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ABSTRACT

This paper deals with the iterative sclurion of nor-linear equations f(x) = 0. We consider
x
0

integral information on t which is given by f(xo),f'(xo),...,f(s)(xoj and f(e)de, we define an inter-

¥

2 0
Polatory-integral method which uses integral information 4and which has maximal order of convergence
equal to s+3, Since the maximal order of iterations which use f(xo),...,f(S)(xo) is equal to s+1, the

X
0
additional information given by the integral f f(t)dt increases the order by two.
y
0

1.  INTRODUCTION
We consider the solution of the nonlinear scalar equation

(.1 f(x) = 0,

where f is a complex function of complex variable,
In most papers which deal with stationary iterative methods for .1 it is assumed we know the

gtandard information for f (Wozniakowski [74

5 = {f(xD),...,f(s)(xo)}

where s 2 1 and X, is an approximation to the solution @. The maximal order of convergence of such
methods is equal to 5 + t (Traub [647, Wozniakowski [73]). We raige the question how other types of
information can be used in iterative Processes and what is the maximal order of convergence for this ip-

formation,

This paper deals with integral information which consists of the standard information ms and addi-
tionally the value of an integrai, Thus

)

s
(1.2) m_],s = {f(xo),...,f( )(xo), f £(t) de3
7o
where Yo is a complex number defined in Section 3,
In Section 2 we define anp interpolatory - integral method I s which uses integral information
Tl
R 1.5 O estimate ¢ and in Section 7 we Prove its order for g = 1 is maximal, Sections 4, 5 and g con-
T

tain theorems about the convergence of [

1,s”
Wozniakowski [74] defined for the generalized information W ap order of informatian p{M) and proved
=% 0ol Intormation
it is equal to the maximal order of tonvergence, In Section 7 we prove thar for s = 1 agd for suitable
chosen Yo» p{™ i q) = s + 3. Since p(ms) =8+ 1, the additional information given hy [ f{t)dt increasg-
-1,¢

Y
es the order of information by two. For systems of nonlinear equations similar results can be proved

and will he reported to a future paper.



2, INTERPOLATORY - INTEGRAL ITERATIVE METHOD 1 1.8
|

Let us consider the solution of the nonlinear equation,

(2.1 fx =0,

where £:0 = (, D is an open subset of ([, ([ denotes the set of complex numbers. Let & € D be a
simple zero of f, fFlay = 0 ¢ f'(a). An interpolatory - integral method I 1.s is defined as follows.
st

Let ®X; be an approximation of o, We assume that the information on f is given by
X,

1
(2.2) %y =y, G50 T TTCR TP ALICRE Jy £(0) del,

1

where ¥, depends on X f(k)(xi), ko= 0,1,0005%: ¥ % X, and is defined in gection 3, 1f s = 0 then Y4
can depend ofn X, f(xi), x50 f(xi_1). The value of y; will be chosen to maximize the order of itera-
tion.

The information consists of the standard information given by f(xi),...,f(s)(xi) apd additlonally

the value of the integral. Next, let Wy be an interpolatory polynomial of degree at most s +1 such

that:
(2.3} wik)(xi) = f(k)(xi) k= 0,1,...58,
X, X,
1 1
(2.4) f wi(t) dt = f f(t) dt .
Yi Yi

If ¥y exists then the next approximation X, .4 in 14 method is defined as a zero of polynomial LIFE

=l

z.5) w%xi+1) = 0,

with a criterion to make X4 unique, We chall now prove that wi exists and is unique. Let
x

(2.6) F(oy = [ £(0) 4t

Yi

and let B, be a polynomial of degree =5 + 2 such that
(2.7 g;vyd = Fly) = 0

k k
(2.8) gg )(xi) Wy, k= 0,1,..0sstl.

Thus, &; is a Hermite interpolatory polynomial for F. The assumption ¥, % %y implies the existence and

the uniqueness of g. Set

2.9 wi(x) = g’ (x}.
L



Then (2.3) and (2.4) are satisfied which completes the proof. Moreover, from (2,8) and (2.9) follows a

error formula,

(2.10) F(x) - gi(x) = (x - yi}(x - xi)s+2 Gi(x)

where

Oy —

t t
_ _ 1 542 _(s+2)
(2.11) 6,00 = G (x,f) = t[ g f (yi-f-t](xi-yiJ +t

+3 7
{x - xi)) dt] e dts+3'
Differentiating (2.10) we get from 2.11),

(2.12) f(x) - wi(x) = R(x)

where

R{x) = R(x,f) = (x - xi)s+]{[(s+2)(x - yi) + x - xi] Gi(x) + Gi(x)(x - xi)(x - yi)},

3. DEFINITION OF A LOWER LIMIT OF THE INTEGRAL

We want to define v. to maximize the order of I Setting x = ¢ in (2.12) we have
Y; R g

1,s8°
(3.1 - wi(a) = R{@)

Let us assume for a moment that v, has a zero X;41 sufficiently close to a simple zero g,

Wi(a) 2
g ma= - Py + O((xi+] - M) = o(R(a)
i

We see that the order of iteration depends mainly on R{y). Therefore we shall chogse ¥; to minimize

R{a} in a certain sense. From (2.12)

+1
(3.2) R{w) = (g - xi)S {[(s+2) (a - yi) + o - xi] Gi(u) + 6l (e - xi)(a - yi).
Ag Gi(a) ang Gi(u) are in general unknown we want to minimize
3.3) max(f(s + D(a - y) +q - s T~ x) (o - vy

One can verify that the minimal value of (3,3) is for ¥; equal to y

- X,

= 1
G4 ST I P

n



As we do not know o we have to replace it by an approximation to &, 2, which depends only on the stan-
is)
i i = RS § . = =
dard information, Z. zi(xi,f(xi) R (xi)) and z, # X If s 0 then zi zi(xi_],f(xi_1),xi,f(xi)L
We define y, as
z - %,

-3 71 T * s + 2i+ ]zz - X

il
it can be proved that one can drop lzi - %Xy in the denominator without the change of the order.
Finally, ¥; is defined by

z. -~ X,

(3.6) vy Eg + ; " 21

Hence, from (3.6) and (2.12) we get
(3.7) £(x) - wi(x) 3 R(x)
for

(s+3)(x-zi) + EFRES

s + 2

RGO = RG,D = (= 1™ {543 G - 7)) 600 + G0 %)
where W ig the interpolatory polynomial defined in Section 2.
4., THE CONVERGENCE OF THE ITERATIVE METHCD 1_1,5 FOR s =2 1
In the previous section we have seen that the order of iteration mainly depends on R{g). From
(3.7)

s+1 (s+3)(d-zi) + % -0
R(o) = (o - %) {(s43) (2 = 2) Gy (a) + G} () (o - x;) T 2

Hence, te assure the maximal order of I 1.5 for s = 1 it suffices to define approximation z. using
=%

Newton method

Theorem 1

1f s =z 1 and

+
f(s 3 is a continuous function on K(w,R) where

n

f(o) = 0 # £7()

2
K(q,R) = {x : [x - al =1}, R= R(r) = max(ﬁﬂs—cgzi-[,r)

where the constant C is defined belovw,



2. a real number r‘ ™ 0 is such that

2 M

r_ h(rs < 1 and -:rii r_-i ! where
1

M M
2 s+2 5+3 (s +3) + ¢ + 2
h(,_J—v—-(Zr} {0+ (T'+_2T'+(T%~T): P
for
vy = lnfl—i-— li M, = sup ff(i)(x)l 1= 542,543,
oo i %K (a,R)

5 ¢ = o) « 12

M, = sup "x)]; ¢ = C(] ) =

2 e 2"1(] 2]—)2

")

1

3, ¥y €J where J = fx : ]x - al < r-},

then the sequence {xi} generated in I 1,5 has the following Properties:

(i) X €J, v,

iy s+3
(ii) Xigy @< Ai(xi - o) s Vi,

where

fAif <A Vi, and

s+1 ZM
s+3 !S+3!!]+C ) + 2
A {(h(r) roy (+2)' (sH)T - o2 |
(iii) 1im X, = g and

iwe L

X, - o
lim It =B where
) 5+3
i#= (x, - o

1

Bs (e 7)5“{ Tl - 77 (o) f(sm LG }
208" (o)) (s+2)! (s44)1  £70aY (s+2)

Froof of (i) (By induction)

Let us assume that X € J. From (2.12) wi(x} =0 iff x = y(y) where

> + f:l) R{x) if x # g
Mgy
(4.2) 1)y =
+ ?T%;y Rw) if x = 4



Now, using .2y, (3.7}, (2.11) and condition 9 one can verify that the assumptions of the Brouwer f

point theorem hold for H in the set ], Hence, there exists x € J, such that wi(x) =0,

and, by induction, ¥, eJ i=10,1,...

Proof of (ii)

From (4.2) and (3.7) we get
*i+1
Therefore
s+3

(4.3) Xy " @ = Ai(xi - o where

e s+1 ‘
_ 1 i+] i+l
CR f(xiﬂ)Cei D (5+3)<e2 B QG(xiﬂ) +
—_— i
e
i+l
&, e,
e, (s+3)(\l+1 - C,é?) +1 - i+l
. i+] e, ii e,
+ G (xi+1 —_ -1 i i

e, -—
i s + 2

where ei =Ry -0 and Ci gatisfies the relation

z, - @ = Ci(xi - @ .
An upper pound on Ai one can find using an assumption 2 and (2.11).

Proof of (iii)

From (4.3) and iy,

' s+3

|x - al < A|xi -

i+1
and thus
s+2

i+]
ey ol 2 [T

Xy " ol ¥

s+2
From assumption 2 follows that A T_ < 1, and hence,

1im X, = o
i

i

Finally from (4.3) and (4.4) it can be shown that

H, - o
Yim — lim A, = B,
; +3 . i
e (x' - n;) i
i
which completes the proof of Theorem 1. [

So xi+1 e J

ix-



In general, B is not equal zero (see point (iii) which means that s+3 is the order of the inter-
polatory - integral method I-],s for s = 1, (Traub [64], Wozniakowski [741). Note that iterative meth-
ods which use only the standard information f(x Yseouof (S)(xi) have orders at most s+1, Additional in-
formation given by I f(t)dt increases the order of T -1,s by two. The usage of the I s method in

Y.
practice is profltab}e if the evaluvation cost of the value of integral is approximately equal to the

evaluation cost of function or its derivatives.

5. THE CONVERGENCE OF THE I-T 0 METHOD
>

Now, we assume s = 0, which means that the information is of the form:

X
R = 1 = —
1,0 = EG), J* £(t) de) where v, =2+ .
Yi
Note that we cannot now define z; by the Newton method as we do not know the value of the first deriva-
tive. Let z, be given now by the secant method,

X = x

- _ i i-1
5.1 2, =x, T - Ex
i i-1

) f(xi) Vi,

In this case, the interpolatery - integral method I 7.0 1s @ one-point methed with memory (Traub {641]),
=1y

Theorem 2

If

(3

1. £ is a continuous function on K(x,R) = {x: [x - a, < R}, where o) = 0 # £' o}

R=1R() = ma,<3JI_§_+F, I’)

where the constant C is defined below,

2, a real number T— + 0 is such that

2,
[ < h() <1 and =T <,
1
where
2 My M 2
h([) = —la+ch - g3+ e[y + 2T
1
for
v, = Lnfl;iéﬁ— |, = sup Jf(i)(x)f i=2,3;
%El “ XK (v, R)
_ Mé 1
My = sup "], ¢ = o) = . M), z
2 xEJ A (1 - V-Z



3. xge %y €J where J = [x: |x - o < ["1, then the sequence {xi}, generated in I_; , has the follow-

bl

ing properties:
(i} X, € J i=0,7,...

- o

(D) %, ., = a=Adx, - (x
1 1

i+1 i=1

where [l =4  1=0,1,...,

a=2 (P +ec I~—1-2—+b’1—3- 10+ ¢y + 2

{(iii) 1lim x5 = g and moreover

i+

Fi41 - ° 1 (£ 2
lim = B where B = 5| 2 R
foe (x, - D (x, 4 - @) b\I'()
i i-1
_P_
X, -

(iv) lim x”]_ - = BPT1 where p = 1 + .2 . ™

jme 17

The proof of this theorem {s omitted since it is similar to the proof of Theorem 1. From (iv} follows

that 1 +-v§ is the order of the interpolatory - integral method I 1.0°
L

6. THE CONVERGENCE OoFr THE T 1.s METHOD FOR MULTIPLE ZEROS
=1

Let us now assume that s = 1 and o is anm fold zero, i.e.,

oy = £ (o) = e = £™ V) = 0 4 £™ ey,
where m = s.

The information is given by

x.
m_],s = {f{xi), f'(xi),...,f(s)(xi), Il f(t) dt} where
Yy
Zi - Ki
vi =%t ez for 2y = IU,s(xi;f)

The notation 1
D,s

{xi;f) is used by Traub [64] and Wozniakowski [73]. The character of convergence of

the T ;5 o method in this case is given by Theorem 3.
=l

Theorem 3

1f s = 1 and

+
1. f(s 3) {5 a continuous function on K{w,R) = {x: |x - af <R} where



_ _ (s+3) D[_ +
R R(r—) max s ]_
where the constant D is defined below,
2, a real mumber ’_ > 0 is such that
s
(™ - h([ ) <1
where
s s+1 a+1
m ™ M M S
m/f ] — +2 —+3 2
h(f_)m/sz ([ + of )(—s:T)T““'(EsE)—:'s?%(S*”(r*Dr ) + 2
m
v = inf {_&m M, = sup If(s'H)(x)]
x€J l(x - o) x€J
Mi = sup lf(l) )] i = s5+2, s+3,
*EK (a,R)
s+i
i m
= s+1
(S+])> Moty . =L
] m
SWED [
and
1
M m 541 s_+]]
‘s 5+] m m <
(ii) " (S+]):> 2 r s
m
oo xg €0, 3= [x: |x ~ &l =)
then
(i) x, €J, i=0,1,... , lim x. = &
1 N 1
j—eoo
sti+p
(ii) lxiﬂ Sol S AL gx, - of ™ where p = m].n(ﬂ 2).
Moreover
A, <4,
s+1 ] =L s+t
1 .m (™ +2 2.p "3 2 etmy -
A=TIE2 h + D S p ] (s+3) (1+D )+ 4
oy [ ([ + o royr 1T e 5

B |=

2 |~



%, - ol
(iii) lim “——iil——;IT;— < B where
i —-—E
Ixi - Q‘ "
1 1
m mi lf(s+1)(m)| » ml " f(s+2) f(s+3) 1 -
™ @) g0 lf(m)(u)l'(sﬂ)') G fe0 T GED T et
m

1 if 1=0 | |

(iv) p(m) = (s+1+p)/m is the order of convergence of 1 s method for m multiple zeros.
=T

The proof of this theorem is omitted since it is similar to the proof of Theorem 1,

7. MAXIMALITY OF I 1.5
]

Let Y_1 s be a class of stationary iterative methods @ 1.5 which use information T 1.s and which
> =t ]

have well defined order ply : } (Woznilakowski [74]). From Theorem 1 it follows that the interpolatory-
-1,s

integral methed I belongs to ¥ , 521,
-1,s -1,s

Now we shall prove that I_.1 s has maximal order in the class ¥ 1.8’ i.e.,
» =l

P(1-1,s) = sup P(“’-l,s)'

Wozniakowski [74] defined (Definition 7) the order of information p{M) and proved it is equal to the

maximal order. Thus, it suffices to show that in our case

p(1—1,s) B p(‘R—1,s)'

Theorem &
(s) i3 (s)
Let ‘]1_.',5 = m_.[,s()(]._;f) = {f(xi),-.-,f (xi)’ g f(t) dcl, for any ¥y = Yi(xisf(xi):°--’f (xi))'
Then t
p(‘;ﬂ_1 S) < s + 3.
2, - % f(Xi)
1f s =1 and y, = 25 + =57 for z, = X; < F(x)

then p(m_1,s) =35 + 3. [ ]

Proof

Let @: be the class of complex functions of complex variable which have a simple zero and which

10



dre analytic in the neighborhood of o (see Definition 1 inm Wozniakowski [74])., We recall the definition

of the order of information. Let f € F and {fi] c ¥ where
flo) = 0

(7.7) fi(ﬂi) =0, i=0,1,,.., 1i: @, =

(7.2) 1lim f].(_k)(cy) =e® (), for k = 0,7,ee0sg €F, g(e) = 0.

i—om
Next let us assume that

(7.3) = S0 =T GLE) M,

where {xi} is an arbitrary sequence converging to g, Let W, be an interpolatory polynomial of degree at

most s + 1 defined as follows:
m_],s(xi,wi) = m_],s(xi,f), Vi,
Thus

£(x) - fi(x) = f({x) - wi(x) + wi(x) - fi(x) = R{x,f) - R(s,fi).

From it and from (2.12) it follows

(7.4) o - ey = 0t (@) - £, (@) = 0([R(er, 1) ] + IR, £0]) =

= O(Ia - ins+T . {(s+2)(a - yi) + o - xi] + la - xif5+2 sy - yil)

Moreover, we shall show that this bound is sharp, Let £ be a number defined as follows:

¢y 1
1 if  1im o
i (o Xi &

0 otherwise
Let

= s+1+ -
hy () = (x - x)) (x-b) i=0,1,...
where

+
(s+2+r) s xi

= e iy .
bi s+ 3+ ¢

Setting
(7.5) fi(x) = f{x) + hi(x), i
for any function f ¢ 3?, (f(a) = 0, fi(ui) = 0) one can verify that conditions (7.1}, (7.2) and (7.3)

hold. Next, there exist constants C, 0 such that lim ¢, = ¢ . g and
1 1 1

1



~

t s+1+0 1

s+14C _ i
;| N R v RS

(7.6) o - ol = ciLf(a) - fi(ot)| =g o - x (S+2+!;)(cx—yi)+cz-xi|

which proves that (7.4) is sharp.
From {(7.4) and (7.6) it follows that for any y, the order of information p = p(% 1 } exists. Let
-1,s
us assume that p = s+3. Let & > 0 be a number such that p - ¢ > s + 3 + e. For £ and {f. 7} given by
i

{7.5) we get from (7.6):
lCY' ail |C('Ui1

- P

> 1lim sup
i X, = o
1

+ « > lim sup

=+
: s+3+eg
e |x, |

which is a contradiction. Hence p = s+3 for any ¥, < yi(xi’f(xi)"‘f(S)(xi)‘ Now we shall show that
the above estimation of p is achievable for s = 1.

Indeed, setting

z, = X f(x.)
y, =z, + 2 1 2, =x, - -
i i s+2 [ | i f'(xi)
we have
o - V.
1

lim la.— (so(=1)
oo @ %y 5+2

It is easy to verify that from (7.4) and (7.6) it follows
Oy )= st T,

which completes the proof of Theorem 3. @

From Theorems ! and 3 we get

Corollary 1
The interpolatory - integral method I 1.8 is maximal, i.e.,
L]

p(I_y ) = Bl O .
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