
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Performance Efficient Parallel
Programming in MPC

D. Vrsalovic, Z. Segall, D. Slewlorek, F. Gregorettl, E. Caplan,
C. Fineman, S. Kravitz, T. Lehr, M. Russinovich)

13 July 1988
CMU-CS-88-167,

Department of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Abstract

Multiprocessor C (MPC) a C language preprocessor, which assists a programmer in building efficient
parallel programs, is described. MPC provides the programmer with a virtual implementation machine.
We also present the Consistent Abstract Shared Data Type Implementation Machine (CASDTIM). PIE
embraces the concept of "programming for observability" in which the user makes use of visual tools to
aid in the development testing and debugging of his application. Extensive examples written in MPC are
presented in the Appendices.

This research has been supported in part by the Ballistic Missile Defense Advanced Technological Center
under contract DASG-60-86-C-0015. The views and conclusions contained in this paper are those of the
author(s) and should not be interpreted as representing the official policies, either expressed or implied, of
BMDATC, Carnegie Mellon University or the U.S. Government.

Table of Contents
1. Introduction
2. MPC

2.1 . Activities
2.1.1. Activity usage
2.1.2. Example: Matrix Multiplication
2.1.3. Hints on using activities efficiently

2.2. Frames
2.2.1. Frame Usage
2.2.2. Frame Syntax
2.2.3. Synchronization within a frame

2.2.3.1. Sync
2.2.3.2. Dsync
2.2.3.3. Synchronization example

2.2.4. Frame Examples
2.2.4.1. Stream
2.2.4.2. Mailbox
2.2.4.3. Dynamic Frames

2.2.5. Queues
2.2.6. Semaphores
2.2.7. Barriers

3. Using MPC
4. Advanced MPC

4.1 . MPC Run-time Support: Standard Data Structures and Functions
4.1.1. Standard MPC run-time structures

4.1.1.1. Naming
4.1.1.2. Byte addressing
4.1.1.3. Queues
4.1.1.4. Locks
4.1.1.5. Conditions
4.1.1.6. Synchronization
4.1.1.7. Global memory management
4.1.1.8. Activity control block
4.1.1.9. Workload control block

4.1.2. Standard MPC run-time functions
4.1.2.1. Workload organization: horses and riders
4.1.2.2. Queue related functions
4.1.2.3. Lock related functions
4.1.2.4. Condition related functions
4.1.2.5. Synchronization functions
4.1.2.6. Global heap related functions
4.1.2.7. Activity and workload related functions

4.2. Some programming tricks
4.2.1. Activity identification: using my__act
4.2.2. Using locks and conditions

4.2.2.1. A test-and-set function
4.2.2.2. Signalling
4.2.2.3. Dynamic memory allocation

4.3. Skeleton of an MPC generated C file.

il

Appendix 1. Count.mpc 47
Appendix II. Varcount.mpc 49
Appendix III. Matrix.mpc 53
Appendix IV. Newmatmpc 61
Appendix V. Qsortmpc 67
Appendix VI. Sortm.mpc 71
Appendix VII. Search.mpc 75
Appendix VIII. Sieve.mpc 79
Appendix IX. Mail.mpc 83
Appendix X. Sum.mpc 95
Appendix XI. Pde.mpc 99
Appendix XII. MPC Grammar 107

Hi

List of Figures
Figure 1-1: PIE - Performance Efficient Parallel/Distributed Programming Environment 2
Figure 2 -1 : Parallel matrix multiplication 6
Figure 2-2: Time lines for two versions of matrix multiply 9
Figure 2-3: A simple frame 12
Figure 2-4: Frame skeleton with sync statements 13
Figure 2-5: A MPC implementation of a shared matrix 15
Figure 2-6: Matrix with more efficient synchronization 15
Figure 2-7: A mpc implementation of a byte stream 16
Figure 2-8: A MPC implementation of a mailbox - first part 18
Figure 2-9: A MPC Implementation for a shared global heap 21
Figure 2-10: Memory manager implemented as a MPC frame 23
Figure 2-11: MPC implementation of a queue 24
Figure 2-12: MPC implementation of a semaphore 25
Figure 2-13: A barrier coded in MPC 26
Figure 4 -1 : Queue structures 30
Figure 4-2: Lock structure 30
Figure 4-3: Condition structure 30
Figure 4-4: Synchronization structure 31
Figure 4-5: Global memory management structures 31
Figure 4-6: The activity control block structure 32
Figure 4-7: The workload control block structure 33
Figure 4-8: Queuing functions 35
Figure 4-9: Locking related functions 35
Figure 4-10: Condition related functions 36
Figure 4-11: Synchronization related functions 37
Figure 4-12: Memory management functions 38
Figure 4-13: Activity and workload related functions 39
Figure 4-14: An Example of using mp_test_andJock 41
Figure 4-15: Example of using locks and conditions 42
Figure 4-16: Skeleton of an MPC program 44
Figure 4-17: Skeleton of first half of resulting C file 45
Figure 4-18: Skeleton of second half of resulting C file 46

1

1. Introduction

Modern parallel systems are designed to achieve two main goals: high performance and increased

availability. Both goals can be achieved via parallel use of the system resources, but one should be

aware of the fact that the use of parallelism brings increased system complexity. Conventional system

design tools tend to cope with increased complexity of the designs by imposing a layered hierarchy

utilizing the concept of abstraction. Intensive use of communication and synchronization is required to

implement these abstractions. While abstractions simplify design time complexity, they are a major source

of run-time performance degradations.Performance degradation will usually arise in one of four, forms: 1.

delays due to contention on common resources, 2. delays due to synchronization overhead, 3. increased

load due to unfavorable parallel decomposition, and 4. unbalanced load on the resources in the system.

While the first two forms of degradation have been widely investigated, we know of no models today

which are capable of analyzing the latter two. These forms of degradation remain a challenge for future

research.

The role of models is to predict performance bottlenecks during the design process, and thus reduce

time spent during the development. Due to the simplifying nature of models, we cannot expect them to

predict ail of the bottlenecks. Thus special tools are required to assist the developer in detecting further

sources of performance degradation. Unfortunately, these tools require run-time data collection which, in

practice, is invasive. Invasive tools not only add to the workload but also can artificially introduce new

bottlenecks.

Once programmer has produced his best design, the role of minimizing remaining performance

degradation falls upon run-time support system. The PIE project, as depicted in Figure 1-1 supports the

entire design process from modeling(i.g. prevention), to monitoring(e.g. detection), to run-time(e.g.

avoidance).

PIE [Segall 85] views parallel processing in the context of "implementation machine" (IM) models. IMs

are the user templates which supply low level process synchronization and communication details for the

programmer. The user can thus concentrate on algorithm design and implementation to a greater degree

than previously possible.

The PIE system's approach tends to eliminate performance degradations due to classical structured

approaches by introducing "virtual" rather than "physical" layers. The structure is available during program

development time when the abstractions are required to assist in understanding the complexity. By run

time, however, the structure has been flattened and removed yielding higher performance parallel

programs.

PIE also embraces the concept of "programming for observability" in which the user makes use of

visual tools to aid in the development, testing and debugging of his application [Gregoretti 85] [Snodgrass

82]. During development, the PIE system incrementally builds a view of the user program's semantic

2

I
Prevent ion

P I E

Detect ion Avo idance

Pennod

- Contention

- Decomposition

- Synchronization

- Imbalance

Advisor

• frames
• activities
• sync
- teams /

PIEmacs

M PC

\

Runtime

PIEmon

OS

Hardware

- Special purpose

Software
- Avoidance
algorithms
& policies

Figure 1-1: PIE - Performance Efficient Parallel/Distributed Programming Environment

structure. During testing and debugging, the PIE system allows the user to view the execution of the

program (either in-line or post-mortem). It is hoped the the extra information gleaned from the visual

displays will help the user think more clearly about how his program's is behavior.

The present PIE environment consists of several components:

• PERMOD [Vrsalovic 84] is the performance modeling tool which allows for performance
prediction in the early stages of the design of parallel systems.

• MPC (Multiprocessor C) is a C preprocessor that converts special MP (Multi-
Processor)language constructs to C program syntax. It implements the "Consistent abstract
shared data implementation machine" (CASDIM). Despite the fact that the target machine
could be of a different architectures, MPC provides the CASDIM model to the user through
the run-time resolution of the data consistency problems, and the physical synchronization,
and communication.

• PIEman implements a relational model for each PIE IM. Ail PIE tools share data via the
relational model.

• PIEmacs is a Gnu-Emacs based editor which extracts the development time data about the
target program and assists in instrumenting it for the run-time monitoring purposes.

• PIEscope allows all the development and the run-time data to be presented to the PIE user
in a graphical form.

• PIEmon supports the collection and storage of run-time events via the use of sensors.

The following text deals with the MPC part of the PIE only. Multiple examples are given throughout the

text for illustrative purposes. A special section on how to use the MPC is added. The appendices contain

the full MPC grammar as well as a number of MPC test programs.

3

2. MPC

Chapter 1 introduced the concept of the implementation machine or, IM. Unlike the typical virtual

machine approach which relies on very generalized, high level interfaces which are reflected in the run

time structure of the code, the implementation machine approach translates the user code into target

machine code using only low level calls to the run-time system. The current version of MPC supports the

Consistent Abstract Shared Datatype Implementation Machine or, CASDIM {see chapter}.

MPC is a special preprocessor which translates MP syntax into a C program. It consists of three

distinct parts: an analyzer, a constructor, and a target code generator.

The analyzer takes an MPC program as input which the constructor then converts to a C program.

Although the resulting C program may differ from machine to machine, the original MPC program need

not be changed. The analyzer also assists in instrumentation of the MPC program so that run-time

performance data can be collected. In the present implementation, the target code generator is the C

compiler, in the linking stage of the C compiler the user should use the mpc runtime support library.

The MPC language is modeled directly on C allowing parallel processing application programmers to

use a language with which they are already familiar. All standard C commands and constructs are

recognized by MPC. Identifiers, however, cannot begin with mp_ or MP__, since the constructor uses

these as prefixes for internal identifiers. Consequently, virtually any program (noting the above

mentioned exception) that compiles under C, will also compile under MPC. MPC merely adds several

new constructs that allow for efficient parallel algorithm design, including:

1. ACTIVITIES: Sequential units of computation that are spawned and executed in parallel
with the creating function.

2. JOIN AND DETACH STATEMENTS: Commands that allow activity management.

3. FRAMES: An encapsulation of global data and operations on that data. Frames are shared
among specified activities and/or C functions and thus represent shared abstract data
types.

4. SYNC AND DSYNC STATEMENTS: Meta constructs that provide for synchronization of
parallel activities and used in frames to assure exclusion on the specific parts of the frame
data.

5. TEAMS: Groups of activities and frames composing a unique subsystem with an associated
communication and synchronization structure.

6. SENSORS: Location for collecting information on parallel program execution during run
time.

The complete MPC grammar is included in Appendix XII and is a modified version of the C grammar in

A C Reference Manual [Harbison and Steele 84] with the above MPC constructs added.

4

2 .1 . Activities

Parallelism is achieved through the use of activities. An activity is basically a procedure whose

invocation spawns off another thread of control to execute the body of that activity in parallel with the

calling activity. 1 MPC also provides constructs for joining with and detaching from activities.

2.1.1. Activity usage
An activity may be declared anywhere a data declaration is legal except inside structures and formal

parameter declarations. A definition of an activity (or vector thereof) may be instantiated anywhere a data

declaration is legal (even in structure and parameter declarations). An instance of an activity may be

invoked anywhere a function invocation is legal (except in data initialization). Declarations and

instantiations of activities are treated as data declarations and hence share a name space with normal C

declarations. One might ask at this point why it is necessary to instantiate activities if no extra information

is supplied at the time of instantiation. It is because both the user and MPC need a name for a particular

activity when joining with or detaching from it (see below).

As was stated, activities are very much like functions. The differences being that they run in parallel to

the calling activity and they do not return a value. Additionally, since an activity may run in a different

process (depending on the architecture of the target machine), arguments are passed BY VALUE ONLY.

This means that passing pointers to an activity is not possible and, perhaps, not meaningful. The only

way to share data between different activities is via the use of frames (see section 2.2), a construct for

specifying abstract shared data types.

There are many applications in which the programmer would like to wait at a certain point for an activity

(or set of activities) to finish executing before proceeding. MPC provides the join statement for such

situations. Join appears as a function call that takes a list of instances of activities as it arguments. By

default, upon completing, an invoked activity will wait until it is joined. This is undesirable if no activity will

join with this one as it will continue to hold resources. If you know that no activity will attempt to join with

the completed activity, you should include a detach statement in your code after invoking the activity.

Detach appears as a function call and takes a list of activity instances as its arguments. Each activity

instance passed to detach will exit immediately after performing its task.

Below we describe the syntax of activity related constructs in MPC and then present a simple

application: parallel matrix multiplication. Note that all syntax specifications are given in BNF.

Activity declarations appear as follows (note that one may declare instantiations of an activity as part of

the declaration of that activity):

activity-spec : := activity-tag-dcitr { parameter-dec }*
compound-strut

1 Note that the procedure main is also considered an activity.

5

{ activity-dcttr #','}* ' ; '

activity-tag-dcttr : : = a c t identifier ' (' { formal-dec #',' }* ')'

An activity instance (or vector thereof) is of the form:

activity-dcttr : := identifier { ' [' list-expression ']' }*

and may appear as above (as part of an <activity-spec>) or in a semicolon-terminated list following the

name of an activity declaration (as given in <activity-tag-dcitr>).

As stated above, join and detach appear as function calls. Their syntax is:

join-statement : := j o i n ' (' { activity-instance #',' } * ') ; '

detach-statement : : = de tach ' (' { activity-instance #',' }* ');'

2.1.2. Example: Matrix Multiplication
The following example is an activity definition which includes instantiations of itself, and calls to the

instantiations.

This activity performs parallel matrix multiplication. It achieves this by dividing up a large matrix into

smaller subsections, and spawning activities that further divide the subsections, and then finally performs

multiplication for some terminal subsection, combining results as each subtask finishes. For now, let us

assume the existence of three shared matrices (the two factors and the product) that are global to the

application. Also, assume that the function do_mult performs the actual multiplication for some terminal

subsection of the matrix.

In Figure 2 .1 , the line defines this activity with the name m u l t i p l y . It also shows that activities of this

type need seven integer parameters. In the data declaration section of the activity, several local variables

are declared, as well as two activities of type m u l t i p l y called subtask [o] and subtask [l] . This is a

good example of how activities can include instantiations of themselves. Self instantiation is also possible

in frames and can be directly related to the way this can be done with structures.

The activity is passed two variables, mx and my representing limits placed on the granularity of how the

matrix can be divided up. The parameters x i , x2, y i and y2 define the submatrix that the activity has to

work with. Several i f statements check to see if it is still possible to divide up the submatrix further, and

if so, the submatrix is divided in half and passed to two subactivities sub task [0] and s u b t a s k [i] ,

instantiated at the top of the activity, which in turn perform the same tests. If the submatrix cannot be

divided any further (i.e. the dimensions are less than or equal to mx by my), the do_muit routine is called

to calculate the product of the resultant matrix delimited by x i , x2, y i , and y2.

a c t m u l t i p l y (x l , x 2 , y l , y 2 , x n x , x n y , sz)
/ * * *

x l x2
y 2 * * * * * *

* *

*** /
i n t x l , x 2 , y l , y2 ,mx,my, s z ; / * s z i s t h e o r i g i n a l m a t r i x s i z e * /
{ / *mx and my a r e d e s i r e d s u b m a t r i x * /

i n t ex , ey , i , j , k; / ^ d i m e n s i o n s * /
f l o a t t , tmp;
m u l t i p l y s u b t a s k [2] ; / * t h i s i s an i n s t a n t i a t i o n o f two

a c t i v i t i e s o f t h e same t y p e * /
ex = x2 - x l + 1 ;
ey = y2 - y l + 1 ;
/ * t r y t o c u t t h e l o n g e r s i d e i f p o s s i b l e * /
i f (ex > ey) {

i f (ex > mx) {
/ * c u t a l o n g x d i m . and g i v e h a l v e s t o c h i l d r e n * /
s u b t a s k [0] (x l , (x l + e x / 2 - 1) , y l , y 2 , m x r m y , s z) ;
s u b t a s k [1] ((x l + e x / 2) , x 2 , y l , y 2 , m x , m y , s z) ;
j o i n (s u b t a s k [0] , s u b t a s k [1]) ;
e x i t () ;

}
e l s e i f (ey > my) {

/ * cu t a l o n g y d im. and g i v e h a l v e s t o c h i l d r e n * /
s u b t a s k [0] (x l , x 2 , y l , (y l + e y / 2 - 1) , m y , m y , s z) ;
s u b t a s k [l] (x l , x 2 , (y l + e y / 2) , y 2 , m x , m y , s z) ;
j o i n (s u b t a s k [0] , s u b t a s k [1]) ;
e x i t () ;

}
}
e l s e i f (ey >= ex) {

i f (ey > my) {
/ * c u t a l o n g x d im. and g i v e h a l v e s t o c h i l d r e n * /
s u b t a s k [0] (x l f x 2 , y l , (y l + e y / 2 - 1) , m y , m y , s z) ;
s u b t a s k [l] (x l f x 2 , (y l + e y / 2) , y 2 , m x , m y , s z) ;
j o i n (s u b t a s k [0] , s u b t a s k [1]) ;
e x i t () ;

}
e l s e i f (ex > mx) {

/ * c u t a l o n g y d i m . and g i v e h a l v e s t o c h i l d r e n * /
s u b t a s k [0] (x l , (x l + e x / 2 - 1) , y l , y 2 , z n x , m y , sz) ;
s u b t a s k [1] ((x l + e x / 2) , x 2 , y l , y 2 , m x , m y , s z) ;
j o i n (s u b t a s k [0] , s u b t a s k [1]) ;
e x i t () ;

)
}
e l s e {

/ * no more c h i l d r e n - do i t ! * /
dojonult (x l , x 2 , y l , y 2 , sz) ;

}
};

Figure 2 - 1 : Parallel matrix multiplication

7

2.1.3. Hints on using activities efficiently
There are many ways to start a number of parallel activities, but one would always like to do this as

efficiently as possible . The same is true for multiple join operations. The importance of this issue

depends on the granularity of parallelism in the particular application.

The simplest way of spawning (and joining) N parallel activities is to use a loop construct like in the

following example:

some_act x n y _ a c t i v i t y [N] ;

f o r (i = 0 ; i < N;i++) {
m y _ a c t i v i t y [i] (p l , p 2 , , p N) ;

}

f o r (i = 0 ; i < N;i++) {
j o i n (m y _ a c t i v i t y [i]) ;

}

It is often very useful to pass the index i as the parameter to the activity so their functionality can vary at

the runtime.

A much more performance-efficient way to start up N parallel activities is to use recursions. In order to

accomplish recursion the activity must include at least one instance of itself. The following example

shows how one could start up a pipeline of activities using recursion,

a c t f o o (. . . .)

{
f o o bar;

do_sonie_worJc () ;

b a r () ; / * Thi s w i l l s t a r t a new
a c t i v i t y o f t y p e f o o . * /

do_some_work () ;

j o i n (b a r) ;
};

Better efficiency of such a solution comes from the fact that after the first activity is spawned in parallel

it can start some more activities itself and thus the whole startup process could be done in parallel.

Keeping this in mind, let us revisit the matrix multiplication example (in Figure 2-1). The most natural

way to use recursion when starting the activities was to form a binary tree where each activity starts two

children and then waits for them to finish. However, closer examination reveals that when the startup

procedure is done there will be n/2 - 1 parent activities waiting for children to finish some processing and

n/2 activities doing actual useful work. Due to the fact that waiting activities consume system resources

(despite the fact that they are blocked most of the time) there is a better scheme to start up n/2 activities.

8

This scheme is based on the fact that each activity cuts the work in half but passes only one half to the

child while retaining the other half for itself. Thus, only working activities will exist, even though some of

the activities will also have responsibilities to spawn and join children. Thus, the matrix multiplication

activity from the previous example should be rewritten as follows:
act: m u l t i p l y (x l , x 2 , y l , y2,mac,my, sz)
i n t x l , x 2 , y l , y2 ,mx,my, s z ;
{

f u n c t ^ m u l t i p l y (x l , x 2 , y l , y2,xnx,my, sz) ;
};

where f u n c t _ m u i t i p i y is defined as follows:

f u n c t _ m u l t i p l y (x l , x 2 , y 1 , y 2 , mx, my, s z)
i n t x l , x 2 , y l , y 2 , m x , m y , s z ;

{
i n t e x , e y , i , j , k ;
f l o a t t , t m p ;
m u l t i p l y subtask ; / * T h i s i s an i n s t a n t i a t i o n o f

one a c t i v i t y o f t h e same t y p e . * /
ex = x2 - x l + 1 ;
ey = y2 - y l + 1 ;
/ * t r y t o cut t h e l o n g e r s i d e i f p o s s i b l e * /
i f (e x > e y) {

i f (e x > mx) {
/ * cut a l o n g x d im. and g i v e a h a l f t o a c h i l d * /
s u b t a s k (x l , (x l + e x / 2 - 1) , y l , y 2 , m x , m y , s z) ;
/ * p r e s e r v e h a l f f o r y o u r s e l f * /
f u n c t _ m u l t i p l y ((x l + e x / 2) , x 2 , y l , y 2 , m x , m y , sz) ;
j o i n (s u b t a s k) ;
e x i t () ;

}

as b e f o r e

}
}

Consider the time-lines generated by PIEscope in Figure 2-2. Both versions of matrix multiplication

were executed using identical da ta Note the difference in both the time it took to execute the algorithm

as well as the number of activities used to calculate the product. The single child version of the algorithm

was more efficient in resource utilization.

2 . 2 . F r a m e s

Since activities may execute in different address spaces, some mechanism is required for

communicating between them. Frames provide a means for the programmer to specify and manipulate

shared data objects. Basically, a frame is a collection of sharable data along with the operations that

manipulate that data. For example, a frame could be composed of a data structure for a queue along

9

izoon/neterl[help]BuTtl [refresh!Ivieusl[fontlfsenotelIrealtinelWiI IzoonYweterl[help![quit!Irefreshl[uiaisl[font]fsenotel[realtinei jpro
Piescope uieu: execution-barscope | Piescope vieu: execution-barscope
experinent title: <no experiftent nane> I experinent title: <no experinent nane>
select by type: |HOIlEillOOElIlEiO]^l I select by type: EQIJEi 10003011]SHii^

•
a
•
•

nam
Multiply
Multiply

4lnmtipiy
51 nul ti pi y

^ biHUltiply
•
•

/multiply
8inuitiply

natrix.enc.64.32.32.u
Nou begin to scan the input file
taiier: 33 sensors read in ail

reconputing graphics, please uait...done

29816

neunat.enc.64.32.32.u
Nou begin to scan the input file
taiier: 41 sensors read in ail

reconputing graphics, please uait...dore

28999
• 0 nain
• 2!flUltiply
• 3{№Jitiply S " " •

4lnuitiply 1 . !

• 5inuitipiy i

Figure 2-2: Time lines for two versions of matrix multiply

with the operations put and get MPC also provides Synchronization support for these operations (both

data and control-flow Synchronization is available).

2.2.1. Frame Usage
As with activities, frames may be declared anywhere a data declaration is legal (expect in structures

and formal parameter declarations). A frame declaration is really a template which takes arguments.

These arguments are usable as constants when defining the global data and operation of the frame. The

user supplies the arguments to the template at instantiation time. A frame instantiation may appear

anywhere a data declaration is legal (including in structures and parameter declarations). Just as with

activities, frame declaration and instantiation names share the standard C name space.

As stated above, frames are an encapsulation of a data object for use by parallel access. Thus, the

first thing defined in a f rame
2 is the data it encapsulates along with any internally used declarations. The

frame local data can be of any legal C type as well as declarations and/or instantiations of other frames

and activities.

After the data encapsulated by the frame (and any internal data) has been declared, the operations on

that data must be defined. Operations are implemented as in-line functions. When a call to an operation

is seen by MPC, any parameters passed to an operation are substituted into the operation definition and

2

S e e s e c t i o n f o r a d e s c r i p t i o n o f t h e f r a m e s y n t a x

10

the code is expanded in-line by the code generator. Note that local data declarations within an operation

is permissible.

Operations that return a value require exactly one e x p o r t statement somewhere in their body. The

export statement is analogous to the return statement in that it specifies the value to be returned by the

operation. However, the export statement does not branch out of the operation. All commands before

the e x p o r t in the operation definition are expanded before the statement that includes the call to the

operation. All commands after the e x p o r t are expanded after the calling statement. The expression

within the e x p o r t is expanded directly into the calling line.

The semantics of the export statement has some serious ramifications on the definition and usage of

frame operations. For one, since only one export statement can appear in the code, the user should

create a local variable for containing the result if the result of the operation could be generated in one of

several branches of a condition. In addition, it means that they can be unfolded as the LHS or RHS of

expressions only. That is, export statements cannot appear as arguments to procedures or in conditional

clauses. To make this latter problem more clear let us consider the following example:

o p r i n t t e s t ()

{
i n t a ;

a = (r e a d _ p t r < w r i t e _ p t r) ;

e x p o r t (a) ;

}

To use this frame operation as the test for a while loop, code the loop as follows:

t e m p = f r a m e . t e s t () ;

w h i l e (t e m p) {

t e m p = f r a m e . t e s t () ;

}

which is unfolded into C code like:

{
i n t m p _ x x _ a ;

m p _ x x _ a = (i n t) (f r a m e [0] - > r e a d _ p t r < f r a m e [0] - > w r i t e _ j p t r) ;

t e m p s x n p x x a ;

w h i l e (t e m p) {

m p _ x x _ a = (i n t) (f r a m e [0] - > r e a d _ p t r < f r a m e [0] - > w r i t e _ p t r) ;

t e m p = s x n p x x a ;

)

In future versions of the MPC compiler, substitution of the local variables will be done automatically.

Thus, frame operations will be permissible in almost all contexts.

11

Finally, frames must also contain some initializing function at the end of their definition. This function

can be null, but open and close braces must be present. Every time a frame is instantiated the

initialization function for that frame is executed. A common use for the initialization function is the

initialization of global memory. An example of usage of the initialization function is provided later.

2.2.2. Frame Syntax
The syntax related to frames is described below. Following that is a detailed description of how the

sync and dsync statements is given. Finally, several examples are presented on how one might

implement and use different common data types.

Frame declarations appear as follows (note that, as with activities, one may declare instances of a

frame as part of its declaration). All syntax forms are given in BNF.

frame-definition : := frame-spec { frame-dcltr #',' }*

frame-spec : := frame-tag-dcttr { parameter-dec }* '{' frame-dec '}' ' ; '

frame-tag-dcltr f r a m e identifier ' (' { formal-dec #',' }* ')'

frame-dec :: = { local-data-dec } * { frame-operation } * frame-initialization

frame-operation : : = o p r { type-class-spec }* operation-name { parameter-dec }*
operation-body

operation-name : := identifier ' (' { formal-dec #',' }* ')'

operation-body ::= '{' local-data-dec
{ statement }*
export-statement>
{ statement } * '}'

export-statement : : ? = e x p o r t ' (' list-expression ');'

frame-initialization : := compound-stmt

sync-statement : : = s y n c ' (' { opr-name #',' }*
compound-stmt

dsync-statement : : = d s y n c ' (' list-expression ')'
compound-stmt

The syntax for instantiating a frame (or vector thereof) is:

frame-dcltr : := identifier r {' list-expression ')' { 9 [' list-expression ']' }*

and may appear within the declaration of a frame or in a semicolon-terminated list following the name of a
frame (as given in <frame-tag-dcltr>).

An invocation of a frame operation is of the form:

frame-opr-call : := frame-instance ' . ' opr-name ' (' list-expression ')'

12

where,
frame-instance ::« identifier { 1 [' list-expression ']' }*

f rame m a t r i x (rank)
i n t r a n k ;

{
f l o a t m a t [r a n k] [r a n k] ;

opr f l o a t g e t (i , j)
i n t i , j ;

{
e x p o r t (mat [i] [j]) ;

}

opr f l o a t p u t (i , j)
i n t i , j ;

{
e x p o r t (m a t [i] [j]) ;

}

{
b z e r o (m a t , s i z e o f (f l o a t) * r a n k * r a n k) ;

}
} a (5) , b (5) [5] [5] ;

Figure 2-3: A simple frame

One example of a frame definition is given in Fig. 2-3. This frame implements a matrix whose elements

are floating point numbers. The rank of the matrix is specified at instantiation time. In this example, a is

an instance of a 5x5 matrix and b is a 5x5 vector of 5x5 matrices (i.e. b consists of 25 separate instances

of a 5x5 matrix).

2.2.3. Synchronization within a frame
The above example is fine when you know that the users of a particular instance 3 of the frame will

never be using it at the same time. In most applications however, this is not the case. One client may be

modifying a cell while another is looking at the value of that cell. This is clearly undesirable. Thus, some

sort of mutual exclusion must be specified on the data and operation of a frame.

The sync and dsync statements allow synchronization of frame operation parts that are performed in

parallel. In other words, since frame operations perform actions on shared memory, sync and dsync

statements provide for mutual exclusion of access to parts of frame memory used by parallel activities.

3K is Important that the reader recognize the fact that in a vector of frames instances (as with vectors of activity instances), the
components of the vector are not related in any way other than that they share the same definition.

13

2.2.3.1. Sync
Sync statements can be included only inside the definition of a frame operation. A sync statement

precedes a block of critical code that begins with the sync statement and ends at the end of the sync

reach (i.e. at the closing brace). The sync statement contains a parenthesized list of names of operations

which also have critical sections of code that may not be executed while the code in the block is

executed. To execute a sync statement is to perform synchronization on the frame operations named in

the parameter list. A frame operation can only perform synchronization on itself or on other frame

operations within the same frame. If a frame operation is named in the parameter list, that operation must

also have a sync statement which precedes its own critical section (if an operation named in the sync

parameter list does not have a sync statement, it should not have been named in the list). When an

activity executing a frame operation, a , performs synchronization on another frame operation, b , a

condition (transparent to the programmer) is set which causes any other activity executing the sync

statement in b to block until the activity executing a exits its synchronized block of code.

f r a m e d u m m y ()

{
o p r a ()

{

s y n c (b) {

}

}

o p r b ()

{

s y n c () {

}

}

{ }

Figure 2-4: Frame skeleton with sync statements

Let1 s examine some hypothetical cases using the frame shown in Figure 2-4. First, let's assume that

there are only two activities, A and B. Let A call operation a () and B call b () . If B executes the s y n c ()

statement both after A has executed the s y n c (b) statement and while A is still executing the braced

code foilowing s y n c (b) , B will block until A exits that code. The empty sync statement in b o means

that although b () is not synchronizing on any other operations, other operations may synchronize on it.

For the second example, let's assume that we still have only two activities, A and B. Again, let A call

operation a <) and B call b () . If B executes s y n c <) before A has executed s y n c (b) , A will not block

when it executes s y n c (b) even if B has not exited the critical section in b () . This is because the sync

14

statement in b o does not contain the name of a () in its parameter list. In addition, even if A executes

sync(b) while B is in the critical section of b <) , B does not block. Although it may seem that the

synchronization protocol shown in Figure 2-4 has no viable application, it illustrates the behavior of the

MPC sync statements.

In this manner, parts of operations which would conflict in some way with parts of other operations can

be made to be mutually exclusive. One should note that sync statements are just the first step to higher

synchronization constructs based on path expressions and thus will be automatically generated in future

versions of MPC preprocessors.

2.2.3.2. Dsync
The Sync statement allows for synchronization of arbitrary control points in frame operations executed

in parallel regardless of which part of the frame's global data these operations are accessing. The dsync

statement allows for synchronization of accesses to particular data items. Like sync statements, they are

only allowed inside operations. Dsync takes as parameters a list of frame variables, separated by

commas, which are to be exclusively used. When a part of an operation within the reach(i.e. braces) of a

dsync statement is executed, if any of the variables in the statement have already been protected by

another dsync, the activity will have to stop and wait for the execution of the other operation to finish.

This command is used when certain frame variables are being changed by an operation and it is desired

that no other activity touch the variables until the changes have been completed. Matrix variables can

have the expressions which will be evaluated at the runtime as their indices (ie. dsync(a[i]) is legal if i will

be calculated at runtime prior to the time dsync is executed).

2.2.3.3. Synchronization example
Let us return to the example in Figure 2-3 to see how the contention problem might be solved using the

MPC Synchronization constructs. What we have to watch out for is two parallel activities either writing at

the same time or reading and writing at the same time. Thus activities reading is not a problem as

reading is not a destructive operation. So, a straight forward approach might produce something like the

following code:

This code segment does what we specified above however, a less superficial look at the problem

shows us that the granularity of the above Synchronization is quite coarse. No matter what cell a client is

writing to, no other client may read or write to another cell. What is really desired is mutual exclusion, not

on a per-operation basis, but on a per-cell basis. That is, in this case, Synchronization on the basis of

data is more efficient than synchronizing on the basis of control flow. Thus, a more efficient solution

might be:

There are situations which require more than one data element to be used atomically at the same time.

In such cases a list of data elements can be given to dsync, which will then employ a deadlock avoidance

algorithm to lock atomically ail the elements in the list. One should be very careful not to use nested sync

and dsync statements due to the fact that this can lead to the potential deadlock situations.

f r a m e m a t r i x (r a n k)
i n t r a n k ;

{
f l o a t mat [r a n k] [r a n k] ;

o p r f l o a t g e t (i , j)
i n t i , j ;

{
sync (p u t) {

e x p o r t (mat [i] [j]) ;
}

}

o p r f l o a t p u t (i , j)
i n t i , j ;

{
sync (p u t , g e t) {

e x p o r t (mat [i] [j]) ;
}

}

{
b z e r o (m a t , s i z e o f (f l o a t) * r a n k * r a n k) ;

}
};

Figure 2-5: A MPC implementation of a shared matrix

f r a m e m a t r i x (r ank)
i n t r a n k ;

{
f l o a t mat [r a n k] [r a n k] ;

o p r f l o a t g e t (i , j)
i n t i , j ;

{
d s y n c (m a t [i] [j]) {

e x p o r t (m a t [i] [j]) ;
}

}

o p r f l o a t p u t (i , j)
i n t i , j ;

{
d s y n c (m a t [i] [j]) {

e x p o r t (m a t [i] [j]) ;
}

}

{
b z e r o (m a t , s i z e o f (f l o a t) * r a n k * r a n k) ;

}
};

Figure 2-6: Matrix with more efficient synchronization

16

2.2.4. Frame Examples

2.2.4.1. Stream
The shared stream is a basic object used in many distributed applications. One possible definition

based on a circular queue is given in Figure 2-7.

f r a m e s t r e a m (l e n g t h)
i n t l e n g t h ;
{

c h a r s t r e a m _ d a t a [l e n g t h] ;
c h a r * r e a d _ j p t r , * w r i t e _ p t r ;

o p r i n t g e t (c)
c h a r c ;

{
i n t s t r e a m _ j L 3 _ e m p t y ;

d s y n c (r e a d _ p t r , w r i t e _ p t r) {
s t r e a m _ i s _ e m p t y = (r e a d _ p t r = w r i t e _ p t r) ;
i f (s t r e a m _ i s _ e m p t y) r e s u l t = 1 ;
e l s e {

i f (r e a d _ p t r >= (s t r e a m _ d a t a + l e n g t h)) r e a d _ p t r = s t r e a m _ d a t a ;
c = (* r ead_ j? t r++) ;

}
}
e x p o r t (s t r e a m _ i s _ e m p t y) ;

}
o p r i n t p u t (c)

c h a r c ;
{

i n t s t r e a m _ i s _ f u l l ;

d s y n c (w r i t e _ p t r , r e a d _ j > t r) {
s t r e a m _ i s _ f u l l = ((l o n g) r e a d j p t r) - ((l o n g) w r i t e _ p t r) ;
s t reamed. s _ f u l l = (s t r e a m _ i s _ f u l l = 1) | |

(s t r e a m _ i s _ f u l l = - l e n g t h) ;
i f (s t r e a m _ i s _ f u l l) r e s u l t » 1 ;
e l s e {

i f (w r i t e _ p t r >= (s t r e a m _ d a t a + l e n g t h)) w r i t e _ p t r = s t r e a m _ d a t a ;
(* w r i t e _ p t r + +) a c ;

}
e x p o r t (s t r e a m i s _ f u l l) ;

}
}
{

w r i t e _ p t r = (r e a d j p t r = s t r e a m _ d a t a) ;
}

};
Rgure 2-7: A mpc implementation of a byte stream

Any instantiations of this frame requires one integer parameter which specifies the length of the stream.

Within the body of the s t r e a m frame is its global data, s t r e a m _ d a t a , which is the array storing the que

values, and r e a d _ p t r and w r i t e _ p t r . The pointers serve to mark the beginning and end of the

stream. The frame has two operations defined: g e t , and p u t . g e t returns the character which is on top

of the stream, pointed to by r e a d _ p t r . The operation should be used with a command such as:

17

x x x . g e t (y y) ;

where yy is a variable of type c h a r (because g e t is of.type c h a r) , and xxx is the name of an instance of

a frame of type s t r e a m . This operation will return non-zero if the stream was empty. The second

operation, p u t , is used to store data in the stream. It is used with the form:

x x x . p u t (y y) ;

where xxx and yy are defined as before, it will return non-zero if the stream was full.

2.2.4.2. Mailbox
Once the frame s t r e a m is defined, it can be used as an abstract data type to instantiate a shared

stream in a MPC program. The following program example uses the basic queue definition TO build a

mailbox to illustrate how frames can be nested. If a frame definition is local to a specific frame it can be

treated in the same way data structures are treated in C with respect to local declarations. The fact that

frame l i s t is defined inside frame m a i l b o x means that other frames with the same type name (ie.

l i s t) can be defined in parallel branches of the same program. In the following example the frame l i s t

is local to the frame m a i l b o x and other definitions for l i s t can coexist within the same program.

The parameters passed TO this frame when instantiated specify that CUSTOMER_NUMBER frames OF type

q u e u e (defined above), each with a size OF CUSTOMER_SIZE bytes should be defined local TO that

instance. Besides having several frames of type q u e in its global data space, mailbox frames also have a

frame of type l i s t , which is actually defined within this frame's definition. This means that l i s t type

frames can only be instantiated within m a i l b o x type frames, and that there could exist different frame

declarations of a type l i s t outside this scope. The l i s t frame has as its global data an array of strings.

It has an operation, f i n d , which searches the array for a particular name, and an operation, e n l i s t ,

which copies a name into the array. The initializing procedure clears the strings in the list to NULLs.

Trailing the definition of the frame, is a declaration for a frame of this type called m a i i b o x _ n a m e _ i i s t .

Next begin the operations for the frame defined as m a i l b o x . The first of these is called s e n d , and it is

used to put a string into the que frame of the receiver. Names of customers are stored in the list of

names inside m a i i _ n a m e _ i i s t with the operation a l l o c a t e , d e a l l o c a t e , does the reverse, and is

used to clear the list. The operation l o c a t e searches the list for a particular name. Finally, r e a d checks

the user's que, and if it is not empty, grabs its contents and puts it into a buffer. No initializing procedure

is necessary, and there are no trailing instantiations. If one wanted to instantiate a frame of this type

(type m a i l b o x) , one could include the statement:

m a i l b o x m b l (1) ;

This would create one frame of this type and run the initializing procedures of the frames of types q u e
and m a i l _ n a m e _ l i s t included within frames OF type m a i l b o x .

As in Pascal scoping, only frames of type m a i l b o x can see the definition for the frame type

m a i i _ n a m e _ i i s t , and therefore are the only places where this type of frame can be instantiated.

f rame m a i l b o x (customer_number)
i n t customer_number;
{

st ream mai lbox_que (CUSTOMER_SXZE) [customer^nunber] ;
f rame l i s t (l i s t _ s i z e) / * he re s t a r t s t h e i n t e r n a l * /

i n t l i s t _ s i z e ; / * frame d e f i n i t i o n * /
{

s t r u c t {
char names [NAME__LEN] ;

} n a m e _ l i s t [l i s t _ s i z e] ;

opr i n t f ind(name)
char *name;

{
i n t r e t _ v a l u e , i ;

r e t _ v a l u e = UNSUCC;
f o r (i = 0 ; i < l i s t _ s i z e ; i + +) {

i f (s t r c m p (n a m e _ l i s t [i] .names,name) = MATCH) {
r e t _ v a l u e = i ;
b r e a k ;

}
}
e x p o r t (r e t _ v a l u e) ;

}

opr e n l i s t (n a m e , i d)
char *name;

i n t i d ;
{

e x p o r t (s t r c p y (n a m e _ l i s t [i d] .names, name)) ;
}
{

i n t i ;

f o r (i = 0 ; i < l i s t _ s i z e ; i + +)
n a m e _ l i s t [i] .names [0] = ' \ 0 ' ;

}

}mailbox__name__list (CUSTOMER__NUMBER) ; / * t h i s i s t h e i n s t a n t i a t i o n * /

Figure 2-8: A MPC implementation of a mailbox - first part

opr i n t send (i d , b u f f , l e n)
i n t i d ;
char * b u f f ;
i n t l e n ;

{
i n t i ;
r e g i s t e r i n t temp;

f o r (i = 0 ; i < l e n ; i + +) {
temp = mai lbox_que [i d] . p u t (* (buf f + i)) ;
i f (temp) {

p r i n t f (" s e n d e r queue f u l l \ n ") ;
b r e a k ;

}
}

}
e x p o r t (i) ;

opr i n t a l l o c a t e (c u s t o m e r e n a m e)
char * c u s t o m e r e n a m e ;

{
i n t r e t _ y a l u e , i d ;

sync (a l l o c a t e) { / * NO OTHER ALLOCATIONS I n PARALLEL
r e t _ v a l u e = m a i l b o x _ n a m e _ l i s t . f i n d (cus tome rename) ;
i f (r e v a l u e = UNSUCC) {

i d = m a i l b o x _ n a m e _ l i s t . f i n d (" ") ;
i f (i d != UNSUCC){

m a i l b o x _ n a m e _ l i s t . e n l i s t (customer_name, i d) ;
r e t _ v a l u e = i d ;

} e l s e r e t _ v a l u e =UNSUCC;
} e l s e r e t _ v a l u e = SUCC;

}
e x p o r t (r e t v a l u e) ;

}
opr i n t d e a l l o c a t e (i d)

i n t i d ;
{

e x p o r t (m a i l b o x _ n a m e _ l i s t . e n l i s t (" " , i d)) ;

Figure 2-7, continued

20

opr i n t l o c a t e (n a m e)
char *name;

{
e x p o r t (m a i l b o x _ n a m e _ l i s t . f i n d (name)) ;

}

opr i n t r e a d (i d , b u f f , l e n)
i n t i d ;
char * b u f f ;
i n t l e n ;

{
i n t i ;
r e g i s t e r temp;
i = 0 ;
w h i l e (i < l e n) {

temp = mai lbox_que [i d] . g e t (b u f f [i]) ;
i f (temp = 0)

i f (b u f f [i + +] = ' \ 0 ') b r e a k ;
}
b u f f [l e n - 1] = ' \ 0 ' ;
e x p o r t (i) ;

}
{ / * L i s t s and queues a r e a l r e a d y i n i t i a l i z e d * / }

};
Figure 2-7, continued

21

2.2.4.3. Dynamic Frames
Frames behave like static variables (te. at the moment of instantiation all the memory for the frame data

is allocated). There are many situations where the programmer does not know ahead of time how much

memory is needed in each frame. In such a case one can use the different strategy of specifying only a

pointer to global data, which can then be allocated at run-time.

The following example shows how to use frames which allow for dynamic global memory usage. The

first frame is a simple global heap and the second one is a memory allocator which uses the heap to refill

the buckets each time any of them becomes empty. Both frames use the synchronization command

d s y n c .

f r a m e H E A P J T Y P E (i n i t _ s i z e)

i n t i n i t _ s i z e ;

{
c h a r * h e a p j p t r ;

i n t h e a p _ s i z e ;

o p r c h a r * g e t (s i z e)

i n t s i z e ;

{
c h a r * t e m p ;

d s y n c (h e a p _ p t r) {

i f (h e a p _ s i z e > s i z e) {

t e m p = h e a p _ p t r ;

h e a p _ j p t r + = s i z e ;

h e a p _ s i z e - = s i z e ;

}
e l s e {

i f ((h e a p _ p t r = m p _ a l l o c (i n i t _ s i z e)) = = = = = N U L L)

P A N I C (" N O M O R E M E M O R Y ! ") ;

t e m p =B h e a p _ p t r ;

h e a p _ p t r + = s i z e ;

h e a p _ s i z e = i n i t _ s i z e - s i z e ;

}
}

e x p o r t (t e m p) ;

}

{

i f ((h e a p _ p t r = m p _ a l l o c (i n i t _ s i z e)) = N U L L)

P A N I C (" N O M O R E M E M O R Y ! ") ;

h e a p _ _ s i z e = i n i t _ s i z e ;
}

};

Figure 2-9: A MPC implementation for a shared global heap

The heap in Figure 2-9 serves as a buffer between the user and the operating system. Mp_alloc calls

are issued only when the previous block on a heap is exhausted or the remainder is smaller than the size

needed. It can be seen that only the heap pointer and the heap size are defined as global frame data.

The heap memory itself will be allocated first at instantiation time. It will also be allocated any time the

heap block becomes too small to accommodate a new requested size.

22

Using the heap definition as given above, one could write a more complex frame which can be used as

a dynamic memory allocator in application space. This frame definition uses the standard "bucket"

allocator scheme, where each bucket holds memory blocks of the size 2' and i is the bucket index.

Block size is always adjusted to the nearest greater 2' and taken from the corresponding bucket. If the

bucket in question is empty a new block of size 2' will be allocated from the heap.

After they are used, blocks are returned to a bucket holding a list of unused blocks of size 2'. There

are two operation exported to users:
• Allocate: Allocate a global chunk of <size> and return the pointer to it. Actually it will always

return pointer to the chunk start + sizeof(integer) due to the fact that chunk is going to keep
the index of its bucket in size field, and next is going to be overwritten.

• Free: Free the chunk pointed to by base. To reclaim the whole chunk one should decrease
base by the size of the size field

An MPC implementation of a simple global memory manager is presented in Fig.2-10. MP_MEM type

is defined as follows:
t y p e d e f s t r u c t mp_mem{

i n t s i z e ;
u n i o n {

c h a r * c ;
s t r u c t mp_mexn * m ;

} n e x t ;
}MP_MEM;

One should note that in this particular example ail buckets are filled with exactly one chunk of a size 2'

at the instantiation time. If needed the user can decide otherwise by redesigning the initialization section.

2.2.5. Queues
The Queues previously described were very simple circular queues having a constant element size and

number. The next example shows how to implement a more general shared FIFO queue. It is assumed

that the elements to be put in the queue are of various sizes and that the first member of a structure

representing an element is the pointer to an element of the same-size.

There are two operations in the queue definition: push and pop, which are self explanatory. Due to

the fact that both operations use the head pointer of the queue. Dsync statements define the critical

sections. An example queue is presented in Figure 2-11. In this particular example queue is initialized to

be empty (i.e. head and tail are set to NOITEM).

2.2.6. Semaphores
The PIE environment encourages the use of the higher level synchronization commands which employ

"blocked - wait" primitives at runtime. However if there is a need for explicit control flow synchronization,

a semaphore can be built as shown in Figure 2-12. This semaphore supports the following operations:
• Wait: Wait takes no arguments and it returns nothing. Will block caller, via mp_wait, if

f r a m e m e m m g r (m a x _ b l o c k _ s i z e)

i n t m a x ^ b l o c k ^ s i z e ;

{
H E A P _ T Y P E h e a p (H E A P _ S I Z E) ;

M P _ M E M * b u c k e t s [l o g (m a x J b l o c k _ s i z e) / l o g (2)] ;

o p r c h a r * m e m g e t (s i z e)

r e g i s t e r i n t s i z e ; / * s i z e i n b y t e s * /

{
r e g i s t e r i n t i ;

r e g i s t e r i n t t m p ;

r e g i s t e r M P J M E M b a s e ;

s i z e = s i z e + s i z e o f (i n t) ;

i f (s i z e < s i z e o f (M P _ M E M)) s i z e = s i z e o f (M P J M E M) ;

t m p = 1 ;

f o r (i = 0 ; t m p < s i z e ; i + +) t m p = t m p « l ;

d s y n c (b u c k e t s [i]) {

i f (b u c k e t s [i] . m ! = N O M E M) {

b a s e . m = b u c k e t s [i] . m ;

b u c k e t s [i] . m = b a s e . m - > n e x t . m ;

} e l s e {

b a s e . m = h e a p . g e t (t m p)

b a s e . m - > s i z e = i ;

}
}

e x p o r t ((b a s e . c + s i z e o f (i n t))) ;

o p r v o i d m e m f r e e (b a s e)

r e g i s t e r M P _ _ M E M b a s e ;

{
r e g i s t e r i n t n , t m p ;

i f (b a s e . m ! = N O M E M) {

b a s e . c s b a s e . c - s i z e o f (i n t) ;

n s s b a s e , m - > s i z e ;

}
i f (n > « 3 & & n < (l o g (m a x _ b l o c k _ s i z e) / l o g (2))) {

d s y n c (b u c k e t s [n]) {

b a s e . m - > n e x t . m = b u c k e t s [n] . m ;

b u c k e t s [n] . m = b a s e . m ;

}
} e l s e P A N I C (" S i z e t o f r e e O U T O F R A N G E ! \ n ") ;

}
{ / * t h i s i s e x e c u t e d u p o n i n i t i a l i z a t i o n * /

i n t j , s ;

/ * f i l l i n t h e b u c k e t s * /

f o r (j = 3 , s = 8 ; j < (l o g (i n a x _ b l o c k _ s i z e) / l o g (2)) ; s « l) {

b u c k e t s [j] . m s s h e a p . g e t (s) ;

b u c k e t s [j] . m - > n e x t = N O M E M ;

b u c k e t s [j] . m - > s i z e s s j ;

}
}

}

Figure 2-10: Memory manager implemented as a MPC frame

semaphore is less than one. Note: mp_wait will open the lock mutex before the calling
process is put to sleep. So, despite what it looks like signal will be able to execute.

24

t y p e d e f s t r u c t z i t e m f
s t r u c t x i t e m * n e x t ;

} * m p _ x i t em_p ;

d e f i n e NOXITEM (mp_x i tem_p) 0

f r a m e mp__xqueue ()
{

mp_x i t em_p h e a d ;
m p _ x i t em_j> t a i l ;

o p r v o i d p u s h (i t e m)
mp_xi tem_j> i t e m ;

{
d s y n c (h e a d) {

m y _ a c t - > n e x t = NOXITEM;
i f (t a i l = NOXITEM) head = i t e m ;
e l s e t a i l - > n e x t = i t e m ;
t a i l = i t e m ;

}
}

o p r mp_x i t em_p pop ()
{

mp_x i t em_p i ;

d s y n c (h e a d) {
i = h e a d ;
i f (i ! = NOXITEM) {

h e a d = i - > n e x t ;
i f (head = NOXITEM) t a i l = NOXITEM;

}
}
e x p o r t (i) ;

}
/ * i n i t * /
{ head = t a i l = NOXITEM;}

};

Figure 2-11 : MPC implementation of a queue

• Signal: Signal takes no arguments and returns nothing. Will wake first waiting processes in
the wait queue.

• Signal_ail: Signal takes no arguments and returns nothing. Will wake all waiting processes in
the wait queue.

The frame in this example implements a FIFO semaphore having the following three operations:

wait invocation is done in an activity by calling xxx.wait(). After this call activity is
suspended until next signal_all/or signal command.

signal (xxx.signaiQ) operation will wake up the activity from the top of the queue.

signaLall (xxx.signal_all()) command will wake up all the activities from the semaphore's
queue.

25

FRAME MP_SEMAPHORE (INIT_VAL)
INT INITIAL;
{

INT S;
RAP COND C',
MP__LOCK MUTEX;/* LOCK FOR MUTUAL EXCLUSION OF THE TWO OPRS */
OPR VOID WAIT () {

MP__CLOSE (SMUT EX) ;
IF (S < 1) MP_WAIT(&C, FIMUTEX) ;
S — ;
MP_OPEN (&MUTEX) ;

}
OPR VOID SIGNAL() {

MP_CLOSE (FIMUTEX) ;
S++;
IF (S > INIT_VAL) S = INIT_VAL;
MP_SIGNAL_FIRST (&C) ;
MP_OPEN (&MUTEX) ;

}
OPR VOID SIGNAL_ALL () {

MP_CLOSE (SMUTEX) ;
S = INIT_VAL;
MP_SIGNAL_ALL (&C) ;
MP_OPEN (FIMUTEX) ;

}
{
MP_LOCK_INIT (&MUTEX) ;
MP_COND_INIT (&C) ;
S a s INIT_VAL;

}
};

Figure 2-12: MPC implementation of a semaphore

2.2.7. Barriers
There is one KIND of synchronization which cannot be easy realized by using syncs or dsyncs. This is

the barrier synchronization in the case where there is no busy waiting allowed. MPC itself introduces one

implicit kind of barrier synchronization i.e. the JOIN STATEMENT. However, in practical situations the JOIN

may be too costly to perform. This may be due to jhe underlying system on top of which CASDIM is

implemented. In such situations the user may wish p implement his own barrier synchronization. One

way to do this in MPC is to given in Figure 2-13.

f r a m e b a r r i e r (N)
i n t N; /* N i s t h e number o f a c t i v i t i e s

i n v o l v e d i n t h e s y n c h r o n i z a t i o n . * /
{

mp_xqueue Q;
i n t c o u n t e r ;

o p r v o i d b l o c k ()
{

i n t t c o u n t ;
m p _ x i t ern^p t i t e m ;

d s y n c (c o u n t e r)
{

t c o u n t = c o u n t e r + + ;
Q . p u s h (my_act) ;
m y _ a c t - > s t a t e = WAITING;

}
i f (t c o u n t = N)

{
c o u n t e r = 0 ;
t i t e m s Q . p o p () ;
w h i l e (t i t e m ! = NOITEM)

{
t i t e m - > s t a t e = RUNNING;
t i t e m = Q . p o p O ;

}
} e l s e {

w h i l e (m y _ a c t - > s t a t e = WAITING)
mp_swtch () ;

}
}

{ c o u n t e r s s 0 ; }
}

Figure 2-13: A barrier coded in MPC

3. Using MPC

27

As of this printing, the MPC compiler resides in the usr/pie/bih sub-directories on machines it is

installed on. To use MPC, the following should be added to the path statements in the user's .login file:

s e t p a t h - i a $ h o m e / u s r / p i e

The syntax for compiling an mpc program is:

m p c fife.mpc [{ - # m p c o p t i o n s }] [(- c c o p t i o n s }]

The command line options are as follows:

- # p : This will force MPC analyzer to parse the MPC source even if the *.pif file is available
and up to date.

- # c n n : The c is used for incremental compiling. When the source code is divided into several

subfiles, for examples, with one containing global frames, one containing procedures and another

containing main, each file can be compiled separately into a . o module which can later be linked with the

other modules. User should supply a unique module number (nn) for each separate mpc file. In a case

of separate compilation all frames definitions which are global to the entire program must be in include

(*.h) files. They must also be instantiated in these files, and then be included in all the modules that use

these frames and should also be visible (ie. included) in the main module. To link all the modules

together, the C compiler should be called using the command:

c c filel.o file2.o - l m p c - l m a c h

- # c : If this option is included in the command, mpc will dump the file that is sent to the C
compiler in the file file. c .

- # l : This option will make MPC print out what it is doing with the mpc file as it compiles.

- # m : If a n ' m ' is in the option, MPC will include the MPC monitor library which causes the print

out of monitoring information when the compiled mpc program is executed.

- # d : A ' d ' will cause MPC to include the mpc debugging library. At the start of execution of an

MPC program compiled with this option, run time support will enter interactive debugger. For details see

MPC debugger documentation, or type 'help' while in the debugger.

- # Y n n : Will set the lock yield count to nn (ie. after encountering the closed lock, each activity

will spin nn times, and then suspend itself by calling swtch OS call). Default value for nn is 200. On the

ENCORE, each spin takes about 20 microseconds.

- # G n n : Will set the size of runtime global heap to nn Mbytes. Default value is 1 Mbyte.

28

-#Mnn: Will set the size of compiler heap to nn Mbytes. Default value is machine and OS

dependent.

-#Pnn: Will set the maximum number of user processes which can be created at the runtime

to nn. Default value is 16.

(cc options}: Besides the '-#' switches that are directed at the mpc compiler, normal cc

switches can be included on the command line, such as the inclusion of libraries, request for the

assembler file, etc.

NOTE: Some make script interpreters accept T character as the comment delimiter regardless of its

position in the line. For this reason mpc preprocessor accepts also notation instead of "-#" notation to

be used in front of mpc compile time switches.

29

4. Advanced MPC

This chapter discusses three MPC run-time libraries, a block timing facility and advanced MPC

programming tricks. First, the standard run-time structures and functions are discussed. After these some

advanced MPC programming tricks are presented. Finally, a MPC source template and the corresponding

produced C code is given.

4 . 1 . MPC Run-time Support: Standard Data Structures and Functions
There are three MPC run-time libraries, a standard or normal library, a performance monitoring library

and a debugging library. The libraries contain the data structures, procedures and other entities used by

MPC to support the execution of an MPC program. The user may want to call one or more of these

run-time routines, although this is not recommended, especially in the case of those routines (and

activities) used exclusively by either the monitoring or debugging libraries which will be described in the

separate documents. One should consult with a PIE group member before using any of the calls or data

structures described herein.

4.1.1. Standard MPC run-time structures
There is a set of standard structures used in all of the MPC run-time libraries. The members of this set

are discussed beiow. In many cases there are some elements of a structure that only apply to the

debugging library. Since the debugger is presently under development, these additional elements are not

yet fully supported.

4.1.1.1. Naming
The mp_name type is defined as a pointer to a string of characters, and is the type used to store the

names of queues, activities, and other MPC run-time objects.
/ * * * m p n a m e s * * * /

t y p e d e f c h a r * m p _ n a m e ;

4.1.1.2. Byte addressing
Pointers to absolute memory locations are type memory_p and are defined as pointers to characters.

/ * * * m e m o r y p o i n t e r * * * /

t y p e d e f c h a r * m e m o r y _ p ;

4.1.1.3. Queues
Figure 4-1 shows the queue structures used by MPC. The mp_queue structure is implemented as a

linked list. Objects to be queued into them must have a pointer to the same object as the first element in

the data structure (eg. see mp__item). Queues, like all MPC objects, have provisions for a naming

scheme if the DEBUG option is invoked.

30

t y p e d e f s t r u c t i t e m {

s t r u c t i t e m * n e x t ;

} m p _ i t e m , * m p _ i t e m _ p ;

t y p e d e f s t r u c t q u e u e {

m p _ i t e m _ p h e a d ;

m p _ i t e m _ j > t a i l ;

i f d e f D E B U G

m p n a m f l n a m e ;

e n d i f D E B U G

} m p _ q u e u e , * m p _ q u e u e _ p ;

Figure 4 - 1 : Queue structures

4.1.1.4. Locks
Figure 4-2 shows the lock structure used by MPC. Locks are grabbed when exclusive access to

memory is desired by a run-time library routine. When a routine attempts to grab a certain lock and that

lock has already been locked, execution is suspended until the lock is released. This is done in two steps:

First, blocked activity will spin on a lock for a nuber of spins defined by - Y switch. If, after the spining

ended, the lock in question is still closed the blocked activity will suspend its execution.

t y p e d e f s t r u c t {

i n t l o c k ;

i f d e f D E B U G

m p _ _ n a m e n a m e ;

e n d i f D E B U G

} x n p _ l o c k , * m p _ l o c k _ p ;

Figure 4-2: Lock structure

4.1.1.5. Conditions
Figure 4-3 shows the condition structure used by MPC. The m p _ c o n d type is the MPC support for

signaling that a condition has been met. It contains a queue and coresponding lock to ensure atomic

queue operations.

t y p e d e f s t r u c t e n d {

m p _ l o c k l o c k ;

m p _ q u e u e q u e u e ;

i f d e f D E B U G

m p _ _ n a m e n a m e ;

e n d i f D E B U G

} m p _ c o n d , * m p _ c o n d _ j p ;

Figure 4 -3: Condition structure

4.1.1.6. Synchronization
Figure 4-4 shows the synchronization structure used by MPC. All frame operations have a structure of

type mp_opr associated with them. It used to support the MPC s y n c statement. The structure contains

a variable, c o u n t , for indicating how many operations have performed a s y n c within arbitrary (but

identical) frame operations. An operation is allowed to proceed pass a s y n c if and oniy if c o u n t is equal

31

to zero. The second element in m p _ o p r is a condition variable to support blocked waiting. Like all MPC

structures, mp_opr supports a naming scheme in DEBUG mode.

t y p e d e f s t r u c t o p r {

i n t c o u n t ;

m p _ c o n d c o n d ;

i f d e f D E B U G

m p _ n a m e n a m e ;

e n d i £ D E B U G

} m p _ o p r , * m p _ o p r _ p ;

Figure 4-4: Synchronization structure

4.1.1.7. Global memory management
Figure 4-5 shows the structures used by MPC for global memory management. m p _ m e m is a structure

type used to grab a free block of memory from a global heap. MPC run-time implements "bucket"

memory manager, where sizes of free blocks allocated from the buckets are equal to powers of 2.

t y p e d e f c h a r * m p _ p o ± n t e r ;
t y p e d e f s t r u c t m e m {

i n t s i z e ;
u n i o n n n {

s t r u c t m e m * m ;

m p _ p o i n t e r c ;
} n e x t ;

} m p _ _ m e m , * m p _ m e m _ p ;

t y p e d e f u n i o n {

c h a r * c ;

m p m e m p m ;

} m e m u n ;

« d e f i n e K 1 0 2 4

d e f i n e M E G A B Y T E K * K

d e f i n e N O M E M (m p _ j n e m j >) 0

d e f i n e N I L (m p _ p o i n t e r) 0

Figure 4-5: Global memory management structures

4.1.1.8. Activity control block
The type mp_acb is a structure, called an activity control block or acb, representing an activity in MPC.

Figure 4-6 shows acb structure used by MPC. The run-time uses the structure to manage the creation

(each activity get its own acb upon creation) , scheduling, lineage (pointers to parent and children), and

termination of activities. A local pointer to each activity's activity control block is kept in my_act.

4.1.1.9. Workload control block
In addition to my_act, each activity knows about a global pointer to a workload control block, mp_wcb,

which keeps the global parallel workload state. Figure 4-7 shows workload control block structure used by
MPC.

32

t y p e d e f s t r u c t a c b {

s t r u c t a c b * n e x t ;

m p ^ l o c k l o c k ;

/ * * * f o r q u e u e i n g p u r p o s e s * * * /
/ it-kit

* * * l o c k u s e d w h e n a c t i v i t y s t a t e ,

* * * i e , t h e a c t i v i t y c o n t r o l

* * * b l o c k , i s u p d a t e d .

x n p c o n d c o n d ;

* * * c o n d i t i o n t h a t i s w a i t e d

* * * o n w h i l e w a i t i n g f o r j o i n

i n t s t a t u s ; / * * *

* * * w h a t k i n d o f a c t i v i t y a m I ?

* * * I D L E , M A I N , A C T , J O I N E D ,

* * * D E T A C H E D , D O N E

* * * /

i n t

i n t

j m p _ b u f

v o i d

t r i p m e m p

i n t

s t a t e ;

i d ;

e x i t _ h o o k ;

(* f u n c t) () ;

p a r a m ;

s i z e ;

/ * * * I D L E , R U N N I N G , W A I T I N G * * * /

/ * * * p i d o f a c t i v i t y * * * /

/ * * * l o n g _ j u m p s u p p o r t * * * /

/ * * * a c t i v i t y b o d y * * * /

/ * * * a c t i v i t y p a r a m e t e r s * * * /

* * * s i z e o f p a r a m e t e r

* * * u p o n j o i n i n g .

* * * /

b l o c k f r e e d

i n t j o i n _ c n t r ;

* * * n u m b e r o f c h i l d r e n t h i s

* * * a c t i v i t y w i l l j o i n .

s t r u c t a c b * j o i n _ p e r f ;

* * * t h e a c t i v i t y w h o j o i n s t h i s
* * * a c t i v i t y
* * * /

i n t a c t i d ;

i f d e f D E B U G

i n t a i d ;

m p _ _ n a m e

x n p _ p o i n t e r w b l k ;

e n d i f D E B U G

} x n p _ a c b , * m p _ a c b _ p ;

/it-kit
* * * u n i q u e i n t e g e r i d e n t i f y i n g
* * * t h i s a c t i v i t y .
* * * /

/ * * * a c t i v i t y n a m e * * * /
/it it it

* * * i f w a i t i n g o r i d l e ,
* * * t h i s s h o w s w h e r e
* * * /

d e f i n e N O A C B (m p _ a c b j p) 0

Figure 4-6: The activity control block structure

typedef struct
mp_lock lock;

*** lock used when global state,
*** ie, the workload control
*** block, is updated.
*** /

xnp cond need_proc; /***
*** condition used when processes
*** are waiting to run activities
*** /

mp_queue act queue;
*** queue of activities waiting
*** to be run.

int
int
int

pcount; /**• process count ***/
acount; /*** activity count *•*/
doomsday; /***

*** set up for exiting from
*** main

mp_lock
memun
unsigned short

#ifdef MONITOR 4

unsigned int

#endif MONITOR

mem_lock;
buckets[32] ;
act id cnt;

mp_km_size ;

/*** memory manager lock ***/
/*** memory manager buckets ***/
/•** activity id counter **•/

/***
*** Used when calling the
*** kernel monitor to set the
*** size of the kernel buffers.
*** /

#ifdef DEBUG
int tracecount; /***

*** counter used to order traced
*** events
*** /

opinarne name; /*** workload name *** /
mp cond rip; /*** dead acbs *** /
mp_lock debug_lock ; /*** lock for breakpoint *•* /
mp_queue *trace_list; trace command queue **• /
mp_queue *break_list; break command queue *** /
mp_acbjp tree_root; /*** head of dynamic tree *** /
mp_lock tree_lock; /*** dynamic tree lock *** /
long last_event ; /*** last event traced *•* /
mp_pointer where; /*** where am i *** /

#endif DEBUG
} mp_wcb, *mp_wcb_jp;

Figure 4-7: The workload control block structure

*May not be supported on all systems.

34

4.1.2. Standard MPC run-time functions
In addition to the standard set of run-time structures, there are several standard run-time functions that

execute the parallelism of MPC. Below is a discussion of these standard run-time functions.

4.1.2.1. Workload organization: horses and riders
The MPC run-time assumes that in steady state there is a set of ready processes waiting for the

condition need__process to appear. When this condition is signaled, the first of the ready processes will

be assigned to an acb from the activity queue, mp_wcb. act_que, and start to run the activity. When the

activity exits, the corresponding process will be released and will pick up another activity to run, or will

wait depending on the state of the activity_que.

Think of activities as horse-back riders sitting on a corral fence and processes are horses wandering in

and out of the corral looking for riders to carry. If a horse enters the corral and a rider is sitting on the

fence (ie the need_process condition is set), the rider jumps on the horse and off they go somewhere

out there (The activity grabs the process and begins executing). If there are no riders sitting around, the

horse just hangs out in the corral until a rider appears (An activity is spawned). When a rider and horse

come back to the corral, the rider gets off and goes away (When the activities finish, the activities drop the

processes). If there is another rider waiting on the fence, he grabs the horse and off they go (If another

activity exists, it grabs the freed process). After all the riders return, the horses are rounded up and

everybody goes home (After all the activities exit, ail the processes terminate).

4.1.2.2. Queue related functions
There are a variety of queue related functions: mp_queue_init, mp_push_front, mp_push,

mp_pop, mp_peek. Each of the functions takes a parameter of type, mp_queue_p which is pointer to a

queue. Figure 4-8 shows the queuing functions of MPC. Two of the functions, mp_push_f ront and

mp_push, take an additional parameter mp_item_p, a pointer to the object to be place in the queue.

A queue is initialized to be empty by the mp_queue_init function. mp_push_f ront () adds the item

to the front of the queue. mp_push o adds the item to the end of the queue. mp_pop o retrieves item

on the front of the queue. mp_peek () returns what is on the front of the queue, but does not alter the

queue's contents.

4.1.2.3. Lock related functions
There are four lock related functions: mp_iock_init, mp_ciose, mp_open,

mp_test_and_iock o . Each of the functions take a parameter of type mp_iock_p which is a pointer

to an mp_iock. Figure 4-9 shows the lock related functions of MPC.

mp_iock_init () initializes a lock to be open. mp_close () attempts to grab the lock passed to it; if

it can't, it blocks the activity that called it until the lock is released. The activity is blocked by busy waiting

for a pre-specified duration, and then is switched out. mp_open() releases the lock passed to it.

mp_test_and_iock () will grab the lock passed to it if it is open, but returns control to the calling activity

35

v o i d

m p _ q u e u e _ i n i t (q { , n a m e })

m p _ c [u e u e _ p q ;

m p _ n a m e n a m e ;

v o i d

m p _ p u s h _ f r o n t (q , i) ;

m p _ q u e u e _ p q ;

m p _ i t e m _ _ p i ;

v o i d

m p j p u s h (q , i) ;

m p _ q u e u e _ p q ;

m p _ i t e m _ p i ;

m p _ _ i t e m _ p

m p _ p o p (q) ;

m p _ q u e u e j > q ;

m p _ i t e m ^ p

m p _ p e e k (q) ;

m p _ q u e u e _ p q ;

Figure 4-8: Queuing functions

void
m p _ l o c k _ i n i t (l o c k { , n a m e })

m p _ l o c k _ p l o c k ;

m p _ n a m e n a m e ;

v o i d

m p _ c l o s e (l o c k)

m p _ l o c k _ p l o c k ;

v o i d

m p _ o p e n (l o c k)

m p _ l o c k _ p l o c k ;

i n t

m p _ t e s t _ a n d _ l o c k (1)

m p _ l o c k _ j p * 1 ;

Figure 4-9: Locking related functions

if the lock is already held. It returns the lock value regardless of whether the lock was grabbed or not. (ie.

0 if the lock is grabbed and 1 if it is already held). The parameters in braces are applicable if the DEBUG

option is invoked.

4.1.2.4. Condition related functions
There are five condition related functions: mp_cond_init (), mp_wait(), mp_mon_wait (),

mp__signai_f irst o and mp_signai_aii () . All of the functions take a parameter of type,

mp_cond_p which is a pointer to a condition. In addition, the functions, mp_wait () and

mp_mon_wait () take another parameter of type, mp_iock_p which is a pointer to a lock. Figure 4-10

shows the condition related functions of MPC.

36
t

v o i d

x n p _ c o n d _ ± n i < t (c { , n a m e })

m p _ c o n d j p c ;

m p _ _ n a m e n a m e ;

v o i d

m p _ w a i t (c , 1)

m p _ c o n d j p c ;

m p _ l o c k — p 1;

v o i d

m p _ m o n _ w a i t (c , 1)

m p _ c o n d _ p c ;

m p _ l o c J c _ p 1;

m p _ i t e m _ p

m p _ s i g n a l _ f i r s t (c)

m p ^ c o n d ^ p c ;

v o i d

m p _ s i g n a l _ _ a l l (c)

x n p _ c o n d _ p c ;

Figure 4-10: Condition related functions

mp_cond_init o initializes the lock and queue of a condition. mp_wait o and mp_mon__wait o

each put a pointer to the calling activity's acbP, mp_acb_p, in the queue of the condition passed to it.

They differ only in how they behave when the monitor library is used in that mp_wait contains special

sensors while mp_mon_wait does not. Both use a lock to ensure atomic action in the following manner:
1. Although it is not necessary in all case, the caller usually grabs the lock that it intends to

pass before calling these either functions. The caller passes the pointer to the lock.

2. The lock is released after the pointer is pushed into the conditions queue and the activity is
rescheduled as blocked.

3. The lock is closed again after the activity is unblocked in order for housekeeping to be done
in an atomic way.

4. Upon return from these calls, the calling activity is allowed to continue execution. The caller
is expected to release the lock after these wait calls return.

mp_signai_first () sends out a condition signal to first activity in the condition queue of the

condition passed to the function. Any other activities in the queue are not signalled and must wait further.

mp_signai_aii () sends the signal to all the activities waiting in the condition queue. All of the

activities are then allowed to continue processing. Paimeters in braces apply to the DEBUG option.

'See the discussion of Activity Control Blocks above

37

4.1.2.5. Synchronization functions
There are five synchronization functions: mp_opr_init, mp_sync, mp_release, mp_dsync,

mp__drelease. Figure 4-11 shows the synchronization related functions of MPC.
void
mp_opr_init (c{, name}) ;
mp_opr_p c;
mp " a m a name;

void
mp^sync (lock , a, paramlist)
mp_lock_p lock;
mp_opr_j> a ;
int paramlist;

void
mp_dsync (lock, paramlist)
mp_lock_p lock ;
mp_lock_p paramlist ;

void
mp_release(lock,a,paramlist)
mp_lockjp lock;
mp__opr_j> a ;
int paramlist;

void
mp_drelease(lock, paramlist)
mp__lock_p lock;
mp_lock_p paramlist;

Rgure 4-11 : Synchronization related functions

mp_opr_init o performs initialization functions for operations. It takes a pointer to a mp_opr
variable as a parameter which represents the operation in the frame data structure. mp_sync () is used

to implement M P C sync calls. It takes a pointer to a frame lock, followed by the pointer to the

corresponding synchronizing operation and pointers to every operation being synchronized upon. The

caller blocks if the corresponding synchronized statements are currently being executed. The caller will

unblock when all the current execution of the synchronized statements finishes. The parameters required

by mp_reiease o are the same as those taken by mp_sync o . The function is used at the end of

operations that synchronize on other operations to inform the other operations that the calling operation

has finished. mp_dsync () and mp_dreiease () are used to implement dsync call. They take a list of

locks to be grabbed and released atomically. The lock supplied as the first parameter is a general lock to

ensure the atomicity of the function.

4.1.2.6. Global heap related functions
M P C run-time keeps its own global heap. There are four functions for managing global memory:

mp_aiioc, mp_free, mp__caiioc and mp_reaiioc. Figure 4-12 shows the memory management

functions of MPC.

38

m p _ a l l o c (s i z e)

i n t s i z e ;

m e m o r y _ p

m p _ c a l l o c (s i z e)

i n t s i z e ;

m p _ r e a l l o c (p t r , s i z e)

m e m o r y j p t r ;

i n t s i z e ;

v o i d

m p _ f r e e (b a s e)

c h a r * b a s e

Figure 4-12: Memory management functions

Memory blocks can only be allocated and deallocated from the global heap by using m p _ a i i o c () and

m p__free o 6. mp_aiioc o takes an integer parameter, size, which designates the number of bytes to

requested. It returns a pointer to a byte addressable chunk of global memory. Because memory

management information is stored with each allocation, the allocated size is at teast s i z e o f (m p _ m e m)

bytes. Although this information is included, the pointer that is returned points only to the usable part of

the allocated space. Since m p _ a i i o c allocates memory in chunks of powers of 2, the size received is

sometimes considerably larger than that requested.

m p _ f r e e o takes a pointer to the start of the memory block which is to be freed. A new cleared

memory block could be obtained by using mp_caiioc call, and any already allocated global memory

block can be reallocated and resized by mp_reaiioc () function.

In addition to the memory space global to the whole parallel workload, each of the parallel activities

keeps its own local space which is visible to the all functions called from within the activity. This space

can be allocated via standard memory allocation calls (ie. maiioc o, reaiioc () , etc.).

4.1.2.7. Activity and workload related functions
Control of activities and operations is done by calling workload related functions. These are:

mp_workload_init, mp_activity, mp_join, mp_detach, mp_entry and mp_exit. Figure 4-13

shows the activity and workload related functions of MPC.

The function mp_worJcioad_init () is the first MPC function executed in any program linked with any

of the three MPC run-time libraries. It initializes the workload structures. This call requires three

parameters:

• g - size of the global heap in mega-bytes.

6 U s i n g s t a n d a r d m a l l o c () c a l l s w i l l o n l y a l l o c a t e m e m o r y l o c a l t o t h e a c t i v i t y c a l l i n g x n a l l o c () .

39

void
mp_workload_init(g,y,p);
int g,y,p;

mp_acb_p
mp_activity ({name, }funct,size,paramlist)
mp_name name;
void (*funct) () ;
int size;
char paramlist;

void
mp_join (act_list)
mp_acb_jp act_list;

void
mp_det ach (act)
mp^acb^p act;

void
mp_entry (ptr, paramlist)
char *ptr;
int paramlist;

void
mp_exit (paramlist)
int paramlist;

Figure 4-13: Activity and workload related functions

• y - number of spins to be taken by locks before yielding

• p - number of processes to be created at the run-time.

mp_activity o creates and spawns activities. It is called with a pointer to the function,

(*funct) () , which comprises the activity, the size, size, in bytes of the activity's data structure, and a

list, paramlist, of information about the variables in the activity. For each variable, this list contains a

pointer to the variable and the size of the variable. The list is terminated with a NULL. If the DEBUG

option is selected, the function is passed the name, name, of the activity to be made. mp_join o takes

as parameters a list,act_iist, of pointers to the activities to be joined which it joins. The calling activity

is blocked until all of the activities in the list have completed execution. mp_detach o takes the same

parameters as mp_join o . The activities is creates and spawns can never be joined. mp_entry o is

called when an activity is entered. It takes as parameters a pointer to the activity, and a list of all the

variables in the activity's variable declaration list. The list constains a pointer to each variable followed by

the size of the variable. mp_exit () is called upon exit of an activity and takes as a parameter exit

condition codes. This is most commonly NULL.

40

4.2. Some programming tricks
All MPC run-time structures and functions are accessible by a programmer. Since MPC syntax is

implemented using these run-time objects, it is possible for the programmer to program by using these

objects directly. Doing so brings only modest, if any, performance improvement and increases the

complexity of a programmer's work. Consequently, in many cases it is not recommended that the

programmer attempt to circumvent MPC syntax by programming in this manner.

4.2.1. Activity identification: using my_act
There, however, some structures and functions that a more adventurous programmer may want to use.

For example, as discussed in section 4.1.1.8 a programmer can access his activity control block via

m y _ a c t . One of the useful members of this structure is act_id which is an integer, unique to each

activity. This variable can be useful in implementing objects like parallel buffers, in cases when it is

desirable that buffer contention be reduced. Such an implementation would consist of an array of buffers,

perhaps one per activity, with my_act->act_id as the index into the array:

b u f f e r [x n y _ a c t - > a c t _ i d] = i t e m ;

where i t e m is some object to be placed into the buffer.

The a c t _ _ i d of each activity is assigned using the value of a counter in the workload control block,

w o r k i o a d - > a c t _ i d _ c n t when the activity is created. This counter may be changed in the following

manner:

x n p _ c l o s e (& w o r k l o a d - > l o c k) ;

w o r k l o a d - > a c t _ i d _ c n t = (i n t) a c ;

m p _ _ o p e n (& w o r k l o a d - > l o c k) ;

where x has an arbitrary (non-negative) value. The activity changing the counter value must grab the

workload lock to prevent races.

4.2.2. Using locks and conditions
The MPC sync and dsync functions are powerful synchronization primitives. There may be times,

however, when either these functions simply do not provide the functionality the programmer desires or

he does not know how use these functions to implement some protocal he has in mind. An example of

the first case is when a kind of test-and-set primitive is needed. For the second case, perhaps he merely

wishes to have a clear way to send signals between activities.

4.2.2.1. A test-and-set function
The MPC run-time function, mp_test_and_iock () , performs the atomic test-and-set operation.

Figure 4-14 shows an example of using this function.

Here, user_iock is of the type mp_iock. If user_iock is to be shared between activities, it must

be declared and accessed as a global variable In a frame! If the lock is not declared as a global frame

variable, different activities may reserve different memory for the lock. In frame shown in Figure 4-14, if

41

f r a m e
b u f f e r ()
{

m p _ l o c k u s e r _ l o c k ;

o p r
c a l c u l a t e ()
{

i f (m p _ t e s t _ a n d J L o c k (& u s e r _ l o c k)
{

m p _ c l o s e (& u s e r _ l o c k) ;
}

}

{

m p _ l o c k _ i n i t (& u s e r _ l o c k) ;
}

}

Figure 4-14: An Example of using mpJest_and_jock

user_iock is already held, mp_test_and_iock returns a 1; if not, it grabs user_iock and returns a

0. Here, after the lock is checked, the caller continues if the lock is not held. In this case, when the lock

is already held, the caller executes some arbitrary statements before calling mp_ciose o in order to

block on the lock. Notice that user_iock is initialized in the initialization section of the frame.

4.2.2.2. Signalling
Figure 4-15 shows a case where both a lock and a condition are used. Here, the writer waits for a

signal from the reader indicating that the buffer in question is not full (presumably, the writer would have

performed some tests to indicate that the buffer is full before it executes the mp_wait). As described in

section 4.1.2.4, the lock waiting_for_reader is usually grabbed before the wait is called (this is not

necessary if atomicity is not important). The call to mp_open, however, is necessary. Notice that the lock

and condition are initialized in the initialization section of the frame.

4.2.2.3. Dynamic memory allocation
The global memory management functions are discussed in section 4.1.2.6. It is important to keep in

mind how these these functions differ from the standard C memory allocation functions. Global memory

blocks can only be allocated and deallocated using mp_aiioc o and mp_free o . In addition to this

global memory space, each of the parallel activities keeps its own local space which is visible to the all

functions called from within the activity. This space can be allocated via standard memory allocation calls

(ie. maiioco, reaiiocO, etc.). Using the standard maiioco call, for example, only allocates

memory local to the activity calling maiioco. That is, if an activity calls maiioco the memory

allocation it receives can be correctly referenced only by statements or functions within that activity.

42

frame
buffer()
{

mp_lock waiting_f or_reader ;
mp_cond buffer is not full;

opr
write ()
{

mp_close (&waiting_for_reader) ;

mp_wait (&buf fer^is^not^full, &waiting_f or^reader) ;
mp_open(&waiting_for_reader) ;

}

opr
read()
{

mp_signal_first (&buffer_is not full) ;

}
{

mp_lock_init (&waiting_for_reader) ;
mp_cond_init (&buffer^is^not^full) ;

}
}

Figure 4-15: Example of using locks and conditions

4 . 3 . S k e l e t o n o f a n M P C g e n e r a t e d С f i l e .

The С file generated by the MPC preprocessor from a MPC program contains several data structures

and function calls not present in the MPC file. In Figure 4-16 is the skeleton of a MPC program. It

consists of an instantiated frame, matrix о with a single operation, get о , and one global variable,

(float) z. Note that the operation exports the global variable. The program also has a single activity,

multiply о , which executes the frame operation once. Finally, in main () , the activity is instantiated

and spawned once. Let's call this program mat.mpc; a MPC command line that could generate the

following С file is:

mpc mat.mpc -o mat — m — С -lm

43

The — m switch means that monitoring is enabled and the — c switch means that a C file will be printed in

the immediate directory. The -lm switch might not be necessary, but since the monitor automatically

includes the block timers, the user may have inserted some timers in his code.

In Figure 4-17 is the top half of a sparse skeleton of the corresponding C file. Much of the C file

consists of data declarations (as much as 80% or 90% sometimes). Many of these declarations are

present as the result of MPC expanding several include files into the C file. In this case, MPC inserts a

special include file at the top of the C file and then dumps the data declarations, not all of which are

shown.

After the data declarations, come various frame initialization functions. Such a function is generated by

the MPC preprocessor in order to initialize a particular frame. In this case, the program uses three

frames: one for the block timers, one for the performance monitor, and the mult frame found in

mat .mpc. These functions are called later at the start of main. Deeper into the C file, is a structure

declaration, mpjmuitipiyj?ara_type which represents the parameters of the multiply activity.

This is followed by the functional definition of the activity mp_muitipiy () shown in Figure 4-18. In this

function is a call to mp_entry which copies the data in mp_muitipiy_para into the local variables.

Since this is a monitored program (presumably the user ran m a t . m p c through PIEmacs), the C file

contains sensor macros. The activity is delimited by A c t i v i t y _ b e g i n o and A c t i v i t y _ _ e n d sensors.

The antecedents of conditional statements that contain them test a sensor enable table to determine if the

sensors are enabled. The constants being passed to the sensor are for identification purpose later when

an execution is viewed by PIEscope. There are also frame operation sensors delimiting the frame

operation. The implementation of the export () statement is shown inside this frame. As may be

noticed, each of the sensor macros include a "1" concatenated to the names of the sensors. This is an

implementation detail that is of no concern to a programmer.

In main () can be seen the calls to workioad_init () 7 and the frame initialization functions. There

are also calls to mp_set_exit (), sensinitO, slurp_runtime_enable_table () and

mp_enab_set (). mp_set_exit () sets up some exit conditions for main() while sensinitO
initializes some monitoring structures and spawns the collector. siurp_runtime_enabie_tabie ()
reads SEP f i le 8 and stores its sensor enabling information in the sensor_enabie_tabie.
mp_enab_set () enables the run-time sensors. After these setup calls, the body of main is executed.

7See section 4.1.2.7
8The sep file is the file containing sensor enable information.

44

frame
matrix (m, n)
int m, n;
{

float z;

opr float get(x, y)
int x, y;
{

export(z);
}
{ }

} mailt (SIZE, SIZE) ;

act
multiply(xl, x2, yl, y2, mx, my, sz)
int xl, x2, yl, y2, mx, my, sz;
{

x = mult. get (k, i) ;

};

main(argc, argv)
int ar gc.-
char **argv;
{

multiply task;
int s, x, y;

task(0, s - 1, 0, s - 1, x, y, s)

}

Figure 4-16: Skeleton of an MPC program

i n c l u d e < m p c _ d e f . h >

t y p e d e f i n t j x n p _ b u f [10];
t y p e d e f c h a r * m p ^ n a m e ;

v o i d

m p _ m p _ b 1 o c k _ _ t i m e _ i n i t (f r a m e , i d)

m p _ m p _ b l o c k _ _ t i m e _ e _ t y p e * f r a m e ;

i n t i d ;

{

} m p _ m p _ _ b 1 o c k _ t i m e _ t y p e * m p _ m p _ b 1 o c k _ t i m e ;

v o i d

m p _ m p _ m o n i t o r _ i n i t (f r a m e , i d)

m p j n p _ m o n i t o r _ e _ t y p e * f r a m e ;

i n t i d ;

{

} m p _ m p _ m o n i t o r _ _ t y p e * m p _ m p _ m o n i t o r ;

v o i d

m p _ m u l t _ i n i t (f r a m e , i d)

m p _ m u l t _ e _ t y p e * f r a m e ;

i n t i d ;

{

} m p _ m u l t _ t y p e * m p _ m u l t ;

t y p e d e f s t r u c t

{

i n t x l , x2, y l , y2, m x , m y , s z ;

i n t m p _ r e t _ v a l ;

} m p _ m u l t i p l y _ p a r a _ _ t y p e ;

Figure 4-17: Skeleton of first half of resulting C file

46

i n t
m p j n u l t i p l y (m p _ m u l t i p l y j p a r a)
m p _ m u l t i p l y _ p a r a _ t y p e * m p _ m u l t i p l y j p a r a ;
{

i n t x l , x 2 , y l , y 2 , znx , my , sz ;
m p _ e n t r y (m p _ m u l t i p l y _ p a r a , & (x l) , s i z e o f (x l) , & (x 2) , s i z e o f (x 2) ,

& (y l) , s i z e o f (y l) ,&(y2), s i z e o f (y 2) ,
& (m x) , s i z e o f (m x) , & (m y) , s i z e o f (m y) ,
& (s z) , s i z e o f (s z) , N I L) ;

i f (s e n s o r _ e n a b l e _ t a b l e ? s e n s o r _ e n a b l e _ t a b l e [4 7] ?
sensor__enable__table [4 7] [5] : 0 : 0) mp_Act i v i t y j b e g i n l (5 , 4 7) ;

{

i f (s e n s o r _ e n a b l e _ t a b l e ? s e n s o r _ e n a b l e _ t a b l e [4 7] ?
s e n s o r _ e n a b l e _ t a b l e [4 7] [2] : 0 : 0) m p _ F o p _ b e g i n l (2 , 4 7) ;

{

x = ((f l o a t) (* mp_mul t) . z) ;

}
i f (s e n s o r _ e n a b l e _ t a b l e ? s e n s o r _ e n a b l e _ t a b l e [4 7] ?

s e n s o r e n a b l e _ t a b l e [4 7] [2] : 0 : 0) mp_Fop_end l (2 , 4 7) ;

}
i f (s e n s o r _ e n a b l e _ t a b l e ? s e n s o r _ e n a b l e _ t a b l e [4 7] ?

s e n s o r _ e n a b l e _ t a b l e [4 7] [5] : 0 : 0) m p _ A c t i v i t y _ e n d l (5 , 4 7) ;
m p _ e x i t (N I L) ;

}

m a i n (a r g c , a r g v)
i n t a r g c ;
c h a r * * a r g v ;
{

x n p _ w o r k l o a d _ i n i t (2, 200, 1 6) ;
m p _ s e t _ e x i t () ;
mp_mp_b lock_ t ime = (m p _ m p _ b l o c k _ t i m e _ t y p e *)

m p _ i n i t _ f r a m e (s i z e o f (mp_mp_b lock_ t ime_e_ type) ,
0 , m p _ m p _ b l o c k _ t i m e _ i n i t) ;

a p j n p j n o n i t o r = (mp_mp_moni t o r e t y p e *)
m p _ i n i t _ f r a m e (s i z e o f (mp_mp_monit o r _ e _ t y p e) ,

0r m p _ j n p _ m o n i t o r _ i n i t) ;
mp_mul t = (m p _ m u l t _ t y p e *)

m p _ i n i t _ _ f rame (s i z e o f (m p _ m u l t _ e _ t y p e) , 1 , 3 , m p _ m u l t _ i n i t) ;
s e n s i n i t (4 4) ;
sensor__enable__table = s l u r p _ r u n t i m e _ e n a b l e s t a b l e (" SEP ") ;
mp__enab_set (1) ;

t a s k = x n p _ a c t i v i t y (m p _ j m i l t i p l y , s i z e o f (m p ^ m u l t i p l y ^ p a r a _ t y p e) ,
0r 3 - 1 , 0 , s - 1 , x , y , s) ;

m p _ e x i t (N IL) ;

Rgure 4-18: Skeleton of second half of resulting C file
}

47

Appendix I
Count.mpc

Count is a very simple example that is called with

Count

The program creates two activities that each increment a global variable. The operation ±nc is used to

do this, and as the program is listed here, it contains a sync statement that will cause the process that

calls inc second to wait until the first process to finish incrementing the variable. As a result one process

will increment the counter 10 times, exit, and allow the other process to increment the counter 10 more

times. If the sync statement is removed from the operation, the processes will run in parallel, and the

incrementing of the counter will be interleaved between the two processes until each has incremented the

counter ten times.

/ * * *
This Is to test sync statement

*** /

frame global(k)
int k;
{

int i ;
opr inc(x)
int x;
{

int j,z;

in order to see the difference sync makes the
test should be run twice: once with sync
commented out

sync (inc) {

for (z=*0; z<l 0; z++) {
printf("act %d: %d\n",x,i++) ;
sleep(1) ;

}
}
export () ;

' }

{
i = k;

}
} glob(10);
act incr(x)
int x;
{

glob. inc (x) ;
} e [3] ;

48

M A I N ()

{
I N C R F [2] ;

M A I N W I L L S T A R T T W O A C T I V I T I E S . E A C H W I L L
C A L L F R A M E O P E R A T I O N G I V I N G I T S I D A S T H E
I N P U T P A R A M E T E R . I N T H E C A S E W I T H S Y N C
P R I N T O U T S O N T H E S C R E E N S H O U L D B E O R D E R E D

*** /
P R I N T F (" P R O G R A M S T A R T . . A N 1 *) ;
P R I N T F (" F I R S T A C T I V I T Y C A L L . . . \ N ") ;
E [0] (1) ;

P R I N T F (" S E C O N D A C T I V I T Y C A L L . . . \ N ") ;

F [1] (2) ;
J O I N < e [0] , £ [L]) ;
P R I N T F (" E N D O F M A I N . . . \ N ") ;

}

49

Appendix II
Varcount.mpc

Varcount is like the Count example, except that the user can vary the number of activities which are

running and can vary whether the activities should run synchronously or asynchronously

Varcount is called with

varcount

The program initially creates two activities running synchronously. Once it is running, the user can type

to the keyboard any number from 1-16 (inclusive) to indicate the number of parallel activities to run on the

next pass. Typing 17 causes the activities to run asynchronously and typing 18 causes the activities to

run synchronously again. Input of -1 causes the program to exit.
/ * * *

T h i s i s t o t e s t sync s t a t e m e n t .

i n c l u d e < s t d i o . h >

f r ame g l o b a l (k)
i n t k ;

{
i n t c o u n t , n a c t , c t r l f l a g ;

o p r v o i d i n c (x)
i n t x ;

{
i n t j , z ;
/ * * *

i n o r d e r t o see t h e d i f f e r e n c e sync makes t h e
t e s t s h o u l d be r u n t w i c e : once w i t h sync
commented o u t
* * * /

i f (c t r l f l a g = 1) {
sync (i n c)

{
f o r (z = 0 ; z < 1 0 ; z + +)

{
p r i n t f (" a c t : % d , c o u n t = % d \ n " , x , c o u n t + +) ;
s l e e p (1) ;

}
}

} e l s e {
f o r (z = 0 ; z < 1 0 ; z + +)

{
p r i n t f (" a c t : % d , c o u n t = % d \ n " , x f c o u n t + +) ;
s l e e p (1) ;

}
}

50

o p r i n t c o n t r o l ()
{

e x p o r t (c t r l f l a g) ;
}

o p r I n t n u m a c t ()
{

e x p o r t (n a c t) ;
}

o p r i n i t (v a l)
i n t v a l ;

{
e x p o r t (c o u n t = v a l) ;

}

{
c o u n t = k ; n a c t = 2 ; c t r l f l a g = 1 ;

}

} GLOB (0);

a c t i n c r (x)
i n t x ;

{
GLOB. i n c (x) ;

} c o u n t e r [1 6] ;

51

a c t i n t e r f a c e ()
{

i n t num;

w h i l e (1) {

s c a n f (" % d " , &num);
i f (num = 17) {

GLOB. c o n t r o l () = 0 ;
c o n t i n u e ;

}
i f (num = 18) {

G L O B . c o n t r o l () = 1 ;
c o n t i n u e ;

}
i f (num = 19) {

G L O B . c o n t r o l () = 2 ;
c o n t i n u e ;

}
GLOB.numact () = num;
i f (num < = s 0 | | num > 16) eacit () ;

}
} i n t e r f ;

m a i n ()
{

i n t l i m i t , i ;

M a i n w i l l s t a r t 1 - 1 6 a c t i v i t i e s d e p e n d i n g o n . Each o f t h e m
w i l l c a l l f r a m e o p e r a t i o n i n c r e m e n t 10 t i m e s a n d e x i t ;
* * * /

p r i n t f (" P r o g r a m s t a r t . . . \ n ") ;
p r i n t f (" S t a r t i n t e r f a c e : E n t e r number o f a c t i v i t i e s any t i m e \ n ")
p r i n t f (" V a l i d numbers o f a c t i v i t i e s a r e 1 - 1 6 \ n ") ;
p r i n t f (" T y p i n g 17 causes a c t i v i t i e s t o r u n a s y n c r o n o u s l y \ n ") ;
p r i n t f (" T y p i n g 18 causes a c t i v i t i e s t o r u n s y n c r o n o u s l y \ n ") ;
p r i n t f (" T y p i n g - 1 causes t h e p r o g r a m t o e x i t . \ n ") ;

GLOB.numact () = 2 ;
i n t e r f () ;

w h i l e (1) {
i = GLOB. c o n t r o l () ;
w h i l e (i = 2) {

i = G L O B . c o n t r o l () ;
}
p r i n t f (" S t a r t o f c u r r e n t p a s s . . A n ") ;
G L O B . i n i t (0) ;
l i m i t = GLOB. numact () ;
i f (l i m i t <= 0 | | l i m i t > 16) {

p r i n t f (" O u t o f l i m i t . . . w i l l e x i t \ n ") ;
b r e a k ;

}
f o r (i = 0 ; i < l i m i t ; i + +)

c o u n t e r [i] (i) ;
f o r (i = 0 ; i < l i m i t ; i + +)

j o i n (c o u n t e r [i]) ;
p r i n t f (" E n d o f c u r r e n t p a s s . . . \ n ") ;

}
j o i n (i n t e r f) ;
p r i n t f (" E n d o f w o r k l o a d . . . \ n ") ;

53

Appendix III
Matrix.mpc

This exampie program wiil take two user-entered square arrays and multiply them together. It is called

with a command like:

matrix size dx dy

where size is the length of the sides of the arrays (the number of elements in each array is size * size).

Dx and dy are the minimum desired sizes (size is as defined before) for the submatrices that the program

will create from the larger matrices. For instance, if the command

m a t r i x 12 4 4

is entered, the program wiil expect the user to input 144 elements for each of the two arrays to be

multiplied. The elements must be integers separated by spaces and each row must be terminated with a

carriage return. The first array must be followed by a '@' and another blank line before the second array

can be entered. The entered arrays will be cut into fourths (each side will be cut in half) and submit the

portions to subtasks which will continue dividing until the length of a vertical side of a portion is smaller

than dy (in this case 4) and the horizontal side is smaller than dx (4 again). In this example 3 cuts must

be made to each side, and therefore 16 subtasks will be created for each of the sixteen portions of the

divided array.

When the array has been divided up, each subtask multiplies its own parts of the two arrays and adds

the result to the proper place in the result array. After all the subtasks have finished with their

multiplication the result array contains the result of the multiplication of the two user-entered arrays.

f i n c l u d e < l i b c . h >

T h i s i s t h e m a t r i x m u l t i p l i c a t i o n examp le t o
t o t e s t t h e s y n t a x o f f r a m e s and a c t i v i t i e s

d e f i n e SIZE 128
d e f i n e NOM 2

Frame m a t r i x i s t h e m a t r i x t e m p l a t e . I t e x p o r t s t w o o p e r a t i o n s ,
' g e t ' and ' p u t ' .

* * * /

/•**
O p e r a t i o n s a r e s e l f e x p l a n a t o r y . The q u e s t i o n c o u l d be r a i s e d :
"Why i s t h e r e no sync d e f i n e d f o r p u t ? " I n t h e g e n e r a l case i t
s h o u l d o b v i o u s l y be " s y n c (p u t) { } " . The r e a s o n i t i s o m i t t e d h e r e
l i e s i n t h e f a c t t h a t we know t h a t o n l y one a c t i v i t y i s g o i n g t o
w r i t e any one p a r t i c u l a r m a t r i x e l e m e n t , so sync w o u l d j u s t a d d
u n n e c e s s a r y o v e r h e a d .

*** /

f r a m e
m a t r i x (m, n)

i n t m f n ;

f l o a t m a t r i x d a t a [m] [n] ;

o p r f l o a t
i n t

g e t (x , y)

e x p o r t (m a t r i x _ d a t a [x] [y]) ;

o p r f l o a t
i n t

p u t (x , y)
y ;

e x p o r t (m a t r i x _ d a t a [x] [y]) ;

} a (S I Z E , S I Z E) [3] ;
/ * * *

a (. . .) [3] i s a s h o r t h a n d t o c r e a t e t h r e e i n s t a n c e s w i t h t h e same
i n i t i a l p a r a m e t e r s . A n o t h e r way o f d o i n g i t w o u l d b e :

m a t r i x a l (S I Z E , S I Z E) , a 2 (S I Z E , S I Z E) , a3 (S IZE,S IZE) ;

act
multiply(xl, x2, yl, y2, mx, my, sz)

Gets the submatrix described by xl,x2,yl, and y2 and checks
its dimensions against given limits mx and my. If any submatrix
dimension is larger than mx or my respectively will cut the
submatrix along this dimension in two halves, starts two new
multiply activities (ie. subtasks), and gives them submatrices to
work on. When the both limits are satisfied(ie. there is no more
need to cut) , multiply will do the multiplication and join the
father activity upon completion.

• /
int xl, x2, yl, y2, mx, my, sz;

{
int ex, ey, i, j, k;
float t, tmp, tmp2;
multiply subtask[2] ;

ex = x2 - xl + 1;
ey = y2 - yl + 1;
if (ex > ey) {

x dimension of the submatrix is larger one

if (ex > mx) {

x dimension of the submatrix is larger than mx limit
(means we have to cut it in two halves)
• /

subtask[0] (xl, (xl + ex / 2) - 1, yl, y2,
subtask[l] ((xl + ex / 2) , x2, yl, y2, mx,
join(subtask[0], subtask[1]);
exit() ;

}
if (ey > my) {

y dimension is larger than my limit
**• /

subtask[0] (xl, x2, yl, (yl + ey / 2 - 1),
subtask[1] (xl, x2, (yl + ey / 2), y2, mx,
join(subtask[0], subtask[1]);
exit () ;

}
}

mx, my, sz);
my, sz) ;

mx, my, sz);
my, sz);

57

if (ey >= ex) {
if (ey > my) {

subtask [0] (xl, x 2 , yl, (yl + ey / 2 - 1) , mx, my, sz) ;
subtask[l] (xl, x 2 , (yl + ey / 2) , y 2 , mx, my, sz) ;
join(subtask[0], subtask[1]) ;
exit () ;

}
if (ex > mx) {

subtask [0] (xl, (xl + ex / 2 - 1), yl, y 2 , mx, my, sz);
subtask[l] ((xl + ex / 2) , x 2 , yl, y 2 , mx, my, sz) ;
join(subtask[0], subtask[1]) ;
exit () ;

}
}

NO more subdivisions! DO THE JOB!!
*** /

for (i = yl; i <= y 2 ; i++) {
for (j a xl; j <= x 2 ; j++) {

t = 0 ;
for (k = 0 ; k < sz; k++) {

tmp = a [0].get(i,k);
tmp2 = a[l].get(k,j);
t = t + tmp * t m p 2 ;

}
a [2].put(j, i) = t;

}
}
/•kick

The product submatrix calculated

i n i t _ m a t r i c e s (s z)
i n t s z ;

i n t
f l o a t

y ;
t m p ;

p r i n t f (" e n t e r m a t r i c e s row b y r o w \ n ") ;
p r i n t f (" r o w s e p a r a t o r i s CR, a n d m a t r i x s e p a r a t o r i s @CR\n") ;
f o r (x = 0 ; x < s z ; x++) {

f o r (y • 0 ; y < s z ; y++) {
s c a n £ (" % f " , fitmp) ;
a [0] . p u t (x , y) = t m p ;

}
w h i l e (g e t c h a r () ! = ' \ n ') ;

}
w h i l e (g e t c h a r () ! = ' @ ') ;
w h i l e (g e t c h a r () ! = ' \ n ') ;
f o r (x = 0 ; x < s z ; x++) {

f o r (y = 0 ; y < s z ; y++) {
s c a n f (" % f " , & t m p) ;
a [l] . p u t (x , y) = t m p ;
a [2] . p u t (x , y) =: 0 ;

}
w h i l e (g e t c h a r () ! = ' \ n ') ;

}
}

p r i n t f r e s u l t (s z)

p r i n t f (" \ n r e s u l t : \ n ") ;
f o r (x s = 0 ; x < s z ; x++) {

f o r (y = 0 ; y < s z ; y++) {
tmp = a [2] . g e t (x f y) ;
p r i n t f (" % 0 . I f " , t m p) ;

}
p r i n t f (" \ n ") ;

i n t s z ;

i n t
f l o a t

x r y ;
t m p ;

file:///nresult

MAIN(ARGC, ARGV)
INT
CHAR

ARGC;
ARGV;

INT
MULTIPLY

SZ, MAC, MY;
TASK ;

IF (ARGC != 4) {
FPRINTF (STDERR, "USAGE: MATRIX SIZE DAC DY\N") ;
EXIT () ;

}
SZ a s ATOI(ARGV[1]);
MX a s ATOI(ARGV[2]);
MY a s ATOI (ARGV [3]) ;
INIT_MATRICES(SZ);
TASK(0, SZ - 1, 0, SZ - 1, MX, MY, SZ);
JOIN(TASK);
PRINT_RESULT(SZ);

60

61

Appendix IV
Newmat.mpc

This exampie is just like the matrix example, except in the way it divides the work, in the matrix

example, whenever an activity decided it should sub-divide itself, it would create two children, give each

half of the work, and then wait for them to finish. This meant that the parent activity was not doing work,

and is using resources by its very existence.

In this example, the parent creates only one child, and keeps half of the work for himself by calling a

recursive procedure. We found that this algorithm runs about 20% faster than the example shown in the

matrix example.

Newmat will take two user-entered square arrays and multiply them together. It is called with a

command just like in the matrix example:

newmat size dx dy

where the parameters have the same meaning as in the matrix example.

• i n c l u d e < l i b c . h >

T h i s i s t h e m a t r i x m u l t i p l i c a t i o n examp le t o
t o t e s t t h e s y n t a x o f f r a m e s a n d a c t i v i t i e s

/

d e f i n e SIZE 160
d e f i n e NUM 2

/*
* Frame m a t r i x i s t h e m a t r i x t e m p l a t e . I t e x p o r t s t w o o p e r a t i o n s ,
* " g e t " a n d " p u t " .
* /

/*
* O p e r a t i o n s a r e s e l f e x p l a n a t o r y . The q u e s t i o n c o u l d be r a i s e d :
* "Why i s t h e r e no sync d e f i n e d f o r p u t " . I n t h e g e n e r a l case i t
* s h o u l d o b v i o u s l y be " s y n c (p u t) { } " . The r e a s o n i t i s o m i t e d h e r e
* l i e s i n t h e f a c t t h a t we know t h a t o n l y one a c t i v i t y i s g o i n g t o
* w r i t e p a r t i c u l a r m a t r i x e l e m e n t , so sync w o u l d j u s t a d d some
* u n n e c e s s a r y o v e r h e a d .
* /

f r a m e
m a t r i x (m, n)

i n t m, n;
{

f l o a t m a t r i x _ d a t a [m] [n] ;

o p r f l o a t g e t (x , y)
i n t x , y ;

{
e x p o r t (ma t r i x__da ta [x] [y]) ;

}
o p r f l o a t p u t (x , y)

i n t x , y ;
{

e x p o r t (ma t r i x__da ta [x] [y]) ;
}

{
}

} a (S I Z E , S I Z E) [3] ;
/ *

* a (. . . .) [3] i s s h o r t h a n d t o c r e a t e t h r e e i n s t a n c e s w i t h t h e same
* i n i t i a l p a r a m e t e r s . A n o t h e r way o f d o i n g i t w o u l d b e : m a t r i x
* a l (S I Z E , S I Z E) , a 2 (S I Z E , S I Z E) , a 3 (S I Z E , S I Z E) ;
* /

a c t

m u l t p r o c (x l , x 2 , y l , y 2 , mx, my, sz)
/ * * *

Ge ts t h e s u b m a t r i x d e s c r i b e d b y x l , x 2 , y l , a n d y2 a n d
checks i t s d i m e n s i o n s a g a i n s t g i v e n l i m i t s mx and my. I f any
s u b m a t r i x d i m e n s i o n i s l a r g e r t h a n mx o r my r e s p e c t i v e l y w i l l
c u t t h e s u b m a t r i x a l o n g t h i s d i m e n s i o n i n t w o h a l v e s , s t a r t s t w o
new m u l t i p l y a c t i v i t i e s (i e . s u b t a s k s) , and g i v e s t h e m s u b m a t r i x e s
t o w o r k o n . When t h e b o t h l i m i t s a r e s a t i s f i e d (i e . t h e r e i s no more
need t o c u t) , m u l t i p l y w i l l do t h e m u l t i p l i c a t i o n a n d j o i n t h e f a t h e r
a c t i v i t y upon c o m p l e t i o n .
* * * /

i n t x l , x 2 , y l , y 2 , mx, my, s z ;
{

i n t e x , e y , i , j , k ;
f l o a t t , t m p , tmp2;
m u l t i p l y s u b t a s k ;

ex = x2 - x l + 1 ;
ey = y2 - y l + 1 ;
i f (ex > ey) {

/ * * *
x d i m e n s i o n o f t h e s u b m a t r i x i s l a r g e r one
* * * /

i f (ex > mx) {

x d i m e n s i o n o f t h e s u b m a t r i x i s l a r g e r t h a n mx l i m i t
(means we have t o c u t i t i n t w o h a l v e s)
* * * /

s u b t a s k (x l , (x l + ex / 2 - 1) , y l , y 2 , mx, my, sz) ;
m u l t p r o c ((x l + ex / 2) , x 2 , y l , y 2 , mx, my, s z) ;
j o i n (s u b t a s k) ;
r e t u r n ;

}
i f (ey > my) {

/ * * *
y d i m e n s i o n i s l a r g e r t h a n my l i m i t
* * * /

s u b t a s k (x l , x 2 , y l , (y l + ey / 2 - 1) , mx, my, sz) ;
m u l t p r o c (x l , x 2 , (y l + ey / 2) , y 2 , mx, my, s z) ;
j o i n (s u b t a s k) ;
r e t u r n ;

m u l t i p l y (x l , x 2 , y l , y 2 , mx, my, sz)
i a t x l , x 2 , y l f y 2 , mx, my, s z ;

{
m u l t p r o c (x l , x 2 , y l , y 2 , m x , m y , sz) ;

};

}
}

64

i£ (ay >« ex) {
if (ey > my) {

subtask (xl, x2, yl, (yl + ey / 2 - 1), mx, my, sz)
multproc (xl, x2, (yl + ey / 2), y2, mx, my, sz) ;
join(subtask);
return;

}
if (ex > mx) {

subtask (xl, (xl + ex / 2 - 1), yl, y2, mx, my, sz)
multproc ((xl + ex / 2), x2, yl, y2, mx, my, sz);
join(subtask);
return;

}
}

NO more subdivisions! DO THE JOB ?!
•** /

for (i = yl; i <= y2; i++) {
for (j = xl; j <= x2; j++) {

t = 0;
for (k = 0; k < sz; k++) {

tmp = a[0] .get (i,k) ;
txnp2 = a[l] .get (k, j) ;
t = t + tmp * tmp2;

}
a[2].put(j, i) = t;

}
}

The product submatrix calculated
*** /

i n i t _ m a t r i c e s (s z)
i n t s z ;

i n t
f l o a t

*r y ;

t m p ;

p r i n t f (" e n t e r m a t r i c e s row b y r o w \ n ") ;
p r i n t f (" r o w s e p a r a t o r i s CR, a n d m a t r i x s e p a r a t o r i s @CR\
f o r (x = 0 ; x < s z ; x++) {

f o r (y = 0 ; y < s z ; y + +) {

s c a n f (" % f " , & t m p) ;
a [0] . p u t (x , y) = t m p ;

}
w h i l e (g e t c h a r () ! = ' \ n ') ;

}
w h i l e (g e t c h a r () ! = ' @ ') ;
w h i l e (g e t c h a r () ! = ' \ n ') ;
f o r (x = 0; x < s z ; x++) {

f o r (y = 0; y < s z ; y + +) {

s c a n f (" % f " , fitmp);
a [l] . p u t (x r y) = t m p ;
a [2] . p u t (x , y) = 0;

}
w h i l e (g e t c h a r () ! = ' \ n ') ;

}
}

p r i n t _ r e s u l t (s z)
i n t s z ;

p r i n t f (" \ n r e s u l t : \ n ") ;
f o r (x = 0 ; x < s z ; x++) {

f o r (y = 0 ; y < s z ; y + +) {

tmp a a[2] . g e t (x , y) ;
p r i n t f (" % 0 . I f t m p) ;

}
p r i n t f (" \ n ") ;

i n t
f l o a t

* r y ;
t m p ;

file:///nresult

66

MAIN(ARGE, ARGV)
INT
CHAR

ARGE;
ARGV;

INT
MULTIPLY

SZ, MX, MY;
TASK;

IF (ARGC != 4) {
FPRINTF(STDERR, "USAGE: MATRIX SIZE DX DY\N")
EXIT () ;

}
SZ = ATOI(ARGV[1]);
MX = ATOI(ARGV[2]);
MY = ATOI(ARGV[3]);
INIT_MATRICES(SZ) ;
SENSOR("BEFORE TASK");
TASK(0, SZ - 1, 0, SZ - 1, MX, MY, SZ);
JOIN(TASK);
PRINT_RE SUIT (S Z) ;

67

Appendix V
Qsort.mpc

Qsort is called with the command:

qsort size

Size is the size of the array to be sorted, and after the line is entered, the program expects the user to
enter Size number of integer elements separated by spaces or carriage returns. The array will then be
broken down into parts that will be sorted according to the quick sort algorithm.

/ * ^

EXAMPLE HOW TO USE FRAMES AND ACTIVITIES

THIS IS AN IMPLEMENTATION OF THE QUICK SORT ALGORITHM.

**^^ /

#INCLUDE <STDIO.H>

#DEFINE ARRAY_SIZE 100
#DEFINE TRUE 1

THIS IS A TEMPLATE OF A ARRAY DATA STRUCTURE WHICH
INCLUDE SWAP, PUT AND GET OPERATION.

/
FRAME ARRAY (N)

INT N;
{

INT ARRAY_DATA[N];
/***

OPERATION 'SWAP 7 SWAPS TWO ARRAY ELEMENTS.
*** /

OPR VOID SWAP(X, Y)
INT X, Y;

{
INT TMP;

TMP = ARRAY_DATA [X] ;
ARRAY_DATA[X] = ARRAY_DATA[Y];
ARRAY_DATA[Y] » TMP;
EXPORT () ;

}

OPR INT PUT(I)
INT I ;

{
EXPORT (ARRAY_DATA [I]) ;

}

OPR INT GET(I)
INT I;

ACTIVITY SORT IMPLEMENTS QUICK SORT ALGORITHM.
*********************************/

ACT SORT(LEFT, RIGHT)
INT LEFT, RIGHT;

{
INT J, K, TMP, TMP2;
SORT SUBSORT[2];

IF (LEFT < RIGHT) {
J = LEFT;
K = RIGHT + 1;
DO {

DO {

TMP = QSARRAY. GET (J) ;
TXNP2 = QSARRAY. GET (LEFT) ;

} WHILE ((TMP >= TMP2) && (J < RIGHT));

DO {
K — ;
TMP = QSARRAY .GET (K) ;
TMP2 = QSARRAY .GET (LEFT) ;

} WHILE ((TMP <= TMP2) && (K > LEFT));

IF (J < K) {
QSARRAY.SWAP(J, K) ;

} ELSE
BREAK;

} WHILE (TRUE);

{
EXPORT (ARRAY_DATA[I]) ;

}

{
}

} QSARRAY (ARRAY_SXZE) ;

69

q s a r r a y . swap (l e f t , k) ;
/ *

D i v i d e a r r a y a n d spawn t w o new s o r t a c t i v i t i e s .
F i r s t p a r t o f t h e a r r a y (up t o K - t h e l e m e n t) has a l l
e l e m e n t s g r e a t e r t h e n k - t h e l e m e n t . Second p a r t o f t h e
a r r a y (f r o m k + l - t h e l e m e n t) has a l l e l e m e n t s s m a l l e r t h e n k - t h
e l e m e n t .
*** /

s u b s o r t [0] (l e f t , k - 1) ;
s u b s o r t [l] (k + 1 , r i g h t) ;
j o i n (s u b s o r t [0] , s u b s o r t [1]) ;

}
};

/**
I n i t i a l i z e a r r a y a n d a d d s e n t i n e l

* /
i n i t _ a r r a y (n)

i n t n ;
{

i n t i , d a t a , sum, t m p ;

sum = 0 ;
f o r (i = 0 ; i < n ; i + +) {

s c a n f (" % d " , fidata);
q s a r r a y . p u t (i) = d a t a ;
tmp » q s a r r a y . g e t (i) ;
sum = sum + t m p ;

}
q s a r r a y . p u t (n) = sum;

/***
P r i n t a r r a y o f n e l e m e n t s

* /
p r i n t _ a r r a y (n)

i n t n ;
{

i n t i r t m p ;

f o r (i = 0 ; i < n ; i + +) {
tmp = q s a r r a y . g e t (i) ;
p r i n t f (f ,%d " , t m p) ;

}
p r i n t f (" \ n ") ;

m a i n (a r g c , a r g v)
i n t a r g c ;
i n t * * a r g v ;

{
i n t n f d a t a ;
s o r t q s o r t ;

i f (a r g c ! = 2) {
f p r i n t f (s t d e r r , "USAGE: q s o r t s i z e \ n ")
a x i t () ;

}
n » a t o i (a r g v [l]) ;
p r i n t f (" P l e a s e e n t e r %d i n t e g e r s \ n " , n) ;
i n i t _ a r r a y (n) ;
p r i n t f (" \ n A R B A Y : \ n ") ;
p r i n t _ a r r a y (n) ;
q s o r t (0 , — n) ;
j o i n (q s o r t) ;
p r i n t f (" \ n R E S U L T : \ n ") ;
p r i n t _ a r r a y (++n) ;

file:///nARBAY
file:///nRESULT

71

Appendix VI
Sortm.mpc

Sortm is another parallel sort algorithm that is called with a command of the form:

sortm size subsize

As in Qsort, Size is the size of the array to be sorted and once the command line is entered, the

program will expect the user to enter integer elements of the array separated by spaces or carriage

returns. Subsize denotes the size of the subarrays that the program will divide the entered array into.

The idea is that the program will take the array and cut it in half giving each half to subtasks. The

subtasks will then halve the subarray if it is larger than the subsize entered by the user. When no more

cutting is necessary, the subarrays are sorted with the merge sort algorithm. Then these sorted

subarrays are sorted. This process is continued until the two original halves of the array are sorted by the

original process with respect to each other and the array is completely sorted.

i n c l u d e < l i b c . h >

/***************************************^

T h i s i s a n i m p l e m e n t a t i o n o f t h e s o r t - m e r g e a l g o r i t h m .

d e f i n e A R R A Y _ S I Z E 1 0 0

d e f i n e T R U E 1

T h i s i s a t e m p l a t e o f a a r r a y d a t a s t r u c t u r e w h i c h
i n c l u d e s w a p , p u t , g e t a n d c o m p a r e o p e r a t i o n s .

* /

f r a m e a r r a y (n)

i n t n ;

{
i n t a r r a y _ d a t a [n] ;

o p r v o i d s w a p (i l , j l)

i n t i l , j l ;

{
i n t t m p , i l l , j l l ;

i l l a i l ;

j l l = j l ;

t m p = a r r a y _ d a t a [i l l] ;

a r r a y _ _ d a t a [i l l] = a r r a y _ d a t a [j l l] ;

a r r a y _ _ d a t a [j l l] = t m p ;

e x p o r t (i l l) ;

}

o p r i n t p u t (i)
i n t i ;

a = a r r a y _ d a t a [i l] ;
b = a r r a y _ d a t a [j l] ;
e x p o r t (a - b) ;

{ }

} q s a r r a y (ARRAY_SIZE) ;

{
e x p o r t (a r r a y _ d a t a [i])

}

o p r i n t g e t (i)
i n t i ;

{
e x p o r t (a r r a y _ d a t a [i])

}

o p r i n t c o m p a r e (i l , j l)
i n t i l , j l ;

{
i n t a , b ;

/**
A c t i v i t y s o r t i m p l e m e n t s s o r t - m e r g e a l g o r i t h m .

* /

a c t s o r t (l e f t , r i g h t , n z)

i n t l e f t , r i g h t , n z ;

{
i n t j , k , 1 , m , e z , t e m p [A R R A Y _ S I Z E] , a , b ;

i n t t m p ;

s o r t s u b s o r t [2] ;

e z = r i g h t - l e f t ;

m = l e f t + e z / 2;
i f (e z > n z) {

s u b s o r t [0] (l e f t , m , n z) ;

s u b s o r t [1] (m + 1 , r i g h t , n z) ;

j o i n (s u b s o r t [0] , s u b s o r t [1]) ;

j = l e f t ;

k = m + 1 ;

1 = 0 ;

d o {

i f ((j < = s m) & & (k < = r i g h t)) {

t m p = q s a r r a y . c o m p a r e (j , k) ;

i f (t m p < = 0) {

t e m p [l + +] = q s a r r a y . g e t (j + +) >"
} e l s e {

t e m p [1 + +] = q s a r r a y . g e t (k + +) ;

} •

}
i f ((k > r i g h t) & & (j <= m)) {

t e m p [1 + +] a * q s a r r a y . g e t (j + +) ;

}
i f ((j > m) & & (k < = s r i g h t)) {

t e m p [l + +] a s q s a r r a y . g e t (k + +) ;

}
} w h i l e (1 < = e z) ;

k = l e f t ;

f o r (1 = 0 ; 1 < = e z ; 1 + +)

q s a r r a y . p u t (k + +) = t e m p [1] ;

e x i t () ;

j = l e f t ;

k = r i g h t ;

d o {

t m p a s q s a r r a y . c o m p a r e (j , + + j) ;

i f (t m p > 0) {

q s a r r a y . s w a p (j — , j) ;

i f (j > l e f t)

j — ;
}

} w h i l e (j < r i g h t) ;

74

init_array (n)
int n;

{
int i, data;

for (i = 0; i < n; i++) {
scanf("%d", &data);
qsarray.put(i) = data;

}
}

print_array(nl, n2)
int nl, n2 ;

{
int i, tmp;

for (i = nl; i <= n2; i++) {
tmp = qsarray. get (i) ;
printf ("%d tmp) ;

}
printf ("\n") ;

main(argc, argv)
int argc;
int **argv;

{
int n, nz, data;
sort qsort;

if (argc != 3) {
fprintf(stderr, "USAGE: sortm size subsize\n")
exit () ;

}
n = atoi(argv[l]);
printf("Please enter %d integers\n" f n) ;
nz = atoi(argv[2]);
init_array (n) ;
printf (" \nARRAY: \n") ;
print^array(0, n - 1) ;
qsort (0, n - 1, nz) ;
join (qsort) ;
printf("\nRESULT:\n");
print^array(0, n - 1) ;

}

file:///nARRAY
file:///nRESULT

75

Appendix VII
Search.mpc

Search is the parallel implementation of a search algorithm and can be called with the command:

search processes size key

Processes is the number of processes that the program will be allowed to create in order to do the

search. Size is the size of the array to be searched. The program will automatically create an array with

integer elements ascending from 1 to Size. Key is the number to be searched for and must be within the

range of the array. Checking is not conducted in the program for the sake of simplicity and size.

The program behaves like a binary search but differs in that more than one comparison can be made at

a time. If three processes are allowed, then three evenly spaced spots in the array are selected and the

elements at these positions are compared with the value of the key. The third of the array which must

contain the key is then divided with three comparisons, and so on, until the key is hit by a comparison.

The program will print the number of the set of comparisons just completed and print the found key when

done.

/*
* THIS IS A PARALLEL SEARCH ALGORITHM TO BE EXECUTED ON AN
* ORDERED LIST OF ELEMENTS.

*/

#INCLUDE <STDIO.H>

#DEFINE ARRAY_SIZE 10000

FRAME SRCHDAT(N)
INT N;
{

INT ARRAY_DATA[N] ;
INT PROC_FLG[32];
INT FOUND;

OPR INT PUT(I)
INT I;

{
EXPORT (ARRAY_DATA [I]) ;

}

OPR INT GET(I)
INT I;

{
EXPORT (ARRAY__DATA [I]) ;

}

OPR INT SET_FLG(I)
INT I;

ACT COMPARE (PROCNUM, POS, KEY, N)
INT PROCNUM RPOS,KEY,N;
{

INT TMP;

TMP = SRARRAY.GET(POS);
IF ((POS>N) || (TMP>KEY))

{
SRARRAY. SET_F IG (PROCNUM)
EXIT () ;

}
TMP = SRARRAY .GET (POS) ;
IF (TMP<KEY)

{
SRARRAY. SET_F LG (PROCNUM)
EXIT () ;

}
SRARRAY. SET_FLG (PROCNUM) = 0
SRARRAY.SET_FND(POS);

};

{
EXPORT (PROC_FLG[I]) ;

}

OPR INT READ_FLG(I)
INT I ;

{
EXPORT (PROC_FLG[I]) ;

}

OPR VOID SET_FND(I)
INT I;

{
FOUND = s I;
EXPORT () ;

}

OPR INT READ_FND()
{

EXPORT(FOUND);
}

{
FOUND = -1;

)

} SRARRAY(ARRAY_SIZE);

77

INIT_ARRAY (N)
INT N;
{

INT I;

FOR (I a s 1; I < N+1; I++)
SRARRAY.PUT(I) = I;

}

MAIN(ARGC,ARGV)
INT ARGC;
INT **ARGV;
{

INT N, I, KEY, TMP;
INT SZE, FIG, LEFT, RIGHT;
INT PSS,PRC, P [3 2] ;
COMPARE SCOMPARE [3 2] ;

IF (ARGC!=4)
{

FPRINTF(STDERR,"USAGE: SEARCH PROCESSES SIZE KEY\N")
EXIT () ;

}

PRE = ATOI(ARGV[1])
N = ATOI(ARGV[2])
KEY = ATOI(ARGV[3])
INIT_ARRAY (N) ;
PSS = 1;
LEFT = 0;
RIGHT = N;
DO

{
PRINTF("PASS %D\N",PSS++);
SZE = (RIGHT - LEFT+1)/(PRC+1);
IF (SZE = 0)

SZE = 1;
P[0] = LEFT+SZE;
FOR(I = 1 ; I < PRE; I++)

P[I] A P[I-L] + SZE;

FOR(I = 0 ; I < PRE; I++)
SCCMPARE[I](I,P[I],KEY,N);

FOR(I = 0 ; I < PRE; I++)
JOIN(SCOMPARE[I]);

I=*0;
TMP = SRARRAY.READ_FLG(I);
WHILE((TMP != -1) 6& (I < PRE))

{
I++;
TMP = SRARRAY.READ_FLG(I) ;

)
RIGHT a LEFT+SZE*(I+1);
LEFT = LEFT+SZE*I;
FLG=0;
FOR (I = 0; I < PRE; I++)

{
TMP = SRARRAY. READ_FLG (I) ;
IF (TMP SJBB 0)

FIG = L;
}

} WHILE (FIG != 1) ;

TMP = SRARRAY.READ_FND();
PRINTF ("%D FOUND AT %D. \N'F, KEY, TMP)

79

Appendix VIII
Sieve.mpc

Sieve of Erastothenes is an algorithm for extracting the prime numbers from the vector of integers from

1 to N. The basic algorithm is that one activity will start at 1 and compute whether or not an integer is

prime. In parallel, other activities will use the results which the first activity has already computed to

eliminate other integers which aren't prime.

Sieve can be called with the command:

sieve numproc list_limit output[y/n]

where numproc is the total number of parallel activities to start, and where iist_iimit is the highest

numbered integer to check. The third parameter should be y or n to indicate whether or not Sieve should

output its results or not.

#define MAXPROCESSORS 1000
#de£ine LIMIT 100000
#define TRUE 1
#define FALSE 0

#include <math.h>

frame list_array (n)
int n;
{

char list_data[n] ;

opr char put(i)
int i;

{
dsync (list_data [i]) {

export (list_data[i]) ;
}

}

opr char get(i)
int i;

{
export (list_data [i]) ;

}

80

opr void init(i)
int i;

frame pt ()
{

int point_data, num;

opr int test(limit,rootl)
int limit, rootl;

{
char temp;
int ti;

sync(test) {
do {

ti = ++point_data;
if (ti >= limit ||

num++ >= rootl) {
ti = -1;
break;

}
temp = LIST.get(ti);

} while (temp != '*') ;
export (ti) ;

}
}

{ point_data = 1; num = 0;}
} startpoint () ;

{
int j;
for (j=0; j<i; j++)

list_data[j] = '*' ;
}

{ }
} LIST (LIMIT) ;

a c t s l a v e (p r o c e s s o r , l i m i t , r o o t l)

i n t p r o c e s s o r , l i m i t , r o o t l ;

{
i n t s t e p _ s i z e , p l a c e ;

i n t s t _ p o i n t ;

c h a r d u m ;

w h i l e (1) {

s t _ p o i n t = s t a r t p o i n t . t e s t (l i m i t , r o o t l)

I N T E G E R _ S E N S O R (s t j p o i n t) ;

i f (s t _ p o i n t = - 1) {

e x i t (1) ;

e l s e

{
s t e p _ s i z e = s t _ p o i n t ;

p l a c e = s t _ p o i n t + s t e p _ s i z e ;

w h i l e (p l a c e < l i m i t) {

d u m = L I S T . g e t (p l a c e) ;

i f (d u m ! = ' ')

L I S T . p u t (p l a c e) = ' ' ;

p l a c e a p l a c e + s t e p _ s i z e ;

}
}

}
} s i e v e _ s l a v e [M A X P R O C E S S O R S] ;

MAIN (ARGC,ARGV)
INT. ARGC;
CHAR **ARGV;

{
INT I, PROCESSOR, LIMIT, ROOTLIMIT;
CHAR CE,SS[32];
EXTERN DOUBLE SQRT();

IF (ARGC < 4){
PRINTF("USAGE SIEVE NUMPROC LIST_LIMIT OUTPUT[Y/N]\N") ;
«XIT() ;

>

LIMIT SS ATOI(ARGV[2]) ;
ROOTLIMIT = (INT) SQRT ((DOUBLE) LIMIT) + 1;
LIST.INIT (LIMIT) ;

FOR(PROCESSOR = 0; PROCESSOR < ATOI(ARGV[1]); PROCESSOR++)
SIEVE_SLAVE[PROCESSOR](PROCESSOR,LIMIT,ROOTLIMIT);

FOR (PROCESSOR SS 0; PROCESSOR < ATOI (ARGV[1]) ; PROCESSOR-H-)
JOIN(SIEVE_SLAVE[PROCESSOR]);

IF (ARGV[3][0] = 'Y'){
PRINTF ("PRIME NUMBERS 1 - %D: \N" , LIMIT) ;
FOR(I = 0 ; I < LIMIT; I++){

CC = LIST.GET(I);
IF (CC = ' * ') {

IF (I%10 == 0) PRINTF("\N");
PRINTF("%D I) ;

}
}
PRINTF("\N") ;

>

} /* END MAIN */

83

Appendix IX
Mail.mpc

The Mail program is called with the command:

mail

It simulates a simple mail system by creating three processes, one each for users Mark, Dado, and

Nino. Each process allocates a queue in the global mailbox frame for itself. Then they send their own

name (either Mark, Dado or Nino) to the other queues in the mailbox. The processes check their own

queues then and print the messages they received (the other names). A spooler is also used for the

prints to the screen so that characters are printed only once (parallel printing to the screen often results in

garbage).
/**************************************^

Example how t o use f r a m e s and a c t i v i t i e s

NOTE-The w h o l e examp le i s s y n t h e t i c i n t h e sense t h a t
i t i s c o n s t r u c t e d t o e x h i b i t t h e p o s s i b i l i t i e s o f
n e s t i n g t h e f r a m e s and o p e r a t i o n s . (i e . t e s t i s
s e p a r a t e d f r o m g e t and p u t i n t h e f r ame que t o
p r e p a r e g r o u n d f o r t e s t - a n d - p u t and t e s t - a n d - g e t
k i n d s o f o p e r a t i o n s on t h e h i g h e r h i e r a r c h i c a l l e v e l)
T h e r e a r e o t h e r ways t o b u i l d m a i l b o x e s , b u t t h e code
b e l o w i s meant f o r t e s t i n g t h e f r a m e s and a c t i v i t i e s .

* f
i n c l u d e < s t d i o . h >
i n c l u d e < s t r i n g s . h >

d e f i n e EMPTY 0
f d e f i n e FULL 1
d e f i n e READY 2
d e f i n e MATCH 0
d e f i n e UNSUCC - 1
d e f i n e NAME__LEN 32
d e f i n e CUSTQMER_NUMBER 8
d e f i n e CUSTOMER SIZE 256

84

f r a m e que (l e n g t h)
/ * * *

T h i s i s t h e t e m p l a t e f o r t h e s h a r e d c i r c u l a r q u e . Each
i n s t a n c e w i l l be o f a d i m e n s i o n l e n g t h . L e n g t h has t o
be c o n s t a n t a t t h e i n s t a n t i a t i o n t i m e .
* * * /

i n t l e n g t h ;
{

q u e _ d a t a , r e a d _ p t r a n d w r i t e _ p t r a r e s h a r e d d a t a
•kffkj

c h a r q u e _ d a t a [l e n g t h] ;
c h a r * r e a d _ p t r , * w r i t e _ p t r ;

o p r c h a r g e t ()
/ * * *

Get r e t u r n s c h a r a c t e r w h i c h i s on t h e t o p o f t h e q u e .
To do i t one s h o u l d p u t i n t h e code yys=xxx.get ()
where y y i s any v a r i a b l e , a n d x z z i s a f r a m e i n s t a n c e
name o f a t y p e q u e .
* * * /

{
i f ((l o n g) r e a d _ p t r >= ((l o n g) q u e _ d a t a + l e n g t h))

r e a d — p t r = q u e ^ d a t a ;
/ * • *

e x p o r t p o i n t s t o t h e p a r t o f t h e o p e r a t i o n w h i c h w i l l be
u n f o l d e d as a macro e x a c t l y a t t h e p l a c e o f t h e o r i g i n a l
c a l l i n s i d e t h e s t a t e m e n t i n t o t h e c a l l i n g c o d e .
E v e r y t h i n g w h i c h i s above e x p o r t i n t h e o p e r a t i o n w i l l
be u n f o l d e d above t h e o r i g i n a l s t a t e m e n t . S i m m i l a r i s
t r u e f o r t h e b e l o w p a r t .

e x p o r t (* r e a d _ p t r + +) ;

85

OPR CHAR PUT ()
/***

PUT PUTS THE DATA ON THE TOP OF THE QUE. THE SINTAX
OF THE CALL IS XXX.PUT() = YY, WHERE XXX AND YY ARE
SAME AS ABOVE.
*** /

{
IF ((LONG) WRIT E_PTR >= (LONG) (QUE^DATA + LENGTH))

WRITE_PTR = QUE_DATA;
EXPORT(*WRITE_PTR++);

}

OPR INT TEST ()

WILL TEST THE CONDITION OF THE QUE. WE DON'T SYNC
BECAUSE READ AND SEND AS THE HIGHER OPERATIONS
COMBINING TEST GET AND PUT WILL DO IT
*** f

I
INT RET_VALUE;

SWITCH((INT)READ_PTR - (INT)WRITE_PTR){
CASE 0 :

RET_VALUE = EMPTY;
BREAK;

CASE 1:
CASE (LENGTH - 1) :
CASE (1 - LENGTH):

RET_VALUE = FULL;
BREAK;

DEFAULT:
RET_VALUE = READY;
BREAK;

}
EXPORT (RET_VALUE) ;

{

THIS LAST BLOCK WITHOUT LABEL IS FRAME INIT SECTION TO BE
EXECUTED UPON INVOCATION. IT MAY BE {EMPTY}
*** /

WRITE_PTR = QUE_DATA;
READ_J>TR = QUE__DATA;

}

};

86

f r a m e m a i l b o x (c u s t omer__number , c u s t o m e r _ s i z e)
i n t c u s t o n a r ^ n u m b e r ;
i n t c u s t o o e r ^ s i z a ;
{

/-kick

examp le o f t h e i n s t a n t i a t i o n o f p r e v i o u s l y d e f i n e d
f r a m e m a i l b o x _ q u e i s a p o o l o f ques t o be u s e d i n
a m a i l b o x h e r e has CUSTOMER_NUMBER o f ques e a c h o f
t h e m CUSTOMER'SIZE b y t e s l o n g
* * * /

que m a i l b o x _ q u e (CUSTOMER'SIZE) [CUSTOMER_NUMBER] ;
i n t r e a d _ ;

f r a m e l i s t (l i s t _ s i z e)
/ * * *

l o c a l f r a m e d e f i n i t i o n examp le i n s t a t i a t i o n o f l i s t
w h i c h i s t h e name d i r e c t o r y o f t h i s m a i l b o x i s a t t a c h e d
a t t h e e n d o f t h e d e f i n i t i o n i t s e l f
* * * /

i n t l i s t _ s i z e ;
{

s t r u c t {
c h a r names [NAME_LEN] ;

} n a m e _ l i s t [l i s t _ s i z e] ;

o p r i n t f i n d (n a m e)
/ * * *

f i n d t h e c u s t o m e r b y name and r e t u r n t h e c o r r e s p o n d i n g i d
* * * /

c h a r *name;
{

i n t r e t _ v a l u e , i ;

r e t _ y a l u e = UNSUCC;
f o r (i=*0; i < l i s t _ s i z e ; i + +) {

i f (s t r c m p (n a m e _ l i s t [i] .names, name) = MATCH) {
r e t _ v a l u e = i ;
b r e a k ;

}
}
e x p o r t (r e t _ y a l u e) ;

}

o p r i n t e n l i s t (n a m e , i d)

e n l i s t t h e n e w c u s t o m e r w i t h g i v e n i d
* * * /

c h a r * n a m e ;

i n t i d ;

{
e x p o r t (s t r c p y (n a m e ^ l i s t [i d] . n a m e s , n a m e)) ;

}

n a m e _ l i s t i n i t i a l i z a t i o n
* * * /

{
i n t i ;

f o r (i = 0 ; i < l i s t _ s i z e ; i + +)

n a m e _ l i s t [i] . n a m e s [0]=' \0' ;
}

} m a i l b o x _ n a m e _ l i s t (C U S T O M E R S I Z E) ; / * t h i s i s t h e i n s t a t i a t i o n

o p r i n t s e n d (i d , b u f f , l e n)

send t h e b u f f e r o f t h e l e n c h a r a c t e r s t o t h e
c u s t o m e r i d
* * * /

i n t i d ;
c h a r * b u f f ;
i n t l e n ;
{

i n t i ;

/ * * *
sync d e s c r i b e s t h e s y n c h r o n i z a t i o n d i s c i p l i n e ,
i t w i l l p r e v e n t t h e c a l l i n g o p e r a t i o n t o s t a r t
u n t i l any o f t h e o p e r a t i o n s g i v e n as p a r a m e t e r s
a r e i n p r o g r e s s .
NOTE: t o e x c l u d e m u t u a l l y e a c h o t h e r b o t h p a r t i e s
have t o c a l l s ync o n e a c h o t h e r .
One c a n a l s o c a l l s y n c o n i t s e l f .
* * * /

s y n c (s e n d) {
i n t t e s t ;

f o r (i = 0 ; i < l e n ; i + +) {
t e s t = m a i l b o x _ q u e [i d] . t e s t () ;
i f (t e s t = FULL) {

p r i n t f (" s e n d e r que f u l l \ n ") ;
b r e a k ; / * no more space i n r e c e i v e r que -

one c a n use s i g k i l l h e r e t o n o t i f y s e n d e r
}
m a i l b o x _ q u e [i d] . p u t () =* * (b u f f + i) ;

}
e x p o r t (i) ;

}
}

o p r i n t a l l o c a t e (c u s t omer_name)
c h a r *customer__name;

{

i n t i d , f i n d ;

s y n c (a l l o c a t e , d e a l l o c a t e) {
f i n d = m a i l b o x _ n a m e _ l i s t . f i n d (customer_name)

i f (f i n d = UNSUCC) {
f i n d = xna i l box__name_ l i s t . f i n d (" *f) ;

i f ((i d = f i n d) ! = UNSUCC){
m a i l b o x _ n a m e _ l i s t . e n l i s t (cus tomer_name, i

} e l s e {
i d = UNSUCC;

}

} e l s e {
i d = UNSUCC;

}
e x p o r t (i d) ;

}
}

o p r i n t d e a l l o c a t e (i d)
i n t i d ;

{
e x p o r t (m a i l b o x _ n a m e _ l i s t . e n l i s t (" " , i d)) ;

}

o p r i n t l o c a t e (n a m e)
c h a r *name;

{
e x p o r t (m a i l b o x _ n a m e _ l i s t . f i n d (name)) ;

}

o p r i n t r e a d (i d , b u f f , l e n)
/ * • *

r e a d s t h e message t e r m i n a t e d w i t h ' \ 0 ' f r o m t h e que
o f t h e c u s t o m e r i d a n d p u t s i t i n t h e b u f f o f t h e d i m e n s i o n
l e n
*** /

i n t i d ;
c h a r * b u f f ;
i n t l e n ;
{

i n t i , t e s t ;

i m 0 ;
w h i l e (i < l e n) {

t e s t = m a i l b o x _ q u e [i d] . t e s t () ;
i f (t e s t ! = EMPTY) {

b u f f [i] = m a i l b o x _ q u e [i d] . g e t () ;
i f (b u f f [i + +] = ' \ 0 ') {

b r e a k ;
}

}
}
b u f f [l e n - l] = ' \ 0 ' ;
e x p o r t (i) ;

/ * no i n i t i a l i z a t i o n due t o t h e f a c t t h a t
l i s t and ques a r e a l r e a d y i n i t i a l i z e d * /

}

91

f r a n a s p o o l ()

{
q u e i n t e r n a l _ q u e (4 0 9 6) ;

o p r i n t r e a d (b u f f , l e n)

c h a r * b u f f ;

i n t l e n ;

{

i n t i , t e s t ;

i = 0 ;

w h i l e (i < l e n) {

t e s t = i n t e r n a l _ q u e . t e s t () ;

i f (t e s t ! = E M P T Y) {

b u f f [i] = i n t e r n a l _ q u e . g e t () ;

i f (b u f f [i + +] = ' \ 0 ') {

b r e a k ;

}
}

}
b u f f [l e n - l] s s ' \ 0 ' ;

e x p o r t (i) ;

o p r i n t w r i t e (b u f f)

c h a r * b u f f ;

{
i n t i , l e n k t e s t ;

/ * N O O T H E R W R I T E i n p a r a l l e l * /

s y n c (w r i t e) {

l e n = s t r l e n (b u f f) + 1 ;

f o r (i s s O ; i < l e n ; i + +) {

t e s t s s i n t e r n a l _ q u e . t e s t () ;
i f (t e s t s s = TOLL) {

p r i n t f (" s e n d e r q u e f u l l \ n ") ;

b r e a k ; / * n o m o r e s p a c e i n r e c e i v e r q u e -

o n e c a n u s e s i g k i l l h e r e t o n o t i f y s e n d e r * /

}
i n t e r n a l _ q u e . p u t () s s * (b u f f + i) ;

}
e x p o r t (i) ;

}
}
{ } / * N O i n i t i a l i z a t i o n * /

} s p o o l _ q u e () ; / * t h i s i s t h e i n s t a n t i a t i o n * /

92

a c t s p ()
{

c h a r b u f f [2 5 6] ;
i n t 1 1 ;

w h i l e (1) {
1 1 = s p o o l _ q u e . r e a d (b u f f , 256) ;
i f (1 1 > 0) {

i f (strcmp(buff,"geeeeend") = 0)
b r e a k ;

p r i n t f (" % s " , b u f f) ;
f f l u s h (s t d o u t) ;

}
}

} s p o o l e r ;

m a i n ()
{

/ * F i r s t we i n s t a n t i a t e t h e f r a m e * /
m a i l b o x m a i l b o x l (CUSTQMER_NUMBER, CUSTOMER__SIZE) ;

/ * Then we d e c l a r e l o c a l a c t i v i t y u s e r * /
/ * I t t a k e s t h r e e names, a n d :

- T a k e s f i r s t name and a l l o c a t e s que i n t h e m a i l b o x ;
- T a k e s s e c o n d a n d t h i r d name a n d l o c a t e s u s e r i d - s ;
-Sends t h e messages w i t h i t s name t o o t h e r t w o u s e r s
- R e c e i v e s t w o messages i n t e m p b u f f l a n d t e m p b u f f 2 ;
*/

c h a r s p o o l _ b u f f [2 5 6] ;

93

a c t u s a r (name l , name2, name3)
c h a r * n a m e l , *name2, *name3 ;

{
c h a r t e m p b u f f 1 [CUSTOMERESIZE] , t e m p b u f f 2 [CUSTOMER_SIZE] ;
i n t l e n i f l e n 2 , I d i , i d 2 , i d 3 ;
c h a r s p o o l _ b u f f [2 5 6] ;
s t r c p y (t e m p b u f £ 1 , n a m e l) ;
l e n i = s t r l e n (t e m p b u f f i) + 1 ;
I d i = m a i l b o x l . a l l o c a t e (namel) ;
i f (i d i = UNSUCC){

p r i n t f ("no m a i l b o x a v a i l a b l e \ n ") ;
e x i t () ; /* SOMETHING IS WRONG WITH THE POST OFFICE */

}
s p r i n t f (s p o o l j b u f f , " % s a l l o c a t e d : i d i = % d \ n " , n a m e l , i d i) ;
s p o o l _ q u e . w r i t e (s p o o l _ b u f f) ;
i d 2 = UNSUCC;
w h i l e (i d 2 = UNSUCC){

i d 2 = m a i l b o x l . l o c a t e (name2) ;
}
s p r i n t f (s p o o l _ b u f f , "%s l o c a t e d : i d 2 = %d,name2 = % s \ n " ,

n a m e l , i d 2 , name2) ;
s p o o l _ q u e . w r i t e (s p o o l _ b u f f) ;

i d 3 = UNSUCC;
w h i l e (i d 3 = UNSUCC){

i d 3 = m a i l b o x l . l o c a t e (n a m e 3) ;
}
s p r i n t f (s p o o l _ b u f f , " % s l o c a t e d : i d 3 = %d, name3 = % s \ n " ,

n a m e l , i d 3 , name3) ;
s p o o l _ q u e . w r i t e (s p o o l _ b u f f) ;

m a i l b o x l . s e n d (i d 2 , t e m p b u f f l , l e n i) ;
s p r i n t f (s p o o l _ b u f f , " % s s e n t t o : % s d o n e \ n " , n a m e l , n a m e 2) ;
s p o o l _ q u e . w r i t e (s p o o l _ b u f f) ;
m a i l b o x l . s e n d (i d 3 , t e m p b u f f 1 , l e n i) ;
s p r i n t f (s p o o l _ b u f f , " % s s e n t t o :%s d o n e \ n " , n a m e l , n a m e 3) ;
s p o o l _ q u e . w r i t e (s p o o l _ b u f f) ;
l e n i = 0 ;
w h i l e (l e n i = 0) {

l e n i = m a i l b o x l . r e a d (i d i , t e m p b u f f 1 , 64) ;
}
t e m p b u f f l [l e n i] = ' \ 0 ' ;
s p r i n t f (s p o o l _ b u f f , "%s r e c e i v e d : b u £ f =« % s , l e n l = % d \ n " ,

n a m e l , t e m p b u f f l , l e n i) ;
s p o o l _ q u e . w r i t e (s p o o l _ b u f f) ;
l e n 2 = 0 ;
w h i l e (l e n 2 = 0) {

l e n 2 = m a i l b o x l . r e a d (i d i , t e m p b u f f 2 , 64) ;
}
t e m p b u f f 2 [l e n 2] = ' \ 0 ' ;
s p r i n t f (s p o o l _ b u f f , " % s r e c e i v e d : b u f f = % s , l e n 2 = % d \ n " ,

n a m e l , t e m p b u f f 2 , l e n 2) ;
s p o o l _ q u e . w r i t e (s p o o l _ b u f f) ;

};
u s e r u s e r x [3] ;
m a i l b o x m a i l b o x 2 (CUSTQMER_NUMBER,CUSTOMER_SIZE) ;
i n t i ;

s p o o l e r () ;
i = 0 ;

u s e r x [i] (" M a r k " , " N i n o " , "Dado") ;
i = 1 ;

u s e r x [i] (" N i n o " , " D a d o " , " M a r k ") ;
i m 2 ;

u s e r x [i] (" D a d o " , " M a r k " , " N i n o ") ;

f p r i n t f (s t d e r r , " J o i n i n g u s e r x O , 1 , 2 . . . \ n ") ;
j o i n (u s e r x [0] , u s e r x [1] , u s e r x [2]) ;
s p r i n t f (s p o o l _ b u f f , " Q 8 @ @ 8 e n d ") ;
s p o o l _ q u e . w r i t e (s p o o l j b u f f) ;
f p r i n t f (s t d e r r , " j o i n s p o o l e r . . . \ n ") ;
j o i n (s p o o l e r) ;
/ * a c t i v i t y m a i n w o u l d e x i t a f t e r s ync c o n d i t i o n i s s a t i s f i e d

95

Appendix X
Sum.mpc

This is a parallel summation algorithm, which can be called with the command:

sum l o w h i g h s m a l l _ e n o u g h

where low is the lower bound of the range of integers to sum, and high is the upper bound, and

smaii_enough will determines the amount of parallelism. For example, the range of integers will be

recursively subdivided in half until a sub-vector has smaii_enough elements in it. Please see the

program's comments (below) for detail.

/ *
* sum w i l l add a l l t h e i n t e g e r s i n a g i v e n r a n g e , f r o m MIN t o MAX,
* i n c l u s i v e . t h e g e n e r a l a l g o r i t h m i s t h a t t h e range w i l l be
* s u b d i v i d e d and r e c u r s i v e l y summed, and t h e r e s u l t s w i l l be added
* t o g e t h e r . t h e u s e r p r o v i d e s a v a l u e , SMALL_ENOUGH, w h i c h i n d i c a t e s
* when t h e s u b d i v i d i n g s h o u l d s t o p , and t h e s u b - r a n g e added w i t h a
* FOR l o o p .
*
* howeve r , sum knows when t h e r e a r e no more " v i r t u a l p r o c e s s e s "
* a v a i l a b l e t o r u n a c t i v i t i e s o n , and w i l l s t o p s u b d i v i d i n g when t h i s
* l i m i t i s r e a c h e d . t h i s l i m i t can be changed b y u s i n g t h e —P
* s w i t c h t o t h e MPC p r e - p r o c e s s o r . t h e d e f a u l t i s s i x t e e n (16)
* v i r t u a l p r o c e s s e s .

* t h i s f e a t u r e i s what makes "sum" an i n t e r e s t i n g e x a m p l e . note that
* when t h e p r o g r a m i s r u n i n m o n i t o r i n g mode, t h e s e n s o r c o l l e c t o r
* w i l l use one o f t h e a v a i l a b l e v i r t u a l p r o c e s s e s . t h u s , t h e
* b e h a v i o r o f "sum" may change when r u n i n n o n - m o n i t o r i n g mode. t h i s

can be c o r r e c t e d f o r by u s i n g t h e —P s w i t c h t o i n c r e a s e t h e number
o f v i r t u a l p r o c e s s e s by one (1) when i n m o n i t o r i n g mode.

•

*/

96

/*
* the leaves of the decomposition will just add their results to the
* running total which is kept in "resval" in this shared frame.

*/
frame sum_f ()
{

int resval;

opr void putsum(val)
int val;

{
sync(get,putsum)

{
resval s s resval + val;

}
}

opr int get()
{

sync(get,putsum)
{

export(resval);
}

>

{
/* initialization */
resval = 0 ;

}
} result () ;

extern void sum_p(); /* forward declaration */

act sum_a (low, high, smallenough)
int low,high,smallenough;

{
sumjp (low,high, smallenough);

};

#includ« <stdio.h>

VOID SUM_P(LOW, HIGH, SMALLENOUGH)
INT LOW,HIGH,SMALLENOUGH;

{
SUM^A SUB_A;
INT TMPA, I, TL, TH;

INTEGER_SENSOR(LOW) ;
INTEGER_SENSOR (HIGH) ;
IF (LOW = HIGH)

{
RESULT. PUT SUM (LOW) ;
RETURN;

}

/*
* PCOUNT THE NUMBER OF VIRTUAL PROCESSES WHICH ARE IN USE.
* MAXJ>ROCESSES THE NUMBER OF VIRTUAL PROCESSES AVAILABLE TOTAL.
*/

IF (WORKLOAD-> PCOUNT < MAAEJPROCESSES)
{

IF (SMALLENOUGH = 1)
{

/* RECURSIVELY UNROLL THE REST OF THE DATASET */
RESULT.PUTSUM (LOW);
SUB_A(LOW+1,HIGH, SMALLENOUGH);
RETURN;

}

IF ((HIGH - LOW + 1) > SMALLENOUGH)
{

/* SUBDIVIDE, KEEPING HALF FOR OURSELVES */
TL = LOW + ((HIGH-LOW) / 2) - 1;
TH = LOW + ((HIGH-LOW) / 2) ;
IF (LOW <= TL 66 TL <= HIGH)

SUB__A (LOW, TL, SMALLENOUGH) ;
IF (LOW <= TH 66 TH <= HIGH)

SUM_P (TH, HIGH, SMALLENOUGH) ;
JOIN(SUB_A) ;
RETURN;

}
}

/* IT IS ALREADY SMALL ENOUGH */
TMPA = 0 ;
FOR (I = LOW; I <= HIGH; I++)

TMPA = TMPA + I;

RESULT. PUT SUM (TMPA) ;
}

MAIN(ARGE, ARGV)
INT ARGE;
CHAR **ARGV;

{
INT THE_RESULT;

IF (ARGE != 4 ||
(ARGE = 4 && ATOI(ARGV[1]) > ATOI(ARGV[2])) ||
(ARGE = 4 &6 ATOI(ARGV[3]) <= 0))

{
PRINTF ("USAGE: %S <LOW> <HIGH> <SMALL_ENOUGH>\N", ARGV [0])
PRINTF("\TWHERE <LOW> IS LESS OR EQUAL TO <HIGH>\N");
PRINTF("\TWHERE <SMALL_ENOUGH> IS GREATER THAN 0\N");
EXIT(0);

}

SUM^P(ATOI(ARGV[L]) RATOI(ARGV[2]),ATOI(ARGV[3]));

THE_RESULT = RESULT. GET () ;
PRINTF (" %D\N" R THE_RESULT) ;

}

file:///twhere
file:///twhere

99

Appendix XI
Pde.mpc

This example program calculates a PDE in parallel. This aigorithm subdivides the grid into subgrids,

with a new activity assigned to calculate each subgrid. When the subgrid reaches a user-specified width

and height, subdividing is stopped and the PDE is calculated sequentially for that subgrid.

This takes a user-entered square array which holds the initial values for the grid. PDE also takes

dimensions which indicate the width and height of the subgrid which is considered to be "small enough" to

calculate sequentially.

It is called with a command like:

pde w_gridsize h_gridsize w_subgridsize h_subgridsize max__iter

where w_gridsize and h_gridsize are the dimensions of the input grid, where w_subgridsize
and h_subgridsize are the dimensions of the grid which is "small enough". Once PDE is doing its

calculations sequentially, it will run trying to converge, or until it has made max_iter iterations.

d e f i n e XMAX 100 / * m a x i m a l w i d t h o f t h e g r i d * /
d e f i n e YMAX 100 / * m a x i m a l l e n g t h o f t h e g r i d * /
d e f i n e W 0 .5 / * w e i g h t f a c t o r * /
d e f i n e EPSILON 0 . 1 / * c o n v e r g e n c e p r e c i s i o n * /

i n c l u d e < s t d i o . h >

f r a m e g r i d (X , Y)
i n t X, Y ;

{
f l o a t g r i d__da ta [X] [Y] ; / * a c t u a l g r i d d a t a * /
i n t c o n v _ f l a g s [X] [Y] ; / * 1 - i f d i f f e r e n c e t o

* p r e v i o u s i t e r a t i o n v a l u e
* on t h i s g r i d e l e m e n t i s
* l e s s t h a n EPSILON
* 0 - o t h e r w i s e * /

i n t p d e _ c o n t r o l ; / * 1 - i f e v e r y t h i n g s h o u l d f i n i s h ,
* 0 - o t h e r w i s e * /

o p r f l o a t d a t a (x , y)
i n t x , y ;

{
e x p o r t (g r i d _ d a t a [x] [y]) ;

>

o p r i n t f l a g (x , y)
i n t x , y ;

{
e x p o r t (c o n v _ f l a g s [x] [y]) ;

}

100

o p r i n t d o n e ()
{

e x p o r t (p d e _ c o n t r o l) ;
}

{ / * i n i t i a l i z a t i o n o f f l a g s * /
i n t i , j ;

p d e _ c o n t r o l = 0 ;
f o r (i = 0 ; i < XMAX; i + +)

f o r (j = 0 ; j < YMJOC; j + +) {
g r i d _ d a t a [i] [j] = 0 ;
c o n v _ f l a g s [i] [j] = 0 ;

}
}

} pdeg r i d (XMAX, YMAX) ; / * c r e a t e g r i d i n s t a n t i a t i o n " p d e g r i d " * /

ACT PDECALC(XL, X2, YL, Y2, XNX, MY, LIMH, LIMV, MAXITER)
INT XL, X2, YL F y2, MX, MY, LIMH, LIMV, MAXITER;
/***

(0 , 0)

I I
I I
I(XL,YL) I
I +++ I
I I I I
I I I I
I +++ I
I (X2,Y2) I

(LIMH-1,LIMV-1)

*** /
/**

LIMH AND LIMV REPRESENT THE DIMENSIONS OF THE ORIGINAL GRID
BEFORE ANY SUBDIVISIONS WERE MADE, WHILE XL,X2,YL,Y2 DEFINE
THE SUBGRID GIVEN TO THIS ACTIVITY
** /

/ * *
MX AND MY ARE THE USER SUPPLIED PARAMETERS WHICH CONTROL THE
PROCESS OF SPLITTING (IE. WHEN X2-XL AND Y2-YL ARE SMALLER THAN
MX AND MY DIMENSIONS, SPLITTING PROCESS SHOULD STOP)
** /

/.**
MAXITER IS LIMIT ON THE NUMBER OF ITERATIONS
** /

{
PDEPROC(XL, X2, YL, Y2, MX, MY, LIMH, LIMV,MAXITER) ;

};

102

pdeproc(xl, x2, yl, y2, mx, my, limh, limv, maxiter)
int xl, x2, yl f y2, mx, my, limh f limv, maxiter;

ex = x2 - xl + 1;
ey = y2 - yl + 1;

nx s s ex/ (2 * mx) ;
ny s s «y/ (2 * my) ;

if (ex > mx) {
/*•*

x dimension of the submatrix is larger than mx limit
(means we have to cut it in two partitions)
*** /

if (nx SBSS 0) nx SB 1;
subtask (xl, (xl+(nx*mx)-1) , yl, y2,mx f my, limn, limv,maxiter)
pdeproc((xl+ (nx*mx)) , x2, yl, y2,mx,my, limh, limv,maxiter) ;
join(subtask);
return;

if (ey > my) {

y dimension is larger than my limit
*** /

if (ny s s s s 0) ny = 1;
subtask (xl,x2,yl, (yl+(ny*my)-1) ,mx,my, limh, limv,maxiter) ;
pdeproc(xl,x2, (yl+(ny*my)) , y2,mx,my, limh, limv,maxiter) ;
join (subtask) ;
return;

int
int
float
pdecalc

attempt, h, v, left, right, up, down, sv;
ex, ey, i, j, k, nx, ny;
t,tmp,test, temp, a,b,c,d,e;
subtask;

103

The p r o d u c t s u b m a t r i x c a l c u l a t e d
* * * /

a t t e m p t = 0 ;
t e s t = 0 ;
do { / * i t e r a t e u n t i l c o n v e r g e n c e * /

f o r (h = x l ; h <= x 2 ; h++) {
f o r (v = y l ; v <= y 2 ; v++) {

i f ((h - 1) < 0) l e f t = l i m h - 1 ;
e l s e l e f t • h - 1 ;
i f ((h+1) >= l i m h) r i g h t * 0 ;
e l s e r i g h t = h + 1 ;
i f ((v - 1) < 0) up = l i m v - 1 ;
e l s e up = v - 1 ;
i f ((v+1) >= l i m v) down = 0 ;
e l s e down = v + 1 ;
a = p d e g r i d . d a t a (h , v) ;
b = p d e g r i d . d a t a (l e f t , v) ;
c = p d e g r i d . d a t a (r i g h t , v) ;
d = p d e g r i d . d a t a (h , u p) ;
e = p d e g r i d . d a t a (h , down) ;
temp = W * a + 0 . 2 5 * (1 . - W) * (b + c + d + e) ;
i f (a t t e m p t > m a x i t e r) {

p d e g r i d . f l a g (h f v) = 1 ;
} e l s e {

i f ((t m p - a) > EPSILON ||
(tmp - a) < (-EPSILON)) {

p d e g r i d . f l a g (h , v) = 0;
} e l s e {

p d e g r i d . f l a g (h r v) = 1 ;
}

}
p d e g r i d . d a t a (h , v) = t e m p ;

}
}
a t t e m p t - H - ;
t e s t = p d e g r i d . d o n e () ;

} w h i l e (! t e s t) ;
}

104

v o i d w a i t _ c o n v e r g e n c e (h , v)

i n t h , v ;

{
i n t i , j , x , y , f l ;

x = h - 1 ;

y = v - 1 ;

f o r (i = 0;; (i + + , (i = h) ? (i = 0) : i)) {

f o r (j = 0;; (j = v) ? (j = 0) : j)) {

/*
* i f t h i s g u y s t i l l d o e s n ' t c o n v e r g e s e t u p f u l l

* c y c l e m a r k e r o n i t

* /

f l a s p d e g r i d . f l a g (i , j) ;

i f (f l = 0) {
x = i ;

y = j ;
} e l s e {

/ * f u l l c y c l e w i t h a l l f l a g s — 1 ? * /

i f (i mm X & & j mm y) { / * Y E S * /

g o t o d o n e ;

}
>

}
}

d o n e :

/ * a l l f l a g s a r e 1 ! L e t ' s f i n i s h ! * /

p d e g r i d . d o n e () = 1 ;

}

i n i t _ g r i d (h , v)

i n t hr v ;

i n p u t g r i d e l e m e n t s
* * * /

{
i n t x , y ;

f l o a t t m p ;

p r i n t f (" e n t e r g r i d r o w b y r o w \ n ") ;

p r i n t f (" r o w s e p a r a t o r i s C R \ n ") ;

f o r (y m 0; y < v ; y + +) {

f o r (x = 0; x < h ; x + +) {

s c a n £ (" % f " , & t m p) ;

p d e g r i d . d a t a (x r y) = t m p ;

)
w h i l e (g e t c h a r () ! • ' \ n ') ;

}

105

print_result (h, v)
int h, v;

{
int x, y ;
float tmp;

printf (" \nresult : \n") ;
for (y s 0 ; y < v ; y++) {

for (X = 0 ; X < h; x++) {
tmp » pdegxid.data (xr y) ;
printf (f,%e tmp) ;

}
printf ("\n") ;

}
}

file:///nresult

106

m a i n (a r g o , a r g v)
i n t a r g c ;
c h a r * a r g v [] ;

{
i n t
p d e c a l c

x s , y s ,
c a l e ;

my, m i ;

i f (a r g c ! = 6) {
f p r i n t f (s t d e r r ,
e x i t () ;

'Usage : pde x s i z e y s i z e mx my m i \ n ") ;

x - d i m . o f t h e g r i d * /
y - d i m . o f t h e g r i d * /
s p l i t d i m . o f t h e g r i d i e . s p l i t t i n g * /
p r o c e s s w i l l s t o p when t h e c o r e s p o n . * /
d i m , o f r e s u l t a n t s u b g r i d i s l e s s t h a n * /
my o r my r e s p e c t i v e l y * /

i f ((x s > XMAX - 1) | | (ys > YMAX - 1)) {
f p r i n t f (s t d e r r , " g r i d t o o b i g : max (%d, %d) \ n " , XMAX, YMAX) ;
e x i t () ;

}

}

x s II a t o i (a r g v [l]) ; /*
Y»

II a t o i (a r g v [2]) ; /*
mx II a t o i (a r g v [3]) ; /*
my II a t o i (a r g v [4]) ; /*
m i II a t o i (a r g v [5]) ; /*

/*

i n i t _ g r i d (x s , ys) ;

/ * s t a r t t h e i n i t i a l a c t i v i t y * /
c a l c (0 , x s - 1 , 0, y s - 1 , mx, my, x s , y s , m i) ;

w a i t _ c o n v e r g e n c e (x s , y s) ; / * m a s t e r i s c h e c k i n g on c o n v e r g e n c e
* i n p a r a l l e l w h i l e w a i t i n g t h e
* a c t i v i t i e s a n d teams t o do t h e
* c a l c u l a t i o n s . T h i s i s s i m p l e
* f u n c t i o n c a l l due t o t h e f a c t t h a t
* m a s t e r p r o c e s s has n o t h i n g t o do
* i n t h e mean t ime anyway * /

j o i n (c a l e) / * DONE j o i n a c t i v i t y * /

p r i n t r e s u l t (x s , y s) ;
}

107

Appendix XII
MPC Grammar

Much of the grammar in this section was taken from "A C reference Manual" [Harbison and Steele 84].

The additional constructs unique to MPC can be found at the end of this section. Also refer to Chapter.

program ::= {top-level-dec }*

top-level-dec ::= top-level-data-dec

| top-level-function-dec

top-level-data-dec ::= {type-class-spec}* {init-dcltr#,' }*7

| frame-spec {frame-dcltr'W7 }*';'

| activity-spec { activity-dcltt'W7 }* 7

| name-type-def'

| type-def-spec',1

top-level-function-dec ::= {type-class-spec }* {param-dec }* compound-stmt

local-data-dec ::= {type-class-spec}+ {init-dcltr#,' }* 7
| frame-spec {frame-dcltr^,1 }* 7

activity-spec { activity-dcltr'W7 }* 7

| name-type-def']'

| type-def-spec','

name-type-def ::= typedef {type-spec}+ {p3-dcl t r#; }+

| typedef identifier{p3-dcltrW' }+

type-name ::= { } * identifier {'(' list-expression ')*}? { T list-expression']'}? { v init-expression}?

type-def-spec ::= identifier {type-name#'7 }+

108

parameter-dec dec-spec {p3-dcltr#; }* 7

type-name-dec ::= { type-class-spec}+ { p3-abs-dcltr}?

formal-dec ::= { type-class-spec }* p3-dcltr

type-class-spec ::= standard-class

| type-spec

standard-class ::=* auto
|static
|extern
|register

type-spec ::= standard-type

| structure-spec

| enum-spec

standard-type ::= char
|float
|double
| int
|short
| long
| unsigned
| void

structure-spec ::= struct identifier

| union identifier

| struct {identifier}? »{• { stmcture-dec}*'}'

| union { i d e n t i f i e r } ? { structure-dec}*

structure-dec ::= { type-class-spec}+7

structure-dcltr ::= p3-dcltr

| {p3-dcltr}? 7 expression

enum-dec ::='{' { enum-dcttr#;}+ { 7 } ? '}'

enum-spec ::= enum identifier
| enum {identifier}? enum-dec

enum-dcltr identifier{V expression}?

p1-dcitr ::=» identifier

IT p3'dcttr')'

p2-dcttr::= pl-dcitr

| p2-dcltr\% {formal-dec #: }* ')'

| p2-dcltr'[' list-expression']'

p3-dcltr p2-dcltr

|p3-dcltr

init-dcltr ::= p3-dcltr{ init-expression}?

i nit-expression ::= expression

| T {init-expression #7 }+ { 7 }? '}'

p2-abs-dcltr ::= p1-abs-dcltr

\ {p2-abs-dcltr}7'{'')'

| {p2-abs-dcltr}7 list-expression T

p3-abs-dcitr p2-abs-dcltr

| {p3-abs-dcltr}?

compound-stmt ::= '{' { dec-or-stmt}*'}'

dec-or-stmt ::= local-data-dec

| statement

basic-stmt ::= e-stmt

| compound-stmt

| do-stmt

| break-stmt

| continue-stmt

| return-stmt

| goto-stmt

| sync-stmt

| dsync-stmt

| join-stmt

| detach-stmt

balanced-stmt ::= basic-stmt

| balanced-while

| baianced-for

| balanced-ifelse

| balanced-switch

110

| label unbalanced-stmt

unbalanced-stmt ::= unbalanced-while

| unbalanced-for

| unbalanced-it

| unbalanced-ifelse

| unbalanced-switch

| /abe/ unbalanced-stmt

balanced-ifelseif '(' list-expression')' balanced-stmt else balanced-stmt

unbalanced-ifelse ::= if '(' list-expression')' balanced-stmt else unbalanced-stmt

unbalanced-itr::= if '(' list-expression1)' statement

statement balanced-stmt

| unbalanced-stmt

e-stmt ::=* list-expression';'

balanced-while ::= while list-expression')' balanced-stmt

unbalanced-while ::= while '(' list-expression')' unbalanced-stmt

do-stmt ::= do sfmf while list-expression')'';'

balanced-for::= for list-expression';' list-expression•;' list-expression ')' balanced-stmt

unbalanced-forforlist-expression';' list-expression';' list-expression')' unbalanced-stmt

balanced-switch ::= switch'(' list-expression')' balanced-expression

unbalanced-switch ::= switch l i s t -express ion ') ' unbalanced-expression

break-stmt ::= break ';'

continue-stmt continue

return-stmt return '(• list-expression y ';'

goto-stmt ::= goto identifier','

label ::= name-label

| case-label

| default-label

name-label identifier':'"

case-label ::= case expression':'

default-label ::= default ':'

literal::** integer

| character

| sfringr

primary-p1-expression ::= identifier

| //tera/
| '(' expression1)'

| sizeof'(' type-name-dec1)'

primary-p2-expression ::= primary-pi-expression

| primary-p2-expression'[list-expression

| primary-p2-expression'(' list-expression')'

| primary'^-expression''.' identifier

| primary-p2-expression '->' identifier

postfix-expression ::= primary-p2-expression

| postfix-expression pre-postfix-operator

pre-postfix-operator '++'

I'-'

prefix-expression postfix-expression

| sizeof prefix-expression

| pre-postfix-operator cast-expression

| cast-expression

| '&&' cast-expression

| negation-operator cast-expression

negation-operator ::=

IT

cast-expression ::= prefix-expression

|type-name-dec')' cast-expression

multiply-operation-expression ::=* cast-expression

| multiply-operation-expression multiply-operator cast-expression

112

multiply-operatdr: :=

addition-operation-expression ::= { addition-operation-expression addition-operator}?

muitipiy-operation-expression

addition-operator::« V
I"-'

shift-operation-expression ::= { shift-operation-expression shift-operator

addition-operation-expression

shift-operation '«'

relation-operation-expression ::=* { relation-operation-expression relational-operator}?

shift-operation-expression

relational-operator::- '<'

I w

equality-operation-expression { equality-operation-expression equality-operator}?

relation-operation-expression

equality-operator ::=

bitand-operation-expression{ bitand-operation-expression }? equality-operation-expression

bitxor-operation-expression {bitxor-operation-expression'A'}? equality-operation-expression

bitor-operation-expression {bitor-operation-expression '\§}? equality-operation-expression

and-operation-expression ::=* { and-operation-expression '&&'}? bitor-operation-expression

or-operation-expression{ or-operation-expression '||'}? and-operation-expression

conditional-expression ::= or-operation-expression {list-expression':' conditional-expression}?

expression conditional-expression { assignment-operator expression}?

assignment-operator: := '='

list-expression ::= { expression #7 }*

frame-spec ::= frame-tag-dcltr{parameter-dec}* '{' frame-dec'}' ';'

frame-dec ::=* {local-data-dec }* {frame-operation }* frame-initialization

frame-operation opr {type-class-spec}* (operation-name) {parameter-dec}* operation-body

frame-dcltr :\= identifier {'{' list-expression '}'}? {'[' list-expression ']'}?

frame-tag-dcltr ::= frame identifier^' {formal-dec#7 }* ')'

operation-body ::= '{' local-data-dec { statement}* export-statement{ statement}* '}'

export-statement ::= export '(' list-expression ')' operation-name ::= identifier'(' {formal-dec#'}* ')'

frame-initialization ::= compound-stmt

sync-stmt::= sync '(' list-expression J compound-stmt

dsync-stmt ::= dsync '(' list-expression ')' compound-stmt

join-stmt::= join '(' list-expression')' 7

detach-stmt detach '(' list-expression ')' 7

activity-tag-dcltr::= act identifier'{' { formal-decW}* ')'

activity-dcltr identifier {'[list-expression ']'}?

activity-spec ::= activity-tag-dcltr{parameter-dec}* compound-stmt']'

114

References

[Gregoretti 85] Francesco Gregoretti, Zary Segall.
Programming for Observability Support in a Parallel Programming Environment
Technical Report CMU-CS-85-176, Computer Science Department, Carnegie Mellon

University, November, 1985.

[Harbison and Steele 84]
S.P.Harbison, G.L Steele.
A C Reference Manual.

Prentice Hall, Englewood Clifs, NJ 07632, 1984.

Zary Segall, Larry Rudolph.
PIE - A Programming and Instrumentation Environment for Parallel Processing.
Technical Report CMU-CS-85-128, Computer Science Department, Carnegie Mellon

University, April, 1985.
Richard Snodgrass.
Monitoring Distributed Systems: A Relational Approach.
PhD thesis, Department of Computer Science, Carnegie Mellon University, December,

1982.

D. Vrsalovic, D. Siewiorek, Z. Segall, E. Gehringer.
Performance Prediction and Calibration for a Class of Multiprocessor Systems.
Technical Report, Department of Computer Science, Carnegie Mellon University,

August, 1984.

[Segall 85]

[Snodgrass 82]

[Vrsalovic 84]

