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1 Introduction 

Mach provides a set of low-level, language-independent primitives for manipulating 
threads of control [1]. The C Threads package is a run-time library that provides a 
C language interface to these facilities [4]. The constructs provided are similar to those 
found in Mesa [5] and Modula-2+ [6]: forking and joining of threads, protection of critical 
regions with mutex variables, and synchronization of threads by means of condition 
variables. 

2 Naming Conventions 

An attempt has been made to use a consistent style of naming for the abstractions 
implemented by the C Threads package. All types, macros, and functions implementing 
a given abstract data type are prefixed with the type name and an underscore. The name 
of the type itself is suffixed with _ t and is defined via a C t y p e d e f . Documentation 
of the form 

t y p e d e f s t r u c t mutex { . . . } * m u t e x _ t ; 

indicates that the mutex_t type is defined as a pointer to a referent type struct 
mutex which may itself be useful to the programmer. (In cases where the referent type 
should be considered opaque, documentation such as 

t y p e d e f . . . c t h r e a d _ t ; 

is used instead.) 
Continuing the example of the mutex_ t type, the functions m u t e x _ a l l o c () and 

mutex_f r e e () provide dynamic storage allocation and deallocation. Initialization and 
finalization of the referent type are accomplished with the functions mut ex__ini t () and 
mut e x _ c l e a r ( ) . These are useful if the programmer wishes to include the referent type 
itself (rather than a pointer) in a larger structure, for more efficient storage allocation. They 
should not be called on objects that are dynamically allocated via m u t e x _ a l l o c ( ) . 
Type-specific functions such as m u t e x _ l o c k ( ) and mu tex_un lock () are also 
defined, of course. 

3 Initializing the C Threads Package 

3.1 cthreads.h 

• i n c l u d e < c t h r e a d s . h > 

The header file c t h r e a d s . h defines the C Threads interface. All programs 
C Threads must include this file. 



3.2 cthreadJnit 

v o i d 
c t h r e a d _ i n i t ( ) 

The c t h r e a d _ i n i t () procedure initializes the C Threads implementation. It is 
called by the Mach version of the C start-up code before main () is entered, so the 
programmer does not need to call it explicitly. 

4 Threads of Control 

4.1 Creation 

When a C program starts, it contains a single thread of control, the one executing main ( ) . 
The thread of control is an active entity, moving from statement to statement, calling and 
returning from procedures. New threads are created by fork operations. 

Forking a new thread of control is similar to calling a procedure, except that the 
caller does not wait for the procedure to return. Instead, the caller continues to execute 
in parallel with the execution of the procedure in the newly forked thread. At some later 
time, the caller may rendezvous with the thread and retrieve its result (if any) by means 
of a join operation, or the caller may detach the newly created thread to assert that no 
thread will ever be interested in joining it. 

4.2 Termination 

A thread terminates when it returns from the top-level procedure it was executing.1 If 
the thread has not been detached, it remains in limbo until another thread either joins it 
or detaches it; if it has been detached, no such rendezvous is necessary. 

4J cthreadJbrk 

t y p e d e f . . . a n y _ t ; 
t y p e d e f . . . c t h r e a d _ t ; 

The a n y _ t type represents a pointer to any C type. The c t h r e a d _ t type is an 
abstract "handle" that uniquely identifies a thread of control.2 Values of type c t h r e a d _ t 
will be referred to as thread identifiers. 

c t h r e a d _ t 
c t h r e a d _ f o r k ( f u n c , a r g ) 

a n y _ t ( * f u n c ) ( ) ; 
a n y _ t a r g ; 

lThe Mach version of the C start-up code also arranges for this to be true of the initial thread executing 
main ( ) : a call to cthread.exit () occurs when main () returns, allowing detached threads to continue 
executing. The programmer may explicitly call exit () to terminate all threads in the program. 

2Uniqueness is guaranteed only for the lifetime of the thread. When a thread exits, the implementation 
is free to re-use its handle. 

2 



The c t h r e a d _ f o r k () procedure creates a new thread of control in which 
func (a rg ) is executed concurrently with the caller's thread. This is the sole means 
of creating new threads. Arguments larger than a pointer must be passed by reference. 
Similarly, multiple arguments must be simulated by passing a pointer to a structure con
taining several components. The call to c t h r e a d _ f o rk () returns a thread identifier 
that can be passed to c t h r e a d _ j o i n () or c t h r e a d _ d e t a c h () (see below). Every 
thread must be either joined or detached exactly once. 

4.4 cthread.exit 

v o i d 
c t h r e a d _ e x i t ( r e s u l t ) 

a n y _ t r e s u l t ; 

This procedure causes termination of the calling thread. An implicit c t h r e a d _ e x i t () 
occurs when the top-level function of a thread returns, but it may also be called explicitly. 
The result will be passed to the thread that joins the caller, or discarded if the caller is 
detached. 

4.5 cthreadjoin 

any__t 
c th read__ jo in ( t ) 

c thread__t t ; 

This function suspends the caller until the thread t terminates. The caller receives 
either the result of t ' s top-level function or the argument with which t explicitly called 
c t h r e a d _ e x i t ( ) . 

4.6 cthreadLdetach 

v o i d 
c t h r e a d _ d e t a c h ( t ) 

c t h r e a d _ t t ; 

The detach operation is used to indicate that the given thread will never be joined. 
This is usually known at the time the thread is forked, so the most efficient usage is the 
following: 

c t h r e a d _ d e t a c h ( c t h r e a d _ f o r k ( p r o c e d u r e , a r g u m e n t ) ) ; 

A thread may, however, be detached at any time after it is forked, as long as no other 
attempt is made to join it or detach it. 
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4.7 cthread.yield 

v o i d 
c t h r e a d _ y i e l d ( ) 

This procedure is a hint to the scheduler, suggesting that this would be a con
venient point to schedule another thread to run on the current processor. Calls to 
c t h r e a d _ y i e l d () are unnecessary in an implementation with preemptive schedul
ing, but may be required to avoid starvation in a coroutine-based implementation. 

4.8 cthread_self 

c thread__t 
c t h r e a d _ s e l f ( ) 

This function returns the caller's own thread identifier, which is the same value that 
was returned by c t h r e a d _ f o r k () to the creator of the thread. The thread identifier 
uniquely identifies the thread, and hence may be used as a key in data structures that 
associate user data with individual threads. Since thread identifiers may be re-used 
by the underlying implementation, the programmer should be careful to clean up such 
associations when threads exit. 

4.9 cthread_set_data, cthread.data 

v o i d 
c t h r e a d _ s e t _ d a t a ( t , d a t a ) 

c t h r e a d _ t t ; 
a n y _ t d a t a ; 

a n y _ t 
c t h r e a d _ d a t a ( t ) 

c t h r e a d _ t t ; 

These functions allow the user to associate arbitrary data with a thread, providing a 
simple form of thread-specific "global" variable. More elaborate mechanisms, such as 
per-thread property lists or hash tables, can then be built with these primitives. 

After a thread exits, any attempt to get or set its associated data is illegal, so any 
deallocation or other cleanup of the data must be done before the thread exits. It is always 
safe to access the data associated with the caller's own thread ( c th read__se l f ()), or 
with a thread that has not yet been joined or detached. 

4 



5 Synchronization 

t y p e d e f s t r u c t mutex { . . . } *mutex_ t ; 

t y p e d e f s t r u c t c o n d i t i o n { . . . } *cond i t i on__ t ; 

This section describes mutual exclusion and synchronization primitives, called mu-
texes and condition variables. In general, these primitives are used to constrain the 
possible interleavings of thread execution streams. They separate the two most common 
uses of Dijkstra's P () and V () operations into distinct facilities. This approach basically 
implements monitors [3,5] without the syntactic sugar. 

Mutually exclusive access to mutable data is necessary to guarantee consistency of that 
data. As an example, consider concurrent attempts to update a simple counter. Suppose 
two threads each read the current value into a (thread-local) register, increment it, and 
write the value back in some order. The counter will only be incremented once, so the 
work of one of the threads will be lost. A mutex solves this problem (called a race 
condition) by making the read-increment-write action atomic—indivisible with respect to 
the execution of other threads. Before reading a counter, a thread locks the associated 
mutex. After depositing a new value, the thread unlocks the mutex. If another thread 
tries to use the counter while the mutex is held, its attempt to lock the mutex will not 
succeed until the first thread releases it. If several threads try to lock the mutex at the 
same time, the C Threads package guarantees that exactly one will succeed; the rest will 
block. 

In general, mutex variables allow the programmer to protect critical regions— 
operations on shared data that must be performed indivisibly. This is sufficient to 
prevent competing threads from conflicting with one another, but threads do more than 
just compete: presumably, they also cooperate in a larger computation. In a typical 
multi-threaded application, one thread will rely on the results produced by another. When 
these results take the form of updates to a shared data structure, the problem of thread 
synchronization arises. 

The condition variables provided by the C Threads package allow one or more threads 
to wait until another has finished updating a shared data structure. The definition of when 
an update is finished depends on the application; it typically requires the computation 
of some boolean-valued function of the shared data, which we will call its status. (The 
simplest example is a boolean variable whose status is simply its value.) As before, the 
shared data must be protected by a mutex, so that the update and the status computation 
exclude one another. For example, an update of a complicated linked structure might 
temporarily introduce cycles or invalid pointers. A status computation that traverses the 
structure could fail horribly if it observes such an inconsistent state. 

Condition variables are used to indicate that the status of some shared data structure 
has changed. The association between the condition variable and this status change must 
be maintained entirely by the application. A thread waits for a status change by performing 
a c o n d i t i o n _ w a i t () operation on the associated condition variable. Whenever a 
thread changes the status of the shared data, it signals the associated condition to wake 
up any thread waiting for that status change. Unlike Hoare's original monitors [3], there 
is no guarantee that the awakened thread is the first to execute after the condition is 
signaled. As soon as the signaling thread releases the mutex, other threads may modify 
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the data. A waiting thread must always check the status of the shared data after being 
awakened, and wait again if necessary. 

Special care must be taken with data structures that are dynamically allocated and 
deallocated. In particular, if the mutex that is controlling access to a dynamically allocated 
record is itself part of the record, one must be sure that no thread is waiting for the mutex 
before freeing the record. 

Attempting to lock a mutex that one already holds is another common error. The 
offending thread will block waiting for itself. This can happen when a thread is traversing 
a complicated data structure, locking as it goes, and reaches the same data by different 
paths. Another instance of the problem occurs when a thread is locking pairs of elements 
in an array and fails to check for the special case of the elements being identical. 

In general, one must be very careful to avoid deadlock, in which one or more threads 
are permanendy blocked waiting for one another. The above scenarios are special cases 
of deadlock. The easiest way to avoid deadlock with mutexes is to impose a total ordering 
on them, and then ensure that they are locked in increasing order only. 

The programmer must decide what granularity to use in protecting shared data with 
mutexes and conditions. At one extreme, one can use a single mutex protecting all 
shared memory, and one condition that signifies any change to that shared memory. 
At the other extreme, one can associate every object with its own mutex and its own 
condition variables, one for each possible change in the status of that object. Finer 
granularity normally increases the possible parallelism, because fewer threads are waiting 
for mutexes or conditions at any time, but it also increases the overhead due to mutual 
exclusion and synchronization, and increases the possibility of deadlock. 

5.1 mutexJock 

v o i d 
mutex_ lock(m) 

m u t e x _ t m; 

The m u t e x _ l o c k () procedure attempts to lock the mutex m and blocks until it 
succeeds. If several threads attempt to lock the same mutex concurrently, one will succeed, 
and the others will block until m is unlocked. The case of a thread attempting to lock a 
mutex it has already locked is not treated specially; deadlock will result. 

5.2 mutexJryJock 

i n t 
m u t e x _ t r y _ l o c k (m) 

m u t e x _ t m; 

The m u t e x _ t r y _ l o c k () function attempts to lock the mutex m, like m u t e x _ l o c k ( ) , 
and returns TRUE if it succeeds. If m is already locked, however, m u t e x _ t r y _ l o c k () 
immediately returns FALSE rather than blocking. For example, a busy-waiting version 
of the m u t e x _ l o c k () procedure could be written in terms of m u t e x _ t r y _ l o c k () 
as follows: 
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voici 
mutex_lock(m) 

mu tex_ t m; 
{ 

f o r ( ; ; ) 
i f ( m u t e x _ t r y _ l o c k (m) ) 

r e t u r n ; 
} 

5.3 mutexuinlock 

v o i d 
mutex_unlock(m) 

mutex t m; 

The mu tex_un lock () procedure unlocks the mutex m, giving other threads a 
chance to lock it. 

5.4 condition_signal 

v o i d 
c o n d i t i o n _ s i g n a l ( c ) 

c o n d i t i o n t c ; 

The c o n d i t i o n _ s i g n a l () procedure should be called when one thread wishes 
to indicate that the status change represented by the condition variable has occurred. If 
any other threads arc waiting (via c o n d i t i o n _ w a i t ()) , then at least one of them will 
be awakened. If no threads are waiting, then nothing happens. 

5.5 condition-broadcast 

v o i d 
c o n d i t i o n _ b r o a d c a s t ( c ) 

c o n d i t i o n _ t c ; 

The c o n d i t i o n _ b r o a d c a s t ( ) procedure is similar to c o n d i t i o n _ s i g n a l ( ) , 
except that it awakens all threads waiting for the condition, not just one of them. 
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5.6 condition.wait 

v o i d 
c o n d i t i o n _ w a i t ( c , m) 

c o n d i t i o n _ t c ; 
mutex__t m; 

The c o n d i t i o n _ w a i t () procedure unlocks m, suspends the calling thread for 
some period of time, and then locks m again before returning. The application should 
guarantee that the status change associated with c can only occur while m is locked. 

The caller will be awakened if c is signaled by another thread. Since other threads 
may execute between the time that c is signaled and the time that the caller re-acquires 
m, this operation is typically used as follows: 

m u t e x _ l o c k (m) ; 
w h i l e ( /* s t a t u s of s h a r e d d a t a i s n o t OK */) 

c o n d i t i o n _ w a i t ( c , m) ; 
/ * u s e s h a r e d d a t a * / 
m u t e x _ u n l o c k ( m ) ; 

6 Management of Synchronization Variables 

A mutex or condition variable can be allocated dynamically from the heap, or the 
programmer can take an object of the referent type, initialize it appropriately, and then 
use its address. 

6.1 Allocation 

m u t e x _ t 
m u t e x _ a l l o c ( ) 

c o n d i t i o n ^ t 
c o n d i t i o n _ a l l o c ( ) 

These functions provide dynamic allocation of mutex and condition objects. 

6.2 Deallocation 

v o i d 
mutex_f r e e (m) 

m u t e x _ t m; 

v o i d 
c o n d i t i o n _ f r e e ( c ) 

c o n d i t i o n t c ; 
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These functions allow the programmer to deallocate mutex and condition objects 
that were allocated dynamically. Before deallocating such an object, the programmer 
must guarantee that no other thread will reference it. In particular, a thread blocked in 
m u t e x _ l o c k () or c o n d i t i o n _ w a i t () should be viewed as referencing the object 
continually, so freeing the object "out from under" such a thread is erroneous, and can 
result in bugs that are extremely difficult to track down. 

6.3 Initialization 

v o i d 
m u t e x _ i n i t ( m ) 

s t r u c t mutex *m; 

v o i d 
c o n d i t i o n _ i n i t ( c ) 

s t r u c t c o n d i t i o n * c ; 

These functions allow the programmer to initialize an object of the s t r u c t mutex 
or s t r u c t c o n d i t i o n referent type, so that its address can be used wherever an object 
of type mutex_t or condition__t is expected. For example, the mutex_alioc ( ) 
function could be written in terms of mutex_init ( ) as follows: 

mutex__t 
m u t e x _ a l l o c ( ) 
{ 

mu tex_ t m; 

m = (mutex_t ) m a l l o c ( s i z e o f ( s t r u c t m u t e x ) ) ; 
m u t e x _ i n i t ( m ) ; 
r e t u r n m; 

} 

Initialization of the referent type is most often used when the programmer has included 
the referent type itself (rather than a pointer) in a larger structure, for more efficient 
storage allocation. For instance, a data structure might contain a component of type 
s t r u c t mutex to allow each instance of that structure to be locked independently. 
During initialization of the instance, the programmer would call m u t e x _ i n i t () on 
the s t r u c t mutex component. The alternative of using a m u t e x _ t component and 
initializing it using m u t e x _ a l l o c () would be less efficient. 

6.4 Finalization 

v o i d 
m u t e x _ c l e a r ( m ) 

s t r u c t mutex *m; 

v o i d 
c o n d i t i o n _ c l e a r ( c ) 

s t r u c t c o n d i t i o n * c ; 
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These functions allow the programmer to finalize an object of the s t r u c t mutex 
or s t r u c t c o n d i t i o n referent type. For example, the m u t e x _ f r e e () procedure 
could be written in terms of m u t e x _ c l e a r (> as follows: 

v o i d 
mutex__f r e e (m) 

m u t e x _ t m; 
{ 

m u t e x _ c l e a r ( m ) ; 
f r e e ( ( c h a r *) m) ; 

} 

7 Shared Variables 

All global and static variables are shared among all threads: if one thread modifies such 
a variable, all other threads will observe the new value. In addition, a variable reachable 
from a pointer is shared among all threads that can dereference that pointer. This includes 
objects pointed to by shared variables of pointer type, as well as arguments passed by 
reference in c t h r e a d _ f o r k ( ) . 

When pointers are shared, some care is required to avoid dangling reference problems. 
The programmer must ensure that the lifetime of the object pointed to is long enough 
to allow the other threads to dereference the pointer. Since there is no bound on the 
relative execution speed of threads, the simplest solution is to share pointers to global 
or heap-allocated objects only. If a pointer to a local variable is shared, the procedure 
in which that variable is defined must remain active until it can be guaranteed that the 
pointer will no longer be dereferenced by other threads. The synchronization functions 
can be used to ensure this. 

Unless a subroutine library has been designed to work in the presence of multiple 
threads, and specifies that fact in its interface, the programmer must assume that the 
operations provided by the library make unprotected use of shared data. Subroutines 
that are documented as returning pointers to static data areas are obvious culprits, but 
other routines may share data privately and so be equally guilty. The programmer must 
therefore use a mutex that is locked before every library call (or sequence of library calls) 
and unlocked afterwards. 

7.1 Dynamic Allocation 

Dynamic allocation and freeing of user-defined data structures is typically accomplished 
with the standard C functions m a l l o c () and f r e e ( ) . The C Threads package provides 
versions of these functions that work correctly in the presence of multiple threads. 
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8 Using the C Threads Package 

All of the functions described have been implemented for the Mach multiprocessor 
operating system. Three implementations of threads are provided, in the form of libraries. 
Programs need not be recompiled to use a different thread implementation, only relinked. 
To compile a program that uses C Threads, the user must include the file c t h r e a d s . h. 
To link a program that uses C Threads, the user must specify on the cc command line 
one of the three libraries described below, followed by the - l m a c h library. 

8.1 The Coroutine Implementation 

The first implementation, -lco_threads , uses coroutines within a single Mach task 
(UNIX process). Scheduling of these threads is non-preemptive, hence c t h r e a d _ y i e l d () 
should be called within loops that do not otherwise call synchronization procedures. The 
programmer will typically use this version while debugging. 

This implementation includes versions of the Mach interprocess communication 
primitives m s g _ r e c e i v e ( ) , msg_send ( ) , and msg_rpc ( ) , and a version of the 
UNIX s e l e c t () system call, that can be called from one thread without blocking the 
other threads in the program. The other forms of UNIX I/O have not been redefined for 
use with -lco_threads , however. For example, one thread's call to get char () may 
block all threads in the program. To work around this, the programmer should first call 
s e l e c t () on the relevant file descriptor to guarantee that the subsequent input operation 
will not block. 

8.2 The Mach Thread Implementation 

The second implementation, - l t h r e a d s , uses one Mach thread per C thread. These 
threads are preemptively scheduled, and may execute in parallel on a multiprocessor. This 
is the implementation of choice for the production version of a C Threads program. 

The current version of the - l t h r e a d s implementation affords the programmer 
limited control over how threads wait for mutex and condition variables. 

e x t e r n i n t m u t e x _ s p i n _ l i m i t ; 

This variable controls the number of iterations of busy waiting before a thread begins 
to yield the processor when waiting for a mutex. 

e x t e r n i n t c o n d i t i o n ^ s p i n _ l i m i t ; 
e x t e r n i n t c o n d i t i o n _ y i e l d _ l i m i t ; 

These variables control the number of iterations of busy waiting and processor 
yielding, respectively, before a thread suspends itself when waiting for a condition. 

A thread suspends itself via a Mach m s g _ r e c e i v e () on a per-thread synchro
nization port; another thread wakes it up using a Mach msg_send () to the suspended 
thread's synchronization port Allowing each synchronization port to buffer one message 
eliminates the need for a wakeup-waiting indication. 
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8.3 The Mach Task Implementation 

The third implementation, - l t a s k _ t h r e a d s , uses one Mach task (UNIX process) per 
thread, and uses the Mach virtual memory primitives to share memory between threads. 
In most circumstances, the - l t h r e a d s implementation should be used instead of this 
one. An exception is when the programmer wishes to use the Mach virtual memory 
primitives to provide a specialized pattern of memory sharing between C threads. 

Users of the - l t a s k _ t h r e a d s implementation should note that capabilities such 
as Mach ports and UNIX file descriptors are private to the task that creates them, and 
so cannot be shared. The current - l t a s k _ t h r e a d s implementation also makes stack 
segments private to each task, so automatic (stack-allocated) variables cannot be shared. 

The Mach operating system currently limits the number of tasks (and hence the 
number of C threads in the - l t a s k _ t h r e a d s implementation) that a user may create. 
Applications that create large numbers of threads will encounter run-time errors when 
they exceed this limit It may be the case that concurrent execution is required to 
avoid deadlock (for example, in a multi-stage pipeline). For applications with largely 
independent threads, however, a limited degree of parallelism may still allow correct 
execution. The following function can be used in such applications. 

v o i d 
c t h r e a d _ s e t _ _ l i m i t (n) 

i n t n; 

This function limits the number of active threads to n. If a newly created thread of 
control exceeds this limit, it will not begin execution until another thread terminates. 

8.4 Controlling Thread Stack Sizes 

All C thread stacks are the same size, which is determined by c t h r e a d _ i n i t () based 
on the value of the UNIX stack resource limit. Since resource limits are inherited, the 
easiest way to change the thread stack size is to use the shell's l i m i t command before 
running the multi-threaded application, either interactively or in a "wrapper" shell script. 

Thread stacks are created full-size, not grown incrementally. The implementations 
rely on the Mach virtual memory system to allocate physical memory only as needed by 
the thread, and to manage the resulting sparsely populated address space efficiently. 

9 Debugging 

It is strongly recommended that the coroutine-based implementation ( - l c o _ t h r e a d s ) 
be used for debugging, for the following reasons: 

• The order of thread context switching is repeatable in successive executions of 
the program, so obvious synchronization bugs may be found easily. 

• Since the program is a single Mach task, existing UNIX debuggers can be used. 

• The user need not worry about concurrent calls to library routines. 
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9.1 Low-Level Tracing 

i n t c t h r e a d _ d e b u g ; 

If this variable is TRUE, diagnostic information is printed when each C Threads 
primitive is executed. Trace output appears on s t d o u t . 

9.2 Associating Names with C Thread Objects 

v o i d 
c t h r e a d _ s e t _ n a m e ( t , name) 

c thread__t t; 
s t r i n g_t name; 

s t r i n g _ t 
c t h r e a d _ n a m e ( t ) 

c t h r e a d _ t t ; 

v o i d 
mutex__set_name (m, name) 

mutex__t m; 
string_t name; 

s t r ing__ t 
mutex^name (m) 

m u t e x _ t m; 

v o i d 
c o n d i t i o n _ s e t _ n a m e ( c , name) 

c o n d i t i o n _ t c ; 
s t r i n g _ t name; 

s t r i n g _ t 
c o n d i t i o n _ n a m e ( c ) 

c o n d i t i o n _ t c ; 

These functions allow the user to associate a name with a thread, mutex, or condition. 
The name is used when trace information is displayed (see above). The name may also 
be used by the programmer for application-specific diagnostics. 

9.3 Pitfalls of Preemptively Scheduled Threads 

The standard storage allocation functions ( m a l l o c O and f r e e O ) and most of the 
standard I/O functions have been modified for safe use with preemptively scheduled 
threads, but there are still portions of the standard C library that are not safe.3 

3At CMU, one can use the command setpath -ib /usr/mach /usr/mach/parallel to 
change the appropriate search paths so that the modified versions of stdio. h and libc. a will be used 
by the compiler and linker. 
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Most of the debuggers available under Mach cannot yet be used on programs linked 
with - l t h r e a d s or - l t a s k _ t h r e a d s , although an enhanced version of gdb for 
Mach threads is available [2]. Furthermore, the very act of turning on tracing or adding 
print statements may perturb programs that incorrectly depend on thread execution speed. 
One technique that is useful in such cases is to vary the granularity of locking and 
synchronization used in the program, making sure that the program works with coarse
grained synchronization before refining it further. 
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10 Examples 

The following example illustrates how the facilities described here can be used to program 
Hoare monitors [3]. The program would be compiled and linked by the command 

/* 
• 

cc h o a r e m o n i t o r . c - l t h r e a d s - lmach 

P r o d u c e r / c o n s u m e r w i t h bounded b u f f e r , 

The p r o d u c e r r e a d s c h a r a c t e r s from s t d i n 
and p u t s them i n t o t h e b u f f e r . The consumer 
g e t s c h a r a c t e r s from t h e b u f f e r and w r i t e s them 

* t o s t d o u t . The two t h r e a d s e x e c u t e c o n c u r r e n t l y 
e x c e p t when s y n c h r o n i z e d by t h e b u f f e r . 

V 
• i n c l u d e < s t d i o . h > 
• i n c l u d e < c t h r e a d s . h > 

t y p e d e f struct buffer { 
char * c h a r s ; /* chars[0..size-1] * / 
int size; 
i n t px, cx; / * p r o d u c e r and consumer i n d i c e s * / 
i n t c o u n t ; / * number of unconsumed c h a r s in b u f f e r 

*/ 
mutex__t l o c k ; 
c o n d i t i o n _ t non_empty, n o n _ f u l l ; 

} * b u f f e r _ t ; 

b u f f e r _ t 
b u f f e x _ a l l o c ( s i z e ) 

i n t s i z e ; 
{ 

e x t e r n c h a r * m a l l o c ( ) ; 
b u f f e r _ t b = ( b u f f e r _ t ) m a l l o c ( s i z e o f ( s t r u c t b u f f e r ) ) ; 
b - > s i z e = s i z e ; 
b - > c h a r s = m a l l o c ( ( u n s i g n e d ) s i z e ) ; 
b ->px = b - > c x = b - > c o u n t = 0; 
b - > l o c k = m u t e x _ a l l o c ( ) ; 
b ->non_empty = c o n d i t i o n _ a l l o c ( ) ; 
b - > n o n _ f u l l = c o n d i t i o n ^ a l l o c ( ) ; 
r e t u r n b ; 
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v o i d 
b u f f e r _ f r e e ( b ) 

b u f f e r _ t b ; 
{ 

f r e e ( b - > c h a r s ) ; 
m u t e x _ f r e e ( b - > l o c k ) ; 
c o n d i t i o n _ f r e e ( b - > n o n _ e m p t y ) ; 
c o n d i t i o n _ f r e e ( b - > n o n _ f u l l ) ; 
f r e e ( ( c h a r *) b ) ; 

} 

v o i d 
b u f f e r _ p u t ( c h , b) 

c h a r c h ; 
b u f f e r _ t b ; 

{ 
m u t e x _ l o c k ( b - > l o c k ) ; 
w h i l e ( b - > c o u n t == b - > s i z e ) 

• c o n d i t i o n n a i t ( b - > n o n _ f u l l , b - > i o c k ) ; 
ASSERT(0 <= b->count && b->count < b->size) 
b->chars[b->px] = ch; 
b->px = (b->px + 1) % b->size; 
b - > c o u n t += 1; 
m u t e x _ u n l o c k ( b - > l o c k ) ; 
c o n d i t i o n _ s i g n a l ( b - > n o n _ e m p t y ) ; 

} 

c h a r 
buf f e r _ g e t (b) 

b u f f e r _ t b ; 
{ 

c h a r c h ; 

m u t e x _ l o c k ( b - > l o c k ) ; 
w h i l e ( b - > c o u n t — 0) 

c o n d i t i o n n a i t (b->non_empty , b - > l o c k ) ; 
ASSERT(0 < b - > c o u n t && b - > c o u n t <= b - > s i z e ) 
ch = b - > c h a r s [ b - > c x ] ; 
b - > c x = (b->cx + 1) % b - > s i . z e ; 
b - > c o u n t -= 1; 
m u t e x _ u n l o c k ( b - > l o c k ) ; 
c o n d i t i o n _ s i g n a l ( b - > n o n _ f u l l ) ; 
r e t u r n ch ; 

} 
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void 
producer(b) 

buffer^t b; 
/ 
i 

int ch; 

do buffer_put((ch = getchar() ) , b); 
while (ch != EOF); 

} 

void 
consumer(b) 

buffer_t b; 
{ 

int ch; 

while ((ch = buffer_get (b)) != EOF) 
putchar(ch); 

buffer_free(b); 
} 

void 
main() 
{ 

. buffer_t b = buffer_alloc(100); 
cthread_detach(cthread_fork(producer 
cthread_detach(cthread_fork(consumer 

} 
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The following example shows how to structure a program in which a single master 
thread spawns a number of concurrent slaves and then waits until they all finish. The 
program would be compiled and linked by the command 

cc masterslave.c -lthreads -lmach 

/* 
* Master/slave program structure, 
*/ 

•include <stdio.h> 
•include <cthreads.h> 

int count = 0 ; /* number of slaves active */ 
mutex_t lock; /* mutual exclusion for count */ 
condition_t done; /* signaled each time a slave finishes */ 

/* 
* The master spawns a given number of slaves 
* and then waits for them all to finish. 
*/ 

void 
master(nslaves) 

int nslaves; 
{ 

int i; 

for (i « 1; i <« nslaves; i +• 1) { 
void slave(); 
mutex_lock(lock); 
/* 
* Fork a slave and detach it, 
* since the master never joins it individually. 
*/ 

count += 1; 
cthread_detach(cthread_fork(slave, random() % 1 0 0 0 ) ) ; 
mutex_unlock(lock); 

} 
mutex_lock(lock); 
while (count != 0 ) 

condition_wait(done, lock); 
mutex_unlock(lock); 
printf("All %d slaves have finished.\n", nslaves); 

} 
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/* 
* Each slave just counts up to its argument, 
* yielding the processor on each iteration. 
* When it is finished, it decrements the global count 
* and signals that it is done. 
*/ 

void 
slave(n) 

int n; 
{ 

int i; 

for (i = 0 ; i < n; i += 1) 
cthread_yield(); 

mutex_lock(lock); 
count -= 1; 
printf("Slave finished %d cycles.\n", n) ; 
mutex_unlock(lock); 
condition_signal(done) ; 

} 

void 
main() 
{ 

lock = mutex^alloc() ; 
done = condition_alloc() ; 
master((int) random() % 16); /* create up to 15 slaves 

} 
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