NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Performance Efficient Parallel
Programming in MPC

D. Vrsalovic, Z. Segall, D. Siewiorek, F. Gregoretti, E. Caplan,
C. Fineman, S. Kravitz, T. Lehr, M. Russinovich)
13 Juiy 1988
CMU-CS-88-167..,

Department of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsyivania 15213

Abstract

Multiprocessor C (MPC) a C language preprocessor, which assists a programmer in buiiding efficient
parallel programs, is described. MPC provides the programmer with a virtual implementation machine.
We also present the Consistent Abstract Shared Data Type Implementation Machine (CASDTIM). PIE
embraces the concept of “programming for observability" in which the user makes use of visual tools to
aid in the development, testing and debugging of his application. Extensive examples written in MPC are
presented in the Appendices.

This research has been supported in part by the Ballistic Missile Defense Advanced Technoiogical Center
under contract DASG-60-86-C-0015. The views and conclusions contained in this paper are thase of the
author(s) and should not be interpreted as representing the official policies, either expressed or implied, of
BMDATC, Camegie Mellon University or the U.S. Government.

Table of Contents
1. Introduction

2. MPC

2.1. Activities
2.1.1. Activity usage
2.1.2. Example: Matrix Multiplicatlon
2.1.3. Hints on using activitles efficiently
2.2. Frames
2.2.1, Frame Usage
2.2.2. Frame Syntax
2.2.3. Synchronization within a frame
2.2.3.1. Sync
2.2,3.2, Dsync
2.2.3.3. Synchronization example
2.2.4, Frame Examples
2.2.4.1, Stream
2.2.4.2. Mailbox
2.2.4.3. Dynamic Frames
2.2.5. Queues
2.2.6. Semaphores
2.2.7. Barriers

3. Using MPC
4. Advanced MPC

4.1. MPC Run-time Support: Standard Data Structures and Functions
4.1.1. Standard MPC run-time structures
4.1.1.1. Naming
4.1.1.2. Byte addressing
4.1.1.3. Queues
4.1.1.4. Locks
4.1.1.5. Conditions
4.1.1.6. Synchronization
4.1.1.7. Global memory management
4.1.1.8. Activity control block
4.1.1.9. Workload control biock
4.1.2. Standard MPC run-time functions
4.1.2.1, Workload organization: horses and riders
4.1.2.2. Queue related functions
4.1.2.3. Lock related functions
4.1.2.4, Condition related functions
4.1.2.5. Synchronization functions
4.1.2.6. Global heap related functions
4.1.2.7. Activity and workload related functions
4.2. Some programming tricks
4.2.1. Actlvity identification: using my_act
4.2.2. Using locks and conditions
4.2.2.1. A test-and-set function
4.2.2.2. Signailing
4.2.2.3. Dynamic memory allocation
4.3. Skeleton of an MPC generated C file.

Appendix |. Count.mpc
Appendix Il. Varcount.mpc
Appendix lll. Matrix.mpc
Appendix V. Newmat.mpc
Appendix V. Qsort.mpc
Appendix VI. Sortm.mpc
Appendix VIl. Search.mpc
Appendix VIil. Sieve.mpc
Appendix IX. Mail.mpc
Appendix X. Sum.mpc
Appendix Xl. Pde.mpc

Appendix XIli. MPC Grammar

47
49
53
61
67
71
75
79
83
95
99

107

Figure 1-1:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 2-9:

Figure 2-10:
Figure 2-11:
Figure 2-12:
Figure 2-13:

Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:

Figure 4-10:
Figure 4-11:
Figure 4-12:
Figure 4-13:
Figure 4-14:
Figure 4-15:
Figure 4-16:
Figure 4-17:
Figure 4-18:

List of Figures
PIE - Performance Efficient Parallel/Distributed Programming Environment
Parallel matrix muitiplication
Time lines for two versions of matrix muitiply
A simple frame
Frame skeleton with sync statements
A MPC implementation of a shared matrix
Matrix with more efficient synchronization
A mpc implementation of a byte stream
A MPC Implementation of a mailbox - first part
A MPC Implementation for a shared global heap
Memory manager implemented as a MPC trame
MPC implementation of a queue
MPC implementation of a semaphore
A barrier coded in MPC
Queue structures
Lock structure
Condition structure
Synchronization structure
Global memory management structures
The activity controi biock structure
The workioad control block structure
Queuing functions
Locking related functions
Condition related functions
Synchronization related functions
Memory management functions
Activity and workioad related functions
An Example of using mp_test_and_lock
Example of using locks and conditions
Skeleton of an MPC program
Skeleton of first half of resulting C tile
Skeleton of second half of resulting C flle

12
13
15
15
16
18

23
24
25
26
30
30

31
31
32
33
35
35

37
38
39
41
42

45
46

1. Introduction

Modem parallel systems are designed to achieve two main goals: high performance and increased
availability. Both goals can be achieved via parallel use of the system resources, but one should be
aware of the fact that the use of parallelism brings increased system compiexity. Conventional system
design tools tend to cope with increased complexity of the designs by imposing a layered hierarchy
utilizing the concept of abstraction. Intensive use of communication and synchronization is required to
implement these abstractions. While abstractions simplify design time complexity, they are a major source
of run-time performance degradations.Performance degradation will usually arise in one of four. forms: 1.
delays due to contention on common resources, 2. delays due to synchronization overhead, 3. increased
ioad due to unfavorabie parallei decomposition, and 4. unbalanced load on the resources in the system.
While the first two forms of degradation have been widely investigated, we know of no models today
which are capablie of analyzing the latter two. These forms of degradation remain a chailenge for future
research.

The role of models is to predict performance bottlenecks during the design process, and thus reduce
time spent during the development. Due to the simplifying nature of models, we cannot expect them to
predict ail of the bottlenecks. Thus special tools are required to assist the developer in detecting further
sources of performance degradation. Unfortunately, these tools require run-time data collection which, in
practice, is invasive. Invasive tocls not only add to the workicad but aiso can artificially introduce new
bottlenecks.

Once programmer has produced his best design, the role of minimizing remaining perfoermance
degradation falls upon run-time support system. The PIE project, as depicted in Figure 1-1 supports the
entire design process from modeling(i.g. prevention), to monitoring{e.g. detection), to run-time(e.g.
avoidance).

PIE [Segall 85] views parallel processing in the context of "implementation machine” (IM) modeis. IMs
are the user templates which supply low level process synchronization and communication details for the
programmer. The user can thus concentrate on algorithm design and implementation to a greater degree
than previously possible.

The PIE system’s appreach tends to eliminate performance degradations due to classical structured
approaches by introducing “virtual” rather than "physical” layers. The structure is available during program
development time when the absiractions are required to assist in understanding the compiexity. By run-
time, however, the structure has been flattened and removed yielding higher performance parallel
programs.

PIE aiso embraces the concept of "programming for observability" in which the user makes use of
visual tools to aid in the development, testing and debugging of his application {Gregoretti 85] [Snodgrass
82]. During development, the PIE system incrementally builds a view of the user progrant's semantic

PIE
Prevention Detection Avoidance
- Permod - Hardware
- Contention _
- Special purpose
- Decomposition
. L - Software
- Synchronization | g 000 . fl\voi%ﬁnce
- Imbalance - sync MPC & policies
- teams Senamap
- Advisor) .(D“Eég
Runtime
Barscope

Figure 1-1: PIE -- Performance Efficient Parallel/Distributed Programming Environment

structure. During testing and debugging, the PIE system allows the user to view the execution of the
program (either in-line or post-mortem). It is hoped the the extra information gieaned from the visual
displays will help the user think more clearly about how his program’s is behavior.

The present PIE environment consists of several components:

» PERMOD [Vrsalovic 84] is the performance modeling tool which allows for performance
prediction in the early stages of the design of parallel systems.

*«MPC (Muitiprocessor C) is a C preprocessor that converts special MP (Muiti-
Processor)language constructs to C program syntax. It implements the "Consistent abstract
shared data implementation machine” (CASDIM). Despite the fact that the target machine
could be of a different architectures, MPC provides the CASDIM model to the user through
the run-time resolution of the data consistency problems, and the physical synchronization,
and communication.

e PIEman implements a relationai model for each PIE IM. All PIE tools share data via the
relational model.

» PIEmacs is a Gnu-Emacs based editor which extracts the devejopment time data about the
target program and assists in instrumenting it for the run-time monitoring purposes.

» PiEscope aliows ail the development and the run-time data to be presented to the PIE user
in a graphical form.

+ PIEmon supports the collection and storage of run-time events via the use of sensors.

The foliowing text deals with the MPC part of the PIE only. Multiple examples are given throughout the
text for illustrative purposes. A special section on how to use the MPC is added. The appendices contain

the full MPC grammar as well as a number of MPC test programs.

2. MPC

Chapter 1 introduced the concept of the implementation machine or, IM. Uniike the typical virtuai
machine approach which relies on very generalized, high level interfaces which are reflected in the run-
time structure of the code, the implementation machine approach translates the user code into target
machine code using only low level calls to the run-time system. The current version of MPC supports the
Consistent Abstract Shared Datatype implementation Machine or, CASDIM {see chapter }.

MPC is a special preprocessor which transiates MP syntax into a C program. it consisis of three
distinct parts: an analyzer, a constructor, and a target code generator.

The analyzer takes an MPC program as input which the constructor then converts to a C program.
Although the resulting C pregram may differ from machine to machine, the ariginai MPC program need
not be changed. The anaiyzer alsc assists in instrumentation ot the MPC program so that run-time
performance data can be collected. In the present implementation, the target code generator is the C
compiler. in the linking stage of the C compiier the user should use the mpe runtime support library.

The MPC language is modeled directly on C allowing parallel processing application programmers to
use a language with which they are already familiar. All standard C commands and constructs are
recognized by MPC. Identifiers, however, cannot begin with mp_ or MP_, since the constructor uses
these as prefixes for intemal identifiers. Consequently, virtuaily any program (noting the above
mentioned exception) that compiles under C, will also compile under MPC. MPC maerely adds several
new constructs that allow for efficient parallel algorithm design, including:

1. ACTIVITIES: Sequential units of computation that are spawned and executed in parallel
with the creating function.

2. JOIN AND DETACH STATEMENTS: Commands that allow activity management.

3. FRAMES: An encapsuiation of global data and operations on that data. Frames are shared
among specified activities and/or C functions and thus represent shared abstract data
types.

4. SYNC AND DSYNC STATEMENTS: Meta constructs that provide for synchronization of
paraliel activities and used in frames to assure exciusion on the spacific parts of the frame
data.

5. TEAMS: Groups of activities and frames composing a unique subsystem with an associated
communication and synchronization structure.

6. SENSORS: Location for collecting information on parallel program execution during run
time.

The complete MPC grammar is included in Appendix XIl and is a modified version of the C grammar in
A C Reference Manuai [Harbison and Steele 84)] with the above MPC constructs added.

2.1. Activities

Parailelism is achieved through the use of aclivities. An activity is basically a procedure whose
invocation spawns off another thread of control to execute the body of that activity in parallel with the
calling activity.' MPC aiso provides constructs for joining with and detaching from activities.

2.1.1. Activity usage

An activity may be declared anywhere a data declaration is legal except inside structures and formal
parameter declarations. A definition of an activity (or vector thareof) may be instantialed anywhere a data
declaration is legal (even in structure and parameter declarations). An instance of an activity may be
invoked anywhere a function invocation is legal (except in data initialization). Declarations and
instantiations of activities are treated as data declarations and hence share a name space with normal C
declarations. One might ask at this point why it is necessary to instantfate activities if no extra information
is supplied at the time of instantiation. It is because both the user and MPC need a name for a particuiar
activity when joining with or detaching from it (see below).

As was stated, activities are very much like functions. The differences being that they run in parallel to
the cailing activity and they do not return a value. Additionally, since an activity may run in a different
process {depending on the architecture of the target machine), arguments are passed BY VALUE ONLY.
This means that passing pointers to an activity is not possible and, perhaps, not meaningful. The only
way to share data between different activities is via the use of frames (see section 2.2}, a construct for
specifying abstract shared data types.

There are many applications in which the programmer woulid fike to wait at a certain point for an activity
{or set of activities} o finish executing before proceeding. MPC provides the join statement for such
situations. Join appears as a function call that takes a list of instances of activities as it arguments. By
default, upon completing, an invoked activity will wait until it is joined. This is undesirabie if no activity wili
join with this one as it will continue to hold resources. If you know that no activity will attempt to join with
the completed activity, you should include a detach statement in your code after invoking the activity.
Detach appears as a function call and takes a list of activity instances as its arguments. Each activity
instance passed to detach will exit immediately after performing its task,

Below we describe the syntax of activity related constructs in MPC and then present a simple
application: parallel matrix multiplication. Note that all syntax specifications are given in BNF.

Activity declarations appear as follows (note that one may declare instantiations of an activity as part of
the declaration of that activity):

activity-spec ::= activity-tag-dclir { parameter-dec }*
compound-stmt

"Note that the procedure main is also considered an activity.

{ activity-dcltr #', }* ' ;’
activity-tag-dchr : := act identifier ' (*+ (formal-dec #',’ }* ")’

An activity instance (or vector thereof) is of the form:

activity-dcitr : := identifier { * [’ list-expression 1" }*

and may appear as above (as part of an <activity-spec>} or in a semicolon-terminated list following the
name of an activity declaration (as given in <activity-tag-dcltr>).

As stated above, join and detach appear as function calls. Their syntax is:

join-statement ::= §oin ' (' { activily-instance #'," }* ");'

detach-statement ::= decach ‘(’ { activity-instance #',' }* *);’

2.1.2. Example: Matrix Muitiplication
The following example is an activity definition which includes instantiations of itself, and cails to the
instantiations.

This activity performs parallel matrix multiplication. It achieves this by dividing up a large matrix into
smaller subsections, and spawning activities that further divide the subsections, and then finaily performs
multipiication for some terminal subsection, combining results as each subtask finishes. For now, let us
assume the existence of three shared matrices (the two factors and the product) that are global to the
application. Also, assume that the function do_muit performs the actual multiplication for some ferminal
subsection of the matrix.

in Figura 2.1, the line defines this activity with the name multiply. It aiso shows that activities of this
type need seven integer parameters. In the data declaration section of the activity, severai local variables
are declared, as well as two activities of type multiply called subtask (0] and subtask(l]. Thisisa
good example of how activities can include instantiations of themselves. Self instantiation is also possible
in frames and can be directly related to the way this can be done with structures.

The activity is passed two variables, mx and my representing iimits placed on the granularity of how the
matrix can be divided up. The parameters x1, x2, y1 and y2 define the submatrix that the activity has to
work with. Several i £ statements check to see if it is still possible to divide up the submatrix further, and
if so, the submatrix is divided in half and passed to two subactivities subtask[0] and subtask{1],
instantiated at the top of the activity, which in turn perform the same tests. If the submatrix cannot be
divided any further (i.e. the dimensions are less than or equal to mx by my), the do_mult routine is called
to calculate the product of the resultant matrix delimited by x1, x2, y1, and yz.

act maltiply(xl,x2,yl,y2, mx, my, az)

/t'l*

x1 x2
et L

* *
* *
ylexnsxn

sk f
int x1,x2,yl,y2, mx, my, s2;
{

int ex,ey,i,3j,k;

flocat t,tmp;

multiply subtask[2];

ex = x2 - x1 + 1;
ey = y2 - yl + 1;

/*sz is the original matrix size*/
/*ox and my are desired submatrix*/
/*dimensions*/

/* this is an instantiation of two
activities of the same type */

/* try to cut the longer side if possible */

if (ex > ey){
if (ex > mx)

/* cut aleng x dim. and give halves to children */
subtask[0] (x1, (x1 + ex/2 - 1),yl,y2,mx,my, sz);
subtask[1l] ({x1 + ex/2),x2,yl,y2, mx, my, sz);
jein(subtask([0], subtask[1l]}

exit () ;

}
else if (ey > my) {

/* cut along y dim. and give halves to children */
subtask (0] (x1,x2,y1, {(yl + ey/2 - 1),my,my,sz);

" subtask{l] (x1,x2, (yl + ey/2),y2, mx, my, sz);

join (subtask[0], subtask[1]);

exit () ;
}
}
elsa if (ay >= ex) {
if (ey > my) {

/* cut along x dim. and give halves to children */
subtask[O] (ﬂ:ﬂrylr (Yl + ‘le - 1) LY, MY, sz} ;
subtask[1] (x1,x2, (yl + ey/2),y2,mx, my, sz);

join (subtask([0], subtask{1l])

exit();
}
alse if (ex > mx) {

/* cut along y dim. and give halves to children */
subtask{0] (=1, (x1. + ex/2 - 1),yl,y2, mx, my, sz);
subtask{1] {((x1 + ex/2),x2,yl,y2, mx, my, sz);

join (subtask[0], subtask(1]);

axit () ;
}
}

else {

/* no more children - do it 1 */
do mult (x1, =2, yi, y2, sz);

}
i

Figure 2-1:

Parallel matrix muttiplication

2.1.3. Hints on using activities efficiently

There are many ways to start a number of parallel activities, but one would always like to do this as
efficiently as possible . The same is true for multiple join cperations. The impertance of this issue
depends on the granularity of parailelism in the particular application.

The simplest way of spawning (and joining) N parailel activities is to use a loop construct like in the
following example:
some_act my_ activity[N];
for (i=0;i < N;i++) |

my_activity[i] (pl,.p2,....,pN);
}

for (i=0:;1i < N;i++) {
join (my_activity[i]);
}

It is often very useful to pass the index i as the parameter to the activity so their functionality can vary at
the runtime.

A much more performance-efficient way to start up N parallel activities is to use recursions. In order to
accomplish recursion the activity must include at least one instance of itself. The following exampie
shows how one could start up a pipeline of activities using recursion.

act foo(....)

bar(.....)y /* This will start a new
activity of type foo. */

join (bar);
};

Better efficiency of such a solution comes from the fact that after the first activity is spawned in paraliel
it can start some more activities itseif and thus the whole startup process could be done in paraile!.

Keeping this in mind, let us revisit the matrix multipiication example (in Figure 2-1). The most natural
way to use recursion when starting the activities was to form a binary tree where each activity starts two
children and then waits for them to finish. However, closer examination reveals that when the startup
procedure is done there will be n/2 - 1 parent activities waiting for children to finish some processing and
n/2 activities doing actual useful work. Due to the fact that waiting activities consume system resources
{despite the fact that they are blocked most of the time) there is a better scheme to start up n/2 activities.

This scheme is based on the fact that each activity cuts the work in half but passes only one haif to the
child while retaining the other haif for itself. Thus, only working activities will exist, even though some of
the activities will also have responsibilities to spawn and join children. Thus, the matrix multiplication
activity from the previous example shouid be rewritten as follows:

act multiply(xl,x2,yl,y2, mx,my, sz)

int x1,x2,yl,y2 mx, my, sz;

{

funct_multiply(xl,:z,yl,y2,mx,my,sz);
}:

where funct_multiply is defined as follows:

funct _multiply(xl,x2,yl,y2, mx, my, sz)
int x1,x2,yl,y2, mx,my, sz;
{
int ex,ey, i, j,k;
£loat t,tmp; ‘
multiply subtask; /* This is an instantiation of
one activity of the same type. */
ex x2 - x1 + 1;
ey y2 - vl + 1;
/* try to cut the longer side if possible */
if(ex > ey){

al

if(ex > mx) {
/* cut along x dim. and give a half to a child */
subtask (x1, (x1 + ex/2 - 1),yl,y2,mx,my, sz);
/* preserve half for yourself */
funct_multiply ({(xl + ex/2),x2,yl,y2 mx,my, sz);
join (subtask) ;
exit () ;

Consider the time-lines generated by PIEscope in Figure 2-2. Both versions of matrix multiplication
were executed using identical data. Note the differenca in both the time it took to execute the algorithm
as well as the number of activities used to caiculate the product. The single child version of the algorithm
was more efficient in resource utilization.

2.2. Frames

Since activities may execute in different address spaces, some mechanism is required for
communicating between them. Frames provide a means for the programmer to specify and manipulate
shared data objects. Basically, a frame is a collaction of sharable data along with the operations that
manipulate that data. For example, a frame couid be composed of a data structure for a queue along

200n/neter [help] qui t] Irefresh] juiews] [ont] [senote] [reai time]pro§ [zoon/meter] et lQuiti [reFresh vieus] [Font] [senare] [real rinel pro

. Piescope vieu: execut;on-barscope Piescope vieu: execution-barscope
{ BXperinent title: <no experiment name) experiment title: <nc experiment name>

i select by type: K (RN EIPINEMIKIVELG) falilinone] § setect by tupe: X JARETP I BE [DEIFE LGN aLT none: ‘I‘!OI‘IB!

— 0 20816 s 0

= 90
= 2lmultiply a 2lnuitiply
= 3|muitiply O 3imultiply
o dlmltipty 3 4laultiply T
= Simultiply o Sinultiply SR NI
= &lnultiply
9 lnuitiply
o ginultiply
['matrix.enc.54.32,32,y newnat.enc.s4.32.32.v
! How begin to scan the input file £ ! Now begin to scan the input file
| tailer: 33 sensors read in all L tailer: 41 sensors read in aii

racwurmg graphics, piease uait...done

Figure 2-2: Time lines for two versions aof matrix muttiply

recwuhng graphics, please nr...dme ey

with the operations put and get. MPC alsc provides Synchronization support for these operations {both
data and control-flow Synchronization is available).

2.2.1. Frame Usage

As with activities, frames may be declared anywhere a data declaration is Iegal (expect in structures
and formal parameter declarations). A frame declaration is really a template which takes arguments.
These arguments are usable as constants when defining the giobal data and operation of the frame. The
user supplies the arguments to the template at instantiation time. A frame instantiation may appear
anywhere a data declaration is legal (including in structures and parameter deciarations). Just as with
activities, frame declaration and instantiation names share the standard C name space.

As stated above, frames are an encapsulation of a data object for use by paraltel access. Thus, the
first thing defined in a frame? is the data it encapsulates along with any intemally used declarations. The
frame local data can be of any legal C type as well as declarations and/or instantiations of other frames
and activities.

After the data encapsulated by the frame (and any internal data) has been declared, the operations on
that data must be defined. Operations are implemented as in-line functions. When a call to an operation
is seen by MPC, any parameters passed to an operation are substituted into the operation definition and

2See saction for a description of the frame syntax

4

10

the code is expanded in-line by the code generator. Note that locai data declarations within an ope}aﬁon
is permissible.

Qperations that return a value require exactly one export Statement somewhere in their body. The
export statement is analogous to the retum statement in that it specifies the value to be returned by the
operation. However, the export statement does not branch out of the operation. All commands before
the export in the operation definition are expanded before the statement that includes the call to the
operation. All commands after the export are expanded aiter the calling statement. The expression
within the export is expanded directly into the calling line.

The semantics of the export statement has some serious ramifications on the definition and usage of
frame operations. For one, since only one export statement can appear in the code, the user should
create a local variable for containing the resuit if the result of the operation could be generated in one of
several branches of a condition. In addition, it means that they ¢an be unfolded as the LHS or RHS of
expressions oniy. That is, export statements cannot appear as arguments to procedures or in conditional
clauses. To make this latter problem more clear let us consider the following example:

opr int test ()
{

int a;

a =(read ptr < write_ptr);
export (a) ;
}

To use this frame operation as the test for a while loop, code the loop as foliows:

temp = frame.test ();
while (temp) {

é-mp = frame.test ();
}

which is unfolded into C code like:
{

int mp_xx a;
mp_xx a =(int) (frama[0] ->read ptr < frame(0]->write_ptr);

tanp = mMp_XX_a;
while (temp) {

:;p_n_a =({int) {(frame[0]->read ptr < frama[0]->write_ptr):
temp = mp xx a;

} .

}

In future versions of the MPC compiler, substitution of the local variables will be done automatically.
Thus, frame operations wili be permissible in almost all contexts.

11

Finaliy. frames must also contain some initializing function at the end of their definition. This function
can be null, but open and close braces must be present. Every time a frame is instantiated the
initialization function for that frame is executed. A common use for the initialization function is the
inittalization of giobal memery. An example of usage of the initialization function is provided later.

2.2.2. Frame Syntax

The syntax reiated to frames is described below. Following that is a detailed description of how the
sync and dsync statements is given. Finally, several examples are presented on how one might
implement and use different common data types.

Frame declarations appear as follows (note that, as with activities, one may declare instances of a
frame as part of its declaration}. All syntax torms are given in BNF.

frame-definition ::= frame-spec { frame-dcitr ', }* * ;'
frame-spec ::= frame-tag-dclr (parameter-dec }* ' {' frame-dec '}’ ' ;'
frame-tag-dcitr : := frame identifier ' (* { formal-dec #',’ }* ")’

frame-dec ::= { local-data-dec }* { frame-gperation }* frame-initialization

opr { lype-class-spec }* operation-name { parameter-dec }*
operation-body

frame-operation : :

operation-name ::= identifier * (* { formal-dec #',’ * ')’
operafion-body ::= ' {’' local-data-dec

{ staterment }*

export-statement?

{ statement }*> '}’
export-statement ::= export ' (' list-expression ') ;"
frame-initiafization : := compound-stmt
sync-statement ::= sync ' (* { opr-name §',’ * ')’

compound-stmt
dsync-statement ::= dsync ’ (' lst-expression ')’

compound-stmt

The syntax for instantiating a frame (or vector thereof) is:
frame-dclir : := identifier * (* list-expression ')’ { ' [’ list-expression "1 }*
and may appear within the declaration of a frame orin a semicolon-terminated list following the name of a
frame (as given in <frame-tag-dcitr>).

An invocation of a frame operation is of the form:

frame-opr-call ::= frame-instance ' .’ opr-name ' (* list-expression *)’

12

" where,
frame-instance ::= identifier { ' [’ [list-expression '’ }*
frame matrix (rank)
int rank;

{
float mat[rank] [rank];

opr float get (i, j)
int i, j;
{

export (mat {1][]]);
}

opr float put (i, j)
int i, j:
{

expoxrt (mat [i] [3]);
}

{
bzero (mat, sizeof (float)*rank*rank);
}
} a(8), b(5)[5]([5];

Flgure 2-3: A simpie frame

One example of a frame definition is given in Fig. 2-3. This frame implements a matrix whose elements
are floating point numbers. The rank of the matrix is specified at instantiation time. In this example, a is
an instance of a 5x5 matrix and b is a 5x5 vector of 5x5 matrices (i.e. b consists of 25 separate instances
of a 5x5 matrix).

2.2.3. Synchronization within a frame

The above examplé is fine when you know that the users of a particuiar instance® of the frame will
never be using it at the same time. In most applications however, this is not the case. One client may be
medifying a cell whiie another is lookihg at the vaiue of that cell. This is clearly undesirable. Thus, some
sort of mutual exclusion must be specified on the data and operation of a frame.

The sync and dsync statements allow synchronization of frame operation parts that are performed in
parallel. In other words, since frame operations perform actions on shared memory, sync and dsync
statements provide for mutual exclusion of access to parts of frame memory used by parallel activities.

3}t is impontant that the reader recognize the fact that in a vector of frames instances (as with vectors of activilty instances}, the
components of the vactor are not related in any way cther than that they share the same definition.

13

2.2.3.1. Sync

Sync statements can be included only inside the definition of a frame operation. A sync statement
precedes a black of critical code that begins with the sync statement and ends at the end of the sync
reach (i.e. at the closing brace). The sync statement contains a parenthesized list of names of operations
which aiso have critical sections of code that may not be executed while the code in the block is
executed. To execute a sync statement is to perform synchronization on the frame operations named in
the parameter list. A frame operation can only perform synchronization on itself or on other frame
operations within the same frame. If a frame operation is named in the parameter list, that operation must
also have a sync statement which precedes its own critical section (if an operation named in the sync
parameter list does not have a sync statement, it should not have been named in the list). When an
activity executing a frame operation, a, perferms synchronization on another frame operation, b, a
condition (transparent to the programmer) is set which causes any other activity executing the sync

statement in b to biock until the activity executing a axits its synchronized block of code.
frame dunmy ()
{
opr a()
{

sync(b) {

}

opr b{()

sync() |{

}

{}

Figure 2-4: Frame skeleton with sync.statements

Let's examine some hypothetical cases using the frame shown in Figure 2-4. First, let's assume that
there are only two activities, A and B. Let & call operation a () and B cail b (). If B executes the sync ()
statement both affer A has executed the sync (b} statement and while a is still executing the braced
code foliowing sync (b), B will block until 2 exits that code. The empty sync statement in b () means
that although b () is not synchronizing on any other operations, other operations may synchronize on it.

For the second example, let's assume that we still have only two activities, A and B. Again, let a call
operation a () and B call b(}. If B executes sync () before A has executed sync (b}, A will of block
when it executes sync (b) even if B has not exited the critical section in b (). This is because the sync

14

statement in b () does not contain the name of a () in its parameter list. In addition, even if A executes
sync (b) whileé B is in the critical section of b (), B does not biock. Although it may seem that the
synchronization protocol shown in Figure 2-4 has no viable application, it illustrates the behavior of the
MPC sync statements.

In this manner, parts of operations which would confiict in some way with parts of other operations ¢an
be mads to be mutually exclusive. One should note that sync statements are just the first step to higher
synchronization constructs based on path expressions and thus will be automatically generated in future
versions of MPC preprocessors.

2.2.3.2. Dsync

The Sync statement allows for synchronization of arbitrary controt points in frame operations executed
in parallel regardless of which part of the frame’s global data these operations are accessing. The dsync
statement allows for synchronization of accesses to particular data items. Like sync statements, they are
only allowed inside operations. Dsync takes as parameters a list of frame variables, separated by
commas, which are to be exclusively used. When a part of an operation within the reach(i.e. braces) of a
dsync statement is executed, if any of the variables in the statement have already been protected by
another dsync, the activity will have to stop and wait for the execution of the other operation to finish.
This command is used when certain frame variables are being changed by an operation and it is desired
that no other activity touch the variables until the changes have been completed. Matrix variables can
have the expressions which wiil be evaluated at the runtime as their indices (ie. dsync{a[i]) is legal if i will
be calcutated at runtime prior to the time dsync is executed).

2.2.3.3. Synchronization exampie

Let us retum to the example in Figure 2-3 to see how the contention problem might be solved using the
MPC Synchronization constructs. What we have to watch out for is two paraliel activities either writing at
the same time or reading and writing at the same time. Thus activities reading is not a problem as
reading is not a destructive operation. So, a straight forward approach might produce something like the
follewing code:

This code segment does what we specified above however, a less superficial look at the problem
shows us that the granularity of the above Synchronization is quite coarse. No matter what cell a client is
writing to, no cther client may read or write to another cell. What is really desired is mutual exclusion, not
on a per-operation basis, but on a per-cell hasis. That is, in this casa, Synchronization on the basis of
data is more efficient than synchronizing on the basis of controf flow. Thus, a more efficient solution
might be:

There are situations which require more than one data element to be used atomically at the same time.
in such cases a list of data elements can be given to dsync, which will then employ a deadlock avoidance
algorithm to lock atomically ail the elements in the list. One should be very careful not to use nested sync
and dsync statements due to the fact that this can lead to the potential deadlock situations.

frame matrix (rank)
int rank;

£float mat[rankljrank]:

opr float get (i, j)
int i, j;
{
sync (put) {
export (mat [i] [3]);
}
}

opr flecat put (i, j)
int i, 3§;
{
sync (put, get) (
export (mat[i] []]);
}
}

{
bzerc (mat, sizeof{float)*rank*rank);
}
3z

Figure 2-5: A MPC implementation of a shared matrix

frame matrix(rank)
int rank;

float mat [rank] {rank];

opr float gat (i, j)
int i, j;
{
dsync (mat[i][3]) |
export (mat [i] [j]);
}
}

opr float put (i, j)
int i, 3;
{
dsync (mat[i][j]) {
export (mat[i]{3]);
}
}

{
bzero (mat, sizeof (float)*rank*rank);
}
}:

Figure 2-6: Matrix with more efficient synchronization

16

2.2.4. Frame Examples

2.2.4.1. Stream
The shared stream is a basic object used in many distributed applications. One possibie definition
based on a circular queue is given in Figure 2-7.

frame stream (length)

int length;

{
char stream data[length];
char *read ptr, *write_ptr:

opr int get (c)
char c;

{

int stream is empty:;

dsync (read ptr, write ptr) {
stream is empty = (read ptr = write_ptr);
if (stream is_empty) result = 1;
else {
if (read ptr >= (stream data + length)) read ptr = stream data;
¢ = (*read ptr++);
}
}
export (stream is_empty);
}
opr int put (c)
char ¢;
{

int stream is full;

dsync (write ptr, read ptr) ({
stream is full = ({long)read ptx) - {{long)write_ptz)};
stream is full = (stzeam is full = 1) ||
(stream is full = -length);
if (stream is_full) rxesult = 1;
alse {
if (write_ptr >= (stream data + length)) write_ptr = stream data;
(*write_ptr++) = c;
}
axport (stream is_full);
}
}
{ .
write ptr = (read ptr = stream data);
}
}:
Figure 2-7: A mpc implementation of a byte stream

Any instantiations of this frame requires one integer parameter which specifies the length of the stream.
Within the body of the st ream frame is its global data, stream_data, which is the array storing the que
values, and read ptr and write_ptr. The pointers serve to mark the beginning and end of the
stream. The frame has two operations defined: get, and put. get returns the character which is on top
of the stream, pointed to by read_ptr. The operation should be used with a command such as:

17

xxx.get (yy)

where yy is a variable of type char {(because get is of type char), and xxx is the name of an instance of
a frame of type stream. This operation will retum non-zerc if the stream was empty. The second
operation, put, is used to store data in the stream. It is used with the form:

xxx.put (vy) 7
where xxx and yy are defined as before. It will return non-zero if the stream was full.

2.2.4.2. Mailbox

Once the frame stream is defined, it can be used as an abstract data type to instantiate a shared
stream in a MPC program. The following program example uses the basic queue definition to buiid a
mailbox to illustrate how frames can be nested. If a frame definition is local to a specific frame it can be
treated in the same way data structures are treated in C with respect to lacal declarations. The fact that
frame list is defined inside frame mailbox means that other frames with the same type name (ie.
list) can be defined in parallel branches of the same program. In the following example the frame 1ist
is local to the frame mailbox and other definitions for 1ist can coexist within the same program.

The parameters passed to this frame when instantiated specify that CUSTOMER NUMBER frames of type
queue (defined above), each with a size of CUSTOMER SIZE bytes should be defined local to that
instance. Besides having several frames of type que in its global data space, mailbox frames also have a
frame of type list, which is actually defined within this frame’s definition. This means that 1ist type
frames can only be instantiated within mailbox type frames, and that there could exist different frame
declarations of a type 1ist outside this scope. The 1ist frame has as its global data an array of strings.
It has an operation, £ind, which searches the array for a particular name, and an operation, enlist,
which copies a name into the array. The initializing procedure clears the strings in the list to NULLs.
Trailing the definition of the frame, is a declaration for a frame of this type called mailbox_name List.

Next begin the operations for the frame defined as mailbox. The first of these is called send, and it is
used to put a string into the que frame of the receiver. Names of customers are stored in the list of
names inside mail_name_list with the operation allocate. deallocate, does the reverse, and is
used to clear the list. The operation locate searches the list for a particular name. Finally, read checks
the user’s que, and if it is not empty, grabs its contents and puts it into a buffer. No initializing procedure
is necessary, and thers are no trailing instantiations. If one wanted to instantiate a frame of this type
(type mailbox), one couid include the statement:

mailbox mkl (1) ;

This would create one frame of this type and run the initializing procedures of the frames of types que
andmail_name_list included within frames of type mailbox.

As in Pascal scoping, only frames of type mailbox can see the definition for the frame type
mail name_list, and therefore are the only places where this type of frame can be instantiated.

18

frame mailbox(customer numbar)
int customer number;
{
stream mailbox que (CUSTOMER_SIZE) [customer number]:
frame list (list_size)/* here starts the internal */
int list_size; /* frame definition */
{
scruct {
char names [NAME LEN]:
} name list[list size];

opr int find (name)
char *name;
{

int ret_value, i;

ret_yalue = TUNSUCC;
for (i=0;i<list_size;it++) {
if (strcmp (name list [i].names, name) == MATCH) {
ret_value = i;
break;
}
}
export (ret_value);
}

opr enlist (name, id)
char *name;
int id;
{
export {strcpy (nanm_list {id] .names, name)) ;
}
{

int i;
for (i=0;i<list_size;i++)

name_list{i].names[0]='\0';

}
}jmailbox name list (CUSTCMER NUMBER) ; /*this is the instantiation*/

Figure 2-8: A MPC implementation of a mailbox -- first part

opr int send(id, buff, len)
int id;
char *buff;
int len:

int i;
register int temp;

for (i=0;i<len;i++)
temp = mailbox que[id].put (* (buff+i));
if (temp) {
printf ("sender queue full\a");
break;
}
}
}
export (i) ;
}

opr int allocate (customer name)
char *custcmer_pame;

{

int ret value, id;

sync (allocate) {/* NO OTHER ALLOCATIONS In PARALLEL */
ret value = mailbox name list.find(customer name)
if (ret_value == UNSUCC) {
id = mailbox name list.find{""):;
if(id,!=_UNSUCC){
mailbox_pama_list.enlist(custcme:_pame,id);
ret_value = id; :
} else ret value =UNSUCC;
} else ret_ value = SUCC;
}
export (ret_value);
}
opr int deallocate (id)
int id;
{
export (mailbox_name list.enlist (""", id)):
}

Figure 2-7, continued

19

20

}:

opr int locate (name)
char *name;
{
axport (mailbox name list.find(name)):

}

opr int read(id, buff, len)
int id;
char *buff;
int len;

int i;
register temp;
i=0;
while (i < len) {
temp = mailbox quefid].get (buff[i]);
if (temp == 0)
if (buff[i++] = "\0’) break;
}
buffllen-1] ='\0';
export (i) ;
}

{/* Lists and gqueues are already initialized */ }

Figure 2-7, continued

21

2.2.4.3. Dynamic Frames

Frames behave like static variables (ie. at the moment of instantiation all the memory for the frame data
is allocated). There are many situations where the programmer does not know ahead of time how much
memory is needed in each frame. In such a case one can use the different strategy of specifying only a
pointer to global data, which can then be allocated at run-time.

The foliowing example shows how to use frames which aliow for dynamic global memory usage. The
first frame is a simple global heap and the second one is a memory allocator which uses the heap to refill
the buckets each time any of them becomes empty. Both frames use the synchronization command
dsync.

frame HEAP TYPE(init size)
int init_size:;
{

char *heap ptr;

int heap_size;

opr char *get (size)
int size;

{
char * temp;

dsync(heap_ptr){
if (heap_size > size) ({
temp = heap_ptr;
heap ptr += size;
heap size -= size;
}
else {
if ((heap_ptr = mp_alloc (init_size)}) == NULL)
PANIC ("HO MORE MEMORY!");
temp = heap ptr;
heap ptr += sirze;
heap_size = init_size - size;
}
}
export (temp) ;
}

{ .
if ((heap ptr = mp_alloc(init size)) == NULL)
PANIC ("NO MORE MEMORY'!");
heap size = init_size;
}
}:

Figure 2-9: A MPC implementation for a shared global heap

The heap in Figure 2-9 serves as a buffer between the user and the operating system. Mp_alloc cails
are issued only when the previous block on a heap is exhausted or the remainder is smaller than the size
needed. It can be seen that only the heap pointer and the heap size are defined as global frame data.
The heap memory itself will be allocated first at instantiation time. !t will also be ailocated any time the
heap block becomes too small to accommeodate a new requested size.

Using the heap definition as given above, one could write a more compiex frame which can be used as
a dynamic memory aliccator in application space. This frame definition uses the standard "bucket”
allocator scheme, where each bucket hoids memory blocks of the size 2 and i is the bucket index.

Block size is always adjusted to the nearest greater 2' and taken from the corresponding bucket. If the
bucket in question is empty a new block of size 2' will be allocated from the heap.

After they are used, blocks are returned to a bucket holding a list of unused biacks of size 2. There
are two operation exported to users:

» Allocate: Allocate a global chunk of «<size> and return the pointer to it. Actually it will always
ratum pointer to the chunk start + sizeof(integer) due 1o the fact that chunk is going to keep
the index of its bucket in size field, and next is going to be overwritten.

e Free: Free the chunk pointed to by base. To reclaim the whole chunk one should decrease
base by the size of the size field

An MPC implementation of a simple global memory manager is presented in Fig.2-10. MP_MEM type
is defined as follows:
#typedef struct mp_mem|{

int size;
union
char *c;
struct mp _mem *m;
} next;
}¥MP _MEM;

One should note that in this particuiar example all buckets are filied with exactly one chunk of a size 2!
at the instantiation fime. If needed the user can decide otherwisa by redesighing the initialization section.

2.2.5. Queues

The Queues previously described were very simple circular queues having a constant element size and
number. The next example shows how to implement a more general shared FIFO queue. Itis assumed
that the elements to ba put in the queue are of various sizes and that the first member of a structure
representing an element is the pointer to an element of the same size.

There are two operations in the queue definition: push and pep, whiéh are self explanatory. Due to
the fact that both operations use the head pointer of the queue. Dsync statements define the critical
sections. An example queue is presented in Figura 2-11. In this particular example queue is initialized to
be empty (i.e. head and tail are set to NOITEM).

2.2.6. Semaphores
The PIE environment encourages the use of the higher level synchronization commands which employ
"blocked - wait” primitives at runtime. However if there is a need for explicit control flow synchronization,

a semaphore can be built as shown in Figure 2-12. This semaphore supports the following operations:
» Wait: Wait takes no arguments and it returns nothing. Will block caller, via mp_wait, it

frame memmgr (max_block_size)
int max block_size;
{
HEAP TYPE heap (HEAP SIZE);
MP_MEM *buckets[log{max block_size)/log(2)]:;

opr char *memget (size)

register int size; /* size in bytes */
{

register int i;

ragister int tmp;

register MP MEM base;

gize = size + gizeocf(int);
3if (size < sizeof (MP_MEM)) size = sizecf (MP_MEM);
tmp = 1;

for (i=0;tmp < size;it++) tmp = tmp<<l;
dsync (buckets[i]) (
if (buckets[i].m != NOMEM) {
base.m = buckets[i].m;
buckets[i] .m = base.m->next.m;
} else {
hbase.m = heap.get (tmp)
base.m~>size = i;
}
}
export ((base.¢ + sizeof(int))):
}

opr void memfree (base)
register MP_MEM base;
{
register int n, tmp;
if (base.m != NCMEM)
base.c = base.¢c - sizeof (int);
n = base.m->size;
} .
if (n >>= 3 && n < (log(max block_size}/log(2)}) ({
dsync (buckets[n]) {
base .m~>next.m = bucketsin].m;
bucketsz[{n] .m = base.m;
}
} else PANIC("Size to free QUT OF RANGE!\n");

{ /* this is executed upon initialization */
int j, s;
/* £ill in the buckets */
for (j=3,szs;j<(1og(max_block_size)/log(2)):j++,s<<1){
buckets(j] .m = heap.get (s);
buckets{j] .m~>next NCMEM ;
buckets[3] .m->size 3:

}
}
}

Figure 2-10: Memory manager implemented as a MPC frame

semaphore is less than one. Note: mp_wait will open the lock mutex before the calling
process is put to sleep. So, despite what it looks like signal will be able to execute.

23

typedef struct xitem({
struct xitem *next;
}rap xitem p;

#define NOXITEM (mp xitem p)0

frame mp xqueue ()
{

mp xitem p head;
mp xitem p tail;

opr void push (item)
mp_xitem p item;
{
dsync (head) {
my_ act->next = NOXITEM;
if (tail == NOXITEM) head = item;
alse tail->next = item;
tail = item;

opr mp_xitem p pop()
mp_xitem p i;

dsync (head) {
i = head;
if (i !'= NOXITEM) {
head = i->next;
if (head == NOXITEM) tail = NOXITEM;
}
}
export (i) ;
}
J* init */ ‘
{ head = tail = NOXITEM;)}
1;

Figure 2-11: MPC implementation of a queue

« Signal: Signal takes no arguments and retums nothing. Will wake first waiting processes in
the wait queue.

« Signai_all: Signal takes no arguments and returns nothing. Will wake ail waiting processes in
the wait queue.

The frame in this exampie implements a FIFQ semaphore having the following three operations:

wait invocation is done in an activity by calling oocwait(). After this cail activity is
suspended until next signal_all/er signal command.

signal {xxx.signal(}) operation wili wake up the activity from the top of the queue.

signal_ail pocx.signal_all{)) command will wake up all the activities from the semaphore's

queue.

25

frame mp_semaphore (init_val)
int init_val;
{
int s;
mp _cond c;
mp:lock mutex; /* lock for mutual exclusion of the two oprs */
opr void wait () {
mp_close (Smutex) ;
if (s < 1) mp_wait (&c, &amutex);
§==;
mp_open (&mutex) ;
}
opr void signal() {
mp close {(&mutex);
s++;
if (s > init_val) s = init_val;
mp_signal first (&c);
mp_open (dmutex) ;
}
opr void signal_all() ({
mp_close (dmutex) ;
8 = init_ wval;
mp_signal_all{&c):;
mprpen(&mutex);

mp_lock_init (&mutex);
mp_cond_init (&c);
s = init wval;

Figure 2-12: MPC implementation of a semaphore

2.2.7. Barriers

There is one kind of synchrohization which cannot be easy realized by using syncs or dsyncs. This is
the barrier synchronization in the case where there is no busy waiting allowed. MPC itself introduces one
implicit kind of barrier synchronization i.e. the JOIN statement. However, in practical situations the JOIN
may be too costly to perform. This may be due to the underlying system on top of which CASDIM is
implemented. In such situations the user may wish to implement his own barier synchronization. One
way to do this in MPC is to given in Figure 2-13.

£rame barrier (N)
int N; /* ¥N is the number of activities
invelvad in the synchronization. */
{
mp_xqueue Q;
int counter;

opr void block ()
{
int tcount;
np xitem p titem;

dsync (countar)
{
tcount = counter++;
Q.push (my_ act);
my act->state = WAITING;
}
if (tcount == N)
{
counter = 0;
titem = Q.pop();
while (titem != NOITEM)
{
titem->state = RUNNING;
titem = Q.pop():
}

} else {
while (my act->state == WAITING)
mp_swtch();

}
}

{ counter = 0; }

Figure 2-13: A barrier coded in MPC

27

3. Using MPC

As of this printing, the MPC compiler resides in the usr/pie/bin sub-directories on machines it is
installed on. To use MPC, the foliowing should be added to the path statements in the user's .login file:

setpath -~ia $home /usr/pie
The syntax for compiling an mpc program is:

mpc file.mpc [{~#mpc options}] [{-cc options}]
The command line options are as follows:

—#p: This will force MPC analyzer to parse the MPC source even if the *.pif file is available
and up to date.

-#cnn: The c is used for incremental compiling. When the source code is divided into several
subfiles, for examples, with one containing global frames, one containing procedures and another
containing main, each file can be compiled separately inte a . o module which can later be linked with the
other modules. User should supply a unique module number (nn) for each separate mpc file. In a case
of separate compilation all frames definitions which are global to the entire program must be in include
(*.h) files. They must also be instantiated in these files, and then be inciuded in ail the modules that use
these frames and shouid also be visible (ie. included) in the main module. To link all the modules
together, the C compiler shouid be called using the command:

cc filet.o file2.0 -lmpc —lmach

~#C: If this option is included in the command, mpc will dump the file that is sent to the C
compiter in the file file. c.

—#1. This option will make MPC print out what it is doing with the mpc file as it compiles.

—#m. If an'm’is in the option, MPC will include the MPC monitor library which causes the print
out of monitoring information when the compiled mpc program is executed.

—#d: A’d’ will cause MPC to include the mpc debugging library. At the start of execution of an
MPC program compiled with this option, run time support will enter interactive debugger. For details see
MPC debugger documentation, or type 'help’ while in the debugger.

—#¥nn: Will set the lock yield count 1o nn (ie. after encountering the closed lock, each activity
will spin nn times, and then suspend itself by calling swich OS call). Default value for nn is 200. On the
ENCORE, each spin takes about 20 microseconds.

~#Gnn: Will set the size of runtime globai heap to nn Mbytes. Default value is 1Mbyte.

-4Mnn: Will set the size of compiler heap to nn Mbytas. Default value is machine and OS
dependent.

-#Pnn: WiIll set the maximum number of user processes which can be created at the runtime
to nn. Defauit value is 16.

{cc options}: Besides the '-#' switches that are directed at the mpc compiler, normal cc
swiiches can be inciuded on the command line, such as the inclusion of libraries, request for the
assembiler file, stc.

NOTE: Some make script interpreters accept '# character as the comment delimiter regardless of its
position in the line. For this reason mpc preprocessor accepts also "--" notation instead of "-#" notation to
be used in front of mpc compile time switches.

29

4. Advanced MPC

This chapter discusses three MPC run-time libraries, a block timing facility and advanced MPC
programming tricks. First, the standard run-time structures and functions are discussed. After these some
advanced MPC programming tricks are presented. Finally, a MPC source template and the correspending
produced C code is given.

4.1. MPC Run-time Support: Standard Data Structures and Functions

There are three MPC run-time libraries, a standard or normal library, a performance monitoring fibrary
and a debugging library. The libraries contain the data structures, procedures and other entities used by
MPC to support the execution of an MPC program. The user may want to call one or more of these
run-time routines, aithough this is not recommended, especially in the case of those routines (and
activities) used exclusively by either the monitoring or debugging libraries which will be described in the
separate documents. One should consult with a PIE group member before using any of the calls or data
structures described herein.

4.1.1. Standard MPC run-time structures

There is a set of standard structures used in all of the MPC run-time libraries. The members of this set
are discussed below. In many cases there are some elements of a structure that only apply to the
debugging library. Since the debugger is presently under development, these additional elements are not
yet fully supported.

4.1.1.1. Naming
The mp_name type is defined as a pointer to a string of characters, and is the type used to store the
names of queues, activities, and other MPC run-time objects.

/*** mp names ***/
typedef char *mp_name;

4.1.1.2. Byte addressing

Pointers to absolute memory locations are type memory p and are defined as pointers to characters.

/*** mamory pointer **%/
typedef char *memory p;

4.1.1.3. Queues

Figure 4-1 shows the queue structures used by MPC. The mp_queue structure is implemented as a
linked list. Objects to be queued into them must have a pointer to the same object as the first element in
the data structure (eg. see mp_item). Queues, like all MPC objects, have provisions for a naming
scheme if the DEBUG option is invoked.

30

typadef struct item {

struct item *naxt;
} mp item, *mp_item p;
typedaf struct queue {
mp_item p head;
mp_item p tail;
#ifdef DEBUG
mp_name name;
jfendif DEBUG
} mp_queue, *mp queue p;

Figure 4-1: Queue structures

4.1.1.4. Locks

Figure 4-2 shows the lock structure used by MPC. Locks are grabbed when exclusive access to
memory is desired by a run-time library routine. When a routine attempts to grab a certain lock and that
lock has aiready been locked, axecution is suspended until the lock is released. This is done in two steps:
First, blocked activity will spin on a lock for a nuber of spins defined by --Y switch. If, after the spining
ended, the lock in question is still closed the blocked activity will suspend its execution.

typedef
#ifdef

#endif
}

struct {

int lock;
DEBUG

mp_name name;
DEBUG

mp_lock, *mp lock_p:;

Figure 4-2: Lock structure

4.1.1.5. Conditions
Figure 4-3 shows the condition structure used by MPC. The mp_cond type is the MPC support for
signaling that a condition has been met. It contains a queue and coresponding lock to ensure atomic

queue operations.

#ifdef

typedef struct end {
mp_lock lock;
mp_queue queue;
DEBUG
mp name name ;
DEBUG

fandif
}

mp_cond, *mp_cond p;

Figure 4-3: Condition structure

4.1.1.6. Synchronization
Figure 4-4 shows the synchronization structure used by MPC. All frame operations have a structure of

type mp_opr associated with them. It used to support the MPC sync statemment. The structure contains
a variable, count, for indicating how many operations have performed a sync within arbitrary (but
identical) frame operations. An operation is allowed to proceed pass a sync if and only it count is equal

N

to zero. The second element in mp_opr is a condition variable to support blocked waiting. Like all MPC
structures, mp_opr supports a naming scheme in DEBUG mode.

typedef struct opr {

int count ;

mp_cond cond;
#ifdef DEBUG

mp_name name ;
#endif DEBUG
} mp_opr, *mp_opr_p;

Figure 4-4: Synchronization structure

4.1.1.7. Global memory management

Figure 4-5 shows the structures used by MPC for global memory management. mp_mem iS a structure
type used to grab a free block of memory from a global heap. MPC run-time implements "bucket"
memory manager, where sizes of free blocks allocated from the buckets are equal to powers of 2.

typedef char *mp_pointexr;

typedef struct mem |

int size;
union an {
struct mem *m;
mp_pointer c;
}next;
} mp_mem, *mp mem p;

typedaf union{
char *o
mp _mem P m;
}memun ;

fidefine K 1024

#define MEGABYTE K*K
#dafine NOMEM (mp_mem p)0
#define NIL (mp_pointar)0

Figure 4-5: Giobai memory management structures

4.1.1.8. Activity control biock

The type mp_acb is a structure, called an activity control block or ach, representing an activity in MPC,
Figure 4-6 shows ach structure used by MPC. The run-time uses the structure to manage the creation
{(each activity get its own acb upon creation) , scheduiing, lineage (pointers to parent and children), and
termination of activities. A local pointer to each activity’s activity controt block is keptinmy act.

4.1.1.8. Workload control biock

In addition to my_act, each activity knows about a global pointer to a workload control block, mp_wcb,
which keeps the global paraliel workload state. Figure 4-7 shows workioad control block structure used by
MPC.

32

typedef struct acb {

struct acbh *next ;
mp lock lock;
mp_cond cond;
int status;
int state;
int id;
jmp_buf eaxit_hook:;
void (*funct) (} ;
mp_mem p param;
int size;
int join_cntrz;
struct acb *Jjoin_perf;
int act_id;
#$ifdef DEBUG
int aid;
mp_name name;
mp pointer whlk;

$endif DEBUG
} =p_achb, *mpdgcb_p:

#define NOACB (mp_acb_p) O

/*** for queusing purposes *#**/
/***

x% lock used when activity state,
**x* ja, the activity control

*** block, is updated.

***/

/***

#** condition that is waited
*** on while waiting for join
***/

/***

*** what kind of activity am I?

IDLE, MAIN, ACT, JOINED,
DETACHED, DONE

%* % n
o % o
***/

/***
/**t
/***
/***
/***

WAITING #w=n/
wnk [

hk [
L L4
LA L4

IDLE, RUNNING,
pid of activity
long_jump support
activity body
activity parameters

[Rx*
vk
MR
LA LN

size of parameter block freed
upon joining.

/***
*#x% numbear of children this
***% aotivity will jeoin
***/ .

/***
*** the activity who joins this
*xx activity
t**/

/***
*** unique integer identifying
x% this activity.

***/
[*** activity name *#**/
/***

% if waiting or idle,
**x% this shows where
***/

Figure 4-6: The activity control block structure

typedef struct {
mp lock lock; [Rr*
*** lock used when glocbal state,
x jae, the workload control
*** block, is updated.

***/

mp cond need proc; Vbl
: *** condition used when processes

% are waiting to run activities
***/

mp_queue act_queue; [xx*
*** quene of activities waiting
*** to be run.

***/
int peount; /*** procesa count *Hk /
int acount; /*** activity count xkk [/
int doomsday; [*x*

*** get up for exiting from

#%%* main

***/
mp_lock mem_ lock; /*** memory manager lock edk [
memun buckets[32]; /*** memory manager buckets ***/
unsigned short act_id ent; /*** activity id counter *hx f

$ifdef MONITOR?
unsigned int mp_km size; /*%*
*** Used when calling the
**%* kernel monitor to set the
*** gize of the kernel buffers.
***/

#endif MONITOR

#ifdef DEBUG
int tracecount; [A*%x*
**% counter used to order traced
%k avents

TRk [
mp _name name ; /*** workload name xRk [/
mp_cond rip; /*** dead acbs L
mp_lock debug lock; /*** lock for breakpoint *xx /
mp_queue *trace list; /*** trace command queua k*x/
op_queue *hreak list; /*** break command queune hkk f
mp_ach p tree root: /*** head of dynamic tree ***/
mp_lock tree lock; f*r* dymamic tree lock k[
long last_event; /*** last event traced k% f
mp pointer where; /*** where am i *kk /
#fendif DEBUG

} mp_wcb, *mp wcbh_p;

Figure 4-7: The workioad contro! block structure

*May not be supported on all systems.

34

4.1.2. Standard MPC run-time functions
In addition to the standard set of run-time structures, there are several standard run-time functions that
execute the parallelism of MPC. Below is a discussion of these standard run-time functions.

4.1.2.1. Workload organization: horses and riders

The MPC run-time assumes that in steady state there is a set of ready processes waiting for the
condition need process to appear. When this condition is signaled, the first of the ready processes will
be assigned to an act from the activity queue, mp_wcb.act_que, and stast to run the activity. When the
activity exits, the corresponding process will be released and will pick up another activity to run, or will
wait depending on the state of the activity_que.

Think of activities as horse-back riders sitting on a corral fence and processes are horses wandering in
and out of the corral locking for riders to camry. If a horse enters the corral and a rider is sitting on the
fence (ie the need_process condition is set), the rider jumps on the horse and off they go somewhere
out there {The activity grabs the process and begins executing). [f there are no riders sitting around, the
horse just hangs out in the corral until a rider appears (An activity is spawned). When a rider and horse
come back to the corral, the rider gets off and goes away (When the activities finish, the activities drop the
processes}. If there is another rider waiting on the fence, he grabs the harse and off they go (If ancther
activity exists, it grabs the freed process). After all the riders return, the horses are rounded up and
everybody goes home {After all the activities exit, ail the processes terminate).

4.1.2.2. Queue related functions

There are a variety of queue related functions: mp_queue_init, mp_push_front, rﬂp_push,
mp_pop, mp_peek. Each of the functions takes a parameter of type, mp_queue_p which is pointer to a
queuse. Figure 4-8 shows the queuing functions of MPC. Two of the functions, mp push front and
mp_push, take an additional parameter mp_item_p, a pointer to the object to be place in the queue.

A queue is initialized to be empty by the mp_queue_init function. mp_push_front () adds the item
to the front of the gueue. mp_push () adds the item to the end of the queue. mp_pop () refrieves item
on the front of the queue. mp_peek () returns what is on the front of the queue, but does not aiter the
gueue’s contents.

4.1.2.3. Lock related functions

There are four lock related functions: mp_lock_init, mp_close, mp_open,
mp_test_and_lecck (). Each of the functions take a parameter of type mp_lock_p which is a pointer
to anmp_lock. Figure 4-9 shows the lock related functions of MPC.

mp_lock_init () initializes a lock to be open. mp close () attempts to grab the lock passed to it; if
it can't, it biocks the activity that cailed it until the lock is released. The activity is blocked by busy waiting
for a pre-specified duration, and then is switched out. mp_open() releases the lock passed to it.
mp_test_and_lock () will grab the lock passed to it if it is open, but returns control to the caliing activity

35

void
mp_queue_init (g{, name})

mp_queue_p g;
mp_name name;

void
mp_push_front (g,i);
mp_queue_p g’
mp_item p i;
void
mp_push(q,i);
mp_queue p q;
mp item p i;
mp_item p
mp_pop (q) ;

mp Jqueue p J;

mp_item p

mp_peek (q) ;
mp_queue p q;

Figure 4-8: Queuing functions

void

mp_lock_init (lock{,name})
mp_lock_p lock;

mp_name name;

void
mp_close (lock)
mp_lock p lock;

void

mp_open (lock)
mp_lock p lock;

int

mp_test_and lock(l)
mp_lock_p *1;

Figure 4-9: Locking related functions

it the lock is already held. It returns the lock vaiue regardiess of whether the lock was grabbed or not. (ie.
0 if the lock is grabbed and 1 if it is already held). The parameters in braces are applicable if the DEBUG
option is invoked.

4.1.2.4. Condition related functions

There are five condition related functions: mp cond_init (), mp_wait (), mp_mon_wait (},
mp_signal first() and mp_signal_all(). All of the functions take a parameter of type,
mp_cond_p which is a pointer to a condiion. In addition, the functions, mp wait () and
mp_mon_wait () take another parameter of type, mp_lock_p which is a pointer to a lock. Figure 4-10
shows the condition related functions of MPC,

36

void
mp_cond_init (c{, name})

mp cond p ¢;
mp name name.

void

mp_wait (c,l)
mpﬂcondﬂp c;
mp_lock p 1:

void
mp_mon_wait (¢, 1)
mp_cond p c;
mp_lock-p 1;

mp_item p
mp_signal first (c)
mp _cond _p <;

void
mp_signal all (c)
mp_cond p c;

Figure 4-10: Condition related functions

mp_ceond_init () initializes the lock and queue of a condition. mp_wait () and mp_meon_wait {)
each put a pointer to the calling activity's ach®, mp_ack_p, in the queue of the condition passed to it.
They differ only in how they behave when the monitor library is used in that mp_wait contains special

sensors while mp_mon_wait does not. Both use a lock to ensure atomic action in the following manner:

1. Although it is not necessary in all case, the cailer usually grabs the lock that it intends to
pass befaore calling these either functions. The caller passes the pointer to the lock.

2. The iock is reieased after the pointer is pushed into the conditiocns queue and the activity is
rescheduled as blocked.

3. The lock is closed again after the activity is unblocked in order for housekeeping to be done
in an atomic way.

4. Upon retum from these calls, the cailing activity is allowed to continue execution. The caller
is expected to release the lock after these wait calls return.

mp_signal_ f£irst () sends out a condition signal to first activity in the condition queue of the
condition passed to the function. Any other activities in the queue are not signalled and must wait further.
mp_signal_all{) sends the signai 1o all the activities waiting in the condition queue. All of the
activities are then allowed to continue processing. Parmeters in braces apply to the DEBUG option.

5See the discussion of Activity Control Blocks above

37

4.1.2.5. Synchronization functions
There are five synchronization functions: mp cpr_init, mp_sync, mp_release, mp_dsync,
mp_drelease. Figure 4-11 shows the synchronization reiated functions ot MPC.

void

mp_ opr_init (¢{,name});

mp_ opr_p <!
mp_name name ;

void

mp_sync (lock, a, paramliat)
mp_lock p lock;
mp_opr_p a;

int paramlist;

void

mp_dsync {(lock, paramlist)
mp_lock_p lock;
mp_lock p paramlist;
void

mp release{lock,a,paramlist)
mp_lock_p lock;
mp_opr_p a;

int paramlist;

void

mp_drelease (lock, paramlist)
mp_lock_p lock;
mp_lock_p paramlist;

Figure 4-11: Synchronization related functions

mp_opr_init () performs initialization functions for operations. It takes a pointer to a mp_opr
variable as & parameter which represents the operation in the frame data structure. mp_sync () is used
to implement MPC sync calls. It takes a pointer to a frame lock, followed by the pointer to the
corrasponding synchronizing operation and pointers to every operation being synchronized upon. The
caller blocks if the corresponding synchronized statements are currently being executed. The caller will
unblock when all the current execution of the synchronized statements finishes. The parameters required
by mp_release () are the same as those taken by mp_sync (). The function is used at the end of
operations that synchronize on other operations to inform the other operations that the calling operation
has finished. mp_dsync () and mp_drelease () are used to implement dsync call. They take a list of
locks to be grabbed and released atomically. The lock supplied as the first parameter is a generai lock to
ensure the atomicity of the function.

4.1.2.6. Global heap related functions
MPGC run-time keeps its own global heap. There are four functions for managing global memory:

mp_alloc, mp_free, mp_calloc and mp_realloc. Figure 4-12 shows the memory management
functions of MPC.

mamory p
mp_alloc (size)
int size;

memory p
mp_calloc(size)
int size;

memory p
mp_realloc (ptr, size)

memory p ptr;
int size;

void
mp_free (base)
char *base

Figure 4-12: Memory management functions

Memory biocks can only be allocated and deallocated from the global heap by using mp_alloc () and
mp_free () 5, mp_allec () takes an integer parameter, size, which designates the number of bytes to
requested. It returns a pointer to a byte addressable chunk of gichal memory. Because memory
management information is stored with each allocation, the allocated size is at least sizeof (mp_mem)
bytes. Although this information is inclﬁded. the pointer that is returned points only to the usable part of
the allocated space. Since mp_ alloc allocates memory in chunks of powers of 2, the size received is
sometimes considerably larger than that requested.

mp_£free () takes a pointer to the start of the memory biock which is to be freed. A new cleared
memory block could be obtained by using mp _calloc call, and any aiready allocated global memory
biock can be reallocated and resized by mp_realloc () function.

In addition to the memory space global to the whole parailel workload, each of the parailel activities
keeps its own local space which is visible to the all functions called from within the activity. This space
can be allocated via standard memory allocation calls (ie. mallec (), realloc ()}, eic.).

4.1.2.7. Activity and workioad related functions

Control of activities and operations is done by cafling workload related functions. These are:
mp_workload init, mp_activity, mp_join, mp_detach, mp_entry and mp_exit. Figure 4-13
shows the activity and workload reiated functions of MPC.

The function mp_workload_init () is the first MPC function executed in any program linked with any
of the three MPC run-time libraries. It initializes the workload structures. This call requires three
parameters:

* g - size of the global heap in mega-bytes.

$Using standard malloc{} calls will only allocate mameory local to the activity calling mallec ().

void
mp_workload init(g,y,p);
int g, y.ps

mp_ach p
mp_activity ({name, } funct, size, paramlist)
mp_name name;

void (*funct) ()

int size;

char paramlist;

void
mp_join(act list)
mp_acbh _p act_list;

void
mp_detach (act)
mp_ach_p act:

void

mp_ entry (ptr, paramlist)
char *ptr;

int paramlist;

void
mp_exit (paramlist)
int paramlist;

Figure 4-13: Activity and workload related functions

* y - number of spins to be taken by locks before yielding

* p - number of processes fo be created at the run-time.

mp_activity() creates and spawns activities. It is called with a pointer to the function,
(*funct) (), which comprises the activity, the size, size, in bytes of the activity's data structure, and a
list, paramlist, of information about the variables in the activity. For each variable, this iist contains a
pointer to the variable and the size of the variable. The list is terminated with a NULL. [f the DEBUG
option is selected, the function is passed the name, name, of the activity to be made. mp_join () takes
as parameters a list,act _list, of pointers to the activities to be joined which it joins. The calling activity
is biocked until all of the activities in the list have completed execution. mp_detach () takes the same
parameters as mp_join (). The activities is creates and spawns can never be joined. mp_entry () is
called when an activity is entered. 1 takes as parameters a pointer o the activity, and a list of all the
variables in the activity's variable declaration list. The list constains a pointer to each variable followed by
the size of the variable. mp_exit () is called upon exit of an activity and takes as a parameter exit
condition codes. This is most commoniy NULL.

40

4.2. Some programming tricks

All MPC run-time structures and functions are accessible by a programmer. Since MPC syntax is
implemented using these run-time objects, it is possible for the programmer to program by using these
objects directly. Doing so brings only modest, if any, performance improvement and increases the
complexity of a programmer's work. Consequently, in many cases it is not recommended that the
programmer attempt to circumvent MPC syntax by programming in this manner.

4.2.1. Activity identification: using my_act

There, however, some structures and functions that a more adventurous programmer may want to use.
For example, as discussed in section 4.1.1.8 a programmer can access his activity control block via
my _act. One of the useful members of this structure is act_id which is an integer, unigue to each
activity. This variable can be useful in implementing objects like parallel buffers, in cases when it is
desirable that buffer contention be reduced. Such an implementation would consist of an array of buffers,
perhaps one per activity, with my_act->act_id as the index into the array:

buffer{my act->act_id] = item;

where item is some object to be placed into the buffer.

The act_id of each activity is assigned using the value of a counter in the workload control block,
workload—>act_id_cnt when the activity is created. .This counter may be changed in the following
manner:

mp_close (&workload->lock) ;
workload->act_id ent = (iat) x;
mp_open (&workload->lock) ;

where x has an arbitrary (non-negative) value. The activity changing the counter value must grab the
workload lock to prevent races.

4.2.2. Using locks and conditions

The MPC sync and dsync functions are powerful synchronization primitives. There may be times,
however, when either these functions simpily do not provide the functionality the programmer desires or
he does not know how use these functions to implement some protocal he has in mind. An example of
the first case is when a kind of test-and-set primitive is neseded. For the second case, perhaps he merely
wishes o have a clear way to send signals between activities.

4.2.2.1. A test-and-set function
The MPC run-time function, mp_test_and_lock (), performs the atomic test-and-set operation.
Figure 4-14 shows an example of using this function.

Here, user_lock is of the type mp_lock. If user_lock is to be shared between activities, it must
be declared and accessed as a global variable in a frame! If the lock is not declared as a giobal trame
variable, different activities may reserve different memory for the lock. In frame shown in Figure 4-14, if

41

fzrame
buffer ()

{
mp_lock user lock;

opT
calculate ()

{
if (mp_test_and lock{&user lock)

- ———— ——
- ——— —— o -

[P ———

wp_lock_init (suser lock);

Figure 4-14: An Example of using mp__test_and_iock

user lock is already held, mp_test_and_lock returns a 1; if not, it grabs user lock and returns a
0. Here, after the lock is checked, the caller continues if the lock is not heid. In this case, when the lack
is already held, the cailler executes some arbitrary statements before calling mp_close () in order to
block on the lock. Notice that user_lock is initialized in the initialization section of the frame.

4.2.2.2. Signalling

Figure 4-15 shows a case where both a lock and a condition are used. Here, the writer waits for a
signal from the reader indicating that the buffer in question is not full (presumably, the writer would have
performed some tests {o indicate that the buffer is full before it executes the mp_wait). As described in
section 4.1.2.4, the lock waiting_for_reader is usually grabbed before the wait is called (this is not
necessary if atomicity is not important). The call to mp_open, however, is necessary. Notice that the iock
and condition are initialized in the initialization section of the frame.

4.2.2.3. Dynamic memory allocation

The global memory management functions are discussed in section 4.1.2.5. Itis important to keep in
mind how these these functions differ from the standard C memory allocation functions. Global memory
blocks can only be allocated and deallocated using mp_alloc() and mp_free(). In addition to this
global memory space, each of the parallel activities keeps its own local space which is visible to the ali
functions called from within the activity. This space can be allocated via standard memory allocation calls
(ile. malloe(), realloc(), efc.). Using the standard malloc () calfl, for example, only allocates
memory local to the activity calling malloc (). That is, if an activity calls malloc() the memory
allocation it receives can be correctly referenced only by statements or functions within that activity.

42

frama
buffer ()
{
mp_lock waiting_for_ reader;
mp_cond buffer is not_ full;
opr
write ()
{
mp_close (éwaiting for reader);
mp_wait (&buffexr is not_ full, &waiting for_ reader);
mp_open (&waiting_ for reader);
}
opr
read ()

mwp_lock init (&waiting for reader);
mp_cond_init (sbuffer is not_£full);

Figure 4-15: Example of using locks and conditions

4.3. Skeleton of an MPC generated C file.

The C file generated by the MPC preprocessor from a MPC program contains several data structures
and function calls not present in the MPC file. In Figure 4-16 is the skeleton of a MPC program. It
consists of an instantiated frame, matzix () with a single operation, get (), and one global variable,
(£lcat) z. Note that the operation exports the giobal variable. The program aiso has a singie activity,
multiply (), which executes the frame operation once. Finally, in main (), the activity is instantiated
and spawned once. Let's call this program mat .mpc; a MPC command line that could generate the
following C file is:

mpc mat.mpc -0 mat --m --{ -1lm

43

The ——m switch means that monitoring is enabled and the —¢ switch means that a C file will be printed in
the immediate directory. The ~1m switch might not be necessary, but since the monitor automatically
includes the block timers, the user may have inserted some timers in his code.

In Figure 4-17 is the top half of 2 sparse skeleton of the corresponding C file. Much of the C file
consists of data declarations (as much as 80% or 90% sometimes). Many of these declarations are
present as the result of MPC expanding several include files into the C file. In this case, MPC inserts a
special include file at the top of the C file and then dumps the data declarations, not all of which are
shown.

After the data declarations, come various frame initialization functions. Such a function is generated by
the MPC preprocessor in order to initialize a particular frame. In this case, the program uses three
frames: one for the block timers, one for the performance monitor, and the mult frame found in
mat .mpc. These functions are called later at the start of main. Deeper into the C file, is a structure
declaration, mp_multiply para type which represents the parameters of the multiply activity.
This is followed by the functional definition of the activity mp multiply ()} shown in Figure 4-18. In this
function is a call to mp_ent ry which copies the data inmp_multiply para into the local variables.

Since this is a monitored program (presumably the user ran mat .mpc through PIEmacs), the C file
contains sensor macros. The activity is delimited by activity_begin() and Activity end Sensors.
The antecedents of conditional statements that contain them test a sensor enable tabie io determine if the
sensors are enabled. The constants being passed to the sensor are for identification purpose later when
an execution is viewed by PlEscope. There are aiso frame operation sensors delimiting the frame
operation. The implementation of the export () statement is shown inside this frame. As may be
noticed, each of the sensor macros include a "1" concatenated to the names of the sensors. This is an
impiementation detail that is of no concem to a programmer.

Inmain () can be seen the calls to workload_init ()7 and the frame initialization functions. There
are ailso calls to mp_set_exit (), sensinit(), slurp_runtime_enable table() and
mp_enab set (}. mp_set_exit () sets up some exit conditions for main() while sensinit ()
initializes some monitoring structures and spawns the collector. slurp_runtime_enable table ()
reads SEp file® and stores its sensor enabling information in the sensor_enable_table.
mp_enab_set () enables the run-time sensors. After thesa setup calls, the body of main is executed.

"See section 4.1.2.7

%The sk file is the fila containing sensor enable information.

frame
matrix{m, n)
int m, n;
{
float z;

opr float get(x, y)
int x, Yi

export (z);
}
{}
} mult (SIZE, SIZE):;

act

multiply(xl, x2, yl, y2, mx, my, sz)
int xl, x2, yl, y2, =x, my, sz;
{

x = mult.get{k, i),

main(arge, argv)

int arge;
char **argv;
{

multiply task;
int s, x, ¥;

task(0, s -1, 0, s -1, x, vy, s);

Figure 4-16: Skeleton of an MPC program

#include <mpc_def.h>
typedef int jmp buf{10];
typedef char *mp name;

wvoid

mp_mp block_time init (frame, id)
mp_mp_block time e type *frame;
int id;

A e
- o —

} mp_mp_ block_time type *mp mp block time;

void

mp_mp monitor init (frame, id)
mp mp monitor e_type *£frame;
int id;

} mp_mp_monitor_type *mp mp_monitor;

void

mp_mult init (frame, id)
mp_mult_e_type *frame;
int id;

} mp_mult_ type *mp mult;

typedef struct

{
int =x1, x2, yl, y2, mx, my, sz
int mp_ret_val;

} mp_multiply para type:;

Figure 4-17: Skeleton of first half of resuiting C file

46

int

mp multiply (mp_multiply para)
mp_multiply para_ type *mp_multiply_ para;

{

}

int xX , 2, yl, y2, mx , my hB 32 ;
mp_gntry(mp_pnltiply;para,&(xl), sizeof (x1) ,&(x2), sizeof (x2),
&(yl), sizeof(yl) ,&(y2), sizeof(y2),
& (mx), sizeof(mx) ,&(my), sizeof (my)
&i(sz), sizeof(sz) , NIL):;
if (sensor_enable table?sensor_ enable_table(47]7?
senscr_enable_table{47][5]:0:0) mp_Activity_beginl (5, 47):

if (sensor_enable table?sensor_enable table[47]7?
sensor_ enable table[d?][Z] S0 0) mp_Fop_beginl (2, 47};

x = {({float) (* mp_mult).z);

if (sensor_enable table?sensor anable table[47]?
sansor_ena.ble_table[A?] [2]: so: 0) mp_Fop_endl (2, 47);

e v ke b .

if (sensor_enable_table?sensoxr_ enable table[47]?
sensor_ “enable . _table([47] (5]: 7o 0) mp_Activity_endl (5, 47);
mp_exit (HIL) ;

main{argc, argv)

int

arge;

chax *kargv;

{

mp_workload init (2, 200, 16);
mp_set_exit () ;
mp_mp_block time = (mp_mp block time type *)
mp_init_frame (sizeof (mp_mp_block_time e_type),
0, mp_mp block_ tima init);
mp_mp monitor = (mp_mp_monitor_type *)
mp_init frame (sizeof (mp_mp monitor_e_type),
0, mp_ mp monitor_init);
mp mult = (mp mult_type *)
mp init_ frama (sizeof (mp_mult e type), 1, 3, mp_mult init);
sensinit (44);
sensor_enable table = slurp_runtime_ enable_table ("SEF");
mp_enab_set (1) ;
task = mp_activity(mp_mualtiply , sizeof (mp_multiply para type),
0, s -1, 0, s -1, x, y,8):

s i

mp_exit (NIL);

Figure 4-18: Skeleton of second half of resulting C file

r

47

Appendix |
Count.mpc

Count is a very simple example that is cailed with
Count

The program creates two activities that each increment a global variable. The operation inc is used to
do this, and as the program is listed here, it contains a sync statement that will cause the process that
calls inc second to wait untit the first process to finish incrementing the variable. As a result one process
will increment the counter 10 times, exit, and allow the other process to increment the counter 10 more
times. If the sync statement is removed from the operation, the processes will run in parallel, and the
incrementing of the counter will be interieaved between the two processes until each has incremented the

counter ten times.
/***

This is to test sync statament
***/

frame global (k)

int k;
{
int i;
opr inc{x)
int =x;
{
int j, z;
/***
in order to see the differance sync makes the
test should be run twice: once with sync
commented ocut
***/

sync (inc} {

for(z=0;2z<10; z++) {
printf ("act %d: %d\n",x, i++);
sleep(l);
}
}
export {};
")
{
i=k;
}
} gleb(10);
act iner (x)
int x;
{
glob.inc{x) ;
} e[3];

main ()

/***

***/

inecr £{2};

Main will start two activities. Each will
call frame operation giving its id as the
input parameter. In the case with sync

printouts on the screen should be ordered

printf ("Program start...\n")};
printf ("First activity call...\a"):
a[0](1);

printf ("Second activity call...\n");
£[1] (2);

join(e[0],£[1]);

printf ("End of main...\n");

49

Appendix I
Varcount.mpc
Varcount is like the Count example, except that the user can vary the number of activities which are
running and can vary whether the activities should run synchronously or asynchronously.

Varcount is called with
varcount

The program initially creates two activities running synchronously. Once it is running, the user can type
to the keyboard any number from 1-16 {inclusive) to indicate the number of paralle! activities to run on the
next pass. Typing 17 causes the activities to run asynchronously and typing 18 causes the activities to
run synchronously again. Input of -1 causes the program to exit.

/***

This is to test sync statement.
t/

#include <stdio.h>

frame global (k)
int k;
{

int count, nact, ctrlflag;

opr void ine(x)
int x;
{
int j, z;
/***
in order to see the difference sync makes the
test should be run twice: once with sync
commented out
***/
if (ctrlflag = 1) {
sync (incg)
{ .
for(z=0;z < 10; z++)
{
printf{"act:%d, count=%d\n",x, count++);
sleep (1) ;
}
}
} alse |
for(z=0;z < 10;z++)
{
printf("act:%d, count=%d\n",x, count++);
sleep(l);
}

50

opr int control ()

{
export (ctrlflagqg);

}

Opr int numact (}

{
export (nact) ;
}

opr init (val)

int wval;
{

export (count = wval);
}

{
count = k; nact = 2; ctrlflag = 1;
}

} GLOB(0);

act incr(x)
int x;
{
GLOB.inc(x) ;
} counter{lé];

act interfacs ()

{
int num;

while (1) {

scanf ("%d", &num) ;
if (num = 17) {

GLOB.contxrol() = 0;
continue;

}

if (num = 18) {
GLCOB.contxrol() = 1;

continue;

}

if (num == 19) {
GLOB.contreol () = 2;
continue;

}

GLOB.numact () = num;

if (mum <= 0 || num > 16)

}

}interf;

axit () ;

51

main()
{

int limit, i;
/***

Main will start 1 - 16

activities depending on. Each of them

will call frame operation increment 10 times and exit;

t**/

printf ("Program start...\n");

printf ("Start interface:
printf ("Valid numbers of
printf ("Typing 17 causes
printf ("Typing 18 causes
printf ("Typing -1 causes

GLOB .numact () 2;

interf():

while (1} {
i = GLOB.control ()
while (i = 2) {
i = GLOB.control();
}

Enter number of activities any time\n");
activities are 1 - 16\n");

activities to run asyncronously\n");
activities to run syncroncusly\n"}:

the program to exit.\n");

printf ("Start of current pass...\n");

GLOB.init (0)

limit = GLOB.numact (};

if (limit <= 0 ||
printf ("Cut of limit
break;

}

for (i = 0;
countari] (i)

for (i = 0;
join{counter[i]);

limit > 16) {

. will exit\a");

i < limit;i++)

3+ <€ limit; i)

printf ("End of current pass...\n"):;

}

join (interf) ;

printf ("End of workload.
}

. An");

Appendix Il
Matrix.mpc
This example program will take two user-entered square arrays and muitiply them together. It is called
with a command like:

matrix size dx dy

where size is the length of the sides of the arrays (the number of elements in each array is size * size).
Dx and dy are the minimum desired sizes (size is as defined before) for the submatrices that the program
will create from the larger matrices. For instance, if the command

matrix 12 4 4

is entered, the program will expect the user to input 144 elements for each of the two arrays to be
muitiplied. The elements must be integars separated by spaces and each row must be terminated with a
carriage return. The first array must be followed by a '@’ and ancther biank line before the second array
can be entered. The entered arrays will be cut into fourths (each side will be cut in half) and submit the
portions to subtasks which will continue dividing until the length of a vertical side of a portion is smaller
than dy (in this case 4) and the horizontal side is smaller than dx (4 again). In this example 3 cuts must
be made to each side, and therefore 16 subtasks will be created for each of the sixteen portions ot the
divided array.

When the array has been divided up, each subtask multiplies its own parts of the two arrays and adds
the result to the proper place in the result aray. After ail the subtasks have finished with their
multiplication the result array contains the result of the multiplication of the two user-entered arrays.

#include <libec.h>

/**********************t*t*t***************************

This is the matrix multiplication example to
to test the syntax of frames and activities

**************************************!****************/

¥#define SIZE 128
fdefine NUM 2

/***
Frame matrix is the matrix template. It orts two operations,
axp
L3 r I I
get’ and ‘put’.
***/

/***
Operations are self explanatory. The quastion could be raised:
"Why is there no sync dafined for put?" In the general case it
should cbvicusly be "sync(put){}". The reason it is omitted here
lies in the fact that we know that only one activity is geoeing to
write any one particular matrix alement, so sync would just add

unnecessary overhead.
***/

frame
matrix(m, n)

int m, n;
{
float matrix data[m] [n];
opr £loat get (x, y)
int x, Yy’

{
export (matrix data(x] [y]):
}

opr float put (x, y)
int x, vy’
{
export (matrix data(x][y]):
}

{
}
} a(SIZE, SIZE)[3]:
/***
a(...)[3] is a shorthand to create three instances with the same
initial parameters. Another way of doing it would be:

matrix al (SIZE,SIZE), a2(SIZE,SIZE), a3 (SIZE,SIZE);
***/

act

multiply(xl, x2, yl, y2, mx, my,

sz)

/**t

Gets the submatrix described by xl,x2,yl, and y2 and checks

its dimensions against given limits mx and my. If any submatrix
dimension is larger than mx or my respectively will cut the
submatrix along this dimension in two halves, starts two new
multiply activities (ie. subtasks), and gives them submatrices to
work on. When the both limits are satisfied(ie. there is no more
need to cut), multiply will do the multiplication and join the
father activity upon completion.

'l*t/
int xl, x2, yl, y2, mx, my, s=z;
{
int ex, ey, i, 3, k;
float t, tmp, tmp2;
multiply subtask([2];
ax = x2 - x1 + 1;
ey = y2 - vyl + 1;
if (ex > eay) |
Vb
x dimension of the submatrix is larger cone
sk f
if (ex > mx) |
/***

x dimension of the submatrix is larger than mx limit
(means we have to cut it in two halves)

***/
subtask[0] (xl, (x1 + ex / 2) - 1, yl, y2, mx, my, sz):
subtask[l] ((x1 + ex / 2), =2, yl, y2, mx, my, 3sz);
join (subtask{0], subtask[1l]):;
axit ()
}
if (ey > my) |
/***
y dimension is larger than my limit
***/
subtask([0] (x1, x2, yl, (yl + ey / 2 - 1), mx, my, sz);
subtask(1l] (x1, =2, (yl + ay / 2), y2, mx, my, sz);
join (subtask[0], subtask[l]};

exit (),

57

if (eay >= ex) {
if (ey > my) {
subtask([0] (x1, x2, y1l, (vl + ey / 2 - 1), mx, my, sz):
subtask([l] (x1, x2, (yl + ey / 2}, y2, mx, my, sz);
join (subtask[0], subtask[l]):
exit ();
}
if (ex > mx)} {
subtask[0] (xl1, (x1 + ex / 2 - 1), yl, y2, mx, my, sz);
subtask{l] ((x1 + ex / 2), =2, y1, y2, mx, my, sz);
join (subtask[0], subtask[1l]):
exit {);
1
}

/***

NO more subdivisions! DO THE JOB!1?
***/

for (i = y1; i <= y2; i++) |
for (j = x1; j <= x2; j++) {

t=0;

for (k = 0; k < sz; kit) {
tmp = a[0].get (i, k);
tmp2 = afl].get(k, j);

t =t 4+ tmp * tmpl;
}
af2].put(j, i) = &;
}
}

/***

The product submatrix calculated
***/

}:

init matrices(sz)
T int sz;
{
int x, ¥/
£float tmp;

printf ("enter matrices row by row\n");
printf ("row separator isa CR, and matrix separator is ACR\n"} ;
for {(x = 0; x < 3z; x++) {
for (y = 0; y < sz; y++) |
scanf ("$£", &tmp);
al0].put(x, y) = tmp;

}

while (getchar() '= '\n");
}
while (getchar() '= '@'});
while (getchar() != '\n’);

for (x = 0; x < sz; =x++) {
for (y = 0; y < sz; y++) {
scanf ("$£", &tmp);
a[l].put (=, y) = tmp;
af2].put(x, y) =
}
while (getchar() '= '\n’);
3
}

print_result(sz)
int sz;
{
int x, ¥-
float tmp;

printf ("\nresult:\n");
for (x = 0; x < sz; x++) |
for (y = 0; y < sz; y++) |
tmp = a[2].get(x, y);
printf("%0.1£f ", tmp):
}
print£ ("\n");
}
}

file:///nresult

main(argc, argv)

int arge;
char **argv;
{
int sz, mx, my;
multiply task;
if (arge '= 4) {
fprintf{ (stderr, "Usage: matrix size dx dy\n"):
exit () ;

}

sz = atei(axgv(l]);

mx = atod (argv([2])};

my = atod (argv[3]);

init matrices(sz);

task(0, sz - 1, 0, sz - 1, mx, my, sz);
jein(task);

print_result (sz);

61

Appendix IV
Newmat.mpc
This exampie is just like the matrix example, except in the way it divides the work. In the matrix
exampie, whenever an activity decided it should sub-divide itself, it would create two chiidren, give each
half of the work, and then wait for them to finish. This meant that the parent activity was not doing work,
and is using resources by its very existence.

In this example, the parent creates only one child, and keeps half of the work for himself by calling a
recursive procedure. We found that this aigorithm runs about 20% faster than the example shown in the
matrix example.

Newmat will take two user-entered square arrays and multiply them together. It is called with a
command just like in the matrix example:

newmat size dx dy

where the parameters have the same meaning as in the matrix exampie.

#include <libc.h>

/****t‘l‘************’l*******t*t************t***********

This is the matrxix multiplication example to
to test the syntax of frames and activities

**********t**/

$define SIZE 160
#define NUM 2

/*
* Frame matrix is the matrix template. It exports two cperations,
”* L4 get L and "n Put " .

*/
/*
* Operations are self axplanatory. The question could be raised:
* "Why is there no sync dafined for put". In the general case it
* gshould cbviously be "sync{put) (}". The reascn it is cmited here
* lies in the fact that we know that only one activity is going to
* write particular matrix elemant, sc sync would just add some
* unnecessary overhead.
*x/
frame
matrix(m, n)
int m, n;
{
float matrix_ data[m] [n];
opr float get (x, y)
int x, ¥s
{
export (matrix data(x] [yl):;
}
opr £loat put (x, y)
int : x, ¥;

{
export (matrix data[x] [¥]);
}

{
}
} a({SIZE, SIZE) [3]:
/*
* 2(....)[3] is shorthand to create three instances with the same
* initial parameters. Another way of doing it would be: matrix
* al (SIZE,SIZE),aZ2 (3IZE,SIZE), a3 (SIZE, SIZE);
*/

63

act
multiply (x1, x2, yi, y2, mx, my, $z)
int xl, x2, yl1l, y2, mx, my, sz:
{
multproc(xl,x2,yl, y2, mx, my, 3z) ;
}: ‘

multproc{xl, x2, yl, y2, mx, my, sz)
/***

Gets the submatrix described by x1,x2,v¥l, and y2 and
checks its dimensions against given limits mx and my. If any
submatrix dimension is larger than mx or my respectively will
cut the submatrix along this dimension in two halves, starts two
new multiply activities (ie. subtasks), and gives them submatrixes
to work on. When the both limits are satisfied(ie. there is no more
need to cut), multiply will do the multiplication and join the father
activity upon completion.

*kk
int xl, x2, yl, y2, mx, my, sz;
{
int ex, ey, i, j, k;
£locat t, tmp, tmp2;
multiply subtask;
ex x2 - x1 + 1;

ey = y2 - yl + 1;
if (ex > ey) {
/***
x dimension of the submatrix is larger cne
t**/
if (ex > mx) {
Jrnw
x dimensicn of the submatrix is larger than mx limit
(means we have to cut it in two halves)
Xk [/
subtask (xl, (x1 + ex / 2 - 1), yi, y2, mx, my, sz);
multproc{(xl + ax / 2), x2, yl, y2, mx, my, sz);
join (subtask) ;
return;
}
if (ey > my) {

/***

Yy dimension is larger than my limit

***/
subtask (xl1, x2, y1, (yl + ey / 2 - 1), mnx, my, sz);
multproc (x1, =x2, (yl + ey / 2), y2, mx, my, sz);
join (subtaask) ;
return;

if (ay >= ex) {
if (ey > my) {
subtask (x1, =2, y1, (yl + ey / 2 -~ 1), mx, my, Sz):
multproc (x1, x2, (vl + ey / 2), .y2, mx, my, sz);
join (subtask) ;
- return;
}
if (ex > mx)
subtask (x1, (x1 + ex / 2 - 1), yl, y2, mx, my, sz);
multproc ((xl + ex / 2), x2, yl, y2, mx, my, sz);
join (subtask) ;
return;
}
}

/***
NQ more subdivisions! DO THE JOB!!
***/

for (i = yl; i <= y2; i++) {
for (§ = x1; 3 <= x2; j++) {

t =0;

for (k = 0; k < sz; k++) {
tmp = a[0].get{i,k);
tmp2 = a[l].get (k, 3);

t =t + tmp * tmp2;
}
af2].put(j, i) = ¢
}
}

/***

The product submatrix calculated
***/

init_matrices(sz)
int sz;
{
int x, ¥/
£float top

printf ("enter matrices row by row\n");

printf ("row separator is CR, and matrix separator is @CR\n");

for (x = 0; x < sz; x++) {
for (y = 0; y < sz; y++) |
scanf ("%£", &tmp);
a[0).put{x, y) = tmp;
}

while (getchar() '= '\n’);
}
while (getchar() t= ’'@7);
while (getchar() '= ‘\n’);

for (x = 0; x < s8z; x++) |
for (y = 0; ¥y < sz; y++) {
scanf ("$£", &stmp);
a[l].put(x, y) = tmp;
a[2] .put(x, y) = 0;
}
while (getchar() !'= '\n’);
}
}

print_result (sz)
int sz;
{
int x, ¥/
float cmp;

printf ("\nresult:\n");
for (x = 0; x < sz; x#+) |
for (y = 0; ¥y < sz; y++) {
tmp = a[2].get(x, y);
print£("%0.1£f ", tmp);
}
printf ("\an");
} .
}

65

file:///nresult

main(?rgc, Argv)

int arge;
charx *hkargv;
{
int sz, mx, my;
multiply task;

if (arxgec != 4)
fprintf (stderr, "Usage: matrix size dx dy\an");
exit (),

}

sz = atoi (argv[l]):’

mx = atoi(argvi2]);

my = atoi (argvi{3]):

init matrices(sz};

SENSOR ("Refore task"):

task(0, sz -1, 0, sz - 1, mx, my, sz);

jeoin(task) ;

print_result (sz);

67

Appendix V
Qsort.mpc

Qsort is called with the command:
gsort size

Size is the size of the array to be sorted, and after the line is entered, the program expects the user to
enter Size number of integer elements separated by spaces or carriage returns. The array will then be
broken down into parts that will be sorted according to the quick sort algorithm.

/************t*****************t***********ﬁ********t********t****

Example how to use frames and activities

This is an implementation of the quick sort algorithm.

*ﬂ***t******************/

#$include <stdic.h>

fidefine ARRAY SIZE 100
#define TRUE 1

/**************t**

This is a template of a array data structure which
include swap, put and get operation.
*******************************tt**********************t**********/
frame array (n)
int n;
{

int array data[n];

/***
operation ‘swap’ swaps two array elements.
***/

opr void swap (x, y}

int x, y;
{
int tmp ;

tmp = array datalx];
array data[x] = array dataly];
array data[y] = tmp;
axport () ;
}

opr int put (i)

int i;
{

export (array data(il)};
}

opr int get (i)

int i;
{

export (array_datali]l);
}

{

}
} gsarray (ARRAY SIZE);

/*************i*********i******ﬁ************t**************t***t*t***

Activity sort implements quick sort algorithm.
!****t**************/
act sort (left, right)

int left, right;
{
int j, k, tmp, tmp2;
sort subsort [2];

if (left < right) f{

tmp = gsarray.get (3j):

tmp2 gsarray.get (left) ;
} while ((tmp >= tmp2) && (j < right)):
do {

k==

tmp = gsarray.get (k)
tmp2 = gsarray.get (left);
} while ((tmp <= tmp2) && (k > left)):;

if (3 < k) {
gsarray.swap(j, k);
}] else
break;
} while (TRUE):

gsarray.swap (left, k)’
/**t*tttt**tt*!********t*t******ﬁ****ﬂ*t*ﬂ***********t**t****t**t*
Divide array and spawn two new sort activities.
Firat part of the array (up to K-th element) has all
alements greater then k~-th element. Second part of the
arzxay (from k+l-th element) has all elements smaller then k-th

element .
W T T

subsort (0] (left, k - 1);
subsozt[1] (k + 1, right);
jein (subsoxrt {0], subsort[l]):

/********!**********************t********************

Initialize array and add sentinal
t********t**********t*******t'l*t**********************/
init array (n)

int n;
{
int i, data, sum, tmp:;

sum = 0;

for (i = 0; i < n; i++) {
scanf ("%d", &data):
gsarray.put (i) = data;
tmp = gsarray.get (i);
sum = sum + tmp;

}

gsarray.put (n) = sum;

/t***************************************t************

Print array of n alemants
***********t****************tt'ktt*****************t***/

print_azrray(n)
int n;
{
int i, tmp;

for (i = 0; i < n; i++) {
tmp = gsarray.get (i)
printf("%d ", tmp);

}

printf (u\nn) :

69

main (arge, argv)
int arge;
int **argv;

'

int n, data;
sort gsort;

if (arge != 2} {
fprintf (stderr, "USAGE: gsort size\n"):;
axit {);

}

n = atod (argv[l]);

printf ("Please enter %d integers\a", n);

init_array(n);

print£ ("\nARRAY:\n") ;

print_azray (n);

gsort (0, --n);

join(gsort);

printf ("\nRESULT:\n") ;

print_array (++n};

file:///nARBAY
file:///nRESULT

I

Appendix VI
Sortm.mpc

Sortm is another parallel sort algorithm that is called with a command of the form:
sortm size subsize

As in Qsort, Size is the size of the array to be sorted and once the command fine is entered, the
program will expect the user to enter integer elements of the amay separated by spaces or carriage
returns. Subsize denotes the size of the subamrays that the program will divide the entered array into.
The idea is that the program will take the array and cut it in half giving each half to subtasks. The
subtasks will then halve the subarray if it is larger than the subsize entered by the user. When no more
cutting is necessary, the subarays are sorted with the merge sort aigorithm. Then these sorted
subarrays are sorted. This process is continued until the two originai haives of the array are sorted by the
original process with respect to each other and the array is compieteiy sorted.

#include <libe.h>

/************t************************t***************************

This is an implementation of the sort-merge algorithm,

t*****************/

#idefine ARRAY SIZE 100
fdefine TRUE 1

/*****ﬁ********tt**t***************t******************************

This is a template of a array data structure which

include swap, put, get and compare operations,
*******************************t*********t************************/

frame array(n}

int n;
{
int array data[n];
opr void swap (i1, 3jl1)
int il, 3Ii;

{
int tmp, ill, j11;

ill = i1;
j11 = j1;
tmp = array data{ill]:

array_data(ill] = azrxay data[3jll];
array_data[jll] = tmp;
export (i11) ;

opr int put (i)

int i;
{

export (array_ data(i]);
}

opr int get (i)

int i;
{

export (array data{i]):;
}

opr int compare(il, 3jl1)
int i1, 3jl:
{

int a, b;
a = array data[il];
b = array data[jl];
export (a - b);

}

i}

} qsarzay(ARRAY_SIZE);

/********************!**!'**************!i***********************

Activity sort implements sort-merge algorithm.

*******t***t*********t********t************ﬂ****************t***,

act sort (left, right, nz)

{

int left, right, nz;
int j- k., 1, m, ez, temp[ARRAY SIZE], a, b;
int e ;
sort subsort [2];

az = right - left;

m= left + ez / 2;

if (ez > nz) {
subsort [0] (left, m, nz);
subsort[l] (m + 1, right, nz):
join (subsort [0], subscrt[l]);

j = lefy;
k=m+ 1;
1l =20;

do {

if ((j <= m) && (k <= right)) {
tmp = gsarray.compare (j, k);
if {tmp <= 0) {

temp[l++] = gsarray.get (j++);
} else {
temp[l++] = gsarray.get (k++);

.
}
if ((k > right) && (j <= m)) {
temp[l++] = gsarray.get (j++);
}
if ({3 > m) && (k <= right)) ({
tamp(li+] = gsarray.get (k++);
}
} while (1l <= az);
k = left;
for (1L = 0; 1 <= eaz; l1l4++)
gsarray.put (k++) = temp[l)];
exit ()

tmp = gsarray.compare(j, ++j):

if (tmp > 0) {
gsarray.swap{j~-=-, j):;
if (j > laft)

==
}
} while (j < right);
};

74

init array(n)
int n;
{
int i, data;

for (i = 0; i < n; i++) |
scanf ("¥d", &data);
gsarray.put (i) = daca;
}
}

print_array(nl, n2)
int nl, n2;
{
int i, tmp;
for (i = nl; i <= n2; i++) {
tmp = gsarray.get (i)
printf{"sd ", tmp);

}
printf ("\n");

main{argc, argv)

int arge;
int **argv;
{
int n, nz, data;
sort gsort;

if (axge != 3) {
fprintf (stderr, "USAGE: sortm size subsize\n");
axit (),

} _

n = atoi{argv[l]);

printf ("Please enter %d integers\n", n);

nz = atoi(argv([2]);

init_array(n):;

printf ("\nARRAY:\n") ;

print_;:zay(o, n - 1);

gsort (0, n - 1, nz);

join (gsort);

printf ("\nRESULT:\a");

print_array(0, n - 1);

file:///nARRAY
file:///nRESULT

75

Appendix Vi
Search.mpc¢

Search is the parallel implementation of a search algorithm and can be called with the command:
search processes size key

Processes is the number of processes that the program will be allowed to create in order to do the
search. Size is the size of the array to be searched. The program will automatically create an array with
integer elements ascending from 1 to Size. Key is the number to be searched for and must be within the
range of the array. Checking is not conducted in the program for the sake of simplicity and size.

The program behaves fike a binary search but differs in that more than one comparison can be made at
a time. if three processes are allowed, then three evenly spaced spots in the array are selected and the
elements at these positions are compared with the value of the key. The third of the array which must
contain the key is then divided with three comparisons, and so on, until the key is hit by a comparison.
The program will print the number of the set of comparisons just completed and print the found key when
done,
/*

* This is a parallel search algorithm to be executed on an
* ordered list of elements.

*/
#include <stdioc.h>
#define ARRAY_ SIZE 10000

frame archdat (n)

int n;

{
int array datain];
int proc_flg{32];
int found;

opr int put (i)

int i;
{

export (array data(i]):;
}

opr int get (i)

int i;
{

export (array datafi]);
}

}

opr int set_flg(i)

int i;
{

export (proc_£flg{i]);
}

opr int read_flg(i)
int i;
{
axport (proc_£1g[il);
}

opr void set f£nd (i)
int i;

{
found = i;
export () ;

}

opr int read £nd()

{
export (found) ;

}
{
found = -1;

}

srarray (ARRAY SIZE);

ac¢t compare (procnum, pos, key, n)
int procnum,pos,key,n;

{

}:

int tmp;

tmp = srarray.get (pes);
if ((pos>n) || (tmp>kay))
{
srarray.set_flg{procnum) = =~1;
axit ()’
})
tmp = srarray.get (pos);

if (tmp<key)
{
srarray.set_flg(procaumm) = 1;
exit ();
}
srarray.set_flg(procnum) = 0;

srarxay.set_fnd(pos);

init_arzay (n)
int n;
{

int i;

for (i = 1; i < n+l; i++)
srarray.put (i) = i;

main (arge, argv)

int arge;

int **argv;

{
int n, i, key, tmp;
int sza, flg, left, right;
int pss,prec, pi32];
compare sccompare[32];

if (argc!=4)
{

fprintf (stderr, "USAGE: search processes size key\n'");

exit () ;

}
prc = atod (argv(l]));
n = atoi (argv[2]);
key = atoi (argv[3}):
init_array(n);
pas = 1;
left = 0;
right = n;
do

{
printf ("Pass %d\n",pss++);
sze = (right - left+l)/(prec+l);
if (sze = ()
sze = 1;
rl[0] = left+isze;
for(i = 1; i < pre; i++)
pl{i] = p{(i-1] + sze:;

for(i = 0; i < pre; i++)
scompare[i] (i,p[i]. key,n);

for(i = 0; i < pre; i++)
join (scompare([i]);

}

}
tmp

i=0;
tmp = srarray.read flg(i);
while ((tmp '= -1) && (i < prc))
{
i+
tmp = srarray.read flg(i):;
}
right = left+sze* (i+l);
left = left+sze*i;
£lg=0;
for (i = 0; i < prg; i++)
{
tmp = srarray.read flg{i):’
if (tmp = 0)
£lg = 1;
}
while (£flg != 1);

= srarray.read fnd():;

printf("%d found at %d.\a", key, tmp);

Appendix Vil
Sieve.mpc
Sieve of Erastothenes is an algorithm for extracting the prime numbers from the vector of integers from
1 to N. The basic aigorithm is that one activity will start at 1 and compute whether or not an integer is
prime. In parallel, cther activities will use the results which the first activity has already computed to
eliminate other integers which aren't prime.

Sieve can be called with the command;
sieve numproc list_limit output[y/n]

where numproc is the total number of parallel activities to start, and where 1ist_limit is the highest
numbered integer to check. The third parameter should be y or n to indicate whether or not Sieve shouid

output its resuits or not.

#define MAXPROCESSORS 1000
#fdefine LIMIT 100000
#daefine TRUE 1

fidafine FALSE 0

#include <math.h>

frame list array(n)
int n;
{

char list data[n];

opr char put (i)
int i;
{
dsync{list_data[i]) ¢
axport (list_data[i]);
}
}

opr char get (i)

int i;
{

export (list _data[i]);
}

opr wvoid init (i)
int i;
{
int j;
for (j=0;j<i;j+H)
list_data[j] = '*';
}

{}
} LIST(LIMIT):

frame pt ()
{
int point_data, mum;

opr int test (limit, xootl)
int limit, rootl;

{
char temp;
int ti;

sync (test) {
do {
ti = ++point_data;
if {ti >= limit ||
aum++ >= rootl)
ti = ~-1;
break;
}
temp = LIST.get (ti);
} while (teamp !'= "*')
export (ti) ;

.
’

}
}

{ point_data = 1; aum = 0;}
} startpoint();

act slave (processor,limit, rootl)
int processor, limit, rootl;
{
int step_size, place;
int st_point;
char dum;

while (1) {
st_point = startpoint.test (limit,rootl);
INTEGER SENSOR (st_point) ;
if (st_point == -1){
exit (1) ;
}
else
{
step size = st_point:
place = st_point + step size;
while (place < limit) ¢{
dum = LIST.get (place);
if (dum '= ' ")
LIST.put (place}) = ' '
place = place + step size;
}
}

}
} sieve_slave [MAXPROCESSCORS];

82

main (argc,azgv)
int argc;
char **argv;
{
int i, processor, limit, rootlimit;
char cc,ss(32];
extern double sgrt ()

if (axrgc < 4)({
printf ("Usaga sieve numproc list limit output [y/n]\n");
axit ();

}

limit = ateod (argv[2])};

rootlimit = (int) sqrt((doublae}limit) + 1;

LIST.init (limit);

for (proceasor = (; procesaor < ateod(argv[l]); processoxi+)
sieve_slave[processor](p:ocessor,limit,:ootlimit};

for (processor = 0; processor < atoi(argv[l]): processor++)
join (sieve_slave[processor]);

if (axgw([3]1[0] == "y")}{
printf ("PRIME NUMBERS 1 - %d:\n", limit) ;
for(i = 0; i < limit; i++){
cc = LIST.get {i};
if (ce = "*'){
if (1i%10 == 0) printf£("\n");
printf("%d ", 1i);
}
}
printf ("\n");

}
} /* and maimx */

83

Appendix X
Mail.mpc

The Mail program is called with the command:

mail

It simulates a simpie mail system by creating three processes, one each for users Mark, Dado, and
Nino. Each process allocates a queue in the global mailbox frame for itseif. Then they send their own
name (either Mark, Dado or Nino) to the other queues in the maiibox. The processes check their own
queues then and print the messages they received (the other names). A spooler is also used for the
prints to the screen so that characters are printed only once {paraile! printing to the screen often resuits in

garbage).

/***

Example how to use frames and activities

NOTE-The whole example is synthetic in the sense that

it is constructed to exhibit the possibilities of
nesting the frames and operations. (ie., test is
separated from get and put in the frame que to
prepare ground for test-and-put and test-and-get
kinds of operations on the higher hierarchical level)
There are other ways to build mailboxes, but the code
below is meant for testing the frames and activities,

*************************'A't*********************************/

#include <stdio.h>
#include <strings.h>

$define
#define
#dafine
#dafine
$#define
fidefine
#define
#idefine

EMPTY

FULL

READY

MATCH

UNSUCC

NAME_LEN
CUSTOMER NUMBER
CUSTOMER SIZE

oONFEO

32

256

frame que (length)
/**t

This is the template for the shared circular qua. Each
instance will be of a dimension length. Length has to
he constant at the instantiation tima.

***/
int length;
{
/***
que_data, read ptr and write_ ptr are shared data
ek f

char gque_data[length]:;
char *read ptr, *write ptr;

opr char get ()
/***
Get returns character which is on the top of the dque.
To do it one should put in the code yy=xxx.get ()
where yy is any variable, and xxx is a frame instance

name of a type que.
L LY

if({ilong)read ptr >= {(long)que_data + length))
read ptr = que data:;

/***
export points to the part of the operation which will be
unfolded as a macro exactly at the place of the original
call inside the statement into the calling code.
Everything which is above export in the cperation will
be unfolded above the original statement. Simmilar is
truea for the below part.
wdw f

export (*read ptr++);

}:

opr char put ()
/***
Put puts the data on the top of the que. The sintax
of the call is xxx.put() = yy, where xxx and yy are

same as above.
***/

if ((long)write_ptr >= (long) (que_data + length))
write ptzr = que_data;
ezpcrt(*writa_pt:++);
}

opr int test ()
VA LA
will test the condition of the que. We don’'t sync
because read and send as the higher coperations

combining test get and put will do it
dkk f

int ret value;

switch((int):ead;ptr = (int)write_ptr){

case {:
retﬁyalue = EMPTY;
break;

case 1:

case (length - 1):

case {1 - length):
ret_value = FULL;
break;

default:
ret_value = READY;
break;

}

4xXpozrt (ret_value};

/***

This last block without label is frame init section to be
executed upon invocation. It may be {empty)
***/

write_ptr = que_data;

read ptr = gue data;

frama mailbox (customer number, customer size)

int customer number;

int customer_ sizae;

{

/***

example of the instantiation of previously defined
frame mailbox_que is a pool of ques to be used in
a mailbox here has CUSTOMER NUMBER of ques each of
them CUSTOMER SIZE bytes long

ttt/

que mailboz_que(CUSTOMER_SIZE)ICUSTOMER_NUHBER];
int :aad_;

frame 1ist{1ist_size)
/***
local frame definition example instatiation of liat
which is the name directory of this mailbox is attached

at the end of the definition itself
**t/

int list size;
{
struct {
char names [NAME LEN];
} name list[list size];

opr int find{name)
/*** .

find the custcmer by name and return the corresponding id
***/

char *name;
int ret_value, i;

rat_value = URSUCC;
for (i=0;i<list_size;id++){
if (strcmp(name list[i].names,name) == MATCH) {
rat_value = i;
break;
}

}
export (ret_value);

} mailbox_pama_list(CUSTQMER_SIZE); /*

opr int enlist {name,id)
/***
enlist the new customer with given id
***/
char *name;
int id;
{
export (strcpy (name list[id] .names, name)) ;
}

/***

name list initialization
***/

{

int i;

for(i=0;i<list_size;i++)
name list[i].names[0]='\0';

}

this is the instatiation */

87

opr int send(id,buff, len)
/***
send the buffer of the lan characters to the
customer id
ALY
int id;
char *buff;
int len;

{
int i;

/***
sync dascribes the synchronization discipline.
it will prevent the calling operation to start
until any of the operations given as parameters
are in progress.
NOTE: to exclude mutually each other both parties
have to call sync on each other.
One can also call sync on itself.
***/

sync (send) {
int test;

for (i=0;i<len;i++} |
test = mailbox_que[id] .test ()
if(test == FULL){ .
printf ("sender que full\n");
break;/* no more space in receiver que -
one can use sigkill here to notify sender */
}
mailbox_que[id].put() = *(buff + i)’
}
axport (1)
}
}

opr int allocate (custcomer name)
char *customer name;

{
int id, find;

sync (allocate, deallocate) {
find = mailbox name list.find(qustcmexr name);

if (find == UNSUCC) {
find = mailbox name list.find("");

if({id = £ind) !'= UNSUCC) {
mailbox_pama_;ist.enlist(custcmgr_namg,id);
} else {
id = UNSUCC;
}
} alse {
id = UNSUCC;
}
export (id);
}
}

opr int deallocate (id)

int id;
{

export (mailbox name list.enlist("",id)):
}

opr int locate (name)

char *name;
{

export (mailbox name list.find(name));
}

};

opr int read(id,buff, len)
/t**
reads the message terminated with ‘\0’ from the que
of the custcmer id an_d puts it in the buff of the dimension
len
***/
int 4id;
char *buff;
int len;
{

int i,test;

i=0;
while (i < len} {
test = mailbox que[id].teat ();

if (test != EMPTY) {
buff{i] = mailbox que[id].get ()’
if (buff[i++] == "\0"}{
break;

}
}
}
buff[len-1] ="\0’';
export (1} ;

/* no initialization due to the fact that
list and ques are already initialized */

frama spool ()

{
que internal cue (4096);

opr int read(buff, len)
char *buff;

int len;

{

int i, test;

i=0;
while (i < len) {
teast = internal que.test ();
if (test !'= EMPTY) {
buff{i] = internal que.get();
if (buff[i++] = '\0’){
break;
}
}
}
buff[len-1] ='\0';
export (i) ;
}

opr int write (buff)
char *buff;
{

int i,len,test;

/* NO OTHER WRITE in parallel */
sync (write)

ler = strlen(buff) + 1;
for (i=0;i<len;i++) {
test = internal que.test();
if (test == FULL) {
printf ("sender que full\n");
break;/* no more space in receiver que -
one can use sigkill here to notify sender */
}
internal que.put{) = *(buff + i);
}
export (i) ;
}
}
{} /* RO initialization */
1} spool que(): /* this is thea instantiation */

9

92

act sp()

{

char buff[256];
int 11;

while(l) {

1l = spool_gque.read(buff, 256);

if (11 > 0){
if (strcmp (buff, "AEEEdend") == 0)

break;

printf("%s",buff);
££lush (stdout) ;

}

}
spooler;

main ()

{

/* Pirst we instantiate the frame */
mailbox mailboxl (CUSTOMER_NUMBER, CUSTOMER_ SIZE) ;

/* Then we declare local activity user */

/* It takes three names, and:
-Takes first name and allocates que in the mailbox;
~Takes second and third name and locates user id-s;
-Sends the messages with its name to other twe users;
-Receives two messagaes in tempbuffl and tempbuff2;
*/

char spool buff[256];

act user (namal, name2, name3)
char *namel, *name2, *name3;
{
char tempbuffl [CUSTOMER SIZE], tempbuff2 [CUSTCMER_SIZE];
int lenl,len2,idl, id2, id3;
char spool buff[256];
strcpy (tampbuffl, namel) ;
lenl = strlen(tempbuffl) + 1;
idl = mailboxl.allocate (namel);
if (idl == UNSOCC) {
printf ("no mailbox available\n"):;
exit ()’ /* SCMETHING IS WRONG WITH THE POST OFFICE */
}
sprintf (spocl_buff, "%s allocated:idl = %d\n", namel,6 idl) ;
spool que.write (spoocl_buff);
id2 = UNSUCC;
while (id2 == UNSUCC) {
id2 = mailboxl.locate (name2);
}
sprintf (spool_buff, "$s located:id2
namel, id2, name2) ;
spocl_que.write (spool buff);

%d,name2 = %s\n",

id3 = UNSUCC;
while (1d3 == UNSUCC) {
id3 = mailboxl. locate (name3);
}
sprintf (spool_buff, "%s located:id3 = %d, name3 = %s\n",
namel, 1id3, name3) ;
spool_que.write (spocl_buff);

93

mailboxl. send (id2, tempbuffl, lenl);
sprintf (spocol buff, "%s sent to:%s done\n",namel, name2) ;
spocl_que.write (spool_buff);
mailboxl. send(id3, tempbuffl, lenl) ;
sprintf (spocl_buff, "%s sent to:%s done\n", namel, name3);
spoocl que.write (spool buff);
lenl = 0;
while {lenl == 0) {
lenl = mailboxl.read(idl, tempbuffl, 64);
}
tempbuffl [lenl] = ‘\0';
sprintf (spocl_buff, "%s received:buff = %s,lenl = %d\n",
namel, tempbuffl, lenl) ;
spoocl_que.write (spool buff);
len2 = §;
while {(len2 == 0){
len?2 = mailboxl.read(idl, tempbuff2, 64);
}
tempbuff2 {len2] = "\0’;
sprintf (spool_buff, "%s received:buff = $s,len2
namel , tempbuff2, len2) ;
spool que.write (spool buff);

sd\n",

}:

user userx(3];

mailbox mailbox2 (CUSTOMER NUMBER, CUSTOMER_SIZE) ;
int 4i;

spoocler () ;
i=0;

userx{i] ("Mark", "Nino", "Dado");
i=1;

userx[i] ("Nino", "Dade", "Mark");
i=2;

userx{i] ("Dado", "Mark", "Nino");

fprintf (stderr, "Joining userx0,1,2...\n");

join{userx[0], userx(l], userx([2]):’

sprintf (spool_buff, "A@RERend");

spool_que.write (spool buff);

fprintf (stderr, "join spooler...\n"};

join (spoolar) ;

/* activity main would exit after sync condition is satisfied

This is

Appendix X
Sum.mpc

a paraliel summation algorithm, which can be called with the command:

sum low high small enough

95

where low is the lower bound of the range of integers to sum, and high is the upper bound, and
small_enough will determines the amount of parallelism. For example, the range of integers will be

recursively subdivided in haif until a sub-vector has small encugh elements in it.

program's comments {below) for detail.

S~
* o % o % X A F X ¥ X * X X X ¥ ¥ * ¥ *

»*
s

sum will add all the integers in a given range, from MIN tc MAX,
inclusive. the general algorithm is that the range will be
subdivided and recursively summed, and the results will be added
together. the user provides a value, SMALL ENOUGH, which indicates
when the subdividing should stop, and the sub-range added with a
FOR loop.

however, sum knows when there are nc more "virtual processes”
available to run activities on, and will stop subdividing when this
limit is reached. this limit can be changed by using the --P
switch to the MPC pre-processcr. the default is sixteen {16)
virtual processes,

this feature is what makes "sum” an interesting example. note that
when the program is run in monitoring mode, the sensor collector
will use one of the available virtual processes. thus, the
behavior ¢f "sum" may change when run in non-monitoring mode. this
can be corrected for by using the --P switch to increase the number
of virtual processes by cne (l) when in monitoring mode.

Please see the

#include <stdio.h>

/*
* the leaves of the decomposition will just add their results to the
* running total which is kept in "resval" in this shared frame.

*/

frame sum_£()

{

int resval;

opr void putsum(val)
int wval;
{
sync (get , put sum)
{

}

rasval = reasval + val;

}

opr int get ()
{
sync (get, put sum)
{
export (resval);
}

{
/* initialization */
resval = 0Q;
}
} zasult();

extern void sum p(}; /* forward declaration */

act sum_a(low, high, smallenough)
int low, high, smallancugh;

{

sum p (low, high, smallencugh);

};

wvoid sum_p (low, high, smallencugh)

int

{

low, high, smallancugh;

sum_ a sub_;;
int tmpa, i, £1, th;

INTEGER_SENSOR (low) ;
INTEGER_SENSOR (high) ;
if (low == high)

{

rasult.putsum(low) ;
return;

}
/%

* pcount the number of virtual processes which are in use,
* max processes the number of virtual

*/

if (workload-> pcount < max processes)

{
if
{

}

if
{

}

(smalleanocough = 1)

/* recursively unroll the rest of the dataset */
rasult.putsum{low) ;
sub_a(low+l, high, smallenough):

return; '

{(high - low + 1) > smallenocugh}

/* subdivide, keeping half for ocurselves */
tl = low + ((high-low) / 2) - 1;
th = low + ((high-low) / 2);
if (low <= tl && £l <= high)
sub_a(low,tl, smallencugh);
if (low <= th && th <= high)
sum p(th, high, smallenough) ;
join(sub_a):;
return;

/* it is already small enough */

tmpa =

for (i

result.

H
= low; i <= high; i++)
= tmpa + i;

putsum (tmpa) ;

processes available total.

97

main (arge, argv)
int arge:;
char **argv;

{
int the result;

if {(azrgc '= 4 ||
(argc == 4 && atoi(argv([l]) > atoi(argv([2])) ||
(arge == 4 && atoi{argv[3]) <= 0})

{
printf ("usage: %3 <low> <high> <small encugh>\n",argv({0]);
printf ("\twhere <low> is less or aqual tec <high>\a");
printf ("\twhare <small_enough> is greater than 0\n");
exit (0);

}

sum_p(atoi(azgv([l]),atoi(argv[2]),atoi{argv([3]));
the result = result.get():

printf ("%d\n", the_result);
}

file:///twhere
file:///twhere

99

Appendix Xi
Pde.mpc
This example program calculates a PDE in paraltel. This algorithm subdivides the grid into subgrids,
with a new activity assigned to calculate each subgrid. When the subgrid reaches a user-specified width
and height, subdividing is stopped and the PDE is calculated sequentially for that subgrid.

This takes a user-entered square array which holds the initial values for the grid. PDE also takes
dimensions which indicate the width and height of the subgrid which is considered to be "small enough" to
calculate sequentially.

It is called with a cormmand like:
pde w_gridsize h_gridsize w_subgridsize h_subgridsize max itez

where w_gridsize and h_gridsize are the dimensions of the input grid, where w_subgridsize
and h_subgridsize are the dimensions of the grid which is "small enough*. Once PDE is doing its
calcuiations sequentially, it will run trying to converge, or until it has made max_iter iterations.

#define XMAX 100 /* maximal width of the grid */
#define ¥YMAX 100 /* maximal length of the grid */
$define W 0.5 /* weight factor */

#define EPSILON 0.1 /* convergence precision */

#include <stdioc.h>

frame grid(X, Y)

int X X;
{
float grid data([X][Y]; /* actual gzid data */
int conv_flags([X] [Y]; /* 1- if difference to

* previocus iteration value
* on this grid element is
* lass than EPSILON
* O-otherwise */
int pde control; /* 1l-if everything should finish,
* Q-ctherwise */

opr float data(x, y)

int =, y;
{

export (grid data[x][y]):
}

opr int flag(x, y)

int x, y;
{

export (conv_£lags([x] [y]):
}

100

opr int done(}
{
export (pde_control);
}

{ /* initialization of flags */
int i, i;

pde_contzel = 0;
for (i = 0; i < XMAX; i++)
for (j = 0; j < YMAX; j++){
grid data[i][j] = O:
conv_flags([i] [j] = O:
}

}
} pdegrid (XMAX, YMAX); /* create grid instantiation "pdegrid" */

101

act pdecalc(xl, x2, yl, y2, mx, my, limh, limv, maxiter)

int xl, x2, yl, y2, ox, my, limh, limv, maxiter;
/***
(0,0)
7 ¥ 7 Y % e Je 7 v e % Yo ok % o W ok
I I
I I
I(xl,yl) I
I b I
I | | I
T ! I
I 4+ I
I (x2,y2) I
% 3¢ 3¢ e e 70 A % A e de ke e e R

(Iimh-1, limv-1)

***/

R
limh and limv represent the dimansions of the original grid
before any subdivisions were made, while xl1,x2,yl,y2 define
the subgrid given to this activity
*k f

S x*x
mx and my are the user supplied parameters which control the
process of splitting (ie. when x2-xl1 and y2-yl are smaller than
mx and my dimensions, splitting process should stop)
**/

VAL
maxiter is limit on the number of iterations
**/
{
pdeproc{xl, x2, yl, y2, mx, my, limh, limv,maxiter);
}:

102

pdeproc(xl, x2, yl, y2, mx, my, limh, limv maxiter)
int x1, x2, yl, y2, mx, my, limh, limv, maxiter;
{

int attempt, h, v, laft, right, up, down, sv;
int ex, ey, i, j, k, nx, ny;

flocat t,tmp, test, temp, a,b,c,d, e;
pdecalc subtask;

ax = x2 - xl1 + 1;

ey = y2 -yl + 1;

nx = ax/ (2 * mx);

ny = ay/ (2 * my);

if (ex > mx) {
/***
x dimension of the submatrix is larger than mx limit
{means we have to cut it in two partitions)
***/
if (nx == 0) nx = 1;
subtask (x1, (x1l+(nx*mx)-1),yl,y2, mx,my,limh, limv maxiter);
pdeproc ((x1+ (nx*mx)) , x2,yl,y2,mx, my, limh, limv maxiter) ;
join {subtask) ;
return;
}
if (ey > my) |{
/***
y dimension is larger than my limit
***/
if (ny = 0) ny = 1;
subtask (x1, x2,yl, {(yl+ (ny*my) -1) ,mx,my, limh, limv, , maxiter) ;
pdeproc (x1, x2, (yl+ (ny*my)),y2, mx, my, limh, limv, maxiter) ;
join (subtask) ;
return;

}

/**i
The product submatrix calculated
***/

attempt = 0;

test = 0;

de {

/* iterate until convergence */

for (h = x1; h <= x2; h++) {
for (v = yl; v <= y2; v++) {
if ((h=-1) < 0) leaft = limh - 1;

}

}

alse left = h - 1;

if {((h+l) >= limh) right = 0;
alse right = h + 1;
if ((v-1l) < 0) up = limv - 1;
else up = v - 1;

if ((v+l) >= limv) down = 0;

else down = v + 1;

pdegrid.data(h, v);
pdegrid.data(left, v);
pdegrid.data(right,)
pdagrid.data(h, up);
pdegrid.data(h, down):

* anUOw
nanmuan

temp = W * a + 0.25 * (1. - Wi*b +c +d + a);

if (attempt > maxiter) {
pdegrid.flag(h, v) = 1;
} else {
if {({tmp - a)}) > EPSILON ||
(tmp ~ a) < (~-EPSILON))
pdegrid. flag(h, v) = 0;
} else {
pdegrid.flag(h, v) = 1;
}
}
pdegrid.data(h, v) = temp;

attempt++;
test = pdegrid.done();
} while ('test);

{

103

104

veid wait convergence{h, v)
int h, v;
{
int i, 3, x, vy, f£l;

x=h-1;
y=v-1;
for (i =0;; (i++, (i = h) ? (i =0) : i)} |
fos; (3=0;; (3¢ (G =v) 2 (3=0 3)) {
*

* if this guy still doesn’'t converge set up full
* cycle marker on it

*/

fl = pdegrid.flag(i, j):

if (£1 = 0) {

x = i;
¥y =3
} else {

/* full cycle with all flags == 1 ? */
if (i = x && j==y) { /* XBS */
goto done;
}
H
}
}
done:
/* all flags are 1! Let’'s £inish ! */
pdegrid.done(} = 1;
}

init _grid(h, w)
int h, v;

/**t
input grid elements
***/
{
int x Y/
float tmp;

printf ("enter grid row by row\n"}:;
printf("row separator is CR\n");
for (y = 0; y < v; y++) |
for (x = 0; x < h; =++} |
scanf ("%£", &Gtmp);
pdegrid.data(x, y) = tmp;
}
while (getchar() !'= ‘\n’);
}
}

105

print_reasult (h, v}
int h, +;
{
int X Y/
flcat tmp;

printf ("\nresult:\n"};
for (y = 0; vy < v; y++} {
for (x = 0; x < h; =x++) {
tmp = pdagrid.data(x, y):
printf("%e ", tmp):;
1
printf("\n");
}
}

file:///nresult

106

main(argc, argv)

int arge;

char *argv([];
int xs, ys, mx, my, mi;
pdecalc cale;

if (argec t= 6) {
fprintf (stderr, "Usage: pde xsize ysize mx my mil\n"):;
exit ()

}

xs = atoi (azgv[l]): /* x-dim. of the grid */

ys = atoi(argv(2]); /* y-dim. of the grid */

mx = atoi{argv[3]): /* split dim. of the grid ie. splitting */
my = atoi (argv([4]); /* process will stop when the corespon. */
mi = atoci(argv[5]); /* dim. of resultant subgrid is less than */

/* my or my respectively */

if ((xs > XMAX - 1) || {(ys > ¥MAX - 1)) {
fprint £ (stderr, "grid too big: max(%d, 3d)\a", AMAX, YMAX):;
axit {);

}

init_grid(xs, ys);

/* start the initial activity */
cale(C, xs - 1, 0, ys - 1, mx, my, xs, ys . mi);

wait_ convergence (xs, ys):; /* master is checking on convergence
in parallel while waiting the
activities and teams to do the
calculations. This is simple
function call due to the fact that
mastar process has nothing to do
in the meantime anyway */

% * % % X

join (calc); /* DONE join activity */

print_ result (xs, ys);

107

Appendix XII
MPC Grammar
Much of the grammar in this section was taken from "A C reference Manuail” [Harbison and Steele 84,
The additional constructs unique to MPC can be found at the end of this section. Also reter to Chapter .

program .= { top-level-dec }*

top-level-dec ::= top-level-data-dec
| top-fevei-functicn-dec

top-level-data-dec ::= { type-class-spec)” { init-dcitr #, 1" "'
| frame-spec { frame-dcitr #,' }* '
| activity-spec { activity-acltr#,' }* "}
| name-type-def';
| type-def-spec’;

top-level-function-dec ::= { type-class-spec | { param-dec }* compound-stmt

local-data-dec = { type-class-spec}+ { init-dcitr #,' 1* '/
| frame-spec { frame-dcitr #, }* "}

activity-spec { activity-deltir &,)"}
} name-type-def';
| type-def-spec’;

name-fype-def ::= typedef£ { lype-spec }+ { p3-dcitr #.' }+
| typede£ identifier { p3-dchr #,' }+

type-name 3= {'"" }* identifier { '(' list-expression ')’ }? { [list-exprassion '] }? { =’ init-expression }?

type-def-spec :.= identifier { type-name #,' |+

108

parameter-dec ::= dec-spec { p3-dcitr#,'}" '}
type-name-dec ::= { type-class-spec }+ { p3-abs-dcitr}?
formal-dec ::= { type-class-spec}* p3-dcitr

ftype-class-spec = standard-class
| type-spec

standard-class = auto
| static
| extern

| register

type-spec .= standard-type
| structure-spec
| enum-spec

standard-type = char
| £loat
| double
| int
| short
| long
| unsigned

| void

structure-spec ::= struct identifier
| unicn identifier
| stzuct { identifier}? (' { structure-dec}” '}’
| union { identifier }? '{' { structure-dec}” '}’

structure-dec ::= { lype-class-spec }+';

structure-delir ::= p3-dcitr
| { p3-dcitr}? " expression

enum-dec ::="{' [enum-dcitr #,' }+ {",' }? 'Y

enum-spec ;= enum identifier
| enum { identifier }? enum-dec

enum-dcitr := identifier { '=' expression }?

p1-dchr .= identifiar
(" p3-dehr’y

p2-defir .= p1-deltr
| p2-deitr'({ formal-dec #." }™ 'Y
| p2-deitr '’ fist-expression ']

p3-acitr := p2-dcitr
| *** p3-ceitr

init-dcifr ;.= p3-deltr { '=' init-expression }?

init-expression .= expression
|'{' { init-expression#,"}+ {",'}?'}

p2-abs-dcitr ::= p1-abs-dchtr
| { p2-abs-dcitr}? °(" Y’
| { p2-abs-doftr}? ' list-expression]

p3-abs-deitr := p2-abs-deitr
"™ { p3-abs-dciir}?

compound-stmt ::="{" { dec-or-strmt}* '}’

dec-of—strm‘ .= local-data-dec
| statement

basic-stmt = e-stmt
} compound-stmi
| do-strmt
| break-stmt
i continue-stmt
| return-stmt
| goto-stmt
| sync-stmt
| dsync-stmt
| join-strrit
| detach-stmt

balanced-stmt ;= basic-strmt
| balanced-while
| balanced-for
| balanced-ifalse
| balanced-switch

10

| label unbalanced-stmt

unbalanced-stmt ::= unbalanced-while
| unbalanced-for
| unbalanced-if
| unbalanced-ifelse
| unbalanced-switch
| label unbalanced-stmt

balanced-ifelse ::= if (' list-expression ')’ balanced-strmi else balanced-strmit
unbalanced-ifelse .= i £°'(' list-expression’) balanced-stmt el se unbalanced-stmt
unbalanced-if ;== if '(’ list-expression’)’ staterment

staterment ::= balanced-stmt
| unbalanced-stmt

g-stmt :i= list-expression’;

balanced-while ::= while (" list-expression')' balanced-stmt

unbalanced-while ::= while '(' list-expression’)’ unbalanced-strmt

do-stmt ::= do strmt while '(list-expression’)' '}

balanced-for ;= fox '(' fist-oxpression'; list-exprassion’; list-expression') balanced-strmt
unbalanced-for := for '’ list-expression’; fist-expression’;' list-expression’)' unbalanced-stmt
balanced-switch ;= switch (' fist-expression’)’ balanced-expression |
unbalanced-switch ::= switch (' list-exprassion’)’ unbalanced-expression

break-stmt ;= break '}
continue-stmt .= continue '}

return-stmt ::= retuzrn '(* list-expression’y '}
goto-stmt ::= got.o identifier’;

fabel ::= name-label
| case-label
| default-label

name-iabel = identifier’:”
case-label ::= case expression’:
default-label ::= default '’

literal .= integer
| float
| character
| string

primary-p1-expression :;= identifier
| literal
| '{' expression’)’
| sizeof (' type-name-dec')’

primary-p2-expression .= primary-p 1-expression
| prmary-p2-expression 'l list-expression '}’
| primary-p2-expression '(’ list-expression 'y
| primary-p2-expression’.’ identifier
| primary-p2-expression’->" identifier

postfix-expression ::= pamary-p2-expression
| postfix-expression pre-postfix-operator

pre-postfix-operator ::= '++'

prefix-expression ::= postfix-axpression
| sizeof prefix-expression
| pre-postfix-operator cast-expression
| '™ cast-expression
| '&&’ cast-expression
| negation-operator cast-axpression

negation-operator ::='-'
I L !r

I L.

cast-expression ::= prefix-expression
!'(’ type-name-dec')' cast-expression

muttiply-operation-exprassion ::= cast-expression
| multiply-operation-expression muttiply-operator cast-expression

112

multiply-opsrator ;.= "™
|7
l 1 °/° L

addition-operation-expression ::= { addition-operation-expression addition-operator }?
multiply-operation-expression

addition-operator = '+’

shift-operation-expression t= { shift-operation-expression shift-operator }?
addition-cperation-expression

shift-operation = '<<’

| ‘>’

relation-operation-expression :.= { relation-operation-expression relational-operator }?
shift-operation-expression

relational-operator = '<’'
| l>!
1 L} <=l

1>

equality-operation-expression ::= { equality-operation-expression equality-operator }?
relation-operation-expression

equality-operator ;= '==’

|t

bitand-operation-expression ::= { bitand-operation-expression'&’ }? equality-operation-expression
bitxor-operation-expression ::= { bitxor-operation-expression'"' |? equality-operation-expression
bitor-operation-expression = { bitor-operation-expression '|' }? equality-operation-expression
and-operation-expression ::= { and-operation-expression'&&’ }? bitor-operation-expression
or-operation-expression ::= { or-operation-expression'|' }? and-operation-expression
conditicnal-expression ::= or-operation-expression {'? list-expression "' conditional-expression }?
expression ::= conditional-expression { assigqmenr—operator expression }?

assignment-operator ::='='

Il+=l

113

l II=I
| l/-:!
| "%=’
! !>>=!
| ‘=’
| 3 &=|
l ALt
| "=’
list-expression .:= { expression #,"}*
frame-spec .= frame-tag-dcitr { parameter-dec }* '{’ frame-dec’) '
frame-dec ::= { local-data-dec }* { frame-operation }* frame-initialization
frame-operation .= opr { type-class-spec}* (operation-name) { parameter-dec }* operation-body
frame-dcitr 1= identifier { '{’ list-expression'} }? { ' list-expression’] }?
frame-tag-dcitr .= £zame identifier’(' { formal-dec #, }* ')
operation-body ::='{' local-data-dec { statement }* export-statement { statement}* ')’
export-statement ::= export '’ list-expression’)’ operation-name ::= identifier'(’ { formal-dec #, }* 'y
frame-initialization ::= compouna-stmt
sync-stmt ::= sync (' list-expression’) compound-stmt
dsync-stmt ;.= dsync '(’ fist-axpression’)’ compound-stmt
join-stmt ::= join '(’ list-expression’y ';
detach-stmt ;= detach '(’ list-expression'y ';
activity-tag-dcitr = act identifier'(’ { formal-dec #,’ }* ")’
activity-dclr .= identifier { ' list-expression’]' }?

activity-spec ::= activity-tag-dcitr { parameter-dec }* compound-stmt’;’

114

[Gregoratti 85]

References

Francesco Gregoretti, Zary Segall.

Programming for Observability Support in a Paralle! Programming Environment.

Technical Report CMU-CS-85-176, Computer Science Department, Carnegie Mellon
University, November, 1285.

[Harbison and Steele 84]

[Segall 85)

[Snodgrass 82

[Vrsalovic 84]

S.P.Harbison, G.L. Steeie.
A C Reference Manual.
Prentice Hall, Englewcod Clifs, NJ 07632, 1984.

Zary Segall, Larry Rudoiph.

PIE - A Programming and instrumentation Environment for Parallel Processing.

Technical Report CMU-CS-85-128, Computer Science Department, Carnegie Melion
University, April, 1985.

Richard Snodgrass.

Monitoring Distributed Systems: A Relational Approach.

PhD thesis, Department of Computer Science, Camegie Mellon University, December,
1982.

D. Vrsalovic, D. Siewiorek, Z. Segall, E. Gehringer.

Performance Prediction and Calibration for a Class of Multiprocessor Systems.

Technical Report, Department of Computer Science, Carnegie Mellon University,
August, 1984.

