '

[f the scheduler though is merely defined and fair, each of pl, p2,
pP3, vl, v2 and v3 must execute infinitely often. '

We'll prove that last statement for the more general case where there
are n processes, As already noted, this is a problem that Cadiou & Levy
would have difficulty proving. '

Po simplify, we'l) assume that the state s is identically sem, and
we'll define the following functions:

true() {g) <== tt.
tst{){s) <== (s >80},
inc{) (s} <== <s+1,uu>.
dec{} (s} <== <s-1,uu>.
gof<n, Ibl>) {res) (m) <== Xk, (K = p -=> <m{n) ,PROG, tbl>, m{k)).
Introducing some notation, we use
Ibl: When syfisya) do stflsta) ==> cflca)

to represent the EP

<<sgf,sga>,<stf.sta>,<éf,ca>>

14

Semaﬁtic Models for Parallel Sgstems

where the EP is labelied by "Ibl", Where sya, sta or ca are <> (no
arguments), ue eliminate parentheses as well. We further use the
notation

tn=> |bl{args) for =s> GO(n, |bi,args)

{note: Function definitions, like "go", have their names in | ower
case. The formal name, !ike "GO" {from the domain NAME) is the
same name written in upper case.)

* So, we name the program described pictorially above, pvloopljl, where
j is the process number {index into Mi. It has tuo labels, P & ¥V, and
its formal description using the shorthand notation developed above is:

P: When TST do DEC :j=> ¥
V: When TRUE do INC :j=> P

Now, the problem can be stated in the logic as, Prove:

Def ined {schedB) (s8,mB), Fair (schedd) (s8,m@), Range(j) F
Runt(j) (sB, m@, schedB) = ttw

where
mB <== Aj. [Range(j) --> <pvloopijl,P>, <uu, STOP>).

SB <== 1-
Range(j) <== j 21 A j

IA

n.

By the results of the previous section, uWe can 41s0 assume that
Ful | (schedB} (s8,mB} and simply prove
Infcan{j) {(s@,mB, schedd) = ttx.

PROOF :

Def ined (schedd) {sB,mB), Fair {schedd) (s@,md},
Ful) (schedd) (s8,m@}, Rangelj) F
Infcantj) (sB,mB, schedd) = tt

Infcan2k (j) {s,m, sched} {k) <== .
T(Canrun(j}(Desc[s,m,sched)(Zﬂkl.SN}l
T(Canrun{j)(Desc(s.m,sched}(2*k+11.SH))
Infcan2k (j) (s,m, sched) {k+l),

- LEMMA 1
Defined(sched) (s,m} A Full(sched) (s,m} >
(Vk) (Let <s’,m’,sched’> be Desc(s,m,sched} (k) in
Defined(sched’) (s’,m") A Full (sched') {s’,m'))
Proof: Math Ind on k

15

Semantic Models for Parallel Systems

LEMMA 2 ,
Infecan2k (j) (s, m, sched) (k} = Infcan(j) (Desc{s,m, sched) (2«k) }
Proof: Parallel Comp Ind on Infcan2k & Infcan

LEMMA 3 : -
Defined(schedB} {(sB, md), Ful'l (schedB) (s8,mB) F
Let <s8’,m’, sched’> be Desc (sB, mB, sched8) (2wk) ,
<s",m", sched"> be Desc{s@,mB, schedd) (2uk+1),
j be sched’ (s',m"'} in
Range{i) > Canrun(i) (s',m') A
Canrun(j} (s",m") A
i = j > -Canrun(i) (s",m")
. Procf: Math Ind on k using Lemma 1
LEMMA 3a
Defined{sched8) (s, md) , Fuli{sched) (s8,mB), Rangel(j} }
Canrun(j) (Desc (sB,mB, schedB) (2xk) .SM) = tt

The proof of the theorem folious directiy from Lemmas 2 & 3a

We can also state (though we will not provel the mutual
exclusion problem as
Range ()}, Rangel(k}, j=k F Nutex(sB,mB, schedd) = uu
Mutex(j,k) {s,m, sched) <==

PO m(j).LABEL = mik).LABEL = V) # Mutex(j,k) (Next (s,m, sched)),
DEADLOCK

Briefiy, we can state some deadiock properties in the logic
based on the model.

1) Starved(k) {(sched) {s,m} - A process is starved [Dijkstra 72]
if it is not "STOP" and is continuously incapable of running.
Infsafe(k} (s, m, sched) <==

*(m(k}.LABEL = STOP or Canrunik) (s,m))

Infsafe (k) (Next(s,m, sched)).

Starved{k) (sched) (g,m) iff Infesafe(k) (s, m, sched} G ttw

2) Deadlock (sched} {s,m) - The system is deadlocked if some
process becomes starved.

16

Semantic Models for Paraliel Systems
Deadlock (sched) {s,m) iff (3k) (Blocked (k) (sched} (s, m})

3) Safels,m) - We are often interested, regardiess of the bcheduler
whether or not a particular set of processes can ever lead to deadlock.
1f not, the system is safe. Yet, we cannot ignore the scheduler
compietely, as degenerate schedulers can lead to anomalous behavior as
we noted in an earlier section. We take as a minimal requirement that
the scheduler be fair and defined.

Safets,m} iff
(Yached) (Definedisched) (s,m) A Fair(sched} (s,m) >
(YK} { Infsafelk) (sched) (s,m) = tt¥))}

Clearly, .the P/Y system of the previous section is safe.

0f course, it is in general undecideable uhether or not <s,m> is safe
even in simple systems such as P/V {uith conditionals), and even knouing
that under a particular fair, full, defined scheduler, deadlock cannct
occur, -

Consider s composed of a semaphore, sem, initially 8, integers
k and n, initially B, and f, a description of a total function of
type N --> TT. And let m be running the two processes informally
described by:

Process 1 Process 2
k := B k 1= 13
n:= B; loop
¥V (sem}; ‘ : if Kk =8 then V(sem);
| oop : P (sem) ;
if Eval (f) (n) then V(sem); endloop
n:=n+1; .
end loop '

Now, under a scheduler that runs process 2 first, the eventual value
of k will be B and there uill never be deadlock, but if process 1 runs
first, k wil) be 1, and determining Safe(s,m} becomes equivalent to
deciding whether f is true infinitely often, which is reducible to the
halting problem.

MODELLING PROTECTION SYSTEMS

In the model presehted, each process operates on a common memory state
S. Yet in programming systems, different processes do have different
accessing rules for accessing the memory (e.g. Frames, Contours, Virtual
or Local Name Spaces and Execution Oomains). By passing the EP its
mul tiplexor slot as an argument, differential accessing of S can easily

17

Semantic Models for Paralle! Systems

be achieved. For example, if 5 = N --> DOMAIN, then if p is executing in
Multiplexor slot k, sfk} could represent its execution domain,

Nou, consider the modeling of a segmented operating system. Process
j’s data segments would be part of S, whereas its code segment would be
modeied directly by the PROG component of M{j}. We could then mode! the
starting of process n by the EP:

Start: When TRUE do CONTENTS(<seg>) ==> LOADGO({<n>)

Where contents(<seg>) (s) returns as its result the contents of segment
seg lin state s}, and loadgo{<n>) loads up those contents in M(n) and
begins executing the process.

loadgo (<n>) (segcontents) (m) <==
Mk. { k=n --> <link(segcontents,n),BEGIN>, m(k})

Where link(x,n) assembles x into PROG form with start address, BEGIN
in process n.

An interesting byproduct is that one can model a process changing a
data segment of another process {(possible in systems uith shared data)
by using a STATEFORM, whereas a change in an executing process’s code
segment (most |ikely a bug) can onfy be modeled by using a CONTROLFORM
(tike LOADGO). In fact, in pursuing this modified model, just such a
bug was discovered in CMU's HYDRA system.

{ The bug in HYDRA can be circumvented by the use of "frozen" pages
{see [Rotemberg 741). A frozen code page is permanently protected
against modification.)

Other smal! changes in the model make it more useful for describing
and proving properties about protection systems. [Cohen 75] will report
further results,

A CONJECTURED INDUCTION RULE
We will often want to prove (for some predicate Q

Al Defined(sched®) (s8,mB), Fair (schedd) (s8,m8), Q(j,sB,mB) - |
Run(j} (58, mB, schedB) = ttw

under more difficult conditions than in the simple example of the
applications section. MWe note that in the P/V example, process j
becomes blocked when some other process, say k, has successfully
executed a "P". Process k's subsequent execution of a "Y" wil)
then make process j runnable once more.

This is an instance of a more general observation. Suppose that

18

Semantic Models for Parallel Systems

uhenever process j is blocked, we are able to find a runnable process
Whose execution brings process j "closer" to becoming runnable and
furthermore execution of any other process does not take process j

far ther away from becoming able to run. 1f we can shouw that after doing
this a finite {(though not necessarily bounded) number of times, process
j actually becomes runnable, then under a fair scheduler ue should be
able to show that process j runs forever. Formally, ue have the
following induction principle:

Suppose that (W, £) is a uell-founded set with a set of least
elements WO in which all intervals are of finite length., We
write lwl for the maximum distance from W to an element of WB.
Fur thermore, let Assoc: W --> [S x M --> TT } and
Closer: W --> N be total functions. Then to prove [Al, it is
sufficient to prove:

a) Q(j,s,m) F (3w} (Associu) (s,m})
bl Wl ¢ WB, Assoc(uB) (s,m) F Canrun(;}(s,m)
c) w8 e WB, Assoc(uB){s,m) F (¥k} (3} (Assoc(u](Exec(k}{s,mli)

d) w =-¢ WB, Assoc(u)is,m} F
\ (") 1wl < lul A Associu'] (Exec{Closer(u)) (s,m})]

e) w -e WB, Assocluwlis,m} F (Vk}(3u")(
Assoc(uw’) (s,m} A
(1wt < tut v € 1uwi = lul ACloser(w’) = Closer{u))))

Intuitively, we use an abstraction of a token machine to determine
whether or not process j can run forever. A token is aluays associated
Wwith some element u of W depending on ¢ & m. As EP’s are executed, s &
m change, thus the token becomes associated with different elements of
W. By proving properties about the movement of the token in W, we can
prove that process j runs forever.

The basic idea is to associate the bottom elements of W, that is WO,
Hith the states in which process j canrun, Then when the token is not
associated with an element of WB, we must show that the token is
eventually forced doun towards an element of WB. We do this by
demanding that when w -¢ WO, there is some process Closer (), such that
the execution of that process will force the token to an element W’ such
that lw'l < tul. Furthermore executing any other process must have the
effect that either the token is forced to a W' lower than w anyway or
the token moves to a u’ .at the same distance from the bottom ((W'l =
iu! } but such that Closer{u') = Closer{n), Thus in the case that we

have a fair scheduler, process k will eventually run and the token uill
eventual |y be pushed doun closer toward WB. Since all intervals are of
finite length, the token will eventualiy end up in WB. This will go on

/

13

Semantic Models for Parallel Systems

forever, thus, process j will be runnable forever, and again, given a
fair scheduler, process j witl actually run forever,

Using this conjectured induction principle, we can easily prove the
PVioop example. Define
W= fx} + ful,...,un} and WO = [«}, under the ordering,
e < uwib, i =1,...,n. '

Let Associ(x){s,m) = s =1 ~a
m{k).LABEL = (Range(k} --> P, STOP)

and Assoc(uwills,m} = s=0 ~a
m(k}.LABEL = (k=i --> V, Range{k) --> P, STOP }

and Closer(ui}l = i,

Then, it is relatively trivial to prove that:
a) Assoc(x} (8, m@)
b} Assoc (w) {s,m) F Canrun(j)is,m)

c) Associx){s,m) F
(Vk} (Range (k) --> Assoc{uk) (Exec(k} {s,m)),
Assoc (%) (Exec (k) (s, m)))

d} Assoc(u{}(s,m) F
(YK) (k=i --> Assoc (%) (Exec (k) (s,m)),
Assoc{ui) (Exec(k) (s,m}})

which is easily seen to satisfy the induction predicates.

To simplify proofs, it may-be useful to partition the system. We
would have to define the notion of an "independent partition", and then
prove that if <ml,...,mj> was an independent partition of m under s,
then

Safe(s,ml), ..., Safe(s,mj) F Safels,m)

SCHEDULER NOTES'

1) As noted in an eariier section, scheduler properties depend
heavily on S and M as well as SCHED. Since future behavior of the
system is completely determined by the initial system, all we need
do is allow the scheduler to be tailor made to the initial
configuration. Suppose that we demand that in the initial state of
the system, n < j > m@(j}.LABEL = STOP, and call this property

20

Semantic Models for Paralletl Systems

Init{mB,n),- The use of n, fixing an upper bound to the initial
number of runnable processes allows us to define a recursive
scheduler prototype:

PROTOSCHED = N x S x M --> SCHED

and a scheduler maker

Makesched: PROTOSCHED --> [N x S x M --> SCHED]
We say that PROTOSCHED is fair if

Initimd,n} > Fair(Hgkesched(protoschedl{n,sB.mB])(sB.mB)

snd gimtiarly for other properties.

2} Because the scheduler ‘gets its information by looking at EP’s, EP
must be a domain over which a continuous "=" predicate is defined so
that the scheduler can actually look at the components aof the EP. Hence,
the various FORM's of the EF are specified as NAMEs and list of
ARGuments, rather than directly as functions. '

CONCLUSION

lie have introduced a semantic mode! for paralle! systems and have
presented a number of properties of parallel systems based on the model
as well as some proofs and proof rules. '

The develiopment with the most potential appears to be the conjectured
induction rule based on well founded sets As Cadiou & Levy note, LCF
proofs force the program prover to (sometimes tediously) explicate all
the possible states of the system. To make proofs of complex parallel
programs more tractable, and especially to make the proofs more amenab e
to automatic verification, it seems clear that some (elegant} embedded
or externally imposed (see {Milner & Weyrauch 72]1) structure is
critical. MWell founded sets may be a useful structure for proofs of
deadlock: for other properties of parallel programs, further exploration
is necessary. :

There is a different kind of structuring choice more directly related
to this paper - what can be an indivisible operation embodied by an EP?
1f we assume an implementation on a sequential machine, the safest
choice is the smallest action that cannot be interrupted. The obvious
difficulty is that seguential machines are rare; even conventional
machines often have an 1/0 processor and both may simul taneously be
accessing memory. At best machines that use cycle-stealing force us to
safely choose as indivisible actions those which take place in a single
cycle.

21

Semantic Models for Para!iel Systems

We have assumed in this paper that actions as complex as
synchronization operators may be viewed indivisibly and thus our proofs -
must therefore be viewed as correct only for models in which that is the
case, thus uwe separate the model of indivisibility from its
implementation. In the case of a multiprocessor, the code implementing
synchronization may be running in parallel with other processes, perhaps
even executing the same code. MWhat must be shoun in such a case is that
the mode! of indivisibility is nonethetess valid regardless of such
concurrency as may be introduced by the implementation, Such proofs are
beyond the scope of this paper.

" A somewhat serious deficiency of the scheduler model {and other models
as well) is its inability to mode! time dependent behavior - for example
timer interrupts in programming systems and timing considerations in
machine architecture. While the nature of problems to be studied with
respect to time dependencies would likely call for a different model in
any case, proving the correctness of something like a

mul tipliexor/scheduler for a multiprocessor would likely regquire a
scheduler model modified in some way to handle time dependencies.

Perhaps the most serious problem with the model described here is in
the nature of the assumptions made about how processes interact (or
should interact}. A formal semantics for a sequential programming
language with structured control provides a better base for various
proofs than a semantics for a fanguage with GOTO's, Similarly, suitably
restricted interactions betuween processes should provide a better
semantic system than the one described here in uhich arbitrary
interactions are allowed. A solution is to provide additional axioms
which restrict the possible schedules. P/V disciplines are too
unstructured. Work along the lines of Path expressions [Campbell &
Haberman 74} appear to be more promising in providing a semantic basis
in which proofs will be less tedious.

ACKNOWLEDGEMENTS

I wish to thank Biil Wulf, Nico Haberman and J. W. de Bakker
for their comments on earlier drafts of this paper.

22

Semantic Models for Parallel Systems

B1BL I OGRAPHY

[Cadiou & Levy 73] Cadiou, J. Levy, J. "Mechanizable Proofs about
Parallel Processes" 14th Symposium on Suitching Theory
and Automata, Oct 73

[Campbel | & Haberman 74] Campbell, R.H. Haberman, A. N.
"The Specification of Process Synchronization by Path
Expressions" Proc. Int. Symp. on Operating System
Theory and'Practice, Apr 74

[Cohen 75] Cohen, E. "A Semantic Model for Parallel Systems with
Schedul ing" Proc. 2nd ACHM Symp. Princ. Prog. Langs.,
Jan 75 '

[Cohen 75l Cohen, E. "Modeliing Protection Systems™, CMU

PhD Thesis, forthcoming

[deBakker 74] deBakker, J. W. "The Fixed Point Approach to Semantics:
. Theory and Applications" Mathematical Centre Tract 63,
Mathematical Centre and Free University Amsterdam, 1974

[Di jkstra 72] Di jkstra, E. "A class of Allocation Strategies
Inducing Bounded Delay Only" SJCC 72

[Kahn 73] Kahn, G. "A Pretiminary Theory for Parallel
Programs", 1.R.1.A. Report, Jan 73

[Lipton 73] Lipton, R. "On Synchronization Primitive Systems",
CMU PhD Thesis, June 73 or see
Proceedings Bth Annual Symposium on the
Theory of Computing, May 74

{Manna & Viullemin 721 Manna, Z. Yiullemin, J. "Fixpoint Approach
to the Theory of Computation" CACM vi5,#7 July 72

(Miiner 711] Mitner, R. "An Algebraic Definition of Simulation
Betuween Programs" 1.J.C.A.I. 2, 1971

Milner 721 Milner, R. "Implementation and Application of Scott’s
Logic for Computabte Functions", Proceedings of a
Conference on Proving Assertions about Programs,
Jan 72

[Mitner & Weyrauch 72} HMilner R. Weyrauch R. "Proving Compiier Correctness
in a Mechanized Logic" Machine Intelligence 7

Milner 73] Milner, R. "An Approach to the Semantics of Parallel
Programs" Proc. Convegno Informatica Teorica, Mar 73

23

Semantic Models for Parallel Systems

[Neueg 73] Newey, M. "Axioms.and Theorems for Integers, Lists
and Finite Sets in LCF", Stanford AIM-184, Jan 73

{Rotenberg 74] Rotenberg L. "Making Computers Keep Secrets" MIT PhD Thesis,
MAC TR 115, Feb 74)

[Scott 723 Scott, D. "The Lattice of Flow Diagrams", Symposium
on Semantics of Algorithmic Languages, Springer
Verlag Lecture Notes in Mathematics 188, 1971

{Scott 72 Scott, D. "Mathematical Concepts in Programming
Language Semantics" SJCC 72

[Scott & Strachey 721 Scott, D. Strachey, C. "Touward a Mathematical
Semantics for Computer Languages", Oxford Univ.
Computing Lab PRG-6, 1972

(Wegner 72] Wegner. P. "The Vienna Definitiaon Language", ACM
Computing Surveys v&,#1 Mar 72

Semantic Models for Parallel Systems

APPENDIX

The proofs here are presented as a series of Lemmas. Except for some
difficult cases, an outline of the proof of each Lemma is all that is
given. Only two inductive proof rules are used here, Computational
Induction [Miiner & Viullemin 72, Manna 72} and Mathematical Induction
[Manna 721.

Wle use the abbreviations introduced by filner {Milner72],
a:: b=c for (a=-->b,uu = (a-->c,uul.
and d(x) is the definedness predicate,
3(uu} = uu, otheruise, dix) = tt. He aiso use
ta) <== a -—> tt,uu.

We also assume an extended LCF theorem prover uiith a knou l edge
of arithmetic (see axioms by Newey [Newey 731} built in
and 'therefore, when we are clearly dealing with a natural number,
we dispense With the additional predicate isnat, e.g.
we wurite a :: b(n) = c(n) instead of
a A isnat(n) :: bin) = cin).

Wle have not formally shoun that Computational Induction is
legitimate as we use it over the domains introduced in this

paper. A proof in the style of Scott [Scott 721 is left to
the reader.

'le use "#" [Kahn 73] as a general concatenation operator, and
|eave proofs about its obvious properties to the reader.

THEOQOREM 1
. Full {Fullsched{sched}) (s,m)
Ful I sched{sched) <== x{s,m}.Kfs(sched,8) (s,m}.
Kfs(sched,n) {s,m} <==

Let <s’,m’,sched'> be Desc(a.m,sched](Kfn(s,m,schedf(n]) in

< sched’ (8’ ,m').N, Ful | sched {sched’ (s',m"),SCHED) >

Kfn(s,m,scﬁed)(n) €==

Cr {(Desc{s,m, sched) (n}} --> n,

K$n(s,m, sched) {n+l}.
Desc (s,m, sched) (n) <==

n =08 --> <s,m,sched>,

Next(Desc(s,m,sched)(n—l)].

Cr{s,m, sched) <== Canrun{sched(s,m).N) (s,m).

25

Semantic Models for Parallel Systems

Aex(]j,s,m} <== ExeclAction{j)(m)) (s,m),

.

LEMMA 1
Next(s,m, sched) = _
—=Cr (s, m, sched) --> < s, m, sched(s,m}.SCHED >,
< Aex(sched(s,m).N,s,m), sched{s,m},SCHED ».
Proof: by definitions

LEMMA 2
~Cr (Desc (s, m, sched) (n)) ::
Descis, i, sched) {n}.SM = Desc(s,m, sched} (n+1).5M
Proof: Defined of Desc & Lemma 1

LEMMA 3
CanrunfKfs(sched,n) (s,m}.N) (Desc(s,m, sched} (n) .SM} C tt
Proof: Substitute Defn of Kfs, then use Computational
Induction on Kfn, using Lemma 2 & Defn of Cr

LEMMA 3a
Canrun (Ful I sched{sched) {s,m).N} (s, m} € tt

LEMMA 3b
Gr{s,m,Ful Isched{sched)) T tt

LEMMA 4
Desc (s, m, sched} (Kfn(s,m, sched) (n}}.SM C Desc{s,m, sched} (n).SH
Proofs Comp Ind on Kfn using Lemma 2

LEMMA 4a
Desc(s,m, sched) (Kfn{s,m, sched) (8)).SM C <g, m>

LEMMA §
Cr (Desc (s, m, sched) (Kfn{s,m, sched) (n))) =
Canrun (Kfs(sched,n) (s,m) .N) (Desc (s, m, sched) (n}.SM)
Proof: Defn of Kfs & Cr and Lemma 4

LEMMA La
Cr (Desc{s,m, sched) (Kin{s,m, sched) (n)}) T tt
Proof: Lemmas 3 & &

LEMMA Sb .
Cr {Desc{s,m,sched) (Kfn(s,m, sched) (B})) = Cr (Ful I sched (sched), s, m)

LEMMA B
Next (s, m,Ful | sched (sched)) = ,
Let <s’,m",sched’> be Desc(s,m, sched) (Kfn{s, m, sched) (B)+1) in
< s8’, m', Fullsched(sched’) >
Proof:

26

Semantic Models for Parallel Systems

Next{s,m,Ful | sched{sched})

Cr (s, m,Ful isched{sched)} -->.
< Aex(Fullsched{sched) (s,m}.N,s,m), Fullsched(sched) {s,m).SCHED >,
uu. Lemma 1 & 3b :

Cris,m,Ful | sched{sched}} -->

. Let <s,m’,sched’> be Descis,m, sched)(Kfn(s m, sched}[B)) in .

< Aex(sched’ (s’,m’).N,s,m}, Fullsched(sched’ {s’,m’).SCHED} >,
uu. Defn of Fullsched, Kfs

Let <s ,m’, sched’> be Descls,m, schedl[Kfn{s m schedl(@)] in
Cr{s’,m’,sched’) --> < Aexlsched {s’,m).N,e’,m"},

Ful I sched (sched’ {s*,m’}.SCHED) >,
uu. Lemmas 4a & Sb

Let <8’,m’,sched’> be Desc{s,m, sched) {Kfn(s,m,sched) (8)} in
< Next(s’,m’,sched’).SM, Fullsched(Next{(s’,m’,sched’).SCHED) >.
Lemmas 1 & Sa

Let <s’,m’,sched'> be Descf{s,m,sched) (Kfn(s,m, sched) {B)+1) in
< 8', m’, Fullsched(sched’) > Defined of Desc QeD .

Proof of THEOREM 1

Ful{ (Fullsched{sched}) (s,m} by Defn of Full, ue must prove

Runnable{j,k) {s,m,Ful sched(sched)) E tt¥

Proof: Compgtationai Ind on Runnable

(j = Fullsched(sched} {s,m}.N or Canrun(jl}(s,m) or -Canrun (k) (s,m))
Runnable(j,k)} (Next (s,m,Fulisched(sched)}}

Ctt # Hunnable{j,k](Néxt(s.m,Ful|sched(schedl)} Lemma 3a
= tt # Let <s8',m',sched’> be Descls,m,sched) (Kfn(s,m, sched} (B)+1) in
Runnable(j,k) (s’ ,m’ ,Fulisched{sched’)) Lemma &
E tt # ttx Induction |
= tte
THEOREM 2

Run(j} (s, m, sched) = Run(j) {s,m,Fulisched]}

Rbl (j) (s,m,sched) <== *{ (j = sched(s,m}.N} A Canrun(j){s,m))}

27

Semantic Models for Parallel Systems

Col (j) {s,m, sched) (n) <==
n=0--> <>,
Col (}) (s,m, sched} (n-1) # Rbl (j) (Desc(s,m, sched) (n-1}1}.

Cru&(j}(s,mfsched} <== Let n be Kfnfs,m,sched](ﬁ)'+ 1l in
Col {j) (e,m, sched) (n) # Crunij) (Descts,m, sched) (n}).

LEMMA 7
Desc (Desc (s, m, sched) (a)} (b) = Desc(s,m, sched) (a+b)
Proof: Math Ind on b

LEMMA B8 ,
d{Besc (s, m, sched) (n+k)) & 3(0esc(s,m, sched) (n))
Proof: Lemma 7 & Axioms for 9

LEMMA 9
k £ n A CrDescls,m, sched) (n)) > Kfn{s,m, sched} (n-k} < n
Proof: Math Ind on k using Lemma 8

LEMMA Sa
Cr (Desc{s,m, sched) (n)) > Kfn(s,m, sched) (8) < n

LEMMA 18
Rbl (j) (s, m, sched}) © {Cr(s,m, sched))
Proof; Defn of Rbl & Cr

LEMMA 11 ‘
n s Kfn{s,m, sched) (8) :: Col(j){s,m, sched) (n} = <>
Proof: Math Ind on n using Lemma 9a & 18

LEMMA 11a
Col (j) (s, m,sched) (Kfn(s,m, sched) (B)) = <>

LEMMA 12
Rbl (j}{s,m,Fullsched{sched)) =
Rbl (}} (Desc(s,m, sched) (Kfn(s,m, sched) (8))
Proof: Lemma Sb & Defn of Fullsched

LEMMA 13
Rbi{s,m,Ful |sched(sched)} =
Col (j) (s,m, sched) (Kfn(s,m, sched) (8)+1)
Proof: Lemmas 11a & 12 by Defn of Col

THEOREM 2a

Run(j} (s, m,Ful I sched(sched}) = Crun(j} (s, m, sched)
Proof: Paralie! Comp Ind on Run & Crun

28

Semantic Models for Parallel Systems

LEMMA 14
Run(j) (s, m, sched) =
Col (j) (s, m, sched) (s, m, sched) (n) # Run(j} (Desc (s, m, sched) (n))
Proof: Math Ind on n

LEMMA 15
d(Run(j) {Desc(s,m, sched} (n)) E d{Kfn{a,m, sched} {n)) .
Proof: Parallel Comp Ind on Run & Kfn using Lemmas 7 & 1@

LEMMA 16
Run{j) (s,m, sched) = Let n be Kfn{s,m,sched) (8) + 1 in
"Col(j) (s, m,sched) (n) # Run(;) (Desc(s,m, sched) (n}} ,
Proof: By cases of d(Kfn(s,m,sched) (@)) using Lemmas 14 & 15

THEOREM Zb

Run{j) {s,m, sched) = Crun(j}(s,m,sched)
Proof: Parallel Comp Ind on Run & Crun using Lemma 16

Proof of THEOREM 2

Run{j) (s,m, sched) = Run(j)} {s, m,Fullsched(sched))
Proof: Theorem 2a & 2b

THEOREM 3
Infcan(j) {s,m,Ful I sched(sched)) & Infcan(j} (s, m, sched)
Proof: Simitar to proof of Theorem 2

Without use of Lemmas 11 & 1lla and
weaker versions of Lemma 13 and Theorem 2a

29

Semantic Models for Parallel Systems

TIMINGS

The Scheduler formalism used in this paper is related closely to
the Timings that appear in Lipton’'s work. The following section
clarifies the relationship.

SEP = EP + {ST0P}
TIMING = {<>} + (N x SEP) x TIMING

Thus, a Timing is a list' of EP's (or (STOP}), uith each EP
associated the index of the process that executed it.

Since a timing is a list, there are three functions predeclared uith
the usual interpretation:

Car: TIMING --> N x SEP
Cdr: TIMING --> TIMING
Empty: TIMING —~> TT

History: S x M x SCHED --> [N --» TIMING]

Historyls,m, sched) (k) <==
k=8 --> (o},
Let n be schedls,m).N in
Let sep be
m{n}.LABEL = STOP --> STOP, Actionin} (m)
in
< <n,sep>, History(Next(s,m, sched}) (k-1} >.

Apply: SEP -=> [§ ——5» §]
Appiy(sep) (s) <==

sep = STOP --»> g,
"Let < <syname, syargs>, <stname,stargs>, <cname,cargs> > be sep in

Synchfn(syname) (syargs) (s) --» Statefn{stname} (stargs) (s).S, s.

Yalue: TIMING --> [5§ --» S]
Yaiue(timing} (s) <==

Empty(timing) --» g, Value(Cdr(timingll(Applg(Car(timing).SEP](sl}.
We use the predicate "Valid" for what Lipton calls "Semi-Active"

Valid(timing) (s,m) iff
(dsched, k) (History(s,m, sched) (k} = timing)

30

Semantic Models for Parallel Systems

Active: TIMING -——> [S —-> 1T]

Active(timing) {8} <==
Emptyitiming) --> tt,
Let < <n,sep>, rtiming > be timing in
sep = STOP --» ff,
Let <syname,syargs> be sep.SYNCHFORM in
-Synchfn(syname} {syargs) --> ff,
Active(rtiming) (Applyfsep) (s)).

Timings form a partial order described in the fol louing way:
<: TIMING x TIMING --> TT
tl < t2 «<==

Empty(tl} --» tt,

Empty{t2) --> ff,

Let < <nl,el>, rtl > be t1 and < <n2,e2>, rt2 > be 12 in
nt =n2 nel =e2 --> rtl <rt2, ff.

Conjecture:

Vaiid{timing) (s,m} F Activeltiming) (s} iff
{3k, sched) (Full {sched) {s,m) A Historyl(s,m, sched)(k} = timing)

31

