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Abstract 

This paper descr ibes the results of an exercise in wri t ing formal specifications. T h e specifications capture 
the system-cri t ical recoverability proper ty of data objects that are accessed by fault-tolerant distributed 
programs . Recoverabi l i ty is a " n o n - f u n c t i o n a l " property requir ing that an objec t ' s state survives 
hardware failures. 

This exercise supports the c la im that applying a rigorous specification method can greatly enhance one ' s 
unders tanding of sof tware 's complex behavior . T h e specifications enabled us to articulate precisely 
quest ions about an unstated assumpt ion in the under lying operat ing system, incompleteness in the 
implementa t ion of recoverable objects , implementa t ion bias in the language design, and even 
incompleteness in the specifications themselves . 
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1. Introduction 
Formal specification languages have matured to the point where industry is recept ive to us ing them and 
researchers are bui lding tools to support their use . People use these languages for specifying the input-
output behavior , i.e., functionality, of p rograms , but have largely ignored specifying a p rog ram ' s " n o n 
func t iona l" propert ies . For example , the functionality of a p rogram that sorts an array of integers might 
be informally specified as follows: given an input array A of integers, an array B of integers is returned 
such that B ' s integers are the same as A ' s , and B ' s are arranged in ascending order. Noth ing is said about 
the performance of the program like whether the algori thm for sorting should be O(n) or Ofn2). 
Performance is one example of a non-functional property. 

In this paper , I will demonst ra te the applicabil i ty of formal specifications to the non-functional property, 
recoverability. Recoverabi l i ty requires that an object ' s state survives hardware failures. T h e correct 
behavior of these objects is fundamental to the correctness of the p rograms that create , access , and modify 
them. Sect ions 1.1 and 1.2 describe in more detail the context in which recoverable objects are used: 
fault-tolerant distr ibuted sys tems. Sect ion 2 describes how they are implemented at both the operat ing-
system and programming- language levels. 

T h e work described here is both theoretical and experimental in nature since the applicat ion of a formal 
(theoretical) specification language can itself be v iewed as an exper iment . Sect ion 3 describes this 
specification exercise . T h e results of wri t ing out specifications formally, summar ized in Sect ion 4 , are 
extremely gratifying: they provide ev idence that an exist ing specification language and me thod is suitable 
for descr ibing a n e w class of objects; they validate the correctness of the design and implementa t ion of a 
key part of an ongo ing software deve lopment project; and not surprisingly, they demonst ra te that the 
process of wri t ing formal specifications greatly clarifies o n e ' s unders tanding of complex behavior . 

1.1. A b s t r a c t C o n t e x t : F a u l t - t o l e r a n t D i s t r i b u t e d S y s t e m s 
A distr ibuted sys tem runs on a set of nodes that communica te over a ne twork . Since nodes m a y crash and 
communica t ions m a y fail, such a system must tolerate faults; process ing must cont inue despite failures. 
For example , an airline reservat ions system mus t cont inue servicing travel agents and their cus tomers 
even if an air l ine 's database is temporari ly inaccessible; an automat ic teller mach ine mus t cont inue 
dispensing cash even if the link be tween the A T M and the cus tomer ' s bank account is down . 

A widely-accepted technique for preserving data consis tency and providing data availabili ty in the 
presence of failures and concurrency is to organize computa t ions as sequential processes called 
transactions. A transaction is a sequence of operat ions performed on data objects in the system. For 
example , a transaction that transfers $25 from a savings account , 5 , to a check ing account , C , might be 
performed as the fol lowing sequence of three operat ions on S and C (both initially conta ining $100) : 

{S = $100 A C = $100} 

Read(S) 
Debi t (5 , $25) 

Credi t (C, $25) 

fS = $75 A C = $125} 

In contrast to s tandard sequential processes , transactions must be serializable, total, and recoverable . 
Serializability means that the effects of concurrent transactions must be the same as if the transactions 



executed in s o m e serial order . In the above example , if two transactions, T l and T 2 , were s imultaneously 
transferring $ 2 3 from S to C, the net effect to the accounts should be that S = $ 5 0 and C = $ 1 5 0 (that is , 
as if T l occurred before T 2 or v ice versa) . Totality m e a n s that a transaction ei ther succeeds comple te ly 
and commits, o r aborts and has n o effect. For example , if the transfer t ransact ion aborts after the Debi t 
but before the Credi t , the savings account should each be reset to $ 1 0 0 (its balance before the transfer 
began) . Recoverable means that the effects of commi t ted transactions survive failures. If the above 
transfer t ransaction commi t s , and a later t ransaction that modifies S or C aborts , it should be possible to 
" ro l l b a c k " the state of the sys tem to the previous commi t ted state where S = $75 and C = $125 . 

It can be guaranteed that the integrity of the entire sys tem is mainta ined if each object accessed within 
transactions is atomic. Tha t is , each object is an instance of an abstract data type wi th the addit ional 
requirement that it mus t ensure the serializability, totality, and recoverabil i ty of all the transactions that 
use its operat ions . For example , as long as the bank account ' s Read , Debi t , and Credi t operat ions are 
implemented " c o r r e c t l y , " then any set of transactions that access the account will be serial izable, total, 
and recoverable . T h e advantage of construct ing a system by focusing on individual objects instead of on 
a set of concurrent transactions is modular i ty : one need only ensure that each object is a tomic to ensure 
the m o r e global atomici ty property of the entire sys tem. 

Informally, a recoverable object is an object whose state can be restored to a previously " c h e c k p o i n t e d " 
state if a node crash occurs . After a crash, a recoverable object is restored to a state that reflects only 
comple ted operat ions; the effects of operat ions in progress at the t ime of the crash are never observed. 
The restored state of a recoverable object mus t moreove r reflect all operat ions performed by transactions 
that commi t ted before the crash. Note that s ince a recoverable object ' s state m a y also reflect comple ted 
operat ions of abor ted transact ions, e.g., those active transactions that are automatical ly abor ted at the t ime 
of the crash, recoverabil i ty is a weaker consis tency property than totality. In the above bank account 
example , suppose immediate ly after the Debi t a checkpoint of the system is made , and then whi le the 
Credit is in progress a crash occurs . T h e recoverable state of the system would be where S = $75 and 
C = $100 . 

T h e non-functional property of objects this paper focuses on is the recoverabil i ty aspect of a tomic objects. 

1.2. Concrete Context 
The Ava lon Project, co -managed by the author and Maur ice Herl ihy at Carnegie Mel lon Universi ty , 
provides a concre te context for this work. W e are implement ing language extensions to C + + [10] to 
support applicat ion p rogramming of fault-tolerant distr ibuted sys tems. W e rely on the Camelo t System 
[9] , a lso being developed at C M U , to handle operat ing-systems level details of t ransaction management , 

inter-node communica t ion , commi t protocols , and automatic crash recovery. 

T h e formal specification language used in Sect ion 3 's specifications is Larch [7] , though others such as 
Gypsy [5] , V D M [2], Z [1] , and O B J [4] , might also be suitable. The advantage gained in using Larch is 
the explicit separat ion be tween specifying state-dependent behavior (for example , side effects and 
resource allocation) and state-independent behavior (for example , the last-in-first-out property of stacks). 

Where appropriate the details of Avalon, Camelot , and Larch are given, but the implicat ions of the results 
of the specification exercise are independent of these projects. 

A chart of the various people involved, the level ( language or sys tem) at which they are involved, and 
kinds of quest ions they address is shown be low: 



Person(s) Language/System Questions Addressed 

Specifier Larch What is a recoverable object? 
What are the effects of its operations? 

Language impiementor Avalon How is a recoverable object represented in memory? 
How are its operations implemented? 

Operating system builders Camelot How is memory managed? 
What protocol is used to recover memory after crashes? 

2 . Recoverable Objects 
In order to appreciate the issues that arose in the specification of recoverable objects , in particular with 
respect to their implementa t ion, it helps to unders tand their physical s torage implementa t ion (Camelot) 
and their p rogrammer interface (Avalon) . 

2 . 1 . The Operating System's View 
Conceptual ly , there are two kinds of s torage for objects: local s torage whose contents are lost upon 
crashes , and stable s torage whose contents survive crashes with h igh probabil i ty. (Stable s torage m a y be 
implemented us ing redundant ha rdware [8] o r replicat ion [3].) Recoverab le objects are al located in local 
s torage, but their state is wri t ten to stable storage so that recovery from crashes can be performed. If 
every recoverable object is logged to stable storage after modifying operat ions are performed on it in local 
s torage, then its state m a y be recovered after a crash by * ' replaying '* the log. Replaying the log is a 
sufficient me thod for restoring a object ' s state. 

However , recover ing the state of an object entirely from the log is a t ime-consuming operat ion. Camelo t 
speeds up crash recovery by dividing local s torage into two classes , volati le s torage and non-volat i le 
s torage, and by dis t inguishing be tween two crash m o d e s , node failures and med ia failures. In a media 
failure, bo th volati le and non-volat i le s torage are destroyed, whi le in a node failure, only volati le storage 
is lost. In pract ice, node failures are far m o r e c o m m o n than med ia failures. T o opt imize recovery from 
node failures, a protocol k n o w n as write-ahead logging [6] is used. A n object is modif ied in the 
fol lowing steps: 

1. T h e page(s) conta in ing the object are pinned in volati le storage; they cannot be returned to 
non-volat i le s torage until they are unpinned. 

2. Modif icat ions are m a d e to the object in volat i le memory . 

3 . T h e modificat ions are logged on stable storage. 

4 . T h e page(s) are unpinned. 

T h e first s tep of the protocol ensures that the pages containing the object are not writ ten to non-volati le 
storage while a modifying operat ion is in progress . This protocol ensures that a recoverable object can be 
restored to a consis tent state quickly and efficiently. Upon crash recovery, the status of each transaction 
is determined, and by compar ing what is in non-volat i le storage to what is in stable storage, one can 
" r e d o " the effects of commit ted transactions and " u n d o " the effects of aborted ones . (For more details, 
see [9]). Notice that modifications must still be logged to stable storage to protect against the occurrence 
of a med ia failure. 



2 . 2 . T h e P r o g r a m m e r ' s V i e w 
T h e p r o g r a m m e r ' s interface to a recoverable object is through the Ava lon class header shown in Figure 
2 - 1 . 

class recoverable { 
public: 

void pin(int size); // Pins object in physical memory. 
void unpin(int size); // Unpins and logs object to stable storage. 

} 

F i g u r e 2 - 1 : Recoverable Class Defini t ion 

Informally, the pin operat ion causes the pages containing the object to be p inned , as required by the 
wri te-ahead logging protocol , whi le unpin logs the modifications to the object and unpins its pages . A 
recoverable object m u s t be p inned before it is modif ied, and unp inned afterwards. For example if x is a 
recoverable object, a typical use of the pin and unpin operat ions within a transaction would be: 

s tar t { // begin transaction 

x.pin(); 
// modify x here 

x.unpin() 

}; // end transaction 

After a crash, a recoverable object will be restored to a previous state in wh ich it was not p inned. 
Transact ions can m a k e nested pin cal ls ; if so , then the changes m a d e wi thin inner pin/unpin pairs do not 
become permanent , i.e., writ ten to stable s torage, until the outermost unpin is execu ted . 1 Classes der ived 
from class recoverable inherit pin and unpin operat ions , wh ich can be used to ensure recoverabil i ty for 
objects of the der ived c lass . 

T h e purpose of the specification exercise was to specify formally the effects of the pin and unpin 
operat ions, and hence the propert ies recoverable objects preserve. 

3. Specifications 
This section presents a sequence of three specifications as the different vers ions evolved during the 
specification process . T h e first vers ion is m o r e general than the second, but un impiementab le . T h e third 
version removes an implementa t ion bias that appears in both the first and second. 

3 . 1 . V e r s i o n 1 
T h e first vers ion (see Figure 3-1) captures the fol lowing two propert ies of recoverable objects: 

1. Each transaction can pin and unpin the same object mult iple t imes. 

2 . Only at the last unpin does the object ' s value get written to stable s torage. 

Calls to pin and unpin must balance much like left and right parentheses should. 



class recoverable: interfaces 
based on R from RecObj 

pin = oper (x: recoverable) 
post x ' = pn(x, self) 

unpin = oper (x: recoverable) 
pre pinned(x) // cannot unpin something that's not already pinned 
post x ' = un(x, self) 

RecObj: trait 
includes 

Pair (R for T, Table for T l , Memory for T2) 
TableSpec (Table for T, Tid for Index, Card for Val) 
Triple (Memory for T, M for T l , M for T2, M for T3, v for .first, n for .second, s for .third) 

introduces 
pn: R, Tid R 
un: R, Tid —• R 
pinned: R —» Bool 

asserts for all (m: Memory, tb: Table, t: Tid, r: R) 
pn(<tb, m>, t) = 

if t € tb 
then <change(tb, t, eval(tb, t)+l), m> 
else <add(tb, t, 1), m> 

un(<tb, m>, t) = 
ifeval(tb, t ) = 1 
then <remove(tb, t), <m.v, m.v, m . v » 
else <change(tb, t, eval(tb, t)-l) , m> 

pinned(<tb, m>) = ~isEmpty(tb) 

// already pinned? 
// increment count 
// initialize it 

// if last unpin 
// write to stable storage 
// or just decrement count 

Figure 3 - 1 : Specification of Class Recoverable : Vers ion 1 



First, w e walk through the specification step-by-step. T h e fol lowing La rch interface specifications 
specify, us ing pre-and post-condi t ions, the effects of the pin and unpin operat ions: 

pin =s oper (x: recoverable) 
post x ' = pn(x, self) 

unpin = oper (x: recoverable) 
pre pinned(x) 
post x ' = un(x, self) 

Self denotes the transaction (intuitively, the thread of control) that calls the operat ion. T h e precondi t ion 
for pin is identically equal to true, meaning that a transaction can call pin in any state. T h e precondi t ion 
for unpin requires that an object cannot be unpinned unless it is already pinned, g iven by the predicate of 
the same name . 

The postcondit ions of the pin and unpin operat ions state what the changed va lue of a recoverable object 
is: x s tands for the objec t ' s value in the initial state (upon invocat ion) and x s tands for its value in the 
final state (upon return) . T h e postcondit ions make use of two auxiliary functions, specified in the Larch 
RecObj trait. Pn and un have the following signatures: 

pn: R, Tid - » R 
un: R, Tid R 

where R and Tid are sort identifiers. Pn and un each take a recoverable objec t ' s va lue and a transaction 
identifier and return a (new) value for a recoverable object. 

In any given state, a recoverable object ' s value is de termined by the states of the transactions that have 
pinned it and the actual value of the object in memory . Thus , it is useful to * ' m o d e l " the value of a 
recoverable object as a pair of a Table and Memory . 

Pair (R for T, Table for T l , Memory for T2) 

where the for c lauses r ename sort identifiers (7\ 7 7 , and 72) that appear in one specification (Pair) used 
in another (RecObj). 

T h e table componen t , indexed by transaction identifiers, keeps track of the n u m b e r of t imes each 
transaction pins and unpins an object. The memory componen t keeps track of the actual va lue (with sort 
M) of the object, as stored in each of the three levels of s torage: volati le (v), non-volat i le (/t), and 
stable (s). 

TableSpec (Table for T, Tid for Index, Card for Val) 
Triple (Memory for T, M for T l , M for T2, M for T3, v for .first, n for .second, s for .third) 

The mean ing of pn is given by the following equation: 

pn(<tb, m>, t) = 
ift<= tb 
then <change(tb, t, evalCtb, t)+l), m> 
else <add(tb, t, 1), m> 

If the object (the pair <tbf m>) is already pinned by the given transaction (r), then r ' s count is incremented 
in the table; otherwise a new entry is added to the table where the count is initialized to 1. 

The meaning of un is as follows: 



un(<tb, m>, t) = 
ifeval(tb, t ) = l 
then <remove(tb, t), <m.v, m.v, m . v » 
else <change(tb, t, eval(tb, t)- l) , m> 

U p o n unpinning an object, for a given transaction (r), if its count of pins is d o w n to 1, the object ' s value 
in volat i le s torage should be writ ten to non-volat i le and stable storage; o therwise , the count should merely 
be decremented by 1 and n o change should be m a d e to memory . 

Put t ing all these pieces together results in the full specification shown in Figure 3 - 1 . T h e Appendix 
contains the Pair, TableSpec, and Triple specifications. 

3 . 2 . V e r s i o n 2 
T h e specification of the previous sect ion was shown to the implementor of class recoverable (Figure 2-1) 
in order to verify that indeed the implementa t ion satisfies the specification. T h e implementor 
immediate ly not iced what he thought was an error in his implementat ion: T h e specification permits 
different transactions to pin the s ame object at the same t ime, whereas the implementa t ion does not. The 
implementor p roceeded to change his implementa t ion to satisfy the specification, but then realized that 
the specified semant ics was unimpiementable! The under lying operat ing sys tem (Camelot ) forbids more 
than one transaction to p in an object (as represented as pages in volati le m e m o r y ) at once . It assumes that 
any transact ion pinning an object will modify that object and thus would want to prevent any other 
transaction from simultaneously accessing that object. A pinned object is a wri te- locked one as well . 
Thus , it was impossible to implement the less restrictive, but desired, semantics of pin; in short, the 
specification was 4 ' c o r r e c t , " but un implementable . 

The revised specification (Figure 3-2), which is more restrictive but implementable , captures this third 
property of recoverable objects: 

3 . Only one transaction can pin an object at once. 

This specification is s impler to unders tand than the previous one because there is less information to keep 
track of. In essence , the table of transaction identifiers and their corresponding pin counts reduces to a 
single transaction and its count . 

T h e specifications for pin and unpin change slightly: 

pin = oper (x: recoverable) signals (already.claimed) 
post x* = pn(x, self) A 

x. trans & self => signal already_claimed 

unpin = oper (x: recoverable) 
p re pinned(x) A x. trans = self 
post x ' = un(x, self) 

Pin might terminate wi th an error condi t ion signaled to the invoker to indicate that the object to be pinned 
is already pinned by some other transaction. Unpin requires not only that its a rgument is already pinned, 
but that it is p inned by the cal l ing transaction. 

Since concurrent pins by different transactions are not a l lowed, it is unnecessary to keep track of a table 
of pin counts per transaction. It suffices to associate with a recoverable object, a single transaction 
identifier, its va lue in m e m o r y , a n d a pin count : 

Triple (R for T, Tid for T l , Memory for T2, Card for T3, trans for .first, count for .third) 



class recoverable: interfaces 
based on R from RecObj 

pin = oper (x: recoverable) signals (already_claimed) 
post x* ss pn(x, self) A 

x.trans self => signal already_claimed 

unpin = oper (x: recoverable) 
pre pinned(x) A x.trans = self 

post x ' s un(x, self) 

RecObj: trait 
includes 

Triple (R for T, Tid for T l , Memory for T2, Card for T3, trans for .first, count for .third) 
Triple (Memory for T, M for T I , M for T2, M for T3) 

introduces 
pn: R, Tid —• R 
un: R, Tid —• R 
pinned: R —» Bool 

asserts for all (m: Memory, m l , m2, m3: M, c: Card, t l , t2: Tid) 
pn(<tl , m, o , t2) = 

if c > 0 // is already pinned? 
// by same transaction 
// increment count 
// otherwise, leave unchanged 
// initialize it 

then if t l = t 2 
then < t l , m, c+ l> 
else < t l , m, c> 

else <t2, m, 1> 
un(<tl, < m l , m2, m3>, o , tl) = 

i f t l = t 2 // don't have to check if pinned already 
/ / i f last unpin 
// write to stable storage 
// or just decrement count 
// no change 

then if c = 1 
then < t l , < m l , m i , m l > , 0> 
else < t l , < m l , m2, m3>, c-I> 

else < t l , < m l , m2, m3>, c> 
pinned(r) ss r.count > 0 

Figure 3 -2 : Specification of Class Recoverable : Vers ion 2 



A s s u m e initially that each recoverable object, x, is unpinned, i.e., account = 0. 

T h e auxiliary functions, pn and un, change accordingly: 
pn(<tl , m, o , t2) = 

if c > 0 
then if t l = t 2 

t h e n < t l , m, c+ l> 
else < t i , m, c> 

else <t2, m, 1> 

If the coun t (c) is non-zero , then the object mus t be pinned. If the object is p inned by a transaction (tl) 
that is the same as the transaction (t2) a t tempting to pin the already p inned object, then the count is 
incremented; o therwise , the object is left unchanged. If the object is not already pinned, then its value is 
initialized wi th the pinning t ransact ion 's identifier and a count of 1. 

un(<tl , <ml , m2, m3>, o , t2) = 
i f t l = t 2 
then if c = 1 

then < t i , <ml , m l , m l> , 0> 
else < t l , < m l , m2, m3>, c- l> 

else < t l , < m l , m2, m3>, c> 

Unl ike for pn, it is unnecessary for un to check if the object is a l ready p inned since the precondi t ion of 
unpin checks for this case . S o un first checks to see if the transaction (tl) that currently has the object 
p inned is the same as the unpinning transaction (t2). If so , then if there is only one outs tanding call to pin 
(c = / ) , the value of the object in volati le s torage is writ ten to non-volat i le and stable storage; otherwise, 
the count is decremented . If the unpinning transaction is different from the p inning one , then n o change is 
made . 

A n A s i d e fo r L a r c h R e a d e r s 

A typical use of class recoverable is to define a der ived class for a recoverable type of object, say class 
rec Joo. If foo is the sort identifier associated with values of objects of type recjoo, then the identifier M 
that appears in the RecObj specification would be r enamed wi th foo. Tha t is , the header for the Larch 
interface specification for a rec_foo class would look like: 

class rec_foo: interfaces 
based on R from RecObj (foo for M) 

/ / . . . specifications of operations for rec_foo objects ... 

3 . 3 . Version 3 
Notice that nowhere in the previous specification is the distinction between non-volati le and stable 
storage used. For example , when an object is finally unpinned, its value is written out to both non
volati le and stable storage: 

un(<tl, <ml , m2, m3>, c>, t2) = 

then < t i , <ml , m l , ml> , 0> 

T h e second two componen t s of M e m o r y are treated identically. In unpinning an object, it is necessary 
that stable s torage be updated using volati le s torage ' s value , but writ ing out to non-volat i le storage is 
strictly not necessary. 



This observat ion reveals an implementa t ion bias in the specification. T h e under ly ing operat ing sys tem 
implements m e m o r y as a three-level s torage hierarchy, and uses the wri te-ahead logging protocol to 
exploit the dist inction be tween volat i le and non-volat i le s torage for crash recovery. Recal l , however , that 
conceptual ly a recoverable object has only two possible **values' ' : that in volati le storage and that in 
stable storage. It suffices to consider only a two-level s torage hierarchy wi th jus t volati le and stable 
s torage. T h e change to the previous specification is trivial s ince M e m o r y s imply becomes a pair: 

Pair (Memory for T, M for T l , M for T2, v for .first, s for .second) 

and un changes accordingly: 

un(<tl , <ml , m2>, o , t2) = 

then < t i , < m l , m l > , 0> 
else < t l , < m i , m2>, c- l> 

else < t l , < m l , m2>, c> 

4. Observations 
The different versions of the specification m a d e it possible to art iculate precisely quest ions about the 
semantics of recoverable objects as well as quest ions about the implementat ion. The feedback between 
the specifier and implementor and be tween the specifier and language designers he lped everyone gain 
insight about the implementabi l i ty of the desired semant ics , incompleteness in the current 
implementat ion, implementa t ion bias in the language des ign, and e v e n incompleteness in the 
specifications as presented. 

4.1. Unstated Assumption 
The major observat ion as a result of this specification exercise is that the specification helped identify an 
unstated and critical assumpt ion in the under lying operat ing sys tem that was reflected in the 
implementat ion. T h e implementa t ion prec luded the possibili ty of concurrent pins by different 
transactions. T h e under lying system forbids this situation because it a ssumes that any transaction that 
pins an object intends to modify it. 

This assumpt ion reflects a key point a t the operat ing-system level where recovery and synchronizat ion of 
objects are inseparable. Wi thout concurrency, one can give a mean ing to recoverabil i ty; without 
recovery, one can give a mean ing to the correct synchronizat ion of processes. But to support both, there 
are points when one must consider both recovery and synchronizat ion together. Here is exactly one of 
those points . Synchronizat ion of concurrent , modifying transactions is built into the meaning of 
recoverabil i ty of objects . This point was not well unders tood by either the language designers or the 
language implementors because the assumpt ion was never stated by the under ly ing operat ing system 
bui lders . Only through this specification exercise and subsequent discussion be tween the language 
implementors and sys tem builders was this point clarified. 

4.2. Incompleteness in the Implementation 
W h e n presented with the specification of the unpin operat ion (any version), the implementor was asked 
whether the precondit ion on unpin (requiring that the object be pinned and that the check is with respect 
to the call ing transaction) could be removed. That is, should the responsibil i ty of checking the stated 
precondit ion be on the caller of unpin or the implementor? Currently, the responsibil i ty lies with the 
caller; however , it cou ld easily be checked at runt ime as part of the implementat ion. If the object is not 



pinned or p inned by s o m e other transaction, an appropriate error message could be signaled to the caller, 
m u c h like the error condi t ion signaled in the pin opeat ion. T h e implementor was alerted to this 
assymmetry in handl ing error condi t ions only when the formal specification was presented to h im. 

4.3. Implementation Bias in the Language Design 
T h e specification also revealed a subtle point of misunders tanding be tween the language designers and 
language implementor . Class recoverable is actually implemented to provide a stronger property, 
operat ion-consis tency, than jus t recoverabil i ty. Operation-consistency requires that an object be restored 
to s o m e consistent state that reflects all operat ions of commi t t ed transactions plus some prefix of the 
sequence of operat ions performed on the object by transactions act ive at the t ime of a crash. Since the 
implementa t ion supported this s t ronger property and s ince the designers never carefully defined (that is , 
specified) recoverabil i ty, the meaning of recoverabil i ty was confused wi th the implementa t ion of 
recoverabil i ty; thus , until this specification exercise was performed, the language designers bel ieved that 
operat ion-consis tency was inherent to recoverabil i ty. 

The nondete rmin ism inherent in this stronger definition would force the specification to keep track of a 
set of possible values (each representing a prefix of operat ions of uncommit ted transactions) in stable 
s torage (the third componen t of M e m o r y in F igure 3-2) rather than a s ingle va lue . W h e n the object ' s state 
is res tored upon recovery, any one of the values in this set would correct ly represent a previous operat ion-
consistent state. O n e would addit ionally need to ensure that the restored states of all objects reflect the 
same prefix of operat ions of all uncommit ted transactions. For example , if transaction T were active at 
the t ime of the crash and states of objects x and y are restored, if some prefix of Ts operat ions is reflected 
by the x's restored state, then the same prefix mus t also be reflected in y ' s . Note that specifying this 
property cannot be done locally, i.e., per object; it is inherently a global property that involves the states 
of all objects in the system. O n e would specify a sys tem-wide operat ion, recover, which would refer to 
the recovered, operat ion-consis tent states of all the sys t em ' s objects. 

4.4. Incompleteness in the Specification 
As is, the specification for class recoverable is not comple te : initialization of a recoverable object is 
unspecified. Informally, a recoverable object is initially some block of m e m o r y with no associated 
transaction identifier (and of course no pin count) and no initial value. N o transaction identifier is 
associated with a recoverable object until it is first pinned. Allocat ion of m e m o r y should be specified in 
the postcondi t ion for a separate create operat ion: 

create = oper () returns (x: recoverable) 
post n e w x 

where " n e w x " is a special Larch assert ion stating that .r denotes some previously free block of memory . 
Also , either pin's precondi t ion should require that its a rgument has been previously allocated (making it 
the responsibil i ty for the caller to check) , or the auxiliary function pn should be modified accordingly 
(making it the responsibil i ty of the implementor to check) . 

5 . Concluding Remarks 
In some sense the details of the problems discussed in the previous sections are less interesting than the 
insights gained from under taking the process of rigorously specifying recoverabil i ty. This process 
enabled us to clarify fuzzy not ions about recoverable objects; and to state precisely problems revealed in 



the specification, design, and implementa t ion and to resolve their d iscrepancies . 

Since this specification exercise was performed in the context of an ongoing large software deve lopment 
project, it was especial ly rewarding to identify points of confusion be tween desired and implementable 
semant ics , to d iscover incompleteness in the implementat ion, and to separate out implementa t ion biases 
from the design. A language like Ava lon has more complex semant ics than a s tandard sequential 
p rogramming language; knowing early o n that a fundamental par t of its semant ics is implemented 
correct ly is a t remendous reassurance to us and future Ava lon p rogrammers . A s language implementors , 
we promise to provide certain propert ies of the built-in classes l ike class recoverable so that when people 
use Ava lon they need not worry that s o m e error they find in their code migh t in fact be an error in ours . 
In particular, recoverabil i ty is a nontrivial , system-cri t ical property of objects . T h e rest of the Ava lon 
language class hierarchy derives from class recoverable, both in defining other built-in classes like class 
atomic, and in defining user-defined classes like recoverable strings or a tomic queues . It is still 
impractical and unreasonable to specify formally large software sys tems comple te ly , but the benefits of 
tackling smaller , system-cri t ical pieces a re large. 

Finally, as ment ioned in the introduction, we are able to demonst ra te that formal specification techniques 
can be extended naturally to specify non-functional propert ies like recoverabil i ty. W e intend to cont inue 
this specification exercise for the other built-in and user-defined classes of Ava lon , in part icular those that 
support other aspects of the atomicity proper ty of objects. 
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I. Other Specifications Used 
TabieSpec: t ra i t 

introduces 
new: —» Table 
add: Table, Index, Val —» Table 
_€ _: Index, Table —• Bool 
remove: Table, Index Table 
eval: Table, Index —• Val 
change: Table, Index, Val —• Table 
isEmpty: Table —» Bool 

asserts 
Table generated by (new, add) 
Table part i t ioned by (_€ _ , eval) 
for all (t: Table, ind, indl , Index, val, vai l : Val) 

ind € new = false 
ind € add(t, indl , val) = (ind = indl) I ind € t 
evai(add(t, ind, val), indl ) = if ind = indl then eval else eval(t, indl ) 
remove(add(t, ind, val), indl) = if ind = indl 

t h e n t 
else add(iemove(t, indl) , ind, val) 

change(add(t, ind, val), indl , vai l) = if ind = indl 
then add(t, ind, vail) 

else add(change(t, indl , vail) , ind, val) 
isEmpty(new) = true 
isEmpty(add(t, ind, val)) = false 

implies converts (_je _, remove, eval, change) 
exempting eval(new, ind), remove(new, ind), change(new, ind, val) 

Triple: t ra i t 
introduces 
<_, _, _>: T l , T2, T3 —> T 
..first: T - » T 1 
. .second: T —» T2 
..third: T —»T3 
asserts 

T generated by (<_, _>) 
T parti t ioned by (first, .second, .third) 
f o r a l l ( a : T l , b : T 2 , c: T3) 

<a, b, c>. first = a 
<a, b, c>. second = b 
<a, b, o . t h i r d = c 

Pai r t rai t 
introduces 
<_, _>: T 1 , T 2 - » T 
..first: T - > T 1 
. .second: T —»T2 
asserts 

T generated by (<_, _>) 
T parti t ioned by (.first, .second) 
for all ( a : T l , b : T 2 ) 

<a, b>. first = a 
<a, bxsecond = b 
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