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ABSTRACT 

This paper deals with the iterative solution of non-linear equations f(x) = 0. We consider 

integral information on f which is given by f(x Q),f•(x Q),...,f ( s ) ( X q) and J°f(t)dt. We define an inter-
y 

polatory-integral method which uses integral information and which has maximal order of convergence 

equal to s+3. Since the maximal order of iterations which use f ( x Q ) , . . . , f ( s } ( x ) is equal to s+1 , the 

additional information given by the integral J f(t)dt increases the order by two. 
1. INTRODUCTION 

We consider the solution of the nonlinear scalar equation 

(1.1) f(x) = 0, 

where f is a complex function of complex variable. 

In most papers which deal with stationary iterative methods for (1.1) it is assumed we know the 
standard information for f (Wozniakowski [74]) 

9ls = {f(x 0),...,f ( s )(x 0)} 

where s ^ 1 and x^ is an approximation to the solution a. The maximal order of convergence of such 

methods is equal to s + 1 (Traub [64], Wozniakowski [73]). We raise the question how other types of 

information can be used in iterative processes and what is the maximal order of convergence for this in­

formation. 

This paper deals with integral information which consists of the standard information 9tg and addi­
tionally the value of an integral. Thus 

(1.2) S 1 s - { f ( x 0 ) , . . . , f ( s V 0 ) , J f(t) dtl 

where y^ is a complex number defined in Section 3. 

In Section 2 we define an interpolatory - integral method I which uses integral information 
- I , s 

to estimate a and in Section 7 we prove its order for s > 1 is maximal. Sections 4, 5 and 6 con­
tain theorems about the convergence of I , 

-1 ,s 

Wozniakowski [74] defined for the generalized information 9t an order of information pOJt) and proved 

it is equal to the maximal order of convergence. In Section 7 we prove that for s ^ 1 and for suitable 
x o 

chosen y Q , p( <^_ 1 g ) = s + 3. Since pOft ) = s + 1, the additional information given by f f(t)dt increas-
es the order of information by two. For systems of nonlinear equations similar results can be proved 
and will be reported to a future paper. 
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2. INTERPOLATORY - INTEGRAL ITERATIVE METHOD 

Let us consider the solution of the nonlinear equation, 

(2.1) f(x) = 0, 

where f:D -> C , D is an open subset of £ , (D denotes the set of complex numbers. Let a € D be a 
i „ AfK r tH T is defined as follows. 

simple zero o 
f f, Ha) - 0 + Via). An interpolatory - integral method 1 ^ , 

Let x. be an approximation of a 
1 i 

W e assume that the information on f is given by 

0 0 , x v - o i s y / x. and is defined in Section 
x . , fK '(.*.), k = 0,1,...,s, yt r x 

can depend on x., f(x.), * t _ v
 f ^ i - l ^ ^ 

3. If s = 0 then y ± 

en by f (x^;, • • • > r 

ai Npvt let w be an interpolatory the value of the integral. Next, let w. 

tion. . f^ s )(x ) and additionally 
• c ^ of the standard information given by f(*.),...,* ^ i' i n f o - t i o n consists of ^ ^ ^ ^ % + , s u c h 

that: 

(k), s _ N k = O ' 1 ' - - " 8 ' 
(2.3) w ^ ( x t ) = ^ ( - > 

X-- 1 
(2.4) J w (t) dt = f f ^ > d t • 

y • y • 
If w t exists then the next approximation x i + 1 in I ^ g method is defined as a zero of polynomial w ^ 

(2.5) w.(x. + 1) = 0, 

with a criterion to make x i + 1 unique. We shall now prove that exists and is unique. Let 

x 
(2.6) F(x) = I f(t) dt, 

y i 
^ s + 2 such that and let g. be a polynomial of degree 

(2.7) g i ( y i ) " F ^ i } = ° 

) , k = 0,1,...,' 

..^n v 4 x implies the existence ial for F. The assumption y. f x. P 

(k), x _ F
( k ) ( x ) , k = 0,1,-..,s+1 

(2.8) g^ " F ' 
and 

Thus, g ± is a Hermite interpolatory poly* 

the uniqueness of g. Set 

(2.9) w ±(x) = g\_(x). 



» - 0.3, « < , * , „ , , . t M M ^ „ m p l e t „ t h e p „ o , B o _ r > f f _ < 2 ^ ^ 

error formula, 

(2.10) F(x) - g ( X) = ( x . ) ( x . x ) S + 2 G 

J. i i 

where 

1 t 
(2.11) 6 (x) = G.(x,f) = r p1 fs+2 (s+2) ( ^ . 

1 1 J J •* * J * (y.+t-(x.-y ) + t 
0 0 0 1 1 i i s+3' 

( X - X i } ) d t l ••• d t s + 3 . 

Differentiating (2.10) we get from (2.11), 

(2.12) f( x) - w.(x) = R( X) 

where 

s+1 

R(x) » R(x,f) = (x - x±) {[(s+2)(x - y±) + x - x±] G±(x) + G^(x)(x - x ) (x - y ) } . 

3. DEFINITION OF A LOWER LIMIT OF THE INTEGRAL 

We want to define y.̂  to maximize the order of I 1 g . Setting x = a in (2.12) we have 

(3.1) - w.(cy) = R(a) 

•* 1 - ^ sufficiently close to a simple zero a. 
Let us assume for a moment that w. has a z e r o x 

xi+i _ a = " ̂ [feT + 0 ( ( x i + i • a ) > = 0 ( R ( a ) ) 

We see that the order of iteration depends mainly on R(a) . Therefore we shall choose ŷ ^ to minimize 
R(o/) in a certain sense. From (2.12) 

(3.2) R(c) = (<* - x . ) 3 * 1 {[(s+2) (Q, - y.) + * - x.] G.( a) + G^(a)(a - x ) ( a - y ) . 

As G^(a) and G^(cy) are in general unknown we want to minimize 

(3.3) max(|(s + 2) ( a - y J + ot - x.|, | (a - x.) (a - y )|). 

One can verify that the minimal value of (3.3) is for y i equal to y 



As we do not know a we have to replace it by an approximation to <y, z^ which depends only on the stan-

(s) / 

dard information, z± = z ^ x ^ f (x^,..., f ( x ^ ) and z^ f x ^ If s = 0 then z^ = Z
i ( x

i _ - J >f ) > x
i > f ( x 

We define y. as 

(3.5) y = * + fjJL^i . 
8 + 2 + |z. - x.| 

It can be proved that one can drop | z - x^| in the denominator without the change of the order. 

Finally, y is defined by 

(3.6) Y I = Z . + ! I - J ! I . 

Hence, from (3.6) and (2.12) we get 

(3.7) f (x) - w (x) = R(x) 

for 
(s+3)(x-z ) + x -x 

R(x) = R(x,f) = (x - x . . ) S + 1 {(s+3)(x - z ) G i(x) + G^(x)(x - — ) 

where w^ is the interpolatory polynomial defined in Section 2. 

4. THE CONVERGENCE OF THE ITERATIVE METHOD I - FOR s ;> 1 
-1 ,s 

In the previous section we have seen that the order of iteration mainly depends on R(a). From 

(3.7) 
, (s+3)(a-z ) + x -a 

R(or) = (rv - x ) S {(s+3) (<* - z ) G (a) + G'(a) (a - x ) 
imal order of I., . for . * 1 it suffices to define approximation z± using 

Hence, to assure the max 

Newton method 
f(x.) 

(4.1) Z i - z i ( x i , f ( x i ) , . . . , f ( S \ x i ) ) = x i - F ^ - ) i - 0 , 1 , . . . 

Theorem 1 

If s 2> 1 and 

1. f ( s + 3 ) ^ g a c o n t i n u o u s function on K(a,R) where 

f(aO = 0 ^ f»(a> 2 ^ 

K(a,R) - {x : |x - a| £ R } , R = R ( p - M A X A S + 3 ) ^ \ + ^ , Y 

where the constant C is defined below, 



2. a real number f~ > 0 is such that 

I h(| ) < 1 and 1 r < 1 
2 M„ 

I— 
where 

for 

M 2 = sup | f » ( x ) | ; c = CCP) = 
x£J 2 v i r M 2 ^ 2 

then the sequence {x } generated i„ j h a s f ,, . 
1 -l,s h a s t h e following properties: 

(i) x i € J, Vi, 

x i + i " « = V x i - « ) 8 + 3 , vi, 
where 

lAil s A V 1 , and 

A = 2 f ^ f / _ r - . . M . * 9 2M 

i = « and (iii) lim x. 

x 
lim 
i~*OO 

i+1 " a 

(„ ,s+3 = B where 
^ X- - RV) 

2 <f'(<*))' (s+2): ( s 4 4 ) ! f ,<»> < s + 2 > 

Proof of (i) (By induction). 

Let us assume that x.̂  £ J. From (2.12) w (x) = 0 iff x = H(x) where 

p + f g y R<x> if x / a 
(4.2) H(x) = < 

L a + f' ( a) R ^ if x = o 
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. . . o ^ ran verify that the assumptions 
• (Lr\ (3 7 ) , ( 2 J D and condition 2 one can verity 

Now, using v • ' 
, i_ T H e n c e there exists x € J , such that w (x) 

point theorem hold for H in the set J. Hence, 

and by induction, x ± € J i °» 1 »• 

Prnnf of ( H ) . 

From (4.2) and (3.7) we get 

R(x. i " °' 1 ' 
x i + i -« - f ( x ^ y R V ^ 

Therefore 

(4.3) x . + 1 - « = V * i • a ) 

s + 3 where 

+ G'( x
i +i )(-if s + 2 

where e^ = x^ - <y9 and satisfies the relation 

An upper bound on A^ one can find using an assumption 2 and (2.11), 

Prnnf of (JJi) 

From (4.3) and (i) , + 3 

^ A|x. - 0i\ 
i+1 |x, L l - «l - • • i 

and thus s+2 . -j 
i x i + 1 - «i s (A r > K - "i 

From as sump 
, h f lf A r " s + 2 < 1, and hence, tion 2 follows that A | > 

lim x. ~ «• 
l 

// And C4 4) it can be shown that Finally from (4.3) and 

x ~o/ 
i . _ i ± l _ — — = lim A. = B, 
l u n Ts+3 i 

(x. - «) 1 " 

wh ich completes the proof of Theorem 1. 



In general, B is not equal zero (see point (iii) which means that s+3 is the order of the inter­

polatory - integral method I for s ^ 1, (Traub [64], Wozniakowski [74]). Note that iterative meth-
-1 , s 

(s) 
ods which use only the standard information f(x.),...,f (x.) have orders at most s+1. Additional in-

x. 1 1 

formation given by f f(t)dt increases the order of I by two. The usage of the I method in 
v -•»s - I ,s 

practice is profitable if the evaluation cost of the value of integral is approximately equal to the 
evaluation cost of function or its derivatives. 
5. THE CONVERGENCE OF THE I n METHOD 

Now, we assume s = 0, which means that the information is of the form: 

^-1,0 = £f(xi)> J1 f(t) dt} where y. = z. + 1 " 1 

y ± i i 2 ' 

Note that we cannot now define z. by the Newton method as we do not know the value of the first deriva-

tive. Let be given now by the secant method, 

x . - x. , 
(5.1) z. = x. 1 

i i f(x.) - f(x._ 1) f(x.) Vi . 

In this case, the interpolatory - integral method 1 ^ Q is a one-point method with memory (Traub [64]), 

Theorem 2 

If 

s a continuous function on K(a,R) = {x: |x - a\ < R } , where f(cy) = 0 £ f ( a) I. f
( 3 ) t 

R - R ( n - - » ( 3 c r ^ + r . r 

where the constant C is defined below, 

2. a real number f > 0 is such that 

2 M 
F • h(F) < 1 and — F < 1, 

where 
M 0 M „ 

for 

v, = mf|-£i£i L M = „.„ u ( 0 1 = l°,'iT-L I > M
i
 = sup |f ̂ > ( X) | 1 = 2,3 

X?J x€K( a,R) 

M = sup |f"(x)|, C = C(| ) = . 7 ^ T ^ 2 



3. x , x € J where J - {x: |x - a| * f 1, then the sequence { x j , generated in 1 ^ > Q has the follow-
"0' 1 

ing properties: 

(i) x. € J 1 = 

I 

(ii) x i + 1 - a « A.(x. - a)2 (x.^ - a) 

where |A | ^ A i = 0 , 1 , — , 

A = L- {(hCf) + C) ^ + § • [30 + Cf) + 2]}, 

(iii) lim x i = and moreover 

2 

(x. - <*)*(x , - a) 1 1-1 
lim = B W h e r e B = 4 [TW ' 

(iv) lim 
Xi+1 = B p + 1 where p = 1 + Ji . 
X. - OF 

The proof of this theorem is omitted since it is similar to the proof of Theorem 1. From (iv) follows 

that 1 + Ji is the order of the interpolator - integral method I _ 1 ) Q . 

6. THE CONVERGENCE OF THE I_, > 8 METHOD FOR MULTIPLE ZEROS 

Let us now assume that s s 1 and a is an m fold zero, i.e., 

f( a) = f-(a) = .... = f ( m - ^ ) = ° ^ ( m ) < « > ' 

where m £ s. 

The information is given by 

-l,s 
9, , . - ( f (x.) , f ( x . ) , . . . , f ( s ) ( x . ) , f dt"> W h e r e 

The notation 1 ^ (x,,f) is used b y Trauh [64] and Woznia.owsKi [73]. The character of convergence of 

t h e I method in this case is given by Theorem 3. 
-1 ,s 

Theorem 3 

If s 2> 1 and 

f < s + 3 ) is a continuous function on K(«,R) = W- |x - «| ^ *1 "here 



s+m 
m 

where the constant D is defined below, 

2. a real number [~ > 0 is such that 

S + 1 

(i) r m 

where 

s ± i f 
m s+l S + 1 

m 
( S + 3 ) ( F + ) + 2 

v = inf 
m x€J 

JJsL 
(x - a) 

. « s + 1 = sup | f ( s + 1 \ x ) | 
x£J 

M i = ~ P . If(i)(x)| i = s + 2 , s + 3 > 

X E C ( o , R ) 

and 

D = 
M 
s+l 

V ^ ( S + D : 

s+l 
m 

O - s+l 
v (s+i): 
m 

1 s+l 
m ( 2 p } m -1 

(ii) s+l 
v m(s+n: 

m s + 1 s+l 1 

2 m . |" m < 1, 

x Q € J, J = {x: | x - a\ z \~ } 

then 

(i) x. <= J, i = 0,1,... , i i m x ^ = 

s+l+p 
<"> - or| * A t |x. - a\ 

Moreover 

A. < A, 

where p = M I N(S±L > 2). 

s+1 s+1 
~-p 

tr 2" 1 r (h (r) + D) 
s+l 
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x... - a?I 
/ . . . N i 1 + 1 where 
(111) lim s+1+p 

I -»oo — " 

I 1 M 

< ts±L. P foV | f ( B )(«)|.(B+i):/ ( s + 2 )-
m/ m. 

| f ( m ) ( a > | 

f 0 if i / 0 

Ci,0 ={ 
I 1 IF I - 0 • 

(iv) p(m) = (s+l+p)/m is the order of convergence of I - method for m multiple zeros, 
- 1 , s 

The proof of this theorem is omitted since it is similar to the proof of Theorem 1. 

7. MAXIMALITY OF I . 
-1 ,s 

Let Y , be a class of stationary iterative methods cp which use information 9t . and which 
-l,s J -1,s -l,s 

have well defined order p(cp ) (Wozniakowski [74]). From Theorem 1 it follows that the interpolatory-
-1,8 

integral method I_ 1 g belongs to Y_ 1 g , s £ 1. 

we shall prove that I , has maximal order in the class Y , , i.e., v -l,s -l,s Now 

P(l T .) " sup p(cp , ) . 
*-l ,8^-1,8 

Wozniakowski [74] defined (Definition 7) the order of information pCJt) and proved it is equal to the 

maximal order. Thus, it suffices to show that in our case 

P<I_ l t 9> = P<*-l,s>-

Theorem 4 x. , f, \ f ( s ) C x II 

L e t , . * , (x.;f> = tfcx,) r *«-FOR A N Y Y I = ̂ i , £ ^ 1 

L e t -1,s -1,s i 1 y t 

Then 
p ( \ l j S ) ^ s + 3. 

f (x.) 

If s * 1 and y. = z. + s + 1 f ° r Z i = X i " f'<xi> 
z . - x. 
i i 

then P(^_ 1 ) S> = s + 3. 

Proof 

1 0 



are analytic in the neighborhood of a (see Definition 1 in Wozniakowski [74]). We recall the definition 

of the order of information. Let f € ̂  a n d {i^l c : where 

f(o/) = 0 

(7.1) ^(o/J = 0, i = 0,1,..., lim a. = <*, 

(7.2) lim f)*\a) « g W ( a ) , for k = 0,1,...,g € # , g(<y) = 0. 

Next let us assume that 

(7.3) 3t (x.,f) = !R (x ,f ) Vi, 
-l,s l ~'>s 1 1 

where {x^} is an arbitrary sequence converging to a. Let w i be an interpolatory polynomial of degree at 
most s + 1 defined as follows: 

3 l _ 1 ) S ( x . , w . ) = 3 l _ 1 ) S ( x . , f ) , Vt. 
Thus 

f(x) - f t(x) - f(x) - w t(x) + w ^ x ) - f t(x) = R(x,f) - R(s,f i). 

From it and from (2.12) it follows 

(7.4) a - a ± = 0((f(<*) - f±(o))) = 0(|R(a,f)| + |R(cr,f )|) = 

- 0(\a - x . | S + 1 . | ( s + 2 ) ( o f - y.) + a - x.| + | or - x . | S + 2 • \ a - y . | ) 

Moreover, we shall show that this bound is sharp. Let £ be a number defined as follows: 

L e t [0 otherwise 

r a - y. 
r l i f l i m l i = _ _ 1 _ 

i-,co « - x i s+2 

where 
i.(x) = ( x . x . ) s + 1 + C ( x . b _ } i = 0 ) 1 ) , 

(s+2+0 y . + x . 
k 1 1 
i s + 3 + £ 

Setting 

(7.5) f i(x) « f(x) + h (x), Vi 

for any function f € J , (£(<y) = 0, f.Co^) = 0) one can verify that conditions (7.1), (7.2) and (7.3) 

hold. Next, there exist constants C 0 such that lim C = C 0 and 
i i-»ce i 
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(7.6) |a - a i| = cjf(«) - f.Ol = cj. - x , ! ^ |. - bj = A _ | o _ X J ^ C | ( s + 2 + 0 ( « - y i ) + a - X i l 

which proves that (7.4) is sharp. 

From (7.4) and (7.6) it follows that for any the order of information p = p(5l_1 g ) exists. Let 

us assume that p > s+3. Let e > 0 be a number such that p - e > s + 3 + e. For f and [f 1 given by 

(7.5) we get from (7.6): 
I of - a±\ \ot - <x±\ 

+ « > lim sup — — > lim sup .o. + 0 0 

i i p-e . I j s+Jt-s I 

c - „ / v ffv ^ f ^ C x ) . Now we shall show that which is a contradiction. Hence p * s+3 for any y. - y.(x.,f(x.)...f (x.; 

the above estimation of p is achievable for s * 1 . 

Indeed, setting 
z - x. f(x.) 
i i -i-

*i = 2 i + "^s+T" ' z i = x i " F O O 
1 

we have 
a " y i 1 

lim = - -77 (so f = 1 ) . 
» - x. s+2 ^ 

l-*co 1 

It is easy to verify that from (7.4) and (7.6) it follows 

P ( ^ 1 > s ) = s + 3, 

which completes the proof of Theorem 3. M 

From Theorems 1 and 3 we get 
Corollary 1 

The interpolatory - integral method I - is maximal, i Qe., 
- 1 , s 
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