
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
o f photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Semantic Models for Parallel Systems

Ellis S. Cohen
Department of Computer Science
Carnegie Mellon University
January 1975

ABSTRACT

This paper presents a semantic model for parallel systems with a
scheduI ing mechanism that is useful for expressing and proving a wider
range of properties than semantic models which do not consider
scheduIing.

We formally describe a number of properties related'to scheduling and
deadlock, including "Fairness" and "Fullness", and show that schedulers
with these properties behave in desireable ways.

Lastly, we prove and conjecture some proof rules for scheduled systems
and outline briefly the relation of this work to model Iing protect ion in
parallei systems.

This work was supported by the Advanced Research Projects
Agency of the Department of Defense under contract no.
F44628-73-C-0874 and monitored by the Air Force Office of
Scientific Research.

Semantic Models for Parallel Systems

INTRODUCTION

Based on Scott's Mathematical Theory of Computation [Scott 723, Cadiou
& Levy [Cadiou & Levy 73] and Milner [Milner 73] have introduced a model
of parallel processes based on processes that communicate by sharing
memory, and have shown how to state and prove properties such as mutual
exclusion formally within the mechanizable LCF system.

They treat nondeterminism by introducing an oracle from the domain TTv*
(sequence of truth values, see [Kahn 73]). The determination of which
process to execute next depends on an initial sequence of the oracle,
with the new oracle becoming the remainder.

In spite of the elegance of their system, they are unable to prove
certain properties of parallel systems that one would expect to be true.
Primarily this trouble stems from the difficulty of characterizing the
we I I-behavedness of their oracle. By using a model derived from
Lipton's work [Lipton 73], we replace the oracle with a scheduler and
state a property of schedulers, fairness, which is shown to be adequate
to prove a property of a particular parallel system that is difficult to
express in Cadiou & Levy's system.

Ue first present a variation of Cadiou & Levy's model and note some of
its problems. Ue then introduce a model with a scheduling formalism
that solves, these difficulties. The remainder of the paper contains
properties and proofs using the scheduling model, as well as additional
comments.

MODELS FOR PARALLEL PROCESSES

The models for parallel processes we will invetigate in this paper
have 3 important features.

1) Processes - Ue will always consider a variable number of processes,
each of which may be in one of three states, runnable, blocked or
stopped.

2) Indivisibility - Processes are divided into indivisible actions
(instructions) called elementary processes or EP's. Uhen a process is
selected to run, it executes exactly one EP, after which a new decision
is made about which process should be scheduled. Concurrent execution
of parallel processes is modelled by sequential interleaving of actions
from the various processes.

3) Abstract Machine - Two main approaches have emerged for proving
general properties about programs (i.e. - Termination and Equivalence as
well as Correctness), the Functional approach [Scott & Strachey 733
(related is the Relational approach, see tdeBakker 74]%) and the Abstract

1

Semantic Models for Parallel Systems

Machine approach [Uegner 72].

The Functional approach maps a program directly into a mathematical
function; the meaning of a program is then just the value of the
corresponding function. Not only is the technique elegant, but a formal
system, LCF (Logic for Computable Functions) [Milner 72] has been
developed and mechanized in which one can prove properties about
computable functions. Cadiou & Levy and Milner use such an approach in
their respective papers on semantics of parallel programs.

The Abstract Machine app^ach defines a programming system via a
formal definition of an abstract machine. The meaning of a program is
then the result of its execution on their abstract machine. Much of
what might be considered inelegant about this technique is due to its
awkwardness in modelling the execution of statements with complex
controI structures.

However, in the parallel systems we will be describing, there is only
one language construct, the EP. Ue are thus in the unusual position of
being able to produce an abstract machine definition that is as simple
and. somewhat less opaque than the corresponding functional semantics.

Of course, one question remains - how to define the Abstract Machine.
Ue choose to define the machine interpreter as a computable function,
thus making the tools of LCF available for our proofs.

(As we note in the conclusion, we expect work on semantics for
parallel systems to come full circle, that is, back to languages that
have the appropriate structures for parallel control. It is likely that
an Abstract Machine approach would then be unsuitable.)

A VARIANT OF CADIOU & LEVY'S MODEL

In producing an Abstract Machine version of Cadiou & Levy's model, we
divide the state of the model into 2 parts, S, the Data state and K, the
Control state.

The Control state, K, can be viewed as a binary process tree whose
leaf nodes represent processes. The interior nodes of the tree contain
either "//" which indicates parallel execution of its two subtrees or
' V which indicates sequential execution, that is, no process in the
right subtree can run until all processes in the left subtree have
stopped. For example:

2

Semantic Models for Parallel Systems

//
I
//

I
C # —

B
I
F

A,,B, D and E are runnable. C is blocked until both A & B stop. F is
blocked until E stops.

The Abstract Machine selects a leaf node representing a runnable
process. It executes a single EP which first modifies the state S, and
then produces a process tree which replaces the node selected, thus
becoming a subtree of K. The subtree may be simply a single node, which
can be used to represent the continuation of the same process, a "ft"
construct, which can be used to represent the call of a subroutine, or a
"//" construct, which can be used to represent the spawning of a
subprocess. In addition, a node can be the eJement (STOP) which
indicates the process has stopped.

All processes execute the same program. Ue can view programs as
labelled flowcharts, where it is the EPs that are labelled. For
example, the flowchart

> P(sein) > V(sem)
I I
I I

can be represented by the following program with labels P & V.

P: sem > B — > (sem *> sem - 1 ==> V) , ==> P
V: sem <- sem + 1 ==> P

(Note: Read " « > " as "goto" and "a — > b, c" as "if-a then b else c")

The leaf nodes of K either contain STOP or the label of the EP the
process wad executing. So, the process tree for a system in which two
processes are executing the P/V loop program above might be

//
I I
P P

The data state S contains an element sem.

In the formal model, the abstract machine, given S and K determines
the "Next 1 1 state of S and K by selecting a runnable node from K and

3

Semantic Models for Parallel Systems

executing the EP it represents thus changing both S and K.

To select the runnable EP. we use an oracle, an infinite sequence of
truth values. Ue start at the root of K and work our way towards a leaf
node. Each time we encounter a "//" with runnable nodes (not (STOP)) in
each subtree, we pick off the first element of the oracle and use it to
decide which subtree to continue down. In the formal model, the "Next"
function implements the abstract machine as as recursive tree-walk.

FORMAL MODEL - Cadiou & Levy Adaptation

Primi tive Domains

S - memory state
TT - truth value (elements tt, ff and uu -

• we also use "uu" to represent the least defined element of
any domain and let the user rely on context to determine the
appropriate domain)

LABEL - label

Constructed Domains

ORACLE = TT* (sequence of truth values)
EP = S — > K x S
K = (STOP) + LABEL + K x {*,//) x K

' PROG = LABEL --> EP

The "Next" function uses the oracle to pick a runnable EP from K,
returning the resulting process tree as well as the updated state and
the remainder of the oracle.

4

Semantic Models for Parallel Systems

Next: K x S x ORACLE — > K x S x ORACLE

Next (k.s,ora) <==

Case k of

STOP — > <k,s,ora> f

<q,//,r> — > (
Stop(q) — > Next (r,s,ora),
Stop(r) — > Next(q,s,ora),
Hd(ora) — > Mk (M . <t,//,r>, Next (q, s, Tl (ora))) ,

M M Xt.<q,//,r>, Next(r, s, TI (ora)))) ,

<q ,Vr fr> — > (
Stop(q) — > Next (r,s,ora),

Mk(M.<t,>v,r>, Next (q,s fora))) ,

Ibl — > <Exec(lbl)(s).K, Exec(lbl)(s).S, ora>.

(note that if AB = A x B, and ab: AB (ab is of type AB), then
we use ab.A and ab.B to indicate the projections of ab onto it's
A and B components respectively)

The "Exec" function for a particular program Prog gets the EP labelled
by Ibl and executes it in state s to produce a new k and s.

Exec: LABEL — > [S — > K x S 1

Exec(lbl) (s) < « Prog(lbl) (s).

Mk: [K — > K 1 x [K x S x ORACLE] > [K x S x ORACLE]

Mk(fk, <k,s,ora>) < « <fk(k) f s,ora>.

Hd: TT>v — > ' T T and returns the first element of a sequence
Tl: TT* — > TTft and returns the remainder of a sequence

Stop,: K — > TT and is defined so that
Stop(uu) s uu, Stop(STOP) s tt, and for all other k,
Stop(k) s ff.

The result (final state) of running kB with an initial
state s0 and oracle ora0 is Mem(k0, s8, ora0), where Mem is

5

Semantic Hode l9 for Parallel Systems

Mem(k,s,ora) <*=
Stop(k) — > s,
Mem (Next(k,s,ora)).

(An alternate model perhaps closer to current languages and systems
might use* "&" instead of "//", where "&" spawns a totally independent
process. Thus in <<p,//,q>,w,r>, r can only execute after b o t h p and q
STOP. In «p,&,q>,*v,r> r can execute after p STOPs, regardless of what
happens to q. And. «ST0P,&,q>,vt,r> would act like <r,&,q> if a
semantic description were to be given. However, we will not pursue it
further in this paper.)

The key departure from Cadiou & Levy is that K is represented by a
"syntactic" data structure rather than by being embedded in a purely
functional structure and "//" and "*" are used here as purely syntactic
entities rather than as instances of more general process combinators.
A number of other changes have been made to produce an Abstract Machine
model from their functional model, but none significantly affect the
problems of the model.

The main advantage of the adaptation has been that we have separated
the selection of a process to be executed from its execution. This
suggests the substitution of a scheduler for the oracle.

FACTORS IN'CHOOSING A MODEL

There are three major concerns that have prompted the development of
the scheduling model that will be the focus of the rest of the paper.

1) It is difficult -(at best) to characterize anomalous oracles, Since
anomaly depends so heavily on the changing nature of the state and
control. For example, in the 2 process P/V loop example, Cadiou & Levy
are only able to prove that one or the other will run forever, while
under a reasonably "fair" scheduler, we would expect both to run
forever. By providing a model with a scheduler, we can characterize the
scheduler in such a way that anomalous schedules can be avoided. Thus,
we will replace the Oracle by a Scheduler which has access to the state
of the system and specifies a particular process to be run as well as
producing a new scheduler to schedule the next process (presumably by
modifying internal variables or queues).

2) We wish to model situations where one process may arbitrarily
start, stop or otherwise control another process. Thus, instead of K,
the model contains a multiplexor M, which may viewed as a vector of
processes. The Scheduler specifies a process to be run by supplying an
integer index into M. M is also more general than K in that for each
process we associate not only a label indicating the current control

G

Semantic Models for Parallel Systems

point, but a separate program as well.

3) Ue wish to characterize processes which are blocked, so that the
scheduler can choose not to attempt to run such a process. Thus,
following Li.pton [Lipton 73], we provide each EP with a synchronization
part which can be used to determine which processes are blocked.

An EP consists of 3 parts, all executed indivisibly of course. The
first part, (SYNCHFORM), represents a synchronization condition. If
the Scheduler schedules a process, and the synchronization condition of
its current EP is not met, no action is taken, and the Scheduler is
simply invoked to schedule again. If the synchronization condition is
met, the other 2 parts of the EP are executed. One part (STATEFORM)
changes the data state (S) of the system, and one part (CONTROLFORM)
changes the control state (M) of the system (specifying the label of the
next EP of the current process or starting, stopping or otherwise
controlling another process. There is one special label, STOP, which
denotes the completion of a process).

Evaluation of "Next" proceeds in the following way: First the
Scheduler produces an index into the Multiplexor (as well as a new
Scheduler to schedule the next iteration). If the label indexed is
"STOP", then no further action is taken this iteration. Otherwise, the
labelled EP is executed. First its synchronization condition is tested.
If false, no further action takes place with the EP. If true though, the
rest of the EP is evaluated to update both the data state (S) and the
multiplexor (M).

THE FORMAL MODEL

Primi tive Domains

TT - truth values
N - natural numbers
LABEL - labels, including the element STOP
ARG - function argument
NAME - names of functions
S - states

7

Semantic Models for Parallel Systems

Constructed Domains

SYNCHFORM = NAME x ARGS
STATEFORM = NAME x ARGS
CONTROLFORM = NAME x ARGS
EP = SYNCHFORM x STATEFORM x CONTROLFORM
M = N — > PROG x LABEL
PROG = LABEL — > EP
ARGS = {<>} + ARG x ARGS (Ue will use standard tuple notation

and thus represent <a,<b,<c,<»» as <a,b,c>)
SM = S x M

The Scheduler

SCHED = S x M — > N x SCHED

Primitive Functions

Synchfn: NAME — > [ARGS — > [S — > TT]]
Statefn: NAME — > [ARGS — > [S --> S x ARGS 3 3
Control fn: NAME — > [ARGS — > [ARGS — > t M — > M i l l

For reasons discussed in the section on Scheduler Notes, we model the
various FORMs as a function name and an argument list. To evaluate the
function, we must provide a way of mapping the name of the function to
the function itself. That is what the three primitive functions do.
They are also guaranteed to be total. It is left to the reader to
imagine how they can be extended reasonably to total functions in the
cases where the name is undefined or the arguments are inappropriate. It
is important to note that arguments to Synchfn* s and Statefn's will not
necessarily be values but will more likely represent variable names used
to select a value from s. Thus we are not providing an abstract model
of storage, but rather modelling at a higher level of abstraction.

The Interpreter

Next: S x M x SCHED — > S x M x SCHED

Next(s,m,sched) <==
Let <n,sched'> be sched(s,m) in

m(n).LABEL = STOP --> <s,m,sched'>,
Let <s',m'> be Exec(n)(s,m) in <s',m',sched'>.

(note that if AB = A x B, and ab: AB (ab is of type AB), then
we use ab.A and ab.B to indicate the projections of ab onto it's
A and B components respectively)

8

Semantic Models for Parallel Systems

Given an index into the multiplexor and a multiplexor. Action produces
the designated EP.

Action: N x M — > . E P

Action(nHm) <== (m(n) .PROG) (m(n) .LABEL).

Given an index into 11, ab well as S & M, Exec executes the designated
EP to produce a new S & M.

Exec: N — > [S x M — > S x M]

Exec(n)(s,m) <==
Let <syfrm, stfrm,cfrm> be Action(nHm) in

Synchfn(syfrm.NAME) (syfrm.ARGS) (s) — > (
Let <s\result> be Statefn(stfrm.NAME) (stfrm.ARGS) (s) in

<s*,Controlfn(cfrm.NAME)(cfrm.ARGS)(result)(m)>) ,
<s,m>.

The reader is encouraged to look ahead to the Applications section for
an example of how a particular system would be modelled.

In this model (as in actual systems), it is not so clear when
computation stops (for example, an idle process may run in an Operating
system when nothing can otherwise be scheduled). However, for
simplicity, we will assume a continuous predicate, Mstop.

Mstop: S x M x SCHED — > TT

For example, if the scheduler returns a zero index when there is
nothing to schedule, then we could define Mstop as:

Mstop(s,m, sched) < — (sched(s,m).N - 0).

In any case, we can define the result (final state) of running m0 with
state s0 and scheduler sched0 as Mmem(s0,m0,sched0) where Mmem is
defined as

Mmem(s,m,sched) <==
Mstop(s,m,sched) — > s,
Mmem(Next(s,m,sched)).

9

Semantic f1odel9 for Parallel Systems

PROPERTIES OF SCHEDULERS

Treatment of schedulers in this paper will be independent of any
particular synchronization primitives (e.g. P/V, P/Vchunk, ufr/down) and
any particular implementation or internal structure of the scheduler
(e.g. FIFO queues, priority order), rather ue simply express a number of
scheduler properties using the model. The properties described are
either ones that will be used later in the paper, or ones that have
appeared already in the literature. A comparison of these properties by
example can be found in the Applications section of this paper.

The properties as described are dependent heavily on S & M as well as
the scheduler, wheras commonly, we are simply interested in a property
of a scheduler independent of what it schedules. The section of this
paper on Scheduler Notes indicates how this problem may be solved.

Notes: Ue will be using "process j" to indicate the continuing
behavior of the contents of M(j).

Ue use the notation C to mean less defined than - also
, s - Strong equivalence (a • b iff

a C b A b E a)
E - Strictly less defined than (a E b iff

a C b A -> (a • b))

Note that sequence domains (e.g. TT>v) are ordered by
uu E a Q (a # b) and a • a U uu

where is the concatenation operator.

1) Defined(sched)(s,m)

tt* <== tt it tt*. (The symbol "tt*" is to be the least fixed
point of this equation - which can be seen to be the
infinite string of "tt"s.)

Def (s,m, sched) <== tt U Def (Next (s,m, sched)).

Defined(sched) (s,m) iff Def (s, m, sched) • tt*

2) FuI I(sched) (s,m) - A scheduler is full if it does not schedule an
unrunnable process when a runnable process can be run.

Canrun(k)(s,m) <==
m(k).LABEL = STOP -> ff,
(Let syn be Act ion (k)tm).SYNCHFORM in

Synchfn (syn.NAME)(syn.ARGS)(s)).

18

Semantic Models for Parallel Systems

RunnabIe(j,k) (s,m,sched) <==
(j -•- sched(s,m),N v Canrun(j)(s,m) v -Canrun(k)(s,m))
tt Runnable(j,k)(Next(s,m,sched)).

Ful I (sched) (s,m) iff (Vj,k)(Runnabletj,k) (s,m,sched) Q tt*)

3) Re I ease(sched) (s,m) - A scheduler is a release scheduler [Lipton
731 if, when some action unblocks a set of processes, then some process
from that set will be the next to run.

UnbIock(k)(s, m,sched) <==
Let <s*,m*,sched'> be Next(s,m,sched) in

(Canruh(k) (s,m) — > tt,
Canrun(k) (s*,m*) — > (

Let n* be sched* (S*,nT) .N in
iV - k — > tt,
-^Canrun (n') (s,m) A Canrun (n*) (s* ,mM) ,

tt)

tt UnbIock(k)(s f,m',sched').

Re I ease (sched) (s,m) iff (Vk) (Unb I ock (k) (s,m, sched) £ tt>v)

4) ReadyXRun(sched) (s,m) - A scheduler has the Ready Run property when
no process has to wait forever to run from the time it becomes
continuously capable of running, Ue actually state this in the logic as
- any process which is unable to run at most a finite number of times
must run infinitely often. Some thought should convince the freader that
these are the same.

Run(j) (s,m,sched) <==
t(j • sched(s,m).N A Canruntj) (s,m))
tt Runtj)(Next(s,m,sched)).

t(p) <== p — > tt, uu.

Cantrun(j)(s,m,sched) <==
t(-Canrun(j) (s,m)) tt Cantrun(j)(Next(s,m,sched)).

ReadyXRun (sched)(s,m) iff
(Vj)(Cantrun(j) (s,m,sched) E tt* D Run(j) (s,m,sched) a tt*)

5) PointerXBounded(sched) (s,m) - A scheduler is pointer bounded
[Lipton 73] when a process able to run infinitely often is scheduled
infinitely often. (Ue will see in the Application section that both
ReadyXRun and Poi nterXBounded are too weak and that Fairness is a more
appropriate property)

11

Semantic Models for Parallel Systems

Tried(k)(s,m,sched) <==
t(k = SGhed(s,m).N) U Tr ied(k) (Next (s,m, sched)) •

Infcan(k) (s,m,sched) <==
t(Canrun(k)(s,m)) # Infcan(k)(Next(s,m,sched)) •

Pointer\Bounded(sched)(s.m) i ff
(Vk) (Infcan(k) (s.m, sched) s tt* o Tried(k) (s,m, sched) s tt*)

G) Fair (sched) (s,m) - A scheduler is fair if any process able to run
infinitely often, runs infinitely often at times that it canrun (is not
blocked or stop)

Fa i r (sched)(s,m) iff
(Vk) (Infcan(k) (s,m, sched) s tt* D Run(k) (s,m, sched) s tt*)

7) Ue say a scheduler sched' is an idling extension of sched if

a) (sched(s,m) 5 uu A (Vk) (-'Canrun(k) (s,m))) — >
sched'(s,m).N = 0,
sched'(s,m).N s sched(s,m).N

b) sched'(s,m).SCHED is an idling extension of sched(s,m).SCHED

This corresponds nicely with the example definition of Mstop in the
previous section. It is easily provable that every scheduler has an
idling extension, that Run(j)(s,m,sched) 5 Run(j)(s,m,sched') and
Def ined (sched') (s,m). AI so Fu I I (sched) (s,m) h Ful I (sched') (s,m) and
si milarly for Fair.

Fairness is in general the weakest property (along with definedness)
that we would ever demand of a legitimate actual scheduler. Luckily,
fairness (with definedness) will be adequate for proving properties that
we are interested in. However, proving certain properties (in
particular, the example proven in the next section) given fairness alone
turns out to be somewhat difficult. The key problem is knowing exactly
when a particular action will occur, even when it is known that it must
occur eventually. This problem often disappears if the scheduler is
full as well. So we will show that to prove:

A] Def ined(sched) (s,m), Fair (sched) (s,m), Q(j,s,m) h
Run(j)(s,m,sched) a tt*

it is sufficient to show that

Bl Defined(sched)(s,m), Fair(sched)(5,m), FulI(sched)(s,m), Q(j,s,m) h
Infcan(j)(s,m,sched) a tt*

12

Semantic Models for Parallel Systems

Proof:

Suppose there were a function Full.sched: SCHED — > SCHED s.t.
for any scheduler sched,

1) Full(FulIsched(sched))(s fm)
2) Run(j) (s,m,FulIsched (sched)) s Run(j)(s,m,sched)
3) Infcan(j) (s,m,FulIsched(sched)) E Infcan(j)(s,m,sched)

Wow, suppose Defined(sched) (s,m) f Fair(sched)(s,m), Q(j,s,m) f

but Runtj>(s,m,sched) E tt*

Since Fair (sched) (s,m), Infcant j) (s,m,sched) E tt*

Thus by (1), (2) and (3),
FulI(FulIsched (sched))(s,m),
Run(j) (s,m,FulIsched(sched)) E tt* and
Infcan(j) (s,m,Ful I sched (sched)) E tt*

Then trivially, Fair (Ful I sched (sched)) (s, m) , by defn of Fair

Now, let fsched be an idling extension of FulIsched(sched). Then
Def ined(fsched)(s,m), Fair/fsched)(s,m), FulI(fsched)(s,m) and
Run(j) (s,m,fsched) E tt*

If we can prove CB], then Infcan(j) (s,m, fsched) • tt*, and
by defn of,Fair, Run(j) (s,m, fsched) • tt*.

Thus, we have a contradiction to
Run(j) (s,m, fsched) E tt*, and therefore the original
hypothesis that Run(j) (s,m,sched) E tt* must be false. Since
it is easily shown that Runt j) (s,m, sched) E tt*,
it must be the case that Run(j) (s,m,sched) a tt* and
[A3 follows.

Definition of Ful I sched and proofs of 1) , 2) and 3) can be
found in the Appendix.

APPLICATIONS

Some notion of the properties in the section above can be gained by
consideration of the example (adapted from [Lipton 721) of 3 processes,
each executing the loop:

-> > P(sem) > V(sem)

13

Semantic Models for Parallel Systems

where the initial value of sem is 1.

(Ue will describe execution sequence as a sequence of pi and vi,
i-1,2,3 to denote the execute of a P or V by the i' th process)

Under a scheduler that is merely defined and full, the execution could
simply be

pi vl pi vl pi vl pi vl ...

that is, processes 2 and 3 might never execute.

If the scheduler is additionally a Release scheduler, the
execution could be

pi vl p2 v2 pi vl p2 v2 pi vl p2 v2 ...

that is, vl releases P of processs 2 and v2 releases pi, but again
process 3 might never be executed.

If the scheduler additionally has the ReadyNRun property, it helps
matters not at all, since process 3 is never continuously capable of
running. It is blocked each time process 1 or 2 executes a P. Likewise
the PointerXBounded property does not help, since process 3 might only
be tried when it is blocked.

If the scheduler though is merely defined and fair, each of pi, p2,
p3, vl, v2 and v3 must execute infinitely often.

Ue'I I prove that last statement for the more general case where there
are n processes. As already noted, this is a problem that Cadiou & Levy
would have difficulty proving.

To simplify, we'll assume that the state s is identically sem, and
we'll define the following functions:

trueO (s) <== tt.
tst() (s) <== (s > 0).
inc()(s) <== <s+l,uu>.
dec()(s) <== <s-l,uu>.

go(<n, lbl>) (res) (m) <== Ak. (k = n --> <m(n) .PROG, Ibl>, m(k)) .

Introducing some notation, we use

Ibl: Uhen syf(sya) do stf(sta) « > cf(ca)

to represent the EP

<<syf,sya>,<stf,sta>,<cf ,ca»

14

Semantic Models for Parallel Systems

LEMMA 1
Def ined(sched) (s,m) A Ful I (sched) (s,m) D

(Vk) (Let <s\m\sched'> be Desc(s,m,sched) (k) in
Def inedtschedM (s \ m f) A Ful I (sched*) (s* ,m*))

Proof: Math Ind on k

15

where the EP is labelled by "Ibl". Where sya, sta or ca are <> (no
arguments), we eliminate parentheses as well. Ue further use the
notation

:n=> Ibl(args) for « > G0(n, Ibl ,args)

(notes Function definitions, like "go", have their names in lower
case. The formal name, like "GO" (from the domain NAME) is the
same name written in upper case.)

* So, we name the program described pictorially above, pvlooptj], wher
j is the process number (index into M) . It has two labels, P & V, and
its formal description using the shorthand notation developed above is

P: Uhen TST do DEC :j-> V
V: Uhen TRUE do INC sj-> P

Now, the problem can be stated in the logic as, Prove:

Defined(sched0)(s0,m0), Fair (schedO) (s8,mB), Range(j) h
Run(j)(s8,m0,scbed8) s tt*

where

m0 (Range(j) — > <pvloop t j] ,P>, <uu,ST0P>) .
s0 <== 1.
Range(j) <=« j > 1 A j < n.

By the results of the previous section, we can 51 so assume that
FulI(schedB) (s0,m0) and simply prove
Infcan(j)(s0,m0,sched0) 5 tt*. , •

PROOF:

Def ined(sched0) (s0,m0), Fair (sched0) (s0,m0),
FulI(sched0)(s0,m0), Range(j) >

Infcan(j)(s0,m0,sched0) • tt*

Infcan2k (j) (s,m, sched) (k) < «
t (Canrun (j) (Desc(s,m, sched) (2*k).SM)) c

tt t (Canrun (j) (Desc(s,m, sched) (2*k+l).SM))
tt Infcan2k(j) (s,m,sched)(k+1).

Semantic Models for Parallel Systems

LEMMA 2
Infcan2k(j) (s,m,sched) (k) s Infcan(j)(Desc(s.m,sched)(2*k))

Proof: Parallel Comp Ind on Infcan2k & Infcan

LEMMA 3
Def ined(schedB) (s0,m0), Ful I (schedB) (sB,m0) h

Let <s'. m' . sched' > be Desc (s0, m0, sched0) (2>vk),
<s",m",sched"> be Desc<s0,m0,sched0)(2ftk+l),
j be sched' (s',m') in
Range (i) o Canrund) (s', m') A
Canrun(j)(s".m") A
i * j o -Canrun(i) (s".mlf)

Proof: Math Ind on k using Lemma 1

LEMMA 3a
Defined (sched0)(s0,m0), FulI (sched0)(s0.m0). Range (j) h

Canrun(j) (Desc (s0.m0, sched0) (2>vk).SM) 5 tt

The proof of the theorem follows directly from Lemmas 2 & 3a

Ue can also state (though we will not prove) the mutual
exclusion,problem as

Range(j). Range(k). j*k h Mutex(s0,m0. sched0) s uu

Mutex(j,k)(s.m.sched) <==
t(m(j). LABEL = m(k). LABEL = V) U Mutex (j.k) (Next (s fm, sched)).

DEADLOCK

Briefly, we can state some deadlock properties in the logic
based on the model.

1) Starved(k)(sched)(s.m) - A process is starved [Dijkstra 721
if it is not "STOP" and is continuously incapable of running.

Infsafe(k)(s.m,sched) <==
t(m(k).LABEL = STOP or Canrun(k)(s,m))
tt Infsafe(k)(Next(s.m.sched)).

Starved(k) (sched) (s.m) iff Infsafe(k) (s,m. sched) E tt>v

2) Dead lock (sched)(s.m) - The system is deadlocked if some
process becomes starved.

IB

Semantic Models for Parallel Systems

Dead lock (sched) (s.m) iff (3k) (Blocked(k) (sched) (s.m))

3) Safe(s.m) - Ue are often interested, regardless of the fecheduler
whether or not a particular set of processes can ever lead to deadlock.
If not, the system is safe. Yet, we cannot ignore the scheduler
completely, as degenerate schedulers can lead to anomalous behavior as
we noted in an earlier section. Ue take as a minimal requirement that
the scheduler be fair and defined.

Safe(s,m) iff
(Vsched) (Defined(sched)(s,m) A Fair (sched)(s,m) D

(Vk)(Infsafe(k)(sched)(s,m) s tt*))

Clearly, the P/V system of the previous section is safe. .

Of course, it is in general undecideable whether or not <s,m> is safe
even in simple systems such as P/V (with conditionals), and even knowing
that under a particular fair, full, defined scheduler, deadlock cannot
occur.

Consider s composed of a semaphore, sem, initially 0, integers
k and n, initially 0, and f, a description of a total function of
type N — > TT. And let m be running the two processes informally
described by:

Process 1

k := 0;
n := 0;
V(sem);
loop

if Eval (f) (n) then V(sem);
n : = n + 1;
end Ioop

Process 2

k := 1?
loop

if k = 0 then V(sem);
P(sem);
end Ioop

Now, under a scheduler that runs process 2 first, the eventual value
of k will be 0 and there will never be deadlock, but if process 1 runs
first, k will be 1, and determining Safe(s,m) becomes equivalent to
deciding whether f is true infinitely often, which is reducible to the
ha11 ing problem.

MODELLING PROTECTION SYSTEMS

In the model presented, each process operates on a common memory stati
S. Yet in programming systems, different processes do have different
accessing rules for accessing the memory (e.g. Frames, Contours, Virtua
or Local Name Spaces and Execution Domains). By passing the EP its
multiplexor slot as an argument, differential accessing of S can easily

17

Semantic Models for Parallel Systems

be achieved. For example, if S - N — > DOMAIN, then if p is executing in
Multiplexor slot k, s(k) could represent its execution domain.

Now, consider the modeling of a segmented operating system. Process
j's data segments would be part of S, whereas its code segment would be
modeled directly by the PROG component of M(j). Ue could then model the
starting of process n by the EP:

Start: Uhen TRUE do CONTENTS(<seg>) «=> L0ADG0(<n>)

where contents(<seg>)(s) returns as its result the contents of segment
seg (in state s) , and loadgo(<n>) loads up those contents in M(n) and
begins executing the process.

loadgo(<n>) (segcontents)(m) <==
Ak. (k=n — > <link(segcontents,n),BEGIN>, m(k))

where Mnk(x.n) assembles x into PROG form with start address, BEGIN
in process n.

An interesting byproduct is that one can model a process changing a
data segment of another process (possible in systems with shared data)
by using a STATEFORM, whereas a change in an executing process's code-
segment (most likely a bug) can only be modeled by using a CONTROLFORM
(like LOADGO). In fact, in pursuing this modified model, just such a
bug was discovered în CMU's HYDRA system.

(The bug in HYDRA can be circumvented by the use of "frozen" pages
(see [Rotenberg 74]). A frozen code page is permanently protected
against modification.)

Other small changes in the model make it more useful for describing
and proving properties about protection systems. (Cohen 75] will report
further results.

A CONJECTURED INDUCTION RULE

Ue will often want to prove (for some predicate Q)

A] Def ined(schedO) (s0,m0), Fair (sched0) (s0,m0), Q(j,s0,m0) h
Run(j) (s0,m0,sched0) s tt>v

under more difficult conditions than in the simple example of the
applications section. Ue note that in the P/V example, process j
becomes blocked when some other process, say k, has successfully
executed a "P". Process k's subsequent execution of a 1 1V" will
then make process j runnable once more.

This is an instance of a more general observation. Suppose that

18

Semantic Models for Parallel Systems

whenever process j is blocked, we are able to find a runnable process
whose execution brings process j "closer" to becoming runnable and
furthermore execution of any other process does not take process j
farther away from becoming able to run. If we can show that after doing
this a finite (though not necessarily bounded) number of times, process
j actually becomes runnable, then under a fair scheduler we should be
able to show that process j runs forever. Formally, we have the
following induction principle:

Suppose that (U, <) is a we I I-founded set with a set of least
elements U0 in which all intervals are of finite length. Ue
write Iwl for the maximum distance from w to an element of U0.
Furthermore, let Assoc: U — > [S x M — > TT] and
Closer: U — > N be total functions. Then to prove [A], it is
sufficient to prove:

a) Q(j,s,m) f- (3w) (Assoc(w) (s,m))

b) w0 c U0, Assoc(w0)(s,m) h Canrun(j)(s,m)

c) w0 c U0, Assoc(w0)(s,m) h (Vk)(3M)(Assoc(w)(Exec(k)(s,m)))

d) w -*c U0, Assoc (w) (s,m) h
(3w')(Iw'l < Iwl A Assoc(w')(Exec(Closer(w))(s,m)))

e) w U0, Assoc(w) (s,m) h (Vk)(3w')(
Assoc (w')(s,m) A

(Iw'l < Iwl v (Iw'l = Iwl ACIoser(w') »Closer(w))))

Intuitively, we use an abstraction of a token machine to determine
whether or not process j can run forever. A token is always associated
with some element w of U depending on s 8 m. As EP's are executed, s &
m change, thus the token becomes associated with different elements of
U. By proving properties about the movement of the token in U, we can
prove that process j runs forever.

The basic idea is to associate the bottom elements of U, that is U0,
with the states in which process j canrun. Then when the token is not
associated with an element of U0, we must show that the token is
eventually forced down towards an element of U0. Ue do this by
demanding that when w U0, there is some process Closer(w), such that
the execution of that process will force the token to an element w' such
that Iw'l < Iwl. Furthermore executing any other process must have the
effect that either the token is forced to a w' lower than w anyway or
the token moves to a w' at the same distance from the bottom (lw'I «
Iwl) but such that Closer(w') • Closer(w). Thus in the case that we
have a fair scheduler, process k wi I I eventually run and the token wi.l I
eventually be pushed down closer toward U0. Since all intervals are of
finite length, the token will eventually end up in U0. This will go on

19

Semantic Models for Parallel Systems

forever, thus, process j will be runnable forever, and again, given a
fair scheduler, process j will actually run forever.

Using this conjectured induction principle, we can easily prove the
PVIoop example. Define
U - (>v) +• {wl,...,wn} and U0 - {*}, under the ordering,
* < w i, i = 1,..., n.

Let Assoc(>v) (s,m) 5 s = 1 A
m(k).LABEL = (Range(k) --> P, STOP)

and Assoc(wi)(s,m) s s - 0 A
m(k).LABEL = (k=i --> V, Range(k) — > P, STOP)

and Closer(wi) « i.

Then, it is relatively trivial to prove that:

a) Assoc (>v) (s0,m0)

b) Assoc(*)(s,m) h Canrun(j) (s,m)

c) Assoc(>v) (s,m) h
(Vk) (Range(k) — > Assoc(wk) (Exec(k) (s,m)),

Assoc (>v) (Exec (k) (s, m)))

d) Assoctwi)(s,m) h
(Vk) (k=i — > Assoc(*) (Exec(k) (s,m)),

Assoc(wi)(Exec(k)(s,m)))

which is easily seen to satisfy the induction predicates.

To simplify proofs, it maybe useful to partition the system. We
would have to define the notion of an "independent partition", and then
prove that if <ml,...,mj> was an independent partition of m under s,
then

Safe(s,ml), Safe(s,mj) h Safe(s,m)

SCHEDULER NOTES

1) As noted in an earlier section, scheduler properties depend
heavily on S and (1 as well as SCHED. Since future behavior of the
system is completely determined by the initial system, all we need
do is allow the scheduler to be tailor made to the initial
configuration. Suppose that we demand that in the initial state of
the system, n < j D m0(j).LABEL » STOP, and call this property

20

Semantic Models for Parallel Systems

Init(m0,n).« The use of n, fixing an upper bound to the initial
number of runnable processes allows us to define a recursive
scheduler prototype:

PROTOSCHED N x S x M --> SCHED

and a scheduler maker

Makesched: PROTOSCHED — > [N x S x M — > SCHED]

Ue say that PROTOSCHED is fair if

I n i t(m0,n) D Fai r(Makesched (protosched)(n,s0f m0))(s0,m0)

and similarly for other properties.

2) Because the scheduler gets its information by looking at EP's, EP
must be a domain over which a continuous "=" predicate is defined so
that the scheduler can actually look at the components of the EP. Hence,
the various FORM's of the EP are specified as NAMEs and list of
ARGuments, rather than directly as functions.

CONCLUSION

Ue have introduced a semantic model for parallel systems and have
presented a number of properties of parallel systems based on the model
as well as some proofs and proof rules.

The development with the most potential appears to be the conjectured
induction rule based on well founded sets As Cadiou & Levy note. LCF
proofs force the program prover to (sometimes tediously) explicate all
the possible states of the system. To make proofs of complex parallel
programs more tractable, and especially to make the proofs more amenable
to automatic verification, it seems clear that some (elegant) embedded
or externally imposed (see [Milner & Ueyrauch 723) structure is
critical. Uell founded sets may be a useful structure for proofs of
deadlock; for other properties of parallel programs, further exploration
is necessary.

There is a different kind of structuring choice more directly related
to this paper - what can be an indivisible operation embodied by an EP?
If we assume an implementation on a sequential machine, the safest
choice is the smallest action that cannot be interrupted. The obvious
difficulty is that sequential machines are rare; even conventional
machines often have an I/O processor and both may simultaneously be
accessing memory. At best machines that use cycle-stealing force us to
safely choose as indivisibje actions those which take place in a single
cycle.

21

Semantic Models for Parallel Systems

Ue have assumed in this paper that actions as complex as
synchronization operators may be viewed indivisibly and thus our proofs
must therefore be viewed as correct only for models in which that is the
case, thus we separate the model of indivisibility from its
implementation. In the case of a multiprocessor, the code implementing
synchronization may be running in parallel with other processes, perhaps
even executing the same code. Uhat must be shown in such a case is that
the model of indivisibility is nonetheless valid regardless of such
concurrency as may be introduced by the implementation. Such proofs are
beyond the scope of this paper.

A somewhat serious deficiency of the scheduler model (and other models
as well) is its inability to model time dependent behavior - for example
timer interrupts in programming systems and timing considerations in
machine architecture. Uhile the nature of problems to be studied with
respect to time dependencies would likely call for a different model in
any case, proving the correctness of something like a
mul tiplexor/scheduler for a multiprocessor would likely require a
scheduler model modified in some way to handle time dependencies.

Perhaps the most serious problem with the model described here is in
the nature of the assumptions made about how processes interact (or
should interact). A formal semantics for a sequential programming
language with structured control provides a better base for various
proofs than a semantics for a language with GOTO's. Similarly, suitably
restricted interactions between processes should provide a better
semantic system than the one described here in which arbitrary-
interactions are allowed. A solution is to provide additional axioms
which restrict the possible schedules. P/V disciplines are too
unstructured. Uork along the lines of Path expressions [Campbell &
Haberman 74] appear to be more promising in providing a semantic basis
in which proofs will be less tedious.

ACKNOULEDGEMENTS

I wish to thank Bill Uulf, Nico Haberman and J. U. de Bakker
for their comments on earlier drafts of this paper.

22

Semantic Model9 for Parallel Systems

BIBLIOGRAPHY

[Cadiou & Levy 73] Cadiou, J. Levy, J. "Mechanizable Proofs about
Parallel Processes" 14th Symposium on Switching Theory
and Automata, Oct 73

[Campbell & Haberman 74] Campbell, R.H. Haberman, A. N.
"The Specification of Process Synchronization by Path
Expressions" Proc. Int. Symp. on Operating Systerti
Theory and'Practice, Apr 74

[Cohen 75] Cohen, E. "A Semantic Model for Parallel Systems with
Scheduling" Proc. 2nd ACM Symp. Princ. Prog. Langs.,
Jan 75

[Cohen 75]

tdeBakker 74]

[Di jkstra. 72]

[Kahn 73]

[Lipton 73]

Cohen, E. "ModeIIing Protection Systems", CMU
PhD Thesi s, forthcoming

deBakker, J. U. "The Fixed Point Approach to Semantics:
Theory and Applications" Mathematical Centre Tract B3,
Mathematical Centre and Free University Amsterdam, 1974

Dijkstra, E. "A class, of Allocation Strategies
Inducing Bounded Delay Only" SJCC 72

Kahn, G. "A Preliminary Theory for Parallel
Programs", I.R.I.A. Report, Jan 73

Lipton, R. "On Synchronization Primitive Systems",
CMU PhD Thesis, June 73 or see
Proceedings Gth Annual Symposium on the
Theory of Computing, May 74

[Manna & Viullemin 72] Manna, Z. Viullemin, J. "Fixpoint Approach
to the Theory of Computation" CACM vl5,#7 July 72

[Milner 71] Milner, R. "An Algebraic Definition of Simulation
Between Programs" I.J.C.A.I. 2, 1971

[Milner 72] Milner, R. "Implementation and Application of Scott's
Logic for Computable Functions", Proceedings of a
Conference on Proving Assertions about Programs,
Jan 72

[Milner & Ueyrauch 72] Milner R. Ueyrauch R. "Proving Compiler Correctne
in a Mechanized Logic" Machine Intelligence 7

[Milner 73] Milner, R. "An Approach to the Semantics of Parallel
Programs" Proc. Convegno Informatica Teorica, Mar 73

23

Semantic Models for Parallel Systems

[Newey 73J Newey, M, "Axioms.and Theorems for Integers, Lists
and Finite Sets in LCF", Stanford AIfl-184, Jan 73

[Rotenberg 74] Rotenberg L. "Making Computers Keep Secrets" MIT PhD Thesis,
MAC TR 115, Feb 74

[Scott & Strachey 721 Scott, D. Strachey, C. "Toward a Mathematical
Semantics for Computer Languages", Oxford Univ.
Computing Lab PRG-6, 1972

[Uegner 72] Uegner, P. "The Vienna Definition Language", ACM
Computing Surveys v4,#l Mar 72

[Scott 72] Scott, D. "The Lattice of Flow Diagrams", Symposium
on Semantics of Algorithmic Languages, Springer
Verlag Lecture Notes in Mathematics 188, 1971

[Scott 72] Scott, D. "Mathematical Concepts in Programming
Language Semantics" SJCC 72

Semantic Models for Parallel Systems

APPENDIX

The proofs here are presented as a series of Lemmas. Except for some
difficult cases, an outline of the proof of each Lemma is all that is
given. Only two inductive proof rules are used here, Computational
Induction [Milner & Viullemin 72, Manna 72] and Mathematical Induction
[Manna 72].

Ue use the abbreviations introduced by Milner [Milner72J.
a :: b = c for (a — > b,uu) = (a — > c,uu).
and 3(x) is the definedness predicate,
8(uu) s uu, otherwise, 8(x) s tt. Ue also use
t(a) < " a tt,uu.

Ue also assume an extended LCF theorem prover with a knowledge
of arithmetic (see axioms by Newey [Newey 73]) built in
and 'therefore, when we are clearly dealing with a.natural number,
we di spense wi th the additional predicate isnat, e.g.
we write a :: b(n) s c(n) instead of
a A isnat(n) :: b(n) s c(n).

Ue have not formally shown that Computational Induction is
legitimate as we use it over the domains introduced in this
paper. A proof in the style of Scott [Scott 72] is left to
the reader.

Ue use [Kahn 73] as a general concatenation operator, and
leave proofs about its obvious properties to the reader.

THEOREM 1

FulI(FulIsched (sched))(s,m)

Ful I sched(sched) <-• X(s,m).Kfs(sched,0)(s,m).

Kfs (sched, n) (s, m) < «
Let <s* ,m' ,sched'> be Desc(s,m, sched) (Kfn(s,m, sched)'(n)) in

< sched* (s\m').N, Ful I sched (sched* (sf ,m') .SCHED) >

Kfn(s,m,sched)(n) <==
Cr(Desc(s,m,sched)(n)) — > n,
Kfn(s,m,sched)(n+1).

Desc(s,m,sched)(n) <==
n - 0 — > <s,m,sched>,
Next(Desc(s,m,sched)(n-1)).

Cr (s.m, sched) <=« Canrun(sched(s,m).N)(s,m).

25

Semantic Models for Parallel Systems

Aex(j,s,m) <== Exec(Action(j)(m))(s,m).

LEMMA 1
Next(s,m,sched) s

-Cr (s, m, sched) — > < s, m, sched(s,m).SCHED >,
< Aex (sched (s, m) .N, s, m) , sched (s.m) .SCHED >.

Proof: by definitions

LEMMA 2
-•Cr (Desc(s,m, sched) (n)) ::

Desc(s,m,sched)(n).SM s Desc (s,m,sched)(n+1).SM
Proof: Defined of Desc & Lemma 1

LEMMA 3
Canrun (Kf s (sched,n) (s.m) .N) (Desc(s.m, sched) (n) .SM) £ tt

Proof: Substitute Defn of Kfs, then use Computational
Induction on Kfn, using Lemma 2 & Defn of Cr

LEMMA 3a
Canrun(Fu) I sched(sched) (s,m) .N) (s,m) E tt

LEMMA 3b
Cr (s,m,FulIsched(sched)) E tt

LEMMA 4
Desc (s, m, sched)(Kfn (s,m,sched)(n)).SM Q Desc(s,m,sched)(n).SM

Proof: Comp Ind on Kfn using Lemma 2

LEMMA 4a

Desc (s, m, sched) (Kfn (s, m, sched) (8)) .SM C <s,m>

LEMMA 5
Cr (Desc (s, m, sched) (Kf n (s, m, sched) (n))) s

Canrun (Kfs (sched, n) (s,m).N) (Desc (s, m, sched) (n).SM)
Proof: Defn of Kfs & Cr and Lemma 4

LEMMA 5a
Cr (Desc (s,m', sched) (Kfn (s,m, sched) (n))) E tt

Proof: Lemmas 3 & 5

LEMMA 5b
Cr (Desc (s,m, sched)(Kfn(s,m,sched)(8))) s Cr(FulIsched(sched),s, m)

LEMMA 6
Next(s,m,FulIsched(sched)) s

Let <s* ,m f, sched* > be Desc(s,m,sched) (Kfn(s,m, sched) (B)+l) in
< s', m*, FulIsched(sched') >

Proof:

2S

Semantic Models for Parallel Systems

Next(s,m,FulIsched(sched))

s Cr(s.m.FulIsched(sched)) — > .
< Aex(FulIsched(sched)(s,m).N.s.m), FulIsched(sched) (s.m).SCHED :
uu. Lemma 1 & 3b

s Cr(s,m,FulIsched(sched)) — >
Let <s, m* f sched' > be Desc(s,m,sched)(Kfn(s,m,sched)(0)) in .

< Aex(sched* (s',m').N,s,m), FulIsched(sched' (s' ,m*).SCHED) > f

uu. Defn of Fullsched. Kfs

a Let <s',m',sched'> be Desc(s,m,sched)(Kfn(s,m, sched)(0)) in
Cr (s', m',sched') — > < Aex (sched*(s',m').N,s',m'),

Ful Isched(sched' (s',m').SCHED) >,
uu. Lemmas 4a & 5b

s Let <s',m',sched'> be Desc(s fm,sched)(Kfn(s,m,sched)(0)) in
< Next(s',m',sched').SM, Ful I sched (Next (s\m', sched') .SCHED) >•

Lemmas 1 & 5a,

s Let <s',m',sched'> be Desc (s.m,sched)(Kfn(s,m, sched)(0)+l) in
< s', m', Ful I sched (sched') > Defined of Desc QED .

Proof of THEOREM 1

Ful I (Ful I sched (sched)) (s,m) by Defn of Full, we must prove

Runnable(j,k)(s,m,FulIsched(sched)) E tt*
Proof: Computational Ind on Runnable

(j * Ful I sched(sched)(s,m).N or Canrun(j)(s,m) or -Canrun(k)(s,m))
Runnab I e (j, k) (Next (s, m,Ful I sched (sched)))

C tt # Runnable(j,k) (Next (s,m,FulIsched(sched))) Lemma 3a

s tt # Let <s',m',sched'> be Desc(s,m,sched)(Kfn(s,m,sched)(0)+l)
Runnable(j,k) (s',m*,FulIsched(sched')) Lemma 8

£ tt tt tt* Induction

s tt*

THEOREM 2

Runt j) (s,m,sched) a Run(j) (s,m,Ful I sched))

F\bl (j) (s,m,sched) <== t((j = sched(s,m) .N) A Canrun(j) (s,m))

27

Semantic Models for Parallel Systems

28

Col(j)(s.m.sched)(n) <==
n = 0 — > <>,
Col (j) (s.m. sched) (n-1) # Rbl (j) (Desc (s.m, sched) (n - D) .

Crun(j) (s.m.sched) <== Let n be Kfn(s,m,sched) (0) + 1 in
Col (j) (s.m.sched) (n) # Crun(j) (Desc(s,m,sched) (n)).

LEMMA 7
Desc (Desc (s.m, sched) (a)) (b) a Desc (s,m, sched) (a+b)

Proof: Math Ind on b

LEMMA 8
d(Desc (s, m, sched) (n+k)) C d (Desc(s,m, sched) (n))

Proof: Lemma 7 & Axioms for d

LEMMA 9
k < n A Cr (Desc (s, m, sched) (n)) D Kfn (s,m, sched) (n-k) < n

Proof: Math Ind on k using Lemma 8

LEMMA 9a

Cr (Desc (s, m, sched) (n)) D Kf n (s, m, sched) (0) £ n

LEMMA 10
Rbl (j) (s,m,sched) E t (Cr (s,m,sched))

Proof: Defn of Rbl & Cr
LEMMA 11

n £ Kfn(s,m,sched) (0) :: Col (j)(s,m,sched)(n) • <>
Proof: Math Ind on n using Lemma 9a & 10

LEMMA 11a
Col (j) (s,m,sched)(Kfn(s,m,sched)(0)) s <>

LEMMA 12
Rbl(j)(s,m,FulIsched(sched)) H

Rbl (j) (Desc(s,m,sched) (Kfn(s,m,sched) (0))
Proof: Lemma 5b & Defn of Fullsched

LEMMA 13
Rbl(s,m,FulIsched(sched)) 5

Col (j) (s,m,sched)(Kfn(s,m,sched)(0)+l)
Proof: Lemmas 11a & 12 by Defn of Col

THEOREM 2a
Runtj) (s,m,Ful I sched(sched)) s Crun(j)(s,m,sched)

Proof: Para I lei Comp Ind on Run & Crun

Semantic Models for Parallel Systems

LEMMA 14
Run(j)(s.m.sched) a

Col (j) (s.m.sched) (s.m.sched) (n) ft Run(j) (Desc(s.m.sched) (n))
Proof: Math Ind on n

LEMMA 15
3(Run(j) (Desc(s,m, sched) (n)) E 8(Kfn(s,m.sched) (n))

Proof: Parallel Comp Ind on Run & Kfn using Lemmas 7 & 10

LEMMA IB
Runt j) (s,m, sched) a Let n be Kf n (s, m. sched) (0) + 1 in

Col (j) (s.m.sched) (n) # Run(j)(Desc(s.m.sched) (n))
Proof: By cases of 3(Kfn(s.m,sched)(0)) using Lemmas 14 & 15

THEOREM 2b
Run(j) (s.m.sched) a Crun(j)(s.m,sched)

Proof: Parallel Comp Ind on Run & Crun using Lemma 1G

Proof of THEOREM 2

Run(j) (s,mf sched) -a Run(j) (s.m, Ful I sched (sched))
Proof: Theorem 2a & 2b

THEOREM 3

Infcan(j) (s.m.Ful I sched (sched)) E Infcan(j) (s.m.sched)
Proof: Similar to proof of Theorem 2
without use of Lemmas 11 & 11a and
weaker versions of Lemma 13 and Theorem 2a

29

«

Semantic Models for Parallel Systems

Ue use the predicate "Valid" for what Lipton calls "Semi-Act

Valid(timing)(s,m) i ff
(3sched,k)(History(s,m, sched) (k) = timing)

i v e

30

TIMINGS

The Scheduler formalism used in this paper is related closely to
the Timings that appear in Upton's work. The following section
clarifies the relationship.

SEP = EP + (STOP)
TIMING = {<>} + (N x SEP) x TIMING

Thus, a Timing is a Mst'of EP's (or (STOP)), with each EP
associated the index of the process that executed it.

Since a timing is a list, there are three functions predeclared with
the usual interpretation:

Car: TIMING — > N x SEP
Cdr: TIMING — > TIMING
Empty: TIMING — > TT

History: S x M x SCHED — > [N --> TIMING 1

History(s,m,sched)(k) <==
k = 0 — > {<>} ,
Let n be sched(s,m).N in

Let sep be
rn (n) .LABEL = STOP ~ > STOP, Act ion(n) (m)

i n
< <n,sep>, Hi story (Next(s,m,sched))(k-1) >.

Apply: SEP > [S --> S]

Apply (sep) (s) < «
sep = STOP — > s,

'Let < <syname, syargs>, <stname, stargs>, <cname, cargs> > be sep in
Synchfn(syname)(syargs) (s) --> Statefn(stname)(stargs)(s).S, s.

Value: TIMING — > [S > S]

Value(t iming)(s) <==
Empty(timing) --> s, VaIue (Cdr(timing))(Apply(Car(timing) .SEP)(s)).

Semantic Models for Parallel Systems

Active: TIMING — > [S --> TT]

Active(timing)(s) <==
Empty(timing) — > tt,
Let < <n,sep>, rtiming > be timing in

sep = STOP > ff,
Let <syname,syargs> be sep.SYNCHFORM in
• --Synchfn(syname) (syargs) — > ff,

Active(rtiming) (Apply(sep)(s)).

Timings form a partial order described in the following way:

<: TIMING x TIMING — > TT

tl < t2 <==
Empty(tl) — > tt,
Empty(t2) « > ff,
Let < <nl,el>, rtl > be tl and < <n2,e2>, rt2 > be t2 in

nl — n2 A el = e2 — > rtl < rt2, ff.

Conjecture:

Val id(timing) (s,m) 'h Active(timing) (s) iff
(3k,sched) (FulI(sched) (s,m) A Hi story(s,m,sched)(k) = timing)

31

