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Abstract

Progress on the Parallel Vision project is reported. Three major accomplishments are noted: the development of the
Apply language, the WEB library, and benchmarks of Warp for the DARPA image understanding architecture
comparisons. The Apply language development includes a description of the language and its implementation on
Warp, the Sun, and the Hughes HBA, together with benchmark comparisons of these very different architectures.
The WEB library includes over 100 routines; included in this report are performance numbers of these routines on
the CMU Warp machine. Finally, a detailed analysis of the Warp routines implemented for the DARPA Image
Understanding benchmarks is given.



1. Introduction
This report reviews progress at Carnegie Mellon from January 15, 1987 to January 14, 1988 on research

supported by the Defense Advanced Research Project Agency (DOD), monitored by the US Army Engineer
Topographic Laboratories under Contract DACA76-85-C-0002, titled "Research on Parallel Vision Algorithm
Design and Implementation." The report consists of an introduction and four detailed reports on specific areas of
research.

1.1 Overview
During this contract year our research has had three main themes:

• Support, development, and evaluation of Warp-related vision software.

• Development of the Apply programming language and WEB library of low- and mid-level vision
algorithms.

• Support for the use of parallel vision software in related DARPA-sponsored programs.

Warp gives us a powerful, existing parallel computer on which to develop parallel vision software; with this basis,
we are able to evaluate our work and see it applied to important problems in related programs that use Warp. But
we have not limited ourselves strictly to Warp software development The Apply programming language has proved
to be a useful tool for parallel vision algorithm development on many parallel computers, especially since a
substantial portion of the WEB library of low- and mid-level vision algorithms is implemented using it. These two
efforts have led to significant application of our work in several DARPA-sponsoied programs.

12 Warp Vision Software
We have implemented Warp software that allows the use of the Warp computer in the Carnegie Mellon vision

environment, including remote access to the Warp computer from any Sun compute" in the environment. This
software has been used to develop parallel vision algorithms at Carnegie Mellon throughout the year.

Our implementation of Warp vision algorithms led to the evaluation of the Warp computer in the DARPA Image
Understanding Architectures Benchmark Workshop. Several programs were implemented in order to compare
Warp with other parallel vision architectures, including The Connection Machine and Butterfly. The results of this
study are described in Section S.

13 The Apply Language and WEB
In the summer of 1987, Apply was reimplemented to generate efficient code for Warp, the Sun/3, and FT Warp, a

2-dimensional Warp array. This ^implementation used a common front-end for all Apply programs, and different
back-ends for the different target architectures and languages. Section 2 describes Apply and its implementations on
Sun, Waip, and the Hughes HBA. It proved possible to directly compare the performance of Apply programs on
Warp with Apply on the Sun and Apply in a previous Implementation on the Hughes HBA. Results are reported in
Section 3.

WEB was also reimplemented in the summer of 1987. This implementation used Apply for about 80% of the
programs, and W2 code for the remainder, most of which are global image processing operations not suited for
Apply. Section 4 describes WEB, and Appendix I lists the current status of each WEB routine. Comparison with
last year's report stows enormous progress in making the routines implemented, validated, aid made available.

1.4 Support for Other Programs
The Warp computer is used in several DARPA-spoosoned programs: SC Vision, ALV, ADRDES, and SCORPIUS.

In many of these programs, image processing and related functions aie a primary concern* Work on parallel vision
algorithms en the Warp machine ai Carnegie MeEcM has often been directly transferable la these other programs,
often by using Apply and WEB.
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2. An Architecture Independent Programming Language for Low-Level Vision

2.1 Introduction
In computer vision, the first, and often most time-consuming, step in image processing is image to image

operations. In this step, an input image is mapped into an output image through some local operation that applies to
a window around each pixel of the input image. Algorithms that fall into this class include: edge detection,
smoothing, convolutions in general, contrast enhancement, color transformations, and thresholding. Collectively,
we call these operations low-level vision. Low-level vision is often time consuming simply because images are
quite large-a typical size is 512x512 pixels, so the operation must be applied 262,144 times.

Fortunately, this step in image processing is easy to speed up, through the use of parallelism. The operation
applied at every point in the image is often independent from point to point, and also does not vary much in
execution time at different points in the image. This is because at this stage of image processing, nothing has been
done to differentiate one area of the image from another, so that all areas are processed in the same way. Because of
these two characteristics, many parallel computes achieve good efficiency in these algorithms, through the use of
input partitioning [24].

We define a language, called Apply, which is designed for implementing these algorithms. Apply runs on the
Warp machine, which has been developed for image and signal processing. We discuss Warp, and describe its use
at this level of vision. The same Apply program can be compiled either to run on the Warp machine, or under UNIX,
and it runs with good efficiency in both cases. Therefore, the programmer is not limited to developing his programs
just on Warp, although they run much faster (typically 100 times faster) there; he can do development under the
more generally available UMX system.

We consider Apply and its implementation on Warp to be a significant development for image processing on
parallel computers in general. The most critical problem in developing new parallel computer architectures is a lack
of software which efficiently uses parallelism. While building powerful new computer architectures is becoming
easier because of the availability of custom VLSI and powerful off-the-shelf components, programming these
architectures is difficult.

Parallel architectures are difficult to program because it is not yet understood how to "cover" parallelism (hide it
from the programmer) and get good performance. Therefore, the programmer either programs the computer in a
specialized language which exploits features of the particular computer, and which can run on no other computer
(except in simulation), or he uses a general purpose language, such as FORTRAN, which runs on many computers
but which has additions that make it possible to program the computer efficiently. In either case, using these special
features is necessary to get good performance from the computer. However, exploiting these features requires
training, limits the programs to run on one or at most a limited class of computers, and limits the lifetime of a
program, since eventually it must be modified to take advantage of new features provided in a new architecture.
Therefore, the programmer faces a dilemma: he must either ignore (if possible) the special features of his computer,
limiting performance, or he must reduce the understandability, generality, and lifetime of his program.

It is the thesis of Apply that application dependence* in particular programming model dependence* can be
exploited to cover this parallelism while getting good performance from a parallel machine. Moreover, because of
the application dependence of the language, ii is possible to provide facilities that make it easier for the programmer
to write Ms program, even as compared with a general-purpose language. Apply was originally developed as a tool
for writing image processing programs on UNIX systems; it now runs on UNIX systems. Warp, and the Hughes HBA.
Slice we include a definition of Apply as it nms on Warp, and because most parallel computers support input
partitioning, it should be possible to implement It on other supercomputers and parallel computers as well

Apply also has implications for bendimarldiig of new Image processing computers. Cuneniiy, it is hard to
compare these computers., because they all ran different incompatible languages and operating systems, so the same
program camot be tested mi different computers. Qoee Apply is implemented on a computer, it is possible to fairly
test its performanee on an important class of image operations, namely tow-level vision.



niiMtion-soecific, machine-independent, language. Since it
AoolY is not a panacea for these P ^ l O T S ; ^ ^ S ? w h i c h ^ s e pipelining, and it cannot be used for global
Apply is not a p» o t gene ra te V^P™* ^ - fo rm FFT, and histogram. However, Apply is in

* ^ r i Z ^ " S connected ̂ P ^ ^ ^ t p T e m e n t ' a significant library (100 programs) of
X X S i Mellon and * ^ - £ 5 £ U ik describes this library and evaluates Apply's
algorithms covering most of low-ievc
performance. my f o r programming low-level vision algorithms,

describing the Apply language, " » " * , F i i a U y w e discuss implementations of Apply on

S ^ ^ ^ ^ ^ ^ eHughes ** *""processor
'SS machines.

2 2 Introduction to Apply , ^ programming approach which simplifies the programming
*Tbf Apply programming model is a ̂ ^ ^ o T a l g o r i t h m s . We have developed a special-purpose
J v S K ^ * * ** ^ ^ f J ^ w W c t embooies this parallel programming approach When

^ J » «»»£%£> a^ocedure which defines the operation to be applied at alanguage

. 1 o n i w o u t o f a desire for efficiency combined wth ease of
of the Apply pr()grammmg ^lJ^LZ ta o u r environment, image data is usually stored in

ing for a useful class * ! £ " £ £ ? I S S t o e . considerable overhead in accessing individu^
dTfflcs and accessed through a lflxarymterfaceinis buffering rows improves the speed

J £ T s ? algorithms are often wrio»iap»«. aj - ^ e X u t i n e indentation of Apply w ŝ developed
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Each procedure has a parameter list containing parameters of any of the following types: in, out or constant.
Input parameters are either scalar variables or two-dimensional arrays. A scalar input variable represents the pixel
value of an input image at the current processing co-ordinates. A two-dimensional array input variable represents a
window of an input image. Element (0,0) of the array corresponds to the current processing co-ordinates.

Output parameters are scalar variables. Each output variable represents the pixel value of an output image. The
final value of an output variable is stored in the output image at the current processing co-ordinates.

Constant parameters may be scalars, vectors or two-dimensional arrays. They represent precomputed constants
which are made available for use by the procedure. For example, a convolution program would use a constant array
for the convolution mask.

The reserved variables ROW and COL are defined to contain the image co-ordinates of the current processing
location. This is useful for algorithms which are dependent in a limited way on the image co-ordinates.

Section 2.8 gives a grammar of the Apply language. The syntax of Apply is based on Ada [1]; we chose this
syntax because it is familiar and adequate. However, as should be clear, the application dependence of Apply means
that it is not an Ada subset, nor is it intended to evolve into such a subset

The operators ", |, &, and I refer to the exclusive or, or, and, and not operations, respectively. Variable and
function names are alpha-numeric strings of arbitrary length, commencing with an alphabetic character. The
INTEGER and REAL pseudo-functions convert from real to integer, and from integer (or byte) to real types. Case is
not significant, except in the preprocessing stage which is implemented by the m4 macro processor [22].

BYTE, INTEGER, and REAL refer to (at least) 8-bit integers, 16-bit integers, and 32-bit floating point numbers.
BYTE values are converted implicitly to INTEGER within computations. The actual size of the type may be larger,
at the discretion of the implementor,

2.2.2 An Implementation of Sobel Edge Detection
As a simple example of the use of Apply, let us consider the implementation of Sobel edge detection. Sobel edge

detection is performed by convolving the input image with two 3x3 masks. The horizontal mask measures the
gradient of horizontal edges, and the vertical mask measures the gradient of vertical edges. Diagonal edges produce
some response from each mask, allowing the edge orientation and strength to be measured for all edges. Both masks
are shown in Figure 2-1.
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The Sobel Convolution Masks.

Ail Apply implementation of Sobel edge detection is shown in Figure 2-2. Hie lines haw been numbered for the
purposesof explanation, using the comment corxvention. Line numbers are not a part of the language.

Line 1 defines the input, output and constant parameters to the function. The input parameter mimg is a window
of She input image. The constant parameter thresh is a threshold. Edges which are weaker than this threshold are
suppressed in the output magnitude image, mag. Line 3 defines horiz aid Tart which are internal variables used to
bold the results of the horizontal and vertical Sobel edge operator.

Line 1 also defines die inpE image wfaidow* It is a 3x3 window centered about the current pixel processing
position, which is filed with the value 0 when the wlectow lies outside the image. This same Hue declmes the
constant and output parameters to be floating-point scalar variables.
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procedure reduce(inimg : in array (0..3, 0..3) of byte sample (2, 2),
oirtixng : out byte)

is
sum : integer;
i, j : integers-

begin
sum := 0;
for i in 0..3 loop

for j in 0..3 loop
sum := sum + inimg(i, j) ;

end loop;
end loop;
outimg := sum / 16;

end reduce;

Magnification can be done by using an output image variable which is an array. The result is that, instead of a
single pixel being output for each input pixel, several pixels are output, making the output image larger than the
input The following program uses this to perform a simple image magnification, using linear interpolation:

procedure magnify (inimg : in array (-1..1, -1..1) of byte border 0,
outimg: out array(0..1, 0..1) of byte)

is
begin

outimage(0,0) := (inixng(-l, -1) + inimgi-l, 0)
+ i n i m g ( 0 , - l ) + inimgCO, 0) ) / 4;

out image(0 , l ) := ( in img(-1 , 0) + Inimg(-1,1)
+ in±mg<0,0) + i n i a g ( 0 , l ) > / 4;

out image( l ,0) := ( in img(0 , -1) + inimg(0, 0)
+ xn i2ng( l , - l )+ in1 i» j ( l , 0 ) ) / 4;

ou t image ( l , l ) := (inimg (0,0) + iTiimg(0,l)
+ in img( l # 0) + i n i m g d , ! ) ) / 4;

end magnify;

The semantics of SAMPLE ( s i , s2) are as follows: the input window is placed so that pixel (0, 0) falls on
image pixel (0,0),(0^2X••• ,(0>>*xs2)»...,(mxsl,*xs2). Thus, SAMPLE (1,1) is equivalent to omitting the
SAMPLE option entirely.

Output image arrays work by expanding the output image in either the horizontal or vertical direction, or both,
and placing the resulting output windows so that they tile the output image without overlapping.

2.2.5 Multi-function Apply Modules
In many low-level image processing algorithms, results from an adjacent pixel are saved in order to be used to

calculate the results at an adjacent pixel; this results in a more efficient algorithm. Because Apply programs do not
share results from adjacent pixels (doing so would violate Apply's order-independence, which is what makes it easy
to implement in parallel), Apply programmers cannot take advantage of this trick. However, many of these
algorithms can be factored into multiple passes in a way that results in an efficient program without needing to
introduce order dependence.

These multiple functions can be efficiently implemented in Apply. Where memory use is not a concern, the
Intermediate results can be saved, and used by the next Apply program. M cases where memory is limited, multiple
Apply functions can be compiled together into a single pass.
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From this diagram, it is easy to see that none of pixels g, A, b, or c can be the median, because they are all greater
or less than at least five other pixels in the neighborhood. The only candidates for median are a, d, e,/, and i. Now
we observe that/< {e,hyd,g}9 so that if f<a,f cannot be the median since it will be less than five pixels in the
neighborhood. Similarly, if a </, a cannot be the median. We therefore compare a and/, and keep the larger. By a
similar argument, we compare / and d and keep the smaller. This leaves three pixels: e, and the two pixels we chose
from {a,/}, and {dj}. All of these are median candidates. We therefore sort them and choose the middle element;
this is the median.

This algorithm computes a 3 x3 median filter with only eleven comparisons, comparable to many techniques for
optimizing median filter in raster-order processing algorithms.

— Sort the three elements at, above, and below each pixel
procedure medianl (image : in array(-1..1, 0..0) of byte,

si : out array(-1..1, 0..0) of byte)
is

byte a, b, c;
begin

if image(-1,0) > image(0,0)
then if image(0,0) > image(1,0)

then si(1,0) := image(-l,0);
si(0,0) := image(0,0);
si(-1,0) := image(1,0); end if;

else if image (-1,0) > image (1,0)
then si (1,0) := image (-1,0);

si
si

else si
si
si

end if;
mnd. if;

(0,0) : =
(-1,0) :=
(1,0) : =
(0,0) : =
(-1,0) : =

image (1,0) ;
image (0,0) ;

image (1, 0) ;
image (-1,0) ;
image(0,0) ;

else if image(0,0) > image(1,0)
then if image(-l,0) >

then si
si
si

else si
si
si

end if;
else si(1,0)

si(0,0)

(1,0) : =
(0,0) : =
(-1,0) : =
(1,0) : =
(0,0) : =
(-1,0) :=

:= image
:= image

image (1, 0)
image(0,0) ;
image (-1,0) ;
image (1,0) ;

image (0, 0) ;
image (1,0) ;
image (-1,0) ;

(1,0);
(0,0);

si(-l,0) :» image(-1,0);
end if;

end if;
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procedure median2(si : in array(-1..1, -1..1) of byte
sample (3, 1)/

median : out byte)
— Combine the sorted columns from the first step to give the median.

is
int 1, m, h;
byte A, B;

begin
if si(-l, 0) > si(Q, 0)

then if si(0, 0) > si(l, 0)
then h : = -1; m := 0; 1 := 1; end if;
else if si(-1,0) > si(1,0)

then h :• -1; m :» 1; 1 :• 0;
else h := 1; m := -1; 1 := 0; end if; end if;

else if si(0, 0) > si(l, 0)
then if si(-1,0) > si (1,0)

then h := 0; m := -1; 1 := 1;
else h := 0; m := 1; 1 := -1; end if;

else h := 1; xn := 0; 1 := -1; end if; end if;

if si(l, -1) > si(mf 1)
then A := si(l, -1) ;
else A := si(m, 1); end if;

if si(a, -1) < si(h, 1)
then B := si(mf -1) ;
else B := si(h, 1); end if;

if A > si(m, 0)
thin if si(mf 0) > B

then median := si(m, 0); end if;
else if A > B

then median := B;
else median := A; end if; end if;

else if si(m, 0) > B
then if A > B

then median := A;
else median := B; end if;

else median := si(m, 0); end if; end if;

end

13 Apply QD Warp and Warp-like Architectures
T ^ Wwp-Mte McMtectares teve in COTWEKHI that tbey arc qr^olic anays, m which each processor is a powerfiil

(10 MFLOPS m mmt) computer with high word-by-word I/O bandwidth with adjacent processors, arranged in a
a^riblc^cA^. Apply is imptewitoi m te^ pxxxsscKS m similar ways, so we first cfescribe the basic model of
knMflwd i a ^ processing on W«ipt and Aeo sketch the implementations OT FT Warp ami i Warp.

We briefly describe each of the Wop-like architectures; a complete description of Warp is available
eliewhiwe {3J. Warp is a short linear may, typically consisting of ien cells, each of which is a 10 MFLOPS
coupler. The array hat high internal bandwidth, consistent with its use as a systolic processor. Each ceU has a
local poyant and data memory, aricaabe piogrammed in a Pascal-level language called W2, which supports
€W»!»i»k«io© between ocis using asynchronous word-by-word send and r e c e i v e statements. The systole
atty is atiidwl to aa atterata! host, which sends and receives data firm the array firm a separate memory. The
external tot in ton is attached to a Sim computer, which provides the user interface.
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Fault-tolerant (FT) Warp is a two-dimensional array, typically a five-by-five array, being designed by Carnegie
Mellon. Each cell is a Warp cell. Each row and column can be fed data independently, providing for a very high
bandwidth. As the name suggests, this array has as a primary goal fault-tolerance, which is supported by a virtual
channel mechanism mediated by a separate hardware component called a switch.

i Warp is an integrated version of Warp being designed by Carnegie Mellon and Intel. In i Warp each Warp cell is
implemented by a single chip, plus memory chips. The baseline i Warp machine is a 72 cell linear array, although
two-dimensional designs are also being considered. iWarp includes support for distant cells to communicate as if
they were adjacent, while passing their data through intermediate cells.

2.3.1 Low-level vision on Warp
We map low-level vision algorithms onto Warp by the input partitioning method. On a Warp array of ten cells,

the image is divided into ten regions, by column, as shown in Figure 2-4. This gives each cell a tall, narrow region
to process; for 512 x 512 image processing, the region size is 52 columns by 512 rows. To use technical terms from
weaving, the Warp cells are the "warp" of the processing; the "weft" is the rows of the image as it passes through
the Warp array.

512'

52

Figure 2-4: Input Partitioning Method on Warp

The image is divided in this way using a series of macros called GETROW, PUTROW, and COMPUTEROW.
GETROW generates code that takes a row of an image from the external host, and distributes one-tenth of it to each
of ten cells. The programmer includes a GETROW macro at the point in his program where he wants to obtain a row
of the image; after the execution of the macro, a buffo* in the internal cell memory has the data from the image row.

The GETROW macro works as follows. The external tost sends in the image rows as a packed array of bytes- for
a 512-byte wide image, this array consists of 128 32-bit words. These words are unpacked and converted to floating
point numbers in the interface unit. The 512 32-bit floating point numbers resulting from this operation aie fed in
sequence to the first cell of the Warp array. This cdl takes one-tenth of the numbers, removing them from the
stream, and passes through the rest to the next cell. The first cell then adds a number of zeroes to replace the data it
has removed, so that the number of data received and sent are equal

This process is repeated in each cell. In this way, each cell obtains one-tenth of the data from a row of the image.
As the program is executed, and the process is repeated for aH rows of the image, each cell sees an adjacent set of
columns of the image, as shown in Figure 2-4.

We have omitied certain details of GETROW- for example, usually the image row size is not m exact multiple of
ten. la this case, the GETROW macro pads the row equally on both sides by having the interface unit generate an
appropriate number of zeroes on either side of the image row. Also* usually the area of the image each cell must sec
to generate its outputs overlaps with the next celTs axca. lit this case, the cell copies some erf the data it receives to
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the next cell. All this code is automatically generated by GETROW.

PUTROW, the corresponding macro for output, takes a buffer of one-tenth of the row length from each cell and
combines them by concatenation. The output row starts as a buffer of 512 zeroes generated by the interface unit.
The first cell discards the first one-tenth of these and adds its own data to the end. The second cell does the same,
adding its data after the first. When the buffer leaves the last cell, all the zeroes have been discarded and the first
cell's data has reached the beginning of the buffer. The interface unit then converts the floating point numbers in the
buffer to zeroes and outputs it to the external host, which receives an array of 512 bytes packed into 128 32-bit
words. As with GETROW, PUTROW handles image buffers that are not multiples of ten, this time by discarding data
on both sides of the buffer before the buffer is sent to the interface unit by the last cell.

During GETROW, no computation is performed; the same applies to PUTROW. Warp's horizontal microword,
however, allows input, computation, and output at the same time. COMPUTEROW implements this. Ignoring the
complications mentioned above, COMPUTEROW consists of three loops. In the first loop, the data for the cell is read
into a memory buffer from the previous cell, as in GETROW, and at the same time the first one-tenth of the output
buffer is discarded, as in PUTROW. In the second loop, nine-tenths of the input row is passed through to the next
cell, as in GETROW; at the same time, nine-tenths of the output buffer is passed through, as in PUTROW. This loop is
unwound by COMPUTEROW so that for every 9 inputs and outputs passed through, one output of this cell is
computed. In the third loop, the outputs computed in the second loop are passed on to the next cell, as in PUTROW.

There are several advantages to this approach to input partitioning:

• Work on the external host is kept to a minimum. In the Warp machine, the external host tends to be a
bottleneck in many algorithms; in the prototype machines, the external host's actual data rate to the
array is only about 174th of the maximum rate the Warp machine can handle, even if the interface unit
unpacks data as it arrives. Using this input partitioning model, the external host need not unpack and
repack bytes, which it would have to if the data was requested in another order. On the production
Warp machine, the same concern applies; these machines have DMA, which also requires a regular
addressing pattern.

• Each cell sees a connected set of columns of the image, which are one-tenth of the total columns in a
row. Processing adjacent columns is an advantage since many vision algorithms (e.g., median
filler [17]) can use the result from a previous set of columns to speed up the computation at the next set
of columns to the right.

• Memory requirements at a cell are minimized, since each cell must store only I/IG1*1 of a row. This was
important in the prototype Warp machines, since they had only 4K words memory on each cell. On PC
Warp, with 32K words of memory per cell, this approach makes it possible to implement very large
window operations.

# An unexpected side effect of this programming model was that k made it easier to debug the hardware
in the Warp machine. If some portion of a Warp cell is not working, but the communication and
mioosecpencing portions are, thai the output from a given cell will be wrong, but it will keep its proper
position in the image. This means that the error will be extremely evident- typically a black stripe is
generated in the corresponding position in the image. Il is quite easy to info from such an image which
cell is broken!

23 J Apply on FT Warp
The 2-timm$ioml FT Warp array can be viewed as several 1-dimeosional arrays* An image is usually divided

Info several swaifas (adjacent groups of rows) on FT Warp. The data of each swath are fed into the corresponding
row of iJiese 2-diraensianal processors, as an image is fed into a l-dimemioisai array. This results in each cell of FT
Warp in seeing a lecianguIarpCMtioii of the image,

To rate the bmn^mMh as high as possible » d to use the CQJWPOTERGW model w© input the data along the
faorixoittal path and output daia along the vctticd path,

The typical FT Wirp may is a five-by-fivc aray, i s opposed to ten a l l s in Warp, and each cell is as powerful as
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a Warp cell. FT Warp, however, has much higher bandwidth than Warp. Therefore, for complex image processing
operations where I/O bandwidth is not a factor, we expect FT Warp Apply programs to be 2.5 times faster than
Warp programs, and even faster in simple image processing operations where I/O bandwidth limits Warp
performance.

Apply on iWarp
The i Warp implementation of Apply uses a virtual pathway mechanism to allow each cell to process only data

intended for that cell. This eliminates much of the complication of Apply on Warp; there is no need for a cell to
explicitly pass data on to other cells, instead it can simply direct the rest of the data to pass on to later cells without
further intervention.

Our description of Apply on j Warp will be clear if we describe the action of GETROW and PUTROW on this
machine. In GETROW, each cell accepts data intended for that cell, and then releases control of the data to be
passed on to the next cell automatically, until the arrival of the start of the next row. After releasing control, it goes
on to process the data it has just received. In the meantime, it is allowing data to pass by on the output channel until
the end of the output row arrives. It then tacks on its computed output to the end of this output row, completing
PUTROW.

We expect this method of implementing Apply to be at least as efficient as the COMPUTEROW model on Warp.
Since the baseline i Warp machine has 72 cells, each of which is 1.6 to 2 times as powerful as a Warp cell, total
performance should be from about 10 to 14 times greater than Warp, i Warp's I/O bandwidth is much higher than
Warp's, so this performance should be achievable for all but the most simple image processing operations.

2.4 Apply on Uni-processor Machines
The same Apply compiler that generates Warp code also generates C code to be run under UMX. We have found

that an Apply implementation is usually at least as efficient as any alternative implementation on the same machine.
The computation time of the Apply-generated code is usually faster than that of hand coded programs. This
efficiency results from the expert knowledge which is built into the Apply implementation but which is too complex
for the programmer to work with explicitly. In addition, Apply focuses die programmer's attention on the details of
the computation, which often results in improved design of the basic computation.

The Apply implementation for uni-processor machines employs a technique, called cyclic-scroll buffering here,
which efficiently uses snail space ami time to buffer the rows of the image. The technique allows the kernel to be
shifted and scrolled over the buffer with low cost

The cyclic-scroll buffering technique which we developed for Apply on uni-processor machines is described as
follows. For an NxN input image which will be processed with an MxM kernel, a buffer with (JV+Af-1) x M+(iV-1)
elements is required.

Figure 2-5 and 2-6 display the column-major arrangement for processing a 3x3 kernel. The pointers represent
successive positions in memory. In addition, we keep two base pointers for the buffer. One, called row base, points
to the first pixel of the three rows of the image and the other, called kernel base, points to the first pixel of the
kernel C language subscripting can be used to directly access the elements of the kerne! except that the indices of
row and column must be exchanged because the rows of the images are stored in column-major order.

Initially, we pit the first M rows of the image, including the border, into the buffer in column-major order. When
the first kernel is processed, row base points to the first element of the buffer, and kernel base points to the center
dai^ntrfttewindbwtobeiKOC^^d. After the first kernel has been processed, the kernel base is incremented by
M to point lo the first pixel of the next kernel It is thus possible to shift the kernel across the entire buffer of data
with a cost of only one addition.

Whoa processing an eittke row is completed, the fiist row in the buffer from the row tee is discawied and the
next row of the image is input into the discarded row with a column displacement of one (us. beginning at the
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Figure 2-5: Processing the first row by the cyclic-scroll buffering

second element). Then the row base is incremented by one. The purpose of column displacement 1 is that the input
row can be considered to be the h& row of the buffer starting from the new row base. Effectively, the rolling is
done at the same time. After the kernel base is reset to point to the center element of the new window, we can do
another row operation in the same way as the first until all the rows are processed. Figure 2-5 and 2-6 show the
processing of die first and second row.
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23 Apply on the Hugtics H B A
Apply ins be«i Implemented on Ae Hughes HB A computer [32] by Retard Wallace of Carnegie Mellon and

Hitgbei to tiis cowpalor* seven! MC68000 processors are connected a t a high-speed vkteo bos, with ae Interface
between each processor and the bis ttat allows It to select a subwiadkw of the image to be stored info its tommy.
The input ii»t§e is sent over the boa and windows are stored HI each processor automatically using DMA. A similar
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interface exists for outputting the image from each processor. This allows flexible real-time image processing.

The Hughes HBA Apply implementation is straightforward and similar to the Warp implementation. The image
is divided in "swaths", which are adjacent sets of rows, and each processor takes one swath. (In the Warp
implementation, the swaths are adjacent sets of columns, instead of rows). Swaths overlap to allow each processor
to compute on a window around each pixel. The processors independently compute the result for each swath, which
is fed back onto the video bus for display.

The HBA implementation of Apply includes a facility for image reduction, which was not included in earlier
versions of Apply. The HBA implementation subsamples the input images, so that the input image window refers to
the subsampled image, not the original image as in our definition. We prefer the approach here because it has more
general semantics. For example, using image reduction as we have defined it, it is possible to define image
reduction using overlapping windows as in Section 2.2.4.

2.6 Apply on Other Machines
Here we briefly outline how Apply could be implemented on other parallel machine types, specifically bit-serial

processor arrays, and distributed memory general purpose processor machines. These two types of parallel
machines are very common; many parallel architectures include them as a subset, or can simulate them efficiently.

2.6.1 Apply on bit-serial processor arrays
Bit-serial processor arrays [6] include a great many parallel machines. They are arrays of large numbers of very

simple processors which are able to perform a single bit operation in every machine cycle. We assume only that it is
possible to load images into the array such that each processor can be assigned to a single pixel of the input image,
and that different processors can exchange information locally, that is, processors for adjacent pixels can exchange
information efficiently. Specific machines may also have other features that may make Apply more efficient than
the implementation outlined here.

In this implementation of Apply, each processor computes the result of one pixel window. Because there may be
more pixels than processors, we allow a single processor to implement the action of several different processors over
a period of time, that is, we adopt the Connection Machine's idea of virtual processors [16].

The Apply program works as follows:

• Initialize: For nxn image processing, use a virtual processor network of nxn virtual processors.

• Input: For each variable of type IN, send a pixel to the corresponding virtual processor.

• Constant Broadcast all variables of type CONST to all virtual processors.

• Window: For each IN variable, with a window size of mxm, shift it in a spiral, first one step to the
right, then one step up, then two steps two the left, then two steps down, and so on, storing the pixel
value in each virtual processor the pixel encounters, until a mxm square around each virtual processor
is filled. This will take m2 steps.

• Compute: Each virtual processor now has all the inputs it meeds to calculate the output pixels. Perform
this computation in parallel on all processors.

Because memory on these machines is often limited, it may be best to combine the "window" and "compute"
steps above, to avoid the memory cost of prestoring all window elements on each virtual processor.

2.6.2 Apply on distributed memory general purpose machines
Machines in this class consist of a moderate number of general purpose processors, each with its owe memory.

Many geoeial-ptixpose parailei architectures implement this model, such as the Intel iPSC [18] or the Cosmic
Cube [29]. Otter parallel architectures, such as die shared-memory BBN Butterfly [7,251, can efficiently
implement Apply in this way; treating them as distributed memory machines avoids problems with contention for
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This implementation of Apply works as follows:
• Input: If there are n processors in use, divide the image into n regions, and store one region in each of

the H jHGccssors* memories. The actual shape of the regions can vary with the particular machine in
uae. Note that compact regions have smaller borders than long, thin regions, so that the next step will
be more efficient if the regions arc compact

• Window- For each IN finable, processors exchange rows and columns of their image with processors
botdiitg m adjaoent region fowi tte image so that each processor has enough of the image to compute
the contspcnciiig output region.

• Cmspmt: Each processor now hm enough data to compute the output region. It does so, iterating over
aB pixels in its ootpnt region.

2L7 Summary
H e Apply hugiNse Cfystiitoes our ideas an low-level vision programming on parallel machines. It allows

progiammer 10 Mat certain messy conditions, such as border conditions, uniformly. It also allows the programn
to gel €«t$i$t«iay p o d efficiency i» km*hvd vision programming, by incorporating expert knowledge about h
to tfuplcimit such oponcxs.

We l a w defined to Apply laagutp as it is aromtly implemented, and described its use in low-level via
Apply Is In dtfly use H Cwsegie Melon aiid elsewhere for Warp and vision programmingg ppy y

M has p w e d tt> be a usefld tod for pn^raOTning under UNDC, as well as an introductory tool fen* Ws

Wt •:-.,.-:: ...:.,: ,;̂ ;•'•>-.:, . .r ,?::;-^.-r^ng ^chr-^aes for tow-level vision on Warp. These techniques began w
.:•••:.;; w t % - i w r ttiiffe pc^t t tog w i o i , ^ h;ch a® siilE m use for certain kinds of algorithms, and lot to |

: -. :•• :v,, wUcfa 9 1 ^pedaiized prcgramr^ir.g knguage for low-level vision on Warp. This langua
^ ^ isdoliigbc^i WI-IIOC^SCHB aid parallel computers.

O K : Hm ̂ m ecting i t e ^ t o ^ ^ cf Apply :s that it is possible to implement it on diverse para!
aut i sm We teve ooili06d aodi i n ^ ^
I# of Apply cm otter nnciiiaes wil ̂ t o porting of low-level vision programs easier, should exta

of - '.-J: to .,._.:. :.:;xr̂ :••::•;:::,:.TS. and wil mmk& '̂ nchmarkmg easier. Several Implements
dfoti am ̂ t e w y * Qdwr s t e to «ip Apply onto ©flier paraiei n«± i i ^ tten tk^e described here.

We tewe A o n to fe Apply ̂ ^ ^ » ^ aodol ptovidet a poirafol simplified programming method wM
^ t e ^ ^ ^ t o Wtaeaip^mnsmiEgsich machines directly is (rftoip ^ g y ^ ^

Affriy ̂  ^ ^ ^ ^ ^ t a i te^ of tlb^mim k ivUch pc^rwE- are easier to write, more comprehensible a
fiMy » mAmmaty te to liM. A % m ^ ii*ttgp« is aijpKtoi by a version of the Apply coup!
i ̂ ^ ^ t e C ^ to ^ U

2J Oraetiatr of the Apply L « i ^ p
nHKSDQW fimi^R»Mm ( functhn-args )

mmm
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var-list

integer-list

integer
sign
digit

variable-declarations

type

range

elementary-type

sign

object

statements

statement

assignment-stmt

scalar-var

subscript-list

expr

[ BORDER const-expr ]
[ SAMPLE ( integer-list ) ]

var-list : OUT type
var-list : CONST type

variable [ , variable ] *

integer [ , integer ] *

[sign] digit [ digit ] *
+ I -

0 | l | 2 | 3 | 4 | 5 j 6 | 7 | 8 | 9

[ var-list : type ; ] *

ARRAY ( range [ , range ]+ ) OF elementary-type
elementary-type

integer-expr . . integer-expr

sign object
object

SIGNED
UNSIGNED
Empty

BYTE
INTEGER
REAL

[ statement ; ] *

assignment-stmt
if-stmt
for-stmt
whUe-stmt

scalar-var : * expr

variable
variable ( subscript-list )

integer-expr [ , integer-expr /*

expr + expr
expr - eapr
expr * €jpr
eipr / expr
expr * expr
expr 1 expr
expr & o p r
\expr
{ opr }

pseudo-function { expr )
variable { subscript-list )
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if-stmt

bool-expr

for-stmt

whUe-stmt

IF bool-expr THEN
statements

END IF
IF bool-expr THEN

statements
ELSE

statements
END IF

bool-expr AND bool-expr
bool-expr OR bool-expr
NOT bool-expr
( bool-expr )

<

expr * eapr
ficpr >= expr
expr > expr
expr / = expr

FOR integer-var IN range LOOP

END LOOP

WHILE bool-expr LOOP
statements

END LOOP
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3. Architecture-Independent Image Processing: Performance of Apply on Diverse
Architectures

3.1 Introduction
Low-level vision is an area of computer science that is ripe for the use of parallel computers. This class of

operations is easily parallelizable. Indeed, many parallel computers are already being developed for use at this level
of vision. These computers offer enormous speedup to the developer of computer vision algorithms, since these
operations are so time-consuming, but software development is necessary before they can be used.

We have developed a language called Apply [14] which can generate efficient programs for a variety of parallel
machines given a single source code. Apply therefore allows machine independent programming, for a limited,
application-specific, set of algorithms.

Apply has been used to develop a library of vision programs called WEB, which includes routines for many
low-level vision operations. Over 130 programs exist in WEB, 80% of which are written in Apply. The Apply
routines include basic image operations, convolution, edge detection, smoothing, binary image processing, color
conversion, pattern generation, and multi-level image processing. This library is therefore a machine-independent
software base for low-level image processing.

Because of the machine independence of the Apply language, programs written in Apply can be ported from one
machine to another simply by recompilation. Moreover, the Apply compiler and the WEB library allow the
comparison of the performance of vision machines, since the same source code will be running on both machine,
which is the strongest possible basis for comparison of two computers.

In this paper, we demonstrate this by studying the performance of Apply on three diverse architectures, by
examining the execution times of programs from WEB. The architectures are the Carnegie Mellon Warp machine, a
100 MFLOPS systolic array machine [4]; a Sun workstation; and the Hughes Aircraft Corporation Hierarchical Bus
Architecture (HBA) [32], a MIMD computer specifically designed for image processing applications. These
architectures differ in the number of processors, in the processor topology, and in the underlying processor, but
Apply generates efficient code for all of them. The implementation of Apply on each of them is described
elsewhere [14].

We discuss the WEB library, which has been the basis of our performance experiments with Apply. Using WEB,
we establish a baseline of Apply *s performance by comparing Apply code with code generated by hand for some of
the computers. Then we use execution time as a basis for evaluating the performance of Apply, and for studying the
suitability of these machines as image processors.

32 The WEB Library
Apply has been used to implement a large portion of the WEB library of vision programs, which is a large library

of vision programs implemented for use on the Carnegie Mellon Warp machine. The original purpose of the library
was to facilitate vision programming on the Waip machine.

WEB currently consists of over 130 routines, 80% erf which are written in Apply. The rest are written in W2,
which is the standard Warp programming language. All of the local image-to-image vision routines in WEB are
written in Apply; the W2 routines include non-local routines such as histogram, image warping, and connected
components.

WEB is based on the SPIDER library of FORTRAN programs [30], This is a subroutine library, developed in
Japan, for image processing using FORTRAN. Routines from SPIDER will be compared here in performance with
equivalent routines from WEB in order to measure Apply*s performance as a code generator for Sun.
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33 Apply Code Compared with Hand-written Code
Our primary puipose in this paper is to develop a comparison of different parallel processing machines for vision

using Apply as a vehicle. In order to base this comparison on solid ground, we must first evaluate Apply's
performance compared with hand-written code for the same machine. If Apply produces code that is comparable to
hand-written code, then our comparison will be solidly based, since the code generated by Apply represents the peak
performance of the machine. On the other hand, if Apply code is not as good, then the comparison will not be
solidly based; if could be argued that the measured performance would not actually be seen, since the user would not
use Apply.

33.1 Apply code compared with SPIDER cade
We begin by comparing Apply performance on WEB routines with a set of routines of similar function from the

SPIDER FORTRAN libraiy. The SPIDER library is professionally written and distributed, and the code is of high
quality; therefore, this comparison pits Apply's code against the code of expert programmers.

We are comparing the actual execution times (user time plus system time) of the FORTRAN programs, called as a
subroutine from C, with execution times of C programs generated by Apply, called in the same way. The time is
measuied from the point at which the input images aie ready (have been stored in the Sun's memory) to the point at
which the output images are ready, in both cases. This time does not include the I/O time for the images from disk,
or the code download time from disk into the Sun. All times are for 512x512 images.

Figure 3-1: Ratio of execution times of titod-gcoeraied SPIDER
FORTRAN to Apply code.

Vertical lias indicates t ratio of one.

Figure 3-1 gives the ratios of execution times for these programs, aad Figure 3-2 shows the distribution of times
for all programs. We can me from these figures the following phenomena:
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Figure 3-2: Scatter diagram of execution times of hand-generated SPIDER
FORTRAN and Apply code.

. Diagonal line indicates equality. .

• The Apply programs are generally faster. There are four factors that can account for this: (1) Cyclic-
scroll buffering; (2) The superiority of the Sun C compiler to the Sun FORTRAN compiler; (3) The
FORTRAN code is written to be readable, at the expense of efficiency; the code generated by Apply
need not satisfy such a constraint, since the Apply input code is quite readable. Apply can sacrifice
legibility for speed.

• In some cases such as addplr and divclr the Apply code is slower. In these programs the algorithm is
processing a single pixel from the input image to produce a single pixel in the output image. The
cyclic-scroll buffering technique introduces a significant overhead in this case. (The same does not
apply for addplb and addclb since heie the FORTRAN code is processing integer images, while the
Apply program is processing byte images. Thus, these programs are not strictly comparable).

• Apply has some limitations in its programming model that affect performance. In the FORTRAN
subroutines, it is common to write several different ways of computing the output depending on
switches. There is little overhead for this in FORTRAN since the code can be generated as follows:
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Ca

IF fSW.EQ.2) GOTO 100
m 10 !*RMZJf, RM&X
DO io j*cmH, a w e

confute using method 1 . .
10 CCWPIMUI

GOTO 200

100 DO 20 I^mUM, KM&X
IX) 20 J^dCM, CHaX .

m.coMpofc* r ising 23aethod 2 . .
20 CCMTOIU*
200 OQIWIlfOI

Tlsif^kraRTOAMtte

to Apply Ac a p i w t e t code would Ml the value of the switch once per pixel, since the Apply
p o ^ t a e is e«otted in in entirety for every pxeL This can limit performance in some cases, for
example qpsl and skhZ

la general, we see or oituitioiis abort Apply performaiice compared with hand-written code to be correct Applj
saa generate better code te hand-written, even on an easily programmed machine such as the Sun.

332 Apply code compared with W2 cwte
Next we c«sp i t perfbnnaiice m the Ciracpe Melkn Wa^ mm±iiie. This machine is programmed by hand k

W2, a ft^il-k^i lanp^p m wiK* i» ^w is ospieitty twwe erf the different processors and the communkatw
tof^ {Srf^^tt^^^swei^to^Mi^itterfdatab^weencdls)

onny p ^ ^ have t e e n m A c ^ « i ^ t o b e writtni f e W a p i n W2, the availability o f Apply ! w
mmi the p ^ « ^ w " i ta^ Apply l i t e the explicit pairallelisiB of cells, the number of cells in

fa» l ie f w ^ ^ w w . TTris has m^te it possible to develop WEB fa
, to » ^ ^ f ^ te aocb a I&wy cw^i hove been beflL

3-3 and 34 give the pwtmtiitGe far hndkwrittBo W2 pi^rfflas 'Combed with WEB pt>grams oi
. , . ' " :-:•:, -: -^;,r.:-c im t te T:eir:er,t t te iiqM data is available for processing in :he

AB
- •::•••;: ; I ^ R a» t e t t ^w i^MW^mi^KHmbfe for the wide distribution o f execotwi

$am p ^ ^ i i * ^* m ^ s i » C0w3, Ml cnm4 t «e Bucb slower in W2 than in Apply. This i s
•>v :,,.. • ^ -: ; ^ : - , : • - ; ; ' -,_.,:• , • :ri,:-z^^on- m Lie m f e (such as unrolling innermost loops;

Tte ^ ^ - ^ w ^ ^ ^ ^ conrimfy ©ftttp i/D wift OMpiaic»i cm 6m ce^ while tfw W2
* ^ % t ^ f c f e t e ^ d ^ e e n c ^ l s m ^

» kmi^m mm amM plmxmmi dF I/O
wtel OK toe teifw^p

^ l ^ f Ttettb^uK<rffl»ltaitaticHioftteA|^y
^ p ^ ^ modd ^ ' ^ ^ mlm fte W2 p f n i e r cm Utttis* ^ t e bned CM the values of

*t we aw pvmpd tffectt of &s Apf% iaapage on Waip programming: (1) The Apply programs a*
art! &itt#T io *TSI? %-> Jst frtfraRjnacr makes than more efficient, and Apply in turn generates better code
;i w» 3c-s *»Ji Jhr -nathiw ^wrfteit* better, (2) The limitation of the Apply programming model for
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Figure 3-3: Ratio of execution times of hand-generated W2 code
to Apply code.

Vertical line indicates a ratio of one. .

3.4 Comparison of Diverse Architectures
It is veiy raie that widely different computer architectures arc compared directly for performance; the best

previous examples hare been FORTRAN studies of supercomputer performance [20]. These have depended on the
implementation of a large language designed for use on sequential computers, and so have been limited to those
competes in which significant software development has occurred to bring up FORTRAN, and which aie suitable
for implementation of a sequential computer language.

The comparisons pieseoted heie differ from these because the Apply language is designed for roe on parallel
computers, so that a wider range of computers can be conipaied* and because Apply is application-specific, so that It
is smaS and does not lequiie an enormous effort to bring up cm a new system. Thus, we aie able to directly compare
the Sim 3/75, the'Camegie Mellon Warp machine, and the Hughes HBA.

3A1 Warp Compared with Sun
Figures 3-5 and 3-6 give the performance of a large number of programs' implemented both on the Sim 3/75

computer (16 MHz MC680201 with MC68881 coprocessor) and tbe Waxp macMtte., This allows tt$ to evaluate the
Waipf$ perfepmaoce for image processing compared with a Mgti-pofomiaiice woifcsiatLon.

Warp execution time was measured from the point at which the arrays of input data were available in Waip*$
cxiemtl host to the point at which the arrays of output data became available. This is consistent with the
measurement method for the Sen 3/75. Code download time was not included, Ail times are for 512x512 images.
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Execution time in seconds: Hand-coded W2

0.06 0.70 0.16 <US 0.4O 0.63

Figure 3-4: Scatter diagram of execution times of hand-generated W2 code
and Apply code.

Diagonal line indicates equality.

We observe the following from these data:
• There am a few cases whexe Waxp*s perfonnaoce far exceeds expectations: in the case of egfc aid

egks2> for example. Based: cm the comparative floating point ra te , we would expect Waip's
performance to be one to two hundred times that of the Sun, but hers the execution times is 666 and 304
trr.es less than the Sun. These large factois are due to the imemal parallelism of the Warp cell; It
consists of many independent units, which am 'be individually controlled with a wide horizontal
microinstruction. In the best case, a Waxp cell can do I/O with other ceils, read and write memory,
compute m integer ALU operation, and compute a foaling point add and a floating point multiply* aB
in the same 200 nanosecond cycle. The success of this design (and of the compiler in packing
tnstaiefioiJs together) is shown in fbeiatfac for egfc audegk&Z

• In Che majority of eases* tfae execution time mi® is teos of times the Sun 3/75, (Tim average ratio is 67,
with a median of 40). This refects tfae mw processing power of Waip combined with the effects of the
applications mix (wMcb includes a laife imoiMt of integer processing) and die efficiency of the Waip

• In sane ctsps, ifae »tio i$ tei cr less* In these cases; the Apply program cannot make use of Waipfs
hi#df pipelined Seating point taxis* becanse of a large amoaat of coodftioiial branching within tbe
pn}ffamt ajnd also because the compmatiem is mainly additicus, so that the separate multiplier cannot be

HBUB we u s seeing (he effects of using a highly pipelined machine to implement what is
y t scalar oponftioa The multiple iadepefjdeiit Warp «Hs cao still be ESCC! effectively, since

tbe computation k i«tep«mtait between each al l ; kit the pIpeiMag of the computation wilMn die cell
is not fti
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Figure 3-5: Ratio of execution times of Sun Apply code
to Warp Apply code.

3-4*2 Warp Compared with Hughes HBA
The Hughes HBA and Warp satisfy very different appEcations requirements. One is a machine specifically

designed for image processing, with a special video interface, and all high-speed I/O through a frame buffer; the
other is a machine interfaced to a general-purpose external host, which is suited for scientific computing and signal
processing as well as image processing. Hie high-speed floating point in Waxp is largely a reflection of the deaie to
satisfy all of these applications areas.

The HBA times are measured from the time the image is available for processing in the frame buffer of the HBA
to the time the output image is stored there. At the time of this study, the HBA processed 240x256 images; to be
consistent with the Warp times, the HBA times have been multiplied by 4J21* Tfoe,Waip times aie for 512x512
images, measured as before.

We have dooe only preliminary woik on the comparison between the Hughes HBA and Warp, Only a few
programs have been tested, and most of those are integer applications, biasing the data against Warp, since, it has
higher-speed floating point than the HBA. Taking this into account, we can study the data shown in Figure 3-7 and
3-8:

• Hie Waip times aie, on average, 3.2 times better than, the HBA (the median is also 3.2). This reflects
tfae greater total computational power of the Warp compaied with the HBA, together with the
application bias towards conditional, integer applications—the HBA can execute approximately 25
MFLOPS versus the Waip's 100 MFLOPS.

+ In the fmin and fmax algorithms, which compute the minimum and maximum of a 3x3 window around
each pixel, the HBA time is slightly tetter thin the HBA time. This is because in such a highly
conditional operation* the use of the long pipeline inside the Wup cell is a hairier to good perfonnawe.
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Figure 3-6: Scatter diagram of execution times of Son Apply code
and Waip Apply code.

Mosneover, the toial Bomber of ALU operations in the HBA is greater, since there are 24 processors
of 10, of comparable integer perfoimaiice.

3S Conclusions
TUf is th» flxst rtaiy wM'di we toe two© of io winch faigbiy div©rse aichit^tuies have been compared using the

same wince code. We mm mate several wodmiom based cm this study:

• Apply led WTO ase Cleiiiy good nmk for ccwipioi^: tbeseD aidiitectoies* 'Quite ap^art from the utility of
feiwiig Af^tf aod WEB ttteiUie on $o airfaMtee^ which is 'Ocmsiderable, using the same source code

£ 'MMf tm&m ^M sigrjfcauiJy affect penormance but which are irrelevant to performance
A|fly is eeqr tp i«|toiwrt on t f«MW processor, which mafces it po-ssible to evaluate the

j a e e of i top iwmlw of j w ^ M madmm wift Httte effort We look forward to evaluating
otter pwltel miliectiifW m im, f^n:re.

• Tte mtln pcifoaittMft Itaiiatlet! of the Apply pfognumning model is the inability to manipulate
€«a»tasl4jpe j/mmt0Bt$ dooft per imags utter ftun arce per pixel. This deficieixy will have to be
cmtcxed to Itene wfriaw of A{|iy at its «xc»cws.

#Mtot of tte ^fiw»*K» Bmltttfoot of oae treiiitectine over aaotter arise from intra-processor
, i^k* Ifata bMt^pmmmx dbmmiMnMks* TOs is teow^e this la?el of vision is easy to

, io tint dUSSemt puc^^if need to mmmtmctte veiy Ittle. Modi more significant is the
ability of to pmwwr to wcewsfitiy taplennent Ibe wide ian^ of q>erations that is required in

»facfading i ^ ^ » Sotting point, «od cooditiooal operatioos.

pioctMOn si lver ^if»i»»Kc i « n a $ « eveo ewer high-performance woricstations at this level
of wmm^ wi A^ly m i t a titem w te»te to pvognot. Tl» perfoimance ratios vary ftom ten- to

T to ft t sips&Mt, cwi-cffcctitc, perfoimance Increase.
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Figure 3-7: Ratio of execution times of Hugbes HBA Apply code
to Warp Apply code.

Vertical line indicates a ratio of ooe.
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Figure 3-8: Scatter diagram of execution times of Hughes HBA Apply code
and Waip A p p l y code.

Diagonal line indicates equality.
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4. The WEB Library

4.1 Introduction
WEB is a basic library, based on the Spider library, for image processing on Warp. It consists currently of 134

programs, covering the following areas:
• Basic image operations: add, subtract, multiply, divide images by images and images by constants,

assign zeroes, assign constant inside region.

• Conversions: byte to real, real to byte, polar to cartesian.

• Image giayvalue operations: clip, threshold, remap grayvalues, reduce graylevels.

• Image features: measure area of regions, center of gravity, circumscribing rectangle, histogram,
moments, perimeter of regions.

• Edge detection: Roberts, Frei and Chen, Kirsch, Sobel, Laplacian, Prewitt, Robinson, Kasvand.

• Convolution: convolution with a given weight window and by a constant Convolution and correlation
using EFT.

• Smoothing: adaptive local smoothing, median filtering, local maximum and minimum, iterative
enhancement, texture image processing.

• Orthogonal transformations: EFT, DCT.

• Warping: quadratic, affine.

• Pattern generation: checkerboard, stripe, bull's eye, diamond, grid.

• Multi-level image processing: generate pyramid, reduce by half, double.

• Binary image processing: detect borders, compute image of boundary points, connectivity, crossing,
expand or contract, shrink components.

• Color conversion: color to black and white.

Approximately 80% of the routines are written in Apply, and the rest in W2. All of the Apply routines can be
recompiled easily for W2 or C (Sun/Unix) code generation, and for different image sizes and number of cells. The
W2 programs have been written to use macros, in a way that makes it possible to change image sizes and number of
cells easily in most cases. As compiled, the WEB library does 512x512 image processing on a 10-cell Warp array.

4J2 Calling Programs in WEB
Any of the programs in WEB that are written in W2 or Apply can be called from C using warp_ca l l .

Parameters to wa rp_ca l l are the file name of the program, and the data parameters to be passed in and out of
Warp. The order of the parameters is given in Appendix!.

For any image parameter, a generalized image (type IMAGE *) can be passed to warp_ca l l . The actual type
and size of the generalized image can be of any type whatsoever. However, warp__call will process only a
512x512 region of the image, if is larger than that, ami will pad the image with zeroes to produce a 512x512 image
if it is smaller than thai. Moreover, for reasons of efficiency, the user may want to manage the memory storage class
and type of the image. For example, if a byte image is passed to a program that expects a real image, warp__call
automatically converts it, using a C routine. The user may wish to use the WEB routine b y r l instead. Also, all
generalized images are converted to Warp generalized images before being passed to warp_cal l ; this results in
the image being copied to Warp's external host memory. For short programs, this can be inefficient, and the user
may wish to create Warp images using i_warp_image or i_warpcrea t instead.

warp_ca l l expands environment variables in filenames, so that it is easy to write code that works no matter
where the WEB library is stored For example, the following code converts a byte image into a real image. The
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byte image is the generalized image i n , and the real image is the generalized image o u t :

warp_call("$WPEweb/byrl/byrl", GIMAGE, in, GIMAGE, out);

The following call applies two-dimensional convolution to an image. The input is in i n , the output is in o u t , and
the weight matrix is the matrix of floats w e i g h t s :

warp_call(ff$WPEweb/flwl0/flwl0"/ GIMAGE, in, OTHER, weights,
GIMAGE, out);

As documented in the man page, w a r p _ c a l l also takes parameters that are memory pointers or cluster memory
descriptor- Any parameter thai is an image can also be passed as an ordinary two-dimensional array of data using
these methods. However, this array will not automatically be converted by w a r p _ c a l l , nor will the bounds be
checked

Programs in WEB that are written to W2 or Apply can also be executed in the Warpshell using w 2 - e x e c u t e .
Parameter types are defined as in Appendix I.

43 Classification by Area
The programs in the library are distributed among the areas mentioned in the Introduction section as follows:

• Basic Operations: addclb, addclc, addclr, addcls, addplb, addplc, addplr, addpls, ctivclb, divclr,
divcls, divplh, divplrt divpls,fclib,fclir9flog,fsed, mulclb, mulclc, mdclr, mukls, mulplb, mulplc,
mulplccj, mulplr, mdpls, rplalb, rplalr, rpla2t subclb, subclc, subclr, subds, subplb, subplc,
subplr, subpls, tferlb, tferlr.

• Conversions: byrl9fcpl9 rlhy*

• Grayvalue Operations: clip, gmlt, gsft, gtrnl, log.pted, rqnt, selp, slthl, slth2, slth2m, slth3.

• Image Features: area!, cgrvl, cqltl, crcll, ersr3t histl, mmntl, mmnt4tprmtl, sizeL

• Edge Detection: egfc, egksl, egksl. eglp, egpr, egpwl,egpw2f egpw3, egpw4t egrb, egrsl, egr$2, egrs3,
egsbl, eg$h2, eUcvl, dfcv2.

xconv, yconv.

• SfiiQQtfikg: ®$M£9ftmaxtpmn9 itenl, Uen2, medi, temXZ, tepa, txav, txav2, txdfl, txdfL, txegl.

• Wapiiig: ̂ ml9 €ft®29 *0M3» mini, noln.2,

• PWtei Generation: pgerd, pgadt pgen3t pgerd, pgenS.

• Mite-Level linage Processing: expand, pyramid, reduce.

• Bfawy Image Processing: t*dr41$ bdr8h bflph cane, eras, epct, gras^ire, srnkl, srnkl, srnk3.

, mag, nmgdir, nonmax, sumrcb, sumrcr.
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5. Performance of Warp on the DARPA Image Understanding Architecture
Benchmarks

5.1 Introduction
The DARPA Architecture Workshop Benchmark Study was conceived for these reasons:

• To arrive at an initial understanding of the general strengths and weaknesses for image understanding
(IU) of the architectures represented.

• To project needs for future development of architectures to support IU.

• To promote communication and collaboration between various groups within the CS community which
are expected to contribute to development of real-time IU systems.

The benchmarks chosen represented common image processing operations from low and middle level vision, but
did not include high level image processing operations, such as recognition; these operations were felt to be too ill
defined at present to properly evaluate machine architectures.

Warp was one of the participants in the study. This paper is a summary of our results, which reflect the
performance on Warp on this level of vision, and can also serve as a guide for programming Warp in this area.

The precise definition of the image processing operations as given to the participants was as follows:
1. Laplacian. (Edge detection is done by this and the following two tasks. For edge detection, the input

is a 8-bit digital image of size 512x512 pixels.) Convolve the image with an 11x11 sampled
"Laplacian*' operator [15]. (Results within 5 pixels of the image border can be ignored.)

2. Zero-crossings Detection. Detect zero-crossings of the output of the operation, i.e. pixels at which
the output is positive but which have neighbors where the output is negative.

3. Border Following. Such pixels lie on the borders of regions where the Laplacian is positive. Output
sequences of the coordinates of these pixels that lie along the borders. (On border following see [27,
Section 11.2.2].)

4. Connected component labeling. Here the input is a 1-bit digital image of size 512 x 512 pixels. The
output is a 512x512 array of nonnegative integers in which

a. pixels that wane O's in the input image have value 0.

b. pixels that were 1's in the input image have positive values; two such pixels have the same
value if and only if they belong to the same connected component of Ts in the input image.
(On connected component labeling see [27, Section 113.1].)

5. Hough transform. The input is a 1-bit digital image of size 512x512. Assume that the origin (0,0)
image is at the lower left-hand corner of the image, with the x-axis along the bottom row. The output
is a 180x512 anay of nonnegative integers constructed as follows: For each pixel (x,y) having value
1 in the input image, and each i, 0 < i < 180, add 1 to the output image in position (iJ), where j is the
perpendicular distance (rounded to the nearest integer) from (0,0) to the line through (xyy) making
angle i-degrees with the x-axis (measured counterclockwise). (This output is a type of Hough
transform; if the input image has many collinear Ts, they will give rise to a high-valued peak in the
output image. OE Hough transforms see [27, Section 103.3].)

6. Convex HuIL (For this and the following two geometrical constructions tasks the input is a set S of
1000 real coordinate pairs, defining a set of 1000 points in the plane, selected at randan, with each
coordinate in the range [0,1000]. Several outputs are required as follows.) An ordered list of die pairs
that lie on the boundary of the convex hull of S* in sequence around the boundary. (On convex hulls
see [26, Chapters 3-4].)

7. Voroool Diagram. The Vomnoi diagram of S, defined by the set of coordinates of its vertices, the set
of pairs of vertices that are joined by edges, and the set of rays emanating from vertices and not
terminating at another vertex. (On Von>noi diagrams see [26, Section 55].)

8. Minimal Spanning Tree. The minimal spanning tree of S, defined by the set of fairs of points of S
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that are joined by edges of the tree. (On minimal spanning trees see [26, Section 6.1].)

9. Visibility. The input is a set of 1000 triples of triples of real coordinates ((r,sj)£u,v,w)£x,yjc)),
defining 1000 opaque triangles in three-dimensional space, selected at random with each coordinate in
the range [0,1000]. The output is a list of vertices of the triangles that are visible from (0,0,0).

10. Graph matching. The input is a graph G having 100 vertices, each joined by an edge to 10 other
vertices selected at random, and another graph H having 30 vertices, each joined by an edge to 3 other
vertices selected at random. The output is a list of the occurrences of (an isomorphic image of) H as a
subgraph of G. As a variation on this task, suppose the vertices (and edges) of G and H have
real-valued labels in some bounded range; then the output is that occurrence (if any) of H a s a
subgraph of G for which the sum of the absolute differences between corresponding pairs of labels is a
minimum.

11. Minimum-cost path* The input is a graph G having 1000 vertices, each joined by an edge to 100 other
vertices selected at random, and where each edge has a nonnegative real-valued weight in some
bounded range. Given two vertices P, Q of G, the problem is to find a path from P to Q along which
the sum of the weights is minimum.

In what follows, we first describe the current Warp status, and then describe our work on each of the algorithms.
We do not review the Warp architecture or programming environment here, since complete reviews are available
elsewhere [2,3,5,8,9] .

5-2 Warp Status
At the time this comparison was dome, there are three operating Warp machines at Carnegie Mellon. Two of them

were prototypes. One was built by General Electric Radar Systems Department (Syracuse) and the other by
Honeywell Marine Systems Department (Seattle). Both consist of a linear array of ten cells, each giving 10
MELGPS, for a total of 100 MFLOPS, and operate in an identical software environment These machines are
referred to as WW Warp, since they are of wirewrap construction. The machines are fed data by MC68020
processors, called the "external host," and the whole system is controlled from a Sim 3/160.

The third machine was a production machine, one of several being constructed by General Electric Corporation.
(Currently, all the Warp computers in existence are of this type; thane are two of The production machines are built
from printed-circuit boards, and are called PC Warp. The baseline power of these machines is also 100 MFLOPS,
although they can easily be expanded to 160 MFLOPS by simply adding more cells. (The army can be expanded
still farther, bet this requires a special repeater board and a second rack). The PC Warp is changed in several ways
from the WW Warp: cell (Ma and program memories are larger, there is on-cell address generation, and there is a
large register overflow file to provide a second memory for scaiars. Some of these improvements imply an
increased speed on some of the benchmarks, as will be noted. For example, because of on-cell address generation,
the cells is able to tolerate an arbitrary skew in compulation, which makes it possible to overlap input, computation,
and output in many algorithms. Also, improved processor boards in the external host allow improved I/O rates
between Wmp and i» host tkotig^i DMA, r m i o v ^ ite kM W Ix^to^dc k nfmiry ca»^. Finally, since each cell
has more local con trol, il is possible to make Warp computation more data dependent, by alkming data-dependent
I/O letween ecHs, as well as heierogerieoiis computation (different programs cm different ceils).

Carnegie Melton and Intel Corporation are developing the 'integrated** version of Waip, called i Waip. U Ms
macMne* each cell of W a p w i t be im^mmm®&m&mgt<Mp« The clock rate will be mcreased so that each chip
will support il least 16 MFLOPS compilation, as opposed to 10 MFLOPS In WW and PC Warp. In the baseline
mmMm the eels wH be organked into t linear airty of 72 eels* giving a total cooqwwioa erf" 1,152 GFLOPS, to
the foOowtitg analysis, k has been assumed that each f Warp cell can do everything a PC Warp cell can, with m
increase cf L6 in sr^ed iihis is a design gcaij. When I/O botilawclcs have led to a mmimmmperi(mmicttkmmB
boictaa^fc* tMs tes beos notedL

All the hefictmsks listed below si being imzkmzr^a on Warp are written in W2, the Warp programming
langwqp. W2kM^Q(^hmdlmp^^fmdh(mMsmmlmtlmCm?^md^ Arrays and scaiars mt supported, as
mt f o r loops* awl if statements. Tte pogiaminets are await that they ait programming a parallel machine, since
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each program is duplicated to all cells and then executed locally (with local sequencing) on each cell.

5.3 Vision Programming On Warp
We have studied vision programming at various levels on Warp for some time now, and developed and

documented several different models [12,24]. In this section we briefly review the various models of Warp
programming, for reference in later sections.

All the programs in this paper use the cells in a homogeneous programming model: that is, all cells execute the
same program, although the program counters on the different cells can differ, and each has its own local data
memory. This is a restriction imposed by the hardware of WW Warp. Programs on PC Warp need not follow this
restriction.

53A Input Partitioning
In this model, which is used for local operations like convolutions, the image is divided into a number of portions

by column, and each of the ten cells takes one-tenth of the image. Thus, in 512 x 512 image processing cell 0 takes
columns 0-51 of the image, cell 1 takes columns 52-103, and so on (a border is added to the image to take care of
images whose width is not a multiple of ten). The image is divided in this way because it makes it possible to
process a row of the image at a time, and because the host need only send the image in raster-order, which is
important because the host tends to be a bottleneck in many algorithms.

53.2 Output Partitioning
This model is used for algorithms in which the operation to be performed is global, so that any output can depend

on any input, but can still be computed independently. In this model, each cell sees the complete input image, and
processes it to produce part of the output. Generally, the output data set produced by a cell is stored in the cell's
local memory until the complete input image is processed. Hough transform is implemented in this way.

533 Pipelining
In this model, which is the classic type of "systolic" algorithm, the algorithm is divided into regular steps, and

each cell performs one step. This method can be used when the algorithm is regular. (Because the cell code must be
homogeneous, this method is of less use on the wire-wrap Warp machine than it usually is in systolic machines).
When this method can be used, it is generally more efficient in terms of input and output overlap with computation
and local memory use than either of the two models above.

5.4 Lapladan
Lapladan. Convolve the image with an 11 x 11 sampled "Laplacian" operator [15]. (Results within 5 pixels of die

image border can be ignored.)

The Laplacian given [IS] is symmetric, but not separable. (Separable filters can be computed more efficiently, in
general, than non-separable filters). In this section we describe a series of optimizations we applied to the Laplacian
filter in the Warp implementation, which fed to an efficient implementation. These optimizations can be applied to
any symmetric filter, and will lead to efficient implementations on many different computer architectures.

Since most filters use masks with an odd number of rows aid columns, the rest of this discussion will deal with
this case. Let the size of the mask be represented by Ar=2Af +1.

In order to see where the optimizations come from, we first notice that an uooptimized NxN convolution takes JV2

multiplies and N2-l additions per pixel. A separable convolution of the same size would take only IN
multiplications and 2(W-I) additions.

One way to compute the Lapladan is to compute if as a series of column convolutions. Each column lakes N
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multiplications and JV-1 additions, and then N-1 additions are required to add all of the partial sums. The total
number of multiplications is NxN=N2, and the number of additions isNx(N-l)+(N-l)=N - 1 .

Due to symmetry, we can add the pairs of corresponding pixels within a column before multiplying them by the
weights, as shown in Figure 5-1. Each of the N columns contains M pixels that can be added in this way, and one
pixel in the middle which is not part of a pair. We call this column of M +1 pixels a ''folded" column. After the
multiplication, the pixels in each folded column must be added, and then all the columns must be added as before.
This saves multiplications, but not additions: the number of multiplications is N(M+l) = (N2+N)/2, while the
additions sum to NxM+NxM + (JV-1)=#21
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\
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Figure 5-1: Folding columns

Now role that calculations for a given pixel can share partial results with neighboring calculations in the same
row. As we shift the convolution window from the left to the right one step, we can retain all but one of the folded
columns from the previous convolution, and sum jest one new folded column, as shown in Figure 5-2. The rest of
the algorithm is unchanged. Multiplications are unaffected, hit additions are reduced almost by half, to

2

teep

>Add

Figure 5-2: Using results from previous steps

tnkpe weit^is* As we shift the wisfow io the nght, we cm compute and store the convolution of the new column
miw^i^ils,isdKmmtaRpHt5-3w Then, as we shift the window up to N pixels to the right, we

ortjf tow to $M the appropriate a»wlred ajlisni suns* as shown in Figure 5-4. Thus again, nearly half of
the « ^ ^ ^ ^ ^ and atliitiws can be savodL Thus fm m± pxdL9 only M+1 imtial weighted column sums need
be fettgattd, and d m JV-1 addHtan* ire itqiwed to add i » prcqw partial mm together. The number of

i i p ^ is tea (M+l)x(M+l)«((JV+l)/2ft wtile the aMiticMis o>n» to (M+l)xM+Af+(iVr~l)=

5*1 simi^r^B ©tar nesuM % ox iprag ibe number erf multiplications awl additions by our method with
J¥a

t the mm hot required for an imopiiinixied iemtl mA7NttbiC number for a separable kernel:

An atyparftini the i tmc model w inapkmented irnng input pardtioning on the WW Warp, and gave a
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Figure 5-4: Adding appropriate column sums

Mask Size

3x3

5x5

7x7

9x9

11x11

15x15

25x25

Multiplications

4

9

16

25

36

64

144

Additions

5
12

21

32

45

77

192

9

25

49

81

121

225

625

IN

6

10

14

18

22

30

50

Table 5-1: Optimized Symmetric Convolution

runtime of 432 milliseconds. The same algorithm was compiled for the PC Warp, and gave a runtime of 350
milliseconds. The change was due to overlap of I/O with computation in PC Warp, which is not possible for this
algorithm on the WW Warp, On i Warp, assuming a stmigjitfcxward speedup arising from a 72-ceIl array with a 16
MHz clock, the time will be 30 milliseconds.

55 Zero Crossings Detection
Zero-cross!ngs Detection. Detect zero-crossings of the output of the operation, i.e. pixels at which the output is

positive but which have neighbors where the output is negative.

Zero crossing was implemented using the input partitioning model. A mre-e by three window was taken around
each pixel If any elements of the window woe negative* btit the central pixel was positive* a zero crossing was
declared and a " 1 M was output, othawise " 0 " was output This amputation was performed by timsformmg each
9-donoit window into a 9-hk Integer, with which a table lookup was performed. Input n i l output were represented
as S-fait pixels. Execution time on the WW Warp was 172 miliisecoiids; CM the PC Warp the time will be
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approximately 92 milliseconds, due to overlap of I/O with computation. On i Warp, the time will be limited by I/O
bandwidth to the array to at least 7.8 milliseconds.

In many cases, it is desirable to perform the Laplacian and zero crossing computations in sequence, without
saving the results of the Laplacian. In this case, on iWarp, the computation can be done more quickly than by
performing each individually. We estimate that such a computation will take 31 milliseconds, fast enough for video
rate image processing.

5.6 Border following
Border Following. Output sequences of the coordinates of pixels that lie on the borders of regions where the

Lapfociaa is positive. (On border following see [27, Section 1122].)

The algorithm is mapped in two steps. First each Warp cell performs the border following technique on part of
the image. Then, these partial results are then combined within the array to produce the complete border trace for
the image. The full algorithm is:

• Each cell sends its bottom row to its successor.

• Starting with the bottom row, on the left, each cell inspects the pixels on this row. If the pixel is turned
on, the cell begins to trace this connected component As k traces the component, it builds a list of of
its pixels to the next cell. As it visits pixels, it amis them off, so they will not be visited on scans of
Marrows.

• EMier this component extends to the cell's top row, or it does not If not, then the list of pixels
eventually lerminaies within the cell's strip; the cell queues the whole list of pixels for output to the
next ceil, marking the component as complete. But if the component extends to the top row, it may join
with a compG n̂em of ihe preceding cell. The ceU checks its copy of the previous cell's last row to see if
this is a possibility. If not, again the list may be passed to the next celL But if it is, the cell stacks the
list k ba$ bolt so fer* awl begins processing another omipOTent, bottom to top.

TMs completes ihe parallel phase of the computation, Each cell now has two lists of borders: those ready for
output, ami those that must be merged with borders k preceding cells. The cells now run the following merge
phase*

• Eack cdl tries to do two things (1) empty its rcady4br-oiitput queue, and (2) mow all the components
en i s stack to this queue* Operation (1) happens asynehraiotisly, depending upon the next cell's input
cpeoe* Operation (2) is performed as folfom

• Eventually, t t eprooe^^ When
His happens* fee component may be unsiarked, the stacked pixels attached to the proper aid of the list
received ftma the pcevfooi ooatyoaeat (mm that ins may involve attaching lists to both ends), and pass
the mm completed list at least, complete in its f»th through the given cell and its predecessor to the

dk ueue*

TUi afettfetai matt Hemimm, since the fin* ceH never has any stacked components. Hence it will eventually
flask at! the mm$mm$ m Us output queue to the second cell, giving the second eel all die information it needs to
mom aB ks aNcfeod mmpomom to to output queue, By tasting this argument, it follows that each cell must
©ttteifly de to Mk wd then Its oittpnt cpeoc

ftaally, w ovnoc provide a tim tmmmt for tMs ̂ goridun. Tte first step is essentially a connected-components
onptttffto*. Tits vffl tske no longer tea tte pnDet step of t UNION-FIND based connected components

Mow* Far PC Waqt will 10 ceils, te is 73 mMBstcoiids; fix iWaip, with 72 cells, tMs is 6 3
^ f c ! t « » atifwiai wens ^ a i w i by civMfi»g the tmqrocessor time of tte Hughes HBA [32]

^ UNIO&FIND l r i f b d b f
tiia ens ^ a i w i by civMfi»g the tmqrocessor time of tte Hughes

^ ^ ^ ^ ^ ^ » ' ^ a pom UNIO&FIND alpritfia by die amber of cells* and again by suitable nombeis
tmpmemmspmi

step » a mM HWfe {» Ae worst cm). We «timate this step will take about 1.02 second for PC
Waip, and 690 miStacvmls to i Wavp. T ^ « etttaaics « t baaed on our experience with simile mage ^ > s for
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the connected components algorithm, and the i/o bandwidth of each machine. Hence our estimates are:

PC Warp: 1.1 seconds
i Warp: 690 milliseconds

5.7 Connected components labelling
Connected component labeling. Here the input is a 1-bit digital image of size 512x512 pixels. The output is a

512x512 array of nonnegative integers in which
1. pixels that were 0' s in the input image have value 0.

2. pixels that were Vs in the input image have positive values; two such pixels have the same value if and only if
they belong to the same connected component of l's in the input image. (On connected component labeling
see [27, Section 113.1].)

In this section we present our parallel-sequential-systolic algorithm for this computation, our timings of a C
simulation of the algorithm, and our estimates of its execution time on Warp, PC Warp, and x Warp.

Section 5.7.1 gives the algorithm. Section 5.7.2 presents the asymptotic running time of the parallel-
sequential-systolic algorithm. We also show how to modify this work to get a parallel-sequential-parallel
algorithm, and give its running time. Section 5.7.3 discusses the implementation, covering both our existing C
simulation and our planned Warp implementations; here we give the actual execution time of the simulations and the
estimated execution times for the Warp implementation, and discuss the constraints imposed by the Warp
architecture.

5 J . I Sketch of the Algorithm

5.7.1.1 Vocabulary and Notation
The input to the algorithm is a NxN array (512x512 in this case) of binary pixels. A 1-valued pixel is called

significant, all others are insignificant. We label the rows and columns consecutively from 0 to N-l, starting in the
upper-left-hand comer. The 4-neighbors of a pixel are the pixels that lie immediately above, below, left and right of
it; its 8-neighbors are the eight pixels that surround it Two significant pixels x and 3? lie in the same connected
4-component (connected 8-component) of the image iff there is a sequence of significant pixels po» . . . ,pn with
Ptr^Pn^y andp£_1 a 4-neighbor (8-neighbor) of pt for each x = l , . . . , / / . The algorithm we present here computes
connected 4-components. It is straightforward to modify it to compute connected 8-components; the timing
estimates we present later are for the connected 8-component version.

Our algorithm executes on a linear systolic array of K processing cells, numbered consecutively from 0 to JC-1.
Each cell processes a set of adjacent rows of the image, called a slice. We assume that K divides N, and that the
slices are of uniform size NIK rows. The Oth cell processes the first NIK rows of the image, called slice 0, and so on.
When data flows from cell i to cell x+1, we will say it crosses the i,x+l boundary, or simply, an inter-cell boundary.
A cell's label space is the set of all labels that it may assign to any pixel; cell Vs label space is denoted L-. We
choose suitable bounds on the label spaces so that they are guaranteed disjoint.

5.7.1.2 The Algorithm
The algorithm proceeds in three phases: parallel, sequential, and systolic.

In the parallel phase, each cell computes labels for its slice of the image.

In the sequential phase, computation proceeds serially over each f-1, x" boundary, for x=1, „ . . , K. The ith stage
of this computation effectively passes infoonatioii about the connectivity of slices 0 through i-1 to slice 1. The
actual computation consists of scanning the i—I,i boundary to construct two maps, which record connectivity
information, than applying the second of these maps along the bottom row of slice i to propagate this information
downward. Note that after this phase finishes, tower-numbered sices still lack informatioii about higher-nunibeined
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slices. We perform this computation in K serial steps because of the limited interconnection topology of Warp.

In the systolic phase, the labels are pumped out of the cell array. As each label crosses into or out of a cell, the
cell applies the maps generated in the sequential phase. Since the labels assigned to slice i must pass through cells
i+l , . . . , A", this permits higher-numbered cells to modify the labels assigned by lower-numbered cells, completing
the computation. Each phase of the algorithm is explained in greater detail below.

Parallel Phase. In this phase, each cell computes preliminary labels for its slice of the image. These labels are
drawn from the cell's label space, which are guaranteed not to be used by any other cell. We use a modification of
the Schwartz-Sharir-Siegel algorithm [28], which runs in linear time in the size of the slice.

Sequential Phase. In this phase, processing proceeds sequentially in Jf-1 stages over each of the K-l inter-cell
boundaries. The function of stage i, when we compute along the I - 1 , I boundary, is to pass information about the
connectivity of slices 0 to i - 1 , inclusive, to cell L This information is recorded in the two maps that are built for
each boundary. Cell i builds the maps for the i - 1 , * boundary. We call the first map a*; it is used by cell i to relabel
pixels when they enter the cell We call the second map fy; it is used by cell / to relabel the pixels when they leave
theceil. f

The maps have intuitive meanings, as follows. Each <j>t- tells how to relabel the pixels of slice i to make them |
consistent with the connections in the i-1 preceding slices. Specifically, suppose x and y are two significant pixels |
of slice i such that there is a path from x to y that passes through slices 0 to it but no path that lies entirely within f
slice L Then after the parallel phase, x and y will bear distinct labels. However, <t>£ is constructed such that <|>t<x) = f
ĉ -GO iff there is a path from x to y that lies wholly within slices 0 through L Thus fy encodes the influence of slices 0 |
through i-\ on slice L §

Similarly, a- contains information about connectivity across the i-lj boundary. Let w ami v be significant pixels |
on the bottom row of slice i -1 , and let x and y be significant pixels on the top row of slice i, such that w and JC are f
adjacent, and v and y are adjacent. Suppose that x and y are connected by a path that Iks wholly within slices 0 |
through i, but that w and v are not connected by any path that lies wholly within slices 0 through i - 1 . Then after the |
parallel phase, w and v will bear distinct labels. However, a . is constructed such that §£x)^£o£w)y^£G£v))==tyfiy). |
Thus a,, encodes the influence of slice i on slices 0 through i - 1 . I

These maps are constructed by the following procedure. We use seme special notation. Let / : M-*N; then/is a I
subset of MxN. We writefMpt^n) fear the function obtained by deleting the pair (mj(m)) from/and adding the pair f
(m9n) to the resulting set For the purposes of the UNION-FIND portion of the algorithm, we assume that each |
/ G L; lies in a singleton set {/} that boors the name I We also assume that each map is initialized to the identity |
map. - 1

for i — 1 to K do begin \
get B, the bottom row of slice i-1 {
get T, the top row of slice i |
for col « 0 to N-l do I

if Bfcoll *»d TEcoi] are significant then . *
Call UfcxiatefBEcoi]/ T[coi3) •

for coi - 0 to N-l do
If T[coi] is significant then begin

+. m ^ + <T£COlJr FIND {T [COl] )>
end

if I # K then apply fj t 0 the bottom boundary of 3lice I
end

procedure Update {Pr«vCell# CiarrCell) ;;

begin ,-
i f 0|fPr©vCeii) • PrevCell then 0| - @i + <PrevC«ll# CurrCeil> \
e l s e OBlOMfCttrrCell/ OjCPrftvOetll)) :

end
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Note that each of a-, fy may be computed locally by cell i, requiring only the bottom row of slice /—I. This is not
done in practice, because we want to use path-compression for the UNION-FIND computations, and the cells cannot
implement this algorithm efficiently. Because the UNION-FEND operations are performed on the data structures
that embody the fy, we will refer to these operations, when we are accounting for the algorithm's running time, as <|>
lookups and additions, or simply <J> updates.

The correctness proofs for these algorithms are tedious and are omitted here (a correctness proof for a similar
algorithm can be found in Kung and Webb [23]). It remains to show how these maps are used to compute the
connected components of the entire image. This is done in the next section.

Systolic Phase. In this phase, the pixel labels are pumped out of the cells. Each significant pixel receives its final
label through the following systolic labelling procedure. First, as a label enters cell i, crossing the i - 1 , i boundary, it
is passed through the map a-. Note that labels belonging to slice i do not cross this boundary, so are not mapped this
way within cell L Second, as a label leaves cell U crossing the i\i+l boundary, it is passed through the map <J>f. This
happens whether the label was received from cell i - 1 , or originated within cell L

It is not difficult to give an inductive proof that this procedure correctly labels the connected components of the
image. However, we believe it is more illuminating to work through an example.

Figure 5-5 depicts the binary input to the algorithm. Here 7tf=9, isT=3. Significant pixels are marked "X." Rows
and columns are numbered consecutively from 0, starting in the upper-left-hand corner; we give the coordinates of a
pixel as (row, column). Figure 5-6 shows the labels for the significant pixels after completion of the parallel phase.

Slice 0

Slice 1

Slice 2

X
X
X
Xxx
X
Xxx

X
Xxx
X
Xx

XX
Xxx
X
Xxx

X
X
X
Xx
X
X
Xx

Figure 5-5: Input

1
1
\\
11
11
11
21
21
1\\

3
12
1?,
1?
21
?!

3
13
U
11

2
2
?
14
14:
14
?2
n

Figure 5-6: Labels after parallel phase
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Synchronization. The WW Waip requires compile-time synchronization. Thus an i f - t h e n - e l s e statement
will always take the time required by the slower of the two alternatives, and any loop must run for a fixed (maximal)
number of iterations.

As a consequence, the WW Warp runs poorly on algorithms that exhibit good behavior only in the off-line sense.
To see this, recall that techniques with good off-line performance-notably path-compression-derive their
advantage by performing a few of the operations in a sequence slowly, so that the remaining operations in the
sequence will be fast But Warp forces each step of a procedure to take the time of the slowest possible alternative.
Hence an implementation of an off-line algorithm will behave as if the most expensive operation were performed at
each step of the sequence. Thus the algorithm with the best on-line behavior is always preferred.

This means that we must either abandon the path-compression approach to the sequential stage, or perform the
sequential portion of the algorithm on a computation engine that does not have these constraints. Since there is no
inherent advantage to performing the sequential phase on the cells (for there is no parallelism to exploit), and since
the cost of shipping the necessary data to a suitable processor is low, we choose to do this phase on one of the [
Warp's MC68Q20-based cluster processors. \

For similar reasons, we cannot improve the execution time by using sophisticated data structures to implement the |
a-maps in the systolic phase. Unfortunately, this problem cannot be avoided. The best we can do here is use a data j
structure with good constant-time performance. This is discussed more fully below. \

f
Memory Constraints. Our formulae for the asymptotic running times of these algorithms are based on the |

assumption of unit-access time to the data structures that hold the a and <?> maps. If memory is not a consideration, I
this speed can be attained by representing each map by a large array. The PC Warp and i Warp machines have '
enough cell memory to represent the maps this way. The speed estimates below for these machines are based on this
assumption.

The WW Warp cell does not have enough memory to do this. Instead we must use an approach that gives good
update and access times, with only moderate memory requirements. This is easy to do for the <j>-maps. If each cell
begins the assignment of the initial labels on the top boundary of its slice, the labels of this row will be drawn from
the first A72 elements of the slice's label space. Now note that though each o-is defined on the set L o u • •• uLx-,
which contains (k-lfN/lfN/TK] elements, ^ will fix all of £Q U - • • u L M t . and also aU of Lf, except possibly
those elements of I , that appear on the top row of slice i\ Thus we can maintain p:- as an array of size N/2f indexed
by offset from the first element of Lt To compute 9;{r)s we need only check to see if r Iks in the range of interest,
then find its offset and lode up the value. This approach uses a small amount of memory, with only minor sacrifice
of speed .Also, it is efficient for both the sequential phase of the computation, when the algorithm builds each 6;
using path-compression tec hniques, and the systolic phase, when the only operations ire look-ups.

Hie situation is not as nice when we consider the a maps. It is true d m m ai will map more than Nfl elements
away from themselves. This is becaose only labels chat appear CM the ix^ t cmiwrc r fdk^M nmybenwwdbyo) .
However, these labels are no logger g i ^ ^ For instance, it is easy
to constrjct an exampk so that labels d-a,wn from both the rlrstA72 elemersts and the bstA72 elements of L,_1 will
appear cm die bottom row of s ice I

One solution is la rrain&in each a, as m array of ordered pairs, sorted by the first element of each pair. This
permits lockup m worn-case legr t ) time* and is well-siiked ID the systolic stage of the algorithm. In fact, it is the
approach we use there. However, it does not permit fast addition to the map, awl we must do both lookup and
addition qpexaiiofts MI the sequential si2ge. For this reason, we use the sdi-sdmnng binary tree data structure to
implemeni the 0 t m Ehis stage. TMs^MmmMmmMmmif^d^-ta&padmtmmx, However, we use it only
during the sequential phase of ifae cafcttlttian, when we build it© map. The efficiency and simplicity of this data
sttHCfwe is another reason for doing tbe ^KmM^tajMkm^
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5.73,2 Vax Implementation
We have implemented the algorithm in C on a Vax 780, simulating the operation of a 10-cell Warp array. Each

phase of the algorithm is implemented as one or more procedures, parameterized by cell number. A cell's local
memory is represented by several large arrays; systolic communication is simulated by explicit data movement in
and out of these arrays.

Note that the value of the a maps themselves are never needed directly. We are interested only in the $ maps, and
in the composition maps <)> o <x. For this reason we compute these compositions explicitly ahead of time. This way,
each label that traverses a cell is mapped only once, through 4> ° <y, rather than through cr and <j> successively.

The simulation program processes a typical 512x512 image in about 4 1/2 minutes of CPU time. Fortunately,
most of this represents the simulation of inter-cell communication.

To learn how the program was spending its time, we used the Unix prof [21] performanre-monitoring program.
The results are summarized in Table 5-4. The total is less than 4 1/2 minutes because the time for simulating
communication is not included.

Phase Time (seconds) Time (seconds)

Parallel Phase

Sequential Phase
Boundary Scan
<J) Update
a Update
<|>° <i Computation

Total

Systolic Phase
<)> Lookups
<|>o a Lookups

Total

Total

33

.16

.10

.53

.06

.85

3.8
25

28

Table 5-4:

33

.85

28

62

Vax implementation timings

5.73.3 Warp Implementations
We have not yet completed a Warp implementation. In this section we discuss the partial implementation for the

WW Warp architecture, and give execution time estimates for the planned PC Warp and i Warp implementations.
All our estimates are for the paraliei-sequential-parallel version of the algorithm, computing connected 8-
components.

WW Warp Our implementation for the WW Waip divides the computational burden between the linear systolic
array and the cluster processors. The initial and final labellings are (tone by the systolic array; the sequential step is
done by the cluster processors. This permits us to use algorithms with fast amortized time in the sequential step.

After the initial labelling, we would like to retain the initial results in cell memofy, transmitting only each cell's
boundary rows to the external host for generating the necessary maps. Unfortunately, the WW Waip cell memory is
not large enough to hold a labelled slice, and barely large enough to hold the intermediate result required by the
initial marking algorithm. This forces us to send the entire contents of each celTs slice to the external host as the
labels are generated, then pump these slices back through the array for the final labelling.

We have written, but not yet debugged, all the code for the cell array. We have accurate estimates of the running
time of this code, provided by the compiler. We have also estimated the raining time of the sequential phase. We
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derived this estimate from the sequential phase running time of the C implementation, allowing for a slight speed-up
of the cluster processors over the Vax, and also for the extra work (computing the X-) done in this phase by the
parallel-sequential-parallel version of the algorithm. The resulting estimate appears in Table 5-5.

Phase Time

Initial Parallel Phase
Pump in Image
Initial Labelling
Total

Sequential Phase
Boundary Scan
$ Update
a Update
X Computation
Total

Final Parallel Phase
X Lookups
Pump Chit Labels
Total

Total

(milliseconds)

50
2400
2450

150
90

490
110
840

2200
50

2290

Table 5-5:

Time (milliseconds)

2400

840

2300

5600

Estimated WW Warp timings

PC Warp and i Warp Architectures. In this section we derive estimated execution times for these architectures.
There are three key differences between the design of these ceils ami those of the WW Warp. The first is that each
ceil has enough memory to maintain a full slice of labels. This means that we do not need to pump the intermediate
labels to an external memory. The second is that the cells are not bound by the synchronization constraints of the
WW machine. This means that the sequential phase computation can be performed on die cell array. This saves
time because we no longer have to do i/o to the cluster processors for this phase, and because the cells run 2.8 times
faster than tie cluster processors. The third is that each of these machines is more powerful than the WW Warp.
Both the PC Warp and the i Warp can do arithmetic directly on integers; this speeds up any integer arithmetic
computation by a factor of 3. Furthermore, the iWaip cells ran L6 times foster thai the Warp and PC Warp cells.

The only other salient difference between PC Warp and /Warp, for our purposes, is that the iWarp contains 72
cells. Thm we can potentially attain more parallelism on i Warp. However, because the time taken in the mage
phase varies linearly with the number of cells, while the time taken in each parallel phase varies inversely with this
number, it is not necessarily best to use the greatest possible number of processors. If the execution time of the
algorithm as a function of the number of celis is T(K)=A/K+JWt, then the best time will be obtained with K=^A/B.
In the case of f Warp, we have ,4=4.994^=.00812, so the best K is 25. The estimate below for f Warp execution
time was made using this value.

Tne resuItLng esumaie-s appear m Tables 5-6 and 5-7.

5JS Hough transform
Hough transform. The input is a 1-bit digital Image of size 512x512. Assume that tie origin (0,0) image is at the

lower kil-hand comer of the image, with the x-nis nkmg the fooiiom rowa The wmpM Is t 180x512 array of
acmepffv® integers ecnstnxxsd as follows: Bar each pixel Cx,yj having value I In the input image, and each i,
CkklSO, add 1 to the output image in position (ij), where j k die perpendicular distance (rounded to the nearest
integer) from {0,0) la fine Issc through (x r̂) maidttg angle degrees wMi te x-uus (mzzsuied counterclockwise). (This
w l p i is a type of Hough tzmsfmxn; if t ^ mpm. image has many colkmr 1 \ +Jiey wH give rise to a high-valued peak
k §» wQA ina§e* On Hoii^t tmmimm wm [27f SW^MI 1033).)

The Bwtgii te^sfewn algorithm hm been pcvtotisly i^aribwi {23]. Bridly, each of the i n cells gets one-tciitli
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Phase

Initial Parallel Phase
Pump In Image
Initial Labelling
Total

Sequential Phase
Boundary Scan
4 Update
a Update
X Computation
Total

Final Parallel Phase
X Lookups
Pump Out Labels
Total

Time (milliseconds)

53
710
760

53
33
3

41
130

36
53
89

Time (milliseconds)

760

130

89

Total

Phase

980

Tabte 5-6: Estimated PC Warp timings

Time (mflliseconds) Time (milliseconds)

Initial Parallel Phase
Pump In Image
Initial Labelling

Sequential Phase
Boundary Scan
t Update
a Update
X Computation
Total

Final Parallel Phase
X Lookups
Pump Out Labels
Total

Tbtal

33
191
224

83
4J
52
63

200

9.0
33
42

224

200

42

470

Table 5-7: Estimated iWarp timings

of the Hough array, partitioned by angle. The input image flows through the Warp array, and each cell increments
its portion of the Hough array for all image pixels which are " 1 * \ Once the image has been processed, the Hough
array is concatenated and output to Warp's external host

For the particular parameters of this benchmark, which uses an array of 180x512 data, this requires each cell
store 18x512=9 K words of data. This will not fit on the WW machine, which has a memory of 4K words/cell. But
on PC Waip, each cell will have a memory of 32K words, so that the Hough array fits easily. On i.Waip 60 cells are
used (60 being the largest number less than 72 which evenly divides 180), so that each cell needs to store only
3x512=1536 bytes of data.

In order to derive estimates, we implemented a Hough transform program (with a smaller number of angles than
in the benchmark) and ran it on the WW machine. The algorithm does not change for moie angles, so the estimates
given by this method are accurate for the PC Warp with the benchmaik parameters.
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By derivation from this program, the time per pixel with value " 1 " is 13 microseconds. Assuming 10% of the
image is one, on PC Warp the benchmark will execute in 340 milliseconds. On i Warp, the estimated execution time
is 60 milliseconds. These times scale linearly with the number of * * V' 's in the image.

5.9 Convex Hull.
Convex Hull. The input is a set S of 1000 real coordinate pairs, defining a set of 1000 points in the plane, selected at

random, with each coordinate in the range [0,1000]. The output is an ordered list of the pairs that lie on the boundary
of the convex hull of S, in sequence around the boundary. (On convex hulls see [26, Chapters 3-4].)

R. A. Jarvis's [19] algorithm was used This algorithm works as follows:

• Sort the points according to (x,y)-cooidinate. The first point is a convex hull point Call it AQ.

• Let*=0, Repeal the following until AM=AQ:

• For each point fl in the set, do the following:

• Calculate the angle from the vector A p A ^ to the vector B-A(. (If *=0 we take the second
vector to be (-1,0)).

• The point with smallest angle is a convex hull point. Call it AM.

This algorithm obviously has time complexity O (K/V), where K is the number of convex hull points, and N is the
number of points in the set The time consuming step in the algorithm is the scan through the set of points to find
the next convex hull point

We implemented the above algorithm on the WW Warp, using C code to program the cluster processors and W2
to program the Warp array. In our implementation, the Warp array performs the inner loop in the algorithm, which
finds a new convex hull point by calculation of the angle with all points. This is done in parallel on all cells, by
partitioning the set of data points across the array and finding the best point in each cell's dataset individually, then
finding the best point of the cell's points. The cluster processors repeatedly accept the new point from the Warp
array and pass in this new convex hull point for the next step of the computation.

To test this algorithm, we generated a 1000 node random graph, which had 13 huU p o ^ The measured time on
the WW machine was 6.76 milliseconds, with the same execution time on PC Warp. The time for this algorithm
scales linearly with the number of hull points.

Assuming a 16 MHz clock time and 72 cells in i Warp, each point kx^km wiM take 26 miax>secoiids, tased on an
operation count from the Warp implementation. Loading the initial array to the cells will take 250 microseconds,
for a total time of 590 microseconds for our sample problem.

540 Voronoi Diagram
Geometrical constructions. The input is a set S of 1000 real coordinate pairs, defining a set of 1000 points in the

plant, seleciod al 7andomr^iih^chco(^dm2iem±ti2rigQ{0J00Ql The output is ihe Voronoi diagram of S, denied
by the set of coordbates of its vertices, ihe set of pairs «rf vertices that are joined by edges, and the set of rays
emaiiatir^fom v'eraces and not iaiminalkg at another venex. (On VoroBoi diagrams see [26, Section 5 J].)

We consider the c o m p u i a ^ The algorithm is:
1. TTie coordinates of the points are sorted divided equally among the ceils so that each cell has 100

points. H e sorting is done systoiically on the Warp array, using a Ireapson algorithm in which each
eel! hull ds a heap of ICX3 points as th^
cdL

2. Each cell compiles the Ddatuwy trmguhiion of 100 points using a standard sequential algorithm.

3. C d s I, 3, 7« and 9 receive the Dehuney r ^ g u h n e n of their Ml neighbors. The two Dehuney
trinpiIatioQs are fen merged m fom a stsgle Ddttney irwfigntiiicn in these receiving cells. At ifaa
end of ibis sttge we have four Deiauney mangulauons cf B 0 points c$ch and iwo Debtiney
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4. The 200 point triangulations are merged to form 400 point triangulations. At the end of this step we
have two triangulations of 400 points each and two triangulations of 100 points each. Eight cells are
idle during this step. The mergings are carried out in the in the third and eighth cells.

5. The 400 point and 100 point triangulations are merged to form 500 point triangulations in cells 4 and
6. At the end of this step there are two triangulations of 500 points each. Eight cells are idle during
this step.

6. The two 500 point triangulations are merged to give the Delauney triangulation of 1000 points. This
operation is carried out in the fifth cell. Nine cells are idle.

7. The dual of the Delauney triangulation thus obtained will give the Voronoi diagram.

Table 5-8 gives operation counts for each of the steps in the Voronoi diagram algorithm above. These counts
were obtained through a C program which computed the Voronoi diagram.

Step

2

3

4

5

6

Assignments

86897

89529

91754

94504

97313

Array References

192695

198309

202898

208420

214221

Comparisons

60149

60209

60264

60326

60394

Arithmetic operations

71572

74221

76401

79030

81733

Logical Operations

36290

36343

36388

36441

36502

Table 5-8: Operation counts for Voionoi diagram

/Warp will have 72 cells instead of 10. Since the time for intermediate data transfers is small we ignore any
changes in that and assume linear speedup in the Delauney triangulation computation.

Since the computation of addresses for the array references appears to be the critical path we considered this as
the bottleneck in the computation. (PC Warp and /Warp will have parallel address computation engines in each
cell). Each array reference takes 30Ons on PC Warp (100ns for the address computation and 200ns for the memory
access) and 100ns on the baseline i Warp. The total computation time therefore comes to 64 milliseconds on PC
Warp and 8.9 milliseconds on /Warp. The initial sort step requires 24 milliseconds on PC Warp and 10
milliseconds on i Warp. The number of floating-point data transfers internal to the computation is 3600 (400 in step
3, 800 in step 4, 400 in step 5, and 2000 in step 6). This will take 800 microseconds on PC Warp and 63
microseconds on i Warp.

Since the Voronoi diagram computation is taking the dual of the Delauney triangulation, this can be done in
parallel. This can be done in pipelined mode (concurrent I/O and computation in a cell) so that the total time of
computation will be around the total time for I/O which is around 200 milliseconds on PC Warp, and 120
milliseconds on i Warp. The conversion to Voronoi diagram will be part of a pipeline at the end of which Voronoi
diagram edges will be transmitted to the host Hence time for transmission to the host will be included in this.

The total times for the computation are, on PC Warp, 64 milliseconds + 24 milliseconds + 800 microseconds +
200 milliseconds = 290 milliseconds, while on iWarp the time is 8.9 milliseconds + 10 milliseconds + 63
microseconds +120 milliseconds = 140 milliseconds.

5.11 Minimum spanning tree
Geometrical constructions. The input is a set S of 1000 real coordinate pairs, defining a set of 1000 points in the

plane, selected at random, with each coordinate in the range [0,1000]. The output is the minimal spanning tree of S,
defined by the set of pairs of points of S that are joined by edges of the tree. (On minima! spanning trees see [26,
Section 6.1].)

We use Shamos's algorithm [26]. in which we have only to examine edges in the Ddaoucy triangulation to find
an incremental edge in the minimum spanning tree In the worst case 1000 vertices can correspond to 3000 edges,
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implying an average of 3 edges per vertex. This means that we have to make a maximum of 2 comparisons to find
the edge of minimum length out of a vertex. Since there are 1000 vertices we have to make only 2000 comparisons
per stage of the algorithm and, since there are log(A0 stages, we have to make 20000 comparisons in all. Also, as
part of the initialization step we have to compute the lengths of all the 3000 edges, which will involve 6000
floating-point multiplications and 3000 floating-point additions. We also have to prepare a data structure which will
give the out-degree of a particular vertex. This will involve 2 comparisons per edge, for a maximum of 6000
comparisons in all. We assume that the minimum spanning tree shall be computed. We also assume that a
floating-point multiplication takes 5 microseconds and a floating-point addition takes 2.5 microseconds, and each
comparison takes 1 microsecond Adding up the respective times the total comes to about 65 milliseconds. This
time is the worst case since the Delauney triangulation of 1000 points will typically contain much less than 3000
edges.

5.12 Visibility
Visibility. The input is a set of 1000 triples of triples of real coordinates ((r,sj)£u,v,w)Xx,yjc)\ defining 1000 opaque

triangles in three-dimensional space, selected at random with each coordinate in the range [0,1000]. The output is a list
of vertices of the triangles that are visible from (0,0,0).

An input partitioning method is used. Each vertex is simply tested to see if it is obscured by any of the triangles.
This is done by taking the four planes defined by the triangle vertices and the origin and any two of them, and
testing to see if the vertex point lies in the interior of the region defined by the three planes including the origin, but
on the far side of the triangle. The mapping onto Warp is to broadcast the set of triangle points to all cells, and then
to send to each of the ten cells one-tenth of the vertex set, with each cell testing its portion to see if it is visible. The
execution time on the WW Warp is 825 milliseconds (however, the WW Warp machine cannot hold the entire
dataset due to memory limitations-this time is a compiler estimated execution time). Some improvement (probably
a factor of two to three) is expected on PC Warp, since the algorithm will be able to stop testing a vertex whoa it is
found that a vertex is definitely not obscured by a particular triangle. On i Warp, we estimate a speedup of about 10,
giving an execution time of 40 milliseconds.

5.13 Graph Matching
Graph matching. The input is a graph G having 100 vertices, each joined by an edge to 10 other vertices selected at

random, and another graph H having 30 vertices, each joined by an edge to 3 other vertices selected at random. The
output is a list of the occurrences of (an isomoiphic image of) H as a subgraph of G. As a variation on this task,
suppose the vertices (and edges) of G and H have real-valued labels in some bounded range; then the output is that
occurrence (if any) of H as a subgraph of G for which the sum of the absolute differences between corresponding pairs
of labels is a minimum.

This problem includes two sobproblems. The first is to find isomorphic embeddings of one the smaller graph in
the larger one. Finding one such embedding (or determining the existence ofone) is known to be NP-*x>mpto [11].
Finding all isomorphisms actually grows exponentially. For example, in (Hie set of randomly generated data, we
found about 1026 solutions. Because there are too many solutions, no j^eseiidy exiting macMnec^prodaceaUlte
solutions in one year.

The second problem is to find the one isomorphism to the graph with the least differences between the
O£»espcwfc^ edge and vertex costs. TTie complexity of the second problem is obviously between finding one and
finding all Tnis problem has not been compleied because there were too many ^

Out paralld algorithm is based on Ullmann's refinement procedure [31] which can prune the search tree by
dmumfag mappings that are mfeasible because of connectivity requirements. The method eliminates mappings as
early as possible.

In adduon, we developed a mere powerful method to cut the search tree as early as possible. The new method
uses graph analysis and mates use erf some special f eatircsof fhegrapkt

We inqpiemented tbe problem on the Warp host, which is a Sun workstation. Running on a set of randomly
data for met one hour, we obtained 1188174 solutions, giving 267 solutions/second or about 3 J5
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milliseconds/solution. At this point, by counting the branching factors of the tree above the portion we had
processed, we estimated we had found only about 1.2x 1CT9% of the solutions, leading to our estimate of 1016

solutions for this example.

In the Warp implementation, we parallelize the exploration of the search tree. This is easy to do because the
search tree is so large that we can easily assign each subtree to a processor. By straightforward extrapolation of
cycle time, we estimate the solution rate in PC Warp to be 2700 solutions/second. Similarly, we estimate the
solution rate in i Warp to be 19000 solutions/second.

5.14 Minimum-cost Path
Minimum-cost path. The input is a graph G having 1000 vertices, each joined by an edge to 100 other vertices

selected at random, and where each edge has a nonnegative realvalued weight in some bounded range. Given two
vertices Pt Q of G, the problem is to find a path from P to Q along which the sum of the weights is minimum.
(Dynamic programming may be used, if desired.)

The algorithm used here is the best known sequential algorithm, Dijkstra's Single Source Single Destination [10]
(SSSD). The algorithm works by repeatedly "expanding" nodes (adding all their neighbors to a list) then finding
the next node to expand by choosing the closest unexpanded node to the destination.

The lack of a w h i l e loop on the WW Warp results in a significant loss of performance, compared to PC Warp
and i Warp. PC Warp and i Warp have very similar mappings:

• WW Warp. The WW Warp cannot execute a loop a data dependent number of times, so that the outer
loop of SSSD must be mapped into the cluster processors. In this case, the Warp array is used for
expanding nodes, and for calculating which node should be expanded next. Node expansion is done by
feeding from the cluster processor the descendants of the node to be expanded, and by calculating the
distance to the goal of each of these nodes. The computation is extremely simple, and I/O bound on the
Warp array. Each node expansion involves the transfer of 200 words of data, which takes
200 x 1 2 microseconds =240 microseconds, since the transfer of a single word takes 1.2 microseconds.

To find the next node to be expanded, the entire set of nodes must be scanned, and the node nearest the
goal is selected. On the WW Warp this means 1000 nodes must be scanned. Again, the computation is
I/O bound, so that the execution time is lOOOx 1.2microseconds =1.2milliseconds. In the worst case,
1000 nodes must be expanded, for a total time of lOOOx (1.2milliseconds +240microseconds = 1.44 s).
This number scales linearly with the number of nodes that must be expanded to find die goal.

• PC Warp* In PC Warp it is possible to map the outer loop of SSSD into the Warp array, giving a much
better time.

Node expansion is done by prestoring at each cell the costs, giving each cell 100 data. Node expanding
is done in parallel in all cells. In the worst case, the slowest cell will have to expand 100 nodes, so that
the time for one node expansion is 100 x 0.25 microseconds =25 microseconds.

The global minimum is calculated in parallel in all cells, and then the minimum among cells is found in
one pass through the array. Finding the minimum on each cell takes
0.4 microseconds x 100=40 microseconds. Finding the minimum among cells takes
0.4 microseconds x 10=4 microseconds.

The total time for one node expansion is therefore 69 microseconds. In the worst case, when 1000
nodes are expanded, the time is 69 milliseconds. This time scales linearly with the number of nodes
that must be expanded to find the goal.

• /Warp. Following the same algorithm partitioning method as for PC Warp, we use 72 cells instead of
10. Now each cell need store only 14 data. The faster cycle time of i Warp gives a 10 microsecond
time for one node expansion, 7 microseconds to find the global minimum in each cell, and 8
microseconds to find the global minimum across cells. (The minimum across cells is done sequentially
from cell to cell, so it takes longer on longer arrays). The total time for one node expansion on i Warp is
25 microseconds. In the wast case, the total time for the solution will be 25 milliseconds. This number
scales linearly with the number of nodes that must be expanded to find the goal.
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5.15 Warp Benchmarks Summary
In Table 5-9 we summarize Warp's performance on the IU Architecture benchmarks. With each time, we give its

source-from an actual run of WW Warp, from compiled code, or by an estimate (all /Warp times are estimated).
The times from an actual run are, of course, the most reliable- they are observed times, from an actual run on our
WW Waip at Carnegie Mellon, and include I/O. Times marked ' 'compiled code" are just as reliable; the W2
compiler for Warp produces a time estimate, which gives the actual execution time for the algorithm on Warp (we
have modified these times as appropriate when the Warp array is not the bottleneck in the execution time of the
algorithm). Finally, "estimate*' indicates a time which is not based on compiled code, but on some other method,
which may not be as reliable. The source of the time is given in the relevant section. We have tried to be as
accurate as possible in these estimates, and have tried to err on the side of caution.

Algorithm

Laplacian

Zero crossing

Border following

Connected Components

Hough transform

Convex Hull

Voronoi diagram

Minimal spanning tree

Visibility

Graph matching

Minimum-cost path

WWWarp

430 ms
actual run

170 ms
actual run

N/A

5.6 s
compiled code

N/A

9 ms
actual run

N/A

N/A

830 ms
compiled code

N/A

1.4 s
estimate

PC Waip

350 ms
compiled code

50 ms
estimate

1.1s
estimate

980 ms
estimate

340ms
compiled code

9 ms
compiled code

290 ms
estimate

160 ms
estimate

400 ms
estimate

1800 solnjs
estimate

69 ms
estimate

iWarp

7.8 ms

7.8 ms

690 ms

470 ms

60 ms

3.2 ms

140 ms

43 ms

40 ms

19,000 sotays

25 ms

Table 5-9: Warp Benchmark Summary

5.16 Evaluation of the Warp Architecture
In this section we will use die data generated by these benchmarks to evaluate the Warp architecrure, by

considering the effect of various reasonable design changes. The intern is to explore the design space- around the PC
Warp. We will consider all erf the bencfamaik algorithms except for minimal spanning tree, which is not performed
on the Warp n a y .

5.16.1 Memory
In PC Warp, cadi cell has 32K wwite of memory* for a tottl memory in the Warp array of 320K. What Is the

effect mi performance of decreasing the memory size?

Laptadn and zero erasing arc input partitioned algorithms. This implies thai each ccH needs only enough
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memory to compute the result for the area of the image assigned to that cell-in this case, approximately
11x52+5x52=832 words for the Laplacian, and 3x52 + 512=668 data for zero crossing. If we decrease the
memory per cell below this point, the computation can still be done, but only by processing a strip of the image at a
time. For example, the Laplacian could process two 512x256 images and need only 11 x26 + 5 x26=416 words of
memory. (The computation would actually process a slightly wider image, because of the need for overlap at the
interior edge. This makes it less efficient.)

Border following and connected components both must store the entire image (distributed through the array) at
once to do their processing. This means the total array storage must be at least 256K, plus whatever is needed to
store their local tables. If less memory is available than this, the computation becomes exceedingly complex- either
the image must be compressed for storage, or several passes must be performed, with a new merge step. This sort of
complexity is frustrating for a programmer to deal with.

Hough transform and visibility display the standard behavior of output partitioned algorithms; as memory is
reduced, the computation grows proportionately less efficient For example, for Hough transform the current
benchmark requires 180x512=90^ words of memory in the array. If only, say, 45K words of memory are
available, the computation can be done in two passes, each building half the Hough array; but each pass takes as
long as the whole thing on a machine with sufficient memory. Similarly, visibility needs 27K; if less is available
than this, multiple passes must be made, each pass deleting some of the points from the visibility set.

The other algorithms (Voronoi diagram, minimal spanning tree, graph matching, and minimum-cost path) all
share the characteristics that they require the entire dataset to be stored in the array at once, their computation is
fairly complex, and they have small datasets. In a well-designed machine, memory is unlikely to be a problem; but
if it is too small to store the complete dataset, programming any of these problems will become very difficult

5.16.2 Number of processing elements
PC Warp has ten cells in its array, a fairly small number as parallel machines go. What happens if we increase

this number?

The effect on Laplacian, zero crossing, Hough transform, convex hull, and visibility is straightforward; then-
speed changes approximately linearly, increasing or decreasing as the number of cells is increased or reduced, as
long as I/O is not a bottleneck. This bottleneck occurs when the data transfer rate between the external host and the
Warp array reaches 12 MB/second, which occurs when the number of Warp cells is 168 for Laplacian, 24 for zero
crossing, ISO for Hough transform (since the partitioning is by angle, this is the bottleneck), 130 for convex hull,
and 530 for visibility. (Actually, due to the effects of rounding, some of these numbers do not actually represent
peaks in performance. For example, we will not observe any change in performance between 128 cells, or four
pixels per cell, and 171 cells, or three pixels per cell.) By this point, effects we ignored in our initial time estimate,
such as the cost of overlapping data with an adjacent cell, or the buffer sizes in the interface unit, probably dominate.
Except possibly for zero crossing, these limits on the number of cells exceed the practical limits of building and
maintaining such a PC Warp array.

Graph matching is similarly partitioned, and it should display the same sort of behavior as die above algorithms.
We have not done enough analysis to determine the optimal number of cells.

The case of connected components is quite different This algorithm consists of two parts, one of which is
partitioned like the algorithms above, and the other of which is a merge step. The total time for both steps is
O(A0+BN)9 where A and B are constants depending cm the algorithm for the partitioned and merge steps,
respectively, and N is the number of cells. This formula has a minimum when N^iAJB. For connected components,
this occurs when JV=25, as shown in Section 5.73.3.

Similarly remarks apply to Voronoi diagram and bonier following. We do not have accinate enough estimates to
give a definite maximal number of cells in these cases.
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5.16J External host
The external host is based on standard MC68020 processors and the VME bus. This is convenient for

programming, but may be undesirable for performance. What is the effect of making the external host more
powerful?

Naturally, as the external host grows more and more powerful, more and more of the computation can be mapped
onto i t - in the most extreme case, it can perform the entire computation. We will restrict ourselves to considering
the qualitative effects of making the external host more powerful, but still less powerful than the Warp array.

There is no benchmark in which the external host actually creates an I/O bottleneck. However, there are many
ways in which a more powerful external host would significantly affect the program mapping. This is most evident
in Section 5.14. Here, on the WW machine, the external host is used to control the outer loop of the program, while
on PC Warp and /Warp, the Warp array itself controls this outer loop. In many ways, it is convenient to use the
external host for this computation; there is no reason not to split the computation in this way, and it is in some ways
easier to program. However, the poor computational abilities of the external host make it advantageous to map as
much computation onto the Warp array as possible, even when it is somewhat inconvenient

Similar remarks apply to border following, connected components, convex hull, and Voronoi diagram. All of
these algorithms could use a more powerful external host in the merge phase of their computation.

However, it is interesting to consider alternatives to a more complex external host It is unlikely that the ratio of
power between the external host and the Warp array will shift towards the external host in future versions of Warp
or similar systems. Rather, as our ability to build larger Warp arrays grows, it will likely shift in the other direction.
We must try to find alternatives to mapping important parts of the computation onto a sequential processor if we arc
to see further speedup in these algorithms. It seems that a much better alternative to making the external host more
powerful is to make the Warp array more flexible, for example by making the communications between the cells
more powerful (allowing higher dimensional arrays or logically connecting distant cells).
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L WEB Listing
In the following, image is a 512x512 array of unsigned char and realimage is a 512x512 array of float. (These are

the sizes compiled in the programs; to change these sizes, the programs have to be re-compiled.)

The "Status*' given below is either coded, compiled, tested, or validated. "Coded" indicates the program is
written (the source code is available in the directory) but not yet compiled. "Compiled" indicates the program has
been written and successfully compiled by W2 and Apply (if necessary) but not necessarily tested. "Tested"
indicates that the program has been written, compiled, and tested. "Validated" indicates that the program has been
written, compiled, tested, and passed validation in this release. Over one-half of the library can now be validated.

For programs that have been compiled or tested but not validated, the execution time given is the time estimated
for execution by the W2 compiler. Actual run times are given for validated programs. The run time of a Warp
program is defined as the time from the start of the execution of Cluster 1 (used for input) to the end of the execution
of Clustei2 (used for output). This time includes all I/O from the external host to Warp. To distinguish these times
from the estimated times, they are {Hinted in boldface. In general, the actual run time for a program may differ from
the compiler estimated execution time, for two reasons:

1. The compiler does not take I/O between cells or with the host in its estimate. Since I/O is almost
completely ova-lapped with execution, this usually gives a very slight underestimate (about 2%)
because of the skew between cells. However, for programs that process real images, and perform a
very simple operation on them, I/O with the host may be a bottleneck. (Currently, using DMA in
compiler-generated code, the host provides about 7 MB/S each of input and output to the Warp array.
In the best case the array can process 20 MB/S each input and output. I/O is not a bottleneck for byte
images because the interface unit unpacks bytes to floats, giving a factor of four increase in data).

2. In computing the estimated times, the compiler makes assumptions about branching in conditionals
that are pessimistic.

Thus, the compiler will tend to overestimate the execution times of programs with greatly unbalanced conditionals,
slightly underestimate the execution time of most other programs, and significantly underestimate the execution
time of programs that perform very simple operations (e.g., add a constant) on real images.

"Size" is size in Wl instructions of the compiled code. The Warp machine has space for 7936 Wl instructions
(8192 instructions are in the memory, and 256 are used for system purposes).

Program Status Time Size Language
Description

Parameters Access

addclb Validated 109,4 ms 94 Apply
Add a constant to a byte image.

Parameters: 1st psrsm: image input
2nd paramiint constant input
3rd param: image output

addclc Validated 328.08 ms 124 Apply
Add a complex constant lo a complex image.

Parameters: 1st param: realimage (real put) input
2nd parum realimage (untgED&ry pott) input
3rd para^:Ooat consist (reai parti inptil
4ih param: float cC'nsLajii (irnaginary part) input
5fh param: reoMmage (teal pan) otiiptit
6ib pasm: reaHmoge (Imapssy put) output
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addclr Validated 146,0 ms
Add a constant to a realimage.

Parameters: 1st param: realimage
2nd param: float constant
3rd param: realimage

78 Apply

input
input
output

addcls Validated 108.4 ms 94 Apply
Add a constant to an signed byte image-

Parameters: 1st param: image
2nd param: int constant
3rd param: image

addplb Validated 161.5 ms 99 Apply
Add two byte images.

Parameters: 1st paiam: image
2nd param: image
3rd param: image

addplc Validated 622.10 ms 165 Apply
Add two complex images.

Parameters: 1st param: realimage (real part)
2nd param: realimage (imaginary part)
3rd param: realimage (real part)
4th param: realimage (imaginary part)
5th param: realimage (real part)
6th param: realimage (imaginary part)

addplr Validated 309*8 ms 99 Apply
Add two reaUmage's.

Parameters: 1st param: realimage
2nd param: realimage
3rd param: realimage

addpls Validated 161.8 ms 99 Apply
Add two signed byte images.

Parameters: 1st param: image
2nd param: image
3rd param: image

afinl Validated 4396.7 ms 410 W2
Affine image warping using linear interpolation.

Parameters: 1st param: image
2nd param: float array[2][3]

Homogeneous transformation matrix.
3rd param: 1 (inverse) or 0 (direct transform)
4th param: image

afin2 Validated 45303 ms 436 W2
Affine image waiping using quadratic interpolation.

Parameters: 1st param: image
2nd param: float array[2] [3]

Homogeneous transformation matrix.
3rd param: 1 (inverse) or 0 (direct transform)
4th param: image

input
input
output

input
input
output

input
input
input
input
output
output

input
input
output

input
input
output

input
input

input
output

input
input

input
output
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afm3 Validated 4413.1ms 827 W2
Affine image warping using max, min, or nearest neighbor interpolation.

Parameters: 1st param: image input
2nd param: float array[2] [3] input

Homogeneous transformation matrix.
3rd param: 1 (inverse) or 0 (direct transform) input
4th param: select type of interpolation input
5th param: image output

andclb

Parameters:

andplb

Parameters:

areal

Parameters:

Validated 109-6 ms 99
Logically and an image with a constant.
1st param: image
2nd param: int constant
3rd param: image

Apply

Validated 160.7 ms
Logically and two images.
1st param: image
2nd param: image
3rd param: image

118 Apply

W2Validated 2247 ms 317
Measure area erf regions in a labeled image.
1st param: image
2nd param: int value

Label of region to be processed; if 0, all regions are processed.
3rd param: int array [256]

array [i] is the area of region labeled L

input
input
output

input
input
output

input
input

output

asmt

Parameters:

ixMl

Farsindcrs.

bdr81

Parameters:

bflpl

Pararneters:

Validated 1201.9 ms 824 Apply
Local selective averaging.
1st param: image
2nd param: image

Validate 1247 ms 552 Apply
Detect benders in binary picture (4-connectedness).

1st param: image
2nd param: 1 (inner) or 0 (outer borders)
3rd param: image

Validated 1265 ms 677 Apply
Delect borders in binary picture (8-connectedness).
1st param: image
2nd param: 1 (inner) or 0 (outer borders)
Stdpmrnnimage

Validated 329.0 ms 728 Apply
Detect borders of regions m a labekd image.
1st param: linage
2nd parain: im value

Label cf region 10 be processed; if 0, all regions arc processed.
3rd param: int value

Label assigned la borders; if 0, keep label of t te region.
4tfa peram: 4m$ ^ccnnecied^ess:'
5th param: image

input
output

input
input
output

inpul
input
output

input
input

input

input
output
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byrl Validated 146.9 ms
Byte to real conversion.

Parameters: 1st param: image
2nd param: realimage

75 Apply

input
output

canny Compiled W2
Canny operator.

Link with ${WPEweb}AibWEB.a.
This subroutine can handle any size input image, by processing 512x512
regions. Uses mag, magdir, nonmax.
C interface: canny(inimg, outimg,size, bounds, xgrad, ygrad,

rgrad, dir, verbose, err)
Parameters: inimg: input image

outimg: nonmaxima suppressed edges
size: int size of Canny (<=20)
bounds: SUBEMAGE bounds to compute Canny
xgrad: output X gradient
ygrad: output Y gradient
rgrad: gradient maxima
dir. gradient direction
verbose: int 0 (quiet) or 1 (verbose)
em Generalized image library error parameter

cgrvl

Parameters:

clip

Parameters:

colortobw

Parameters:

cone

Parameters:

input
output
input
input
output
output
output
output
input
input

Validated 22L9ms 388 W2
Measure coordinates of center of gravity of regions in a labeled image.
1st param: image input
2nd param: int value input

Label of region to be processed; if 0, all regions are processed.
3rd param: int array[256] input

Array with areas of regions (output of AREA1).
4th param: float array[256] output

array [i] is the row coordinate of region labeled L
5th param: float array[256] output

array [i] is the column coordinate of region labeled i

Validated 149.0 ms 198 Apply
Set gray values in a range to zero.
1st param: mage
2nd param: int value (lower bound)
3rd param: int value (upper bopnd)
4th param: image

Validated 215.9 ms 185 Apply
Convert (r,g,b) image to black and white by averaging.
1st param: image (red)
2nd param: image (green)
3rd param: image (blue)
4th param: image (gray)

Validated 458.0 ms
Compute connectivity number.
1st param: image
2nd param: 4 or 8 (connectedness)
3rd param: image

573 Apply

input
input
input
output

input
input
input
output

input
input
output
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connect Validated 2545.4 ms 773 W2
Eight-connected components analysis.
In the input image, pixels with different grayvalues are not considered
to be connected Grayvalue 0 is * 'background" and is not labelled.
Output is a realimage where each grayvalue represents a different
connected region.

Parameters: 1st param: image input
2nd param: realimage output

cqltl Validated 943-1 ms 461 W2
Measure coordinates of circumscribing rectangle of regions in a
labeled image.

Parameters: 1st param: image input
2nd param: int value input

Label of region to be processed; if 0, all regions are processed.
3rd param: int value input

When 2nd param = 0, greatest label in the input labeled image.
4th param: int array[256] [4] output

airay[i][4] contains the coordinates of the circumscribing rectangle
of region labeled i.

crcll

Parameters:

am

Rusraetos:

Validated 2J7ms 186 W2
Measure compactness of regions.
1st param: int array[256]

Array with areas of regions (output of AREA1).
2nd param: int array[256]

Array with perimeters of regions (output of PRMT1).
3rd param: float array[256]

array [i] is the compactness of region labeled i.

Validated 257,1ms 427 Apply
Compote crossing number.
1st param: image
2nd param: 4 or 8 (connectedness)
3rd param: image

input

input

output

input
input
output

Parameters:

Validated 2314 ms 583
Two dimensional direct discrete cosine transform.
Takes an input image and performs 8 x 8 discrete
cosine transforms to produce the output image.
Useful for image compression.
1st param: image
2nd param: realimage

W2

input
output

display

Parameters:

Parameters:

Vaidated 5147 BIS 499
Histogram-equalize and halftone image.
Used by WPE for Image display under X.

n: image

136

W2

Validated 107S m
Divide an image by a consist.
I si param: imugt
2nd param: tat constant
3id param: image

Apply

input
output

input
input
output
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divclr Validated 145.7 ms
Divide a realimage by a constant.

Parameters: 1st param: realimage
2nd param: float constant
3rd param: realimage

87 Apply

input
input
output

divcls

Parameters:

divplb

Parameters:

divplr

Parameters:

divpls

Parameters:

egfc

Parameters:

egksl

Parameters:

Parameters:

eglp

Parameters:

egpr

Parameters:

Validated 107.2 ms 136 Apply
Divide a signed byte image by a constant
1st param: image
2nd param: int constant
3rd param: image

Validated 161.8 ms 144 Apply
Divide 1st input image by 2nd input image.
1st param: 1st image
2nd param: 2nd image
3rd param: image

Validated 310.2 ms 100 Apply
Divide 1st input realimage by 2nd input realimage.
1st param: 1st realimage
2nd param: 2nd realimage
3rd param: realimage

Validated 160.8 ms 144 Apply
Divide 1st signed byte image by 2nd signed byte image.
1st param: 1st image
2nd param: 2nd image
3rd param: image

Validated 849.7 ms 593 Apply
Edge detection using orthogonal templates by Frei and Chen.
1st param: image
2nd param: image

Validated 730 3 ms 487 Apply
Edge detection using Kirsch operator (outputs magnitude only).
1st param: image
2nd param: image

Validated 906.47 ms 537 Apply
Edge detection using Kirsch operator (outputs magnitude and
direction of gradient).
1st param: image
2nd param: image (magnitude)
3rd param: image (direction)

Validated 311.1ms 608
Edge detection using Laplacian.
1st param: image
2nd param: 1,2, or 3

Select Laplacian operator.
3rd param: image

Validated 2©«L5 ms 873
Edge preserving smoothing.
1st param: image
2nd param: image

Apply

Apply

input
input
output

input
input
output

input
input
output

input
input
output

input
output

input
output

input
output
output

input
input

output

input
output
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egpwl

Parameters:

egpw2

Parameters:

egpw3

Validated 233-8 ms 868 Apply
Edge detection using Prewitt operator (differential type)
(outputs magnitude only).
1st param: image
2nd param: 0 or 1

Select computation equation for magnitude.
3rd param: image

Validated 20313 ms 1327 Apply
Edge detection using Prewitt operator (differential type)
(outputs magnitude and direction of gradient).
1st param: image
2nd param: 0 or 1

Select computation equation for magnitude.
3rd param: image (magnitude)
4th param: image (direction)

Validated 703.5 ms 478 Apply
Edge detection using Prewitt operator (template type),
(outputs magnitude only).

input
input

output

input
input

output
output

Parameters:

egpw4

Parameters:

egrb

Parameters:

egrsl

Parameters:

egrs2

Parameters:

@grs3

Parameters:

1st param: image
2nd param: image

Validated 874.80 ms 528 Apply
Edge detection using Prewitt operator (template type).
(outputs magnitude and direction of gradient).
1st param: image
2nd param: image (magnitude)
3rd param: image (direction)

Validated 145.2 ms 378
Roberts operator.
1st param: image
2nd param: 0 or 1

Select computation equation for magnitude
3rd param: image

Validated 673 J m s 465
Robinson operator (outputs magnitude only).
1st param: image
2nd param: image

Validated 840.67 ms 515
Robinson operator
(outputs magnitude and direction of gradient).
1st param: image
2nd param: image (magnitude)
3rd param: image (direction)

Compiled 0.880992 s 856

Apply

Apply

Apply

Apply
Robinson operator (checks local connectivity of edges aad deletes
those that do no: meet the conditions).
tstpsmm: image

Magnitude (output of EGRS2).
2nd param: image

Direction (output of EGRS2),
3rd pttmni: image

input
output

input
output
output

input
input

output

input
output

input
output
output

input

Input

output
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egsbl Validated 329,3 ms 961
Sobel operator (outputs magnitude only).

Parameters: 1 st param: image
2nd param: 0 or 1

Select computation equation for magnitude.
3rd param: image

Apply

input
input

output

egsb2

Parameters:

eikvl

Parameters:

eikv2

Parameters:

epct

Parameters:

ersr3

Parameters:

expand

Parameters:

fdib

Parameters:

fcKr

Parameters:

Coded Apply
Sobel operator (outputs magnitude and direction of gradient).
1st param: image
2nd param: 0 or 1

Select computation equation for magnitude.
3rd param: image (magnitude)
4th param: image (direction)

Validated 827.0 ms 705 Apply
Iterative edge detection using Kasvand's method.
1st param: image
2nd param: image

Validated 903.08 ms 678 Apply
Iterative line sharpening using Kasvand's method.
1st param: image
2nd param: image

Validated 456.1ms 619 Apply
Expand or contract binary pattern.
1st param: image
2nd param: 4 or 8 (connectedness)
3rd param: 0 (contract) or 1 (expand)
4th param: image

Validated 149.8 ms 122 Apply
Erase small regions in a labeled image. Small regions are those
whose area is less than a given threshold.
1st param: image
2nd param: int array [256]

Array with areas of regions (output of AREA1).
3rd param: int value (threshold)
4th param: image

Validated 1147 ms 675
Image doubling using linear interpolation.
1st param: char array [256] [256]
2nd param: i

71

71

Validated 66J0ms
Assign zero to an image.
1st param: image

Validated 145.3 ms
Assign zero to a realimage.
1st param: realimage

Apply

Apply

Apply

input
input

output
output

input
output

input
output

input
input
input
output

input
input

input
output

input
output

output

output
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fcon Validated 400 ms W2
Two-dimensional convolution using FFT.
Image2 is replaced by the convolution of imagel with imagel
Imagel will be destroyed if it is a Warp real image.
The execution time reported is the Unix user time for a
complete call.
C Calling sequence: fcon(imagel, image2).
Link with ${WPEwebjyiibWEB^, the libraries needed for
warp_call(3), and -lm.

Parameters: reaUmage
realimage

input
inout

fbor

Parameters:

fcpl

Pmmmm:

m

flQf

0*0

Validated 483ms W2
Two-diiaemkHial correlation using FFT.
Image2 is replaced by the correlation of imagel with image2.
Imagel wiU be destroyed if it is a Warp real image.
Hie execution time reported is the Unix user time for a
complete call
l ink with ${WPEweb)/libWEB.a, the libraries needed for
waip_call(3), and -lm.
C calling sequence: fcor(iinagel, image2)
1st realimage
Indrealimage

Compiled 1.7909992 s 558 Apply
CoTtven (real. Imaginary) representation to (magnitude, phase)
representation far complex images.
Isi p o m : reaUmage (real part)
2nd pawn; reaUmage (imaginary part)
3Wi p n r a : realimage (amptitDde part)
4tb p m m : mdinmge (phase p i t )

input
inout

input
input
output
output

Validated 3485.1 ms 193
fast FGiiri

W2

iraiisfbnE, defined so that
the isvose erf t ie fcrwart turfiHm giyw te original Image.
C c a l n g procedure: ffiireai-pan, ini^gmary-part, flag)
l ink will SWren^l ibWEBai i id Ae ibiiries needed by waip_call(3).
I l ) inout

inout

Onpkd 0.1864334 s 232
s rmtkmge*
p ^ type, ngoot}.

.Apply

p : maMmage
Tu&pmm: 1
3«tf p m maBmgt

ISUiti 532 Apply

0
: flookk atftff n]{n] (wrighis)

a is coupled m die jMnofvim. H i s one is 3.

input
input
output

input
input

output
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flwll

Parameters:

flwl2

Parameters:

fmax

Parameters:

fmin

Parameters:

fsed

Parameters:

gmlt

Parameters:

Parameters:

gsft

Parameters:

gtml

Parameters:

halftone

Parameters:

Validated 143.0 ms 523 Apply
Execute linear filtering operation.
1st param: image
2nd param: float array[n][n] (weights)

n is compiled in the program. This one is 3.
3rd param: float value (normalization coefficient)
4th param: image

Validated 280,6 ms 453 W2
Execute linear filtering operation using uniform weighting function.
1st param: image
2nd param: float value (normalization coefficient)
3rd param: image

Coded Apply
Perform local max filtering.
1st param: image
2nd param: image

Validated 1038-8 ms 685 Apply
Perform local min filtering.
1st param: image
2nd param: image

input
input

input
output

input
input
output

input
output

input
output

Validated 333.0 ms 96 Apply
Convert an image to complex image (assigning zero to imaginary part).
1st param: image input
2nd param: realimage (real part) output
3rd param: realimage (imaginary part) output

Validated 107.5 ms 94
Multiply gray values (same as MULC1B).
1st param: image
2nd param: int constant
3rd param: image

Apply

W2Coded
Grassfire transform.

Input is binary image, output is distance from a 0.
1st param: image
2nd param: image

Validated 109 J m s 94 Apply
Shift gray values (same as ADDC1B).
1st param: image
2nd param: int constant
3rd param: image

Validated 129 J m s 147 Apply
Apply gray value translation table.
1st param; image
2nd param: int array[256] (table)
3rd param: image

Compiled 0.4345898 s 218 W2
Image halftoning using Heckberf s algorithm
1st param: image
2nd param: image

input
input
output

input
output

input
input
output

input
input
output

input
output
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histl Validated 80.9 ms 159
Obtain histogram.

Parameters: 1st param: image
2nd param: float array [256] (histogram)

W2

input
output

hyth Compiled W2
Hysteresis thresholding.

Link with ${WPEweb}/libWEBa.
Uses byrl, connect
C interface: canny(in, out, bounds, pbounds, low, high,

percent, verbose, err)
Parameters: in: input image

out: thresholded output image
bounds: SUBIMAGE bounds to perform thresholding
bounds: SUBIMAGE bounds to compute percentages
low: Iowa* threshold
high: higher threshold
percent int 0 (thresholds are absolute)

input
output
input
input
input
output
input

or I (thresholds are percentages of range of values of image)
verbose: int 0 (quiet) or 1 (verbose) input
a n Generalized image library error parameter input

idct Validated 206.2 ms 437 W2
Two dimensional inverse discrete cosine transform.
Takes an input image and performs 8 x 8 inverse discrete
cosine transforms to produce the output image.
Useful for image compression. (Inverse of dct).

Parameters: Islparam: realimage input
2nd param: image output

itenl

Parameters:

4.598952 s 1348 Apply
Iterative enhancement of noisy image (method 1).
1st param:/mage
2nd param: image

Compiled 0.8456302 s 731 Apply
Iterative enhancement of noisy image (method 2).
C Calling sequence: iten2(imageirM imageout)
Link with SWPEweb/IibWEB^L

Parameters: 1st param: image
2nd param: image

input
output

input
output

mag Compiled 02611432 s 434 Apply
GodiGni magnitude computation.

Parameters: 1st param: x gradient rea/i^2.ge
2nd p m m : y gradient realimage
3rd parani: gradient magjutode realimage

mtgdk Cmppied 1.9610856$ 682 Apply
Gradient magnimde and direciicn cc-mpuizucn.

Parameiers: Isi£3i2?r/,x-gradient reaiimaze
2nd pararn: y gradkni reaMmage
3rd param: gradient inapittiKte reoUmage
4ib p u n : j^nient ;lirec::cn reoUmage

input
input
output

input
input

output
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medi

Parameters:

Compiled
Median filter.
1st param: image
2nd param: image

0.7777158 s 428 W2

input
output

mmntl

Parameters:

mmnt4

Parameters:

mulclb

Parameters:

mulclc

Parameters:

Compiled s 383 W2
Measure moments M^ around center of gravity of regions in a
labeled image, (p andq are the order of x and y components of the
moment and are compiled in the program. This one is M n . )
1st param: image input
2nd param: int array[256] input

Array with row coordinates of centers of gravity (output of CGRV1).
3rd param: int array[256] input

Array with column coordinates of centers of gravity (output of CGRV1).
4th param: int value input

Label of region to be processed; if 0, all regions are processed.
5th param: int array[256] output

Array [i] is the moment of region labeled i.

Validated 135.7 ms 186 W2
Obtain Oth to 2nd moments of an image.
1st param: image input
2nd param: float array [6] output

Array with moments in the following order 00,10,01,20,02, and 11.

Validated 107.6 ms 94
Multiply an image by a constant
1st param: image
2nd param: int constant
3rd param: image

Validated 326.67 ms 137
Multiply a complex image by a complex constant
1st param: realimage (real part)
2nd param: realimage (imaginary part)
3rd param: float constant (real part)
4th param: float constant (imaginary part)
5th param: realimage (real part)
6th param: realimage (imaginary part)

Apply

Apply

mulclr

Parameters:

mulcls

Parameters:

Validated 145.6 ms 78
Multiply a real image by a real constant
1st param: realimage
2nd param: float constant
3rd param: realimage

Validated 108.5 ms 94
Multiply a signed byte image by a constant
1st param: image
2nd param: int constant
3rd param: image

Apply

Apply

input
input
output

input
input
input
input
output
output

input
input
output

input
input
output
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mulplb Validated 161.7 ms
Multiply two images.

99 Apply

Parameters:

mulplc

Parameter:

mulplccj

Parameters:

mulplr

Parameters:

mulpls

Parameters:

nolnl

Parameters:

1st param: image
2nd param: image
3rd param: image

Compiled 0.3194312 s 175
Multiply two complex images.
1st param: realimage (real part)
2nd param: realimage (imaginary part)
3rd param: realimage (real part)
4th param: realimage (imaginary part)
5th param: realimage (real part)
6th param: realimage (imaginary part)

Compiled 03194312 s 175

Apply

Apply
Multiply the 1st complex image by the complex conjugate
of the 2nd complex image.
1st param: 1st realimage (real part)
2nd param: 1st realimage (imaginary part)
3rd param: 2nd realimage (real part)
4th param: 2nd realimage (imaginary part)
5th param: realimage (real part)
6th param: realimage (imaginary part)

Validated 308.3 ms 99
Multiply two realimage\
1st param: realimage
2nd param: realimage
3rd param: realimage

Validated 16L0ms 99
Multiply two signed byte images.
1st param: image
2nd param: image
3rd param: image

Validated 6449 J u s 319

Apply

Apply

W2
Nonlinear (quadratic) image warping using linear interpolation.
1st param: image
2nd param: float anay[2][6]

input
input
output

input
input
input
input
output
output

input
input
input
input
output
output

input
input
output

input
input
output

input
input

Parameters:

Homogeneous transformation matrix.
3rd pzrzm: image output

Validated 692S.4ms 345 W2
Nonlinear (quadratic j image warping using quadratic interpolation*
1st pzrzm: image input
2nd pwam: float array[2] [61 input

Homogeneous transformation matrix.
3rd panm: image output
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noln3 Compiled 13.381153 s 727 W2
Nonlinear (quadratic) image warping using max, min, or nearest
neighbor interpolation.

Parameters: 1st param: image • input
2nd param: float array[2] [6] input

Homogeneous transformation matrix.
3rd param: int value input

Select type of interpolation.
4th param: image output

nonmax Compiled 0.7827166 s 935
3x3 Canny-style non-maxima suppression.

Parameters: 1st param: x gradient realimage
y gradient realimage
gradient magnitude realimage
non-maxima suppressed realimage

Apply

input
input
input
output

notl

Parameters:

orclb

Parameters:

orplb

Parameters:

pgenl

Parameters:

pgen2

Parameters:

Validated 109 J m s 100
Logical negation of an image.
1st param: image
2nd param: image

Validated 107.8 ms 99
Logically or an image with a constant.
1st param: image
2nd param: int constant
3rd param:

118

Apply

Apply

Validated 160.1ms
Logically or two images.
1st param: image
2nd param: image
3rd param:

Apply

Validated 80J8ms 185 W2
Generate binary checkerboard pattern.
1st param: int value

Width of checkerboard part
2nd param: kit value

Height of checkerboard part
3rd param: image

Tested 0.1542298 s 602 W2
Generate binary stripe pattern.
1st param: int value
2nd param: int value

Slope of stripes given by lst-param/2nd-param.
3rd param: int value

Width of stripes.
4th param: image

input
output

input
input
output

input
input
output

input

input

output

input
input

input

output
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pgen3 Tested 0.1395828 s 356 W2
Generate binary "bull's-eye" pattern.

Parameters: 1st param: int value
Center row-coordinate of concentric circles.

2nd param: int value
Center column-coordinate of concentric circles.

3rd param: int value
Interval between adjacent concentric circles.

4th param; 0 or 1
Value in the innermost circle.

5th param: image

input

input

input

input

output

pgen4

Parameters:

pgen5

Tested 0.9567508 s 454 W2
Generate binary diamond pattern.
1st param: kit value
2nd param: int value
3rd param: int value
4th param: int value

(lst-param/2nd-param and 3rd-param/4th-param give
diamond edge slopes.)

5th param: int value
6th param: int value

(5th-param and 6th-param give diamond widths.)
7th param: image

input
input
input
input

input
input

output

Tested 0.1302654 s
Generate binary grid pattern.

389 W2

Parameters:

prmtl

Parameters:

pied

Parameters:

1st param: int value
2nd param: int value

(ist-param and 2nd-param specify size of rectangles.)
3rd param: image

Tested 0J775946s 643 W2
Measure perimeter of regions in a labeled image.
1st param: image
2nd param: int value

Label of region to be processed; if 0, all regions are processed.
3rd param: 4 or 8 (connectedness)
4th param: int array [256]

arrayfi] is the perimeter of region labeled i.

Tested 0.3178648 s 286 Apply
Extract or delete points in an image.
1st param: image
2nd param: 0 (deletion) or 1 (extraction)
3rd param: int value (low threshold)
4th param: int value (high threshold)
5ih pram: 0 (within) or 1 (outside range)
6th param: int value

input
input

output

input
input

input
output

input
input
input
input
input
input

Label assignee to extracted points; if 0, keep input value.
Tth param: image output
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pyramid Compiled 0.1137702 s
Pyramid reduction.

Parameters: lstparam: image
2nd param: char array [256] [256]
3rd param: char array[128][128]
4th param: char array[64][64]
5th param: char array[32][32]
6th param: char array[16][16]
7th param: char array[8][8]

1099 Apply

input
output
output
output
output
output
output

reduce

Parameters:

rlby

Parameters:

rlbyl

Parameters:

rplalb

Parameters:

rplalr

Parameters:

rpla2

Parameters:

rqnt

Parameters:

sclp

Parameters:

Compiled 0.0907948 s 559 Apply
Image halving using linear interpolation.
lstparam: image
2nd param: char array [256] [256]

Validated 131.9 ms 75 Apply
Real to byte conversion,
lstparam: realimage
2nd param: image

Compiled 0.0709754 s 234 Apply
Real to byte conversion with wraparound at 256.
1st param: realimage
2nd param: image

Tested 0.0658724 s 59 Apply
Assign a constant to an image.
1st param: int constant
2nd param: image

Tested 0.0658702 s 48 Apply
Assign a real constant to a realimage.
1st param: float constant
2nd param: realimage

input
output

input
output

input
output

input
output

input
output

Tested 0.248991 s 437 W2
Assign a constant to inside of an irregularly-shaped region in an image.
1st param: image input
2nd param: image output
3rd param: int array[512] (top border) input
4th param: int anay[512] (bottom border) input
5th param: kit array [512] (left border) input
6th param: int anay[512] (right border) input
7th param: int constant input
8th param: int value output

Number of points in the region.

Tested 0.0857254 s 160 Apply
Requantize image by reducing graylevek.
1st param: image
2nd param: int value

Degree of reduction in gray levels.
3rd param: image

Tested 0.0669818 s 87 Apply
Binarize image by setting nonzero grayvaloes to 1.
1st param: image
2nd param: image

input
input

output

input
OUtpilt
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sizel Tested 8.256E-4s 125 W2
Measure size of regions.

Parameters: 1 st param: int array [256] input
Array with areas of regions (output of AREA1).

2nd param: int array [256] input
Array with perimeters of regions (output of PRMT1).

3rd param: float array [256] output
array [i] is the size of region labeled i.

slthO Compiled 0.0679034 s 106 Apply
Binarize gray-scale image using single threshold.
Output is 1 if image is greater than the threshold, 0 if less.

Parameters: 1st param: image input
2nd param: int value (threshold) input
3rd param: image output

slthl Validated lSOJms 321 Apply
Binarize gray-scale image using single threshold.
Output depends on mode and threshold in the following manner:
Mode = 1: Output = 1 iff input > threshold
Mode « 2: Output = 1 iff input >= threshold
Mode as 3: Output = 1 iff input < threshold
Mode as 4: Output = 1 iff input <= threshold

Parameters: 1st param: image input
2nd param: int value (threshold) input
3rd param: int value (binarization mode) input
4th param: image output

slth2 Validated 12L7ms 221 Apply
Binarize gray scale image using two thresholds.
mode=0 : imageout = 1 iff thdl >= imagein >= thd2
mode= 1 : imageout = 1 iff thdl <= imagein or imagein <= thd2

Parameters: 1st param: image input
2nd param: (thdl) int value (threshold) input
3rd param: (thd2) int value (threshold) input
4th param: (mode) int value (binarization mode) input
5th param: image output

slth2m Tested 0.1818864 s 215 Apply
Binarize gray scale image using two thresholds and a mask plane.

Parameters: 1st param: image input
2nd param: image (mask plane) input
3rd param: int value (threshold) input
4th param: int value (threshold) input
5th param: int value (binarization mode) input
6th param: image output

MB Tested 0.1892586 s 255 Apply
Binarize gray scale image using reference plane.

Parameters: 1st param:/^age input
2nd param: im^g^ (reference plane) input
3rd pararn: k t value (binanzaiion mode j input
4th param: iwmge output

sans Compiled 592 Apply
15 x 15 symmetric nean»Hrag!hbor smoothing.

Parameters: 1ft paraou image input
2nd pvtm: image output
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smkl Tested 0.277216 s 519
Shrink using Levialdfs parallel algorilhm.

Parameters: 1 st param: image
2nd param: int connectedness (4 or 8)
3rd param: image

Apply

input
input
output

$mk2

Parameters:

mk3

Parameters:

sabclb

Parameters:

subclc

FanLTieiers:

sobclr

labels

stbplc

Compiled 3.549949 s 1526
Shrink binary pattern using Rao's algorithm.
Istparara: image
laiipmm: image

Compiled 02098556 s 596
Shrink binary pattern, separating touching blobs.
1st paraa: finoge
2nd param: Image

Vaidaied 109.1m 94
Subtract a constant from animage.
1st param: image
^Mlpram: 1st constant
3rd pram: image

W2

Apply

Apply

32i(4Bis 124
Subtract a complex constant from a cotnplot :
I .si pram: reaUmage (red pi t)

cwtpit

input
input

•r:::.:.

3nl ̂ w a : flot (real p n )
4di pisn: fkM cxittnt (to^l^ffy i»t)
5lh pamm: malimage (aMl T'~~,
6ii jema: rmUmage (inapiiay

1444 m 78
SiAinci t feal ^ottirt from a teal
M ̂ t m c maMmage
2irf^*a: floti oonsttnt

ttMM Afply

input
input
-output

U L 7 m 99
S i i * ^ 2nd Input ^^ from Itt input !m#e.

Apply

i

O3L19 Apply

2n
4Ai prant 2nd

pnmm:
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subplr Validated 310.0 ms 99 Apply
Subtract 2nd input realimage from 1st input realimage.

Parameters: 1st param: 1st realimage
2nd param: 2nd- realimage
3rd param: realimage

input
input
output

subpls

Parameters:

sumrcb

Parameters:

somrcr

Parameters:

tenix2

Parameters:

tepa

Parameters:

tferlb

Parameters:

tfcrlr

Parameters:

txav

Validated 160.8 ms 99 Apply
Subtract 2nd signed byte image from 1st signed byte image.
1st param: 1st image
2nd param: 2nd image
3rd param: image

Validated 80.83 ms 124 W2
Sum the rows and columns of an image.
1st param: image
2nd param: float array[512]

(row sums)
3rd param: float array[512]

(column sums)

Validated 136.6 ms 124 W2
Sum the rows and columns of an realimage.
1st param: realimage
2nd param: float anay[512]

(row sums)
3rd param: float array[512]

(column sums)

Compiled 5.8877583 s 749 Apply
Thin one-directional texture edges.
1st param: image
2nd param: float value

Cosine of angle.
3rh param: float value

Sine of angle.
4th param: mage

Coded Apply
Smooth image preserving textare edges.
1st param: image
2nd param: int value (ihreshold)
3rd param: image

Tested 0.0661626 s 75 Apply
Transfer (copy) an image to anc iher.
1st p ram: image
Tm&pumm: image

Tested 0:0661626 s 75 Apply
Iran sfer (copy) a reaHmage to another.
I si param: malkmge
2nd pffiun: realimage

Campled 0.1396848 s 616 Apply
Average giajrvtlijcs i i square licighbortiocxL
1st p a w : image
l

input
input
output

input
output

output

input
output

output

input
input

input

output

input
input
output

input
output

input
output

input
output
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txav2 Compiled 3.9827297 s 582 W2
Average grayvalues in square neighborhood with a certain angle.

Parameters: 1st yaram: image input
2nd param: image output
3rd param: float value input

Cosine of angle.
4th param: float value input

Sine of angle.

txdfl

Parameters:

txdf2

Parameters:

txeg2

xoonv

Panraetors;

xorclb

Fwmmtax

Compiled 0.117301s 430 Apply
Compute edge value of texture edge horizontally or vertically.
1st param: image
2nd param: 0 (horizontal) or 1 (vertical)
3rd param: image

Compiled 0.2342448 s 779 Apply
Compute edge value of texture edge of a specified size and direction.
1st param: image
2nd param: int value (size)
3rd param: float value

Cosine of angle.
4th param: float value

Sine of angje.
5th param: image

Compiled 0.795186 s 343 Apply
Compute best-edge size, direction, and value using results of TXDF1
orTXDF2.
1st param: image

Edge value.
2nd param: image

Old best edge value.
3rd param: image

Old best edge size.
4th param: image

Old best edge direction.
5th param: int value (edge size)
6th param: float value (edge direction)
7th param: float value (lambda)
8th param: image

New best edge value.
9th param: image

New best edge size.
10th param: image

New best edge directioa

Validated 1251.2 ms 221 Apply
Convolution in the X (row) direction. 41-point convolution.
1 st param: reaiimage
2nd param: array [41] of float
3rd pram: reaiimage

Validated 109.1ms 99
Exclusive or an image with a constant
1st param: image
2nd psram: int constant
3rd param: image

Apply

input
input
output

input
input
input

input

output

input

input

input

input

input
input
input
output

output

output

Input
input
output

input
input
output
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xorplb Validated 161.1 ms
Exclusive or two images.

Parameters: 1st param: image
2nd param: image
3rd param: image

118 Apply

input
input
output

yconv

Parameters:

Validated 3086.7 ms 649 Apply
Convolution in the Y (column) direction. 41-point convolution.
1st param: reatimage input
2nd param: array [41] of float input
3rd param: reaUmage output


