NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

End of Year Report for
Parallel Vision Algorithm Design and Implementation

January 15, 1987 - January 14, 1988

Takeo Kanade and Jon A Webb
11 August 1988
CMU-RI-TR-88-11 5

The research was supported by the Defense Advanced Research Projects Agency (DOD), monitored by the US
Army Engineer Topographic Laboratories under Contract DACA76-85-C-0002.

Table of Contents
1. Introduction
1.1 Overview
1.2 Warp Vision Software
1.3 The Apply Language and WEB
1.4 Support for Other Programs
1.5 Acknowledgments
2. An Architecture Independent Programming Language for Low-Level Vision
2.1 Introduction
2.2 Introduction to Apply
2.2.1 The Apply Language
2.2.2 An Implementation of Sobel Edge Detection
2.2.3 Border Handling
2.2.4 Image Reduction and Magnification
2.2.5 Multi-function Apply Modules
2.2.5.1 An Efficient Sobel Operator
2.2.5.2 An Efficient Median Filter
2.3 Apply on Warp and Warp-like Architectures 11
2.3.1 Low-level vision on Warp 12
23.2 Apply on FT Warp 13
23.3 Apply on iWarp 14
2.4 Apply on Uni-processor Machines 14
2.5 Apply on the Hughes HBA 15
2.6 Apply on Other Machines 16
2.6.1 Apply on bit-serial processor arrays 16
2.6.2 Apply on distributed memory general purpose machines 16
2.7 Summary 17
2.8 Grammar of the Apply Language 17
3. Architecture-Independent Image Processing: Performance of Apply on Diverse 20
Architectures
3.1 Introduction 20
3.2 The WEB Library 20
3.3 Apply Code Compared with Hand-written Code 21
3.3.1 Apply code compared with SPIDER code 21
3.3.2 Apply code compared with W2 code
3.4 Comparison of Diverse Architectures
3.4.1 Warp Compared with Sun
3.42 Warp Compared with Hughes HBA
3.5 Conclusions .
4. The WEB Library
4.1 Introduction
4.2 Calling Programs in WEB
43 Classification by Area
S.Performance of Warp on the DARPA Image Understanding Architecture
Benchmarks
5.1 Introduction
52 Warp Status
53 Vision Programming On Warp
53.1 Input Partitioning
532 Partitioning
53.3 Pipelining
5.4 Laplacian
5.5 Zero Crossings Detection
5.6 Border following
5.7 Connected components labelling
5.7.1 Sketch of the Algorithm

U-RV-N- NN - N7 N7 QNP AR SRS SE SR S

SRR3R S

BEIRRRRLREY

University Libraries
Carnegie Msilon University
Pittsburgh, Pennsylvama 15213

arne
hurg

5.7.1.1 Vocabulary and Notation
5.7.1.2 The Algorithm
5.7.2 Asymptotic Running Time
5.7.2.1 Parallel-Sequential-Systolic Algorithm
5.7.2.2 Parallel-Sequential-Parallel Algorithm
5.7.3 Implementation Details
5.7.3.1 Warp Architectural Constraints
5.7.3.2 Vax Implementation
5.7.3.3 Warp Implementations
5.8 Hough transform
5.9 Convex Hull.
5.10 Voronoi Diagram
5.11 Minimum spanning tree
5.12 Visibility
5.13 Graph Matching
5.14 Minimum-cost Path
5.15 Warp Benchmarks Summary
5.16 Evaluation of the Warp Architecture
5.16.1 Memory
5.16.2 Number of processing elements
5.16.3 External host
6. References
L WEB Listing

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 3-1:

- Figure 3-2:
Figure 3-3:
Figure 3-4:

Figure 3-5:
Figure 3-6:
Figure 3-7:

Figure 3-8:

Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:

iii

List of Figures
The Sobel Convolution Masks.
An Apply Implementation of Thresholded Sobel Edge Detection.
A More Efficient Sobel Operator
Input Partitioning Method on Warp
Processing the first row by the cyclic-scroll buffering
Processing the second row by the cyclic-scroll buffering
Ratio of execution times of hand-generated SPIDER FORTRAN to Apply
code. Vertical line indicates a ratio of one.
Scatter diagram of execution times of hand-generated SPIDER FORTRAN
and Apply code. Diagonal line indicates equality.
Ratio of execution times of hand-generated W2 code to Apply code. Vertical
line indicates a ratio of one.
Scatter diagram of execution times of hand-generated W2 code and Apply
code. Diagonal line indicates equality.
Ratio of execution times of Sun Apply code to Warp Apply code.
Scatter diagram of execution times of Sun Apply code and Warp Apply code.
Ratio of execution times of Hughes HBA Apply code to Warp Apply code.
Vertical line indicates a ratio of one.
Scatter diagram of execution times of Hughes HBA Apply code and Warp
Apply code. Diagonal line indicates equality.
Folding columns
Using results from previous steps
Convolving and storing column sums
Adding appropriate column sums
Input
Labels after parallel phase
Labels after sequential phase

12
15

21

Table5-1:
Table5-2;
Table5-3:
Table5-4:
Table5-5:
Table5-6:
Table5-7:
Table5-8:
Table 5-9:

List of Tables
Optimized Symmetric Convolution
Final maps
Labd Computation
Vax implementation timings
Egtimated WW Warp timings
Egtimated PC Warp timings
Estimated /Warp timings
Operation countsfor Voronoi diagram
Warp Benchmark Summary

36
41
41
44
45
46
46
48
51

Abstract

Progress on the Parallel Vision project is reported. Three major accomplishments are noted: the development of the
Apply language, the WEB library, and benchmarks of Warp for the DARPA image understanding architecture
comparisons. The Apply language development includes a description of the language and its implementation on
Warp, the Sun, and the Hughes HBA, together with benchmark comparisons of these very different architectures.
The WEB library includes over 100 routines; included in this report are performance numbers of these routines on
the CMU Warp machine. Finally, a detailed analysis of the Warp routines implemented for the DARPA Image
Understanding benchmarks is given.

1. Introduction

This report reviews progress at Carnegie Mellon from January 15, 1987 to January 14, 1988 on research
supported by the Defense Advanced Research Project Agency (DOD), monitored by the US Army Engineer
Topographic Laboratories under Contract DACA76-85-C-0002, titled ‘‘Research on Parallel Vision Algorithm
Design and Implementation.”” The report consists of an introduction and four detailed reports on specific areas of
research.

1.1 Overview
During this contract year our research has had three main themes:

o Support, development, and evaluation of Warp-related vision software.

e Development of the Apply programming language and WEB library of low- and mid-level vision
algorithms.

o Support for the use of parallel vision software in related DARPA-sponsored programs.

Warp gives us a powerful, existing parallel computer on which to develop parallel vision software; with this basis,
we are able to evaluate our work and see it applied to important problems in related programs that use Warp. But
we have not limited ourselves strictly to Warp software development. The Apply programming language has proved
to be a useful tool for parallel vision algorithm development on many parallel computers, especially since a
substantial portion of the WEB library of low- and mid-level vision algorithms is implemented using it. These two
efforts have led to significant application of our work in several DARPA-sponsored programs.

1.2 Warp Vision Software .

We have implemented Warp software that allows the use of the Warp computer in the Carnegie Mellon vision
environment, including remote access to the Warp computer from any Sun computer in the environment. This
software has been used to develop parallel vision algorithms at Carnegie Mellon throughout the year.

Our implementation of Warp vision algorithms led to the evaluation of the Warp computer in the DARPA Image
Understanding Architectures Benchmark Workshop. Several programs were implemented in order to compare
Warp with other parallel vision architectures, including The Connection Machine and Butterfly. The results of this
study are described in Section 5.

1.3 The Apply Language and WEB

In the summer of 1987, Apply was reimplemented to generate efficient code for Warp, the Sun/3, and FT Warp, a
2-dimensional Warp array. This reimplementation used a common front-end for all Apply programs, and different
back-ends for the different target architectures and languages. Section 2 describes Apply and its implementations on
Sun, Warp, and the Hughes HBA. It proved possible to directly compare the performance of Apply programs on
Warp with Apply on the Sun and Apply in a previous implementation on the Hughes HBA. Results are reported in
Section 3.

WEB was also reimplemented in the summer of 1987. This implementation used Apply for about 80% of the
programs, and W2 code for the remainder, most of which are global image processing operations not suited for
Apply. Section 4 describes WEB, and Appendix I lists the current status of each WEB routine. Comparison with
last year’s report shows enormous progress in making the routines implemented, validated, and made available.

1.4 Support for Other Programs

The Warp computer is used in several DARPA-sponsored programs: SC Vision, ALV, ADRIES, and SCORPIUS.
In many of these programs, image processing and related functions are a primary concern. Work on parallel vision
algorithms on the Warp machine at Carnegic Mellon has often been directly transferable to these other programs,
often by using Apply and WEB.

For example, this software was used in the demonstration of the NAVLAB autonomous land vehicle of May 7

1987 at the Warp/Butterfly User’s Group, which demonstrated a 5-to-1 speedup over the previous NAVLAB

demonstration of November 1986.

1.5 Acknowledgments
Several people contributed significantly t0 the parallel vision effort, and deserve special mention for their work:

 Leonard Hamey developed the original Apply concept and language, based on discussions with Steve
Shafer. He also implemented the Generalized Image Library.
¢ I-Chen Wu implemented the current Apply compiler.

¢ Hudson Ribas wrote most of the current WEB library.
o Richard Wallace and Mike Howard implemented Apply on the Hughes Hierarchical Bus Architecture

(HBA).
¢ Ravi Mosur implemented Warp Generalized Images and the Warp User Package.

« Francois Bitz installed and supported the Warp computer on the NAVLAB robot vehicle.

In addition, the parallel vision effort benefitted from its association with the Warp group at Camegie Mellon and
G 1 Electric Corporation, and the Image Understanding Systems and Road Following groups at Carnegie

Mellon.

2. An Architecture Independent Programming Language for Low-Level Vision

2.1 Introduction

In computer vision, the first, and often most time-consuming, step in image processing is image to image
operations. In this step, an input image is mapped into an output image through some local operation that applies to
a window around each pixel of the input image. Algorithms that fall into this class include: edge detection,
smoothing, convolutions in general, contrast enhancement, color transformations, and thresholding. Collectively,
we call these operations low-level vision. Low-level vision is often time consuming simply because images are
quite large—a typical size is 512512 pixels, so the operation must be applied 262,144 times.

Fortunately, this step in image processing is easy to speed up, through the use of parallelism. The operation
applied at every point in the image is often independent from point to point, and also does not vary much in
execution time at different points in the image. This is because at this stage of image processing, nothing has been
done to differentiate one area of the image from another, so that all areas are processed in the same way. Because of
these two characteristics, many parallel computers achieve good efficiency in these algorithms, through the use of
input partitioning [24].

We define a language, called Apply, which is designed for implementing these algorithms. Apply runs on the
Warp machine, which has been developed for image and signal processing. We discuss Warp, and describe its use
at this level of vision. The same Apply program can be compiled either to run on the Warp machine, or under UNIX,
and it runs with good efficiency in both cases. Therefore, the programmer is not limited to developing his programs
just on Warp, although they run much faster (typically 100 times faster) there; he can do development under the
more generally available UNIX system.

We consider Apply and its implementation on Warp to be a significant development for image processing on
parallel computers in general. The most critical problem in developing new parallel computer architectures is a lack
of software which efficiently uses parallelism. While building powerful new computer architectures is becoming
easier because of the availability of custom VLSI and powerful off-the-shelf components, programming these
architectures is difficult.

Parallel architectures are difficult to program because it is not yet understood how to ‘‘cover’’ parallelism (hide it
from the programmer) and get good performance. Therefore, the programmer either programs the computer in a
specialized language which exploits features of the particular computer, and which can run on no other computer
(except in simulation), or he uses a general purpose language, such as FORTRAN, which runs on many computers
but which has additions that make it possible to program the computer efficiently. In either case, using these special
features is necessary to get good performance from the computer. However, exploiting these features requires
training, limits the programs to run on one or at most a limited class of computers, and limits the lifetime of a
program, since eventunally it must be modified to take advantage of new features provided in a new architecture.
Therefore, the programmer faces a dilemma: he must either ignore (if possible) the special features of his computer,
limiting performance, or he must reduce the understandability, generality, and lifetime of his program.

It is the thesis of Apply that application dependence, in particular programming model dependence, can be
exploited to cover this parallelism while getting good performance from a parallel machine. Moreover, because of
the application dependence of the language, it is possible to provide facilities that make it easier for the programmer
to write his program, even as compared with a general-purpose language. Apply was originally developed as a tool
for writing image processing programs on UNIX systems; it now runs on UNIX systems, Warp, and the Hughes HBA.
Since we include a definition of Apply as it runs on Warp, and because most parallel computers support input
partitioning, it should be possible to implement it on other supercomputers and parallel computers as well.

Apply also has implications for benchmarking of new image processing computers. Currently, it is hard to
compare these computers, because they all run different, incompatible languages and operating systems, so the same
program cannot be tested on different computers. Once Apply is implemented on a computer, it is possible to fairly
test its performance on an important class of image operations, namely low-level vision.

Apply is not a panacea for these problems; it is an appﬁcaﬁop—speciﬁq, m:'ac_hine-indqpendent, language. Since it
is based on input partitioning, it cannot generate programs which use pipelining, a_nd it cannot be used for global
ected components, Hough transform, FFT, and histogram. However, Apply is in

vision algorithms [23] such as conn . . .
daily use at Camegie Mellon and elsewhere, and has been used to implement a significant library (100 programs) of
algorithms covering most of low-level vision. A companion paper [33] describes this library and evaluates Apply’s

ing the Apply language and its utility for programming low-level vision algorithms.
Examples of Apply programs and Apply’s syntax are presented. Finally, we discuss implementations of Apply on
i 2 and Warp-like architectures, uni-processors, the Hughes HBA, bit-serial p ;

arrays, and distributed memory machines.

5.2 Tntroduction to ApplY . ich simpli
F el is a special-purpose programming approach which simplifies the programming

The Apply g .
1ask by pplm"ngwmm explicit the parallelism of low-level vision algo.nthst. We have developed a special-purpose
programming language called the Apply language which embodies 'thls parallel programming approach. When
using the Apply language, the programmer writes a procedure which defines the operation to be applied at a
particular pixel location. The procedure conforms to the following programming model:
OItacocptsawinddwaapixelﬁomwchmputimage.
o It performs arbitrary computation, usually without side-effects.
o It returns a pixel value for each output image.

The Apply compiler converts the simple procedure into an implementation which can be run efficiently on Warp,
or on a uni-processor machine in C under UNIX.

The i ¢mmymmmgmodelgrewoutofad%ire for efficiency combined with ease of

amming for a useful class of low-level vision operations. In our environment, image data is usually stored in

3 onsiderable overhead in accessing individual

entire row at a ume. While buffering rows improves the speed

language subroutine implementation of Apply was developed

complexities er while still providing the efficiency

ffering methods which we developed were more efficient than those which would otherwise

ply implementations of algorithms were faster than previous implementations.

menting Appty,mefonowingaddiﬁmaladvmtagesbmmeevim

M

Whichiztis@m?bedded. This encourages programmers to use more

otmmForexmpleaSObelpm gained a factor of four in
it i :wixﬁApply.'I'hiSspeeduppnmanlyreS!ﬂtedﬁomexpliciﬂycodmg
tions. The resulting code is more hensible than the earlier implementation.

« Apply programs are easier 0 write, easier to debug, more comprehensible and more likely to work
mﬂiythcﬁmtt'mm\bewﬁiotAppiyisthatitgreaﬂyredumprogrammmgumeandeffon
hammﬁﬂm‘ﬁvﬁwa{godﬂmammﬁngmogmnsmdmmwrmmpmmmma

22.1 The Apply Language

) The Apply language is designed for programming image to image computations where the pixels of the outpat
images can be computed from corresponding rectangular windows of the input images. The essential feature of the
language is Mnch operation is written as a procedure for a single pixel position. The Apply compiler generatesa
mmwlmhmmmdwpmwdmomanemmumge No ordering constraints are provided for in the
language, allowing the compiler complete freedom in dividing the computation among Processors.

Each procedure has a parameter list containing parameters of any of the following types: in, out or constant.
Input parameters are either scalar variables or two-dimensiond arrays. A scdar input variable represents the pixe
value of an input image & the current processing co-ordinates. A two-dimensiond array input variable represents a
window of an input image. Element (0,0) of the array corresponds to the current processing co-ordinates.

Output parameters are scdar variables. Each output variable represents the pixel value of an output image. The
finad value of an output variable is stored in the output image a the current processing co-ordinates.

Congtant parameters may be scalars, vectors or two-dimensond arrays. They represent precomputed constants
which are made available for use by the procedure. For example, aconvolution program would use a constant array
for the convolution mask.

The reserved variables RON and GOL are defined to contain the image co-ordinates of the current processing
location. Thisisuseful for agorithms which are dependent in alimited way on the image co-ordinates.

Section 2.8 gives a grammar of the Apply language. The syntax of Apply is based on Ada[1]; we chose this
syntax because it is familiar and adequate. However, as should be dlear, the application dependence of Apply means
that itis not an Ada subset, nor is it intended to evolve into such a subset

The operators *, |, &, and | refer to the exclusive or, or, and, and not operations, respectively. Variable and
function names are apha-numeric strings of arbitrary length, commencing with an adphabetic character. The
INTEGER and REAL pseudo-functions convert from real to integer, and from integer (or byte) to red types. Caseis
not sgnificant, except in the preprocessing stage which isimplemented by the m4 macro processor [22].

BYTE, INTEGER, and REAL refer to (at least) 8-bit integers, 16-hit integers, and 32-bit floating point numbers.
BYTE values are converted implicitly to INTEGER within computations. The actual size of the type may be larger,
a the discretion of the implementor,

2.2.2 An Implementation of Sobel Edge Detection

Asasmple example of the use of Apply, let us consider the implementation of Sobel edge detection. Sobel edge
detection is performed by convolving the input image with two 3x3 masks. The horizontd mask measures the
gradient of horizontal edges, and the vertical mask measures the gradient of vertical edges. Diagond edges produce
some response from each mask, alowing the edge orientation and strength to be measured for al edges. Both masks
areshowninFigure2-1.

1 12 1 ! I 1 0-1)
1 0 0 01 1 2 0-2 !
t-1-2-1 1 1 1 0-1 !
Horizontal Vertical

Figure2-1: The Sobel Convolution Masks.

Ail Apply implementation of Sobel edge detection is shown in Figure 2-2. Hielines haw been numbered for the
purposesof explanation, using the comment corxvertion. Line numbers are not apart of the language.

Line 1 defines the input, output and constant parameters to the function. The input parameter mimg is a window
of Seinput image. The constant parameter thresh is athreshold. Edges which are weaker than this threshold are
suppressed in the output magnitude image, mag. Line 3 defines horiz aid Tart which are internd variables used to
bold theresults of the horizontal and vertical Sobel edge operator.

Line 1 aso defines die inpE image wfddow* It is a 3x3 window centered about the current pixel processing
position, which is filed with the value 0 when the wlectow lies outside the image. This same Hue declmes the
congtant and output parameters to be floating-point scaar variables.

U 7
Carne
Pt procedure sobel (inimg : in array (-1..1, -1..1) of byte --1
border 0,
thresh : const real,
mag : out real)
is -2
horiz, vert : integer; -- 3
begin -- 4
horiz := inimg(-1,-1) + 2 * inimg(-1,0) + inimg(-1,1) - -- 5
inimg(l,-1) - 2 * inimg(1,0) - inimg(1,1);
vert := inimg(-1,-1) + 2 * inimg(0,-1) + inimg(1l,-1) - -- 6
inimg(-1,1) - 2 * inimg(0,1) - inimg(1,1);
mag := sqgrt(horiz*horiz + vert*vert); -7
if mag < thresh then -- 8
mag := 0.0; -9
end if; -- 10
end sobel; - 11
M&h Anwy M Inen ;"a‘a.t7 MW SObClEdgCDetecﬁon.
The computation of the Sobel convolutions is im; hy&csﬁmgm-forwardexpressmlsonhrmsm

7. These expressions are readily seen to be a direct implementation of the convolutions in Figure 2-1.

2.2.3 Border Handling
Mmhm:mmMmmpmgmmgkmwlopmumssmhassm%
detection. In practice, this is wsually left up 10 the programmer, with varying results—sometimes borders are
handled in one way, sometimes another. ‘Mmmammmyofmmgmem It supports
border bamdling by extending the input images with a constant value. The constant value is specified as an
Ww:ammmmmmmmkmmmmmmmm

uﬁwmmmmnmm””m extended mmmmmm“* i

inpat image, Apply handics this case by not calculating the corresponding

mmmeWWatmmhmkmmasmxsmmm
256256 image, or 10 magnify images. This is implemented via the SAMPLE parameter, which can be applied 1o
ingput images, and by using output image varisbies which are arrays instead of scalars. The SAMPLE parameter
specifies that the apply operation is 10 be applied not at every pixel, but regularly across the image, skipping pixels
s specilied in the imeger list alter SAMPLE, The window around each pixel still refers to the underlying input
m mmemmmmmmmnﬂm windows, to reduce

procedure reduce(inimg : in array (0..3, 0..3) of byte sample (2, 2),
outimg : out byte)
is
sum : integer;
i,j : integer;
begin
sum := 0;
for i in 0..3 loop
for j in 0..3 loop
sum := sum + inimg(i, j):;

end loop;
end loop;
outimg := sum / 16;
end reduce;

Magnification can be done by using an output image variable which is an array. The result is that, instead of a
single pixel being output for each input pixel, several pixels are output, making the output image larger than the
input. The following program uses this to perform a simple image magnification, using linear interpolation:

procedure magnify (inimg : in array(-1..1, -1..1) of byte border 0,
outimg: out array(0..1, 0..1) of byte)
is
begin
outimage (0, 0)

(inimg (-1, -1) + inimg(-1,0)
+ inimg(0,-1)+ inimg(0,0)) / 4;
(inimg(-1,0) + inimg(-1,1)
+ inimg(0,0) + inimg(0,1)) / 4;
outimage(l,0) := (inimg(0,-1) <+ inimg(0,0)
+ inimg(1,-1)+ inimg(1,0)) / 4;
(inimg (0, 0) + inimg(0,1)
+ inimg(1,0) + inimg(1,1)) / 4:

outimage (0,1)

outimage (1, 1)
end magnify;

The semantics of SAMPLE (s1,s2) are as follows: the input window is placed so that pixel (0, 0) falls on
image pixel (0,0),(0,52),...,00nx%s2),...,(mxs1,nxs2). Thus, SAMPLE (1,1) is equivalent to omitting the
SAMPLE option entirely.

Output image arrays work by expanding the output image in either the horizontal or vertical direction, or both,
and placing the resulting output windows so that they tile the output image without overlapping.

2.2.5 Multi-function Apply Modules
In many low-level image processing algorithms, results from an adjacent pixel are saved in order to be used to
calculate the results at an adjacent pixel; this results in a more efficient algorithm. Because Apply programs do not
shmemsuhsﬁomadjacemms(domgsowouldvmlamApplysmdamdependemc which is what makes it easy
mplement in parallel), Apply programmers cannot take advantage of this trick. However, many of these
a&gomhmscmbcfactmedmtomuluplepassmmawaytha.trwmsmanefﬁmemmogmmwnhouLnoedmgto
introduce order dependence.

'mescnmlnplcfmcumscmbedﬁclmdyunple:nemedmApply Where memory use is not a concern, the
termediate results can be saved, and used by the next Apply program. In cases where memory is limited, multiple
App!yfuncnmscanbempﬁedmgabermmamglepas.

2.2.5.1 An Efficient Sobel Operator))

A simple example is the Sobel operator. Inmepmgmmshownmﬁgm‘GZ-Z,ateachplxel}l;emwandoolm
sums must be recalculated. But at every pixel, one of the row and column sums are shared with pixels two 10 the
left, right, 10p, and bottom. This is inefficient.

Figure Z-Ss!mwsdwsamSobdopaamrimplemenwdasmultiple functions. In the ROWCOL procedure, the roy
and column sums are calculated—each is calculated only once per pixel. Ir} the SOBEL procedure, the roy ad
column differences are summed, and the result is computed just as before. 'Ihxspmgxamdoes6feweraddiﬁomw
2 fewer multiplications than the program in Figure 2-2.

procedure rowcol (inimg : in array (-1..1, -1..1) of byte
boxder 0,
rowsum : out integer,
colsum : out integer)
is
' ‘ . 3
rowsum := inimg(0,-1) + 2 * inimg(0,0) + inimg(0,1);
colsum := inimg(-1,0) + 2 * inimg(0,0) + inimg(1,0);
end rowcol;

procedure sobel (rowsum : in array(-1..1, 0..0) of integer,
colsum : in array(0..0, -1..1) of integer,
thresh : const real,
mag : out real)
is
horiz, vert : integerx;
begin
horiz := rowsum(-1,0) - rowsum(l,0):
vert := colsum(0,-1) - colsum(0,1);
mag := sqrt(horiz*bhoriz + vert*vert);
if mag < thresh then
mag := 0.0;
end if; ‘
end sobel;

Figure 2-3: A More Efficient Sobel Operator

Another example is median filter. Many median filter algorithms use results from an adjacent calculation of
median filter 10 compute 2 new median filter, when processing the image in raster order. Apply multiple functioss
Jead 1o the following 3 x 3 median filter. ;

The algorithm works in two steps. The first step (MEDIAN1) produces, for each pixel, a sort of the pixel and
pixels above and below that pixel. mwmmmummwwmgmmmmw;*
mm The second siep (MEDIAN?) sorts, based on the middle element in the column, the three eleme
produced by the first step. Note the use of the SAMPLE clause in this step to place MEDIAN? at every third m
produced by MEDIANI ~ this causes MEDIANZ to produce an image the same size as the input to MEDIANL
MEDIANZ produces the following relationships among the nine pixels at and surrounding a pixel: o

10

From this diagram, it is easy to see that none of pixels g, A, b, or c can be the median, because they are all greater
or less than at least five other pixels in the neighborhood. The only candidates for median are a, 4, ¢, f, and i. Now
we observe that f< {e, h,d, g}, so that if f<a, f cannot be the median since it will be less than five pixels in the
neighborhood. Similarly, if a<f, a cannot be the median. We therefore compare a and f, and keep the larger. By a
similar argument, we compare i and d and keep the smaller. This leaves three pixels: e, and the two pixels we chose
from {a,f}, and {d,i}. All of these are median candidates. We therefore sort them and choose the middle element;
this is the median.

This algorithm computes a 3 X3 median filter with only eleven comparisons, comparable to many techniques for
optimizing median filter in raster-order processing algorithms.

-- Sort the three elements at, above, and below each pixel
procedure medianl (image : in array(-1..1, 0..0) of byte,
si : out array(-1..1, 0..0) of byte)
is
byte a, b, c¢;
begin
if image(-1,0) > image (0, 0)
then if image(0,0) > image(1,0)
then s8i(1,0) := image(-1,0);
8i(0,0) := image(0,0);
si(-1,0) := image(1,0); end if;
else if image(-1,0) > image(1l,0)
then s8i(1,0) := image(-1,0);
8i(0,0) := image(1,0):;
si(-1,0) := image(0,0);
else si(1,0) := image(1,0);
8i(0,0) := image(-1,0);
8i(-1,0) := image(0,0);
end if;
end if;
else if image(0,0) > image(1,0)
then if image(-1,0) > image(1,0)
then s8i(1,0) := image(0,0);
8i(0,0) := image(-1,0);
8i(-1,0) := image(1l,0);
else s8i(1,0) := image(0,0);
8i(0,0) := image(1,0):
si(-1,0) := image(-1,0);
end if;
else 8i(1,0) := image(1,0);
8i(0,0) := image(0,0);
si(-1,0) := image(-1,0);
end if;
end if;
end medianl;

11

procedure median2 (si : in array(-1..1, -1..1) of byte
sample (3, 1),
median : out byte)
-- Combine the sorted columns from the first step to give the median.

is
int 1, m, h;
byte A, B;
begin
if si(-1, 0) > si(0, 0)
then if si (0, 0) > si(1, 0)
then h := -1; m :=0; 1 :=1; end if;
else if si(-1,0) > si(1,0)
then h := -1; m :=1; 1 := 0;
else h :=1; m := -1; 1 := 0; end if; end if;
else if si(0, 0) > si(1, 0)
then if si(-1,0) > s8i(1,0)
then h :=0; m := -1; 1 :=1;
else h := 0; =1; 1 := -1; end if;
else h :=1; m :=0; 1 := -1; end if; end if;
if si(1, -1) > si(m, 1)
then A := si(1l, -1);
else A := si(m, 1); end if;
if si(m, -1) < si(h, 1)
then B := si(m, -1);
else B := si(h, 1); end if;
if A > si(m, 0)
then if si(m, 0) > B
then median := si(m, 0); end if;
else if A > B
then median := B; °
else median := A; end if; end if;
else if si(m, 0) > B
then if A > B
then median := A;
else median := B; end if;
else median := si(m, 0); end if; end if;
end median2;

2.3 Apply on Warp and Warp-like Architectures

The Warp-like architectures have in common that they are systolic arrays, in which each processor is a powerful
(?ﬂMamm}mmwﬂhhighwmd—by—wmﬂI/Obandwidxhwith adjacent processors, arranged in a
simple topology. Apply is implemented on these processors in similar ways, so we first describe the basic model of
low-level image processing on Warp, and then sketch the implementations on FT Warp and i Warp.

We briefly describe each of the Warp-like architectures; a complete description of Warp is available
eisewhere [3]. Warp is a short linear array, typically consisting of ten cells, each of which is a 10 MFLOPS
computer. The array has high internal bandwidth, consistent with its use as a systolic processor. Each cell has a
Mmmddammmy,mdambeprommdinaPascal-levellanguagecaﬂedWZ,whichsuppons
mnafmnmbdmcensusingasymhmms word-by-word send and receive statements. The systolic
mysmdw@amﬂmmmaMmoeimdamﬁomdwmyﬁmnasepamxememory. The
external host in tum is attached to 2 Sun computer, which provides the user interface.

12

Fault-tolerant (FT) Warp is a two-dimensional array, typicaly a five-by-five array, being designed by Carnegie
Médlon. Each cdll isaWarp cell. Each row and column can be fed data independently, providing for a very high
bandwidth. As the name suggests, this array has as a primary goa fault-tolerance, which is supported by a virtud
channd mechanism mediated by a separate hardware component called a switch.

i Warp is an integrated version of Warp being designed by Carnegie Mdlon and Intel. Ini Warp each Warp cell is
implemented by a single chip, plus memory chips. The basdline i Warp machineisa 72 cdll linear array, athough
two-dimensond designs are also being considered. iWarp includes support for distant cells to communicate as if
they were adjacent, while passing their data through intermediate cells.

2.3.1 Low-level vision on Warp

We map low-level vison agorithms onto Warp by the input partitioning method. On aWarp array of ten cells,
the image is divided into ten regions, by column, as shown in Figure 2-4. This gives each cdl atall, narrow region
to process; for 512x 512 image processing, theregion sizeis 52 columns by 512 rows. To use technica terms from

weaving, the Warp cells are the "warp" of the processing; the "weft" is the rows of the image as it passes through
theWarp array.

N
N

512
A
cic|jcleclcjcjcecycjclc
ele|le|le|le|leje|leaeje]le
1711111 1)1j11111]11
1{1f1)zx111y1]1jr]rjzrtsd
9876543210})
~r
52

Figure2-4: Input Partitioning Method on Warp

The image is divided in this way using a series of macros caled GETROW, PUTROW, and COMPUTEROW.
CETROW generates code that takes a row of an image from the external host, and distributes one-tenth of it to each
of ten cells. The programmer includes aGETROW macro at the point in his program where he wants to obtain a row
of theimage; after the execution of the macro, abuffo* in the interna cell memory has the data from the image row.

The GETROW macro works asfollows. The externa tost sendsin the image rows as apacked array of bytes- for
a512-bytewideimage, thisarray consists of 128 32-bit words. These words are unpacked and converted to floating
point numbers in the interface unit. The 512 32-hit floating point numbers resulting from this operation aie fed in
sequence to the firgt cell of the Warp array. This cdl takes one-tenth of the numbers, removing them from the
stream, and passes through therest to the next cell. The first cell then adds a number of zeroes to replace the data it
has removed, so that the number of data received and sent are equal

Thisprocessisrepeated in each-cell. In thisway, each cell obtains one-tenth of the datafrom arow of the image.
As the program is executed, and the process is repeated for aH rows of the image, each cell sees an adjacent set of
columns of the image, as shown in Figure 2-4.

We have omitied certain details of GETROW- for example, usudly the image row size is not m exact multiple of
ten. lathis case, the GETROW macro pads the row equaly on both sides by having the interface unit generate an
appropriate number of zeroes on either side of the image row. Also* usudly the area of the image each cell must sec
to generate its outputs overlaps with the next cel Tsaxca lit this case, the cell copies some af the data it receives to

13

the next cell. All this code is automatically generated by GETROW.

PUTROW, the corresponding macro for output, takes a buffer of one-tenth of the row length from each cell and
combines them by concatenation. The output row starts as a buffer of 512 zeroes generated by the interface unit.
The first cell discards the first one-tenth of these and adds its own data to the end. The second cell does the same,
adding its data after the first. When the buffer leaves the last cell, all the zeroes have been discarded and the first
cell’s data has reached the beginning of the buffer. The interface unit then converts the floating point numbers in the
buffer to zeroes and outputs it to the external host, which receives an array of 512 bytes packed into 128 32-bit
words. As with GETROW, PUTROW handles image buffers that are not multiples of ten, this time by discarding data
on both sides of the buffer before the buffer is sent to the interface unit by the last cell.

During GETROW, no computation is performed; the same applies to PUTROW. Warp’s horizontal microword,
however, allows input, computation, and output at the same time. COMPUTEROW implements this. Ignoring the
complications mentioned above, COMPUTEROW consists of three loops. In the first loop, the data for the cell is read
into a memory buffer from the previous cell, as in GETROW, and at the same time the first one-tenth of the output
buffer is discarded, as in PUTROW. In the second loop, nine-tenths of the input row is passed through to the next
cell, as in GETROW, at the same time, nine-tenths of the output buffer is passed through, as in PUTROW. This loop is
unwound by COMPUTEROCW so that for every 9 inputs and outputs passed through, one output of this cell is
computed. In the third loop, the outputs computed in the second loop are passed on to the next cell, as in PUTROW.

There are several advantages to this approach to input partitioning:

e Work on the external host is kept to a minimum. In the Warp machine, the external host tends to be a
bottleneck in many algorithms; in the prototype machines, the external host’s actual data rate to the
array is only about 1/4 of the maximum rate the Warp machine can handle, even if the interface unit
unpacks data as it arrives. Using this input partitioning model, the external host need not unpack and
repack bytes, which it would have to if the data was requested in another order. On the production
Warp machine, the same concern applies; these machines have DMA, which also requires a regular
addressing pattern.

e Each cell sees a connected set of columns of the image, which are one-tenth of the total columns in a
row. Processing adjacent columns is an advantage since many vision algorithms (e.g., median
filter [17]) can use the result from a previous set of columns to speed up the computation at the next set
of columns to the right.

o Memory requirements at a cell are minimized, since each cell must store only 1/10% of arow. This was
important in the prototype Warp machines, since they had only 4K words memory on each cell. On PC
Warp, with 32K words of memory per cell, this approach makes it possible to implement very large
window operations.

¢ An unexpected side effect of this programming model was that it made it easier to debug the hardware
mﬂreWarpmachxm If some portion of a Warp cell is not working, but the communication and

sequencing portions are, then the output from a given cell will be wrong, but it will keep its proper
pomwnmthemnge. This means that the error will be extremely evident - typically a black stripe is
generated in the corresponding position in the image. It is quite easy to infer from such an image which
cell is broken!

mApplyonFTWarp

The 2-dimensional FT Warp array can be viewed as several 1-dimensional arrays. An image is usually divided
mmwmﬂm(admmtmofm)mPTme The data of each swath are fed into the corresponding
mdmzmewmmmfadmmal—dumnmlmy This results in each cell of FT

lar portion of the image.

To make the bandwidth as high as possible and to use the COMPUTEROW model, we input the data along the

The typical FT Warp array is a five-by-five array, as opposed to ten cells in Warp, and each cell is as powerful as

14

a Warp cell. FT Warp, however, has much higher bandwidth than Warp. Therefore, for complex image processing
operations where I/O bandwidth is not a factor, we expect FT Warp Apply programs to be 2.5 times faster than
Warp programs, and even faster in simple image processing operations where I/O bandwidth limits Warp
performance.

2.3.3 Apply on iWarp

The i Warp implementation of Apply uses a virtual pathway mechanism to allow each cell to process only data
intended for that cell. This eliminates much of the complication of Apply on Warp; there is no need for a cell to
explicitly pass data on to other cells, instead it can simply direct the rest of the data to pass on to later cells without
further intervention.

Our description of Apply on i Warp will be clear if we describe the action of GETROW and PUTROW on this
machine. In GETROW, each cell accepts data intended for that cell, and then releases control of the data to be
passed on to the next cell automatically, until the arrival of the start of the next row. After releasing control, it goes
on to process the data it has just received. In the meantime, it is allowing data to pass by on the output channel until
the end of the output row arrives. It then tacks on its computed output to the end of this output row, completing
PUTROW.

We expect this method of implementing Apply to be at least as efficient as the COMPUTEROW model on Warp.
Since the baseline i Warp machine has 72 cells, each of which is 1.6 to 2 times as powerful as a Warp cell, total
performance should be from about 10 to 14 times greater than Warp. i Warp’s I/O bandwidth is much higher than
Warp’s, so this performance should be achievable for all but the most simple image processing operations.

2.4 Apply on Uni-processor Machines

The same Apply compiler that generates Warp code also generates C code to be run under UNIX. We have found
that an Apply implementation is usually at least as efficient as any alternative implementation on the same machine.
The computation time of the Apply-generated code is usually faster than that of hand coded programs. This
efficiency results from the expert knowledge which is built into the Apply implementation but which is too complex
for the programmer to work with explicitly. In addition, Apply focuses the programmer’s attention on the details of
the computation, which often results in improved design of the basic computation.

The Apply implementation for uni-processor machines employs a technique, called cyclic-scroll buffering here,
which efficiently uses small space and time to buffer the rows of the image. The technique allows the kemel to be
shifted and scrolled over the buffer with low cost.

The cyclic-scroll buffering technique which we developed for Apply on uni-processor machines is described as
follows. For an NxN input image which will be processed with an MxM kernel, a buffer with (N+M—1) <M + (N-1)
elements is required.

Figure 2-5 and 2-6 display the column-major arrangement for processing a 33 kemel. The pointers represent
" successive positions in memory. In addition, we keep two base pointers for the buffer. One, called row base, points
to the first pixel of the three rows of the image and the other, called kernel base, points to the first pixel of the
kemnel. C language subscripting can be used to directly access the elements of the kernel except that the indices of
row and column must be exchanged because the rows of the images are stored in column-major order.

Initially, we put the first M rows of the image, including the border, into the buffer in column-major order. When
the first kernel is processed, row base points to the first element of the buffer, and kernel base points to the center
element of the window to be processed. After the first kernel has been processed, the kernel base is incremented by
M to point to the first pixel of the next kemel. It is thus possible to shift the kernel across the entire buffer of data
with a cost of only one addition.

When processing an entire row is completed, the first row in the buffer from the row base is discarded and the
next row of the image is input into the discarded row with a column displacement of one (i.c. beginning at the

Cai
'ittsh

15

'L L [L L [
0|RB| ||| kB !

NV N2 BN BN] RN 7 N N
1 |
A

C 1T 1 [L [

0 1 2 3 4 513

Kernel
KB: The element pointed by kernel base.

RB: The element pointed by row base. Spare

Figure 2-5: Processing the first row by the cyclic-scroll buffering

second element). Then the row base is incremented by one. The purpose of column displacement 1 is that the input
row can be considered to be the M row of the buffer starting from the new row base. Effectively, the rolling is
done at the same time. After the kernel base is reset to point to the center element of the new window, we can do
another row operation in the same way as the first until all the rows are processed. Figure 2-5 and 2-6 show the
processing of the first and second row.

]
!
1 L L [l 1
N o g e el BN 7 N R\
1|rB KB
2| P Vel |
1 1 L L | 1
0o 11 2 3 4 513
Kernel
KB: The element pointed by kernel base.
RB: The element pointed by row base. Spare

Figure 2-6: Processing the second row by the cyclic-scroll buffering

For each row operation, one more memory element is needed in the buffer. Therefore, the total number of the
clements in the buffer is M X (N+M—1)+ (N-1).

2.5 Apply on the Hughes HBA

Apply has been implemented on the Hughes HBA computer [32] by Richard Wallace of Camegie Mellon and
Hughes. In this computer, several MC68000 processors are connected on a high-speed video bus, with an interface
between each processor and the bus that allows it to select a subwindow of the image to be stored into its memory.
The input image is sent over the bus and windows are stored in each processor automatically using DMA. A similar

16

interface exists for outputting the image from each processor. Thisalows flexible real-time image processing.

The Hughes HBA Apply implementation is straightforward and similar to the Warp implementation. The image
is divided in "swaths", which are adjacent sets of rows, and each processor takes one swath. (In the Warp
implementation, the swaths are adjacent sets of columns, instead of rows). Swaths overlgp to dlow each processor
to compute on awindow around each pixel. The processors independently compute the result for each swath, which
is fed back onto the video bus for display.

The HBA implementation of Apply includes a facility for image reduction, which was not included in earlier
versons of Apply. The HBA implementation subsamples the input images, so that the input image window refers to
the subsampled image, not the origina image as in our definition. We prefer the approach here because it has more
generd semantics. For example, using image reduction as we have defined it, it is possble to define image
reduction using overlapping windows as in Section 2.2.4.

2.6 Apply on Other Machines

Here we briefly outline how Apply could be implemented on other parallel machine types, specificaly bit-serial
processor arrays, and distributed memory genera purpose processor machines. These two types of parale
meachines are very common; many parallel architectures include them as a subset, or can smulate them efficiently.

2.6.1 Apply on bit-serial processor arrays

Bit-serid processor arrays [6] include a great many parale machines. They are arrays of large numbers of very
smple processors which are able to perform asingle bit operation in every machine cycle. Weassume only thatitis
possible to load images into the array such that each processor can be assigned to a single pixd of the input image,
and that different processors can exchange information localy, that is, processors for adjacent pixels can exchange
information efficiently. Specific machines may also have other features that may make Apply more efficient than
the implementation outlined here.

In this implementation of Apply, each processor computes the result of one pixel window. Because there may be
more pixels than processors, we alow asingle processor to implement the action of severd different processors over
aperiod of time, that i s, we adopt the Connection Machine'sideaof virtual processors [16].

The Apply program works asfollows:)
* Initialize: For nxn image processing, use avirtual processor network of nxn virtua processors.

* Input: For each variable of type IN, send apixel to the corresponding virtual processor.

= Constant Broadcast al variables of type CONST to al virtua processors.

» Window: For each IN variable, with a window size of mxm, shift it in a spird, first one step to the
right, then one step up, then two steps two the left, then two steps down, and so on, storing the pixel
value in each virtual processor the pixel encounters, until a mxm sguare around each virtua processor
is filled. Thiswill take m? steps.

» Compute: Each virtual processor now hasall the inputs it meedsto caculate the output pixels. Perform
this computation in parallel on all processors.
Because memory on these machines is often limited, it may be best to combine the "window" and "compute”
steps above, to avoid the memory cost of prestoring all window elements on each virtual processor.

2.6.2 Apply on distributed memory general purpose machines

Machines in this class consist of a moderate number of general purpose processors, each with its owe memory.
Many geoeld-ptixpose parailel architectures implement this model, such as the Intd iPSC [18] or the Coamic
Cube[29]. Otter paralle architectures, such as die shared-memory BBN Butterfly [7,251, can efficiently
implement Apply in this way; treating them as distributed memory machines avoids problems with contention for

17

Can
Pittshy

memory.

This implementation of Apply works as follows:) dst . 0
. s in use, divide the image into n regions, and store one region in each of
. g;pt;L If there are n pmccssmxTa actual shape of the regions can vary with the particular machine in
use m compact mgmls: s have smaller borders than long, thin regions, so that the next step will
be more efficient if the regions are compact.
Wi - For each IN variable, exchange rows and columns of their image with processors
o mm or . &mpgcms so that each processor has enough of the image to compute
« Compute: Each processor now has enough data to compute the output region. It does so, iterating over
all pixels in its output region.

2.7 Summary . .
The Apply language crystallizes our ideas on low-level vision programming on parallel machines. It allows

programmer to treat certain messy conditions, such as border conditions, uniformly. It also allows the programr
10 get consistently good efficiency in low-level vision programming, by incorporating expert knowledge about h
to implement such operators.

We have defined the Apply language as it is currently implemented, and described its use in low-level vis
programming. Apply is in daily use at Camnegie Mellon and elsewhere for Warp and vision programming
general; it has proved 1o be a useful tool for programming under UNIX, as well as an introductory tool for W
programming.

We have described our programming techniques for low-level vision on Warp. These techniques began w
simple row-by-row image processing macros, which are still in use for certain kinds of algorithms, and led to-
development of Apply, which is a specialized programming language for low-level vision on Warp. This langu:
couid then be mapped onto other computers, including both uni-processors and parallel computers.

One of the most exciting characteristics of Apply is that it is possible to implement it on diverse paral
machines. We have outlined such implementations on bit-serial processor arrays and distributed memory machin
Implementation of Apply on other machines will make porting of low-level vision programs easier, should exte
the lifetime of programs for such supercomputers, and will make benchmarking easier. Several implementati
efforts are underway at other sites to map Apply onto other parallel machines than those described here.

We have shown that the Apply programming model provides a powerful simplified programming method whi
is applicable 10 a variety of parallel machines. Whereas programming such machines directly is often difficult, |
Apply language provides a level of abstraction in which programs are easier to write, more comprehensible a
more likely 0 work cormecdy the first time. Algorithm debugging is supported by a version of the Apply compi
which generates C code for uni-processor machines.

2.8 Grammar of the Apply Language
procedire T ;fmnfmcﬂmm { function-args)
variable-declarations
BEGIN
statements
END function-name;
fumc non-args :i® function-argument [, function-argument *
Suime on-ar gument iim vardis : IN rype

M _ I

var-list

integer-list

integer

sign

digit
variable-declarations

type

range

elementary-type

sign

object

statements

Statement

assignment-stmt

scalar-var

subscript-list

— o) 0 " — 0 8

e — o b e G s Neww e §)
.

18

[BORDER const-expr]
[SAMPLE (integer-list) 1]
var-list : OUT type
var-list : CONST type

variable [, variable 1*

integer [, integer 1*

[signldigit [digit 1*
TZ:.I—2|3|415|617|8|9
[var-list : type ; 1*

ARRAY (range [, range 1+) OF elementary-type
elementary-type

integer-expr .. integer-expr

sign object
object

SIGNED
UNSIGNED
Empty

assignment-stmt
if-stmt

for-stmt
while-stmt

scalar-var := expr

L (subscript-list)

é

integer-expr [, integer-expr J*

19

if-stmt ::= IF bool-expr THEN
statements
END IF
| IF bool-expr THEN
statements
ELSE
statements
END IF

bool-expr AND bool-expr
bool-expr OR bool-expr
NOT bool-expr

(bool-expr)

expr < expr

expr <= expr

expr = expr

expr >= expr

expr > expr

expr [= expr

bool-expr

— — —— — — t— —— 0 &

.o
.

FOR integer-var IN range LOOP
statements
END LOOP

for-stmt

WHILE bool-expr LOOP
statements
END LOOP

LX)
"

while-stmt

20

3. Architecture-Independent Image Processing: Performance of Apply on Diverse
Architectures

3.1 Introduction

Low-level vision is an area of computer science that is ripe for the use of parallel computers. This class of
operations is easily parallelizable. Indeed, many parallel computers are already being developed for use at this level
of vision. These computers offer enormous speedup to the developer of computer vision algorithms, since these
operations are so time-consuming, but software development is necessary before they can be used.

We have developed a language called Apply [14] which can generate efficient programs for a variety of parallel
machines given a single source code. Apply therefore allows machine independent programming, for a limited,
application-specific, set of algorithms.

Apply has been used to develop a library of vision programs called WEB, which includes routines for many
low-level vision operations. Over 130 programs exist in WEB, 80% of which are written in Apply. The Apply
routines include basic image operations, convolution, edge detection, smoothing, binary image processing, color
conversion, pattern generation, and multi-level image processing. This library is therefore a machine-independent
software base for low-level image processing.

Because of the machine independence of the Apply language, programs written in Apply can be ported from one
machine to another simply by recompilation. Moreover, the Apply compiler and the WEB library allow the
comparison of the performance of vision machines, since the same source code will be running on both machine,
which is the strongest possible basis for comparison of two computers.

In this paper, we demonstrate this by studying the performance of Apply on three diverse architectures, by
examining the execution times of programs from WEB. The architectures are the Camegie Mellon Warp machine, a
100 MFLOPS systolic array machine [4]; a Sun workstation; and the Hughes Aircraft Corporation Hierarchical Bus
Architecture (HBA) [32], a MIMD computer specifically designed for image processing applications. These
architectures differ in the number of processors, in the processor topology, and in the underlying processor, but
Apply generates efficient code for all of them. The implementation of Apply on each of them is described
elsewhere [14].

We discuss the WEB library, which has been the basis of our performance experiments with Apply. Using WEB,
we establish a baseline of Apply’s performance by comparing Apply code with code generated by hand for some of
the computers. Then we use execution time as a basis for evaluating the performance of Apply, and for studying the
suitability of these machines as image processors.

3.2 The WEB Library

Apply has been used to implement a large portion of the WEB library of vision programs, which is a large library
of vision programs implemented for use on the Camegie Mellon Warp machine. The original purpose of the library
was to facilitate vision programming on the Warp machine.

WEB currently consists of over 130 routines, 80% of which are written in Apply. The rest are written in W2,
which is the standard Warp programming language. All of the local image-to-image vision routines in WEB are
written in Apply; the W2 routines include non-local routines such as histogram, image warping, and connected
components.

WEB is based on the SPIDER library of FORTRAN programs [30]. This is a subroutine library, developed in
Japan, for image processing using FORTRAN. Routines from SPIDER will be compared here in performance with
equivalent routines from WEB in order to measure Apply’s performance as a code generator for Sun.

al
h

21

3.3 Apply Code Compared with Hand-written Code

Our primary purpose in this paper is to develop a comparison of different parallel processing machines for vision
using Apply as a vehicle. In order to base this comparison on solid ground, we must first evaluate Apply’s
performance compared with hand-written code for the same machine. If Apply produces code that is comparable to
hand-written code, then our comparison will be solidly based, since the code generated by Apply represents the peak
performance of the machine. On the other hand, if Apply code is not as good, then the comparison will not be
solidly based; it could be argued that the measured performance would not actually be seen, since the user would not

use Apply.

3.3.1 Apply code compared with SPIDER code
We begin by comparing Apply performance on WEB routines with a set of routines of similar function from the

SPIDER FORTRAN library. The SPIDER library is professionally written and distributed, and the code is of high
quality; therefore, this comparison pits Apply’s code against the code of expert programmers.

We are comparing the actual execution times (user time plus system time) of the FORTRAN programs, called as a
subroutine from C, with execution times of C programs generated by Apply, called in the same way. The time is
measured from the point at which the input images are ready (have been stored in the Sun’s memory) to the point at
which the output images are ready, in both cases. This time does not include the I/O time for the images from disk,
or the code download time from disk into the Sun. All times are for 512x512 images.

PITEESERES 2 E]

1

!

L ! i I i
s 2 25 ; 35 4{ 4.‘5 5

&

Figure 3-1: Ratio of execution times of hand-gencrated SPIDER
FORTRAN to Apply code.
Vertical line indicates a ratio of one.

Figure 3-1 gives the ratios of execution times for these programs, and Figure 3-2 shows the distribution of times
for all programs. We can see from these figures the following phenomena:

22

3168 -
£
100 |-
-+
-+
2% o +
> +
F T .
+
10
K-
-+,
g
-3
g %
3r x'ﬁ
*+ +
@
+ +
+ Execution time in seconds: Spider FORTRAN
,1 .3 ;0 .‘;2 1:” 318

Figure 3-2: Scatter diagram of execution times of hand-generated SPIDER
FORTRAN and Apply code.
. Diagonal line indicates equality.

* The Apply programs are generally faster. There are four factors that can account for this: (1) Cyclic-
scroll buffering; (2) The supediority of the Sun C compiler to the Sun FORTRAN compiler; (3) The
FORTRAN code is written to be readable, at the expense of efficiency; the code generated by Apply
need not satisfy such a constraint, since the Apply input code is quite readable. Apply can sacrifice
legibility for speed.

¢ In some cases such as addplr and divclr the Apply code is slower. In these programs the algorithm is
processing a single pixel from the input image to produce a single pixel in the output image. The
cyclic-scroll buffering technique introduces a significant overhead in this case. (The same does not
apply for addp1b and addclb since here the FORTRAN code is processing integer images, while the
Apply program is processing byte images. Thus, these programs are not strictly comparable).

e Apply has some limitations in its programming model that affect performance. In the FORTRAN
subroutines, it is common to write several different ways of computing the output depending on
switches. There is little overhead for this in FORTRAN since the code can be generated as follows:

Ca

23

IF fSW.EQ.2) GOTO 100
m 10 *RMZF, RV&X
DO io j*cmH, awe
. .confute using method 1..

10 CONVAMUI
Q01O 200
100 DO 20 I"mUM, KM&X

IX) 20 JAdCM, CHaxX .
m-COM pofc* rising 23aethod 2..
20 CCMTOIU*
200 OQIWIIfOI

TIsifAkraRTOAMtte mhchiswdoniymcc,mddiﬁcrmtcodcisusedinmediffmmcases.

to Apply, Ac apiwtet code would MI the value of the switch once per pixel, since the Apply
po~tae is e«otted in in entirety for every pxeL This can limit performance in some cases, for
example gpsl and skhz

la general, we see or aituitioiis abort Apply performaiice compared with hand-written code to be correct Applj
saa generate better code te hand-written, even on an easily programmed machine such as the Sun.

332 Apply code compared with W2 cwte

Next we c«spit perfbnnaice mthe Ciracpe Melkn Wa* mmiiie. This machine is programmed by hand k
W2, a fthil-khi lanp~p'm wiK* i» Aw isospieitty twwe af the different processors and the communkatw
tohéen . {&Vm N swe MtoMMiNi tterfdatab M weencdl s)-

Whilse ONnny p M ” haveteen mA c”«i” to be writtni fe Wap in W2, the availability of Apply 'w
sgmfcendly mi thep * «*w" i ta® Apply |itethe explicit paralelisiB of cells, the number of cellsin
s, and the communications betwens ool fo» |ief WA ww . TTrishasm”teit possibleto develop WEB fa
Warp, withost Apgly, to» A~ te aocb al&wy cw”i hove been beflL

Pgems 3-3 and 34 give the pwtmtiitGe far hndkwrittBo W2 pi~rfflas 'Combed with WEB pt>grams oi
equivrlent fonction. ‘vim ket mal wd -%i7C im tte Tidrert tte iigM data is available for processing in ‘he
exirasl oat smemcey by e Waep sy 1 the sacusenk the output data &8 sored ingo the external host memory. AB
thes om Bov 5O immps. | A Ra» tett “wi*MW” mi*KHmbfe for the wide distribution of execofwi
e ating:

%am pAAii A mAsi» COw3, MI cnmé4; «e Bucb slower in W2 than in Apply. This is
frormms e A TR b e e i Ear Oz m Lie mfe (such as unrolling innermost 1oops:
', and do nct inciede staseraents for /0, so

s focmend on ssekcing o heaxt of Six code as cfficient as possible.

*Tter N -~ w AN A A conrimfy ©ftttp i/D wift OMpiaic»i cm 6m ce® whiletfw W2
PO - A pde et c f o post_ srromewvicamh c N | s m ~ same Warp
miceioieacion wiewe oo ation i dowe, doimg > kmi”m mm amM plmxmmi dF 1/O
sammsess \te| OK toe teifw peogenmmer.

* Some progrems we ol fapor in W2 e in . TtettbruK <rffl»ltaitaticHioftteA |y
n E AN ANAmodd Nt N "mimfteW2pf ni ercm Utttis* ~te bned CM the vaues of

. Hom ¢ e aw p\;rr;lbd tffectt of &s: A% iagpage on Wap programming: (1) The Apply programs &

art! &itHT io*Tsie - 9% Jst frifraRjnacr makes than more efficient, and Apply in turn generates better code

becamwe s, (35 5 Jr -nathiw Mwrftelts better, (2) The linitafion of the Apply programming model for
Propovanting duih cm il 40 sou loms of performence,

24

egrsl

egpw3

egpwd

fsed

egfc—--——-—

[, W——{

F:+. o} QU——

D

[)

kvl

<1 S

N D B

0 07 14 21 28 35 42 49 56 63

Figure 3-3: Ratio of execution times of hand-generated W2 code -
to Apply code.
Vem::allmemdlcatw a ratio of one.

3.4 Comparison of Diverse Architectures

It is very rare that widely dxﬂiemntmpmerammwctmcsmcon@aredduedlyformem
WWMPMWMFORT'RANMM rcomputer performance [2 g de e !
le ‘ uentiz oompum mdsohafvebeenfy

y ar mmﬁermmabmmme@plyhnguagem'fmmmpmﬂd
mmaxawniumgeofoompumcmbe Apply is application-s]
mmaﬂmddoesmtmqumaneﬂomouseﬁontobmgupmanewsysmm Thnsweamabletmhrecﬂycmnpm
the Sun 3/75, the-:Carnegie Mellon Warp machine, and the Hughes HBA.

3.4.1 Warp Compared wi
HmmS—SMS—&gmwmeperfommﬂfalmgemmbcrofpmgmmf lemented t
compmar {léMﬂzMCGXOZO with MC68881 coprocessoi

meemmﬁmﬁmcwasmredﬁumﬂwpoiﬁntwh%hﬂnmysuﬁnpmdmmwaﬂabkinme’s
external host to the point at which the arrays of output data became available. This is consistent with the
measurement method for the Sun 3/75. Code download time was not included. All imes are for 512x512 images.

25

298 -

1.58 %
Execution time in seconds: Hand-coded W2

f— ' e 1 L I [1 1 £

0.08 a10 016 025 040 053 1.58 251 188 %31
- .

0.631

016

010

+
Execution time in scconds: Apply-gencraied W2

Egnre3-4' Scatter diagram of execution times of hand-generated W2 code
and Apply code.
Diagonal line indicates equality.

We observe the following from these data: .

o There are a few cases where Warp’s performance far exceeds expectations: in the case of egfc and
egks2, for example. Based on the comparative floating point rates, we would expect Warp’s
performance to be one to two hundred times that of the Sun, but here the execution times is 666 and 304
times less than the Sun. These large factors are due to the internal parallelism of the Warp cell; it
consists of many independent units, which can be individually controlled with a wide horizontal
microinstruction. Indwbestcm,aWnpcdlwndomwﬁhomereeﬂs,madandwmemmy,
compute an integer ALU operation, and compute a floating point add and a floating point multiply, all
mzbcm:lﬁ()nmmwondcyde. The success of this design (and of the compiler in packing
instructions together) is shown in the ratios for egfc and egks2.

« In the majority of cases, the execution time ratio is tens of times the Sun 3/75. (The average ratio is 67,
with a median of 40). This reflects the raw processing power of Warp combined with the effects of the
applications mix (which includes a large amount of integer processing) and the efficiency of the Warp
compiler.

» In some cases, the ratio is ten or less. In these cases, the Apply program cannot make use of Warp’s
highly pipelined floating point units, because of a large amount of conditional branching within the
program, and also becanse the computation is mainly additions, so that the separate multiplier cannot be
used. Here we are secing the effects of using a highly pipelined machine to implement what is
essentially a scalar operation. The multiple independent Warp cells can still be used effectively, since
the computation is independent between each cell; but the pipelining of the computation within the cell
is not successful.

26

T 1 | LI |
150 180 210 240 270

egfc
w2 r— "0 &
subclr :‘:::
':;fl“ addclc

mulplc ——————
'f’:;‘ L P ——
egist subplc —————
addply AR ————
asmt divplr ——

mulplde
z sbple

crOos c———
:‘w e
opnsl :g" p—
addelr ' —
fclib x p—
subclb fmax f—
eikv1 addclb E
muicld m pm—
s —
sabplb el =
bdrd1 addpIb -

bdr81 -

|
0

8 -
2
8 -
g..

Figure 3-5: Ratio of execution times of Sun Apply code
to Warp Apply code.

3.4.2 Warp Compared with Hughes HBA

The Hughes HBA and Warp satisfy very different applications requirements. One is a machine specifically
designed for image processing, with a special video interface, and all high-speed I/O through a frame buffer; the
other is a machine interfaced to a general-purpose extemal host, which is suited for scientific computing and signal
processing as well as image processing. Thchgh—speedﬂomgpmmmepxslargelyamufﬂwMem
satisfy all of these applications areas.

'IheI-EBAt'nmesmmcasumdﬁommcﬁmemeimageisavaﬂabkﬁurpmomghﬂheﬁamé‘buffwofﬂmeliBA
to the time the output image is stored there. At the time of this study, the HBA processed 240x256 images; to be
oonsrmmmeWarpuuws,mHBAumcshavebcenm“byQZV TheWaxpnmasmfmSlMlz

images, measured as before.

We have done only preliminary work on the comparison between the Hughes HBA and Warp. Only a few
programs have been tested, and most of those are integer applications, biasing the data against Warp, since it has
higher-speed floating point than the HBA. Taking this into account, we can study the data shown in Figure 3-7 and
3-8:

© The Warp times are, on average, 3.2 times better than the HBA (the median is also 3.2). This reflects
the greater total computational power of the Warp compared with the HBA, together with the
application bias towards conditional, integer applications—the HBA can execute approximately 25
MFLOPS versus the Warp's 100 MFLOPS.

o In the fmin and {max algorithms, which compute the minimum and maximum of a 3x3 window around
each pixel, the HBA time is slightly better than the HBA time. This is because in such a highly
conditional operation, the use of the long pipeline inside the Warp cell is a barier to good performance.

27

25
[+
1& -
Execution time in seconds: Sun 3/75
1 1 ' H+ 1 T) i
0.22 3.18 10.00 31.62 100.00 316.23 *
++ + |
0.63} +H %:
B
g +
S F+ ot
i +
+
g =T ++ *
+
H + +
g aml
g + + o * + ¥
+
8
e
& g0t
|+ ++ +
ocost *+

Figure 3-6: Scatter diagram of execution times of Sun Apply code
and Warp Apply code.

Moreover, the total number of ALU operations in the HBA is greater, since there are 24 processors
instead of 10, of comparable integer performance.

MkmﬂmMYMmmmofmwMMydxmarclnuecmmhavebeenoomparedusmgthe
same source code. We can make several conclusions based on this study:
WMWMMMWMWNMWM Quite apart from the utility of
having Apply and WEB available on an architectu wlud:isocmﬁemble,umngthesamesoumecode
WMWMWQMMMmmkvwmpeﬁ

analysis. Apply is easy to implement on a parallel processor, whmbmakesnpossﬂetoevaluameﬂm
wmmwammwmmmmnm eifort. We look forward to evaluating

limitation of the Apply programming model is the inability to manipulate ‘
¢ parameters once per image rather than once per pixel. This deficiency will have to be i
Whmmﬂwgmmmma

'WMMWWWMWMMRWWW from intra-processor
inter-processor characteristics. This is because this level of vision is easy to
mﬁa&mmmmﬁmﬁmweammmmmmyhm Much more significant is the
ability of the processor to successfully implement the wide range of operations that is required in
low-level vision, including integer, floating point, and conditional operations.

» Parallel processors deliver performance increases cven over high-performance workstations at this level
MWMWMMMW:&W The performance ratios vary from ten- to
hundred-fold increases. This is a significant, cost-effective, performance increase.

28

flwll
egksl

egpwi

bdr81

SESREENREY|

—r 1 1 1 1 & 17 1 1"
0 06 12 18 24 3 36 42 48 54 6

Figure 3-7: Ratio of execution times of Hughes HBA Apply code
to Warp Apply code.
Vertical line indicates a ratio of one.

29

wr
2511
158}
Execution time in seconds: Hughes HBA
10 a1 a25 a4 a8 1.'502.:51+1'3‘
+
+ +
0.63%
N
+ owl &
=
+ =
+ +
£
a.rel g
+ + b=
oF
ool

Figure 3-8: Scatter diagram of execution times of Hughes HBA Apply code
and Warp Apply code.

30

4. The WEB Library

4.1 Introduction
WEB is a basic library, based on the Spider library, for image processing on Warp. It consists currently of 134
programs, covering the following areas:

¢ Basic image operations: add, subtract, multiply, divide images by images and images by constants,
assign zeroes, assign constant inside region.

» Conversions: byte to real, real to byte, polar to cartesian.
« Image grayvalue operations: clip, threshold, remap grayvalues, reduce graylevels.

o Image features: measure area of regions, center of gmvny, circumscribing rectangle, histogram,
moments, perimeter of regions.

¢ Edge detection: Roberts, Frei and Chen, Kirsch, Sobel, Laplacmn Prewitt, Robinson, Kasvand.

* Convolution: convolution with a given weight window and by a constant. Convolution and correlation
using FFT.

¢ Smoothing: adaptive local smoothing, median filtering, local maximum and minimum, iterative
enhancement, texture image processing.

¢ Orthogonal transformations: FFT, DCT.

o Warping: quadratic, affine.

¢ Pattern generation: checkerboard, stripe, bull’s eye, diamond, grid.

* Multi-level image processing: generate pyramid, reduce by half, double.

¢ Binary image processing: detect borders, compute image of boundary points, connectivity,
expand or contract, shrink components. ,

¢ Color conversion: color to black and white.

Approximately 80% of the routines are written in Apply, and the rest in W2. All of the Apply routines can be
recompiled easily for W2 or C (Sun/Unix) code generation, and for different image sizes and number of cells. The
W2 programs have been written to use macros, in a way that makes it possible to change image sizes and T of
cells easily in most cases. As compiled, the WEB library does 512x512 image processing on a 10-cell Warp array.

42 CallmnggramsmWEB . akib

Any of the programs in WEB that are written in W2 or Apply can be called from C using warp
Parameters to warp_call are the file name of the program, and the data parameters ed i
Warp. The order of the parameters is given in Appendix L.

For any image parameter, a generalized image (type IMAGE *) can be passed to warp_call. 'mcmmﬂtype
and size of the generalized image can be of any type whatsoever. However, warp_call will process only a
512x512 region of the image, if is larger than that, and will pad the image with zeroes to produce a 512x512 image
if it is smaller than that. Moreover, for reasons of efficiency, the user may want to manage the memory storage class
andtypcofﬂwmm For example, if a byte image is passed to a program that expects a real image, warp call
ntomatically converts it, using a C routine. The user may wish to use the WEB routine byrl instead. Also, all
gmﬂmedmgesmconwwdemmedmmbefmcbmgmmwarp call; this results in
the image being copied to Warp’s external host memory. For short programs, this can be inefficient, and the user
mywi%mmmearpimagcsusingi_warp__imagemi_warpcreatimwad.

warp_call expands environment variables in filenames, so that it is easy to write code that works no matter
where the WEB library is stored. For example, the following code converts a byte image into a real image. The

31

byte image is the generalized image in, and the real image is the generalized image out:

warp_call ("$WPEweb/byrl/byrl"”, GIMAGE, in, GIMAGE, out);
The following call applies two-dimensional convolution to an image. The input is in in, the output is in out, and
the weight matrix is the matrix of floats weights:

warp _call ("§WPEweb/£1wl0/£1wl0", GIMAGE, in, OTHER, weights,
GIMAGE, out);

As documented in the man page, warp_call also takes parameters that are memory pointers or cluster memory
descriptors. Any parameter that is an image can also be passed as an ordinary two-dimensional array of data using
these methods. However, this array will not automatically be converted by warp_call, nor will the bounds be
checked.

Programs in WEB that are written in W2 or Apply can also be executed in the Warpshell using w2-execute.
Parameter types are defined as in Appendix L.

4.3 Classification by Area
The programs in the library are distributed among the areas mentioned in the Introduction section as follows:

© Basic Operations: addclb, addclc, addclr, addcls, addplb, addplc, addplr, addpls, divclb, divclr,
divcls, divplb, divplr, divpls, fclib, fclir, flog, fsed, mulclb, mulclc, mulclr, muicls, mulplb, mulplc,
mulplccj, mulplr, mulpls, rplalb, rplalr, rpla2, subclb, subclc, subclr, subcls, subplb, subplc,

subplr, subpls, tferlb, tferlr.
* Conversions: byrl, fcpl, riby.
* Grayvalue Operations: clip, gmlt, gsft, gtrnl, log, pted, rqnt, sclp, slthl, sith2, sith2m, sith3.
« Image Features: areal, cgrvl, cqltl, crcll, ersr3, histl, mmntl, mmned, prmtl, sizel.
Edge Detection: egfc, egksl, egks2, eglp, egpr, egpwl, egpw2, egpw3, egpw4, egrb egrsl, egrs2, egrs3,
wbl egsbz eikvl, eikv2.

volution elation: fcon, feor, fiwl0, fiwll, flwi2, xconv, yconv.

Wmmmmwmmmmmﬂw txdf2, txeg2.

meaml afin2, afin3, noinl, noin2, noin3.
* Pattern Generation: pgenl, pgen2, pgen3, pgend, pgensS.
* Multi-Level Image Processing: expand, pyramid, reduce.
Mwwwz bdr81, blpl, conc, cros, epct, grassfire, srnkl, srnk2, srnk3.

32

5. Performance of Warp on the DARPA Image Understanding Architecture
Benchmarks

5.1 Introduction
The DARPA Architecture Workshop Benchmark Study was conceived for these reasons:

o To arrive at an initial understanding of the general strengths and weaknesses for image understanding
(IU) of the architectures represented.

 To project needs for future development of architectures to support IU.

* To promote communication and collaboration between various groups within the CS community which
are expected to contribute to development of real-time IU systems.

The benchmarks chosen represented common image processing operations from low and middle level vision, but
did not include high level image processing operations, such as recognition; these operationis were felt to be too ill
defined at present to properly evaluate machine architectures.

Warp was one of the participants in the study. This paper is a summary of our results, which reflect the
performance on Warp on this level of vision, and can also serve as a guide for programming Warp in this area.

The precise definition of the image processing operations as given to the participants was as follows:
1. Laplacian. (Edge detection is done by this and the following two tasks. For edge detection, the input
is a 8-bit digital image of size 512x512 pixels.) Convolve the image with an 11x11 sampled
‘“Laplacian’’ operator [15]. (Results within 5 pixels of the image border can be ignored.)

2. Zero-crossings Detection. Detect zero-crossings of the output of the operation, i.e. pixels at which
the outpat is positive but which have neighbors where the output is negative.

3. Border Following. Such pixels lie on the borders of regions where the Laplacian is positive. Output
sequences of the coordinates of these pixels that lie along the borders. (On border following see [27,
Section 11.2.2].)

’ mpon mhbelmg.ﬂemmempmmal-lmmgmhmageofmeﬂZxSlmeda The
ompmrsa512x512mrayof tive integers in which

amcisﬂmmO’smﬁwmpmmagemvalmO_

b. pixels that were 1’s in the input image have positive values; two such pixels have the same
valncxfmdonlylfﬂwybeiongmﬂwmewmmdcmpmemoﬂsmﬂwmga
(On connected component labeling see [27, Section 11.3.1].)

5. Hough transform. The input is a 1-bit digital image of size 512x512. As@meﬂmthemgin(@,@)
Wmmmm eft-hand merofthemaga,mﬂm&exmahmgﬂmboﬁommw The outpu
is a 180x 512 array of nonnegative integers constructed as follows: For each pixel (x,y) having
lmﬂmmpmmmge,mdwhi,ﬂ<z<189,addlmmmnmagcmpomm(z,j}hwhem;mme
pe f ar vﬁom(0,0)aOMelme&mmgh(x,y)mahng
lockwise) {‘nﬁs ‘/kawpeofmmgéh

WW OEM ansforms see[Z’t Seammﬁj})

@mmmmmmmmngm, ' uction: mmmwmamtsﬂf

rdin: fmwfmmamﬁlmmmmepmmm; :
m@n&mmmgemm Several outputs
ﬁmhcmthebmmyafﬂmcmcxhunofs in sequence around the boundary.
see [26, Chapters 3-4].)

7. Vmwmbmgrm'l‘hevmmgtmofs defined by the set of coord
ofpmsafvmthmm joined byedmmdﬂmwofmys eman:
minating at another vertex. (On Voronoi diagrams see [26, Section 5.5].)

8. Minimal Spanning Tree. The minimal spanning tree of S, defined by the set of pairs of points of S

required as follows. An ordered list of the peirs
(On convex hulls

33

that arejoined by edges of thetree. (On minimal spanning trees see [26, Section 6.1].)

9. Visibility. The input is a set of 1000 triples of triples of real coordinates ((r,§)£u,v,W)£x,yjc)),
defining 1000 opaque triangles in three-dimensional space, selected at random with each coordinate in
the range [0,1000]. The output is alist of vertices of the triangles that are visible from (0,0,0).

10. Graph matching. The input is agraph G having 100 vertices, each joined by an edge to 10 other
vertices selected at random, and another graph H having 30 vertices, each joined by an edge to 3 other
vertices selected at random. The output is alist of the occurrences of (an isomorphic image of) H as a
subgraph of G. As a variation on this task, suppose the vertices (and edges) of G and H have
real-valued labels in some bounded range; then the output is that occurrence (if any) of Has a
subgraph of G for which the sum of the absolute differences between corresponding pairs of labels is a
minimum.

11. Minimume-cost path* The inputisagraph G having 1000 vertices, eachjoined by an edgeto 100 other
vertices selected at random, and where each edge has a nonnegative real-valued weight in some
bounded range. Given two vertices P, Q of G, the problem isto find a path from P to Q along which
the sum of the weights is minimum.

In what follows, we first describe the current Warp status, and then describe our work on each of the algorithms.
We do not review the Warp architecture or programming environment here, since complete reviews are available
elsewhere[2,3,5,8,9].

52 Warp Status

At the time this comparison was dome, there are three operating Warp machines at Carnegie Mellon. Two of them
were prototypes. One was built by General Electric Radar Systems Department (Syracuse) and the -other by
Honeywell Marine Systems Department (Seattle). Both consist of a linear array of ten cells, each giving 10
MELGPS, for a total of 100 MFLOPS, and operate in an identical software environment These machines are
referred to as WW Warp, since they are of wirewrap construction. The machines are fed data by MC68020
processors, called the "external host," and the whole system is controlled from a Sim 3/160. ’

The third machine was a production machine, one of severa being constructed by General Electric Corporation.
(Currently, all the Warp computers in existence are of this type; thane are two of The production machines are built
from printed-circuit boards, and are caled PC Warp. The baseline power-of these machines is also 100 MFLOPS,
although they can easily be expanded to 160 MFLOPS by simply adding more cells. (The army can be expanded
still farther, bet this requires a special repeater board and a second rack). The PC Warp is changed in several ways
from the WW Warp: cell (Maand program memories are larger, there is on-cell address generation, and there isa
large register overflow file to provide a second memory for scaiars. Some of these improvements imply an
increased speed on some of the benchmarks, as will. be noted. For example, because of on-cell. address generation,
the-cellsis able to tolerate an arbitrary skew in compulation, which makesit possible to-overlap input, computation,
and output in many algorithms. Also, improved processor-boards in the external host alow improved /O rates
between Wmp and i» host tkotighi DMA, rmiov” ite kM W Ix~to~dc k nfmiry ca»”. Finally, since each cell
has more local control, il is-possible to make Warp computation mare data dependent, by alkming data-dependent
I/0 letween ecHs, as well as heierogerieoiis computation (different programs cm different ceils).

Carnegie Melton and Intel Corporation are developing the 'integrated** version of Waip, called iWaip. U Ms
macMne* each cell of Wapwit be immmm®& m&mdt<Mp« The clock rate will be shcreased so-that each. chip
will support il least 16 MFLOPS compilation, as opposed to 10 MFLOPS In WW and PC Warp. In the baseline
mmMm the eels wH be organked into t linear airty of 72 eels* giving a total cooqwwioa ef' 1,152'GFLOPS, to
the foOowlitg analysis, k has been assumed that each fWarp cell can do everything a PC Warp céll can, with m
increase cf L6 in sred iihis is a design gcaij. When 1/0O botilawclcs have led to a mmimmmperi(mmicttkmmB
boictaa’ c* tMs tes beos notedL

All the hefictmsks listed below si being 'imzkmzr*a 'on Warp are written in W2, the Warp programming
langwop. W2kMAQ(“hmdlmp™mdh(mMsmmimtimCm? md” Arrays and scaiars nit supported, as

mt for loops* awl if statements. Tte pogiaminets are await that they ait programming a parallel machine, since

34
each program is duplicated to all cells and then executed locally (with local sequencing) on each cell.

5.3 Vision Programming On Warp

We have studied vision programming at various levels on Warp for some time now, and developed and
documented several different models [12,24]. In this section we briefly review the various models of Warp
programming, for reference in later sections.

All the programs in this paper use the cells in a homogeneous programming model: that is, all cells execute the
same program, although the program counters on the different cells can differ, and each has its own local data
memory. This is a restriction imposed by the hardware of WW Warp. Programs on PC Warp need not follow this
restriction. ,

53.1 Input Partitioning

In this model, which is used for local operations like convolutions, the image is divided into a number of portions
by column, and each of the ten cells takes one-tenth of the image. Thus, in 512x 512 image processing cell O takes
columns 0-51 of the image, cell 1 takes columns 52-103, and so on (a border is added to the image to take care of
images whose width is not a multiple of ten). The image is divided in this way because it makes it possible to
process a row of the image at a time, and because the host need only send the image in raster-order, which is
important because the host tends to be a bottleneck in many algorithms.

5.3.2 Output Partitioning

This model is used for algorithms in which the operation to be performed is global, so that any output can depend
on any input, but can still be computed independently. In this model, each cell sees the complete input image, and
processes it to produce part of the output. Generally, the output data set produced by a cell is stored in the cell’s
local memory until the complete input image is processed. Hough transform is implemented in this way.

5.3.3 Pipelining

In this model, which is the classic type of “‘systolic’” algorithm, the algorithm is divided into regular steps, and
each cell performs one step. This method can be used when the algorithm is regular. (Because the cell code must be
homogeneous, this method is of less use on the wire-wrap Warp machine than it usually is in systolic machines).
‘When this method can be used, it is generally more efficient in terms of input and output overlap with computation
and local memory use than either of the two models above.

5.4 Laplacian
Laplacian. Convolve the image with an 11 x 11 sampled ‘‘Laplacian’’ operator [15]. (Results within 5 pixels of the
image border can be ignored.)

The Laplacian given [15] is symmetric, but not separable. (Separable filters can be computed more efficiently, in
general, than non-separable filters). In this section we describe a series of optimizations we applied to the Laplacian
filter in the Warp implementation, which led to an efficient implementation. These optimizations can be applied to
any symmetric filter, and will lead to efficient implementations on many different computer architectures.

Since most filters use masks with an odd number of rows and columns, the rest of this discussion will deal with
this case. Let the size of the mask be represented by N=2M + 1.

In order to see where the optimizations come from, we first notice that an unoptimized N xN convolution takes N2
multiplies and N%-1 additions per pixel. A separable convolution of the same size would take only 2N
multiplications and 2(¥— 1) additions.

One way to compute the Laplacian is to compute it as a series of column convolutions. Each column takes N

35

multiplications and N— 1 additions, and then N-1 additions are required to add all of r.he2 partial sums. The total
number of multiplications is N xN=NZ2, and the number of additions is NX (N-1) + (N—-1)=N“-1.

Due to symmetry, we can add the pairs of corresponding pixels within a column before multiplying them by the
weights, as shown in Figure 5-1. Each of the N columns contains M pixels that can be added in this way, and one
pixel in the middle which is not part of a pair. We call this column of M + 1 pixels a ‘‘folded’’ column. After the
multiplication, the pixels in each folded column must be added, and then all the columns must be added as t?efore.
This saves multiplications, but not additions: the number of multiplications is NOM+ 1)=(N2+N)/ 2, while the
additions sum to NXM + NXM+(N-1)=N3-1.

11

RIS

J/ "v:\

Figure 5-1: Folding columns

Now note that calculations for a given pixel can share partial results with neighboring calculations in the same
row. As we shift the convolution window from the left to the right one step, we can retain all but one of the folded
columns from the previous convolution, and sum just one new folded column, as shown in Figure 5-2. The rest of
the algorithm is unchanged. Multiplications are unaffected, but additions are reduced almost by half, to
M+NxM+N-1)=N?+3N-3)/2.

Drop

Add

HHH

Figure 5-2: Using results from previous steps

Finally, we notice that the column convolutions are not done with N unique column weights, but rather with M + 1
unigue weights. As we shift the window to the right, we can compute and store the convolution of the new column
mmmlmmumhmsa. Then, as we shift the window up to N pixels to the right, we

ill only have to i column sums, as shown in Figure 5-4. Thus again, nearly half of
be generated, and then N—-1 additions are required t0 add the proper partial sums together. The number of
s is then (M+1)x(M+1)=((N+1)/2P, while the additions come 0 (M+1)XM+M+(N—1)=

+

mmmwmﬂ@ymmmﬂdm@mmmmwmmwm
, the number required for an unoptimized kernel, and 2V, the number for a separable kernel:

&WMMMWMWWWMMMgmmWWWm,m@wa

36

folded stored
image convolved
column column
convolve
.
1 1

Figure 5-3: Convolving and storing column sums

one
convolution
result

y stored
convolved
columns

~
\

Figure 5-4: Adding appropriate column sums

Mask Size | Multiplications | Additions | N2 | 2V
3x3 4 5 9 |6
5%5 9 12 25 |10
%7 16 21 49 |14
| 9x9 25 32 81 |18
11x11 36 45 121 |22
15x15 |64 77 225 |30
25x25 144 192 625 {50

Table 5-1: Optimized Symmetric Convolution
runtime of 432 milliseconds. The same algorithm was compiled for the PC Warp, and gave a runtime of 350
milliseconds. The change was due to overlap of I/O with computation in PC Warp, which is not possible for this
algorithm on the WW Warp. On i Warp, assuming a straightforward speedup arising from a 72-cell array with a 16
MHz clock, the time will be 30 milliseconds.

5.5 Zero Crossings Detection
Zero-crossings Detection. Detect zero-crossings of the output of the operation, ie. pixels at which the output is
positive but which have neighbors where the output is negative.

Zero crossing was implemented using the input partitioning model. A three by three window was taken around
each pixel. If any elements of the window were negative, but the central pixel was positive, a zero crossing was
declared and a ‘1 was output, otherwise ““0’’ was output. This computation was performed by transforming each
9-element window into a 9-bit integer, with which a table lookup was performed. Input and output were represented
as 8-bit pixels. Execution time on the WW Warp was 172 milliseconds; on the PC Warp the time will be

37

approximately 92 milliseconds, due to overlap of [/O with computation. On i Warp, the time will be limited by I/O
bandwidth to the array to at least 7.8 milliseconds.

In many cases, it is desirable to perform the Laplacian and zero crossing computations in sequence, without
saving the results of the Laplacian. In this case, on i Warp, the computation can be done more quickly than by
performing each individually. We estimate that such a computation will take 31 milliseconds, fast enough for video

rate image processing.

5.6 Border following
Border Following. Output sequences of the coordinates of pixels that lie on the borders of regions where the
Laplacian is positive. (On border following see [27, Section 11.2.2].)

The algorithm is mapped in two steps. First each Warp cell performs the border following technique on part of
the image. Then, thwepanalmﬂtsaretlwncombmedmthmthearraytopmduce the complete border trace for
the image. The full algorithm is:

 Each cell sends its bottom row to its successor.

o Starting with the bottom row, on the left, each cell inspects the pixels on this row. If the pixel is turned
on, the cell begins to trace this connected component. As it traces the component, it builds a list of of
its pixels to the next cell. As it visits pixels, it turns them off, so they will not be visited on scans of
higher rows.
o Either this component extends to the cell’s top row, or it does not. If not, then the list of pixels
mﬂy te3 'mthmﬂmewﬂssmp'ﬂleoeﬂqmmewholehstofpmlsformtpmmmc
marking the component as complete. But if the component extends to the top row, it may join
m&amomoﬂhepmcﬁmgceﬂ. The cell checks its copy of the previous cell’s last row to see if
this is a possibility. If not, again the list may be passed to the next cell. But if it is, the cell stacks the
list it has built so far, and begins processing another component, bottom 10 top.

This completes the parallel phase of the computation. Each cell now has two lists of borders: those ready for
output, and those that must be merged with borders in preceding cells. The cells now run the following merge

cell wo things: (1) empty its ready-for-output queue, and (2)- move all the components

mum&mﬂwxm Operation (1) happens asynchronously, depending upon the next cell’s input
queue. Operation (2) is performed as follows.

eceding cell will emit a list of the component touching the stacked component. When

i maybemmbd.themmhedpudsmhedmﬂwpmpermdofmehst

mponent (note that this may involve attaching lists to both ends), and pass

Mmmﬂmﬂl&a%mmﬁmmmmmmmwnmdnspmdemmme

!My—h’-m aet

ithm must terminate, since the first cell never has any stacked components. Hence it will eventually

nponents on its output queue to the second cell, giving the second cell all the information it needs to

mﬂhmwmhmm By iterating this argument, it follows that each cell must
eventually clear its stack and then its output queue.

Mmmmammmmw The first step is essentially a connected components
omputation. This will take no longer than the parallel step of a UNION-FIND based connected components
Wm MWW&@.M&@%&&BM&WMIW@M%M&Mm6§

These e mmwmmWMco{ﬂwBum%AMI
IN-FIND algorithm by the number of cells, and again by suitable numbers to correct

mmwu:mW(mmmm), We estimate this step will take about 1.02 second for PC

Warp, and 690 milliseconds for { Warp. These estimates are based on our experience with similar merge steps for

38

the connected components algorithm, and the i/o bandwidth of each machine. Hence our estimates are:

PC Warp: 1.1 seconds
iWarp: 690 milliseconds

5.7 Connected components labelling
Connected component labeling. Here the input is a 1-bit digital image of size 512x512 pixels. The output is a
512x512 array of nonnegative integers in which
1. pixels that were 0’s in the input image have value 0.

2. pixels that were 1°s in the input image have positive values; two such pixels have the same value if and only if
they belong to the same connected component of 1’s in the input image. (On connected component labeling
see [27, Section 11.3.1].)
In this section we present our parallel-sequential-systolic algorithm for this computation, our timings of a C
simulation of the algorithm, and our estimates of its execution time on Warp, PC Warp, and i Warp.

Section 5.7.1 gives the algorithm. Section 5.7.2 presents the asymptotic running time of the parallel—
sequential - systolic algorithm. We also show how to modify this work to get a parallel—sequential —parallel
algorithm, and give its running time. Section 5.7.3 discusses the implementation, covering both our existing C
simulation and our planned Warp implementations; here we give the actual execution time of the simulations and the
estimated execution times for the Warp implementation, and discuss the constraints imposed by the Warp
architecture.

5.7.1 Sketch of the Algorithm

5.7.1.1 Vocabulary and Notation

The input to the algorithm is a NxN array (512512 in this case) of binary pixels. A 1-valued pixel is called
significant; all others are insignificant. We label the rows and columns consecutively from 0 to N-1, starting in the
upper-left-hand corner. The 4-neighbors of a pixel are the pixels that lie immediately above, below, left and right of
it; its 8-neighbors are the eight pixels that surround it. Two significant pixels x and y lie in the same connected
4-component (connected 8-component) of the image iff there is a sequence of significant pixels py, . .. ,p, with
P=% P,=Y» and p;_, a 4-neighbor (8-neighbor) of p; for each i=1, ...,N. The algorithm we present here computes
connected 4-components. It is straightforward to modify it to compute connected 8-components; the timing
estimates we present later are for the connected 8-component version.

Our algorithm executes on a linear systolic array of K processing cells, numbered consecutively from 0 to X-1.
Each cell processes a set of adjacent rows of the image, called a slice. We assume that X divides N, and that the
slices are of uniform size N/K rows. The Oth cell processes the first N/K rows of the image, called slice 0, and so on.
When data flows from cell i to cell i+1, we will say it crosses the i,i+1 boundary, or simply, an inter-cell boundary.
A cell’s label space is the set of all labels that it may assign to any pixel; cell i’s label space is denoted L;. We
choose suitable bounds on the label spaces so that they are guaranteed disjoint.

5.7.1.2 The Algorithm
The algorithm proceeds in three phases: parallel, sequential, and systolic.

In the parallel phase, each cell computes labels for its slice of the image.

In the sequential phase, computation proceeds serially over each i—1,i boundary, for i=1, ..., K. The ith stage
of this computation effectively passes information about the connectivity of slices O through i1 to slice i. The
actual computation consists of scanning the i—1,i boundary to construct two maps, which record connectivity
information, then applying the second of these maps along the bottom row of slice i to propagate this information
downward. Note that after this phase finishes, lower-numbered slices still lack information about higher-numbered

39

slices. We perform this computation in K serial steps because of the limited interconnection topology of Warp.

In the systolic phase, the labels are pumped out of the cell array. As each label crosses into or out of a cell, the
cell applies the maps generated in the sequential phase. Since the labels assigned to slice i must pass through cells
i+1, ... K, this permits higher-numbered cells to modify the labels assigned by lower-numbered cells, completing
the computation. Each phase of the algorithm is explained in greater detail below.

Parallel Phase. In this phase, each cell computes preliminary labels for its slice of the image. These labels are
drawn from the cell’s label space, which are guaranteed not to be used by any other cell. We use a modification of
the Schwartz-Sharir-Siegel algorithm [28], which runs in linear time in the size of the slice.

Sequential Phase. In this phase, processing proceeds sequentially in K—1 stages over each of the K1 inter-cell
boundaries. The function of stage i, when we compute along the i—1,i boundary, is to pass information about the
connectivity of slices 0 to i~1, inclusive, to cell i. This information is recorded in the two maps that are built for
each boundary. Cell i builds the maps for the i—1,i boundary. We call the first map o;; it is used by cell i to relabel

pixels when they enter the cell. We call the second map ¢;; it is used by cell i to relabel the pixels when they leave
the cell.

The maps have intuitive meanings, as follows. Each ¢; tells how to relabel the pixels of slice i to make them
consistent with the connections in the i-1 preceding slices. Specifically, suppose x and y are two significant pixels
of slice i such that there is a path from x to y that passes through slices 0 to i, but no path that lies entirely within
slice i. Then after the parallel phase, x and y will bear distinct labels. However, ¢; is constructed such that ¢(x) =
¢) iff there is a path from x to0 y that lies wholly within slices 0 through i. ThusqenooduasthemﬂuemeofshcesO
through i~1 on slice i.

Similarly, o; contains information about connectivity across the i—1,i boundary. Let w and v be significant pixels
on the bottom row of slice i~1, and let x and y be significant pixels on the top row of slice i, such that w and x are
adjacent, and v and y are adjacent. Suppose that x and y are connected by a path that lies wholly within slices 0
thtoughi,bmﬂ:atwandvmnotcomemdbymypmhthaﬁeswhoﬂywimimsﬁcesﬂdumghi-l. Then after the
parallel phase, w and v will bear distinct labels. However, 0; is constructed such that ¢,(x)=9 {0 (w))=0{0: ()=,
Thus o; moodesthemfhmofslwezmsim@thmghi—l

'Ihesemapsmooustrmdbytheﬁdhwmgpmw&m. We use some special notation. Let f:M —N; thenfnsa
subset of M xN. We write f+{m, n) for the function obtained by deleting the pair {m, f(m)) from f and adding the pair
{m,n) to the resulting set. For the purposes of the UNION-FIND portion of the algorithm, we assume that each
l€ L; lies in a singleton set {/} that bears the name I. We also assume that each map is initialized to the identity

for i = 1 to K do begin
get B, the bottom row of slice i-1
get T, the top row of slice i
for col = 0 to N-1 do
if Blcol] and T{col] are significant then
Call Update(B{col], Tlcol}l)
for col = 0 to N-1 do
if Tlcol] is significant then begin
¢, = ¢; + <Tlcol], FIND(T[col])>
end
if i # K then apply ¢; to the bottom boundary of slice i
end

procedure Update(PrevCell, CurrCell)

begin
if o;(PrevCell) = PrevCell then O; = O; + <PrevCell, CurrCell>
else UNION(CurrCell, ©;(PrevCell))

end

40

Note that each of 6;, ¢; may be computed locally by cell i, requiring only the bottom row of slice i~1. This is not
done in practice, because we want to use path-compression for the UNION-FIND computations, and the cells cannot
implement this algorithm efficiently. Because the UNION-FIND operations are performed on the data structures
that embody the ¢;, we will refer to these operations, when we are accounting for the algorithm’s running time, as ¢
lookups and additions, or simply ¢ updates.

The correctness proofs for these algorithms are tedious and are omitted here (a correctness proof for a similar
algorithm can be found in Kung and Webb [23]). It remains to show how these maps are used to compute the
connected components of the entire image. This is done in the next section.

Systolic Phase. In this phase, the pixel labels are pumped out of the cells. Each significant pixel receives its final
label through the following systolic labelling procedure. First, as a label enters cell 7, crossing the i1, i boundary, it
is passed through the map o;. Note that labels belonging to slice i do not cross this boundary, so are not mapped this
way within cell i. Second, as a label leaves cell i, crossing the i,i+1 boundary, it is passed through the map ¢;. This
happens whether the label was received from cell i1, or originated within cell i.

It is not difficult to give an inductive proof that this procedure correctly labels the connected components of the
image. However, we believe it is more illuminating to work through an example.

Figure 5-5 depicts the binary input to the algorithm. Here N=9, K=3. Significant pixels are marked "X." Rows
and columns are numbered consecutively from 0, starting in the upper-left-hand comer; we give the coordinates of a
pixel as (row, column). Figure 5-6 shows the labels for the significant pixels after completion of the parallel phase.

TY X Slice 0
X%% X
Slice 1
X IX X X
XX XX
Slice 2
Xl X

Figure 5-5: Input

1 21 1
1 21 1
1] 131313 L_I
11 | 3l ha
B 13l _hal 1

i I 1

1 ki I
21 éi !

Figure 5-6: Labels after parallel phase

43

Synchronization. The WW Warp requires compile-time synchronization. Thus an i f —-then—else statement
will always take the time required by the slower of the two alternatives, and any loop must run for a fixed (maximal)
number of iterations.

As a consequence, the WW Warp runs poorly on algorithms that exhibit good behavior only in the off-line sense.
To see this, recall that techniques with good off-line performance—notably path-compression—derive their
advantage by performing a few of the operations in a sequence slowly, so that the remaining operations in the
sequence will be fast. But Warp forces each step of a procedure to take the time of the slowest possible alternative.
Hence an implementation of an off-line algorithm will behave as if the most expensive operation were performed at
each step of the sequence. Thus the algorithm with the best on-line behavior is always preferred.

This means that we must either abandon the path-compression approach to the sequential stage, or perform the
sequential portion of the algorithm on a computation engine that does not have these constraints. Since there is no
inherent advantage to performing the sequential phase on the cells (for there is no parallelism to exploit), and since
the cost of shipping the necessary data to a suitable processor is low, we choose to do this phase on one of the
Warp’s MC68020-based cluster processors.

For similar reasons, we cannot improve the execution time by using sophisticated data structures to implement the
c-maps in the systolic phase. Unfortunately, this problem cannot be avoided. The best we can do here is use a data
structure with good constant-time performance. This is discussed more fully below.

Memory Constraints. Our formulae for the asymptotic running times of these algorithms are based on the
assumption of unit-access time to the data structures that hold the o and ¢ maps. If memory is not a consideration,
this speed can be attained by representing each map by a large array. The PC Warp and i Warp machines have
enough cell memory to represent the maps this way. The speed estimates below for these machines are based on this
assumption.

The WW Warp cell does not have enough memory to do this. Instead we must use an approach that gives good
update and access times, with only moderate memory requirements. This is easy to do for the ¢-maps. If each cell
begins the assignment of the initial labels on the top boundary of its slice, the labels of this row will be drawn from
the first N/2 elements of the slice’s label space. Now note that though each ¢; is defined on the set Ly - -- UL;,
which contains (i+1)Y N/21[N/2X] elements, ¢; will fix all of Ly --- UL, ;, and also all of L;, except possibly
those elements of L; that appear on the top row of slice . Thus we can maintain ¢; as an array of size N/2, indexed
by offset from the first element of L. To compute ¢r), we need only check to see if 7 lies in the range of interest,
then find its offset and look up the value. This approach uses a small amount of memory, with only minor sacrifice
ofspwd. Also it is efficient for both the sequential phase of the computation, when the algorithm builds each ¢;

-compression techniques, and the systolic phase, when the only operations are look-ups.

The situation is not as nice when we consider the ¢ maps. It is true that no o; will map more than N/2 elements
away from themselves. This is becanse only labels that appear on the bottom row of slice i~1 may be moved by o;.
However, these labels are no longer guaranteed to be drawn from some small subset of L, ;. For instance, it is easy
10 construct an example so that labels drawn from both the first N/2 elements and the last N/2 elements of L, ; will
appear on the bottom row of slice i.

One solution is to maintain each o; as an array of ordered pairs, sorted by the first element of each pair. This
permits lookup in worst-case log (N) time, and is well-suited to the systolic stage of the algorithm. In fact, it is the
approach we use there. However, it does not permit fast addition to the map, and we must do both lookup and
addition operations in the sequential stage. For this reason, we use the seif-adjusting binary tree data structure to
implement the o; in this stage. This data structure exhibits only good off-line performance. However, we use it only
during the sequential phase of the calculation, when we build the map. The efficiency and simplicity of this data
structure is another reason for doing the sequential calculation elsewhere than the Warp cells.

44

5.73,2 Vax Implementation

We have implemented the algorithm in C on a Vax 780, simulating the operation of a 10-cell Warp array. Each
phase of the algorithm is implemented as one or more procedures, parameterized by cell number. A cell's local
memory is represented by several large arrays, systolic communication is smulated by explicit data movement in
and out of these arrays.

Note that the value of the a maps themselves are never needed directly. We areinterested only in the $ maps, and
in the composition maps ¢ o<x For this reason we compute these compositions explicitly ahead of time. Thisway,
each labe that traver sesacell ismapped only once, through 4> ° <y, rather than through cr and $ successively.

The smulation program processes a typical 512x512 image in about 4 1/2 minutes of CPU time. Fortunately,
mogt of thisrepresents the simulation of inter-cell communication.

To learn how the program was spending its time, we used the Unix prof [21] performanre-monitoring program.
The results are summarized in Table 5-4. The total is less than 4 1/2 minutes because the time for simulating
communication is not included.

Phase Time (seconds) Time (seconds)
Paralld Phase 33 33
Sequential Phase

Boundary Scan .16

JUpdate 10

a Update .53

<$° < Computation .06

Total .85 .85
Systalic Phase

L ookups 3.8

<o a L ookups 25

Total 28 28
Total 62

Table 5-4: Vax implementation timings

5.73.3 Warp Implementations

We have not yet completed a Warp implementation. In this section we discuss the partial implementation for the
WW Warp architecture, and give execution time estimates for the planned PC Warp and TWarp implementations.
All our estimates are for the paraliei-sequential-parallel version of the algorithm, computing connected 8-
components.

WW Warp Our implementation for the WW Waip divides the computational burden between the linear systolic
array and thecluster processors. Theinitial and final labellings are (tone by the systolic array; the sequential step is
doneby the cluster processors. Thispermits usto usealgorithmswith fast amortized timein the sequential step.

After the initial labelling, we would like to retain the initial results in cell memofy, transmitting-only each cell's
boundary rowsto theexternal host for generating the necessary maps. Unfortunately, the WW Waip cell memory is
not large enough to hold a labelled slice, and barely large enough to hold the intermediate result required by the
initial marking algorithm. This forces us.to send the entire contents of each cel Ts slice to the external host as the
labels are generated, then pump these slicesback through thearray for thefinal labelling.

We have written, but not yet debugged, all the code for the cell array. We have accur ate estimates of the running
time of this code, provided by the compiler. We have also estimated the raining time of the sequential phase. We

45

derived this estimate from the sequential phase running time of the C implementation, allowing for a slight speed-up
of the cluster processors over the Vax, and also for the extra work (computing the A;) done in this phase by the

parallel — sequential — parallel version of the algorithm. The resulting estimate appears in Table 5-5.

Phase Time (milliseconds) Time (milliseconds)
Initial Parallel Phase

Pump in Image 50

Initial Labelling 2400

Total , 2450 2400
Sequential Phase

Boundary Scan 150

¢ Update %

o Update 490

A Computation 110

Total 840 840
Final Parallel Phase

A Lookups 2200

Pump Out Labels 50

Total 2290 2300
Total 5600

Table 5-5: Estimated WW Warp timings

PC Warp and i Warp Architectures. In this section we derive estimated execution times for these architectures.
There are three key differences between the design of these cells and those of the WW Warp. The first is that each
cell has enough memory to maintain a full slice of labels. This means that we do not need to pump the intermediate
labels to an external memory. The second is that the cells are not bound by the synchronization constraints of the
time because we no longer have to do i/o to the cluster processors for this phase, and because the cells run 2.8 times
faster than the cluster processors. The third is that each of these machines is more powerful than the WW Warp.
Both the PC Warp and the i Warp can do arithmetic directly on integers; this speeds up any integer arithmetic
computation by a factor of 3. Furthermore, the iWarp cells run 1.6 times faster than the Warp and PC Warp cells.

The only other salient difference between PC Warp and i Warp, for our purposes, is that the i Warp contains 72
cells. Thus we can potentially attain more parallelism on i Warp. However, becaunse the time taken in the merge
phase varies linearly with the number of cells, while the time taken in each parallel phase varies inversely with this
number, it is not necessarily best to use the greatest possible number of processors. If the execution time of the
algorithm as a function of the number of cells is T(K)=A/K + BK, then the best time will be obtained with K=VA/B.
In the case of i Warp, we have A=~4.994,B=.00812, so the best K is 25. The estimate below for i Warp execution

The resulting estimates appear in Tables 5-6 and 5-7.

5.8 Hough transform
Hough transform. The input is a 1-bit digital image of size 512x512. Assume that the origin (0,0) image is at the
lower lefi-hand comer of the image, with the x-axis along the bottom row. The output is a 180x%512 array of
nonnegative integers constructed as follows: For each pixel (x,y) having value 1 in the input image, and each i,
0<i<180, add 1 to the output image in position (i), where j is the perpendicular distance (rounded to the nearest
integer) from (0,0) to the line through (x,y) making angle i-degrees with the x-axis (measared counterclockwise). (This
output is a type of Hough transform; if the input image has many collinear 1's, they will give rise to a high-valued peak
in the cutput image. On Hough transforms see [27, Section 10.3.3].)
The Hough transform algorithm has been previously described {23]. Briefly, each of the ten cells gets one-tenth

46

Phase Time (milliseconds) Time (milliseconds)
Initial Parallel Phase

Pump In Image 53

Initial Labelling 710

Total 760 760
Sequential Phase

Boundary Scan 53

¢ Update 33

¢ Update 3

A Computation 41

Total 130 130
Final Parallel Phase

A Lookups 36

Pump Out Labels 53

Total 89 89
Total 980

Table 5-6: Estimated PC Warp timings

Phase Time (milliseconds) Time (milliseconds)
Initial Parallel Phase

Pump In Image 33

Initial Labelling 191

Total 224 224
Sequential Phase

Boundary Scan 83

¢ Update 47

o Update 52

A Computation 63

Total 200 200
Final Parallel Phase

A Lookups 9.0

Pump Out Labels 33

Total 42 42
Total 470

Table 5-7: Estimated iWarp timings

of the Hough array, partitioned by angle. The input image flows through the Warp array, and each cell increments
its portion of the Hough array for all image pixels which are ‘“1”’. Once the image has been processed, the Hough
array is concatenated and output to Warp’s external host.

For the particular parameters of this benchmark, which uses an array of 180x 512 data, this requires each cell
store 18 x512=9 K words of data. This will not fit on the WW machine, which has a memory of 4K words/cell. But
on PC Warp, each cell will have a memory of 32K words, so that the Hough array fits easily. On i. Warp 60 cells are
used (60 being the largest number less than 72 which evenly divides 180), so that each cell needs to store only
3x512=1536 bytes of data.

In order to derive estimates, we implemented a Hough transform program (with a smaller number of angles than
in the benchmark) and ran it on the WW machine. The algorithm does not change for more angles, so the estimates
given by this method are accurate for the PC Warp with the benchmark parameters.

47

By derivation from this program, the time per pixel with value ‘1> is 13 microseconds. Assuming 10% of the
image is one, on PC Warp the benchmark will execute in 340 milliseconds. On i Warp, the estimated execution time
is 60 milliseconds. These times scale linearly with the number of ‘“1’’s in the image.

5.9 Convex Hull.
Convex Hull. The input is a set S of 1000 real coordinate pairs, defining a set of 1000 points in the plane, selected at
random, with each coordinate in the range [0,1000]. The output is an ordered list of the pairs that lie on the boundary
of the convex hull of S, in sequence around the boundary. (On convex hulls see [26, Chapters 3-4].)
R. A. Jarvis’s [19] algorithm was used. This algorithm works as follows:

* Sort the points according to (x,y)-coordinate. The first point is a convex hull point. Call it A,

e Let i=(. Repeat the following until A;, ,=A:
* For each point B in the set, do the following:
"o Calculate the angle from the vector A-A; ; to the vector B-A;. (If i=0 we take the second
vector to be (—1,0)).

o The point with smallest angle is a convex hull point. CallitA,, .

This algorithm obviously has time complexity O (KN), where K is the number of convex hull points, and N is the
number of points in the set. ’I‘lwumcconsmnmgstepmthealgonmmmmescanmmughﬂlesetofpmntstoﬁnd
the next convex hull point.

We implemented the above algorithm on the WW Warp, using C code to program the cluster processors and W2
to program the Warp array. In our implementation, the Warp array performs the inner loop in the algorithm, which
finds a new convex hull point by calculation of the angle with all points. This is done in parallel on all cells, by
parmomngthesetofchtapomaaossthcmyandmcbwwmmeachceﬂ'sdamsetmd:vxdmlly,then

finding the best point of the cell’s points. ThecluswrprwmsrepeatedlyacoqnthenewpmmﬁomﬂnWm'p
mymdpammmh:snewommhnllpomtforﬂxmxtswpofﬁm computation

To test this algorithm, we generated a 1000 node random graph, which had 13 hull points. The measured time on
the WW machine was 6.76 milliseconds, with the same execution time on PC Warp. The time for this algorithm
scales linearly with the number of hull points.

AssmmngamMHzclockmmandnoc&sminp,eachpomu wﬂlmkc%miamoonds,baseduan

wmmmmmsﬁmﬁummmamoﬂmmmm
plane, selected at random, with each coordinate in the range [0,1000]. The output is the Voronoi diagram of S, defined
M&@dm@uﬁmmhm&p@oﬁm@mwwm&gﬂwmo{m

mputatio: d&eVamdmgmdam&lmwpm{iiﬂ. The algorith

The ¢ «~wmmmwmmaymmmwmmwm1u
pam. The sorting is done systolically on the Warp array, using a heapsort algorithm in which each
ﬁmamﬁmmsmmmmmwm%&wmm@mmm

2. Each cell computes the Delauney triangulati

3.Cells 1, 3, 7, and 9 receive the Delauney triangulation of their left neighbors.
Wmﬂmmyﬂmfmmnmm_, hawwmvmgoﬂs At the
umﬂmﬂl@pmmchmc&kéiws Suwtkmﬂbem

48

4. The 200 point triangulations are merged to form 400 point triangulations. At the end of this step we
have two triangulations of 400 points each and two triangulations of 100 points each. Eight cells are
idle during this step. The mergings are carried out in the in the third and eighth cells.

5. The 400 point and 100 point triangulations are merged to form 500 point triangulations in cells 4 and
6. At the end of this step there are two triangulations of 500 points each. Eight cells are idle during
this step.

6. The two 500 point triangulations are merged to give the Delauney triangulation of 1000 points. This
operation is carried out in the fifth cell. Nine cells are idle.

7. The dual of the Delauney triangulation thus obtained will give the Voronoi diagram.

Table 5-8 gives operation counts for each of the steps in the Voronoi diagram algorithm above. These counts
were obtained through a C program which computed the Voronoi diagram.

Step | Assignments | Array References | Comparisons | Arithmetic operations Logical Operations
2 86897 192695 60149 71572 36290
3 89529 198309 60209 74221 36343
4 91754 202898 60264 76401 36388
5 94504 208420 60326 79030 36441
6 97313 214221 60394 81733 36502

Table 5-8: Operation counts for Voronoi diagram

iWarp will have 72 cells instead of 10. Since the time for intermediate data transfers is small we ignore any
changes in that and assume linear speedup in the Delauney triangulation computation.

Since the computation of addresses for the array references appears to be the critical path we considered this as
the bottleneck in the computation. (PC Warp and i Warp will have parallel address computation engines in each
cell). Each array reference takes 300ns on PC Warp (100ns for the address computation and 200ns for the memory
access) and 100ns on the baseline i Warp. The total computation time therefore comes to 64 milliseconds on PC
Warp and 8.9 milliseconds on iWarp. The initial sort step requires 24 milliseconds on PC Warp and 10
milliseconds on i Warp. The number of floating-point data transfers internal to the computation is 3600 (400 in step
3, 800 in step 4, 400 in step 5, and 2000 in step 6). This will take 800 microseconds on PC Warp and 63
microseconds on i Warp.

Since the Voronoi diagram computation is taking the dual of the Delauney triangulation, this can be done in
parallel. This can be done in pipelined mode (concurrent I/O and computation in a cell) so that the total time of
computation will be around the total time for I/O which is around 200 milliseconds on PC Warp, and 120
milliseconds on i Warp. The conversion to Voronoi diagram will be part of a pipeline at the end of which Voronoi
diagram edges will be transmitted to the host. Hence time for transmission to the host will be included in this.

The total times for the computation are, on PC Warp, 64 milliseconds + 24 milliseconds + 800 microseconds +
200 milliseconds = 290 milliseconds, while on i Warp the time is 8.9 milliseconds + 10 milliseconds + 63
microseconds + 120 milliseconds = 140 milliseconds.

5.11 Minimum spanning tree
Geometrical constructions. The input is a set S of 1000 real coordinate pairs, defining a set of 1000 points in the
plane, selected at random, with each coordinate in the range [0,1000]. The output is the minimal spanning tree of S,
defined by the set of pairs of points of S that are joined by edges of the tree. (On minimal spanning trees see [26,
Section 6.1].)
We use Shamos’s algorithm [26], in which we have only to examine edges in the Delauney triangulation to find
an incremental edge in the minimum spanning tree. In the worst case 1000 vertices can correspond to 3000 edges,

49

implying an average of 3 edges per vertex. This means that we have to make a maximum of 2 comparisons to find
the edge of minimum length out of a vertex. Since there are 1000 vertices we have to make only 2000 comparisons
per stage of the algorithm and, since there are log (N) stages, we have to make 20000 comparisons in all. Also, as
part of the initialization step we have to compute the lengths of all the 3000 edges, which will involve 6000
floating-point multiplications and 3000 floating-point additions. We also have to prepare a data structure which will
give the out-degree of a particular vertex. This will involve 2 comparisons per edge, for a maximum of 6000
comparisons in all. We assume that the minimum spanning tree shall be computed. We also assume that a
floating-point multiplication takes 5 microseconds and a floating-point addition takes 2.5 microseconds, and each
comparison takes 1 microsecond. Adding up the respective times the total comes to about 65 milliseconds. This
time is the worst case since the Delauney triangulation of 1000 points will typically contain much less than 3000
edges.

5.12 Visibility
Visibility. The input is a set of 1000 triples of triples of real coordinates ((7,s,£),(i,v,w),(x,y,x)), defining 1000 opaque
triangles in three-dimensional space, selected at random with each coordinate in the range [0,1000]. The output is a list
of vertices of the triangles that are visible from (0,0,0).

An input partitioning method is used. Each vertex is simply tested to see if it is obscured by any of the triangles. .
This is done by taking the four planes defined by the triangle vertices and the origin and any two of them, and
testing to see if the vertex point lies in the interior of the region defined by the three planes including the origin, but
on the far side of the triangle. The mapping onto Warp is to broadcast the set of triangle points to all cells, and then
to send to each of the ten cells one-tenth of the vertex set, with each cell testing its portion to see if it is visible. The
execution time on the WW Warp is 825 milliseconds (however, the WW Warp machine cannot hold the entire
dataset due to memory limitations—this time is a compiler estimated execution time). Some improvement (probably
a factor of two to three) is expected on PC Warp, since the algorithm will be able to stop testing a vertex when it is
found that a vertex is definitely not obscured by a particular triangle. On i Warp, we estimate a speedup of about 10,
giving an execution time of 40 milliseconds.

5.13 Graph Matching
Graph matching. The input is a graph G having 100 vertices, each joined by an edge to 10 other vertices selected at
random, and another graph H having 30 vertices, each joined by an edge to 3 other vertices selected at random. The
output is a list of the occurrences of (an isomorphic image of) H as a subgraph of G. As a variation on this task,
suppose the vertices (and edges) of G and H have real-valued labels in some bounded range; then the output is that
occurrence (if any) of H as a subgraph of G for which the sum of the absolute differences between corresponding pairs
of labels is a minimum.

This problem includes two subproblems. The first is to find isomorphic embeddings of one the smaller graph in
the larger one. Finding one such embedding (or determining the existence of one) is known to be NP-complete [11].
Finding all isomorphisms actually grows exponentially. For example, in one set of randomly generated data, we
found about 106 solutions. Because there are too many solutions, no presently existing machine can produce all the
solutions in one year.

The second problem is to find the one isomorphism to the graph with the least differences between the
corresponding edge and vertex costs. The complexity of the second problem is obviously between finding one and
finding all. This problem has not been completed because there were t0o many solutions to the first problem.

Our parallel algorithm is based on Ullmann’s refinement procedure [31] which can prune the search tree by
eliminating mappings that are infeasible because of connectivity requirements. The method eliminates mappings as

early as possible.

In addition, we developed a more powerful method to cut the search tree as early as possible. The new method
uses graph analysis and makes use of some special features of the graph.

We implemented the problem on the Warp host, which is a Sun workstation. Running on a set of randomly
generated data for over one hour, we obtained 1188174 solutions, giving 267 solutions/second or about 3.75

50

milliseconds/solution. At this point, by counting the branching factors of the tree above the portion we had
processed, we estimated we had found only about 1.2x 10~ 9% of the solutions, leading to our estimate of 1016
solutions for this example.

In the Warp implementation, we parallelize the exploration of the search tree. This is easy to do because the
search tree is so large that we can easily assign each subtree to a processor. By straightforward extrapolation of
cycle time, we estimate the solution rate in PC Warp to be 2700 solutions/second. Similarly, we estimate the
solution rate in i Warp to be 19000 solutions/second.

5.14 Minimum-cost Path '
Minimum-cost path. The input is a graph G having 1000 vertices, each joined by an edge to 100 other vertices
selected at random, and where each edge has a nonnegative realvalued weight in some bounded range. Given two
vertices P, Q of G, the problem is to find a path from P to Q along which the sum of the weights is minimum.
(Dynamic programming may be used, if desired.)
The algorithm used here is the best known sequential algorithm, Dijkstra’s Single Source Single Destination [10]
(SSSD). The algorithm works by repeatedly ‘‘expanding’” nodes (adding all their neighbors to a list) then finding
the next node to expand by choosing the closest unexpanded node to the destination.

The lack of a while loop on the WW Warp results in a significant loss of performance, compared to PC Warp
and i Warp. PC Warp and i Warp have very similar mappings:

e WW Warp. The WW Warp cannot execute a loop a data dependent number of times, so that the outer
loop of SSSD must be mapped into the cluster processors. In this case, the Warp array is used for
expanding nodes, and for calculating which node should be expanded next. Node expansion is done by
feeding from the cluster processor the descendants of the node to be expanded, and by calculating the
distance to the goal of each of these nodes. The computation is extremely simple, and I/O bound on the
Warp array. Each node expansion involves the transfer of 200 words of data, which takes
200x 1.2 microseconds =240 microseconds, since the transfer of a single word takes 1.2 microseconds.

To find the next node to be expanded, the entire set of nodes must be scanned, and the node nearest the
goal is selected. On the WW Warp this means 1000 nodes must be scanned. Again, the computation is
1/O bound, so that the execution time is 1000% 1.2 microseconds =1.2 milliseconds. In the worst case,
1000 nodes must be expanded, for a total time of 1000 (1.2 milliseconds + 240 microseconds = 1.44 s).
This number scales linearly with the number of nodes that must be expanded to find the goal.

e PC Warp. In PC Warp it is possible to map the outer loop of SSSD into the Warp array, giving a much
better time.
Node expansion is done by prestoring at each cell the costs, giving each cell 100 data. Node expanding
is done in parallel in all cells. In the worst case, the slowest cell will have to expand 100 nodes, so that
the time for one node expansion is 100x0.25 microseconds=25 microseconds .

The global minimum is calculated in parallel in all cells, and then the minimum among cells is found in
one pass through the array. Finding the minimum on each cell takes
0.4 microseconds x 100=40 microseconds . Finding the minimum among cells takes
0.4 microseconds x 10=4 microseconds .

The total time for one node expansion is therefore 69 microseconds. In the worst case, when 1000
nodes are expanded, the time is 69 milliseconds. This time scales linearly with the number of nodes
that must be expanded to find the goal.

e iWarp. Following the same algorithm partitioning method as for PC Warp, we use 72 cells instead of
10. Now each cell need store only 14 data. The faster cycle time of i Warp gives a 10 microsecond
time for one node expansion, 7 microseconds to find the global minimum in each cell, and 8
microseconds to find the global minimum across cells. (The minimum across cells is done sequentially
from cell to cell, so it takes longer on longer arrays). The total time for one node expansion on i Warp is
25 microseconds. In the worst case, the total time for the solution will be 25 milliseconds. This number
scales linearly with the number of nodes that must be expanded to find the goal.

51

5.15 Warp Benchmarks Summary

In Table 5-9 we summarize Warp's performance on the |U Architecture benchmarks. With each time, we give its
source-from an actual run of WW Warp, from compiled code, or by an estimate (all /Warp times are estimated).
The times from an actual run are, of course, the most reliable- they are observed times, from an actual run on our
WW Waip at Carnegie Mellon, and include 1/0. Times marked ''‘compiled code" arejust as reliable; the W2
compiler for Warp produces a time estimate, which gives the actual execution time for the algorithm on Warp (we
have modified these times as appropriate when the Warp array is not the bottleneck in the execution time of the
algorithm). Finally, "estimate*' indicates a time which is not based on compiled code, but on some other method,
which may not be as reliable. The source of the time is given in the relevant section. We have tried to be as
accurate as possible in these estimates, and have tried to err on the side of caution.

Algorithm WWWarp PC Waip iWarp
430 ms 350 ms
Laplacian actual run compiled code| 7.8 ms
170 ms 50 ms
Zero crossing actual run estimate 7.8 ms
1.1s
Border following N/A estimate -690 ms
56s 980 ms
Connected Components compiled code] estimate 470 ms
340ms
Hough transform N/A compiled code} 60 ms
9 ms 9 ms
Convex Hull actual run compiled code{ 3.2 ms
290 ms
Voronoi diagram NA estimate 140 ms
160 ms
Minimal spanning tree | N/A estimate 43 ms
830 ms 400 ms
Visibility compiled code! estimate 40 ms
1800 solnjs
Graph matching N/A estimate 19,000 sotays
14 s 69 ms
Minimum-cost path estimate estimate 25ms

Table5-9: Warp Benchmark Summary

5.16 Evduation of the Warp Architecture

In this section we will use die data generated by these benchmarks to evaluate the Warp architeciure, by
considering the effect of various reasonable design changes. The internis to explore the design space- around the PC
Warp. We'will consider all af the bencfamaik algorithms except for minimal spanning tree, which is not performed
onthe Warpnay.

5.16.1 Memory
In PC Warp, cadi cell has 32K wwite of memory* for a tottl memory in the Warp array of 320K. What Is the
effect mi performance of decreasing the memory size?

Laptadn and zero erasing arc input partitioned algorithms. This implies thai each ccH needs only enough

52

memory to compute the result for the area of the image assigned to that cell—in this case, approximately
11x52+5x52=832 words for the Laplacian, and 3x52+512=668 data for zero crossing. If we decrease the
memory per cell below this point, the computation can still be done, but only by processing a strip of the image at a
time. For example, the Laplacian could process two 512256 images and need only 11x26+ 5x26=416 words of
memory. (The computation would actually process a slightly wider image, because of the need for overlap at the
interior edge. This makes it less efficient.)

Border following and connected components both must store the entire image (distributed through the array) at
once to do their processing. This means the total array storage must be at least 256K, plus whatever is needed to
store their local tables. If less memory is available than this, the computation becomes exceedingly complex —either
the image must be compressed for storage, or several passes must be performed, with a new merge step. This sort of
complexity is frustrating for a programmer to deal with.

Hough transform and visibility display the standard behavior of output partitioned algorithms; as memory is
reduced, the computation grows proportionately less efficient. For example, for Hough transform the current
benchmark requires 180x512=90K words of memory in the array. If only, say, 45K words of memory are
available, the computation can be done in two passes, each building half the Hough array; but each pass takes as
long as the whole thing on a machine with sufficient memory. Similarly, visibility needs 27K; if less is available
than this, multiple passes must be made, each pass deleting some of the points from the visibility set.

The other algorithms (Voronoi diagram, minimal spanning tree, graph matching, and minimum-cost path) all
share the characteristics that they require the entire dataset to be stored in the array at once, their computation is
fairly complex, and they have small datasets. In a well-designed machine, memory is unlikely to be a problem; but
if it is too small to store the complete dataset, programming any of these problems will become very difficult.

5.16.2 Number of processing elements
PC Warp has ten cells in its array, a fairly small number as parallel machines go. What happens if we increase
this number?

The effect on Laplacian, zero crossing, Hough transform, convex hull, and visibility is straightforward; their
speed changes approximately linearly, increasing or decreasing as the number of cells is increased or reduced, as
long as I/O is not a bottleneck. This bottleneck occurs when the data transfer rate between the external host and the
Warp array reaches 12 MB/second, which occurs when the number of Warp cells is 168 for Laplacian, 24 for zero
crossing, 180 for Hough transform (since the partitioning is by angle, this is the bottleneck), 130 for convex hull,
and 530 for visibility. (Actually, due to the effects of rounding, some of these numbers do not actually represent
peaks in performance. For example, we will not observe any change in performance between 128 cells, or four
pixels per cell, and 171 cells, or three pixels per cell.) By this point, effects we ignored in our initial time estimate,
such as the cost of overlapping data with an adjacent cell, or the buffer sizes in the interface unit, probably dominate.
Except possibly for zero crossing, these limits on the number of cells exceed the practical limits of building and
maintaining such a PC Warp array.

Graph matching is similarly partitioned, and it should display the same sort of behavior as the above algorithms.
‘We have not done enough analysis to determine the optimal number of cells.

The case of connected components is quite different. This algorithm consists of two parts, one of which is
partitioned like the algorithms above, and the other of which is a merge step. The total time for both steps is
O(A/N+BN), where A and B are constants depending on the algorithm for the partitioned and merge steps,
respectively, and N is the number of cells. This formula has a minimum when N=VA/B. For connected components,
this occurs when N=25, as shown in Section 5.7.3.3.

Similarly remarks apply to Voronoi diagram and border following. We do not have accurate enough estimates to
give a definite maximal number of cells in these cases.

53

5.16.3 External host -
The external host is based on standard MC68020 processors and the VME bus. This is convenient for
programming, but may be undesirable for performance. What is the effect of making the external host more

powerful?

Naturally, as the external host grows more and more powerful, more and more of the computation can be mapped
onto it—in the most extreme case, it can perform the entire computation. We will restrict ourselves to considering
the qualitative effects of making the external host more powerful, but still less powerful than the Warp array.

There is no benchmark in which the external host actually creates an I/O bottleneck. However, there are many
ways in which a more powerful external host would significantly affect the program mapping. This is most evident
in Section 5.14. Here, on the WW machine, the external host is used to control the outer loop of the program, while
on PC Warp and i Warp, the Warp array itself controls this outer loop. In many ways, it is convenient to use the
external host for this computation; there is no reason not to split the computation in this way, and it is in some ways
easier to program. However, the poor computational abilities of the external host make it advantageous to map as
much computation onto the Warp array as possible, even when it is somewhat inconvenient.

Similar remarks apply to border following, connected components, convex hull, and Voronoi diagram. All of
these algorithms could use a more powerful external host in the merge phase of their computation.

However, it is interesting to consider alternatives to a more complex external host. It is unlikely that the ratio of
power between the external host and the Warp array will shift towards the external host in future versions of Warp
or similar systems. Rather, as our ability to build larger Warp arrays grows, it will likely shift in the other direction.
‘We must try to find alternatives to mapping important parts of the computation onto a sequential processor if we are
to see further speedup in these algorithms. It seems that a much better alternative to making the external host more
powerful is to make the Warp array more flexible, for example by making the communications between the cells
more powerful (allowing higher dimensional arrays or logically connecting distant cells).

54

6. References

1]

(2]

B3]

[4]

(5]

(6]

(7

(8]

9]

(10]

[11]

(12]

[13]

[14]

Reference Manual for the Ada Programming Language

MIL-STD 1815 edition, United States Department of Defense, AdaTEC, SIGPLAN Technical Committe on
Ada, New York, N.Y. AdaTEC, 1982.

Draft revised MIL-STD 1815. Draft proposed ANSI Standard document.

Annaratone, M., Amould, E., Cohn, R., Gross, T., Kung, H.T., Lam, M., Menzilcioglu, O., Sarocky, K.,
Senko, J., and Webb, J.

Warp Architecture: From Prototype to Production.

In Proceedings of the 1987 National Computer Conference. AFIPS, 1987.

Annaratone, M., Amould, E., Gross, T., Kung, H.T., Lam, M., Menzilcioglu, O., Sarocky, K. and Webb, J.A.

Warp Architecture and Implementation.

In Conference Proceedings of the 13th Annual International Symposium on Computer Architecture, pages
346-356. June, 1986.

Annaratone, M., Amould, E., Gross, T., Kung, H. T., Lam, M., Menzilcioglu, O. and Webb, J. A.
The Warp Computer: Architecture, Implementation and Performance.
IEEE Transactions on Computers C-36(12), December, 1987.

Annaratone, M, Amould, E., Cohn, R., Gross, T., Kung, H.T., Lam, M., Menzilcioglu, O., Sarocky, K.,
Senko, J., and Webb, J.

Architecture of Warp.

In COMPCON Spring ’87, pages 264-267. IEEE Computer Society, 1987.

Batcher, K. E.
Bit-serial parallel processing systems.
IEEE Trans. Computer C-31(5):377-384, May, 1982.

BBN Laboratories.
The Uniform System Approach to Programming the Butterfly Parallel Processor
1 edition, Cambridge, MA, 1985.

Bruegge, B., Chang, C., Cohn, R., Gross, T., Lam, M., Lieu, P., Noaman, A. and Yam, D.
The Warp Programming Environment.
In Proceedings of the 1987 National Computer Conference. AFIPS, 1987.

Bruegge, B., Chang, C., Cohn, R., Gross, T., Lam, M., Lieu, P., Noaman, A. and Yam, D.

Programming Warp.)
In COMPCON Spring '87, pages 268-271. IEEE Computer Society, 1987.

Dijkstra, E.
A note on two problems in connexion with
Numerische Mathematik 1:269-271, 1959.

Garey, M. R, and Johnson, D. S.
Computers and Intractibility: A guide to the theory of NP-completeness.
W. H. Freeman, 1979.

Gross, T., Kung, H.T., Lam, M. and Webb, J.

Warp as a Machine for Low-level Vision.

In Proceedings of 1985 IEEE International Conference on Robotics and Automation, pages 790-800.
March, 1985.

Guibas, L. J., and Stolfi, J.
Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams.
ACM Transactions on Graphics 4, 1985.

Hamey, L. G. H., Webb, J. A., and Wy, I-C.
An Architecture Independent Programming Language for Low-Level Vision.
Submitted to Computer Graphics and Image Processing.

(15]

(16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

27

28]

[29]

{30]

55

Haralick, R. M.
Digital Step Edges from Zero Crossings of Second Directional Derivatives.
IEEE Transactions on Pattern Analysis and Machine Intelligence 6:58-68, 1984.

Hillis, W. D.
The Connection Machine.
The MIT Press, Cambridge, Massachusetts, 1985.

Huang, T. S., Yang, G.J., and Tang, G. Y.
A fast two-dimensional median filtering algorithm.
In International Conference on Pattern Recognition and Image Processing, pages 128-130. IEEE, 1978.

iPSC System Overview
Intel Corporation, 1985.

Jarvis, R. A.
On the identification of the convex hull of a finite set of points in the plane.
Information Processing Letters 2:18-21, 1973.

Jordan, K. E.

Performance comparison of large-scale scientific computers: Scalar mainframes, mainframes with integrated
vector facilities, and supercomputers.

IEEE Computer 20(3):10-23, March, 1987.

Joy, W. N,, Babaoglu, O., Fabry, R. S., Sklower, K.
UNIX Programmer’' s Manual
4th Berkeley Distribution edition, University of California at Berkeley, 1980.

Kemighan, B. W. and Ritchie, D. M.
The M4 Macro Processor.
In Unix Programmer’ s Manual. Bell Laboratories, Murray Hill, NJ 07974, 1979.

Kung, H.T. and Webb, J.A.

Global Operations on the CMU Warp Machine.

In Proceedings of 1985 AIAA Computers in Aerospace V Conference, pages 209-218. American Institute of
Aeronautics and Astronautics, October, 1985.

Kung, H. T. and Webb, J. A.

Mapping Image Processing Operations onto a Linear Systolic Machine.

Distributed Computing 1(4):246-257, 1986.

Olson, T. J.

An Image Processing Package for the BBN Butterfly Parallel Processor.

Butterfly Project Report 9, University of Rochester, Department of Computer Science, August, 1985.

Preparata, F. P. and Shamos, M. L,

Computational Geometry - An Introduction.
Springer, New York, 1985.

Rosenfeld, A. and Kak, A. C.

Digital Picture Processing.
Academic Press, New York, 1982.

Schwartz, J., Sharir, M., and Siegel, A.
An efficient algorithm for finding connected components in a binary image.
Technical Report 154, New York University Department of Computer Science, February, 1985.

Sem,C

of the ACM 28(1):22-33, January, 1985.
SPIDER (Subroutine Package for Image Data Enhancement and Recognition).
Joint System Development Corp., Tokyo, Japan, 1983,

56

[31] UllmanJ.R.
An algorithm for subgraph isomor phism.
Journal of the ACM 23(1):31-42, January, 1976.

[32] Wallace, R. S. and Howard, M. D.
HBA Vision Architecture: Built and Benchmarked.
In Computer Architecturesfor Pattern Analysis and Machine Intelligence. |EEE Computer Society, Seattle,
Washington, December, 1987,

[33] Wallace R. S.,Webb, J. A. and Wu, |-C.
Ar chitecture Independent Image Processing: Performance of Apply on Diverse Architectures.
Submitted to Computer Graphicsand | mage Processing.

57

1. WEB Listing :
In the following, image is a 512x512 array of unsigned char and realimage is a 512x512 array of float. (These are
the sizes compiled in the programs; to change these sizes, the programs have to be re-compiled.)

The ‘‘Status’’ given below is either coded, compiled, tested, or validated. ‘‘Coded’’ indicates the program is
written (the source code is available in the directory) but not yet compiled. ‘‘Compiled’’ indicates the program has
been written and successfully compiled by W2 and Apply (if necessary) but not necessarily tested. ‘‘Tested’’
indicates that the program has been written, compiled, and tested. ‘“Validated’’ indicates that the program has been
written, compiled, tested, and passed validation in this release. Over one-half of the library can now be validated.

For programs that have been compiled or tested but not validated, the execution time given is the time estimated
for execution by the W2 compiler. Actual run times are given for validated programs. The run time of a Warp
program is defined as the time from the start of the execution of Clusterl (used for input) to the end of the execution
of Cluster2 (used for output). This time includes all I/O from the external host to Warp. To distinguish these times
from the estimated times, they are printed in boldface. In general, the actual run time for a program may differ from
the compiler estimated execution time, for two reasons:

1. The compiler does not take I/O between cells or with the host in its estimate. Since I/O is almost
completely overlapped with execution, this usually gives a very slight underestimate (about 2%)
because of the skew between cells. However, for programs that process real images, and perform a
very simple operation on them, I/O with the host may be a bottleneck. (Currently, using DMA in
compiler-generated code, the host provides about 7 MB/S each of input and output to the Warp array.

In the best case the array can process 20 MB/S each input and output. I/O is not a bottleneck for byte
images because the interface unit unpacks bytes to floats, giving a factor of four increase in data).

2.In computing the estimated times, the compiler makes assumptions about branching in conditionals
that are pessimistic.
Thus,theoompukrwﬂtmdmoveresamawﬂwemuonmmsofpmgmmswxﬂl greatly unbalanced conditionals,
slightly underestimate the execution time of most other programs, and significantly underestimate the execution
time of programs that perform very simple operations (e.g., add a constant) on real images.

““Size™ is size in W1 instructions of the compiled code. The Warp machine has space for 7936 W1 instructions
(8192 instructions are in the memory, and 256 are used for system purposes).

Program Status Time Size Language
Description

Parameters Access

addc1b Validated 109.4 ms 94 Apply
Add a constant to a byte image.

Parameters: 1st param: image input
2nd param: int constant input
3rd param: image output

addcic Validated 328.08 ms 124 Apply
Add a complex constant to a complex image.
lmpuam:realinmge(rwlpgt) input
2nd param: realimage (imaginary part) input
3rd param: float constant (real part) input
4th param: float constant (imaginary part) input
5th param: realimage (real part) output

addclir

Parameters:

addcls

Parameters:

addplb

Parameters:

addplc

Parameters:

addplr

Parameters:

addpls

Parameters:

afinl

afin2

Parameters:

58

Validated 146.0 ms 78
Add a constant to a realimage.

1st param: realimage

2nd param: float constant

3rd param: realimage

Validated 108.4 ms 94
Add a constant to an signed byte image.
1st param: image

2nd param: int constant

3rd param: image

Validated 161.5 ms 99
Add two byte images.

1st param: image

2nd param: image

3rd param: image

Validated 622.10 ms 165
Add two complex images.

1st param: realimage (real part)

2nd param: realimage (imaginary part)
3rd param: realimage (real part)

4th param: realimage (imaginary part)
5th param: realimage (real part)

6th param: realimage (imaginary part)

Validated 309.8 ms 99
Add two realimage’s.

1st param: realimage

2nd param: realimage

3rd param: realimage

Validated 161.8 ms 99
Add two signed byte images.

1st param: image

2nd param: image

3rd param: image

Validated 4396.7 ms 410

Affine image warping using linear interpolation.

1st param: image
2nd param: float array[2][3]

Homogeneous transformation matrix.
3rd param: 1 (inverse) or 0 (direct transform)

4th param: image
Validated 4530.3 ms 436

Affine image warping using quadratic interpolation.

1st param: image
2nd param: float array[2](3]

] transformation matrix.
3rd param: 1 (inverse) or 0 (direct transform)

4th param: image

Apply

Apply

Apply

Apply

Apply

Apply

input
input
output

input
input
output

input
input
output

input
input
input
input
output
output

input

output

input
input
output

afin3

Parameters:

andc1b

andplb

bdr41

59

Validated 4413.1ms 827 w2

Affine image warping using max, min, or nearest neighbor interpolation.

1st param: image
2nd param: float array{2][3]

Homogeneous transformation matrix.
3rd param: 1 (inverse) or 0 (direct transform)
4th param: select type of interpolation
Sth param: image

Validated 109.6 ms 99 Apply
Logically and an image with a constant.

1st param: image

2nd param: int constant

3rd param: image

Validated 160.7 ms 118 Apply

Validated 2247 ms 317 w2
Measure area of regions in a labeled image.

1st param: image

2nd param: int value

Label of region to be processed; if 0, all regions are processed.

3rd param: int array[256]
array(i] is the area of region labeled i.

Validated 1201.9 ms 824 Apply
Local selective averaging.
1st param: image

Validated 1247 ms 552 Apply
Detect borders in binary picture (4-connectedness).

1st param: image

2nd param: 1 (inner) or 0 (outer borders)

‘ image
2nd param: 1 (inner) or O (outer borders)
3rd param: image
Vanad 329.0 ms 728 Apply
borders of regions in a labeled image.
1st param: image
2nd param: int value
Label of region to be processed; if 0, all regions are processed
Mpmmmlm
Label assigned to borders; if 0, keep Iabel of the region.

4&pmm:4m8(cmcﬁcdmm)
5th param: image

input
input

input
input
output

input
input
output

input
input
output

input
input

byrl ~ Validated 146.9 ms 75 Apply
Byte to real conversion.
Parameters: 1st param: image

2nd param: realimage

canny Compiled w2
Canny operator.
Link with ${ WPEweb}/libWEB.a.

This subroutine can handle any size input image, by processing 512x512
regions. Uses mag, magdir, nonmax.
C interface: canny(inimg, outimg,size, bounds, xgrad, ygrad,
rgrad, dir, verbose, err)

Parameters: inimg: input image

outimg: nonmaxima suppressed edges

size: int size of Canny (<=20)

bounds: SUBIMAGE bounds to compute Canny

xgrad: output X gradient

ygrad: output Y gradient

rgrad: gradient maxima

dir: gradient direction

verbose: int 0 (quiet) or 1 (verbose)

err: Generalized image library error parameter
cgrvl Validated 2219 ms 388 w2

Measure coordinates of center of gravity of regions in a labeled image.
Parameters: 1st param: image ’

2nd param: int value

3rd param: int array[256]

Array with areas of regions (output of AREA1I).
4th param: float array[256]

array[i] is the row coordinate of region labeled i.
5th param: float array[256]

array[i] is the column coordinate of region labeled i.

clip Validated 149.0 ms 198 Apply
Set gray values in a range to zero.
Parameters: 1st param: image
2nd param: int value (lower bound)
3rd param: int value (upper bound)
4th param: image

colortobw Validated 2159 ms 185 Apply
Convert (r,g,b) image to black and white by averaging.
Parameters: 1st param: image (red)
2nd param: image (green)
3rd param: image (blue)
4th param: image (gray)

conc Validated 458.0 ms 573 Apply
Compute connectivity number.

Parameters: 1st param: image
2nd param: 4 or 8 (connectedness)
3rd param: image

input
output

input
output
input
input
output
output
output
output
input
input

input
input

output

input

input
input

connect

Parameters:

cqltl

Parameters:

crcll

Parameters:

am

Rusraetos:

Parameters:

display

Parameters:

divcld

Parameters:

61

Validated 25454 ms 773 W2
Eight-connected components analysis.

In the input image, pixels with different grayvalues are not considered
to be connected GrayvadueOis* 'background” and is not labelled.
Output is arealimage where each grayvalue represents a different
connected region.

1 param: image input
2nd param: realimage output
Validated 943-1 ms 461 W2

Measure coordinates of circumscribing rectangle of regionsin a
labeled image.

1<t param: image input
2nd param: int value input
Label of region to be processed; if O, all regions are processed.
3rd param: int value input
When 2nd param = 0, greatest label in the input labeled image.
4th param: int array[256] [4] output
_airay[i][4] contains the coordinates of the circumscribing rectangle
of region labeled i.
Validated 2Jims 186 W2
M easure compactness of regions.
1<t param: int array[256] input
Array with areas of regions (output of AREAL).
2nd param: int array[256] input
Array with perimeters of regions (output of PRMT1).
3rd param: float array[256] output
array[i] is the compactness of region labeled i.
Validated 257,1ms 427 Apply
Compote-crossing number.
1t param: image input
2nd param: 4 or 8 (connectedness) input
3rd param: image output
Validated 2314 ms 583 W2

Two dimensional direct discrete cosine transform.
Takes an input image and performs 8x 8 discrete
cosine transforms to produce the output image.
Useful for image compression.

14 param: image input
2nd param: realimage output
Vaidated 5147 BIS 499 W2

Histogram-equalize and haftone image.
Used by WPE for Image display under X.

Lat pacasn: image input
2nd param: Image output
Validated 107Sm 136 Apply

Divide an image by aconsist. .

.5 param: imugt input
2nd param: tat constant input

3id param: image output

divclr

Parameters:

divcls

Parameters:

divplb
Parameters:

divplr
Parameters:

divpls

62

Validated 145.7 ms 87 Apply
Divide a realimage by a constant.

1st param: realimage

2nd param: float constant

3rd param: realimage

Validated 107.2 ms 136 Apply
Divide a signed byte image by a constant.

1st param: image

2nd param: int constant

3rd param: image

Validated 161.8 ms 144 Apply

Divide 1st input image by 2nd input image.
1st param: 1st image

2nd param: 2nd image

3rd param: image

Validated 310.2 ms 100 Apply
Divide 1st input realimage by 2nd input realimage.

1st param: 1st realimage

2nd param: 2nd realimage

3rd param: realimage

Validated 160.8 ms 144 Apply
Divide 1st signed byte image by 2nd signed byte image.

1st param: 1st image

2nd param: 2nd image

3rd param: image

Validated 849.7 ms 593 Apply
Edge detection using orthogonal templates by Frei and Chen.
1st param: image

2nd param: image

Validated 730.3 ms 487 Apply
Edge detection using Kirsch operator (outputs magnitude only).
1st param: image

Validated 906.47 ms 537 Apply

direction of gradient).

1st param: image

2nd param: image (magnitude)
3rd param: image (direction)

ds 311.1ms 608 Apply
Bdgac dctecn(m using Laplacian.

input
input
output

input
input
output

input
input
output

input
input
output

output

i

if

OUtpu

18t

$ibiseltl

egpwl

Parameters:

egpw2

Parameters:

egpw3

egpw4

egrsl

63

Validated 233.8 ms 868 Apply
Edge detection using Prewitt operator (differential type)
(outputs magnitude only).
1st param: image
2nd param: O or 1

Select computation equation for magnitude.

3rd param: image

Validated 2031.3 ms 1327 Apply
Edge detection using Prewitt operator (differential type)
(outputs magnitude and direction of gradient).
1st param: image
2nd param: O or 1
Select computation equation for magnitude.
3rd param: image (magnitude)
4th param: image (direction)

Validated 703.5 ms 478 Apply
Edge detection using Prewitt operator (template type).
(outputs magnitude only).

1st param: image

2nd param: image

Validated 874.80 ms 528 Apply

Edge detection using Prewitt operator (template type).
(outputs magmtude and direction of gradient).

3rd param: lmage (direction)

Validated 1452 ms 378 Apply
Roberts operator.
1st param: image
2nd param: 0 or 1
Select computation equation for magnitude.
3rd param: image

Validated 6733 ms 465

Robinson operator (outputs magnitude only).

1st param: image

2nd param: image

Validated 840.67 ms 515 Apply
Robinson operator

(ompmmgnmxdeanddnmofgmdmt)

1st param: image

2ndpmmn:inwge(magmmde)

3rd param: image (direction)

0.880992 s 856 Apply
Robmmnopam(checksbcalconnecnvnyofedgaanddclm
those that do not meet the conditions).
1st param: image

Magnitude (output of EGRS2).
2nd param: image

Direction (output of EGRS2).
3rd param: image

input
input

output

input
input

output
output

input
output

input
output
output

output

output

output

output

egsbl

Parameters:

egsb2

Parameters:

eikvl

Parameters:

Parameters:

epct
Parameters:

Parameters:

64

Validated 329.3 ms 961 Apply
Sobel operator (outputs magnitude only).
1st param: image
2nd param: O or 1
Select computation equation for magnitude.
3rd param: image

Coded Apply
Sobel operator (outputs magnitude and direction of gradient).
1st param: image

2nd param: O or 1

Select computation equation for magnitude.
3rd param: image (magnitude)
4th param: image (direction)

Validated 827.0 ms 705 Apply
Iterative edge detection using Kasvand’s method.

1st param: image

2nd param: image

Validated 903.08 ms 678 Apply
Iterative line sharpening using Kasvand’s method.

- 1st param: image

2nd param: image

Validated 456.1 ms 619 Apply
Expand or contract binary pattern.

1st param: image

2nd param: 4 or 8 (connectedness)

3rd param: 0 (contract) or 1 (expand)

4th param: image

Validated 149.8 ms 122 Apply
Erase small regions in a labeled image. Small regions are those
whose area is less than a given threshold.
1st param: image
2nd param: int array[256]
Array with areas of regions (output of AREA1).
3rd param: int value (threshold)
4th param: image

Validated 114.7 ms 675 Apply
1st param: char array[256][256]

2nd param: image

Validated 66.70 ms 7 Apply
Assign zero to an image.

1st param: image

Validated 1453 ms 71 Apply
Assign zero to a realimage.
1st param: realimage

input
input

output

input
input

output
output

input
output

input
output

input
output

65

fcon Validated 400 ms w2
Two-dimensional convolution using FFT.
Image2 is replaced by the convolution of imagel with image?2.
Imagel will be destroyed if it is a Warp real image.
The execution time reported is the Unix user time for a
complete call.
C Calling sequence: fcon(imagel, image2).
Link with ${ WPEweb}/libWEB.a, the libraries necded for

warp_call(3), and -Im.

Parameters: realimage input
realimage inout
fcor Validated 483 ms : w2
Two-dimensional correlation using FFT.

Image?2 is replaced by the correlation of imagel with image2.
Imagel will be destroyed if it is a Warp real image.

The execution time reported is the Unix user time for a
Link with ${WPEweb}/libWEB.a, the libraries needed for
warp_call(3), and -Im.

Ccalhngseqwme fcor(image1l, image2)

Parameters: Ist rmhme input
2nd realimage inout
fopl Compiled 1.7909992 s 558 Apply

vam(ml. imaginary) representation to (magnitude, phase)

Parameters: input
input
output

~ Output
fit

C calling procedure: fi(seal-part, imaginary
mmmmmammﬁgﬂ&wW call(3).

iﬂwmwm inout
MmMiﬂ(Mw-lﬂ(m} input
Wdamfw '
mmmwmxm -

Parameters: mmﬁ&m) " input
3rd param: realimage) m

fiwld Validated 154.0 ms 532 Apply
Execute linear filtering operation.

Parameters: st param: image input
2nd param: float array{n}{n] (weights) input

n is compiled in the program. This one is 3.

3rd param: image output

flwll

Parameters:

flwl2
Parameters:

fmax

Parameters:

fmin

Parameters:

fsed

Parameters:

gmit

grassfire

66

Validated 143.0 ms 523 Apply
Execute linear filtering operation.
1st param: image input
2nd param: float array[n][n] (weights) input

n is compiled in the program. This one is 3.
3rd param: float value (normalization coefficient) input
4th param: image output
Validated 280.6 ms 453 w2
Execute linear filtering operation using uniform weighting function.
1st param: image input
2nd param: float value (normalization coefficient) input
3rd param: image output
Coded Apply
Perform local max filtering.
1st param: image input
2nd param: image output
Validated 1038.8 ms 685 Apply
Perform local min filtering.
1st param: image input
2nd param: image output
Validated 333.0 ms 96 Apply
Convert an image to complex image (assigning zero to imaginary part).
1st param: image input
2nd param: realimage (real part) output
3rd param: realimage (imaginary part) output
Validated 107.5 ms 94 Apply
Multiply gray values (same as MULC1B).
1st param: image input
2nd param: int constant input
3rd param: image output
Coded w2

Input is binary image, output is distance from a 0.

1st param: image input
2nd param: image output
Validated 109.3 ms 94 Apply
Shift gray values (same as ADDC1B).
1st param: image input
3rd param: image output
Validated 1293 ms 147 Apply
1st param: image input
2nd param: int array[256] (table) input
Compiled 0.4345898 s 218 w2
Image halftoning using Heckbert’s algorithm
1st param: image input

2nd param: image

67

histl Validated 80.9 ms 159
Obtain histogram.
Parameters: 1st param: image

2nd param: float array[256] (histogram)

hyth Compiled
" Hysteresis thresholding.
Link with ${ WPEweb}/libWEB.a.

Uses byrl, connect.
C interface: canny(in, out, bounds, pbounds, low, high,
percent, verbose, err)
Parameters: in: input image
out: thresholded output image
bounds: SUBIMAGE bounds to perform thresholding
bounds: SUBIMAGE bounds to compute percentages
low: lower threshold
high: higher threshold
percent: int O (thresholds are absolute)

w2

w2

input
output

input
output
input
input
input
output
input

or 1 (thresholds are percentages of range of values of image)

verbose: int O (quiet) or 1 (verbose)
err: Generalized image library error parameter

idct Validated 206.2 ms 437
Two dimensional inverse discrete cosine transform.

w2

Takes an input image and performs 8 x 8 inverse discrete

cosine transforms to produce the output image.

Useful for image compression. (Inverse of dct).
Parameters: 1st param: realimage

2nd param: image

itenl Compiled 4.598952 s 1348
Iterative enhancement of noisy image (method 1).
Parameters: 1st param: image
2nd param: image

iten2 Compiled 0.8456302 s 731
Iterative enhancement of noisy image (method 2).
C Calling sequence: iten2(imagein, imageout)
Link with SWPEweb/libWEB.a.

Parameters: 1st param: image

input
input

input
output

output

medi

Parameters.

mmntl

Parameters.

mmnt4

Parameters.

mulclb

Parameters.

mulclc

Parameters.

mulclr

Parameters

mulcls

Parameters

68

Compiled 0.7777158 s 428 W2

Median filter.

14 param: image input
2nd param: image . output
Compiled S 383 W2

M easure moments M” around center of gravity of regionsin a
labeled image, (p andq are the order of x and y components of the
moment and are compiled in the program. ThisoneisM,.)

1<t param: image input

2nd param: int array[256] input
Array with row coordinates of centers of gravity (output of CGRV1).

3rd param: int array[256] input
Array with column coordinates of centers of gravity (output of CGRV1).

4th param: int value input
Label of region to be processed; if 0, all regions are processed.

5th param: int array[256] output
Array[i] isthe moment of region labeled i.

Validated 135.7ms 186 W2

Obtain Oth to 2nd momentsof an image.

1st param: image ’ input

2nd param: float array[6] output
Array with momentsin the following order 00,10,01,20,02, and 11.

Validated 107.6 ms 94 Apply

Multiply an image by a constant

1st param: image input

2nd param: int constant input

3rd param: image output

Validated 326.67 ms 137 Apply

Multiply a complex image by a complex constant

1st param: realimage (real part) input

2nd param: realimage (imaginary part) input

3rd param: float congtant (real part) input

4th param: float constant (imaginary part) input

5th param: realimage (real part) output

6th param: realimage (imaginary part) output

Validated 145.6 ms 78 Apply

Multiply areal image by areal constant

1st param: realimage input

2nd param: float constant input

3rd param: realimage output

Validated 108.5 ms 94 Apply

Multiply a signed byte image by a constant

1t param: image input

2nd param: int constant input

3rd param: image output

mulplb

Parameters:

mulplc
Parameters:

mulplccj

69

Validated 161.7 ms 99 Apply
Multiply two images.

1st param: image

2nd param: image

3rd param: image

Compiled 03194312 s 175 Apply
Multiply two complex images.

1st param: realimage (real part)

2nd param: realimage (imaginary part)

3rd param: realimage (real part)

4th param: realimage (imaginary part)
5th param: realimage (real part)
6th param: realimage (imaginary part)

Compiled 03194312 175 Apply
Multiply the 1st complex image by the complex conjugate
of the 2nd complex image.

1st param: 1st realimage (real part)

2nd param: 1st realimage (imaginary part)

3rd param: 2nd realimage (real part)

4th param: 2nd realimage (imaginary part)

5th param: realimage (real part)

6th param: realimage (imaginary part)

Validated 308.3 ms 99 Apply
Multiply two realimage’s.

1st param: realimage

2nd param: realimage

3rd param: realimage

Validated 161.0 ms 9 Apply
1st param: image

Validated 6449.1 ms 319 w2

param: image
2nd param: float array{2][6]
Homogeneous

ransf . .

input
input
output

input
input
Input

output
output

input
input
input
input
output
output

noln3

Parameters:

Parameters:

notl

Parameters:

orclb

70

Compiled 13.381153 s 727 w2
Nonlinear (quadratic) image warping using max, min, or nearest
neighbor interpolation.
1st param: image
2nd param: float array[2]{6]

Homogeneous transformation matrix.
3rd param: int value

Select type of interpolation.

4th param: image

Compiled 0.7827166 s 935 Apply
3x3 Canny-style non-maxima suppression.

1st param: x gradient realimage

y gradient realimage

gradient magnitude realimage

non-maxima suppressed realimage

Validated 109.3 ms 100 Apply
Logical negation of an image.

1st param: image

2nd param: image

Validated 107.8 ms 99 Apply
Logically or an image with a constant.

1st param: image

2nd param: int constant

3rd param: image

Validated 160.1 ms 118 Apply
Logically or two images.

1st param: image

2nd param: image

3rd param: image

Validated 80.38 ms 185 w2
Generate binary checkerboard pattern.
1st param: int value

Width of checkerboard part.

Tested 0.1542298 s 602 w2
Generate binary stripe pattern.
1st param: int value
2nd param: int value

Slope of stripes given by 1st-param/2nd-param.
3rd param: int value

Width of stripes.
4th param: image

input
input

.input

output

input
input
input
output

input
output

input
output

input
input
output

input

71

pgen3 Tested 0.1395828 s 356 ' w2
Generate binary "bull’s-eye" pattern.

Parameters: 1st param: int value input

Center row-coordinate of concentric circles.

2nd param: int value input
Center column-coordinate of concentric circles.

3rd param: int value input
Interval between adjacent concentric circles.

4th param: Qor 1 input
Value in the innermost circle.

Sth param: image output

pgend Tested 0.9567508 s 454 w2

Generate binary diamond pattern.

Parameters: 1st param: int value input
2nd param: int value input
3rd param: int value input
4th param: int value input

(1st-param/2nd-param and 3rd-param/4th-param give
diamond edge slopes.)
5th param: int value input
6th param: int value input
(Sth-param and 6th-param give diamond widths.)
Tth param: image output
pgenS Tested 0.1302654 s 389 w2

Parameters: 1st param: int value input

2nd param: int value input
(1st-param and 2nd-param specify size of rectangles.)
3rd param: image output
prmt1 Tested 0.7775946 s 643 w2
Measure perimeter of regions in a labeled image.

Parameters: 1st param: image input

2nd param: int value input
Label of region to be processed; if 0, all regions are processed.

3rd param: 4 or 8 (connectedness) input

4th param: int array[256] output
array(i] is the perimeter of region labeled i.

pted Tested 03178648 3 286 Apply
Extract or delete points in an image.

Parameters: 1st param: image input
2nd param: 0 (deletion) or 1 (extraction) input
4th param: int value (high threshold) input
Sth param: 0 (within) or 1 (outside range) input
6th param: int value input

Label assigned to extracted points; if 0, keep input value.
7th param: image output

pyramid

Parameters:

reduce

Parameters:

riby

Parameters:

ribyl

Parameters:

mplalb
Parameters:

rplalr
Parameters:

pla2

72

Compiled 0.1137702 s 1099
Pyramid reduction.

1st param: image

2nd param: char array[256][256)

3rd param: char array[128][128]

4th param: char array[64][64]

Sth param: char array[32][32]

6th param: char array[16][16]

Tth param: char array[8][8]

Compiled 0.0907948 s 559
Image halving using linear interpolation.
1st param: image

2nd param: char array[256][256]

Validated 131.9 ms 75
Real to byte conversion.

1st param: realimage

2nd param: image

Compiled 0.0709754 s 234

Real to byte conversion with wraparound at 256.
1st param: realimage

2nd param: image

Tested 0.0658724 s 59
Assign a constant to an image.

1st param: int constant

2nd param: image

Tested 0.0658702 s 48

Assign a real constant to a realimage.
1st param: float constant

Apply

Apply
)\pply
Apply
Apply
Apply

w2

input

output
output
output
output
output
output

input
output

input
output

input
output

output

input
output

input

2nd param: realimage

Tested 0.248991 s 437

Assign a constant to inside of an irregularly-shaped region in an image.
1st param: image i
2nd param: image

3rd param: int array[512] (top border)

4th param: int array[512] (bottom border)
5th param: int array[512] (Jeft border)

6th param: int array[512] (right border)
7th param: int constant

Number of points in the region.
Tested 0.0857254 s 160
Requantize image by reducing graylevels.
1st param: image
Degree of reduction in gray levels.
Tested 0.0669818 s 87
Binarize image by setting nonzero grayvalues to 1.
1st param: image
2nd param: image

sizel

Parameters:

slth0

Parameters:

slthl

Parameters:

73

Tested 8.256E4 s 125 w2
Measure size of regions.
1st param: int array[256]

Array with areas of regions (output of AREALI).
2nd param: int array[256]

Array with perimeters of regions (output of PRMT1).
3rd param: float array[256]

array([i] is the size of region labeled i.

Compiled 0.0679034 s 106 Apply
Binarize gray-scale image using single threshold.

Output is 1 if image is greater than the threshold, 0 if less.
1st param: image

2nd param: int value (threshold)

3rd param: image

Validated 180.2 ms 321 Apply
Binarize gray-scale image using single threshold.

Output depends on mode and threshold in the following manner:
Mode = 1: Output = 1 iff input > threshold

Mode = 2: Output = 1 iff input >= threshold

Mode = 3: Output = 1 iff input < threshold

Mode = 4: Output = 1 iff input <= threshold

1st param: image -

2nd param: int value (threshold)

3rd param: int value (binarization mode)

4th param: image

Validated 121.7 ms 221 Apply
Binarize gray scale image using two thresholds.

mode = 0 : imageout = 1 iff thd1 >= imagein >= thd2

mode = 1 : imageout = 1 iff thd1 <= imagein or imagein <= thd2
1st param: image

2nd param: (thd1) int value (threshold)

3rd param: (thd2) int value (threshold)

4th param: (mode) int value (binarization mode)

5th param: image

Tested 0.1818864 s 215 Apply
Bmmmgmyscaicunageusmgtwoﬂmsholdsandamskplane.

Sth param: mtvaluc(bnmzauonmodc)

6th param: image

Tested 0.1892586 s 255 Apply
Binarize gray scale image using reference plane.

1st param: image

2nd param: image (reference plane)

4th param: image

Compiled 592 Apply
15 x 15 symmetric nearest-neighbor smoothing.

1st param: image

2nd param: image

input
input

output

input
input
output

input
input
input
output

input
output

input
output

input
output

smkl

Parameters,

$mk2

Parameters,

mk3

Parameters.

sabclb

Parameters,

subclc

FallLTiges

sobclr

labels

subplh

stbplc

74

Tested 0277216 s 519
Shrink using Leviadfs pardld dgorilhm.
1<t param: image

2nd param: int connectedness (4 or 8)
3rdparam:image

Compiled 3549949 s 1526
Shrink binary pettern using Rao's agorithm.
I stpararacimage

laipmm:image

Compiled 02098556 s 596

Shrink binary pattern, separating touching blobs.
14 paraa:finoge

2nd param: Imege

Vaidaied 109.1m 9
Subtract a congtant from animage.

14 param: image

Ml pram; 1g congtant
3rdpram:image

Validased 32i(4Bis 124

Subtract acomplex congtant from a cotnplot ‘mage.
| 9 pram: reaUmage(redplt)

2nv] porasy:

3nl*wa:flot) f)

4di pisn: fkM cxittnt (to"l’\f y i»t)
5lhpamm: malimage(aM| Tét-},

6ii jema: rmUmage (inagiiay past)

Validmed 1444m 78
SAinci t fed Mottirtfromatesl image.
M~ tmcmaMmage

2irfA* a: floti congtnt

Validatexd ttM M o

Subacact s constant from & sigeed byws issege.

It peaa fnerge

2nd parss: int constent

Jed pusam: imeczpe

Validawnd UL7m 99 |

Sii*” 2nd Input A from Itt input !'m#e.

m.. ..‘) '

L STt

| param; dvange

Vielldand O3L19ms 13 Apply

::uaﬁmm&-pm lnhﬁmﬁ:h‘.
P

20d pocan: . aginary part)

Jod e Ond reslimegye {renl par)
4Ai prant 2nd reslisege (imaginery part)
St pocamm: renkimage (renl part)

Apply

W2

Apply

Apply

Afply

Apply

input
input

output

input
input

:

Hun it

subpir

Parameters:

subpls
Parameters:

sumrcb

5

Validated 310.0 ms 99 Apply
Subtract 2nd input realimage from 1st input realimage.

1st param: 1st realimage

2nd param: 2nd realimage

3rd param: realimage

Validated 160.8 ms 99 Apply
Subtract 2nd signed byte image from 1st signed byte image.
1st param: 1st image

2nd param: 2nd image

3rd param: image

Validated 80.83 ms 124 w2
Sum the rows and columns of an image.
1st param: image
2nd param: float array[512]
(row sums)
3rd param: float array(512]
(column sums)

Validated 136.6 ms 124 w2
Sum the rows and columns of an realimage.
1st param: realimage
2nd param: float array[512]
(row sums)
3rd param: float array[512]
(column sums)

Compiled 5.8877583 s 749 Apply
1st param: image
2nd param: float value
Cosine of angle.
3rh param: float value
Sine of angle.
4th param: image

Coded Apply
1st param: image
2nd param: int value (threshold)

Tested 0.0661626 s 75 Apply
Transfer (copy) an image to another.

1st param: image

2nd param: image

| 0.0661626 s 75 Apply
ansfer (copy) a realimage to another.
2nd param: realimage

Compiled 0.1398848 s 616 Apply
Average grayvalues in square neighborhood.
1st param: image

input
input
output

input
input
output

input
output

output

input
output

output

76

txav2 Compiled 3.9827297 s 582 w2
Average grayvalues in square neighborhood with a certain angle.
Parameters: 1st param: image
2nd param: image
3rd param: float value
Cosine of angle.
4th param: float value
Sine of angle.

txdfl Compiled 0.117301 s 430 Apply
Compute edge value of texture edge horizontally or vertically.
Parameters: 1st param: image
2nd param: 0 (horizontal) or 1 (vertical)

3rd param: image
txdf2 Compiled 0.2342448 s 779 Apply
Compute edge value of texture edge of a specified size and direction.
Parameters: 1st param: image

2nd param: int value (Size)

3rd param: float value
Cosine of angle.

4th param: float value
Sine of angle.

5th param: image

txeg2 Compiled 0.795186 s 343 Apply
Compute best-edge size, direction, and value using results of TXDF1
or TXDF2.
Parameters: 1st param: image
Edge value.
2nd param: image
oud best edge value.

i 109.1 ms 99 Apply
mewm&a constan!
Parameters: 1st param: image
2nd param: int constant

input
output
input

input

input
input
output

input
input

input

output

xorplb

Parameters:

yconv

Parameters:

77

Validated 161.1 ms 118 Apply
Exclusive or two images.

1st param: image

2nd param: image

3rd param: image

Validated 3086.7 ms 649 Apply
Convolution in the Y (column) direction. 41-point convolution.
1st param: realimage .

2nd param: array [41] of float

3rd param: realimage

input
input
output

input
input
output

