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Abstract

The characteristics of pulsed diode lasers and linear CCD array optical detectors are explored in the
context of high speed precision dimension and location measurements by optical diffraction and
interference. It is suggested that pixel based metrology may, with appropriate signal extraction and
processing methods, be made more accurate by making edges less well defined: if the mechanism of
definition loss is well understood, e.g., diffraction, the intensity distribution over many pixels can be
matched to a template to within a small fraction of a pixel, obviating the need to make sub-pixel
interpolations based on local intensities. The specific example of making remote flash measurements
of the diameter and location of an opaque cylindrical object, e.g., a fast-moving textile strand, is
examined. A model is developed for calculating the diffraction pattern given the target and instrument
parameters. The results are examined and compared with experimental data. Algorithms for finding
the diameter and location given the diffraction and interference pattern and the instrument parameters
are described. The performance statistics of a prototype instrument are measured in a data run of
1000 laser shots. Location and diameter measurement standard deviations are 0.13 pixel-widths
(1.69 \un) and 0.36 pixel-widths (4.68 jim) respectively, implying that sub-micron precisions are
obtainable by averaging a few dozen measurements. Sources of drift and scatter, and their
reduction, are discussed in the context of designing and building an improved second generation
instrument.



Introduction

Pulsed semiconductor diode lasers and CCD detectors invite low cost, high speed, high precision
optical diffraction and interference measurements of mechanical locations and dimensions. A diode
laser, a high current pulsed power supply, and a triggering circuit [8] can be built into a penlight-size
module capable of delivering fast (* 200 nsec) pulses of high power (« 10 watts) in the near infra-red
(« 0.9 pjn) at high repetition rates (* 2 kHz) inexpensively (* $200). A linear CCD array of 256
elements, its clocking circuits, and output signal amplifiers can be purchased as an evaluation
board [4] or user-assembled into a compact module for another« $200. The dimensional accuracy of
the CCD pixelation (typically on 13 |im centers) makes it an attractive ruler. Given these inexpensive
sources and detectors the designer can imagine dozens of optical measurement configurations, each
adapted to the needs of a specific application.

The dimensional accuracy of CCD pixelation must be extremely high: the only practical way to
maintain layer-to-layer alignment of large scale integrated circuit devices is for each process step to
be dimensionaily accurate in an absolute sense [6]. On the other hand, despite the accuracy of the
ruler, in the absence of a good sub-pixel interpolation scheme the precision of location and dimension
measurements made with a 13 |im ruler can be at best mediocre relative to the sub-iim measurement
requirements of practical interest in many contexts. Sub-pixel interpolation is usually done by a local
gray-level method, e.g., a gray-registering pixel straddled by a white-registering pixel and a black-
registering pixel is defined to be partially obscured by a step-function edge whose location is linearly
interpolated via the gray-level intensity [9].

The models and experiments described in this report suggest that, with several provisos, CCD based
location and dimension measurements can be made more accurate by making edges less well
defined:

• the method of edge definition loss is well understood, e.g., diffraction;

. • the parameters that dictate the dimensional details of the spread-out edge, e.g., optical
wavelength and apparatus geometry, are known with adequate accuracy;

• model-based signal extraction and processing methods are utilized.

Under these circumstances, the intensity distribution of an edge spread out by diffraction over 100 or
more pixels can be matched to a template to within a small fraction of a pixel. I suggest that the
result can be substantially more precise than sub-pixel interpolation based on local gray-levels.

In this report I describe a system that uses a pulsed diode laser, a CCD evaluation board, and a few
inexpensive optical components to make flash measurements of the diameter and location of a
stranded material composed of several hundred fibers (* 10 jim fiber diameter, « 200 jim strand
diameter) moving at high speed (> 50 m-secr1). The laser and the CCD are controlled by a single-
board microcomputer1 that communicates with a computer workstation that runs the inversion
algorithms and reports the results and statistics.

The harsh environment of the application practically precludes an imaging system. This environment
and a requirement for unobstructed operator access to the strand, dictate an instrument with a large
standoff (> 150 mm). At unit magnification with this standoff an image would be only about 15 pixels
across. Thus even carefully implemented gray-level based sub-pixel interpolation methods would

1 Actually the apparatus uses several lasers and CCDs to srote a set of synchronous diameter and location measurements
tat aro fused to give a measurement of higher leva! interest, e.g., for process diagnostics and confrot The details w i be
discussed fat anofwr report



yield relatively low precision. Higher than unit magnification is in principle a solution, but it would
require an impractically long optical system, e.g., magnification of 5x with a 150 mm standoff would
put the detector 900 mm (3 feet) from the strand. Folded optical paths are of course a possibility, but
prohibitively expensive in the application's context

Laser diffraction methods for measuring diameters have developed rapidly in the last few years,
primarily in response to the process control requirements of the fast growing optical fiber
communication industry, and possibly also in response to the similar requirements of specialty metal
wire drawing industries, e.g., for integrated circuit wire bonding. The optical fiber case, at least, is
clearly amenable to diffraction measurements at large scattering angles, where due to refraction and
internal reflection a large angle signal is available in transmission [2], [3].

However strands composed of multiple fibers are practically opaque, and only diffusely reflecting,
precluding large angle scattering methods. Having thus ruled out imaging and large angle scattering,
what is left is small angle scattering in the forward direction, i.e., analysis of the shadow that the
strand casts when interposed between the laser and the detector. This shadow, actually a Fresnel
diffraction pattern2, contains, I will show, two approximately independent sources of precise (albeit
computationally expensive to extract) information about the strand diameter and location. The
method requires virtually no optics: an inexpensive (* $40) and uncritical microscope objective
simplifies the analysis by collimating the laser, and an equally inexpensive and uncritical cylindrical
lens increases signal-to-noise by focusing the longitudinal direction onto the linear array. This
simplicity and robustness is essential in the application's environment, which includes severe
vibration, severe electrical interference from the switching of kiloampere currents, high temperature,
humidity in excess of 100%, and a high density of particulates that cling tenaciously to lenses and
other glass opfical elements. These constraints preclude a finicky optical system: the precision of my
measurement has to come from someplace other than the precision and stability of the mechanical
ami: optical alignment

Theory Behind the Model

Modeling the shadow of an opaque wire-like object is straightforward, although a straightforward
implementation of the spatial integrals is computationally expensive. Since I work in an environment
in which computational expense only indirectly translates into monetary expense, my model does the
integrals by brute-force. This slow-but-sure approach achieves flexibility and an absence of pitfalls
that might not be achieved by a clever implementation, e.g., one employing approximations to the
phase factors to facilitate symbolic rather than numerical integration.

Since the light scatterer Is wire-like, I will model the problem for cylindrical waves, so that all planes
normal to the scatterer are equivalent, ami only one needs to be considered. The resulting geometry
of the scattering {or "source") plane and the detector plane is illustrated in Figure 1. A coordinate axis
labeled z w coincides with the wire-like scatterer. An orthogonal coordinate axis y^ passes through

°' The ^ P ^ ' eieciric-fleid in the y^z^-plane has amplitude and phase given by E(y^c) and

M m pallam ane broadly daaNd m Fwwn! or fraunhofler based oo #*© siritpliyirtg approximations that can be
fi iadti i txjrt^

ttwi it an amga #w» ww% In toft oases* ngions tat m geometrical opies would contain abrupt
i§ht and dark mx$*m md»a$my mourn vtacttadtaartdirtorfarencaeflbcfe.



where co is the optical frequency. The wavenumber k = - = ̂ , where c is the speed of light and X the

optical wavelength, is the magnitude of the propagation vector, which lies along a third axis x
orthogonal to the ̂ rczjrc-plane and passing through its origin. The polarization vector does not have
to be specified, but to be concrete let us say it is in the z^c direction. A detector, realized as a linear
CCD array, lies at x = d, along coordinate axis y^ which is parallel to y^. At any point on the
axis the optical electric-field is given by a Huygens' Principle integration over 3^ :

n,

where yL and yR are the ysrc coordinates of the left and right edges of the strand.

The factors of this equation are understood as follows:

1. * * — : The electric-field amplitude at y^ attributable to the Huygens1 wavelet

^ 2

originating at ysrc. The radiated electric-field falls off linearly with distance between
source and detector, not quadratically: it is the energy density, proportional to the
square of the electric-field, that falls off as the inverse square of distance.

2. [1+- .— d •] : Kirchoff's modification of Huygens' Principle, the "obliquity

factor,1* which assures that Huygens' wavelets propagate only in the forward direction.
The factor is usually written l+cosG, where 0 is the angle of wavelet propagation with
respect to the forward direction.

3 e ' ( < K W + * +<ysrc-y<k} -*>'> . t h e o p t i c a | p h a s e a t y^ 13^ m e p h a s e a t y^ b y

wavenumber times the path distance between j ^ c and y^.

Photodetectors in general, and CCDs specifically, respond to incident optical energy, which is
proportional to |E(y^)p integrated over the detector area and multiplied by the exposure time. The

KE C

proportionality constant is —^-, where K is the dielectric constant of the medium, e.g., air, and zo is

the permittivity of free space, times factors describing the detection efficiency and the proportionality
between incident energy and output signal voltage. Since all these factors, and also the pixel height,
will ultimately be normalized away, I will simply dispense with them now and write, for the signal from
the w-th pixel:

ydti

"pixel
w h e r e yLt te t h e y<iet coordinate of the "left edge" of the n-th pixel, and w^xel is the width of the
unmasked active area of the pixel. Typical values are 13pm pixel-to-pixel spacing, and Sum active
width.

Implementat ion of the Model

Doing the integrals over y^. ami y^ requires:

• replacing the integration limits of -*» and +<• on y^ with appropriate finite limits;
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Figure 1. GEOMETRY OF THE APPARATUS.

Not to scale: d is approximately 167 mm, wpjxej is 13 yum, and the total width of the GOD (256 cells)
is approximately 3.3 mm

• specifying appropriate forms for

* specifying appropriate step sizes.

and

Many of the choices are heuristic, justified by the absence, when they are made, of artifacts in the
result, robustness of the result against small changes in any of the forms and parameters selected,
and ultimately, agreement between the model and experimental data. The following short paragraphs
outline a successful course.

Doing the integral over y^ requires specifying an appropriate step size. Some computational
efficiency, especially with respect to being able to reuse partial results from example to example, is
greatly enhanced if we assume, and justify by comparison between the resulting calculation and the
data, that the optical phase changes sufficiently little over the active width of a pixel that it is valid to
use:

Using this approximation is 'equivalent to saying that t i e phase changes slowly enough over a pixel
wkflh thai it is adequate to average the eledric-fielci vector components over a pixel aral take the
squannrognitude of t ie result Instead of averaging the sqoare-magrtftjde over a pixel.



The problem of "replacing the integration limits of -°° and +«> on ysrc with appropriate finite limits" is
intimately connected with "specifying appropriate forms for Eiy^J and $(ysrcV The steps are:

Assume a collimating lens, the microscope objective mentioned in the Introduction, that
transforms the laser beam pattern into plane waves in the scattering plane: thus

= constant, and we might as well call the constant zero;

• Recognize that ideal laser beams have a gaussian radial structure, so we would like to
be able to write:

ysrc\2

where ro is a scale length proportional to an appropriate transverse linear dimension of
the active laser channel;

Reason that the appropriate scaling length is given by

where R is the half aperture (radius) of the microscope objective, NA is the numerical
aperture of the microscope objective, and OJTWHM I S t h e angular full-width-at-half-
maximum of the laser beam divergence perpendicular to the long dimension of the
scatterer;

Recognize that unless the integral is somehow cut off, e.g., for \ysrc\>R, the integration
is both physically unreasonable and numerically cumbersome. Also, discover empirically
that unless the cutoff is made smoothly, artifacts that are very sensitive to the details
appear in the result Heuristically, a way not to generate artifacts is to integrate ysrc

between -R and +i? while smoothly reducing E(y^ to zero at the limits by parabolically
truncating the gaussian, i.e., taking:

• Finally, learn empirically that step sizes for the integrals over ym and y^ of 1 \mt, giving
13 steps per inter-pixel spacing, and 5 steps across each active pixel width, are a
reasonable compromise between smaller step sizes resulting in excessive computational
time and larger step sizes resulting in artifacts such as spurious modulation.

Appendix A is the program huygens that implements this model.

Comparison of Model with Data

In this section I compare data collected with prototype apparatus of approximately the geometry
described in Table 1 with calculations generated by the huygens program using these parameters. In
the following figures illustrating the mode! the calculation is degraded to 6-bits of signal amplitude
resolution, corresponding to the 6-bits of actual resolution available from the analog-to-digital flash
converter in the apparatus; data and mode! are each subjected to a linearly weighted five point sliding
average before plotting.



Table 1

Parameters of the apparatus generating the data
and of the model simulating the data

Parameter

CCD cells
Pixel spacing
Pixel size
Distance
Wavelength
Lens radius
NA
FWHM
ADC range

Value

256
13.0 ̂ im
5.0 |im

167 mm
0.895 îm

2 i m m
0.1

30.0 deg
6-bits

Comment

Number of cells in the linear CCD detector
Pixel-to-pixel spacing
Active width of each pixel
Target to detector distance
Near infra-red pulsed diode laser
Half-diameter of collimating lens
Numerical Aperture of collimating lens
Full-Width-at-Half-Maximum laser divergence
Resolution of analog-to-digital converter

Sources of error that should be borne in mind when comparing data and model include

• the actual wire diameter is uncertain because on the one hand the diameter is reduced
by stretching, and on the other hand it is increased by enamel insulation;

• the distance is uncertain by mechanical measurement error, and by imperfect collimation
of the laser beam, which may be slightly convergent or divergent.

Figure 2 compares experimental data for a 26 awg3 wire, nominal diameter 404 \im, with the model
for a target diameter of 400 pun. This diameter is about twice the anticipated strand diameter in the
application of interest. The graphs for data and model are slightly offset from each other horizontally
to correct for the wire being inexactly centered on the CCD. The contrast in the data is somewhat
less than the contrast in the model, due no doubt to stray light scattering of the laser beam by optical
surfaces, optical imperfections, dust, etc. The correlation between data and model are clearly
extremely high.

Figure 3 compares experimental data for a 28 awg wire, nominal diameter 320 jim, with the model for
a target diameter of 320 \m. This diameter is about 50% larger than the anticipated strand diameter
in the application of interest. The remarks made with respect to Figure 2 again apply. Systematic
diameter related differences between Figures 2 and 3 are easily discerned. For example, the
prominent wiggle between each toe and shoulder of the shadow has moved outward in both data and
model But the wiggle that in Figure 2 is midway between each toe and shoulder of the shadow has
In both the data and model of Figure 3 moved all the way up to each shoulder in the model, but only
part way there In the data. We can probably conclude that the 26 awg wire is slightly oversize, i.e., in
the direction of 26 awg. Since the thickness of the enamel insulation has not been taken into
account* this Is reasonable.

Figure 4 compares experimental date for a 32 awg wire, nominal diameter 202 *im, with the model for
a target diameter of approximately 200 pm. This diameter is about equal to the anticipated strand

Antitaft H i Gavgit (mm)
tihill m mpamtmA by

b • I#f{7§J7)—

fogoitwiiicaiy with decreasing gauge number. In this report the tafoyiar
where m = ( % (79.87/404.0)) /(40.0-26.0) and



Figure 2. 26 AWG WIRE DATA

Top, data for 26 awg wire, approximately 404 jim diameter;
bottom, modet for 400 yum diameter.

diameter in the application of interest As in Figures 2 and 3, except for degraded contrast in the
experimental data the agreement between data and model is excellent. The wiggle that moved
outward between Figure 2 and 3 has moved still farther out, somewhat more so in the mode! than in
the data This probably indicates that the 32 awg wire is also somewhat oversize, again probably due
to the enamel insulation.

Figure 5 compares experimental data for a 38 awg wire, nominal diameter 101 inn, with the model for
a target diameter of approximately 100 jim. This diameter is about half the anticipated strand
diameter in the application of interest. The trends identified in Figures 2, 3, and 4 are seen to
continue in a smooth and predictable fashion.

There are three obvious conclusions of this comparison:

1. the model and me data agree well;

2. the data are rich in diameter dependent features;

3. over the range of target diameters between 100 and 400 jxm the dominant feature of the
data, i.e., the cenirai dip that intuitively might be associated with the geometrical
shadow, in fact changes only slightly in width; thus the width of this dip is not a
straightforward measure of target diameter;

4. the wiggle seen midway between each toe and shoulder of t ie dip in Figure 2, diameter
« 400 \m% has by Figure 5, diameter -100 jim, moved, quite systematically, halfway
across the CCD.

8



Figure 3. 28 AWG WIRE DATA

Top, data for 28 awg wire, approximately 320 iim diameter;
bottom, model for 320 \m diameter.

Figure 6 aids in understanding the two distinct diameter dependent features in the shadow by
showing the model result for a 200 \m diameter target with the distance parameter set to 1 mm, 10
mm, and 100 mm respectively. These three shadows can also be compared with Figure 4, which
corresponds to the prototype apparatus distance of 167 mm. In Figure 6, as in Figures 2-5, the
model has been subjected to the same 6-bit digitization and five-point linearly weighted smoothing as
the data. At 1 mm, the top of Figure 6f the widtti of the central dip is essentially the diameter of the
target4, i.e., it is essentially a geometrical shadow with some fine structure determined by diffraction
and interference. At 10 mm, the middle of Figure 6, the width of the central dip has increased
significantly, ami diffraction effects extend for several tens of pixel-widths to each side of each
shoulder. At 100 mm, the bottom of Figure 6, diffraction and interference effects extend at least a
hundred pixel-widths beyond each shoulder.

It is especially apparent in the bottom member of Figure 6, as well as in Figure 5, that there are two
phenomena contributing to the structure of the data. Most of the signal power is contained in a
pattern of wiggles whose spacing and amplitude decrease systematically with distance from the
shoulders of the geometrical shadow. The peak ami valley locations in this structure do not obviously
depend on the wire diameter, although there is a distinct dependence of the oscillation amplitude on
the diameter. Superimposed on this weakly diameter dependent structure is a pattern of uniformly
spaced wiggles whose spacing increases dramatically as ffie diameter decreases. This second
feature contains regrettaWy little signal power, and thus while it is easily visible in the model, parts of
it are sometimes difficult to identify in the noise of the experimental data.

• f l i t mMstmrant can be mMod simply by tmiiptyfng tm ratio of the dp wki i to tie figure width by the acfjaJ width
represented by tm fgur* ttkflh, 256 COD channels fines 13 pm par channel,



Figured 32 AWG WIRE DATA

Top, data for 32 awg wire, approximately 202 jim diameter;
bottom, model for 200 \im diameter.

The conclusion of these experiments is that there is a wealth of diameter-sensitive information in the
data. The question now is whether the inverse problem, determining the diameter from the data, is
possible, and if possible, if it is practical Answering these questions affirmatively is aided by an
understanding of the physical origins of the features this section has identified.

Building Intuition about the Method

The real and simulated data are essentially identical. We conclude that we know, at least to the level
of our measurement precision, how to calculate what the apparatus will tell us. I will now show that
we can also understand the physical origin of the major features of the data as characterized when
the target-to-CCD distance exceeds a few millimeters:

1. There is a dip in light intensity that is

• centered on the geometrical shadow, and

• much broader than the geometrical shadow;

2. The center of the dip is somewhat brighter than the region a little off center;

3. The light intensity on each side of the dip is oscillatory with a broad structure that:

• seems to the eye to be independent of strand diameter, (in spacing, although not
so independent in intensity), and

10



Figure 5. 38 AWG WIRE DATA

Top, data for awg 38 wire, approximately 101 \im diameter;
bottom, model for 100 \xm diameter.

• in which the spatial frequency of the oscillations increases (the spacing
decreases) with distance from the strand center;

4. Superimposed on the oscillatory structure is a fine structure that is:

• extremely sensitive to strand diameter, and

• whose spatial frequency (and thus the distance between manifestations) is a
constant ttiat depends inversely on diameter.

Of ftea* features, the third one (tie broad oscillations of increasing spatial frequency) is most
important for the interim inversion procedure I have implemented. The fourth feature, the fine
structure of constant strongly diameter dependent spacing, promises to be most important for future,
Wghtr precision Implementations.

insight Into f ie origin of the broad oscMations is obtained by studying the shadow of a knife edge, the
bottom of Figure 7* The top of Figure 7 is the same as the model result previously shown in Figure 5.
The broad oseiaiore of Increasing spatial frequency seen in the data and model are thereby easily
recognized m the shadows of the edges of the wire-like target: the primary structure is due to
(§ffmc6m, mwl it dtpends on each edge essentially independently. The horizontal offset between the
top antf bottom parts of Figure 7 is essentially the measure of the right edge location with respect to
the w e center. Th# offset shown was obtained by visually aligning the top and bottom parts of the
figure* The offset measures 2 fun in a total of 128 mm figure width, corresponding to 256 pixel-

13 pin- each, or a wire radius of 52 jim, compared with the nominal value of 50 \m.

11



Figure 6. DIAMETER DEPENDENCE MODEL

The model for 200 urn diameter for target-to-CCD distance of
top, 1 mm; middle, 10 mm; and bottom, 100 mm.

The remaining fine structure is an interference effect that depends on both edges simultaneously.
Figure 8 shows the model result for two 1 iim wide strips 200 jxm apart i.e., a two slit interference
pattern with a slit separation the same as the target diameter, compared with the model result for a
200 jim diameter wire. Although generated for this demonstration by the huygens program, the
two-slit part of Figure 8 is really just an offset cosine function whose wavelength is the product of
distance and optical wavelength divided by target diameter. Comparing it with the model for the 200
urn wire, it is easily seen that each peak in the two-silt pattern corresponds precisely to an
interference "wiggle" perturbing the broad diffraction structure of the wire. The fine structure,
because it depends on both edges simultaneously, is exquisitely sensitive to the target diameter. But
this sensitivity is difficult to exploit because the signal power assodated with it is small relative to the
signal power associated with the broad oscillations.

12



Rgure7. DIFFRACTION SHADOWS

Diffraction shadow of bottom, a knife edge, and top, a 100 \im diameter wire.

The intuitive picture i have given is plausible, and the agreement between the brute force numerical
integrations and the data support the claimed deep understanding. While it is difficult to predict the
relative intensities of the diffraction and interference effects by symbolic calculation, it is nevertheless
straightforward to predict the spacing of the two kinds of oscillatory terms. I conclude this section with
simple derivations of the spacing of oscillations associated with diffraction at a knife edge, and with
interference between two such diffracted waves.

The situation at the knife edge is illustrated by Figure 9. A plane wave is moving from left to right. It
is interrupted by the knife-edge toward the left side of the picture. In the upper half of the picture the
plane wave continues on to the detector plane at the far right A cylindrical Huygens' wavelet
propagates into both halves of the space to the right of the knife-edge. The results are

• The cylindrical wavelet carries energy into the region that would be in the dark shadow
space were optics geometrical;

• The interference between ttie plane waves and the cylindrical wave produces an
oscillatory structure in the region that would be in the completely unshaded space were
optics geometrical.

The geometiy is simpSe: constructive interference, resulting in increased light intensity, occurs in the
vicinity of regions where the path difference between plane and cylindrical waves is an even number
of half wavelengths; destructive Interference, resulting in decreased light intensity, occurs in the
vicinity of regions where the path difference Is an odd number of half wavelengths. For me small
angles that are applicable the path difference between plane and cylindrical waves reaching y^ is

13



Figure a. TWO SUT INTERFERENCE PATTERN

interference bottom, between two 1 jxm wide slits 200 jim
apart, compared with top modei for a 200 \xm diameter wire.

path difference >

Figure 9. KNIFE-EDGE GEOMETRY

Geometry for calculating knife-edge diffraction pattern.

Ap =
2d

for y ^ to the right of a right edge, and

14



Ap = 25—
for y^ to the left of a left edge, where d is, as previously, the distance between the target plane and
the detector plane. To the left of a right edge and to the right of a left edge there is only the cylindrical
wave, no plane wave, so there are no interference oscillations in these regions, only a rapid falloff
with angle corresponding more-or-less to the 1-cos 9 obliquity factor.

The maxima and minima of the oscillatory structure outside the geometrically shaded region occur
whenAp = /iX/2, at

Aydet = jiditi (2)
where Ay^ symbolizes either (y^f-y^ or (y^-y^) as the case may be. Even values of n are the
peaks, odd values of n are the valleys, measured from the location of the geometrical shadow in the
detector plane. Measuring, more naturally, from the center of the shadow of a wire-like target, half
the target diameter is added to Ay^ for locations outside the geometrical shadow, and AyA / is
subtracted from half the target diameter for locations inside the geometrical shadow. Measurements
of the peak and valley locations on data and simulations agree well with this model.

This treatment re-affirms that the primary oscillatory structure is a weak source of target diameter
information, in that it is only the offset of this structure from target center location that measures
diameter. On the other hand, it is a better measure than would be the location of a geometrical
shadow, in that the edge location information is spread over many pixels, and can be measured to
within a small fraction of a pixel-width by a mask or template matching algorithm. In contrast, the
location of a geometrical shadow with sub-pixel-width precision has to be inferred from the gray level
interpolation, a method that is probably in general less precise.

The geometry of two slit interference is illustrated by Figure 10. We consider the interference of the
two cylindrical wavelets originating at the left and right edges of the target. This is the Young's two
slit interference pattern problem for slit widths much smaller than slit spacing, where the "slit spacing**
is our target diameter. For distances Ay^ not too far from the center of the interference pattern

where in this case the target diameter D is an explicit factor in the result Peaks and valleys are
located at integer values of n, peaks at even n and valleys at odd n. What we see in reality, when this
interference pattern is superimposed on the edge diffraction patterns, is a wiggle at each even value
of n. At n = 0, /.a., at the center of the diffraction pattern, interference is also constructive; this
accounts for the bright spot at the center of each pattern, analogous to the well known bright spot
found at the center of the shadow of a small disk or sphere [5]. The locations of the regularly spaced
small wiggles in the real and simulated data are in excellent agreement with the prediction of
Equation 3 for consecutive even values of n.

This interference structure is a tantalizing source of diameter measuring information for at least two
reasons:

1. The peaks and valleys have a fixed spacing, corresponding to a fixed spatial frequency:
their fourfer transform is a uniformly spaced line spectrum, in contrast to the continuum
spectrum generated by the edge diffraction pattern;

2. The spacing depends Inversely on the diameter D, with correspondingly increasing
relative sensitivity to smaller diameters.

The prototype instrument was buffi: wits neither sufficient shot-to^shot laser pattern reprodudbiirty

15



path difference

Figure 10. TWO SUT GEOMETRY

Geometry for calculating two slit interference pattern.

sufficient analog-to-digital conversion resolution to be able to demonstrate this potential for precision
interferometric measurement of diameter. I hope to remedy this in the future.

Some final words of caution are in order. First, the treatments of both single edge diffraction and two
edge interference ignore issues of phase shifts on scattering; these complicated effects, which
depend on the materials involved, e.g., may be different for metals and insulators, sometimes have
effects such as reversing the roles of even and odd values of n in Equations 2 and 3. Second, strictly
speaking it is incorrect to separate single edge diffraction and two edge interference: there is a single
scattering process, more-or-less described by Equation 1. Because the detection process destroys
phase information, it is fundamentally impossible to dissect the result into two or more separate
effects. Nevertheless, if one does not ask too many questions about details, particularly details of the
intensity distribution, but instead restricts the discussion to the location of significant features such as
peaks and valleys, this treatment is heuristically valid. In practice, the intuition generated by the
model that separates single edge diffraction and two edge interference was essential to discovering
an algorithm to extract the diameter and location information from the data.

The Diameter-Center Algorithm

The diameter and center are obtained via an algorithm that independently locates the left and right
edges. The diameter is defined as the difference in edge locations and the center is defined1 as the
mean of edge locations. The algorithm operates in several steps:
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1. The digitized CCD data are smoothed, and in the process converted from integer5 to
floating point values, by a five point linearly weighted sliding average, as illustrated in
Figure 11 for a 30 awg wire target.

Figure 11. 30 AWG WIRE DIGITIZED DATA

Top, raw digitized CCD data, 30 awg wire, approximately 254 Jim diameter
(transmitted as twos-complement, therefore down is light, up is dark).
Bottom, same data after five point linearly weighted sliding average.

% tm p m m t 6-Wt foptamoifclfan, awl1 to anticipated 8-bit implamantaion, i is cMcitirt to actualy store ±a m® data as
character (byte) ii2Bd wUbtai .
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2. The smoothed data are subtracted from a stored floating point background6 or no wire
pattern obtained by averaging the pattern obtained from several (« 16) laser shots as
illustrated in Figure 12 which shows the stored background, the data after background
subtraction, and the model result for a 260 |im wire.

Figure 12. 30 AWG WIRE PROCESSED DATA

Top, stored background (no wire) fife.
Center, data of Figure 11 after subtraction from the background.

Bottom, model result for 260 p,m diameter wire.

sThe data are subtracted from fm background rasher iian wke versa because the dig^zer s set up to delwer twos-
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3. The background-subtracted data are convolved with a mask or template that is a
heuristically selected portion of the diffraction shadow of a knife edge, Figure 7; the
portion that is used begins two pixels to the right (higher pixel-numbers) of center and
extends for 64 pixels. These convolutions, and the convolutions with the mirror-image of
the mask, are illustrated in Figure 13.

Figure 13. 30 AWG WIRE CONVOLUTIONS

Top, convolutions of a portion of the mask of Figure 7
with the smoothed, normalized data of Figure 12.
Bottom, same, with a mirror-image of the mask.

The heavy vertical bars mark nominal edge locations found by the algorithm.

4. The absolute minimum of the convolution is found, and then the first maximum to the
right of the minimum is found; this maximum is marked by a heavy vertical bar in Figure
13.

5. A polynomial is fit to a seven-pixel-wide region centered on this maximum.

6. The right edge is defined as the fractional pixel-number at which this polynomial
maximizes.

7. The left edge is found by a procedure that is the mirror-image of the four previous
steps, as shown in the bottom part of Rgure 13.

8. The diameter and center are obtained by respectively subtracting and averaging the
two edge locations.

This procedure fails if the right edge falls within 64 pixels of the right end of the CCD or the left edge
fate within 64 pixels of the let end of the CCD; in either of these cases an alternative, less accurate,

d is invoked. The alternative procedure fits a polynomial to a seven-pixel-wide region
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centered on the minimum of the convolutions. In a moderate range of diameters this minimum has an
approximately fixed offset from the maximum actually sought.

Even the alternative procedure fails if an edge is off the CCD; when this happens the particular
measurement is abandoned.

At the end of the procedure a preliminary calibration correction is invoked by a procedure that adjusts
the diameter via a low order polynomial mapping of the diameter-center plane. The polynomial
coefficients are found by running the algorithm on simulated data generated by the huygens program.
The largest effect of the correction is to subtract a constant, approximately 12 pixel-widths.

Appendix C is the function diacens (and several functions that it uses) that implements this model,
and Appendix B is the include file of instrument constants, program parameters, and structure
definitions needed to understand parts of Appendix C.

We end this section by Explicitly noting that the background subtraction procedure is heuristic; on
strict theoretical grounds it is wrong. Equation 1 gives the electric-field amplitude and phase in the
detector plane as an integral of the electric-field amplitude and phase over the un-occluded portion of
the target plane. The background or no wire picture is essentially the square magnitude of this
integral when there is no occlusion of any portion of the target plane. But taking the square
magnitude, i.e., translating from vector amplitudes (which add) to scalar intensities (which, for
coherent illumination, cannot properly be added, but which are what the detector reports)
permanently destroys the phase information that is needed to do a proper background correction. In
fact, if the detection process did not destroy this phase information, the integral of Equation 1, with
subscripts det and src interchanged, could be used to do the inversion exactly. The result would be
the laser intensity pattern in the un-occluded part of the target plane, and blackness across the
diameter of the target. As a practical matter, the procedure I have described is effective despite the
fact that it casually treats intensities as if they could engage in the arithmetic that nature in fact has
reserved for amplitudes.

Instrument Performance

The raw data, their trend line, and the standard deviation of their distribution for 1000 diameter-center
measurement made in a single run lasting between 10 and 11 hours are shown in Figures 14 and 15.
The target was a 30 awg wire.

The mean of the raw diameter measurements is 21.504 pixel-widths, or 279.5 |im, in contrast to the
actual diameter of 2542. j im; a multiplicative calibration factor having no significant bearing on any
performance measures would correct this discrepancy. The spread in the raw measurements is from
a maximum of 22.67 pixel-widths to a minimum of 20.66 pixel-widths; most of the skew in the
distribution is due to the trend, which could (but will not) be subtracted out. The standard deviation is
0.36 pixel-widths, which is ttie appropriate error to assign to a single measurement. The relative
standard deviation is 1.67%. Averaging * measurements would reduce these values by V», e.g., the
average of 100 measurements would be expected to be correct within 0.036 pixel-widths, or 0.167%.

The mean of the raw center measurements is pixel-number 128.00; since there is no independent
measure of the accuracy of the centering this value is entirely nominal; its only interest is as a fiducial
value with respect to which trend and scatter can be evaluated. The spread in the raw
measurements is from pixel-number 127.57 to pixel-number 128.38; as in the case of the diameter
measurement, most of the skew in the distribution is due to the trend, whidi could (but will not) be
subtracted out. The standard deviation is 0.131 pixel-widths. This is the appropriate error to assign
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22.67

Figure 14. DIAMETRIC SCATTER PLOT

Scatter plot for 1000 diameter measurements over approx. 10 hrs.

to a single measurement. Averaging n measurements would reduce this value by Vn, e.g., the
average of 100 measurements would be expected to be correct within 0.0131 pixel-widths.

12838,

127.868.

127 Sk

CENTRIC SCATTER PLOT

Scatter plot for 1CCO center mea^iremerts over apprcx. 10 hrs.

For both the diameter ami the center measurements the trend, or long term drift, accounts for about
20% of the the total error, and the remaining 80% isf to visual inspection, reasonably random shot-to-
shot noise. Both the long term drift and the shoi-to-shot noise* I believe, are due primarily to the
laser. Drift in the mean laser 'pattern {the stored background or Tio wire" pattern, Figure 12)f which in
the present Implementation is recorded only once before t ie start of data collection, I believe
accounts for most of the trend. Shot-to-shot fluctuation in the laser pattern is substantial, as much as
25% in some parts of the pattern, presumably because the tasar s operated fairly dose to threshold,
and I beieve that the shot-te-stiot noise is almost entirely doe to this fluctuation.

The long term drift could be substantially reduced by periodically moving the wire out of the laser
beam a id revising t ie stored badcgroutid pattern; this coutd be automated easily. Alternatively, if the
mean value of the measurement were known via otter measurements to be time invariant, the trend
lint could simply be subtracted out The background revision alternative is obviously preferable.

Tht shot-to~shot noise could be substantially reduced by ifrtroduciiig a spatial filter (focusing lens,
pinhole, and re-colUmatfng lens); the pattern emerging from the spaial filter would continue to show
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global intensity fluctuations, but its spatial pattern would be stabilized to essentially the gaussian
TEMQQ mode. Furthermore, to compensate for the light lost in the spatial filter the laser would have to
be operated at higher power, thus reducing the global intensity fluctuations.

The noise is so strongly dominated by these laser-related factors that it is impossible to say what are
the next largest sources of technical noise. It seems likely that adding a spatial filter will reduce the
drift and noise levels by an order-of-magnitude or more.

Summary and Next Steps

The diffraction shadow examined in this report can be productively though of as containing two
distinct sources of metrological information: the independent shadows of the right and left edges, and
the interference pattern between the two diffraction patterns. The shadows have been shown to be
suitable for finding the edges via a mask or template matching operation with the calculated (or
alternatively, measured) shadow of a knife edge. This method, since it uses the information from the
two edges independently, is error prone and of relatively tow precision compared with what is
potentially available in the interference pattern, whose spatial frequency depends explicitly and
delicately on the diameter itself. However substantially more signal power is available in the edge
shadows than in the interference pattern. With the low signal-to-noise and coarse analog-to-digital
converter implemented in the prototype described, using the edge shadows has proven to be the
expedient alternative.

Using the edge shadow method, the prototype apparatus has demonstrated the ability to make
diameter measurements with a standard deviation (expected error of a single measurement) of 0.36
pixel-widths, or 4.7 imn, for wire-like targets in the 100 to 400 urn diameter range. The corresponding
standard deviation for the center location measurement is 0.13 pixel-widths, or 1.7 jim. The laser
flash duration is approximately 200 nsec, the CCD readout time could be as short as 100 nsec per
channel, or 25.6 jisec per line; video flash digitizers that could follow this 10 MHz data rate are easily
available. Thus, computation times aside, measurements could be repeated at a rate approaching
40,000 sec"1. While a general purpose computer could not begin to keep up with this repetition rate,
special purpose hardware, e.g., an array processor card, could easily come within an order of
magnitude of keeping up in real time. When n measurements are averaged the uncertainty of the
average is the uncertainty of a single measurement divided by Vn; thus with a 0.25 second averaging
time we could ideally obtain a factor of 1000 improvement, i.e.* 4.7 nm diameter measurement and
1.7 nm center location measurement. In short, sub-^im precision is easily obtainable by averaging a
few dozen measurements.

A more interesting alternative to the brute-force approach of making and averaging many
measurements in a short time is to look for opportunities to extract and use the interference
information that is now inaccessible. I propose to attack this problem with a combined hardware and
software approach. First the shot-to-shot reproducfbility should be stabilized, e.g., by spatial filtering
of the laser beam, modest improvements in optics, and modestly improved mechanical stability; after
this is done it will become productive to increase the digitization resolution. Second, residual drift due
to temporal changes in the laser intensity pattern can be minimized by periodically updating the
stored background picture, in contrast to the practice to date of storing this picture once at the
beginning of a data run. Finally, with increased signal amplitude resolution, several approaches to
extracting the interference signal will be worth trying. These would be primarily fourier transform
methods, in which, perhaps after preliminary processing to subtract the edge shadow signal
components, we would look for the comb of spatial frequency peaks in the fourier spectrum that
correspond to the target diameter.
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Appendix A: The HUYGENS Program

huygens.c: buygens [argl arg2]
calculate amplitudes using Huygens' Principle as modified by Kirchoff

CALCULATES THE RELATIVE COMPLEX AMPLITUDE SEEN AT EACH CELL OF A
LINEAR COD THAT INTERCEPTS A COLLIMATED LASER BEAM INTERUPTED BY A
WIRE-LIKE OPAQUE OBJECT. THE CORRESPONDING SIGNAL IS THE SQUARE
MAGNITUDE OF THE OUTPUT OF THIS PROGRAM: (ampl.rA2 + ampl.iA2)

M. W. Siegel - Robotics Institute - Carnegie Mellon University
May 29, 1986
Copyright, the author and maybe PPG Industries, pending decision as to
the author's right to designate it as being in the public domain,
which is where he wants it to be.

(1) no arguments: create wavefcns and distfcns,
integrate from -LENS_RADIUS to +LENS_RADIUS,
producing output file "unobstru";

(2) two arguments: read back wavefcns and distfcns,
subtract out the region between (and including)
the two arguments;

(3) [add later] : if wavefcns are symmetric, take this into account;

(4) [add later] : if wavefcns are pure real or pure imaginary, take this
into account.

Note: It is useful to dimension arrays of (2*n-l) , i.e.,
x£- (n-1) : (n-1) ] , as follows:

<type> *x;
x « (<type> *)calloc(2*n-l, sixeof (<type>)) + n - 1;

Given:
(1) a lens of radius LENS__RADIUS, from which emerges
(2) a collimated beam of gaussian profile, exp(-(y_src/yOO) * 2 ) ,
(3) times a parabolic shading (1 - (y_src/LENS_RADIUS)^2)
(4) to make a smooth transition to zero intensity, and thus to eliminate

structure from the diffraction pattern of the lens aperture;
and
(5) a ccd consisting of CELLS cells, CELL_SIZE microns center-to-center,
(6) located such that CenterjCell = atoi(argv[l]) is on the

axis of the lens, and thus on the center line of the beam,
and
(7) a wire that obstructs the beam DISTANCE microns from the plane of

the ccd,
(8) whose left edge is at Left_Edge = atoi(argv[2]) microns from

the axis,
(9) and whose right edge is at Right_Edge = atoi(argv[3]) microns from

the axis;

(10) FOR EXAMPLE: huygens 11 € -50 150
calculates the line image response of the ccd whos 116th cell is on
the lens axis, when obstructed by a wire whose left edge
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is 50 microns to the left of the lens axis, and whose right edge is
150 microns to the right of the lens axis.

The program works as follows:

(1) physical and geometrical parameters of the apparatus are DEFINEed;
(2) some more constants are calculated;
(3) the wavefront amplitude is specified at 1 micron intervals from the

lens axis to the lens radius: wavefcn[LENS_RADIUS];
(4) a phase, 1/r distance, and (1 + cos (angle)) obliquity product function

is specified at 1 micron spatial increments of the offset between
source point (y_src) and detector point (y__ccd); since this offset
can be between zero (y_sxc = y_ccd) and LENSJRADITJS + CELLS * CELL_SIZE
microns (from the left edge of the lens to the right edge of the
ccd when CenterjCell = 0, or vice versa, from the right edge of the
lens to the left edge of the ccd when CenterjCell = CELLS - 1) :
distf en [LENS_RADITJS + CELLS * CELL_SIZE] .

(5) the wavefcn[] and distf en [] are independent of the specific location
of the ccd, or the location of the ccd or the wire, in any application;
thus once the arithmetic of calculating these is done, the results are
written onto files whose names are hard-wired to "wavefens" and
"distfens" in the directory from which huygens is executed;

(6) if the files "wavefens" and "distfens" exist in the at run time, they
are read into wavefcn[] and distfcn[], thus eliminating tedious
re-calculation.

CAUTION: obviously, I hope, if the DEFINES are changed and the program
recompiled, it is important that the files "wavefens** and
"distfens" are ABSENT from the local directory the first time
the recompiled program is run!

(7) for each cod cell, located at y__ccd,
(8) integrate in one micron intervals over GELLJSXZI microns in the

ccd plane
(9) and in one micron intervals from -UNSJR1DXU5 to -§-LSHS__R&DIUS,
(10) except for the values of y_src obstructed by the wire.

Then print the result in some useful format, e.g.,
an amplitude file and a signal file.

finclude <stdio.h>
#indude

fdafia* DXSS1HCI 167000.0 /* microns, wir© to COD */
fdefine WAVELZivGTH 0.895 /* microns */
#define WM&^JiMDim (int)2500 /* microns */
idtfiii* OELLJSXSB (lnt)13 /* fldexons */
tdeflne SOB 'CELL SIZB (int}5 /* microns *'/

The active width of each pixel
A********************************/

fdafir.e CELLS (int)25€

The calculation will bm done betveer. »(CELLS - t) and -{CELLS - 1)



#define NA 0.1 /* numerical aperture */
#de£ine FWHM 30.0 /* deg laser divergence */

main (argc, argv)
int argc;
char *argv[];
{
COMPLEX * wave fen, *dist£cn, *amp;
/•A*****************************************************

Note typedef of COMPLEX should be struct {double r, i}
/

int scratch,
Lens_Radius = (int) LENS_RADIUS,
Cells = (int) CELLS,
Cell_Size = (int) CELL_SIZE,
Left_Edge = atoi(argv[l]),
RightJEdge = atoi(argv[2]) ,
yjelems = LensJRadius + Cells * Cell_Size;

char *calloc(),
out_naxae[32];

FILE *f open (), *out_£p;

i f (argc != 1 6& argc != 3)
{
£printf(stderr,
"Usage: huygens [Le£t_Edge Right_Edge] \nlf) ;
exit();
}

scratch = (argc = 1) ? 1 : 0;

wavefen = (COMPLEX *) calloc (2*Lens_Radius - 1, sizeof (COMPLEX)) -r
Lens_Radius - 1;

get_jwavefens (wavefen) ;

distfen = (COMPLEX *) calloc (2*y_elems * 1, sizeof (COMPLEX)) +
yjel^ns - 1;

get_distfens (distfen) ;

amp = (COMPLEX *) calIoc(2*CelIs - 1, sizeof (COMPLEX)) 4-
Cells - 1;

calculatejamp(wavefen, distfen, Left_Edge, RightJEdge, amp, scratch);

if (scratch) sprintf (out_name, tfunobstruM) ;
else sprintf (out_name, ML%dR%d.aznp", LeftJEdge, RightJEdge) ;
out_fp = f open (out_name, "w");
fwrite (amp - C e l l s + 1, s i z e o f (COMPLEX), 2*Cel ls - 1, out_fp) ;
f c l o s e (out_fp) ;
)

get_wavefens (wavefen)
COMPLEX *wavefcn;
I

if ((wave_file • fopmn (wwavefens*\ Mrtf)) — HULL)

{
double lens_radius » (double) XSNSJMDXUS,



fwhm = (double) FWHM,
na = (double) NA,
pi, yOO, yyO, yyl, yy2;

int LensJRadius = (int) LENS_RADIUS,
y_src;

pi « 4.0 * atan(l.O);
yOO = lens_radius*tan (0.5*fwhm* (pi/180.0) ) *sqrt (-log(0.5)) /tan (asin (na)) ;

for (y_src * -Lens_Radius + 1; y_arc < Lens__Radius; +4y_src)
{
yyO » (double) y^src;
yyl * yyO/yOO;
yy2 = yyO/lens^radius;
(wavefen + y_src)->r » eacp(-3̂ yl * yyl) * (1.0 - yy2 * yy2) ;
(wavefen + y_src)->i = 0.0;
}

wave^file = f open (M wavef ens M, ffwM);
fwrite (wavef cn-Lens_Radius+l, sizeof (COMPLEX), 2*Lens_JRadius-l,wave_file) ;
}

else
{
int Lens_Radius = (int)LENS_RADIUS;

f read (wavef cn-Lens_Radius+l, sizeof (COMPLEX) , 2*Lena_Radius-lf wave_file) ;
}

fdose (wavejfile) ;
}

get_distf ens (distf en)
COMPLEX *distfcn;

TT1M *dist_file/ f

if ((diat_file » f<^pen(wdistfcna", •r")) =— HULL)

int Lens_Radius = (int) LZNS_RADIUS,
Cells = (int) CELLS,
Cell_Si*e • (int) CELL_SIZB,
y_e2ems = LensJRadius + Cells * Cell__Size,
jjsrejesod;

double distance = (double) DISTANCE,
wavelength = (double) WAVELENGTH,
pi, k§0, pathlen, dist, dsq# cosphi, sinphi, kirchf;

pi » 4.0 * mtan(l.O);
2.0 * pi / wavelength;
distance * distance;

f o r (y *ze_ocd • 0; T_BXC cod < jj&Xmam;
I
dist * (double)y^jsxejccd;
patblen » sqrt (dsq nTdist * dist) ;
cosphi = co«(k00 * pachlan) ;
sinphi = sin(k00 * pmthlmi);
kixebf * (1.01 + dL«taaoe/pathl«n) /pathl«a;
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(distfcn + y_src_ccd)->r = (distfcn - y_src_ccd) ->r = cosphi * Jcirchf;
(distfen + y_src_ccd) ->i = (distfcn - y_src_ccd) ->i = sinphl * Jcirchf;
}

dist_file = fopen ("distf ens", "w");
fwrite (distf en - y_elems + 1, sizeof (COMPLEX), 2*y_elems-l, dist_f ile);

else

int Lens Radius
Cells
Cell_Size
v elems

- (int)
- (int)
= (int)
= Lens

LENS RADIUS,
CELLS,
CELL_SIZE,

Radius + Cells * Cell Size;

f read (distfcn - y_elems + 1, sizeof (COMPLEX), 2*y_elems - 1, dist_f ile) ;
>

f close (dist_f ile) ;
)

calculate_axnp (wavefen, distfcn, Left_Edge, RightJEdge, amp, scratch)
COMPLEX *wavefen, *distfen, *amp;
int LeftJEdge, RightJEdge, scratch;
{
int Cells * (int) CELLS,

CelljSize • (int) CELL_SIZE,
Sub_Cell_Size = (int) SOT_CELL_SIZE,
Sub_Left - -(Sub_Cell_Size/2),
SubJRight » SubjCell_Size/2 + 1,
LensJEtadius = (int) LENSJEUWDIUS,
c e l l , subcell, y_ccd, y_src;

COMPLEX an5>l, *d_y_ccd;

if (scratch)
i
LeftJSdge = -LensJRadius + 1;
Right_Edge = Lens_Radius - 1;
I

else
i
FILE *unobstru_fp, *fopen() ;
unobstru_fp = fopen("unobstru", M r M ) ;
fread(anp - Cells + 1, sizeof (COMPLEX), 2*CelXs - 1#

for (cell - -Cells + 1; cel l < Cells; ++cell)
{
ampl.r = 0.0;
aaf>l.i = 0.0;
y_ccd * cel l * Cell_Size;
for (subcell • Sub_Left; sulxiell < Subjtight;

jTj distfcn - Xjocd - subcell;
for (y—sre * LeftJEc^e; y_src <* RigbtJEdg^; +4yjw«)

aaapl.x +• (d_y_ccd + y_src)->r * (wavefen + y—src)->r -
f ccd + y_src)->i * (wavefen + y_src)->i;

)>r * ( f ) i
y_src)->± * {wavefc» + y_jsrc)->r;
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if (scratch)
{
(amp + cell)->r = ampl.r;
(amp + cell)->i = ampl.i;
>

else
{
(amp + cell)->x -= ampl.r;
(amp + cell)->i -= axnpl.i;
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Appendix B: The INCLUDE FMB of Constants and Definitions

#include <stdio.h>
#include <math.h>

#define BIGG
#define TINY
#de£ine PI

#define CCDS
#define CELLS
#def ine AMPCELLS
#define ADCJRANGE

#define MIN__AREA
#define DIAJBRR
#def ine CENJERR

#def ine MASKLEN
#def ine MASKZER
#define HONMSOTSY

#define YWEIGHT

#define CAL_TABLE
#define CEN_TABLE
#define UNOBSTRXJjriLE
#define NO_LASER_FILE
#define MASKJFILE

#define TTY
#define BAUD
#define ENQ

#def ine SPACING
#define DISTANCE

#def ine GMJ?ER_CM3
#define PACKINGJFRAC

#def ine GRAPH__NONE
#def ine GRAPH_SCME
#def ine GRAPH_ALL

#def ine PAUSE__NCNE
#def ine PAUSE___SOMS
#def ine PAnSE_ALL

#daf ine CALZBJUVB
#def ine CAI,IB_AUTO
#def ine CALIB MANU

1. 0e9
1.0e-9
3.141592654

4
256
511
63

1.0
10.0
2.0

/* for making the mask from huygens calc */
/* 63 dark, 0 saturated light */

/* square-ccds */
/* ccd */
/* ccd */•

64 /* convolution mask length */
2 /* mask offset */
16 /* willingness to risk */

/* xntgr math overflow */
0.001 /* relative weight of center */

/* vs. diameter errors in */
/* the correction algorithm */

"cal" /* root name of calibration files */
lfcenM /* root name of centering files */
ffnwff /* "no wire11 */
MnlH /* "no laser*1 */
fimaskM /* need I say more? */

Vdev/ttyOO*'
B9600
5 /* CELLS data points sent on receipt */

13.0
167000.0

2.53
0.91

0
1
2

/* microns */
/* microns */

/* these nine are enum-s In the
/* main program,
/* but I had difficulty passing
/* them to subroutines as such
/* and rather that fight It now
/* I pass them as integers

*/
*/
*/
*/
*/
*/

i
i
2

struct DC
struct POINT
Struct LINE

{float d, c;l;
{float x, y;I;
{float m, b;J;



struct PLANE {float ex, cy, cz;}; /* z = cx*x + cy*y + cz */
struct PTPAIR {struct POINT corr, xneas;}; /* correct and measured */
struct DPP {float dist; /* (corr - meas)A2 */

struct POINT corr, zneas;};

typedaf struct {double r, i;} COMPLEX;



Appendix C: The DIACENS Diameter-Center Algorithm Program

/*
diacens ()
given (char) cdata, re-burns (dc) diameter-center pairs

*/

M. W. Siegel - Robotics Institute - Carnegie Mellon University *

Copyright 1987 and earlier development versions, the author and
possibly PPG Industries, pending decision as to the author's right
to designate it as being in the public domain, which is where he
wants it to be.

*

*

#include "yardage.h"

diacens (cdata, dc, graph_xnode, pause_mode, calibjnode)
unsigned char *cdata;
struct DC
int
{
register int
char
int

double
struct DC
static double
static int

static float

*dc;
graph__mode, pause__mode, calib_mode ;

leng, conv, *inte, *mask, cell, convmin;
caption[80];
ccd, rcell, rmin, lcell, lmin,
INTENS [CELLS],
CONV [CELLS],
VNOC [CELLS];
redge, ledge, centr, xpeak();
precal();
radix;
nevercalled = 1,
MUSK [AMPCELLS] ;
NO_WIKE[CCDS] [CELLS] ,
NO_JASE[CCDS] [CELLS] ,
FNTENS [CELLS];

if (nevercalled)
{
WXJM *£|>_in;
float ftemp;

nevercalled a 0;

radix * HOWJ3OTSX * /* HQifjGOTSX: willingness to risk overflow */
pow(2.0, 0.5 * 8.0 * sizeof (int)) /
(ADC_RANGE * sqrt ( (double) (CELLS * MASKLEN) * MASKLEN) ) ;

/* get and optionally show the mask */
fp_in » fopeMMJiLSKJFILE, Mr f f);
for (cell = 0; cell < AMPCELLS; ++cell)

fscmnf (±pjuag
 w%f",

MASK [cell] = ftemp * radix -§- 0.5;

fdose (fp^
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if (graph_mode = GRAPH_ALL)
{
graph (*MASK[AMPCELLS/2], 'i', AMPCELLS/2, '*', 1, "mask (right half)");
awaitjcr (pausejmode);
}

/* get and optionally show the background (nonlaser) file */
fpJLn = £open(MOJUkSSRjriIX, M r H ) ;
for (ccd • 0; ccd < CCDS; ++ccd)

for (cell » 0; cell < CELLS; ++cell)
fscanf (fp_in, "%£", SNO_LHSE [ccd] [cell]) ;

fdose <£p_±n) ;
if (graphjmode = GRAPH__ALL)

for (cod = 0; ccd < CCDS; ++ccd)
{
sprintf(caption, Mccd %ld: nonlaser file", ccd);
graph (MOJULSS [ccd], ' f', CELLS, '*', 1, caption);
await^jcr (pausejaode);
}

/* get and optionally show the unobstructed (nojwire) file */

for (ccd * 0; ccd < CCDS; ++ccd)
for (cell = 0; cell < CELLS; ++cell)

fscanf (fpjin#
 m%£-, &W>_WTm [ccd] [ c e l l ] ) ;

f c lo se (fp_jln) ;
i f (graphjioda «— QRM»H_ALL)

for (ccd * 0; ccd < CCDS; ++ccd)
{
sprintf (caption, Mccd %ld: nojirire file", ccd) ;
graph (HO_WXBE [ccd], ' £', C^LLS, '*', 1,
awaitjcr(pause_mode);

I

/*
: does not include any NONLASER corrections,

because I am not really sure how it should be done,
or even if it should be done at all!

*/
for (ccd • 0; ccd < CCDS; ++ccd, ++dc, cdata +« CEULS)

{
/* smooth, convert:, to floats, nomalize the input data (chars) */
fssocth (cdata, FNTENS, graphjso^de, pause__mode, ccd) ;

/* correct for bac^xouad */
MubamimtWWEWS, XMmtl[ood] # graphjaode, pmsejaod*,

/* convert, to integer arirbsnetic */
(CMOJL«0;

/* take csoDTolutioiis to find the right
for (cell = 0; cell < CELLS - MASICLZ^;

I
0;
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inte = INTENS + cell;
while ( leng— ) conv += *inte++ * *mask++;
CONV[cell] = conv;
>

for (cell = CELLS - MASKLEN; cell < CELLS; ++cell) CONV [cell] * conv;

convmin = CONV[0] ;
for (cell • 1; cell < CELLS - MASKLEN; ++cell)
if (CONV[cell] < convmin) convmin = CONV[rmin = cell];

cell = (rcell = rmin) + 1 ;
while (CONV[rcell] < CONV[cell++]) ++rcell;
redge = rcell + xpeak(&CONV[rcell]);

/* take convolutions to find the left edge */
for (cell = MASKLEN; cell < CELLS; ++cell)

{
conv =* 0;
leng = MASKLEN; /*cell<MASKLEN ? cell : MASKLEN;*/
mask = *MASK[AMPCELLS/2] + MASKZER;
inte * INTENS + cell;
while ( leng— ) conv += *inte— * *mask++;
VNOC [cell] » conv;
}

conv = VNOC [MASKLEN] ;
for (cell = 0; cell < MASKLEN; ++cell) VNOC [cell] = conv;

convmin = VNOC[0];
for (cell = MASKLEN; cell < CELLS; ++cell)
if (VNOC[cell] < convmin) convmin = VNOC[lmin = cell];

cell « (lcell » lmin) - 1; while (VMX:[lcellI < VNOC [cell—]) —lcell;
ledge = lcell 4- xpeak (fiVNOC [lcell] );

/* do some special stuff if close to a ccd end */
if ( rmin <= MASKLEN ) /* then the LEFT edge is garbage */

{
dc->c * 0 .5 * (rmin + xpeak(6C0NV[rmin]) + lmin + xpeak(£VNOC[lmin]));
dc->d m 2 .0 * (r^Sge - dc->c) ;
*dc » p r e c a l ( * d c ) ;
}

else if ( lmin > CELLS - MASKLEN) /* then the RIGHT edge is garbage */
{
dc->c = 0.5 * (rmin + speak(&CONV[rmin]) + lmin 4- xpeak{&VNOC[lmin])) ;
dc->d * 2.0 * (dc->c - ledge);
*dc » precal(*dc);
>

else /* this is the normal case */
{
dc->c * 0.5 * (redge -I- ledge};
dc->d = redge - ledge;
*dc =• precal (*dU2) ;

if ( graphjBQde 1 | calibjaoda == CALXBJCAMJ )
{
sprintf (caption, Mccd %ld: diameter %7.3£# cantor %7.3f*\



ccd, dc->d, dc->c)
graph( VNOC, 'i', CELLS, '-', 1, " " ) ;
graph( CONV, 'i', CELLS, '+', 0, caption);
graphjnark( (float) ledge, -1, '>');
graph_mark ((float) centr, -1, ' |') ;
graphjtnark ((float) redge, -1, ' <') ;
await_cr (pause_mode);
if ( calibjaode — )

graph(INTENS, 'i', CELLS, '*', 0, caption);
(*dc, ccd);

}/* end of ccd counting loop */
return;

fsmooth (cdata, intens, graphjaode, pausejnode, ccd)
/•••••A*************************************************

/* smooth character data to float, and perhaps graph it

unsigned char *cdata;
float *intens;
int graphjDode, pausejmode, ccd;
{
int cell;

* (intens + 0) « *(odata + 0);
* (intens + 1) = (*(odat« + 0) +

2.0 * *(cdata + 1) +
*(cdata + 2))/4.0;

for (cell • 2; cell < CELLS - 2; ++cell)
*{int«is + cell) « (* (cdata + cell - 2) +

2.0 * *(cdata + cell - 1) +
3.0 * * (cdata + cell ) +
2.0 * *(cdata + cell + 1) +

* (cdata + cell + 2))/9.0;
* (intens + CELLS - 2) * (* (cdata + CELLS - 3) +

2.0 * *(cdata + CELLS - 2) +
* (cdata + CELLS - l))/4,0;

* (intens + CELLS - 1) = * (cdata + CELLS - 1) ;

if Cgraphjaode = GRAPH_ALL)

I
char caption [SO];
sprint f (caption, "ccd % id: smoothed data", ccd);
graph (intens, '£', CELLS, '*', 1# caption);
await cr (pause^jnode) ;
)

return;

i(intens, nowire, graphjaod*, pau8e_nodft, ccd)

/* subtract from a background pattern, and perhaps graph it */

float *±ntana, *no«rire;
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int graphjnode, pause_mode, ccd;
{
register int cell;

cell = CELLS;
while ( cell— )

{
*intens = *nowire - *intens;
-H-intens; ++nowire;
>

intens -* CELLS;

if (graphjnode = GRAPH_ALL)
{
char caption[80];
sprint £ (caption, "ccd %ld: background subtracted and normalized", ccd) ;
graph (intens, ' f' , CELLS, ' *' , 1, caption) ;
awaitjcr (pause_mode);
>

return;

* /
speak () : interpolation for maximum or minimum in an array

deriv() - derivatives

fib(): fibonacci numbers

double xpeak(y)
int *y;

Given * (y - 1) < *y > * (y + 1) or * (y - 1) > *y < * (y + 1),
speak (y) returns the value of x (-1.0 < x < 1.0) at which the
maximum or miTnmrnn "actually" occurs, based on an expansion
fitting the region under the curve from * (y - DY) to * (y + DY),
i.e., it will consider derivatives of y up to d(2*DY)y/dx(2*DY)
and powers of x up to xA (2*DY) .

The procedure (Newton's x(n+l) « x(n) - y' (n)/y" (n)) is iterated until
successive values of x differ by less than DX.

#define DX 0.001
fdefine MX 6
double yl, y2, y3, y4, y5,
int iters;

yl • dariv(y# 1, 1.0);
y2 m deriv(y# 2, 1.0);
y3 m deriv(y, 3# 1.0);
y4 - derivfy, 4, 1.0);
y5 * deriv(y# 5, 1.0);
y€ * <toriv(y, 6, 1.0);

# bf x, xl, x2r x3, x4, deriv();
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if ( yi = 0.0 | | y2 — 0.0 ) return 0.0;

x = -yl/y2;
iters = MI;
do {

xl = x;
x2 « xl*x;

x4 = x3*x;
if ((a • yl + y2*xl + y3*x2 + y4*x3 + y5*x4) = 0 . 0 ) break;
if (<b « y2 + y3*xl + y4*x2 + y5*x3 + y6*x4) = 0 . 0 ) break;
x — a/b;
} while ( fabs (x - xl) > DX && iters— ) ;

return x;
)
/* generalized version of xpeak():
{
#define DY 3
idefine DX 0.001
double x, dx, derivQ, taylor(), der[2*DY + 1], tayl, tay2; int i;

for (i » 0; i <= 2*DY; ++i) der[i] - deriv(y, 1,1.0);

x = dr = 0.0;
while ( (tay2 » taylor(der, 2*DY+1, 2, x)) •= 0.0 fifi

fabsCdx = -taylortder, 2*DY+lr 1, x)/tay2) > DX ) x += dx;
return x;
)

V
double deriv(y, nf dx)
int *y;
int n;
double dx;

Takes y# a pointer to an element of an array of doubles/ and
returns the n-th derivative in the vicinity of that element.
The elements of y are separated by dx, i.e., the horizontal
distance between (y + N) and (y + N - 1) is dx.

if { dx <= G.G dx = 1.0 } then the result is reported without
normalizing by dx*n, making the arithmetic a little faster«

REQUIRES: fib{n, m), a Fibonacci number generator.

mmm&i it is the caller's responsibility that (y - (n+l)/2) through
(y -f (n+l)/2) be valid addresses containing members of array y.

: severe rounding errors may start to appear around n = 8.
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
I
int *jl, *yx;
double dafmj±Ka;
iat fib Or » • 0, sign • 1, nJ2;

If ( a < 0 ) err—«titC
Mderiv: cannot take derivative of order < O. M);
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if ( n =5 0 ) dny_dacn = *y;
else

{
if ( n % 2 ) /* odd n, even number of points, so symmetrize */

{
n_2 • (n+l)/2;
dny_dxn = (double) * (yr = y + n_2) - (double) *(yl - y - n_2) ;
while (sign « -sign, ++m < nJ2)

dny_dxn += sign * (fib(n, m - 1) - fib(n, m)) *
((double) *++yl - (double) *—yr) ;

dny_dxn *» 0.5;

else /* even n, odd number of points, is symmetric */
{
n_2 » n/2;
dny_dxn = (double) *(yl - y - n_2) + (double) *(yr = y + n_2) ;
while (sign = -sign, ++m < n_2)

dny_dxn += sign * fib(n, m) * ((double) *++yl + (double) *—yr) ;
dny_dxn += sign * fib(n, m) * (double) *y;
}

}
if ( dx > 0 fi£ dx !» 1.0 ) while ( n — ) dny_dxn /= dx;
return dny__dxn;

int fib(n, m)
int n, m;
********
Fibonacci number generator; on the assumption that the first few
values are needed most often, these are stored in a static array.

#define EIGHT 8
static int Fib [EIGHT] [EIGHT] 1 ,

1 ,
1 ,
1 ,
1 ,
1 ,
1 ,

o,
1 ,
2 ,
3 ,
4 ,
5,

0,
0,
1 ,
3 ,
€ ,

1 0 ,
1 5 ,

0 ,
0 ,
0 ,
1 ,
4 ,

1 0 ,
2 0 ,

0 ,
o,
0,
0,
1 ,
5 ,

1 5 ,

0,
0,
0,
0,
0,
1 ,
6,

0,
0,
0 ,
0,
0,
0,
1 ,

0 } ,
0 } ,
0 } ,
0>,
0 } ,
0 } ,

o>,
{ 1, 7, 21, 35, 35, 21,

if (n < 0 || m > n) err exit ("fib: called with n < 0 or m > n.");

return (m = 0 i !
(n < EIGHT

n) ? 1 :
) ? FibCn] [m] :

f±b(n-l, m-1) + £ib(n-l, m) ;

7,

struct DC precal(dc)
struct DC dc;

struct DC da_;
double ad# x2# x3, x4# yl, y2# c0#

ll • dc.c;

, o3# c€;



Pi'
y2 • yl*yi;

CO - -2.7583e01 + 2.l286a-Ol * yl - 8-3;>75e-04 * y2;
el - 1 5949eO0 - 8.1579e-O3 * yl + 3.2038e-05 * y2,
c2 = o.o + o.o * yi + o.o * yz;
c3 * o o + o.o * yi + 0-0 * y^;

c4 » o.o + o.o * yi + o.o * y2;

xl a dc.d;

x4 * xl*x3;

dc_.d = cO + cl * xl + c2 * x2 + c3 * x3 + c4 * x4;

dc_.c = dc.c;

return dc_;


